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โครงสรางไฮเดรชันของ Ca2+ และโครงสรางฟลมบางของซิงคออกซีไนไตรด โดยไดใชวิธีการ
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 ในการศึกษาโครงสรางฟลมบางซิงคออกซีไนไตรด แบบจําลองไดถูกสรางขึ้นจาก
องคประกอบหลักที่รูจักโดยใชการวิเคราะแบบ linear combination ผลการวิเคราะหสเปกตรัม 
XANES แสดงใหเห็นวาวัสดุตัวอยางดังกลาวนั้น ประกอบดวย ซิงคออกไซต และ โลหะสังกะสี ที่
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X-RAY ABSORPTION SPECTROSCOPY/HYDRATION STRUCTURE 

/DISORDER SYSTEM 

 

Disorder materials with no long-range periodic structure are difficult to be 

characterized by standard methods, such as x-ray diffraction or high resolution electron 

microscopy. In this work, x-ray absorption spectroscopy (XAS) was proposed as an 

alternative way to study the atomicstructure of disorder systems. Two selected disorder 

systems: Ca2+
aq and zinc oxynitride thin films were studied by x-ray absorption near edge 

structures (XANE) and extended x-ray absorption fine structure (EXAFS). The candidate 

structural model for Ca2+
aq was based on Quantum mechanics/Molecular mechanics 

(QM/MM) simulation by A. Tongraar. The zinc oxynitride thin films were obtained from J. 

Nukeaw. The measurement data were analyzed to obtain the important structural parameters 

to be compared with the calculated spectra.  

For the study of Ca2+ hydration structure, EXAFS give an average Ca-O bond 

distance of 2.431± 0.011 Å, a coordination number of 6.56 ± 0.316 and a Debye-Waller 

factor of 0.009 Å2. These parameters agreed well with the parameters obtained from RDF 

of the theoretical QM/MM simulation of 2.445 Å, 6.8 and 0.0096 Å2, respectively. The 

measured XANES spectrum can be fitted very well with that obtained from QM/MM. This 

result strongly supported the accuracy of QM/MM model.  



On the structural investigation of zinc oxynitride thin films, the model compounds 

were constructed from known reference compounds using a linear combination analysis 

(LCA). The XANES result suggested that the material mainly contained mixing ZnO 

nanocrystals and zinc metal nanocrystals.  
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CHAPTER I 

INTRODUCTION 

 
      In the recent years, advanced material characterization techniques have been 

invented for studying material properties. The new techniques have been adopted and 

applied in many disciplines, such as physics, chemistry, biology, medicine and 

nanotechnology. Base on fundamental solid state physics, the procedures to 

characterize crystalline materials are well established. It can be stated that, with a few 

exemptions, the crystals known to human can be classified into seven crystal systems 

and fourteen Bravais lattices (Marder, 2000). The microscopic structure of crystalline 

materials can be revealed in atomic resolution by following the well-established 

procedures. The remarkable successes of diffraction-based techniques (i.e. x-ray, 

electron, neutron etc.) in the last century have paved the way for new material 

applications of the present day. For examples: protein crystallography is a major 

characterization technique in protein study (Caffrey, 2003) while neutron diffraction 

is very important for magnetic material studies, such as antiferromagnetic material 

(Shull, 1949).  

      However, the interpretations of results from above diffraction techniques are 

mostly based on Fourier transform which require good structural periodicity over a 

large portion of the materials under study (Bracewell, 2000). Therefore, diffraction 

techniques may not be used effectively for the structural investigation of materials 

that (1) do not have periodic structure and are highly disorder (amorphous) or (2) 

contain randomly distributed components (alloys, dopants in semiconductors, liquid, 

ions in liquid). For such system, there are other techniques which are capable of 
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microscopic study, i.e. nuclear magnetic resonance (NMR), infrared spectroscopy 

(IR) and x-ray absorption spectroscopy (XAS). To use those techniques efficiently, 

some complementary theoretical models are generally needed. In the recent years, 

computational simulation have been widely employed and enabled researchers to 

make structural predictions about the structures of non-crystalline materials. 

However, to judge the accuracy of any theoretical models, the experimental 

verification is crucial. Recently, x-ray absorption spectroscopy (Rehr and Albers, 

2000) has been shown to be an efficient way to gain structural information of non-

crystalline materials when couple experiments with theoretical simulation.  

      To further explore the capability of XAS for non-crystalline materials, in this 

thesis, two representative disorder systems (Ca2+ in water and zinc oxynitride alloys) 

are selected for structural study by combining XAS technique with theoretical 

simulation. In this chapter, the related works published on the two systems are 

reviewed.  The research objectives and scope and limitation of this study are also 

given at the end of the chapter. 

 

1.1. Background on Ca2+ hydration structure 

      Ca2+ is one of the vital ions in biochemical processes throughout human body’s 

fluids such as neuromuscular transmission (Dodge et al., 1967) and hormone secretion 

(Brown and MacLeod, 2001). In living organism, since water is one of the main 

chemical components, Ca2+ would be found in the form of aqueous solutions or 

Ca2+
aq. The water polar molecules would arrange themselves around Ca2+ resulting in 

the formation of Ca2+ hydration structure.  This hydration structure would be the main 

contributor to govern the transport properties of Ca2+ ions throughout living organism. 
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 To understand its behavior in aqueous solution, precise enough for transport 

modeling, the Ca2+ hydration structure must be verified with good accuracy. For 

theoretical prediction of Ca2+ hydration structure, several groups have reported their 

findings with a variety of results as shown in table 1.1. In this thesis, the main 

structural parameters of interest are 0R  which is the radius of the fist hydration shell 

or Ca-O distance, 2σ or Debye-Waller factor which is related to the thermal 

disordering, and N  which is coordination number or the number of water molecules 

in the first hydration shell.  

 

Table 1.1 Results from theoretical predictions for Ca2+ hydration structure: 0R  is 

nearest neighbor distance, 2σ is Debye-Waller factor, and N  is coordination number. 

Type of calculation  0R (Å) 2σ (Å2) N  

MDa 2.48 0.008 7.9 

MDb 2.40 0.020 8 

MDc 2.54 - 9.3 

MDd 2.45 - 7-8 

MDe 2.45 0.007 6.5 

CPMDf 2.45 - 6 

QM/MM HFg 2.48 - 7.89 

QM/MM DFTg 2.48 - 8.04 

a(D’Angelo et al., 2004)  e(Dang et al., 2006) 
b(Jalilehvand et al., 2001)  f(Bakó et al., 2002)  

c(Periole et al., 1997)                         g(Schwenk and Rode, 2004) 
d(Bernal-Uruchurtu et al., 1995)   
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      It can be seen from table 1.1 that there are some disagreements between different 

models from theoretical predictions, especially in coordination numbers N, ranging 

from 6 to 9 and Debye-Waller factor 2σ ranging widely from 0.008 to 0.02 Å2. It is 

noteworthy that when dynamic of the structure is considered, the coordination 

numbers N may not be constant. Figure 1.1 compiles snapshots of the Ca2+ hydration 

structures from some predictions. Clearly, there should be some methods to 

distinguish “good” model from “not good” model.   

 

(c) (d)(c) (d)  

Figure 1.1 Snapshot of first Ca2+ hydration shell form (a) (Fulton et al., 2003), (b) 

Tongraar, (c) (Bakó et al., 2002) and (d) (Jalilehvand et al., 2001) 
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      To verify the predictions of Ca2+ hydration structures several experiments have 

been performed.  Neutron diffraction was used to study the environment of Ca2+ ion 

in aqueous solvent (Hewish et al., 1982). It was found that the coordination number 

decreased from about 10 to 6 with the increase of solution concentration from 1 to 4.5 

m. The radius of the first hydration shell was reported to be around 2.46 Å. Other than 

neutron diffraction, large-angle x-ray scattering study on aqueous calcium halide 

solutions reported the mean Ca-O bond distance of 2.46 Å and the coordination 

number of 8 (Jalilehvand et al., 2001).  

      Fulton et al. have experimentally studied the effect of concentration of calcium 

ion in aqueous using extended x-ray absorption fine structure (EXAFS) and x-ray 

absorption near edge structure (XANES) (Fulton et al., 2003). They concluded that 

the mean coordination number was 7.2 ± 1.2 aqueous molecules and the averaged Ca-

O distance was 2.437±0.010 Å for 6 m CaCl2 in water. Recently, Dang et al. have 

reported good agreement between the measured EXAFS spectra and the calculated 

EXAFS spectra based on their molecular dynamics simulation (Dang et al., 2006). 

