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 The main objective of this research is to investigate experimentally the effect of 

weathering processes on the joint shear strength of some weak rocks.  The effort 

primarily involves simulation of the weathering-induced degradation of rock 

specimens, determination of the physical and mechanical properties of the rocks at 

various stages of degradation, and development of a rock joint shear strength criterion 

that can incorporate the weathering-related parameters.  Slake durability tests, point 

load strength index tests, tilt tests and x-ray diffraction analyses were carried out on 

thirteen rock types that are commonly encountered in the north and northeast of 

Thailand, in an attempt at correlating the rock durability with its strength and mineral 

compositions.  A concept is proposed to describe the rock degradation characteristics 

under the slake durability test cycles.  A new classification system is also introduced 

for rock durability, which allows predicting the rock strength as affected by 

weathering.  Results indicate that Pichit pumice breccia, Phra Wihan siltstone, Phu 

Kradung white sandstone, Khok Kruat sandstone and Chonburi quartz mica schist are 

classified as low to very low durability rocks, primarily due to their kaolinite content.  

Nam Duk slaty-shale is considered high durability, not sensitive to water, but easily 

disintegrated by cyclic change of surrounding temperatures.  The point load strength 

index decreases as the difference in slake durability indices obtained from adjacent 
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cycles (∆SDI) increases.  Basic friction angles of the smooth (saw-cut) surfaces of the 

rocks decrease as the rapid heating-cooling cycles increase.  Barton’s joint shear 

strength criterion is modified here to incorporate the weathering-related parameters 

into the rock wall strength variable.  The results of the rock degradation simulation 

are related to the actual in-situ conditions by comparing the heat energy absorped by 

rock specimens during the simulation with those measured in the field.  This allows 

predicting the decrease of joint shear strength as a function of time.  
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CHAPTER I 

INTRODUCTION 

 
1.1   Background of problems and significance of the study 

 In geotechnical investigations involved with surface and subsurface structures, 

the evaluation of strength and deformability of rock and rock mass is frequently 

needed.  These measurements become more difficult if the rocks encountered are 

influenced by weathering.  The study of strength and deformational behavior of rock 

under uniaxial compression is of vital importance, and not only provides basic 

material characteristics or design indices but also serves as useful data in analysis 

where the rocks are at a shallow depth.  Most engineering works are confined to 

shallow depths where weathering has a dominant role to play and affects almost all 

the properties of rocks (Gupta and Seshagiri, 2000).   

Considerable research efforts have been carried out in an attempt at identifying 

the impacts of weathering processes (both physical and chemical) on the physical, 

hydraulic and mechanical properties of weak to medium strong rocks, including 

siltstone, shale, claystone and some volcanic rocks (Chigira and Oyama, 1999; Gupta 

and Seshagiri, 2000; Kasim and Shakoor, 1996; Tugrul, 2004).  The key mineral 

compositions and petrographic features of these rocks are also studied in relation to 

the environment and duration to which these rocks have been subjected.  Several 

forms of mathematical relationship between these factors have been derived.  

Significant understanding on the impact of weathering on the rock has been gained 
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from the research.  These findings are however not directly applicable to the 

engineering practices, specifically to the stability analysis and design of geo-

engineering structures.  Rare attempt has been made at determining the mathematical 

relation between the weathering processes and the parameters used in the failure or 

strength criteria of rock mass.  In addition a shear strength criterion that can 

incorporate the weathering parameters or rock mass aging parameters has not been 

derived.  Such criterion would be useful to predict the stability of geological 

structures as a function of time, and hence allows implementing an appropriate 

support system (if needed) to ensure their long-term stability.        

 

1.2   Research objectives 

 The main objective of this research is to investigate experimentally the effect 

of weathering processes on the joint shear strength of some rocks commonly 

encountered in Thailand.  The effort primarily involves mechanical testing of rock 

samples in the laboratory and determination of relationship between rock durability, 

compressive strength, water absorption and bulk density under various degrees of 

rock degradation.  The results will lead to the derivation of a new joint shear strength 

criterion that can be used to predict the mechanical stability of geo-engineering 

structured (e.g. rock foundation, slope and tunnel) as a function of time. 

 

1.3 Research methodology 

 This research is divided into 5 main tasks, as follows (Figure 1.1). 
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Figure 1.1  Research plan  and related tasks. 
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Task 1: Literature review  Literature review have been carried out to gain an 

understanding of the weathering process and the factors affecting strength and 

durability of rocks.  The reviewed topics include slake durability index testing, point 

load strength index testing, specific gravity and water absorption measurements, and 

joint shear strength criteria.  The sources of information are from journals, technical 

reports and conference papers.   

 Task 2: Sample collection and preparation  Thirteen rock types has been 

collected from the field.  Sample preparation is carried out in the laboratory at the 

Suranaree University of Technology.  Preparation of these samples follows the 

relevant ASTM standard as much as practical. 

 Task 3: Laboratory experiments  The laboratory testing is divided into five 

main groups: slake durability tests, point load tests, dynamic tests, tilt test and 

measurements of the rock specific gravity and water absorption.  The slake durability 

test method follows the ASTM (D4644) standard practice.  The tests are intended to 

assess the effect of water on the rate of rock weathering.  The point load strength test 

method follows the ASTM (D5731) standard practice.  The tests have been performed 

to understand the rock degradation under cycles of heating and cooling.  The dynamic 

wave velocity testing and tilt testing follow the suggested method given by the 

International Society for Rock Mechanics (Brown, 1981).  The methods of specific 

gravity and water absorption measurements follow the ASTM (C127). 

 Task 4: Development of mathematical relations  The results from task 3 are 

used to develop mathematical relations between the weathering parameters and rock 

properties.  These include correlation between point load strength index and slake 

durability, and between the dynamic wave velocity, specific gravity and water 
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absorption and degree of rock weathering.  This task also includes the derivation of a 

new joint shear strength criterion that can incorporate the effect of rock weathering. 

 Task 5: Thesis writing and presentation  All research activities, methods, and 

results are documented and compiled in the thesis.  The research findings will be 

published in conference proceedings or journals. 

 

1.4 Scope and limitations of the study 

a. A minimum of 10 rock types that are commonly found in Thailand are 

collected from the field for the laboratory testing.  These rocks include sandstone, 

siltstone, shale, claystone, and some volcanic rocks as they are likely to deteriorate 

quickly after exposed to atmosphere. 

b. The laboratory testing includes slake durability index test, point load 

strength index test, and measurements of rock specific gravity and water absorption, 

dynamic wave velocity, and basic friction angle using relevant ASTM and ISRM 

standard. 

c. No in-situ measurement or field testing is carried out. 

d. The Barton’s joint shear strength criterion is primarily used as an initial 

equation because it is capable of linking the joint strength and the intact rock strength. 

e. During physical simulation test, the maximum testing temperature is 110οc 

f. The X-ray diffraction method is used to determine the mineral composition 

of the rock samples. 

g. Petrographic analyses determine the rock texture. 
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1.5 Thesis contents 

 The first Chapter introduces the thesis by briefly describing the background of 

problems and significance of the study, and identifying the research objectives, 

methodology, scope and limitations.  The second Chapter summarizes results of the 

literature review.  Chapter three describes the rock sample collection and results of 

mineralogical analysis.  Slake durability index testing and rock degradation 

simulation are presented in Chapter four.  Chapter five shows the mathematical 

relations between the weathering parameters and mechanical rock properties, as well 

as the prediction scheme of rock degradation.  Chapter six provides the discussion, 

conclusions, and recommendations for future studies.  Details of the laboratory 

experimental results are given in Appendix A.  

 



CHAPTER II 

LITERATURE REVIEW 

 

2.1  Introduction 

 This chapter summarizes the results of literature review carried out to improve 

an understanding of rock degradation by weathering.  The topics reviewed here 

include the factors influencing the rock weathering, laboratory test methods that can 

be correlated to rock strength, and the joint shear strength criteria. 

  

2.2  Weathering processes 

 Abramson et al. (1995) state that weathering in general is a group of processes 

by which surface rock disintegrates into smaller particles or dissolves into water due 

to the impact of the atmosphere and hydrosphere.  The weathering processes often are 

slow (hundreds to thousands of years).  The amount of time that rocks and minerals 

have been exposed at the earth’s surface will influence the degree to which they have 

weathered.  Weathered material may be removed leaving a porous framework of 

individual grains, or new material may be precipitated in the pores, at grain 

boundaries or along fractures.  Weathering processes can be divided into two types, 

chemical weathering due to chemical changes and physical or mechanical weathering 

as results of wind, temperature changes, freeze-thaw cycles, and erosion by streams 

and rivers.  Chemical weathering is the breakdown of minerals into new compounds 

by the action of chemical agents, acid in air, in rain and in river water.  Mechanical    
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weathering is a process by which rock is broken into small fragments as a result of 

energy developed by physical forces.  Examples are freeze-thaw cycles and 

temperature changes.  

 

2.2.1  Physical weathering 

Primary minerals and rocks are splitted in fragments due to physical 

weathering. This leads to environmental conditions that favor chemical weathering.  

There are several forms of physical weathering (Robison and Williams, 1994), as 

follows. 

Abrasion:  Water carrying suspended rock fragments has a scouring 

action on surfaces.  Examples are the grinding action of glaciers, gravel, pebbles and 

boulders moved along and constantly abraded by fast-flowing streams.  Particles 

carried by wind have a sand-blasting effect. 

Wetting and drying:  Water penetrates into rocks and reacts with their 

constituent minerals. 

Freezing and thawing:  When water is trapped in rock and reacts with 

constituent minerals. 

Thermal expansion and contraction of minerals:  Rocks are composed of 

different kinds of minerals.  When heated up by solar radiation each different mineral 

will expand and contract at a different rate with surface-temperature fluctuations.  

With time, the stresses produced are sufficient to weaken the bonds along grain 

boundaries, and thus flaking of fragments.  
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Pressure unloading or pressure-release jointing:  There is a reduction in 

pressure on a rock due to removal of overlying material.  This allows rocks to split 

along planes of weakness or joints. 

Crystallization:  In arid environments, water evaporates at the surface of 

rocks and crystals form from dissolved minerals.  Over time, the crystals grow and 

exert a force great enough to separate mineral grains and break up rocks. 

Action of organisms:  They aid in the physical disintegration of rocks.  

Pressures exerted by roots during growth are able to rupture rocks. 

 

2.2.2  Chemical weathering  

The process of chemical weathering generally occurs in rock where 

water and minerals are in constant contact.  Agents of weathering are oxygen, air 

pollution, water, carbonic acid, and strong acids.  They combine with the minerals in 

rocks to form clays, iron oxides, and salts, which are the endpoints of chemical 

weathering.  A brief description of the most important chemical weathering processes 

is as follows: 

Hydration:  Hydration is the chemical addition of water molecules to a 

mineral.  Ions have the tendency to hydrate when H2O is present and dissociate.  In 

general, ions with the same charge but smaller ion radius have a larger layer of H2O 

ions and therefore do not tend to adsorb.  The small Li+ ion tends to remain hydrated at 

the surface, whereas the large Al3+ ion tends to dehydrate and becomes tightly adsorbed. 

The strength of adsorption increases in the following sequence, Li+ < Na+ < K+ < Mg2+ 

< Ca2+ < Al3+.  
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Hydrolysis:  Water molecules at the mineral surface dissociated into H+ 

and OH- penetrate the crystal lattice, creating a change imbalance, which causes cat-

ions such as Ca2+, Mg2+, K+ and Na+ to diffuse out.  

Oxidation and Reduction:  Oxidation is accelerated by moisture and high 

temperatures.  It is an important process in the alteration of iron and magnesium rich 

minerals.  Several primary minerals contain Fe2+ and Mn2+. If there are oxidizing 

environmental conditions the Fe2+ is oxidized to Fe3+ and Mn2+ to Mn3+ or Mn4+ 

partly inside the minerals, which results in a positive charge and the mineral becomes 

unstable.  

Moon and Jayawardane (2004) studied the geomechanical and 

geochemical weathering of Karamu basalt in New Zealand.  They concluded that the 

early stages of weathering as initial fracturing of the rock were physical processes, 

followed by the progressive development of secondary minerals that reduced the 

strength of the rocks.  From these results, it is apparent that an early loss of alkaline 

earth elements (magnesium, calcium and ferrous) can be measured geochemically 

before any significant mineralogical change occurs, and is closely linked to a dramatic 

drop in the intact strength of slightly weathered basalt.  This drop in intact strength in 

turn allows for fracture development in response to residual stresses, after which 

secondary mineral development occurs following well-established patterns. 

Yokota and Iwamatsu (1999) studied the weathering process of soft 

pyroclastic rocks in a steep slope.  The pyroclastic rocks composing the slopes contain 

many weakly interlocked volcanic glass and pumice fragments.  Their physical 

properties depend on the degree of welding.  A pyroclastic rock is generally similar to 

sandstone with regard to its engineering properties.  In general, the weathering and 
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softening of rocks are attributable to changes not only in the physical and mechanical 

characteristics, but also in the chemical properties of the rocks.  Mechanical changes 

in these rocks include that the surface tends to loosen easily and disintegrates at an 

early stage.  The unlocking mechanism of volcanic glass may also be considered as a 

mechanical change.  The dissolution of chemical components, such as ferric oxide and 

silica, which serve as intergranular cement, and volcanic glass may also commence at 

an early stage.  Although the processes involved in both chemical dissolution and 

mechanical disintegration are difficult to measure, they may be the dominant 

weathering processes in these rocks, especially within the shallow portion of slopes 

affected by changes in the groundwater table.  As a result of a water-glass reaction, 

some of the volcanic glass changes to clay minerals such as allophone and halloysite.  

The chemical changes mentioned above also accelerate the physical and mechanical 

changes that occur as results of small volumetric changes in intergranular structures.  

Rock porosity increases and both dry density and strength decrease with time.   

 

2.2.3  Weathering resistance 

The resistance to weathering of rock depends on types of mineral 

present, surface area of rock exposed and porosity of rocks.  Weathering is not only 

dependent on the mineral composition but also on the porosity of the rock (Robinson 

and Williams, 1994).  Rocks consisting of coarse fragments such as granite easily 

weather physically but do not weather chemically fast.  In contrast, in rock consisting 

of fine fragments, such as basalt, chemical weathering is quicker than physical 

weathering.  The weathering of stratified sedimentary rocks is dependent on the 

orientation of the stratification and cementation.   The ranking of some primary 
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minerals in order of increasing stability is shown in Figure 2.1.  Olivine weathers 

rapidly because the silicon tetrahedral is only held together by oxygen and the metal 

cat-ions which form weak bonds.  In contrast, quartz is very resistant, because it 

consists entirely of linked silicon tetrahedral.  The rate of weathering is influenced by 

temperature, rate of water percolation and oxidation status of the weathering zone.  

Weathering depends on climate such as temperature and the mean annual 

precipitation rates.  The mean lifetime of one millimeter of different rocks into a 

kaolinitic saprolite is shown in Table 2.1.  These numbers suggest that in cold or 

tropical humid zone, the climate controls the rate of weathering.  

 

2.3   Factors affecting strength and durability of some weak rocks 

The mineralogy and the geometric arrangement (microfabric) of particles 

affect slaking and strength of weak rocks (Engin et al., 1999).  For shales, their 

microfabric includes features of both argillaceous rocks (e.g. mudstones and clay 

rocks) and fragmental rocks (composed of grains, e. g. sandstones).  Therefore, the 

geomechanical characteristics of shales cannot be determined as easily as for other 

types of rocks.  In order to predict the behavior of shales, one has to understand the 

effect of both grains and clay minerals on geomechanical properties of rocks 

(Koncagul and Santi, 1999).  These factors are briefly discussed as follows. 

Finer grained sediments are more susceptible to breakdown and at higher rates 

than coarse grained sedimentary materials (D'Appolonia Consulting Engineers, 1980).   

Conversely, although there are conflicting findings, fine grained samples can 

withstand higher uniaxial compressive loads (Brace, 1961; Fahy and Guccions, 1979).   

The probable reason for this is the number of grain to grain contacts is higher for fine 
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Figure 2.1  Stability of some primary minerals (Robinson and Williams, 1994). 

 

Table 2.1  Mean lifetime of one millimeter of fresh rock (Nahon, 1991). 

Rock Type Climate Lifetime (years) 

Acid rocks 

Tropical semi-arid 
Tropical humid 
Temperate humid 
Cold humid 

65 to 200 
20 to 70 
41 to 250 
35  

Metamorphic rocks Temperate humid 33 

Basic rocks Temperate humid 
Tropical humid 

68 
40 

 

 

 

 

 

 

Weak stability 

High stability 

Olivine, Ca2+-plagioclase 
 
Pyroxene 
 
Amphibole 
 
Na+-plagioclase 
 
K+-plagioclase 
 
Mica (Muscovite) 
 
Quartz 
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grained samples.  Therefore the applied external force is distributed over a larger 

contact surface.  

Rocks made of rounded grains are more durable (D'Appolonia Consulting 

Engineers, 1980) because crystals or grains with sharp edges are exposed to a greater 

degree of abrasion during the slake durability test, resulting in lower slake durability 

indices.  Similarly, stresses will concentrate along grain edges in the uniaxial 

compression test.  However, depending on the degree of bonding between the grains, 

such angular shaped particles may provide a great deal of interlocking thus increasing 

the compressive strength.  Several researchers (Fahy and Guccions, 1979; Ulusay, et 

al., 1994;  Shakoor and Bonelli, 1991) reported positive correlation between the 

uniaxial compressive strength and percentage of angular grains.  Assuming properties 

such as mineralogy of grains and cement and degree of bonding are the same, a rock 

made of angular grains should be stronger and harder (due to better interlocking of 

grains) but less durable (due to higher degree of erosion) than a rock composed of 

rounded grains.  Grain boundaries and type of grain contacts are likely to affect the 

strength of rock material (Ulusay et al., 1994; Shakoor and Bonelli, 1991).  These 

researchers found a significant positive correlation between these variables and uniaxial 

compressive strength of sandstone samples.   Since sutured contacts provide better 

interlocking of grains, these types of contacts should increase the hardness and durability 

of specimens also. 

Due to its abundance as a rock forming mineral, most of the correlations 

established by previous researchers (Fahy and Guccions, 1979; Shakoor and Bonelli, 

1991; Gunsallus and Kulhawy, 1984) found a negative relationship between quartz 

content and uniaxial compressive strength of the investigated sandstones.  Handlin 
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and Hager (1957), Bell (1978), and Barbour et al. (1979) did not find any significant 

correlation and suggested that the structural interlocking of the quartz grains and not 

the quartz content itself influences uniaxial compressive strength.  Also, while not 

clearly stated in the literature, it is believed that rocks composed of quartz grains 

should have a higher durability due to the higher resistance of this mineral to 

mechanical abrasion.  

Bonding determines the ease with which macrofractures can propagate through 

the specimen by disrupting the structure and breaking the bonds within the groundmass. 

Mineralogy of bonding or cementing material is an important property that controls 

strength, hardness and durability.  Quartz provides the strongest binding followed by 

calcite and ferrous minerals.  Clay binding material is the weakest (Vutukuri et al., 1974).  

There is not much literature about the relationship between the mechanical properties of a 

rock and the cement and matrix content.  Among published material, Bell (1978) reported 

that the strength increases proportionally with the amount of cement.  Fahy and Guccione 

(1979) and Shakoor and Bonelli (1991) state that the correlations they had found between 

cement and strength were insignificant.    

Bell (1978) correlated packing density, which is the space occupied by grains 

in a given area, with the uniaxial compressive and tensile strengths of Fell sandstone.  

He showed that strength increased with increasing packing density.  Hoek (1965) 

suggests that severe interlocking of grains could occur in sedimentary rocks in which 

grains have been tightly packed and well cemented.  This would result in a 

considerable increase in the amount of applied stress required to propagate grain 

boundary cracks.  Shakoor and Bonelli (1991) did not find any significant relationship 

between packing density and strength.   
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Shale rocks may contain various amounts of clay and non-clay minerals, 

organic matter, and precipitated salts.  Mineralogy is the primary factor controlling 

the physical and chemical properties of such rocks (Mitchell, 1993).  For engineering 

applications, as a size term, clay refers to all material smaller than 0.002 mm.  As a 

mineral term, it refers to specific clay minerals (e.g. talc, mica, chlorite or smectite).  

These clay minerals occur in small particle sizes and their unit cells ordinarily have a 

residual negative charge that is balanced by the adsorption of cations from solution 

(Mitchell, 1993).  The type of clay minerals and availability of cations affect the 

properties of argillaceous rocks.  

Different clay minerals have varying degrees of swelling capability.  The order 

in which swelling potential decreases is : montmorillonite > illite > halloysite > 

kaolinite.  Types of ions existing as dissolved solids in the wetting fluid also strongly 

affect the degree of swelling.  For instance, swelling of montmorillonite decreases as 

other univalent or divalent ions in following order substitute for sodium  (Na) : lithium 

(Li) > potassium (K) > calcium (Ca) > magnesium (Mg) > hydrogen (H) (Mitchell, 

1993).  Swelling potential is expected to decrease durability but to have little effect on 

hardness or strength. 

Slaking is the most common physical degradation mechanism affecting clays, 

clay soils and clay rich rocks.  Moriwaki and Mitchell (1977) study various types of 

slaking and the factors behind them in detail.  The investigated variables were clay 

mineralogy, adsorbed-cation ratios, water content and consolidation-fluid electrolyte 

concentrations.   It is concluded that the type of slaking is strongly controlled by clay 

mineralogy and the concentration of exchangeable Na-ions.  The four common types 

of slaking in pure clays are dispersion slaking (Na-kaolinite), swelling slaking (Na-
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montmorillonite), body slaking (Ca-kaolinite and Ca-illite) and surface slaking (Ca-

montmorillonite).  Since clay minerals constitute the dominant portion of shales, the 

intrinsic rock-slaking behavior will differ based on the amount and type of the 

constituent clay minerals in shale.  Mixtures of various clay minerals will lead to 

combinations of slaking modes.  Some clay minerals may exhibit two different 

slaking modes following one another (Santi and Koncagul, 1996).  Increase of 

hydration and double layer repulsion force and negative pore pressure are slaking 

mechanisms common in smectites (D'Appolonia Consulting Engineers, 1980).  Their 

open structure allows the entry of water carrying dissolved ions and leads to great 

expansion and destruction of the crystal lattice.  Dispersed structures are less 

susceptible to these mechanisms due to their lower permeability.  Pore air 

compression could be a significant slaking mechanism for materials composed of 

non-swelling clay minerals.  None of these mechanisms are directly related to strength 

or hardness of argillaceous rocks. 

In general, experimental literature shows that the greater the water content 

(wc), the lower the compressive strength of a specimen.  Water can soften the bonds 

or interact with mineral surfaces and alter their surface properties (Horn and Deere, 

1962).  With the aid of pore water pressure, it may cause instability along weakness 

planes.  Water may also decrease frictional shearing resistance or change the 

characteristics of gouge or clay mineral constituents of the rock (Touloukian et al., 

1981).  Reduction in compressive strength due to water has been reported by 

numerous investigators including Kjaernsli and Sande (1966) and lately by Moon 

(1993).  High water content also decreases durability and hardness of rock specimens.  