The averaged Ca-O distance was reported to be 2.429±0.03 Å and the coordination 

number was 6.8. However, the results on XANES measurement have not been 

discussed. Moreover, there is no reported theoretical model that give the Debye-

Waller factor close to the experiment value. In table 1.2, the results from experimental 

findings are summarized. It could be seen that the disagreements in the values of 

coordination number and Debye-Waller factor are not solved by experiment yet.  
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Table 1.2 The main structural parameters of Ca2+ hydration structure from various 

experimental studies  

Experimental method 0R (Å) 2σ (Å2) N  

Neutron diffraction a 

2.46±0.03 (1.0 m) 

2.39±0.02 (2.8 m) 

2.41±0.03 (4.5 m) 

- 

- 

- 

10.0±0.6

7.2±0.2 

6.4±0.3 

large-angle x-ray scattering b 2.46 0.006 8 

EXAFS c 2.437±0.010 (6.0 m) 0.011 7.2±1.2 

EXAFS d 2.429±0.03 (6.0 m) 0.012 6.8 

a(Hewish et al., 1982) 
b(Jalilehvand et al., 2001) 
c(Fulton et al., 2003) 
d(Dang et al., 2006) 

 

      Nevertheless, XAS analysis seems to be the alternative method that may possibly 

give the solution for this kind of structure, since EXAFS and XANES feature is a 

close dependent of the local structure around the central atom, especially the first 

shell. The precision of the theoretical model may be evaluated from a comparison 

between the theoretical and the measured XAS spectra. The possibility of performing 

XAS experiment using synchrotron radiation helps us to select this method as the 

main experimental tool for the thesis work.  

      Therefore, in the first part of this thesis, the verification of the Ca2+ hydration 

structure by XAS is focused. The dynamic configurations data set is provided by 

Assoc. Prof. Dr. Anan Tongraar, School of Chemistry, Suranaree University of 

Technology (SUT). A snapshot from the dynamic structure is shown in figure 1.1 (b). 

Note that, this snapshot has the coordination number of 8. The obtained positions of 
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atoms are used to generate the calculated XAS spectra. Then the calculated spectra are 

compared with the measured spectra using the XAS facility at the beamline 8 of the 

Siam Photon Laboratory, Synchrotron Light Research Institute, Thailand. By this 

way, the accuracy of the Ca2+ hydration model can be verified especially for the value 

of Debye-Waller factor and coordination number of the first hydration shell. 

 

1.2 Background on Zinc oxynitride alloys 

      The second part of this thesis is focused on microstructure investigation of zinc 

oxynitride alloys by using XAS. Because of many of their interesting and useful 

properties, zinc-contained compounds have widely been studied. For example, zinc 

oxide has been studied extensively for blue light emitting applications (Murai et al., 

2008). Its attractive properties include high transparency and high conductivity 

(Nanto et al., 1984). For spintronics applications, ZnMnO and ZnCoO alloys are 

candidates for material of choice. (Kane et al., 2005) In a similar fashion, zinc nitride 

have been studied and aimed for utilization in optoelectronics applications. The 

optical band gap of zinc oxide and zinc nitride are found to be around 3.3 eV (Izaki 

and Omi, 1996) and 1.23 eV (Kuriyama et al., 1993) respectively. Figure 1.2 shows 

the ball-and-stick models for zinc oxide (a) and zinc nitride crystals (b). 

 



 8

 

Figure 1.2 Ball-and-stick models for (a) zinc oxide (ZnO) and (b) zinc nitride (Zn3N2) 

crystals. 

 

      It has been speculated that the alloys between zinc oxide and zinc nitride or “zinc 

oxynitride” may have bandgap varying from 1.23 to 3.2 eV, ranging from visible to 

UV region. Several groups have reported the synthesis of zinc oxynitride alloys and 

measured the structural and optical properties. M. Futsuhara et al. (Futsuhara et al., 

1998) used RF sputtering to deposit zinc oxynitride films and found that the optical 

band gap of their samples could be varied from 2.30 to 3.26 eV with decreasing 

hydrogen concentration. They conclude that the microstructure of zinc oxynitride film 

depends on N2 concentration during the sputtering process. T. Morika et al. (Moriga 

et al., 2005) reported that anti-bixbyite-type zinc oxynitride can be prepared from 

nitriding zinc powder under ammonia gas flow with varying of nitrogen gas 

concentration. From the measurement of O K-edge and N K-edge XANES from zinc 

Zn Zn 
O 

N
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oxynitride samples, it has been concluded that nitrogen may be incorporated in 

octahedral environment in anti-bixbyite zinc oxynitrides.  

      It should be mentioned that there are some inconsistencies in the work by T. 

Morika et al. such as the difference in nitrogen/oxygen ratio between expected value 

and composition analysis. Moreover, Zn K-edge XANES spectra has not been 

measured and phase separation between the two compounds was not considered.  

      Up to present, there is a limited number of published works on zinc oxynitride 

alloys and it is unclear about the structure of this kind of alloys as summarized in 

table 1.3. Therefore, the local structure of zinc oxynitride alloys is, for the most part, 

unknown and waiting to be solved. Moreover, by comparing to indium oxynitride 

alloys studied by J. T-Thienprasert et al. (Thienprasert et al., 2008), it is possible that 

zinc oxynitride alloys may have disorder structure.  Therefore, we selected to study 

the local structure of zinc oxynitride alloys by XANES in the second part of the 

thesis.  

 

Table 1.3 Results from experimental studies of zinc oxynitride 

Synthesis technique Compositions Structure Bandgap (eV) 

RF sputtering a ZnxNyOz Zincblend (XRD) 2.30-3.26 

Nitridation b Zn3(N1−xOx)2−y Anti bixbyite (XRD) - 

a(Futsuhara et al., 1998) 
b(Moriga et al., 2005) 

 

      In this work, several candidate models for zinc oxynitride were considered. 

Theoretical XANES spectra were generated. The verification of the theoretical spectra 

is done by comparing with the actual measurement by using zinc oxynitride samples 
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supplied by Prof. Jiti Nukaew’s research group of King Mongkut's Institute of 

Technology Ladkrabang (KMITL), Thailand.  

 

1.3 Research objectives 

(a) Verify the validity of a Ca2+ hydration QM/MM model by comparing the 

calculated spectra with the measured spectra and extract the important structural 

parameters for Ca2+
aq from XAS fitting 

(b) Study the local structure of zinc oxynitride thin films by XANES technique 

and propose a general scheme for XAS study of non-crystalline material.   

 

1.4 Scope and limitation of the study 

      The calculated x-ray absorption spectra are based on FEFF 8.2 code (Ankudinov 

et al., 1998). To verify the dynamically simulated Ca2+ hydration structure by Assoc. 

Prof. Dr. Anan Tongraar, both XANES and EXAFS spectra are calculated and 

compared with experimental XAS data taken at the synchrotron radiation facility of 

the Siam Photon Laboratory (SPL), Nakhon Ratchasima, in the first half of this thesis 

work. In the second half, the local structure of zinc oxide/zinc nitride alloys is studied 

by XANES approach. The zinc oxynitride thin films are prepared by KMITL group. 

The XAS experiment is performed at SPL as well. To be compared with the 

measurement, Zn K-edge XANES spectra were generated from several configuration 

models. A representative model of zinc oxynitride local structure will be selected 

from the model that gives the best fit.  



CHAPTER II 

RESEARCH METHODOLOGY 

 
      In this chapter, the research methodology used in this thesis will be reviewed. 

Firstly, the basic theory on x-ray absorption spectroscopy (XAS) is discussed. 

Secondly, the XAS measurement facility at Synchrotron Light Research Institute 

(SLRI) is introduced. Then, the details of the XAS spectrum calculation and XAS 

spectrum analysis will be discussed in the following section. Finally, the background 

information about Ca2+ hydration QM/MM simulation for this study and zinc 

oxynitride alloys modeling will be discussed in the last section. 

 

2.1. X-ray absorption spectroscopy 

      X-ray absorption spectroscopy (XAS) is one of the techniques used widely in the 

investigation of microscopic and electronic structure of materials. The experiment is 

usually performed at the synchrotron radiation facility, where the energy of x-ray 

photon can be varied and selected. This technique measures the x-ray absorption 

coefficient of the absorbing material as a function of x-ray photon energy, covering 

the range around the absorption edge of absorbing atoms of interest.  
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Figure 2.1 The relationship between the x-ray absorption edges and the 

corresponding excitation of core electrons. Shown are the excitations corresponding 

to the K, and L x-ray absorption edges. 

 

      In the absorption process, electrons in the inner shells: K, L or M shell will be 

excited by the (absorbed) x-ray photon to higher empty energy states above the Fermi 

energy. The core hole, empty state, will be created in the inner shell, and the energy 

level of the shell is used to define the type of absorption edge as shown in figure 2.1. 

For example, K-edge is the absorption edge when the excited electrons are from 1s 

shell and L1-edge is the absorption edge when the excited electrons are from 2s shell. 

The x-ray photon energy has to be greater than the difference of energy between 

unoccupied valance state and K shell state. At the photon energy above the binding 

energy, the absorption rapidly change, which is obviously seen as the absorption edge. 

For example, shown in figure 2.2 is the measured K-edge absorption spectrum of 

Ca2+
aq from 6 M CaCl2 aqueous solution. 
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Figure 2.2 K-edge raw absorption spectra of Ca2+
aq from 6 M CaCl2 aqueous 

solution: data taken at XAS beamline, Siam Photon Laboratory. 

 

      The absorption ability is studied through the absorption coefficient (µ ) as a 

relation of the intensity of incident beam ( 0I ) and the intensity of transmitted beam 

( I ) as defined by 

0
xI I e µ−=  ,                                             (2.1) 

where x is the thickness of the sample, which is generally can be abandoned in the 

standard data analysis as some scaling constant.  

     Generally, the absorption spectrum can be separated into two regions: x-ray 

absorption near edge structure (XANES) and extended x-ray absorption fine structure 

(EXAFS). Because of the continuity of absorption spectrum, the regions of XANES 

and EXAFS can be overlapped and hardly defined at the beginning and the end of two 
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regions. However, it is generally defined that XANES locates at around 40-50 eV 

above the absorption edge and EXAFS locates at the higher energy region as show in 

figure 2.3. 

 

 

Figure 2.3 Normalized K-edge absorption spectrum can be classified into two 

regions, XANES and EXAFS. Data shown is the XAS spectrum of Ca2+
aq. 

 

      2.1.1 X-ray absorption near-edge structure (XANES) 

      XANES spectrum is known to be sensitive to the local environment and the 

oxidation state around the absorbing atom. Considering an excited electron, which has 

low energy in this region, like a wave, it will go out form the absorbing atom and 

scatter from a number of surrounding atoms before going back to the absorbing atom. 

This phenomenon is sensitive to the arrangement of neighboring atoms and also 

effects to the absorbance which can be measured. Therefore, XANES is usually used 

to study the oxidation state and the local orientation of material.  
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      The expression for XANES can be derived form the transition rate given by 

Fermi’s Golden Rule. The absorption coefficient in equation (2.1) can be described by  

  ( )2ˆ( ) i f
f

E f r i E Eµ ε δ ω∝ ⋅ − +∑ v% h ,                                         (2.2) 

where i  is the initial core ket state vector, f  is the final bra state vector of the 

excited electron, E  is the energy of absorbed x-ray photon, iE  is the energy of final 

state, fE  is the energy of final state, ωh  is the energy of x-ray photon energy, ε̂  is the 

x-ray polarization vector and ( )Eµ%  is absorption coefficient with ignoring of core-

hole lifetime and experimental resolution (Ankudinov et al., 1998). By considering 

Eq. 2.2 further with the additional effects of core-hole life time and experimental 

resolution, the XANES spectra can be calculated as described later in section 2.3.2. 

 

      2.1.2 Extended x-ray absorption fine structure (EXAFS) 

      EXAFS is the oscillatory modulation of absorption coefficient which can be 

inspected in the higher energy part of absorption spectrum. This fine structure occurs 

from interacting of excited electrons with absorbing atom and its surroundings, which 

affect directly to the absorbance. In quantum mechanical aspect, the photoelectron is 

treated as wave emitted form the absorber with wavelength equal to λ , which can be 

defined by the de Broglie relation 

  h
p

λ = ,       (2.3) 

where h  is Planck’s constant and p is the momentum gained by photoelectron. In 

EXAFS, p is related to equation described the free electron 

  
2

02
p h E
m

ν= − ,                (2.4) 
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when m  is mass of that excited electron, hν  is the energy of frequency ν  photon and 

0E  is the binding energy of the core level electron. 

      Consider a Zn K-edge absorption spectrum from ZnO sample as shown in figure 

2.4, the wave form of outgoing photoelectron from an absorbing atom (Zn) and the 

backscattered waves from surrounding atoms (O) will interfere and then create the 

total amplitude. The total amplitude of electron wave function would be magnified or 

declined depends on phase difference of these two kinds of considered waves. The 

amplitude will be magnified and detected as peak of fine structure, if they are exactly 

in phase. On the other hand, the amplitude will be declined and detected as valley of 

fine structure, if they are out of phase. 

 

Figure 2.4 Result from the interaction of electron out-going wave from Zn absorber  

in ZnO and its surrounding O atoms in EXAFS region. 
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      Noting that, the fine structure in EXAFS does not present in the case of isolate 

atom system such as mono-atomic gas, because the outgoing wave would not be 

scattered strongly by any other atoms. In such case, only atomic absorption 

background is present in the XAS spectrum.  

      The oscillation of x-ray absorption above a given absorption edge, EXAFS 

function, ( )Eχ  is defined as 

( ) ( ) ( )E E
E

µ µ
χ

µ
−⎡ ⎤⎣ ⎦=
∆

o

o

,                                  (2.3) 

where ( )Eµ  is the x-ray absorption coefficient, 0 ( )Eµ  is smooth atomic background  

absorption coefficient and 0µ∆ is a normalization factor as illustrated in figure 2.5.  

 

 

Figure 2.5 The x-ray absorption coefficient ( )Eµ , the smooth atomic-like background 

0 ( )Eµ  and EXAFS function ( )Eχ  for Zn-K edge spectrum of ZnO.  
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      Moreover, in the EXAFS analysis ( )Eχ  could be changed from E space to k 

space by the relation 2
02 ( ) /k m E E= − h . Then the function can be changed from 

( )Eχ  to ( )kχ  for general purpose. In theoretical approach, the ( )kχ  can be 

expressed by (Wilson et al., 2000) 

( ) ( ) ( )[ ] ( )∑ −−+=
j

kRk
jjj

j

j jj eekkRkf
Rk
NS

k λδφπχ 22
2

2
22

2sin,ο ,           (2.4) 

where jN  is  the number of neighbors in j  shell of surrounding atoms, k  is 

photoelectron wave vector, jf  is the scattering amplitude, ( )kS 2
ο  is the amplitude 

reduction term due to many-body effect, jR is radial distance from absorbing atom to 

j  shell, ( )kλ  is electron mean free path, jσ  is the Debye-Waller factor and ( )kϕ  

accounts for the total phase shift of the curve wave scattering amplitude along the 

scattering trajectory. 

      The distance between center atom and backscattering atoms or the path-length 

change the phase varying with the wavelength of photoelectron. In addition, different 

types of surrounding atoms vary the backscattering strength as a function of 

photoelectron energy. It is accepted that, by the careful analysis of the EXAFS 

structure, one can obtain important structural parameters surrounding the center atom.  

 

2.2 X-ray absorption spectroscopy experimental set up 

      The x-ray absorption spectroscopy experiment is normally performed at a 

synchrotron radiation source, because of high intensity and energy adjustable ability 

of produced x-ray photon, and the ability to obtain the continuous absorption 

spectrum over wide energy range.  In general, there are three types of x-ray absorption 
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measurements: transmission-mode XAS, fluorescence-mode XAS and electron-yield 

XAS as diagrammatically shown in figure 2.6.   

 

 

Figure 2.6 Three modes of XAS measurement; (a) transmission mode, (b) electron 

yield and (c) fluorescence mode. 

 

      In the transmission-mode XAS, after the energy of x-ray photons being adjusted 

by monochromator, the intensities of incident x-ray photon beam (I0) and the 

transmitted x-ray photon beam (I) are measure by ionization chambers as shown in 

figure 2.7.  The absorption coefficient can be extracted based on equation (2.1). The 

actual experimental set up of XAS experimental station at XAS beamline, Siam 

Photon Laboratory, SLRI is shown in figure 2.8. 
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Figure 2.7 Schematic illustration of the experimental setup of transmission-mode x-

ray absorption spectroscopy 

 

 

 

Figure 2.8 XAS experimental set up at the Siam Photon Laboratory, Synchrotron 

Light Research Institute. 

 

      Apart from the transmission mode, the fluorescence mode and the electron yield 

are also capable for the measurement of the absorption coefficient. In the x-ray 

absorption phenomena, where the electrons in higher energy level fill the hole left by 

the excited electron, the defined energy x-ray photon will be released as illustrated in 

figure 2.9 (a) and the fluorescence x-ray can be detected. Furthermore, de-excitation 

can cause the Auger effect, where the electron drops to lower energy state, a second 
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electron can be excited to the continuum state and possibly go out from the sample as 

shown in figure 2.9 (b), and then it can be detected by electron-yield XAS detectors. 

However, both processes are directly proportional to the absorption ability of the 

sample. Therefore, the three techniques are capable for the study of the structure of 

material using the absorption ability of the sample. 

 

 

Figure 2.9 The excited state (a) x-ray fluorescence and (b) the Auger effect. 

 

2.3 X-ray absorption spectrum calculation 

      2.3.1 FEFF code overview 

      In this thesis, the main theoretical calculations are approached on FEFF 8.2 code. 

This code is one of developed codes to mainly calculate x-ray absorption spectra for 

the FEFF project developed by the Department of Physics, University of Washington, 

Seattle, USA. FEFF code is written in ANSI FORTRAN 77 with principal 

investigator John J. Rehr and co-principle investigator Alexei L. Ankudinov. The 

name "FEFF" refers to the effective scattering amplitude feff. Other than XAS spectra 
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calculation, FEFF code can calculat x-ray magnetic and natural circular dichroism, 

nonresonant x-ray emission (XES) and electronic structure including local density of 

states (LDOS). 