Rocks containing non-swelling clay minerals, such as kaolinite, slake faster upon 
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submersion in water when they are completely dry beforehand (due to pore air 

compression) (Moriwaki and Mitchell, 1977). 

While porosity determines the total surface area open to physical or chemical 

interaction, hydraulic conductivity determines the ease with which fluids can seep 

through these pores.  A high value of hydraulic conductivity indicates a well 

interconnected pore network.  The factors that affect hydraulic conductivity are 

mineral composition, texture, particle size distribution, characteristics of the wetting 

fluid, exchangeable cation composition, void ratio and degree of saturation of rock 

mass (Domenico and Schwartz, 1990).  Clay rocks have a very high porosity but their 

permeability is in the order of 10-8 to 10-10 m/s.  Clay minerals with granular or 

fibrous shape (Kaolinite and Illite) are permeable to a greater degree than those that 

are flake shaped (Montmorillonite).  Strength, hardness and durability decrease with 

increasing water content.  Therefore, it is not unreasonable to expect lower strength, 

hardness and durability values from specimens with relatively high hydraulic 

conductivity values, which should also have higher water content. 

Shales with larger pores are more resistant to slaking (Vallejo et al., 1994).  

This is specifically true for shales composed of kaolinite, which slake as a result of 

pore air compression breaking up the hydrogen bonds that connect individual plates to 

one another.  Conversely, the larger the pores, the lower the compressive strength 

(Deere and Miller, 1966), hardness and crushing strength of shale samples under point 

load (Vallejo et al., 1994).  Porosity has a significant effect on mechanical 

performance.  Price (1960) and Dube and Singh (1972) report that in sedimentary 

rocks all strength properties decrease with increasing porosity.  The physical 

explanation of this is that high porosity assists the networking (propagation) of stress-
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induced microfractures (Howarth and Rowlands, 1986).  The slake durability index of 

highly porous argillaceous rocks should also be lower (except those containing 

kaolinite) due to higher degree of slaking because higher porosity (combined with 

high permeability) provides a larger surface area open to water interaction.  Although 

much research has focused on measurement of strength and durability, the number of 

studies that compared strength and durability predictive tests to microscopic 

properties is very limited, with almost no studies focusing on weak rocks and 

especially shales.  Moon (1993) concludes that groundmass microstructure is 

probably the most important factor controlling the geomechanical behavior of 

ignimbrites.  Both strength and slake durability are controlled by closeness of packing 

of the groundmass (packing density), degree of bonding between individual grains 

and average crystal size.   

 

2.4  Tests that can be correlated to strength 

Simple laboratory tests that can be correlated to compressive strength of intact 

rocks include point load strength testing, slake durability testing, dynamic wave 

velocity measurement and specific gravity and water absorption testing.  The slake 

durability tests are intended to assess the resistance to weathering of shale or other 

weak or soft rocks samples after being subjected to two standard cycles of drying and 

wetting (ASTM D4644).  In this test dried fragments of rock with known weight are 

placed in drum fabricated with 2.0 mm square wire mesh.  The drum is rotated in 

horizontal position along its longitudinal axis while partially submerged in distilled 

water to promote wetting of the sample.  The specimens and the drum are dried at the 

end of the rotation cycle (10 minutes at 20 rpm) and weighed.  After two cycles of 
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rotating and drying the weight loss and the shape and size of the remaining rock 

fragments are recorded and the slake durability index is calculated.  Koncagul and 

Santi (1999) establish a correlation between the uniaxial compressive strength, the 

slake durability and shore hardness using mineralogical and intrinsic properties of 31 

shale samples (varying degrees of silt and sand contents in Kentucky, USA) to explain 

the differences between the measured and the predicted results.  The results of slake 

durability index after two cycles range from 30 to 97%. The correlation can be 

represented by the following equation: 

 

 UCS = 658(Id2) + 9081   :   r = 0.63  (2.1) 

 

where  UCS is uniaxial compressive strength (kPa).  Id2 is the second cycle of slake 

durability index (%). 

Gokceoglu et al. (2000) study the factors affecting the rock durability with an  

emphasis on the influence of number of drying and wetting cycles of 141 weak rock 

samples, including schist and sandstone.  The samples were subjected to slake 

durability test and uniaxial compressive test.  A relationship between the uniaxial 

compressive strength and the fourth cycle slake durability index is found only for the 

marls.  

 

  UCS = 2.54Id4 – 202   :   r = 0.76   (2.2) 

  

where  UCS is the uniaxial compressive strength (MPa).  Id4 is the fourth cycle of 

slake durability index (%). 
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Point load strength index tests have often been reported as an indirect measure 

of the compressive or tensile strength of intact rock (ASTM D5731).  It has been used 

widely in practice due to its simplicity of testing and specimen preparation, and field 

application.  Conventional point load testing is intended as an index test for the 

strength classification of rock material.  It has long been practiced to obtain an 

indicator of the uniaxial compressive strength of intact rock.  Broch and Franklin 

(1972) state that the compressive strength is approximately equal to 24 times the point 

load index (Is), referred to a standard size of 50 mm.  Bieniawski (1975) 

experimentally showed that the compressive strength is nearly 23 times Is.  Greminger 

(1982) stated that the compression factor of 24 cannot be validly applied to 

anisotropic rocks.  It is stated by ISRM (1985) that on average the compressive 

strength is 20-25 times Is.  Tsiambaos and Sabatakakis (2004) study the soft to strong 

rocks under different conversion factors relating uniaxial compressive and point 

loading strength.  The samples were mainly sedimentary carbonate rocks (limestones, 

marly limestones, sandstone and marlstone), since this type of sedimentary rocks is 

the most common one in Greece.  The results show the conversion factor between 

point load and uniaxial compressive strength varies from 13 for soft sedimentary 

rocks exhibiting a value of Is(50)<2 MPa, 20 for medium rocks exhibiting a value of 

2<Is(50)<5 MPa and 28 for hard rocks with value of Is(50)>5 MPa. 

Dynamic wave velocity test determines the pulse velocities of compression and 

shear waves in intact rock and the ultraseismic elastic constants of isotropic rock.  The 

ultraseismic elastic constants are calculated from the measured travel time and 

distance of compression and shear waves in a rock specimen.  Sousa et al. (2005) 

study the influence of microfractures and porosity on the physico-mechanical 
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properties and weathering of nine granites (coarse grain size and porphyritic texture).  

They conclude that the primary wave velocity appears to increase linearly with uniaxial 

compressive strength:  

 

 UCS = 0.004Vp
1.247 :  r = 0.72   (2.3) 

 

where Vp is primary wave velocity (m/s). 

  Specific gravity and water absorption tests determine the bulk specific gravity, 

apparent specific gravity, and absorption of coarse aggregate (ASTM C127).  Tugrul 

(2004) studied the weathering on four different types of rock, sandstone, limestone, 

basalt and granodiorite.  The results suggest that the rock dry unit weight decreases and 

water absorption increases as grade of weathering increases.  Water absorption is a useful 

property in evaluating the durability of different rocks as building materials (Shakoor and 

Bonelli, 1991).  Begonha and Braga (2002) study the weathering degrees of Oporta 

granite as affecting geotechnical and physical properties (porosity, dry bulk density, 

ultrasonic velocity, uniaxial compressive strength and modulus of elastic).  They 

conclude that dry bulk density, ultrasonic velocity, uniaxial compressive strength and 

modulus of elastic appear to decrease with increasing degree of weathering. 

 

2.5  Joint shear strength criteria 

The shearing resistance of rock joints is one of the important parameters that 

are used in the analysis and design of engineering structures in rock mass.  Several 

criteria have been proposed in the past to identify the strength of a rough rock joint.  

These criteria delineate the state of stress that separates pre-sliding and post-sliding of 
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the joint.  The simplest peak-shear strength model for rock joints is perhaps Patton’s 

model (Patton, 1966).  Based on the Coulomb friction law, this model characterizes 

the joint behavior by a single surface parameter that is the average roughness angle.  

More complicated joint models appeared later, such as Ladanyi’s empirical model 

(Ladanyi and Archambault, 1970) and Barton’s empirical model (Barton, 1973). 

Coulomb criterion represents the relationship between the peak shear strength 

and normal stress by 

 

 τ = c + σnTanφ  (2.4) 

 

where τ is joint shear strength, σn is normal stress, c is the cohesive strength, and φ is 

angle of friction. 

Patton (1966) performed a series of constant load stress direct shear tests with 

regular teeth inclination (i) at varying normal stresses.  From these tests, he established a 

bilinear failure envelope-failure from an asperity sliding and asperity shearing mode. 

 

 τ = σnTan (φB + i)  (2.5) 

 

where φB is basic friction angle, and i is regular teeth inclination. 

Ladanyi and Archambault (1970) develop a model for the shear strength of 

rock joints. 
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where as is the proportion of the discontinuity surface which is sheared through 

projections of intact material, V is the dilation rate (dv/du) at peak shear strength, and 

τr is the shear strength of the intact material. 

Barton (1973) studies the behavior of natural rock joints and proposes a 

criterion that is modified from Patton.  It can be written as: 
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where JRC is the joint roughness coefficient (ranging from 0 to 20), and σj is the joint 

wall compressive strength. 

There are some advantages to the use of the Barton’s criterion, as follows: 

1)  The model provides easy and practical means to predict the shear strength 

of a joint by its roughness and wall strength. 

2) Barton’s criterion is more realistic than the Coulomb criterion because 

Barton considers the joint roughness.  

3) Barton’s criterion is more conservative than Ladanyi and Archambault’s at 

higher normal stress levels.  

For unfilled joints, the roughness and compressive strength of the wall are 

important, whereas in the case of filled joints the physical properties of the material 

separating the joints wall are of the primary concern.  Barton criterion is only valid 

where joint wall is in rock-to-rock contact and the maximum allowable shear strength 

given by arctan (τ/σn) = 70o.  Hoek and Bray (1981) report that the criterion is valid 

for the normal stress range, 0.01 < (σn/JCS) <0.3. 



CHAPTER III 

ROCK SAMPLES 

 

3.1   Introduction  

 Thirteen rock types were selected for this research.  They were divided into three 

main groups: two volcanic rocks, three metamorphic rocks and eight sedimentary rocks.  

These rocks represent the exposed outcrops that are commonly found in the east and 

northeast of Thailand.  They also have significant impacts on long-term stability of many 

engineering structures constructed in the regions (e.g., embankments and foundations of 

highways, railways and reservoirs, dam abutments, and tunnels).  The key criterion of 

sample selection is that the rock matrix should be as homogeneous as possible.   This is to 

minimize the intrinsic variability of the test results.  This chapter describes the mineral 

compositions of the rock samples and the locations from which they have been obtained. 

 

3.2  Sample collection 

 Table 3.1 gives rock names, locations from which they have been collected, 

and formations to which they belong.  A map shown in Figure 3.1 gives the locations 

where the rock samples have been collected.  For each location, a minimum of 6 kg of 

1-1.5 inch fragments and two 1×1×1 ft3 blocks have been collected.  The rock 

fragments are planned for the slake durability tests and the rock blocks for the 

mechanical tests.  
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Table 3.1  Rock samples used in this study. 