      FEFF is ab initio self-consistent real space multiple-scattering (RSMS) formalism 

code for simultaneous calculations of x-ray-absorption spectra and electronic 

structure. The properly edited input file “feff.inp” will be calculated by various 

modules, which can be used as standard options, useful option or advanced option.  

      The commands, parameters and atomic positions for FEFF-XAS spectrum 

calculations can be edited within the input file named “feff.inp”, which is shown in 

figure 2.10. This file is headed with some details, such as the generator of input file 

and contained atoms in the cluster. The followed details are about many cards used to 

define the steps of calculation. The types of atomic potentials and defined atomic 

symbols are shown in the next part, and finally with the positions of all generated 

atoms in the system where the position of center atom is located at (0,0,0) in (x,y,z) 

coordination. 

      The crystal structure described in “feff.inp” can be generated directly form 

ATOMS code via “atoms.inp” as shown in figure 2.11. To create “feff.inp” from 

“atoms.inp” is optional and capable only for periodic structure. However, the atomic 

position in disorder system can be modified directly within “feff.inp” itself as used in 

Ca2+ hydration system. 
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Figure 2.10 Detail of “feff.inp” input file of ZnO with Zn as center atom for FEFF 

calculation. 
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Figure 2.11 Detail of atoms.inp input file to generate “feff.inp” for FEFF calculation. 

 

      2.3.2 XAS calculation 

      XAS calculation can be carried out with the imaginary part of one-electron 

Green’s function operator (Ankudinov, 1998) 

  1[ ]G E H −= − ,                 (2.5) 

where H  is the effective one-electron Hamiltonian and E  is the photoelectron 

energy. Based on the Green’s-function calculation in the complex plane, to express 

Eq. (2.2) by using spectral representation with Green-function operator, Eq. (2.5) 

becomes  

  ( ) ( )2 ˆ ˆIm , ,E i r G r r E r iµ ε ε
π

′ ′∝ − ⋅ ⋅v v v v% ,             (2.6) 

where ( ) ( ), ,G r r E r G E i rη′ ′= +v v v v , ε̂  is the x-ray polarization vector and the 

parameters denoted with prime is that quantity in final state (Ankudinov, 1998). In 

addition, since only the transition to unoccupied state above Fermi energy are capable 
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and the impact of core-hole lifetime and experimental resolution are essentially taken 

in to account, the total coefficient should become 

( ) ( )
( )2 2

FE

E dE E
E E

µ µ
π

∞ Γ′ ′=
⎡ ⎤′− + Γ⎣ ⎦

∫ % ,             (2.7) 

where Γ  is determined by the combination of the core-hole lifetime and experimental 

resolution, and FE  is Fermi level energy. FEFF code assists scientist to approach the 

XAS spectra by performing the possibly accurate Green’s function in ( )Eµ% . The 

developers introduced two mains developed feature for FEFF 8 series for achieve this 

difficult chore. The two main advantages are the approaches of self-consistent field 

(SCF) and full multiple scattering (FMS).  

      Within RSMS Green’s-function framework, SCF loops are used to create the SCF 

potential, muffin-tin potentials, for XAS calculation (especially XANES) after 

obtaining the total electronic density and Coulomb potential as illustrated in figure 

2.12. Muffin-tin potential considers the atomic interval potential as s scattering 

potential center on each atom equal to sum of overlapping potential and has constant 

value in the interstitial region between atoms. FMS card will perform the calculation 

for all possible paths within the defined cluster. 
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Figure 2.12 Schematic illustration of muffin-tin potential in two dimensions (Rehr 

and Albers, 2000) 

 

      The SCF loop constructs Green’s function, which consists of central atom and 

scattering contribution 

( ) ( ) ( ), , , , , ,C SCG r r E G r r E G r r E′ ′ ′= +v v v v v v ,           (2.8) 

where ( ), ,CG r r E′v v  and ( ), ,SCG r r E′v v  are central atom and scattering contribution 

respectively. 

      XANES calculation will be operated under the defined control cards, most of 

them are usually used as the defaults, excepting FMS and SCF which are essentially 

cared. To approach the suitable scattering potential form SCF, it should be carefully 

defined for the cluster radius for SCF consideration, which usually needs around 30 

atoms within the cluster. That cluster radius should be defined at the consistent of 

calculated absorption spectra as shown in figure 2.13. The good SCF cluster should be 

the least value that makes the consistent of the spectra presents for saving the 

computational resources. 
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      Similar to the SCF, FMS calculation should be adjusted carefully for the cluster 

radius for FMS consideration as shown in figure 2.14. In addition, there are other 

parameters that can be modified for more satisfied spectra, such as the step size of 

energy. 

      For EXAFS calculation, the scattering muffin-tin potential has less effect to the 

calculated spectra than at the lower energy region. At EXAFS region, the 

photoelectron gain larger energy, and then it is less sensitive to the details of potential 

between atoms. Therefore, we conclude that SCF calculation may not be necessary in 

the EXAFS calculation in this work. 

 

 

Figure 2.13 Calculated Zn K-edge XANES of ZnO with different SCF parameters 
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Figure 2.14 Calculated Zn K-edge XANES of ZnO with different FMS parameters 

 

2.4 X-ray absorption spectroscopy spectra analysis 

      XAS spectra from both experiment and calculation are compared and analyzed by 

IFEFFIT package (Ravel and Newville, 2005). The numerical XAS algorithm in this 

package was written in the Perl programming language and Perl/Tk graphics toolkit. 

It is the free software developed primarily by Matt Newville at the Consortium for 

Advanced Radiation Sources, University of Chicago, (CARS), with  some borrowing 

idea and software form UWXAFS Project, University of Washington. In addition, this 

package includes many ideas of XAS analysis, such as Fast Fourier Transform and 

non-linear least-squares fitting. For spectrum analysis in this study two programs in 

the package are used: (1) ATHENA, a program for basic XAS spectrum analysis, (2) 

ATHEMIS, a program for EXAFS analysis and fitting the experimental spectra with 

FEFF theoretical modeling. 
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To obtain the normalized XAS spectra from raw absorption data, some procedure 

must be performed. The procedure can be outlined as follows: 

1. Subtract a smooth pre-edge with proper function. 

2. Identify the value of threshold energy. 

3. Normalize absorption spectra ( ( )Eµ ). The XANES spectrum can be extracted 

at this step. 

4. Change absorption coefficient from a function of photon energy ( ( )Eµ ) to 

wave number ( ( )kµ ). 

5. Magnify the fine structure at the higher energy part of EXAFS region by 

multiplying with k  factor. 

6. Carry out the Fourier transform to the fine structure from k space to R space. 

7. Approach the EXAFS parameters with parameter fitting. 

The 1-6 steps are done with ATHENA where the last step is done in ATHEMIS. 

      To begin the spectrum analysis, the measured absorption spectrum have to be 

subtracted by the instrumental background as shown in figure 2.15. 
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Figure 2.15 Pre-edge background subtractions for measured Ca2+
aq K-edge XAS 

spectrum. 

 

 

Figure 2.16 Post-edge line or normalization line for measured Ca2+
aq K-edge XAS 

spectrum. 
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      After that, to normalize absorption spectra, the normalization rank has to be 

modified to have a suitable normalization line as shown in figure 2.16. The 

normalization line is considered as a smooth atomic background absorption 

coefficient or 0 ( )Eµ  in Eq. 2.3. In fact, 0 ( )Eµ  is the absorption coefficient of 

isolated atom, however, if there is no actual measurement of isolated atom, the 0 ( )Eµ  

can be defined directly but carefully. Nonetheless, the defined 0 ( )Eµ  or 

normalization line should be a line that makes good fluctuation of EXAFS fine 

structure. Then, the normalized spectrum is ready as shown in figure 2.17. 

 

 

Figure 2.17 Normalized K-edge XAS spectrum for Ca2+
 aq 
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      The normalized absorption spectrum for Ca2+ K-edge XAS spectrum in XANES 

region is ready to be compared. However, for EXAFS analysis and fitting, there are 

some procedures to be carried out further to find the structural parameters, such as 0R  

(nearest neighbor distance), 2σ (Debye-Waller factor), and N  (coordination number).  

      Specifically for EXAFS region, with the expression 

( )0
2

2m E E
k

−
=

h
,              (2.9) 

where k  is wave number (
λ
π2

=k , where λ  is wavelength of photoelectron) and h  is 

Planck’s constant divided with 2π , the absorption coefficient ( )Eµ will be changed 

to ( )kχ , as shown in figure 2.18. 

 

 

Figure 2.18 K-edge EXAFS spectrum in k  space, ( )kχ  for Ca2+
aq 
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      EXAFS in k  space is usually multiplied with k factor to magnify the fine 

structure in the higher energy region. In this study, 2k  is used as the multiplication 

factor for ( )kχ , and the ( )2k kχ⋅  spectrum is shown in figure 2.19. 

 

 

Figure 2.19 k2-weigthed K-edge EXAFS spectrum for Ca2+
aq 

  

      Then, the spectrum in figure 2.19 is transformed from k-space to R-space by 

Fourier transform for radial environmental analysis. However, before performing the 

transform, the region of interest may be windowing as shown in figure 2.20. There are 

a few types of window that can be chose, such as Hanning window, Kaiser-bessel 

window, Welch window and Parzen window. In this study, the Hanning window 

( )W k , is used. In addition, to get averaged ( )Rχ  ( ( )Rχ% ), with ( )W k  window, the 

Fourier transform will be performed using the expression (Rehr et al., 1995) 

  ( ) ( ) ( ) 2

0

1
2

i kRR k k W k e dkχ χ
π

∞
= ∫% ,      (2.10) 
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Figure 2.20  k2-weigthed K-edge EXAFS for Ca2+
aq with Handing window 

 

 

 

Figure 2.21 K-edge EXAFS spectrum in real space ( )Rχ  for Ca2+
aq 
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      After performing of Fourier transform, EXAFS spectrum is changed from 

representation in k-space to R-space as shown in figure 2.21. EXAFS in R-space can 

be considered as a radial distribution function, which shows the probability of finding 

any atoms/molecules in any radius from a center atom (shell to shell distance). Then a 

comparison for measured and calculated EXAFS can be done conveniently in R-

space. 

      For EXAFS fitting, the spectra in k-space would be analyzed further with 

ATHEMIS. The results from data fitting of EXAFS experiments done in this thesis 

work will be shown in the CHAPTER III. 

      Linear combination analysis (LCA) is another important utility in ATHENA 

software. In LCA, it can be assumed that XANES of one unknown sample can be 

fitted by the combinations of any pure references. Any XANES compositions can be 

combined to be fitted with the unknown XANES spectrum. The better or worse fitting 

can be judged by R-factor defined by 

 
( )2

2
MEASURED FITTED

MEASURED

XANES XANES
R factor

XANES
−

− = ∑
∑

,          (2.11) 

where MEASUREDXANES  is XANES spectrum of unknown sample and FITTEDXANES  is 

XANES spectrum obtained from linear combination. The least value of R-factor is the 

best fitting to be accomplished. 

 

2.5 Ca2+ hydration structure by QM/MM simulation  

      The structure of water molecule around essential ions, such as Ca2+, K+ and Cl-, 

including pure liquid water is widely controversial nowadays. Though the structure of 

ice or solid form of water has already cleared up as hexagonal crystalline structure for 
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ice usually found in the nature (ice 1h) (Lonsdale, 1958). Since the complexity the 

liquid system, there are many possible ways of making hydrogen bonds between 

water molecules. That makes it difficult to create the precise and accepted simulation. 

The simulation technique must be adapted and polished until reaching the acceptable 

goal. The Ca2+ hydration structure used in this thesis is originated from QM/MM 

simulation.  

      The Quantum mechanics/Molecular mechanics (QM/MM) simulation technique is 

a combination between of Quantum mechanics (QM) and Molecular mechanics (MM) 

simulations. QM is beneficial for more reliable interaction within the system, while 

MM is capable of modeling the large system quickly with minimized computation 

time. Thus, QM/MM allows for both save of computation time and efficiency of 

prediction. This technique can be done by considering different part with different 

approach or it can be clarified that the crucial part would be treated with QM, where 

that area is intensively concerned, and others would be considered with the classical 

interaction of MM, as shown in figure 2.22. Thus, one is able to appreciate more 

reliability of quantum mechanics while work loads are also reasonable with molecular 

mechanics. 
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Figure 2.22 Schematic illustration of QM/MM modeling of QM and MM region. 

 

      Considering of both QM and MM employed in this technique, the suitable 

Hamiltonian to operate the system should be taken in account of quantum, mechanical 

frameworks and their intervention. The Hamiltonian for QM/MM can be expressed as 

/ / /total QM QM MM MM MM MME H H Eφ φ φ φ= + + ,          (2.12) 

where /QM QMHφ φ  accounts for the interaction energy of all particles in QM 

region, /MM MME  accounts for the interaction energy of all particles in MM region and 

/MM MMHφ φ  accounts of all interacting between particles in QM and MM region 

(Cramer, 2004). 

      For Ca2+ hydration QM/MM data used in this study, the 199 water molecules and 

Ca2+ ion were contained in a box with 18.17 Å length. The simulation was performed 

at 298 K with periodic boundary condition and the configurations of all elements in 

the system would be collected in every 0.2 fs after system’s re-equilibration for 25000 

time steps. Furthermore, to consider intensively in the area that should be the nearest 
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hydration shell, the QM region was 8.8 Å in diameter with Ca2+ located at center. The 

result of the simulation is shown as a snapshot of Ca2+ hydration structure shown in 

figure 2.23. 

      The distances of water molecules from Ca2+ ion are plotted within the duration of 

50 ps as shown in figure 2.24. It can be seen that the first hydration shell is obviously 

seen around the distance of 2.4 Å. Nonetheless, some water molecules move in and 

out from the area of the nearest shell. In the simulation, the molecules that move from 

QM to MM region were treated with quantum mechanical and molecular mechanical 

forces and a smooth function in the transition area. The result of shell interchanging 

makes the value of coordination number changed with time between 6-8. In this thesis 

XANES will be used to evaluate the validation of coordination number obtained from 

this simulation. 

 

  

 

 

Figure 2.23 A snapshot of  Ca2+ hydration structure  by QM/MM simulation. 
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Figure 2.24 The trajectories of water molecules with respected to Ca2+ (Ca-O 

distances) from QM/MM calculation within 50 ps. The first hydration shell is clearly 

seen. Some molecules have entered or left the first shell in this simulation duration.   

 

      The distances of water molecules from Ca2+ ion are plotted within the duration of 

50 ps as shown in figure 2.24. It can be seen that the first hydration shell is obviously 

seen around the distance of 2.4 Å. Nonetheless, some water molecules move in and 

out from the area of the nearest shell. In the simulation, the molecules that move from 

QM to MM region were treated with quantum mechanical and molecular mechanical 

forces and a smooth function in the transition area. The result of shell interchanging 

makes the value of coordination number changed with time between 6-8. In this thesis 

XANES will be use to evaluate the validation of coordination number obtained from 

this simulation. 
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2.6 Zinc oxynitride alloys 

      Zinc oxynitride alloys is speculated to be a composition of two parents elements, 

that is zinc oxide (ZnO) and zinc nitride (Zn3N2) with highly disordering degree, since 

the structure was not resolved by x-ray diffraction up to date. ZnO has wurtzite crystal 

structure and Zn3N2 has cubic anti-bixbyite form (Kuriyama, 1993). To generate 

“feff.inp” for XAS calculation by FEFF8.2, there are some parameters are needed for 

characterization. For wurtzite ZnO structure, the lattice parameters a=0.3296 and 

c=0.5207 nm (Wang, 2004) are used. For cubic anti-bixbyite structure Zn3N2 the 

parameter a=0.9781 nm (Kuriyama et al., 2007) is used in the calculation. The 

calculated XAS spectra are use in the LCA fittings.  

      To make candidate compound for zinc oxynitride alloys, some guess structure was 

created. One way is to replace some oxygen atoms in zinc oxide with nitrogen atoms 

to make ZnNxO1-x crystal as shown in figure 2.25. It is speculated that the alloys may 

exist in this form in small area.  

 



 41

 
Figure 2.25 Ball-and-stick models for (a) zinc oxide (ZnO) and (b) zinc nitride 

(Zn3N2) and (c) ZnO0.5N0.5 (d) Zn metal  

 

      On the other hand, for the case of unknown samples that are not totally zinc 

oxynitride, Zn K-edge XANES spectra of zinc oxynitride are considered as a 

combination of Zn metal and ZnO. The structure of Zn metal is hexagonal with lattice 

constant a = 2.660 Å, c = 4.344 Å (Los Alamos National Laboratory, 2001) as also 

shown in figure 2.25. 

(a) (b) 

(c) (d) 
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      In this thesis, three samples which are supposed to be zinc oxynitride alloys were 

prepared using rf sputtering under various conditions by Prof. Jiti Nukaew’s research 

group at KMITL. 

 



CHAPTER III 

STRUCTURAL ANALYSIS FOR 

Ca2+ HYDRATION STRUCTURE 

 
      In this chapter, the analysis of Ca2+ hydration structure by XAS is presented. First, 

the XAS measurement of Ca2+
aq is discussed. Then the data is analyzed in both 

EXAFS and XANES regions. The XAS spectra are simulated and compared with 

experiment. Finally, the Ca2+ hydration structure from candidate model is evaluated 

and the findings are discussed from the XAS point of view. 

 

3.1 XAS measurement of Ca2+
aq 

      To prepare a sample for the XAS experiment, CaCl2 was dissolved in de-ionized 

water to get the concentration of 2 m. Since the aqueous solution was under saturated 

then most of Ca components are present in the form of Ca2+ hydration structures in the 

solution, then Kimwipe® paper was used to absorb the aqueous solution and used in 

the transmission XAS experiment immediately.  