Rock Names Code UTM Location Rock Formation Age 
Volcanic Rocks 

1.  Pichit crystal tuff PCT 47Q0676363/1802064 Chatree Gold Mine  
Phichit province  

Loei - Petchabun  
Volcanic belt Permo - Triassic 

2.  Pichit pumice breccia PPB 47Q0676002/1802024 Chatree Gold Mine  
Phichit province 

Loei - Petchabun  
Volcanic belt Permo – Triassic 

Metamorphic Rocks  

3.   Kanchanaburi green schist KSch 47P0801984/1422888 Khao Chuk reservoir,  
Rayong province Kanchanaburi Silurian - Devonian 

4.  Chonburi quartz mica schist CSch 47P0768172/1403836 Ban Mab Chan, Klaeng district, 
Rayong province 

Chonburi Gneiss 
Group Precambrian 

5.  Nam Duk slaty shale NDSh 47Q0752546/1850965 
Chum Phae-Lom Sak highway, 
Phetchabun province 

Nam Duk Middle – Permain 

Sedimentary Rocks 
6.  Maha Sarakham mudstone    
     (Lower Clastic) MSMD 47P0821065/1687136 Amphur Non Thai,  

Nakhon Ratchasima province Maha Sarakham Lower Tertiary - 
Upper Cretaceous 
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Table 3.1  Rock samples used in this study (Continue). 

Rock Names Code UTM Location Rock Formation Age 
Sedimentary Rocks 

7.  Phra Wihan siltstone PWST 47P0812777/1600138 Amphur Wang Nam Khieo, 
Nakhon Ratchasima province Phra Wihan Lower - Jurassic 

8.  Nam Phong sandstone NPST 47Q755660/1852758 
Chum Phae-Lom Sak highway, 
Phetchabun province 

Nam Phong Upper – Triassic 

9.  Kaeng Krachan micaceous  
siltstone KKST 47P0800265/1422680 Khao Chuk reservoir,  

Rayong province Kaeng Krachan Carboniferous 

10. Khok Kruat sandstone  KkSS 47P0820992/1646362 Khok Kruat district,  
Nakhon Ratchasima province Khok Kruat Upper - Lower 

Cretaceous 

11. Phu Kradung white sandstone PKSS1 47P0759070/1701842 Amphur Thep Sathit,  
Chaiyaphum province Phu Kradung Lower – Jurassic 

12. Phu Kradung red sandstone PKSS2 47P0758292/1701367 Amphur Thep Sathit, 
Chaiyaphum province Phu Kradung Lower-Jurassic 

13. Phra Wihan sandstone PWSS 47P0812102/1598902 Amphur Wang Nam Khieo, 
Nakhon Ratchasima province Phra Wihan Lower - Jurassic 
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Figure 3.1  The locations where rock samples have been collected. 
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 Pichit crystal tuff (PCT) and pumice breccia (PPB) are obtained from the 

Chatree gold mine in Phichit province (Figure 3.2).  The rocks belong to Loei-

Petchabun volcanic belt and are of Permo-Triassic age. 

 Phu kradung white and red sandstones (PKSS1 and PKSS2) are obtained from 

the embankment of Thep Sathit-Chaiyaphum highway at km 287 to 288 (Figures 3.3 

and 3.4).  The rocks are of Lower-Jurassic age. 

 Kaeng Krachan micaceous siltstone (KKST) and Kanchanaburi green schist 

(KSch) are obtained from the Khao Chuk reservoir in Rayong province (Figure 3.5).  

The rocks are of Silurian-Devonian age. 

 Phra Winhan yellow sandstone (PWSS) and red siltstone (PWST) are obtained 

from the embankment of Wang Nam Khieo-Tap Lan highway at km 69.  The rocks 

are classified as the Phra Wihan formation and are of Lower-Jurassic age. 

 Nam Duk slaty shale (NDSh) and Nam Phong sandstone (NPST) are obtained 

from the embankment of Chum Phae-Lom Sak highway at km 19 and 23 in 

Phechabun provinces.  Nam Duk slaty shale is of Middle-Permain age.  Nam Phong 

sandstone (NPST) is of Upper-Triassic age. 

   Khok Kruat sandstone (KkSS) is obtained from Ban Phong Marangwan 

reservoir in Nakhon Ratchasima province.  The rock is of Upper-Lower Cretaceous age. 

 Maha Sarakham mudstone (MSMD) is obtained from borehole coring of Siam 

Submanee Cooperation Limited in Amphur Non Thai at Nakhon Ratchasima province.  

The rock is classified as the Maha Sarakham formation and is of Tertiary-Upper 

Cretaceous age. 

 Chonburi quartz mica schist is obtained from a quarry in Klaeng district at Rayong 

province.  The rock is classified as the Chonburi Gneiss group and is of Precambrian age. 
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Figure 3.2  Pichite crystal tuff and Pichit pumice breccia collected from Tawan pit of the 

Chatree gold mine in Phichit province.  

 
 
 
 

 

 

 

 

 

 

 

 
Figure 3.3  White quartz sandstone collected from the embankment of Thep Sathit- 

Chaiyaphum highway at km 287.  The slope was excavated in 2003. 
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Figure 3.4  Red sandstone collected from the embankment of Thep Sathit-Chaiyaphum  

highway at km 288.  The slope was excavated in 2003. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.5  Micaceous siltstone collected from the embankment of Khao Chuk reservoir  

in Rayong province. 
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3.3   Mineralogical Study 

 The mineral compositions of the rock samples are determined by using X-ray 

diffraction method and petrographic analysis.  Tables 3.2 through 3.4 give the results 

for volcanic, metamorphic and sedimentary rock groups, respectively.  The mineral 

compositions determined will be used as data basis to correlate and explain the 

degrees and characteristics of rock degradation which will be discussed in the 

following chapters.     
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Table 3.2  Mineral compositions of rock specimens in volcanic rock group. 

Volcanic Rocks Density 
(g/cc) 

Quartz  
(%) 

Pyrite  
(%) 

Kaolinite  
(%) 

Calcite  
(%) 

Laumontite  
(%) Color 

1.  Pichit crystal tuff 2.57 70.8 8.4 3.1 17.7 - dark gray 
2.  Pichit pumice 
 breccia 2.28 82.0 1.9 9.3 - 6.8 white, pink and gray  

 

Table 3.3  Mineral compositions of rock specimens in metamorphic rock group. 

Metamorphic Rocks Density 
(g/cc) 

Quartz 
(%) 

Muscovite
 (%) 

Biotite 
(%) 

Feldspar 
(%) 

Kaolinite 
(%) 

Chlorite
(%) 

Albite
(%) 

Chamosite
(%) 

Fluorony 
boite 
(%) 

Color 

1. Kanchanaburi 
 green schist 2.46 43.49 6.43 - 12.85 - 22.76 13.43 14.47 - grayish 

green 
2. Chonburi quartz 
 mica schist 2.18 24.80 4.94 26.86 - 17.57 - - - - yellowish 

brown  
3. Nam Duk slaty 
 shale 2.24 50.85 15.36 25.42 - - - - - 8.37 brownish 

gray 
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Table 3.4  Mineral compositions of rock specimens in sedimentary rock group. 

Sedimentary 
Rocks 

Density 
(g/cc) 

Quartz 
(%) 

Mica
 (%)

Hematite
(%) 

Kaolinite
(%) 

Calcite
(%) 

Chlorite
(%) 

Other 
(%) Cementing Contact Grain size 

(mm) 
Grain
Shape Sorting Color 

1.  Maha Sarakham 
 mudstone 
 (Lower Clastic) 

2.66 39.65 13.19 - 30.91 - - 16.15 
(Halite) 

Halite and 
iron oxide

grain 
contact <0.004 - -  reddish  

 brown 

2.  Phra Wihan 
 siltstone 2.35 72.00 3.00 5.00 - - - 20.00 Hematite Matrix 

support 0.06-0.004 - -  brownish 
 red 

3.  Nam Phong 
 sandstone 2.59 59.10 - 2.1 - 22.4 3.9 12.50 

(Albite) Hematite grain 
contact 0.1-1.0 angular poorly  brownish 

 red 
4.  Kaeng Krachan 
 siltstone 2.62 58.41 22.85 - 6.50 - - 12.24 

(Feldspar) Hematite grain 
contact 0.06-0.004 - -  yellowish 

 brown 
5. Khok Kruat    
      sandstone 2.45 54.70 1.10 - - 8.0 - 33.50 

(Albite) Calcite grain 
contact 0.1-1.5 angular poorly  brownish 

 red 
6. Phu Kradung  
      white sandstone 2.29 99.30 - - 0.70 - - - Silica grain 

contact 1.5-2.0 angular well  white 

7. Phu Kradung 
 red sandstone 2.59 80.90 - - 1.40 12.1 - 5.60  

(Albite) Hematite grain 
contact 0.1-1.0 angular moderate  brownish 

 red 
8. Phra Wihan 
 sandstone 2.35 97.00 - - - - - 3.00 Silica grain 

contact 2.00 angular well  yellow 
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CHAPTER IV 

LABORATORY EXPERIMENTS 

 

4.1   Introduction  

 The laboratory experiments performed can be divided into two main types: 

slake durability index testing and simulation of rock degradation.  During the 

simulation of rock degradation, series of point load strength index tests, tilt tests and 

measurements of dynamic wave velocity, specific gravity and water absorption of the 

rock specimens are performed.  The results are used as indicators of the degrees of 

rock weathering.  

  

4.2   Slake durability index test 

 The primary objectives of the slake durability index test (hereafter called SDI 

test) are to determine long-term durability of the rock specimens, to establish 

weathering and degradation characteristics of each rock type, and to assess the impact 

of water on the rock degradation.  Two series of SDI test were performed on two 

separate sets of rock specimens with similar and comparable characteristics.  For the 

first series, the test procedure, apparatus (Figure 4.1) and data reduction were similar 

to that of the standard practice (ASTM D4644), except that the tests were performed 

up to six cycles, instead of two cycles as specified by the standard.  The second test series 

was identical to the first one except that no water was in the trough during rotating the 

drum, i.e., slaking under dry condition.  The second test series (hereafter called 
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Figure 4.1  Slake durability test apparatus. 
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SDI dry-testing) was carried out to assess the impact of water on the weathering process 

for each rock type. 

 

 4.2.1  Test Results  

 The SDI values for all rock types are plotted as a function of number of 

cycles (N) for testing with water in the trough in Figure 4.2, and without water in the 

trough (dry condition) in Figure 4.3.  Tables 4.1 and 4.2 list the SDI values obtained for 

each test cycle.  The results are given in details in Appendix A.  For wet testing, Phra 

Wihan siltstone, Phu Kradung white sandstone and Chonburi quartz mica schist tend to 

degrade much quicker than do other rock types probably because they contain high 

percentages of kaolinite in the rock matrix.  The most durable rocks seem to be Pichit 

crystal tuff, Nam Phong sandstone, Nam Duk slaty-shale, and Kanchanaburi green schist.  

The thirteen rock types are classified based on Gamble (1971) classification, as shown in 

Table 4.3.  The SDI values obtained for Phu Kradung red sandstone and Phra Wihan 

siltstone agree with those obtained by Phienwej and Singh (2005) who tested the same 

rock types.   

Comparison between wet and dry testing suggests that the impacts of water on rate of 

rock degradation varied among different rock types.  Figures 4.4 and 4.5 compare SDI 

obtained from wet and dry testing after the first and the sixth cycles.  Phra Wihan 

siltstone, Phu Kradung white sandstone, Pichit pumice breccia and Chonburi quartz 

mica schist are highly sensitive to water in terms of their durability.  In another words, 

without subjecting to water these rocks are still considered moderately durable.  For 

some highly durable rocks (e.g. Pichit crystal tuff, Nam Phong sandy-siltstone, Nam 

Duk slaty-shale, and Kanchanaburi green schist), the SDI values obtained from 
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Figure 4.2  Slake durability index for 6 cycles with water in trough. 
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Figure 4.3  Slake durability index for 6 cycles without water in trough. 
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Table 4.1  Slake durability index test results with water in trough. 
 