      The XAS measurement was performed in transmission mode using the facility at 

beamline 8 of the Siam photon Laboratory, SLRI, Nakhon Ratchasima. The Siam 

Photon Source was running at 1.2 GeV. The beam current was between 80-120 mA at 

the time of measurement. Si(111) double crystal monochromator was used in varying 

the photon energy.  Ionization chambers were used in measuring of photon intensities. 

Kapton windows were used to isolate the ionization chambers from sample region 
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which was in ambient condition at atmospheric pressure. The length of the air gap 

was kept as small as possible to allow maximum photon flux through the sample.  

      The normalized K-edge XAS spectrum of Ca2+
aq of the absorption data is shown 

in figure 3.1. Resemble the Ca2+
aq XAS spectra reported in literatures, in the region 

below the 1s absorption edge, a small pre-edge peak around 4040 eV is observed. 

This feature has been identified as 1s 3d transition which is forbidden for 

octahedron symmetries (Fulton et al, 2003) This is a strong indication that the Ca2+
aq 

first hydration shell is noncentrosymmetric  (D’Angelo et al, 2004). It is quite 

possible that the coordination number would differ from 8.     
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Figure 3.1 Normalized K-edge XAS spectrum of Ca2+
aq. Shown in the lower and 

upper insets are [1s3d] and [1s3p] excitation channels.  
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      In the region above the absorption edge, there exist several anomalous features as 

well. As shown in figure 3.1, a small peak and two humps between 4070-4080 eV 

were identified as [1s3p] transitions or KM23 edge (D’Angelo et al, 2004).  Since the 

EXAFS oscillation in the low energy range of spectrum are distorted by these double 

electron excitation channels, this part of spectrum is not included in the EXAFS 

analysis in the following section.   

 

3.2 Generation theoretical EXAFS spectra 
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Figure 3.2 k2-weighted theoretical EXAFS spectra of Ca2+
aq from 50 snapshots each 

separated by 0.5 ps time step. The average spectrum is shown in solid black line. 
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      The data obtained from QM/MM simulation by Prof. Anan Tongraar was used for 

the generation of theoretical EXAFS spectra using FEFF8.2 program. The positions of 

calcium ion and oxygen atoms were used as scattering points in the calculation. 

Figure 3.2 shows the k2-weighted theoretical EXAFS spectra of Ca2+
aq from 50 

snapshots each separated by 0.5 ps time step with the amplitude reduction factor ( 2
oS ) 

of 0.82 (Jalilehvand et al., 2001). 

      It can be seen from the EXAFS spectra in figure 3.2 that there are very large 

variations between snapshots, especially for k higher than 8 Å-1.  The theoretical 

EXAFS spectrum was obtained by averaging the spectra from every snapshot. This 

theoretical spectrum is used in the comparison with experimental EXAFS spectrum. It 

is noteworthy that the large variation of oscillations from each snapshot in the high k 

region was averaged out in the representative theoretical EXAFS spectrum as shown 

in figure 3.2.  Therefore, the comparison would be focused on oscillations in the 

region of k value below 8 Å-1. The structural parameters extracted from theoretical 

model used in this work such as 0R  (nearest neighbor hydration shell distance), 2σ  

(Debye-Waller factor) and N  (coordination number) are obtained from fitting of 

radial distribution function (RDF) with Gaussian distribution function as shown in 

figure 3.3 and can be summarized in table 3.1 along with the values published in 

literatures. It could be seen that, even though there is good agreement in 0R value, the 

theoretical simulations give quite large variation of 2σ and N values. Therefore, the 

experiment verification is needed crucially. 
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Figure 3.3 Fitting of radial distribution function (datched line) with Gaussian 

distribution function (solid line). 
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Table 3.1 Results from theoretical simulations for Ca2+
aq structural parameters: 0R  is 

nearest neighbor hydration shell distance, N  is coordination number and 2σ is 

Debye-Waller factor.  

 0R (Å) 2σ (Å2) N  

Jalilehvand et al., 2001(MD) 2.40 0.020 8.0 

D’Angelo et al., 2004 (MD) 2.48 0.008 7.9 

Dang et al., 2006 (MD) 2.45 0.0066 6.5 

Tongraar, (QM/MM) 
2.42 

2.45a 

- 

0.0096a 

7.4 ± 0.1 

6.8a 

            aFitted parameters from RDF with Gaussian distribution function 

 

3.3 EXAFS Analysis 

      The experimental absorption data was analyzed using ATHENA software to get 

the EXAFS spectra. The curve fitting was done for the k2-weighted spectrum over the 

k-range of 3.5-8.0 Å-1 using a window of Hanning type. From direct EXAFS fitting of 

Ca-O bond, the structural parameters can be obtained. Shown in figure 3.4 are three 

k2-weighted K-edge EXAFS spectra: the experimental spectrum, the theoretical 

spectrum, and the spectrum from direct fitting. In general, it may be seen that the 

three spectra are in good agreement over the region 3.5-8.0 Å-1. Therefore, the 

QM/MM simulation appears to give a good overview of the hydration structure, 

qualitatively and the reliable structural parameters would be obtained from fitting.  
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Figure 3.4 Comparison of k2-weighted EXAFS spectra of Ca2+
aq : theoretical 

QM/MM spectrum, measurement spectrum, and fitting. 

 

      From curve fitting of experimental data to the EXAFS equation using IFEFFIT, 

important structural parameters were extracted. The corresponding Fourier transform 

of the three spectra are shown in real space in figure 3.5. It can be seen that the 

theoretical spectra can reproduce the experimental data nicely. Indeed, all three 

spectra show quite good agreement. The first peak position in real space EXAFS can 

be converted into the radius of first hydration shell.  
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Figure 3.5 Comparison of Fourier transforms of EXAFS spectra of Ca2+
aq: theoretical 

QM/MM spectrum, measurement spectrum, and fitting. 

 

      In this work, the best fitting parameters obtained from this work for average Ca-O 

distance (Ro), Debye-Waller factor ( 2σ ) and coordination number (N) are 2.431± 

0.011, 0.009 and 6.56 ± 0.316 respectively, which are the results from the least R-

factor as shown in table 3.2 and summarized together with the experimental values 

published in the literature in table 3.3..  However, the parameters from fitting seem 

not to be in good agreement with the structural parameters, which directly extracted 

from the simulations shown in table 3.1, especially for N where it is 7.4±0.1 from the 

simulation compared with 6.56 ± 0.316 from the fitting. It is quite a large difference. 

This difference can be explained this result with the parameter obtained directly from 

fitting with calculated spectrum as shown in figure 3.6 and resulted in table 3.4. The 

comparison shows that the calculated EXAFS shows the accuracy of QM/MM 
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simulations evidenced by the agreement of simulated and calculated EXAFS in both k 

and R space, but not for actual structural parameters. Results from fitting are similar 

to the parameters from RDF fitting shown in table 3.1. Thus, EXAFS analysis can tell 

the accuracy of models, but the structural parameters can be obtained directly from 

the simulation and XANES analysis may be another chance to verify the existence of 

the structures.  

 

Table 3.2 Fitting for Ca2+
aq structural parameters of measured EXAFS: 0R  is nearest 

neighbor hydration shell distance, N  is coordination number and 2σ is Debye-Waller 

factor.  

0R (Å) N  2
0S  2σ (Å2) R-ractor 

2.433 ± 0.0130 7.56 ± 0.619 0.83 0.010 0.0015 

2.433 ± 0.0130 7.65 ± 0.626 0.82 0.010 0.0015 

2.433 ± 0.0130 7.74 ± 0.634 0.81 0.010 0.0015 

2.433 ± 0.0136 8.03 ± 0.793 0.82 0.013 0.0046 

2.433 ± 0.0130 7.65 ± 0.626 0.82 0.012 0.0032 

2.432 ± 0.0124 7.28 ± 0.484 0.82 0.011 0.0022 

2.432 ± 0.0119 6.91 ± 0.375 0.82 0.010 0.0015 

2.432 ± 0.0113 6.56 ± 0.316 0.82 0.009 0.0012 

2.431 ± 0.0108 6.21 ± 0.317 0.82 0.008 0.0013 
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Table 3.3 Results from the EXAFS fitting for Ca2+
aq structural parameters: 0R  is 

nearest neighbor hydration shell distance, N  is coordination number and 2σ is 

Debye-Waller factor. R-factor is defined by equation (2.11) 

 0R (Å) 2σ (Å2) N  R-factor 

Jalilehvand et al., 2001 2.461 ± 0.009 0.011 8  

Fulton et al., 2003 2.437 ± 0.010 0.012 7.2 ± 1.2 0.01 

D’Angelo et al., 2004 2.49 ± 0.01 0.016 8.1  

Dang et al., 2006 2.429 ± 0.030 0.0115 6.8 ± 1.0  

This work 2.431 ± 0.011 0.009 6.56 ± 0.316 0.001 

 

 

Figure 3.6 Comparison of (a) k-space and (b) real space EXAFS spectra of Ca2+
aq : 

theoretical QM/MM spectrum (Solid line) and its fitting (datched line). 

 

 

 

(a) (b) 
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Table 3.4 Fitting for Ca2+
aq structural parameters of calculated EXAFS: 0R  is nearest 

neighbor hydration shell distance, N  is coordination number and 2σ is Debye-Waller 

factor.  

0R (Å) N  2
0S  2σ (Å2) R-ractor 

2.445 ± 0.0249 6.81 ± 0.223 0.84 0.012 0.0014 

2.445 ± 0.0249 6.89 ± 0.226 0.83 0.012 0.0014 

2.445 ± 0.0249 6.97 ± 0.229 0.82 0.012 0.0014 

2.445 ± 0.0249 6.67 ± 0.146 0.82 0.011 0.0006 

2.445 ± 0.0249 6.37 ± 0.100 0.82 0.010 0.0003 

2.445 ± 0.0249 6.09 ± 0.123 0.82 0.009 0.0006 

2.445 ± 0.0249 5.81 ± 0.184 0.82 0.008 0.0014 

 

3.4 XANES Analysis 

      The experimental Ca2+
aq XANES spectra have been reported by several groups, 

however, the XANES simulation was left out. Indeed, up to present, there is no report 

on the Ca2+
aq theoretical XANES spectrum. In this section, it is shown that XANES 

can provide the complementary information on local structure verification. 

      It is generally accepted that XANES is sensitive to the local structure around the 

absorbing central atom. Therefore, the reliable theoretical model should give 

compatible theoretical XANES spectrum compared with the experimental spectrum.  

     Firstly, the trial simulated Ca-O structures were used to calculated XANES spectra 

to investigate the spectrum change affected from different coordination number as 

shown in figure 3.7. It can be seen that the features of 6 and 8 oxygen atom XANES 

are quite similar to the experimental one. 
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Figure 3.7 Calculated K-edge XANES spectra of Ca2+
aq hydration structure from 

defined Ca and O structures compared with the datched line from measurement. 

 

      After that, in a similar way as described in the above section, the data obtained 

from QM/MM simulation was used for the generation of theoretical XANES spectra 

using FEFF8.2 code. The positions of calcium ion and oxygen atoms were used as 

scattering points in the calculation using the procedure described in chapter II. Figure 

3.8 shows the theoretical XANES spectra of Ca2+
aq from 50 snapshots each separated 

by 0.5 ps time step. 
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   Since the water molecules do not form stable geometric structure around Ca2+ ion, it 

can be expected that the local structure changes for every time step. This is revealed 

in the XANES spectra simulation shown in figure 3.8. There are variations among the 

calculated spectrum from each time step. However, even the dynamic XANES 

spectrum changing with time, the average XANES spectrum has a well defined shape 

resemble that of the experimental spectra. This average XANES spectra is used as the 

representative theoretical QMM/MM XANES spectra for further comparison.   

      To examine closely, the correlation of local structure to the XANES spectrum, 

four snapshots at time 5, 10, 15, and 20 ps has been selected and shown in figure 3.9.       
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Figure 3.8 Calculated K-edge XANES spectra of Ca2+
aq hydration structure from 50 

QM/MM snapshots with 0.5 ps time step, all shown in gray line. The average 

spectrum is shown in black line. 
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Figure 3.9 K-edge XANES spectra of Ca2+
aq from four QM/MM snapshots (solid 

line) compared with experimental data (dashed line). The insets are correspondent 

Ca2+
 hydration structure models within the first shell.   

 

      It can be seen that, the theoretical XANES from each snapshot displays some 

variation when compared with the experimental data. There are over-shooting and 

under shooting areas among the selected spectra. The frames at 5, 15 and 20 ps, have 

the same coordination number which is N=8, while the frame at 10 ps have N=7.  

Roughly, the frame with N=8 tend to produce XANES spectrum with sharp white line 

and absorption edge shift to lower energy. The frame with N=7 tend to give XANES 

spectrum with broad white line and absorption edge shift to higher energy. The post 
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edge hump area seem to be over shooting for N =7.  These observations may be used 

as guidelines to judge the resemblance of theoretical and experimental XANES 

spectra qualitatively. The comparison between the two spectra is shown in figure 

3.10. 
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Figure 3.10 Comparison between experimental (dashed) and theoretical QM/MM 

(hatched) K-edge XANES spectra of Ca2+
aq.  

  

      Qualitatively, it can be concluded that the theoretical QM/MM XANES spectrum 

can reproduce the features presented in experimental XANES spectrum very well. 

With the omission of [1s3p] channels, the [1s3d] multi electron excitations pre-edge 

feature could also be reproduced by the simulations. This pre-edge peak is the 

supporting evidence for the noncentrosymmetric structure of the first hydration shell 

described hitherto. The absorption edge energy of the theoretical spectrum is about 3 

eV higher than that of the experimental one, which is quite normal for FEFF 

calculation.  Quantitatively, for energy higher than 25 eV above the edge, into the 
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EXAFS region, the two spectra can be fitted perfectly, thus the average picture seems 

to be reasonable.  Therefore, the reliability of QM/MM hydration structure model 

(dynamic) used in this work is very well supported by the XANES measurement 

(static).    

 



CHAPTER IV 

STRUCTURAL ANALYSIS  

OF ZINC OXYNITRIDE ALLOYS 

 
      In this chapter, the structural analysis of zinc oxynitride alloys based on XAS 

measurement is discussed.  

      The zinc oxynitride samples used in this study were obtained from Prof. Jiti 

Nukaew’s research group at Nanotechnology Research Centre, King Mongkut’s 

Institute of Technology Ladkrabang (KMITL). Three zinc oxynitride thin film 

samples were deposited on silicon substrate using reactive gas-timing RF-sputtering 

method. Zn metal, oxygen (O2) and nitrogen (N2) gases are the starting material. The 

gas timing sequence between O2 and N2 was selected to ensure the uniformity 

throughout the film. By changing the O2/N2 gas timing, it was found that the 

composition of O2 and N2 in the alloys could be varied. By varying the O2/N2 

compositions it was expected that the electrical and optical properties of the alloys 

can be altered and used for new applications. The three samples used in this study 

were synthesized under O2/N2 gas timing different conditions. The thicknesses of the 

films were about 2-3 µm. 

      Because the disordering structure of zinc oxynitride alloys, the samples can not be 

characterized by x-ray diffraction. Therefore, XAS is the only mean available for the 

atomic structural investigation. 

      The XAS measurement was done in fluorescence mode, using the XAS beamline 

of the Siam Photon Laboratory, Synchrotron Light Research Institute. Si(111) double 
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crystal monochromator was used for photon energy selection. Multi-element high 

purity germanium detector was used to detect the fluorescence x-ray. The sample was 

at atmospheric pressure and ambient condition during the measurement. The Siam 

Photon source was running at 1.2 GeV electron beam energy with the current between 

80-100 mA.  

      Due to the limitation in XAS measurement in soft x-ray region, there was no 

measurement on O and N absorption edge. Therefore, in this study we focused on the 

XANES measurement of Zn K-edge. The measured XANES spectra of 3 samples are 

normalized and shown in figure 4.1. 
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Figure 4.1 Zn K-edge XANES normalized spectra of three zinc oxynitride samples 
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      The measured Zn K-edge XANES spectra of zinc oxynitride alloys do not match 

any known reference compound available in the datum base. To make it worse, there 

is no possibility to get supporting information from x-ray diffraction. Therefore, the 

theoretical XANES from candidate compounds must be generated and compared with 

the experiment. 

      A variety of candidate compounds were considered in the making of the 

theoretical XANES spectra database. First, the true fictitious alloys, ZnO1-xNx such as 

the one shown in figure 2.25 were considered. The candidate models were created by 

using ZnO wurtzite framework and replace some oxygen atoms with nitrogen to get 

the desired compositions. Clearly, from electron counting, this fictitious alloys is not 

exist in the large crystal form due to insufficient electron to form tetrahedral bonding 

network. However, it may be possible that the alloys can exist in nanocrystal form 

such as the case of indium oxynitride.  

      The second type of candidate compounds was created by considering phase 

separation possibility. If the sample consists of ZnO and Zn3N2 domains separately, 

based on LCA, the data could be generated by using the linear combination between 

XANES spectra of zinc oxide and zinc nitride with various compositions.  

      After the theoretical XANES database has been compiled, the spectra can be used 

to compared and fitted with the experiment spectra.  
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Figure 4.2 Comparison of the measured Zn K-edge XANES spectra of zinc 

oxynitride, and simulated spectrum from ZnO and ZnO0.5N0.5 alloys. 