Slake Durability Index, Id(%)  
Number of Cycles Rock Types Code 

1 2 3 4 5 6 
PCT 99.06 98.77 98.67 98.55 98.32 97.75 

Volcanic Rocks 
PPB 94.71 89.61 82.60 74.17 68.91 64.37 
KSch 98.15 96.87 96.01 94.95 94.18 93.28 
CSch 51.57 42.13 38.13 34.94 32.31 30.66 Metamorphic 

Rocks 
NDSh 98.69 97.45 96.49 96.10 95.75 95.37 
PKSS1 81.52 70.02 61.54 54.33 49.85 45.98 
PKSS2 97.52 94.60 92.57 91.04 89.50 88.05 
KKST 95.37 90.83 86.99 83.73 81.28 78.71 
PWSS 83.67 82.47 81.58 80.85 80.19 79.60 
PWST 33.40 18.96 15.57 12.58 10.35 7.80 
NPST 98.98 98.17 97.41 96.97 96.30 96.02 
KkSS 93.96 89.39 85.04 80.91 77.55 75.98 

Sedimentary 
Rocks 

MSMD 96.35 93.47 88.05 85.77 83.25 80.30 
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Table 4.2  Slake durability index test results without water in trough. 

Slake Durability Index, Id(%)  
Number of Cycles Rock Types Code 

1 2 3 4 5 6 
PCT 99.63 99.29 98.99 98.89 98.61 98.43 

Volcanic Rocks 
PPB 99.02 98.38 97.80 97.40 96.96 96.49 
KSch 98.89 98.16 97.57 97.00 96.57 96.15 
CSch 81.20 72.34 66.65 61.84 58.56 56.55 Metamorphic 

Rocks 
NDSh 98.99 97.84 96.93 96.32 95.80 95.48 
PKSS1 94.72 90.76 87.82 85.35 82.64 80.25 
PKSS2 98.95 98.45 98.07 97.70 97.36 96.99 
KKST 97.16 95.82 94.38 93.46 92.60 91.83 
PWSS 96.22 94.72 93.63 92.68 91.60 90.71 
PWST 91.35 85.36 80.94 76.94 73.86 70.88 
NPST 98.94 98.30 97.87 97.51 97.15 96.77 
KkSS 98.16 96.94 95.76 94.59 93.45 92.32 

Sedimentary 
Rocks 

MSMD 97.07 95.59 93.43 93.12 92.80 92.51 
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Table 4.3  Slake durability index of rock samples based on Gamble’s classification 

(ISRM, 1981). 

Rock Types  Code Id(1) (%) Id(2) (%) 

PCT very high durability very high durability 
Volcanic Rocks 

PPB medium durability medium high durability 
KSch high durability high durability 
CSch very low durability low durability Metamorphic 

Rocks 
NDSh high durability high durability 
PKSS1 low durability medium durability  
PKSS2 medium high durability medium high durability  
KKST medium high durability medium high durability 
PWSS low durability medium durability 
PWST very low durability very low durability 
NPST high durability very high durability 
KkSS medium durability  medium high durability   

Sedimentary 
Rocks 

MSMD medium high durability medium high durability 
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Figure 4.4  Comparison between SDI wet and dry test results at the first cycle. 
 
 

 
 

 
 

Figure 4.5  Comparison between SDI wet and dry test results at the sixth cycle. 
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the wet and dry testing are not much different, which implies that water has little 

impact on their degradation rates.  

 

4.2.2  Implications of SDI for long-term durability 

 An attempt is made here to project the results of SDI testing toward the 

future conditions of the rocks.  A hypothesis is proposed to describe the physical 

characteristics of the rock fragments used in the SDI test.  It is assumed that all rock 

fragments inside the drum for each test are identical.  Figure 4.6 shows two different 

types of the rates of degradation (weight loss) during SDI testing.  The first type 

shows linear decreases of the SDI as the number of test cycles increases (Figure 4.6 – 

left).  This implies that each rock fragment in the drum has relatively uniform texture 

(uniform degree of weathering, hardness or strength) from the inner matrix to the 

outer surface.  The lower the strength of rock fragment, the higher the rate of 

degradation.   

 For the second type (Figure 4.6 – right) each rock fragment inside the 

drum has non-uniform texture.  The outer surface is weaker (lower strength, higher 

degree of weathering or more sensitive to water) than the inner matrix.  This is 

reflected by the decrease of the rate of degradation as the test cycles increase, the 

curves for samples D, E and F concave upward.  Here the decrease of rock matrix 

strength from the outer surface to the inner part can be abrupt or grading, depending 

on rock type and weathering characteristics.  The more abrupt the change, the more 

concave the SDI - N curve.  It is believed that weathering characteristics of most 

rocks follow the second type, because the SDI - N curves obtained here and from 

elsewhere tend to be concave, more or less, upward. 
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Figure 4.6  Proposed concept of rock degradation during SDI testing.  Samples A, B and  

C (left) have uniform texture.  Samples D, E and F (right) have rock matrix 

that is weaker outside and stronger inside. 
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4.2.3  Projection of rock durability 

 Let us assume here that the proposed hypothesis of the second type of 

weathering is valid.  It can be postulated that rock fragments inside the drum tend to 

get stronger as they are subjected to a greater number of SDI test cycles.  When the 

rock fragments become stronger, the difference of the SDI values between the 

adjacent cycles (hereafter called ∆SDI) will also get smaller.  ∆SDI at any cycle can 

be represented by: 

 

 ∆SDI = SDI (N) – SDI (N+1) (4.1) 

 

where SDI (N) is the slake durability index at cycle N, and SDI (N+1) is the slake 

durability index at cycle N+1.  

 In order to predict the rock durability in the future, the ∆SDI are 

calculated for the six cycles.  Figure 4.7 plots ∆SDI of sedimentary rocks, volcanic 

rocks and metamorphic rocks as a function of number of cycles counted backward.  

This backward cycle is denoted by N*, primarily to avoid confusing with the original 

forward cycles (N) defined earlier.  This backward plotting is mainly for a 

convenience of analyzing the test results.  For this new approach, while ∆SDI 

increases with N*, the rock becomes weaker.  This is similar to the actual rock 

degradation due to weathering process that has occurred in the in-situ condition.  For 

the results obtained above the ∆SDI that represents the difference between the SDI of 

the first cycle and the conditions as collected (before subjecting to the first cycle) is 

plotted in cycle number, N* = 6.  Therefore the difference between the SDI values of 

the fifth and sixth cycles is plotted for N* = 1. 
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 The ∆SDI – N* curves have a significant advantage over the 

conventional SDI – N diagram.  The new curves can show a future trend for the rock 

durability, as ∆SDI values can be statistically projected to a larger number of test 

cycles beyond those performed in the laboratory.  As an example, the ∆SDI is 

projected to N* = 60 cycles in Figure 4.7.  Regression analyses on the 6 ∆SDI values 

indicate that an exponential equation can best describe the variation of ∆SDI with N*.  

The implications of N* and actual time or duration under which the rock is subject to 

actual in-situ conditions is very difficult to define, if at all possible.  More discussions 

on this issue are given in the following chapter.  Table 4.4 gives results of regression 

analysis on the empirical relation between ∆SDI and N* for all rock types.   

 

 4.2.4  Classification of rock durability 

  A new classification system is proposed for rock durability based on 

∆SDI and its projected values to any N*, as shown in Table 4.5.  The ∆SDI – N* 

curves obtained from thirteen rock types tested here are compared against the new 

classification system (Figure 4.7).  For example, at N* = 60 or below, Pichit crystal 

tuff, Nam Phong sandy-siltstone, Nam Duk slaty-shale, and Kanchanaburi green 

schist are classified as high to very high durability rocks.   Pichit pumice breccia, 

Chonburi quartz mica schist and Phra Wihan siltstone are classified as very low 

durability rock, because their ∆SDI values rapidly increase within few cycles of N*.  

This agrees with the classification and conclusions drawn earlier from the results of 

wet and dry SDI test.  It should be noted that the projection of ∆SDI – N* curves relies 

heavily on the number of cycles actually tested.  A larger the number of tested cycles 

will result in a higher reliability of the projected results. 
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Figure 4.7  ∆SDI as a function of N*.  Rock conditions as collected are plotted at cycle  

no. 6. 
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Table 4.4  Empirical constants for an exponential relationship between ∆SDI and N*. 
  

∆SDI = α • exp(β • N*) Rock Types 
α (%) β (%/cycle) 

Correlation 
Coefficient   

PCT 0.301 0.006 0.621 Volcanic Rocks PPB 4.801 0.077 0.999 
KSch 1.018 0.012 0.970 
CSch 0.607 0.620 0.934 Metamorphic Rocks 
NDSh 0.728 0.008 0.959 
PKSS1 4.465 0.189 0.930 
PKSS2 1.828 0.021 0.999 
KKST 3.055 0.040 0.999 
PWSS 2.140 0.029 0.999 
PWST 0.315 0.770 0.935 
NPST 0.640 0.007 0.763 
KkSS 3.402 0.047 0.999 

Sedimentary Rocks 

MSMD 2.902 0.037 0.999 
 

Table 4.5  Proposed classification system for durability of intact rocks. 
 

Description ∆SDI (%) 
Very high durability < 1 
High durability 1-3 
Moderate durability 3-7 
Low durability 7-15 
Very low durability > 15 
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4.3  Simulation of rock degradation 

  4.3.1  Simulation methods 

 The objective of the simulation of rock degradation is to experimentally 

assess the degrees of rock weathering as it is subjected to the cyclic changes of 

temperatures and humidity.  Fifteen rock cylindrical disks and five kilograms of rock 

fragments (1.5-3.0 inches) were prepared from thirteen rock types (Figures 4.8 and 

4.9).  The specimens were placed in an oven at 105 Celsius for 12 hours and rapidly 

submerged in a tank of water at 25 Celsius for 12 hours (Figure 4.10).  This rapid 

heating and cooling process was repeated 140 times (140 days).  After the rapid 

heating and cooling cycles, slake durability tests were performed on the rock fragment 

specimens.  Weight loss, specific gravity, water absorption, and dynamic wave 

velocity of the specimens were monitored at every 14 cycles.  The test procedures 

follow the ASTM (C127) standard practice.  Point load strength test was performed at 

1, 70 and 140 cycles.  The test method follows the ASTM (D5731) standard practice.  

At every 28 cycles, tilt testing was performed on three pairs of cylindrical disk 

specimens with smooth saw-cut surface to determine the change of the basic friction 

angle.  These physical and mechanical property parameters are used as indicators of 

rock degradation.  Correlation between these parameters will also be carried out in an 

attempt to determine the mathematical relationship between the joint shear strengths 

and the rock degradation. 

 

4.3.2  Slake durability index  

 The slake durability index test is performed on fragments of thirteen 

rock specimens after subjecting them to 140 cycles of heating and cooling.
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Figure 4.8  Example of rock fragments of Phra Wihan sandstone prepared for slake  

durability index test. 

 

 

 
Figure 4.9  Example of rock disks of Phra Wihan sandstone and siltstone prepared for  

tilt tests and point load strength index tests. 
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Figure 4.10  Specimens of rock disks and fragments submerged under water tank at 25°C. 
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The SDI test procedure and data reduction were similar to that of the standard practice 

(wet-condition).  Table 4.6 gives the results of SDI tests for all rock types.  Figures 

4.11 through 4.13 compare the SDI values of the sedimentary rocks, metamorphic 

rocks and volcanic rocks obtained before and after heating and cooling simulation.  

The durability of rock specimens that are subjected to 140 heating and cooling cycles 

are mostly lower than those not subjected to the heating and cooling cycles.  This 

suggests that the 140 heating-cooling cycles have degraded the rock specimens.  The 

reduction rate of SDI for these specimens is higher than that of the specimens not 

subjecting to the heating-cooling cycles.  

 

4.3.3  Point load strength index 

 The point load strength index test was performed on all rock types, 

using three sets of specimens.  The first set is prepared from the samples as collected 

from the field site.  The second set is from those subjected to 70 cycles of heating and 

cooling.  The last set is from those subjected to 140 cycles of heating and cooling.  

The point load test is performed by using compression machine model SBEL PLT-75 

which is capable of applying axial load up to 350 kN (Figure 4.14).  Table 4.7 gives 

the results.  The strength of Pichit crystal tuff (PCT), Phu Kradung red sandstone 

(PKSS2), Kaeng Krachan micaceous siltstone (KKST), Phra Wihan siltstone (PWST), 

and Nam Duk siltstone (NDST) decrease with increasing heating and cooling cycles.  

For the other rock types, the trend of the strength index is inconclusive.  This is 

probably due to the intrinsic variability of the rock specimens.  
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Table 4.6  Results of SDI test for all rock types obtained after 140 cycles of heating 

and cooling simulation. 

Slake Durability Index, Id(%)  
Number of Cycles, N Rock Types Code 

1 2 3 4 5 6 
PCT 98.71 98.00 97.39 96.87 96.63 96.37 

Volcanic Rocks 
PPB 93.95 83.98 78.41 74.50 71.48 70.05 
KSch 98.41 96.81 95.67 94.62 93.86 93.45 
CSch 70.21 60.76 55.29 51.61 49.55 48.33 Metamorphic 

Rocks 
NDSh 96.93 95.71 94.08 92.52 91.29 90.13 
PKSS1 81.95 73.56 65.28 59.10 54.83 50.03 
PKSS2 98.37 97.30 96.09 94.90 94.07 93.39 
KKST 94.86 89.77 85.51 81.44 78.11 75.18 
PWSS 96.08 93.75 91.78 90.66 89.51 88.49 
PWST N/A N/A N/A N/A N/A N/A 
NPST 97.42 96.27 95.52 94.76 94.22 93.81 
KkSS 89.02 76.63 70.66 66.52 61.39 58.66 

Sedimentary 
Rocks 

MSMD N/A N/A N/A N/A N/A N/A 
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Figure 4.11  Comparison of SDI values of sedimentary rocks before (solid lines) and 

after (dash lines) 140 heating-cooling cycles. 
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Figure 4.12  Comparison of SDI values of metamorphic rocks before (solid lines) and 

after (dash line) 140 heating-cooling cycles. 
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Figure 4.13  Comparison of SDI values of volcanic rocks before (solid lines) and 

after (dash lines) 140 heating-cooling cycles.   
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Figure 4.14  Test arrangement and apparatus for point load strength index test. 
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Table 4.7  Results of point load strength index test.    

Point Load Strength Index, Is(50) (MPa) Rock Types Code 
Cycle 1 Cycle 70 Cycle 140 

PCT 5.2 3.8 2.0 
Volcanic Rock 

PPB 3.5 N/A N/A 
KSch 2.7 2.1 4.0 
CSch N/A N/A N/A Metamorphic 

Rock 
NDSh N/A N/A N/A 
PKSS1 1.6 1.4 2.0 
PKSS2 6.8 6.4 5.1 
KKST 1.4 1.2 1.2 
PWSS 2.3 2.2 2.4 
PWST 1.0 0 N/A 
NPST 3.0 1.3 1.2 
KkSS 1.0 1.1 1.0 

Sedimentary 
Rock 

MSMD N/A N/A N/A 
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4.3.4  Weight loss monitoring  

 The results show that Phra Wihan siltstone (PWST), Chonburi quartz 

mica schist (CSch), and Pichit pumice breccia (PPB) have a higher rate of weight loss 

than the other rocks (Figure 4.15).  This is probably due to the high percentage of 

kaolinite in the rock matrix.  Nam Duk slaty-shale (NDSh) also has a high rate of 

weight loss under this simulation because the high amount of mica contents makes the 

rock disintegrate easily.  Its fragments therefore become extremely brittle and weaker 

when they are subjected to rapid changing of temperatures.  Pichit crystal tuff (PCT) 

and Kanchanaburi green schist (KSch) have the lowest rate of weight loss because 

those are crystallized forming rocks.  This is the effect of chemical weathering rather 

than physical weathering.  The other rocks do not show much weight loss under this 

simulation because they are composed of quartz grains and have grain contact texture. 

 

4.3.5  Basic friction angles (Tilt test) 

For all rock types the basic friction angles rapidly decrease during the 

first 28 cycles.  After 28 cycles the decreasing rate becomes smaller (Figure 4.16).  

Variation of the friction angle with number of cycles can be best represented by a 

power equation.  Table 4.8 lists the empirical constants in the power equation for each 

rock type. 

 

4.3.6  Dynamic wave velocity 

 The test specimens have approximate length-to-diameter ratio of 0.5 (six 

specimens) and 1.0 (two specimens).  There are eight specimens for each rock type.  

The dynamic wave velocity is measured using Sonic Viewer 170 Model 5228 (Figure 
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4.17).   The detailed results are shown in Appendix A.  Phra Wihan siltstone (PWST) 

shows that the P-wave velocity decreases with increasing numbers of heating and 

cooling cycles.  This is probably due to the high percentage of weight loss in rock 

specimen, and therefore decreasing its density.  Phu Kradung sandstone (PKSS), 

Kaeng Krachan micaceous siltstone (KKST), and Khok Kruat sandstone (KkSS) have 

a lower rate of wave velocity decrease.  The wave velocity change for Pichit crystal 

tuff (PCT) and Kanchanaburi green schist (KSch) after 140 cycles of heating and 

cooling can not be detected by this testing.  This is probably because the measurement 

technique of the P-wave velocity (both apparatus and method) is not sufficiently 

sensitive to detect the change of their rock characteristics. 
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Figure 4.15  Weigh loss of rock specimens monitored every 14 cycles of heating and  

cooling cycles. 
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Figure 4.16  Basic friction angles of smooth (saw-cut) surface of rock specimens tested 

after various heating-cooling cycles (n) 

 

Table 4.8  Empirical constants form power equation relating φB and n 
 

φB = C • n-λ 
Rock Types 

C λ 
Correlation 
Coefficient 

Volcanic Rocks PCT 27.42 0.016 0.928 
Metamorphic Rocks KSch 22.52 0.033 0.995 

PKSS1 37.51 0.015 0.956 
PKSS2 17.61 0.050 0.988 
KKST 25.23 0.015 0.883 
PWSS 18.55 0.055 0.953 
PWST 35.73 0.002 0.469 

Sedimentary Rocks 

KkSS 30.89 0.010 0.872 
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Figure 4.17  Sonic Viewer 170 Model 5228 used to measure P-wave velocity. 
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CHAPTER V 

CORRELATION BETWEEN ROCK DURABILITY AND 

JOINT SHEAR STRENGTH 

 

5.1   Introduction  

 The objective of this chapter is to correlate the weathering parameters (∆SDI), 

rock strength (Is) with the joint shear strength.  Barton’s joint shear strength is 

adopted here as it allows incorporating the rock strength parameter.  A concept of heat 

energy absorption is used to compare the degradation simulation with the actual in-

situ condition, in terms of time.  The degradation of the joint shear strength can 

therefore be predicted as a function of time.  

 

5.2   Relationship between rock strength and ∆SDI 

 The ∆SDI values obtained from both before and after subjecting to the 

degradation simulations are used to correlate with the corresponding point load 

strength index.   Table 5.1 compares the strength index values obtained from the two 

sets of specimens of all rock types with the corresponding ∆SDI values.  The point 

load strength results from both sets are plotted as a function of ∆SDI at N* = 6 (or N = 

1 - the first SDI test cycle) as shown in Figure 5.1.  Variation of point load strength 

index with ∆SDI can be best represented by a power equation:  
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Figure 5.1  Point load strength index as a function of ∆SDI for all rock types tested. 
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Table 5.1  Point load strength index results and their corresponding ∆SDI at N* = 6 

(or N=1). 

Without heating-cooling 
cycle 

With 140 cycles of 
 heating-cooling Rock Types Code 

Is(50) (MPa) ∆SDI (%) Is(50) (MPa) ∆SDI (%) 
PCT 5.2 0.94 2.0 1.29 

Volcanic Rocks 
PPB 3.5 5.29 - - 

Metamorphic Rocks  KSch 2.7 1.85 4.0 1.59 
PKSS1 1.6 18.48 2.0 18.05 
PKSS2 6.8 2.48 5.1 1.63 
KKST 1.4 4.63 1.2 5.14 
PWSS 2.3 16.33 2.4 3.92 
PWST 1.0 6.60 - - 
KkSS 1.0 6.04 1.0 12.39 
NPST 1.02 3.00 1.2 2.58 

Sedimentary Rocks 

MSMD 1.0 48.82 - - 
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 Is(50)  = δ × ∆SDI-η  (5.1) 

 

where Is(50) is point load strength index (MPa), δ is an empirical constant, and η is exponent 

of ∆SDI.  Though widely scatted data are obtained, a general trend of the results shows 

that point load strength index decreases with increasing ∆SDI.  The above equation 

suggests that if one can obtain or predict ∆SDI of the rock, the point load strength 

index can be estimated.  

 

5.3  Correlation between simulation and actual in-situ condition 

 An attempt is made here to correlate the simulation cycles with the actual in-

situ condition.  An easy and relatively conservative approach is to use the concept of 

energy adsorption.  The amount of heat energy that has been applied to the rock 

specimens during the degradation simulation is compared with that actually occurs in 

the field.  Figure 5.2 shows the temperature change imposed on the rock during one 

cycle of degradation simulation.  The Thai Meteorological Department (2004) has 

monitored the temperature change during the days throughout the year in the area of 

Nakhon Ratchsima province.  Figure 5.3 shows the daily temperature changes 

averaged for the year 2004.  The heat energy absorbed by the rock can be calculated 

by using an equation (Richard et al., 1998),  

 

 ( )∑
=

∆⋅∆⋅⋅=
n

1i
iip tTCmQ  (5.2) 
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Figure 5.2  Variation of temperatures for one cycle of  heating and cooling simulation in  

laboratory. 
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Figure 5.3  Variation of daily temperatures in the Nakhon Ratchasima province (Thai  

Meteorological Department, 2004).  The line indicates average daily 

temperature change in the year 2004. 
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where Q is the absorped energy of rock specimen (kJ), m is the weight of rock 

specimen (kg), Cp is the specific heat capacity (kJ/kg⋅K), ∆Ti is the temperature 

change in Kelvin, ti is time interval of energy absorption (hours) and n is number of 

hours.  The coefficient of heat capacity of most rocks varies between 0.6 and 1.2 

kJ/kg⋅K with an average value of 0.90 kJ/kg⋅K (Figure 5.4).   

From equation (5.2), the absorped energy during heating simulation of most rocks 

is estimated as 4.320 MJ⋅hr (where m = 5 kg, Cp = 0.90 kJ/kg⋅K, ∆T = 80 K, t = 12 hrs).  

For the in-situ condition, the absorbed energy in one day is estimated as 0.245 

MJ⋅hr (where m = 5 kg, Cp = 0.90 kJ/kg⋅K, ∆T is temperature change in each one hour as 

shown in Figure 5.2, t = 16 hrs.). Therefore, one simulation cycle of heating and 

cooling approximately equals to 18 days under in-situ condition ( 84.17
245.0
320.4

= ).  