 

      In the first approach, the simulated XANES spectrum from the true fictitious 

ZnO1-xNx alloy does not seem to be a good fit. As shown in figure 4.2, the absorption 

edge is shifted away toward the high energy for more than 10 eV for ZnO0.5N0.5 

fictitious alloys.  The overall feature of simulated spectra looks like that of ZnO with 

energy shift. The blue shift in absorption edge is due to the higher oxidation state of 

Zn. However, the features in experimental spectra do not match with the simulated 

spectra. Therefore, this approach was abandoned eventually.  
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Figure 4.3 Comparison of the measured Zn K-edge XANES spectra of zinc 

oxynitride and simulated spectra from linear combination of ZnO and Zn3N2 with 

various proportions. 

 

      In the second approach, using some trial proportions of ZnO and Zn3N2 to get Zn 

K-edge XANES linear combination, mixed XANES spectra can not reproduce the 

measured XANES spectra as shown in figure 4.3. Therefore, we concluded that the 

structure of unknown samples may not be explained by phase separation of ZnO and 

Zn3N2.  

      Still base on the idea of LCA, the other possible combinations are further 

considered. It was found that the combination between ZnO and Zn metal may give 

all features observed in the experiment as shown in figure 4.4. 
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ZnOZnO

 

Figure 4.4 Comparison of the measured Zn K-edge XANES spectra of zinc 

oxynitride and the reference spectra of ZnO and Zn metal. 

 

      By considering ZnO and Zn metal as parent components, the XANES spectra of 

unknown samples are fitted with XANES of parent components with varying 

proportion using LCA method. The fitting was performed in ATHENA with linear 

combination analysis tool. The results for fitted XANES spectra are compared with 

the measured XANES spectra, as shown in figure 4.5. In addition, the proportions of 

two parent components obtained from the fitting are shown in Table 4.1. 

 



 61

 

Figure 4.5 K-edge XANES of zinc oxynitride samples (a) and their fitting (b). 

 

Table 4.1 Proportion of ZnO and Zn metal, and R-factor of three unknown samples 

obtained from linear combination analysis 

 

Sample Proportion of  ZnO Proportion of Zn metal R-factor 

No. 1 0.820 0.180 0.001851 

No. 2 0.630 0.370 0.002050 

No. 3 0.283 0.717 0.001269 
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      It can be seen that, the simulated LCA XANES spectra can fit nicely to the 

experiment spectra. The low value of R-factor obtained from the fit ensures that the fit 

is reliable. Therefore, from the XAS point of view, it may be concluded that the zinc 

oxynitride films used in this work are mainly composed of ZnO and Zn metal in phase 

separated domains. It may be speculated that the Zn metal nanocrystal domains may 

be formed between ZnO nanocrystal domains when the growth is in Zn-rich 

condition. Since, those nanocrystal domains are very small they can not be resolved 

by normal x-ray diffraction measurement. With the presence of oxygen, nitrogen may 

prefer to form NOx species more than bonding with Zn. The NOx can be absorbed and 

trapped between the nanocrystal domain boundaries and no zinc oxynitride alloys was 

formed. Therefore, the question on the atomic scale structure of zinc oxynitride 

remains to be unsolved until the real alloys can be made available in the future. 



CHAPTER V 

CONCLUSIONS 

 
      In this thesis, two disorder systems, Ca2+ hydration structure and zinc oxynitride 

alloys, were studied by XAS. Because the atomic scale structure of the two systems 

can not be electively solved by standard techniques such as x-ray diffraction or high 

resolution electron microscope due to lacking of long range ordering.  

      Dynamic Ca2+ hydration structures simulated by QM/MM MD were used as the 

model structure to generate theoretical K-edge XAS spectra, both XANES and 

EXAFS region for comparison with the experiment. The XAS data taken at the Siam 

Photon Laboratory, show similar features to the spectrum published in the literature. 

The theoretical EXAFS spectrum can well reproduce the experimental EXAFS 

spectrum. From the fitting of EXAFS spectra the structural parameters were obtained. 

The Ca-O distance of 2.431± 0.011 Å, the coordinate number of 6.56 ± 0.316 and the 

Debye-Waller factor of 0.009 Å2 were obtained from curve fitting. These were well 

compared with the parameters suggested by RDF fitting of theoretical QM/MM simulation 

of 2.445 Å, 6.8, and 0.0096 Å2 respectively.   

      The other alternative way to characterize the disorder system is the direct 

investigation of compatibility between the structural simulations for the nearest 

neighbor distance and the correspondent XANES spectra. In this case the theoretical 

XANES of Ca2+
aq was in very good agreement with the experimental spectrum. These 

results confirm the validity of the Ca2+ hydration structure obtained from QM/MM 

MD simulation by Assoc. Prof. Anan Tongraar. 
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      In the second part of this thesis work, zinc oxynitride thin films prepared by Prof. 

Jiti Nukaew and his colleagues were characterized by XANES. Based on linear 

combination of reference parent components, a database for XANES spectra has been 

generated. The XANES analysis showed that the three samples may not mainly be the 

combination of ZnO and Zn3N2 as first expected, but mostly the combination of ZnO 

and Zn metal possibly co-exists in the form of nanocrystal domains. Although the 

XANES analysis shows that the samples are not mainly composed of ZnO and Zn3N2, 

because the simulated spectra of ZnO0.5N0.5 is similar to that of ZnO, some of alloys 

can be ZnO0.5N0.5. That may be interesting for future study. 

      Thus, in this thesis, the XAS studies of disorder material structures have been 

performed. As summarized in figure 5.1, the candidate model or simulated structure 

of disordered system is used to calculate the theoretical XANES and EXAFS spectra, 

by FEFF8.2 code. The spectrum generation is the most important step especially when 

the structure is unknown or there is some dynamic change. Then, the theoretical 

spectrum can be compared with the actual measured spectrum with the analysis 

package. In ATHENA, the XAS spectrum is normalized. After normalization XANES 

spectrum is ready to be compared. On the other hand, EXAFS spectrum has to be 

converted to k-space and Fourier transformed to R-space before comparing with the 

experimental result and further EXAFS fitting in ATHEMIS. After fitting, the 

important structural parameters are obtained. The residue or R-factor can be used as 

the guideline weather the fit is reliable or not. Low value of R-factor would be good 

indication of the compatibility between theory and experiment. It is suggested that, 

this procedure can be used as the alternative way for atomic scale structural 

characterization when standard methods do not give any satisfactory result. 
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Figure 5.1 Summarized of procedure for studying of disorder system by XAS  

 

Measured spectrum Measured spectrum 

Modified or simulated structure 

 

Obtaining of structural parameters 
from EXAFS fitting 

Comparison of normalized 
XANES 

FEFF8.2 

Normalizing spectra
Converting spectra to k space 
Performing  the Fourier transform 

Parameter fitting 

XAS calculation 
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โครงสรางไฮเดรชันรอบแคลเซียมโดยการดูดกลืนรังสีเอ็กซ 
CALCIUM HYDRATION STRUCTURE VERIFIED BY X-RAY 
ABSORPTION SPECTROSCOPY 
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บทคัดยอ:  แบบจําลองการเรียงตัวโมเลกุลของน้ํารอบไอออนแคลเซียมเปนฟงกชันของเวลาไดถูก
คํานวณโดยใชวิธี Quantum mechanics/Molecular mechanics (QM/MM) หลังจากนั้น
แบบจําลองไดถูกใชในการจําลองสเปกตรัมการดูดกลืนรังสีเอ็กซโดยเทคนิค First principles 
calculationsในชวงการดูดกลืน K-edge ทั้งในยาน x-ray absorption near edge structures 

(XANES) และยาน Extended x-ray absorption fine structure (EXAFS) สเปกตรัมที่ไดจาก
การคํานวณสอดคลองเปนอยางดีกับสเปกตรัมที่ไดจากการวัดการดูดกลืนรังสีเอ็กซของสารละลาย
ไอออนแคลเซียม ซ่ึงทําการทดลองที่ระบบลําเลียงแสงที่ 8 ของหองปฏิบัติการแสงสยาม ศูนย
ปฏิบัติการวิจัยเครื่องกําเนิดแสงซินโครตรอนแหงชาติ ความสอดคลองนี้แสดงวาการทดลองการ
ดูดกลืนรังสีเอ็กซรวมกับการคํานวณระดับ First principles สามารถใชยืนยันความถูกตองของ
แบบจําลองการเรียงตัวของโมเลกุลน้ําในชั้นรอบไอออนในน้ําได  

Abstract:  Dynamic structure of water molecules around Ca2+ was determined by 
quantum mechanics/molecular mechanics (QM/MM) modeling.  Based on first 
principles calculations, the dynamic structure was used to simulate the x-ray 
absorption spectra [x-ray absorption near edge structures (XANE) and extended x-ray 
absorption fine structure (EXAFS)].  The calculated spectrum is in good agreement 
with the x-ray absorption spectroscopy (XAS) measurement from beam line 8 of the 
Siam Photon Laboratory, National Synchrotron Research Center.  This shows that 
XAS measurement can be used to verify the hydration shells of ions in aqueous 
solution when used in conjunction with first principles simulations.  
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