Therefore, n can be correlated with time. 

  

 n ≈ 18 days (5.3)        

 

where n is the cycle of heating and cooling simulation.  The above correlation, 

equation (5.3), is considered extremely conservative because the temperature changes 

for the simulation are much more abrupt than those actually occurring under in-situ 

conditions.   Since the applied energy in one day during the simulation is the same as 

that used in the SDI test, N* can be related to time, as follows. 
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Figure 5.4  Comparison of coefficients of heat capacity of various rock types (Modified  

from Department Angewandte Geowissenschaften und Geophysik, 2006). 
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 N* ≈ 18 days  (5.4)  

 

From equation (5.4) ∆SDI for each rock type can be plotted as a function of time (in days 

and years) in Figure 5.5. 

 

5.4  Modified Barton’s joint shear strength criterion 

 From Figures 5.1 and 5.5, the point load strength index of the rock can be 

correlated with time.  The strength index can therefore be correlated to the uniaxial 

compressive strength of the rock by using the following relation. 

 

 σc = a ⋅ Is(50) (5.5) 

 

where σc is the uniaxial compressive strength and a is the multiplier factor.  

Numerous researches have proposed many criteria to define this multiplier factor.  

Different rock types have different “a” values.  ASTM (D5731) standard practice also 

provides a guideline to define this value for different rock types.  After σc value is 

estimated from Is(50), the rock strength can be correlated with time (Figures 5.1 and 

5.2). 

 A joint shear strength criterion that is capable of incorporating rock strength 

(σc) has been proposed by Barton (1973): 

 

 ⎥
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Figure 5.5  ∆SDI as a function of time under in-situ condition. 
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where σn is the normal stress, φB is the basic friction angle, JRC is the joint roughness 

coefficient (ranging from 0 to 20), and σc is the joint wall compressive strength or 

uniaxial compressive strength of rock. 

 The rock compressive strength in the Barton criterion can be defined in terms 

of ∆SDI, and number of days (D)  

 

  σc = δ ⋅ a ⋅ [α ⋅ exp(β ⋅ D/18)]-η (5.7) 

 

The above equation is obtained by substituting equation in Table 4.4 and equation 

(5.1) into equation (5.5).  The Barton criterion can be rewritten as  
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where a is multiplied factor from ASTM (5731) standard practice, D is the number of 

days,  α and β are empirical constants for ∆SDI-N* curve.  δ and η are empirical 

constants for the Is-∆SDI curve.  The σc value in equation (5.7) must always be positive 

(≥0).  Therefore the lower bound of equation (5.8) for the joint shear strength value is  

 

 τ = σn ⋅ tan(φB)  (5.9) 

 

Strictly speaking the weathering or degradation of rock strength, as predicted here,  
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will affect only the roughness and wall strength of the joint.  The equation (5.8) 

implies that as time goes by the joint shear strength will approach that of smooth 

surfaces which is controlled by its basic friction angle. 

Table 5.2 gives parameters used in equation (5.8) to predict the joint shear 

strengths as a function of time for the thirteen rock types tested here.  The basic 

friction angle for each rock type is obtained from the results of tilt testing.  The JRC 

values are from field observations during sample collection. 

Figures 5.6 through 5.8 plot the normalized joint shear strength (τ/σn) 

predicted as a function of time for the next 10 years, for volcanic, metamorphic and 

sedimentary rock groups, respectively.  The shear strength of Pichit pumice breccia 

(PPB) degrades quickly and reaches the lower bound at about 3 years.  At which point 

the predicted σc = σn and τn/ σn = tan (φB) = 0.554 (Figure 5.6).  The joint shear 

strength of Pichit crystal tuff (PCT) reduces by about 10% for the next 10 years.  This 

tuff was classified as very high durability rock (in Chapter 4). 

The joint shear strengths of Nam Duk slaty shale (NDSh) and Kanchanaburi 

green schist (KSch) decrease slightly for the next 10 years (Figure 5.7).  The two 

rocks were classified by their ∆SDI values as high durability.  For Chonburi quartz 

mica schist (CSch), the shear strength rapidly decreases and reaches the lower bound 

within six months.  The schist is classified by ∆SDI as very low durability. 

The shear strengths of the sedimentary rock specimens decrease with time at 

various rates.  Phra Wihan siltstone (PWST), Phu Kradung white sandstone (PKSS1) 

and Maha Sarakham mudstone (MSMD) show relatively high joint shear strengths 

under the condition as collected from the field.  Their strengths decrease with time and 

quickly reach the lower bound of the shear strengths which is controlled by their 
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Table 5.2  Parameters used to predict the joint shear strength of each rock type. 

Rock Types φB (degrees) JRC α β a 

PCT 25 13 0.301 0.006 20** 

PPB 29 11 4.801 0.077 20** 

KSch 19 7 1.018 0.012 20** 

CSch 20 5 0.607 0.62 13** 

NDSh 27 2 0.728 0.008 13** 

PKSS1 34 7 4.465 0.189 11* 

PKSS2 14 7 1.828 0.021 11* 

KKST 23 7 3.055 0.04 13** 

PWSS 13 9 2.14 0.029 31* 

PWST 34 11 0.315 0.77 13** 

NPST 29 7 0.64 0.007 20** 

KkSS 28 7 3.402 0.047 13** 

MSMD 31 9 2.902 0.037 20** 

*Kemthong (2006).  **Tsiabaos and Sabatakakis (2004).   
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Figure 5.6  Normalized joint shear strength prediction for volcanic rocks.  Dashed  

lines indicate the lower bound of normalized joint shear strength which  

is defined by the tangent of basic friction angle of each rock type.  
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Figure 5.7  Normalized joint shear strength prediction for metamorphic rocks.  

Dashed lines indicate the lower bound of normalized joint shear strength 

which is defined by the tangent of basic friction angle of each rock type.  
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Figure 5.8  Normalized joint shear strength prediction for sedimentary rocks.  Dashed  

lines indicate the lower bound of normalized joint shear strength which is 

defined by the tangent of basic friction angle of each rock type.  
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basic friction angles.  The rest of the sedimentary rocks tested here show similar rate of 

joint shear strength reduction with time.  It is interesting to note that the basic friction 

angle of Phu Kradung red sandstone (PKSS2) and its shear strength reduction rate are 

relatively low, therefore its joint shear strength does not reach the lower bound within 

the predicted period of 10 years. 

 The sensitivity of φB, JRC and σc to the degradation of the joint shear strength 

is investigated by calculating τ/σn of Khok Kruat sandstone under various assumed 

φB, JRC and σn values.  Figures 5.9 through 5.11 plot the results.  Variation of φB 

values does not affect the rate of joint shear strength reduction (Figure 5.9).  The 

higher φB however results in a higher τ/σn.  Figure 5.10 shows that as σn increases the 

normalized joint shear strength decreases.  This suggests that rock joint under a higher 

σn may have a lower normalized shear strength.  Variations of σn however do not 

affect the rate of joint shear strength reduction.  As a result, shear strength of a joint 

under a higher σn will reach the lower bound strength quicker than that under a lower 

σn.  A reduction of JRC values decreases the present τ/σn (at time = 0) and its 

degradation rate, but does not affect the time at which τ/σn reaches the lower bound 

(Figure 5.11).  This implies that the roughness of a rock joint can not prolong the time 

at which the joint shear strength reaches its lower bound value. 
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Figure 5.9   Normalized joint shear strength as a function of time for Khok Kruat  

sandstone for various assumed φB values. 
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Figure 5.10  Normalized joint shear strength as a function of time for Khok Kruat 

sandstone for various normal stress (σn). 
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Figure 5.11   Normalized joint shear strength as a function of time for Khok Kruat  

sandstone for various assumed JRC values. 
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CHAPTER VI 

DISCUSSIONS, CONCLUSIONS AND 

RECOMMENDATIONS FOR FUTURE STUDIES 

 

6.1  Discussions 

The factors affecting the degradation of the sedimentary rocks used in this 

research seem to be the packing density, grain contact characteristics and kaolinite 

content.  Rocks with higher density and lower percentage of cementing materials (grain-

to-grain contact) tend to degrade slower than those with lower density and higher amount 

of cementing materials.  Kaolinite is highly sensitive to water which makes the rock 

disintegrated quickly.  These observations agree reasonable well with those observed by 

Koncagul and Santi (1999).  The effect of grain size can not be studied because all the 

sedimentary rocks tested in this research are fine grained rocks. 

For the metamorphic and volcanic rocks, kaolinite content seems to be the most 

important factor affecting the rate of degradation, particularly when subjected to water.  

The pore spaces in volcanic rock also enhance the weathering process by allowing more 

water to penetrate into the inner matrix.  The metamorphic rocks with distinct foliation 

planes formed by the alignment of flaky minerals (such as mica) can notably disintegrate 

under cyclic changes of surrounding temperatures even under dry condition.  The 

governing mechanism probably involves the differential expansion of the rock forming 

minerals that have different thermal expansion coefficients.  The cyclic changes of the 

temperature would induce repeated changes of shear stresses on the foliation planes and 
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eventually cause separation between them.  This effect is probably enhanced if the 

foliation planes that separate two different types of minerals are well defined and planar, 

and hence the shear stresses are induced along one common direction.  This is supported 

by the progressive separation of the Nam Duk slaty-shale foliations observed in the 

laboratory which agrees with that observed on-site during the field investigation. 

The prediction of ∆SDI value as a function of N* is obtained by extrapolation of 

the fitted curve to a higher number of N*.  The reliability of the prediction largely depends 

on the number of cycles during the SDI test.  This issue is of concern particularly for the 

rock with high gradient of ∆SDI values which are normally obtained for low to very low 

durability rocks.  A larger number of test cycles (probably 20 or more) would be required 

to provide a more reliable prediction.  However, the ∆SDI values obtained for medium to 

very high durability rocks tend to have a linear relation with N*.  For these rocks, the 

number of SDI test cycles between 5 and 10 would be sufficient. 

The relationship between Is(50) and ∆SDI is developed by assuming that these 

values are independent of rock types.  This assumption is made here because the amount 

of Is(50) data is limited (two for each rock type).  It is believed that Is(50) - ∆SDI relation is 

unique for each rock type or at least for rocks with comparable origin, composition and 

texture.  This is because the failure mechanisms for each rock can not be directly related 

to the rock weathering under chemical and physical processes.   Care should therefore be 

taken in applying this relation elsewhere as it may not be valid for other rocks with 

different physical and mineralogical characteristics from those tested here. 

The approach to relate the simulation cycles with the actual time in the field by 

using the heat energy absorption concept is very conservative because it considers only 

the temperature difference and duration, not the rate change of temperatures.  It is 
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believed that the rapid change of temperature during the simulation would impose more 

damage on the rock fabric than does the gradual change occurred under in-situ condition.  

During each cycle of SDI test the rock fragments are also subjected to scrubbing action in 

the rotating drum.  This process is more severe than what the rock would be subject to 

under in-situ condition. 

Incorporation of the ∆SDI and N* into Barton’s criterion as proposed here 

indicates that the predicted joint shear strength reduction is mainly governed by the 

degradation or the intact rock strength.  The modified criterion is only valid where the 

predicted intact rock strength is equal to or greater than the applied normal stress.  Below 

this limit the joint shear strength is governed by the rock basic friction angle.  In reality 

the transition of the shear strengths across this limit would be smoother than what is 

predicted here.  The abrupt transition is probably because the rock basic friction angle is 

assumed to remain constant with time.  In reality the basic friction angle of the rock 

(mainly governed by cohesive bonding of mineral surfaces and/or by grain size and 

bonding – Kemthong, 2006) may change with time due to the mineral alterations or grain 

loosening, or both.  Such processes are complicated and can either increase or decrease 

the basic friction angle, depending on the rock compositions.   

 

6.2  Conclusions  

The effect of weathering processes on the joint shear strength of some weak rocks 

has been experimentally investigated.  The effort involves simulation of the weathering-

induced degradation of rock specimens in the laboratory, determination of the physical 

and mechanical properties of the rocks at various stages of degradation, and development 

of a rock joint shear strength criterion that can incorporate the weathering-related 
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parameters.  Thirteen rock types that were commonly encountered in the north and 

northeast of Thailand, have been used as rock samples.  Petrographic analyses and x-ray 

diffraction method determine the texture and mineral compositions of the rocks.   

Results from SDI tests indicate that factors controlling the degradation rate of the 

sedimentary rocks used here are primarily density, grain contact, and kaolinite content.  

For the metamorphic and volcanic rocks, grain size and mica and kaolinite contents are 

the primary factors controlling the rock degradation.  Though not sensitive to water, rocks 

containing mica may disintegrate easily under cyclic changes of temperatures.  The 

impacts of kaolinite and grain size on the rock degradation are more prominent when the 

rocks subjected to water than under dry condition. 

Results from the degradation simulation suggest that the point load strength index 

decreases with increasing ∆SDI, which can be best represented by a power equation.  The 

basic friction angles of the smooth (saw-cut) surfaces of the rocks also decrease as the 

number of heating-cooling cycle increases.  The water absorption measurements show the 

increase of the apparent porosity of the rocks with increasing number of heating-cooling 

cycles.  The water absorption results however can not be correlated with the rock 

mechanical properties.  The cycles of the rock degradation simulation are correlated with 

the time (in days) under in-situ condition by using the concept of heat energy absorption.  

This conservative correlation suggests that one cycle used in the simulation 

approximately equals 18 days under in-situ condition.  The ∆SDI and the decrease of the 

point load strength index can therefore be presented as a function of the actual time. 

Barton’s joint shear strength criterion is modified in this study to incorporate the 

weathering-related parameters into the rock wall strength variable.  The joint wall 

strength for each rock type is determined from the point load index using the ASTM 
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calculation guideline.  This allows predicting the decrease of joint shear strength as a 

function of time.  It should be noted that this approach assumes that the rock degradation 

affects only the rock wall strength, therefore the lower bound of the joint shear strength 

will equal the strength of smooth saw-cut surfaces, which can be calculated using the rock 

basic friction angle.  Since the relation of N* - time is highly conservative, the time at 

which the joint shear strength will reach the lower bound value for each rock would be 

longer than what is predicted by this approach.  The normalized joint shear strengths vs. 

time in Figures 5.6 through 5.8 can be used to conservatively predict the long-term 

stability of slope embankments of the rocks used in this study. 

 

6.3   Recommendations for future studies 

 The uncertainties and adequacies of the research investigation and results 

discussed above lead to the recommendations for further studies, as follows. 

A more diverse rock types, compositions and textures is required in order to truly 

assess all factors affecting the rock degradation.  The sedimentary and weak volcanic 

rocks should have a wide range of grain (crystal) sizes, rock forming minerals, packing 

density (apparent porosity) and textures. 

More SDI test cycles should be performed to obtain a more accurate projection of 

the ∆SDI-N* curve, probably up to 10 cycles for strong rocks and over 20 cycles for weak 

rocks. 

An attempt should be made to determine Is(50) – ∆SDI relation for individual rock 

type.  This requires a large number of rock fragments for the point load testing, or rock 

cylinders for the uniaxial testing at several periods of degradation simulation.  Such 

relation would provide a more accurate estimation for the long-term rock strength. 
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A new or better approach should be sought to correlate the simulation cycles with 

the actual time.  An alternative is to compare the results of rocks under simulated 

condition in the laboratory with those actually subjected to the in-situ environment.  Such 

approach requires a long-term investigation program. 

Experimental investigation of the effect of long-term degradation on the basic 

friction angle of rocks is also highly desirable. 
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Table A.1  Result of slake durability index test for 6 cycles with water in trough. 

Weight of Oven-Dry Specimens (g) 
Number of Cycles Rock 

Types Code Initial Dry 
Weight (g)

1 2 3 4 5 6 

PCT 528.10 523.11 521.58 521.06 520.42 519.21 516.22 

V
ol

ca
ni

c 
R

oc
ks

 

PPB 508.70 481.78 455.84 420.19 377.31 350.56 327.47 

KSch 508.60 499.20 492.70 488.30 482.90 479.00 474.40 

CSch 490.20 252.80 206.50 186.90 171.30 158.40 150.30 

M
et

am
or

ph
ic

 
R

oc
ks

 

NDSh 510.10 503.40 497.10 492.20 490.20 488.40 486.50 

PKSS1 533.00 434.50 373.20 328.00 289.60 265.70 245.10 

PKSS2 517.00 504.20 489.10 478.60 470.70 462.70 455.20 

KKST 510.20 486.60 463.40 443.80 427.20 414.70 401.60 

PWSS 526.50 440.50 434.20 429.50 425.70 422.20 419.10 

PWST 415.60 138.80 78.80 64.70 52.30 43.00 32.40 

NPST 497.60 492.50 488.50 484.70 482.50 479.20 477.80 

KkSS 612.90 575.90 547.90 521.20 495.90 475.30 465.70 

Se
di

m
en

ta
ry

 R
oc

ks
 

MSMD 568.40 547.64 531.30 500.50 487.50 473.20 456.40 
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Table A.2  Result of slake durability index test for 6 cycles without water in trough. 

Weight of Oven-Dry Specimens (g)   
Number of Cycles Rock 

Types Code Initial Dry 
Weight (g)

1 2 3 4 5 6 

PCT 566.50 564.40 562.50 560.80 560.20 558.60 557.60 

V
ol

ca
ni

c 
R

oc
ks

 

PPB 581.50 575.80 572.10 568.70 566.40 563.80 561.10 

KSch 542.60 536.60 532.60 529.40 526.30 524.00 521.70 

CSch 531.40 431.50 384.40 354.20 328.60 311.20 300.50 

M
et

am
or

ph
ic

 
R

oc
ks

 

NDSh 524.00 518.70 512.70 507.90 504.70 502.00 500.30 

PKSS1 509.90 483.00 462.80 447.80 435.20 421.40 409.20 

PKSS2 522.10 516.60 514.00 512.00 510.10 508.30 506.40 

KKST 583.90 567.30 559.50 551.10 545.70 540.70 536.20 

PWSS 494.30 475.60 468.20 462.80 458.10 452.80 448.40 

PWST 470.50 429.80 401.60 380.80 362.00 347.50 333.50 

NPST 529.60 524.00 520.60 518.30 516.40 514.50 512.50 

KkSS 598.60 587.60 580.30 573.20 566.20 559.40 552.60 

Se
di

m
en

ta
ry

 R
oc

ks
 

MSMD 539.20 523.40 515.40 503.80 502.10 500.40 498.80 
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Table A.3  Effective porosity of  rock specimens.  

Rock Types Code Effective Porosity of Specimens (%) 

PCT 0.53 
Volcanic Rock 

PPB 8.65 

KSch 5.47 

CSch 15.95 Metamorphic Rock 

NDSh 13.4 

PKSS1 11.90 

PKSS2 4.81 

KKST 13.89 

PWSS 10.01 

PWST 21.77 

NPST 8.70 

KkSS 7.99 

Sedimentary Rock 

MSMD N/A 
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Table A.4  Basic friction angles of smooth saw-cut surfaces of specimens during 

heating and cooling simulation. 

Basic Friction Angle,φB (degrees) 
Rock Types Code 

Cycle 1 Cycle 28 Cycle 56 Cycle 84 Cycle 112 Cycle 140

PCT 30.8 24.6 26.3 25.7 26.0 25.3 Volcanic 
Rock PPB 29.3 N/A N/A N/A N/A N/A 

KSch 28.4 20.2 19.2 19.7 19.0 19.3 

CSch N/A N/A N/A N/A N/A N/A Metamorphic 
Rock 

NDSh N/A N/A N/A N/A N/A N/A 

PKSS1 41.4 37.1 35.6 34.4 34.4 34.3 

PKSS2 24.8 15 14.9 14.1 13.0 14.1 

KKST 27.8 24.9 24.4 23.8 22.0 23.4 

PWSS 26.6 16.9 16.7 13.7 13.3 13.4 

PWST 36.0 36.0 35.7 35.2 35.0 N/A 

NPST N/A N/A N/A N/A N/A N/A 

KkSS 33.0 31.2 29.8 29.1 28.4 27.7 

Sedimentary 
Rock 

MSMD N/A N/A N/A N/A N/A N/A 
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Figure A.1  Pichit crystal tuff before (top) and after (bottom) the slake durability test. 

 
 

  

 
 
 

Figure A.2  Pichit pumice breccia before (top) and after (bottom) the slake durability test. 

(SDI wet test) (SDI dry test) 

(Before testing) 

(After testing) 

(SDI wet test) (SDI dry test) 

(Before testing) 

(After testing) 



 

 

109

 

 
 

Figure A.3  Kanchanaburi green schist before (top) and after (bottom) the slake durability test. 

 
 

 
 

Figure A.4  Chonburi quartz mica schist before (top) and after (bottom) the slake durability test. 

(SDI wet test) (SDI dry test) 

(Before testing) 

(After testing) 

(SDI wet test) (SDI dry test) 

(Before testing) 

(After testing) 
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Figure A.5  Nam Duk slaty shale before (top) and after (bottom) the slake durability test. 

 

 

 
 

 
Figure A.6  Maha Sarakham mudstone before (top) and after (bottom) the slake durability test. 

(SDI wet test) (SDI dry test) 

(Before testing) 

(After testing) 

(SDI wet test) (SDI dry test) 
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Figure A.7  Phra Wihan siltstone before (top) and after (bottom) the slake durability test. 

 

 

 
 
 

Figure A.8  Nam Phong sandstone before (top) and after (bottom) the slake durability test. 
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(After testing) 

(SDI wet test) (SDI dry test) 

(Before testing) 

(After testing) 



 

 

112

 

 
 

 

Figure A.9  Kaeng Krachan micaceous  siltstone before (top) and after (bottom)   

the slake durability test. 
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Figure A.10  Khok Kruat sandstone before (top) and after (bottom) the slake durability test. 

 
 
 

 
 
 

Figure A.11  Phu Kradung white sandstone before (top) and after (bottom)  

the slake durability test. 

(SDI wet test) (SDI dry test) 

(Before testing) 

(After testing) 
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Figure A.12  Phu Kradung red sandstone before (top) and after (bottom) the slake durability test. 

 
 

 

 

Figure A.13  Phra Wihan sandstone before (top) and after (bottom) the slake durability test. 

(SDI wet test) (SDI dry test) 

(Before testing) 

(After testing) 
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(Before testing) 

(After testing) 
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Figure 4.14  Dynamic wave velocity of Phichit crystal tuff specimens 
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Figure 4.15  Dynamic wave velocity of Kanchanaburi green schist Pichit crystal tuff  

specimens. 
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Figure 4.16  Dynamic wave velocity of Phu Kradung white sandstone specimens. 
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Figure 4.17  Dynamic wave velocity of Phu Kradung red sandstone specimens. 
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Figure 4.18  Dynamic wave velocity of Phra Wihan sandstone specimens. 
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Figure 4.19  Dynamic wave velocity of Phra Wihan siltstone specimens. 
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Figure 4.20  Dynamic wave velocity of Kaeng Krachan micaceous  siltstone specimens. 
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Figure 4.21  Dynamic wave velocity of Khok Kruat sandstone specimens. 
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