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งานวิจัยนี้ศึกษาเกี่ยวกับการจําลองเชิงตัวเลขของการไหลมีความหนืดแบบไมยุบตัวในสอง
มิติที่ควบคุมโดยสมการนาเวียรสโตก การศึกษาครั้งนี้แบงเปนสองสวน สวนแรกเปนการตรวจสอบ
และเปรียบเทียบประสิทธิภาพของวิธีผลตางอันตะสามวิธี เพื่อหาคําตอบโดยประมาณของสมการนา
เวียรสโตกแบบไมยุบตัวในสองมิติในรูปแบบของฟงกชันกระแส สวนที่สองเปนการพัฒนาและ
ศึกษาวิธีผลตางอันตะเพื่อจําลองการไหลแบบไมยุบตัวในสองมิติในรูปแบบใหมที่เสนอโดย อริ
สตอฟ และ พุกเนเชฟ (Aristov and Pukhnachev,  Doklady Physics, 49(2), 2004) 

ปญหาของการไหลในโพรงแบบสองมิติใชเปนบรรทัดฐานในการเปรียบเทียบวิธีผลตาง
อันตะสามวิธี สําหรับคําตอบโดยประมาณของสมการนาเวียรสโตกในรูปแบบของสมการทวิฮารมอ
นิกสําหรับฟงกชันกระแส  การประมาณของพจนที่ไมเชิงเสนทําใหวิธีทั้งสามมีความแตกตางกันนั่น
คือ การประมาณแบบชัดแจง, การทําซ้ําภายใน และการแยกตัวดําเนินการ เทคนิคการหาคําตอบทั้ง
สามแบบนี้มีการเปรียบเทียบในแงของความเสถียร ความถูกตอง และอัตราการลูเขา งานวิจัยคร้ังนี้
แสดงใหเห็นวา วิธี การแยกตัวดําเนินการที่เสถียรทางทฤษฎีลมเหลวที่คาเรยโนลดสูง ในขณะที่
วิธีการทําซํ้าภายใน ไดคําตอบโดยประมาณดวยอัตราการลูเขาที่เร็วกวา 

รูปแบบใหมของสมการนาเวียรสโตก สําหรับการไหลของของไหลที่มีความหนืดแบบไม
ยุบตัวในสองมิติเสนอโดย อริสตอฟ และ พุกเนเชฟ (2004) นั้นไดแนะนําฟงกชันใหมซ่ึงสัมพันธ
กับความดัน และประสบความสําเร็จในการเชื่อมตอกันเปนระบบของสมการขนสงสองสมการ
สําหรับฟงกชันกระแสและความเร็วเชิงมุม  และสมการอิลลิปติกสําหรับฟงกชันใหม ขั้นตอนการ
คํานวณเชิงตัวเลขใชสมการที่เปนระบบเชื่อมตอแบบแยกจากกันไมได  ซ่ึงยอมใหใชเงื่อนไขสอง
เงื่อนไขสําหรับฟงกชันกระแสที่ไมมีเงื่อนไขจากฟงกชันชวย การเพิ่มพารามิเตอรขนาดเล็กใน
เงื่อนไขขอบชวยกําจัดภาวะเอกฐานของเมทริกซได เครื่องมือเชิงตัวเลขแบบใหมนี้ถูกนํามา
ประยุกตใชกับการไหลแบบเทยเลอร- คูเอทท ระหวางสองทรงกระบอกที่มีจุดศูนยกลางรวมกันโดย
ที่ขอบบนและขอบลางมีการหมุนเปนอิสระจากทอดานใน ในขณะที่ทอดานนอกหยุดนิ่ง การไหลนี้
ถูกขับเคลื่อนถูกใชเปนแบบทดสอบมาตรฐานในกรณีสองมิติ วิธีเหลานี้ไดรับการตรวจสอบบนกริด
ที่มีความละเอียดแตกตางกัน  



 II

วิธีการเชิงตัวเลขที่พัฒนาขึ้นในงานวิจัยนี้มีพื้นฐานจากรูปแบบเชิงทฤษฎีของอริสตอฟและ
พุกเนเชฟของสมการนาเวียรสโตกสามารถใชสําหรับศึกษาปรากฎการณใหมในการไหลสองมิติ
แบบหมุนวนและแบบระนาบ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

สาขาวิชาคณิตศาสตร ลายมือช่ือนักศึกษา________________________ 
ปการศึกษา 2550                                                   ลายมือช่ืออาจารยที่ปรึกษา____________ 
                                                                              ลายมือช่ืออาจารยที่ปรึกษารวม_______________ 



KANYUTA POOCHINAPAN : A NUMERICAL SIMULATION OF

INCOMPRESSIBLE SWIRLING FLOW USING FINITE

DIFFERENCE METHOD. THESIS ADVISOR : ASSOC. PROF.
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FINITE DIFFERENCE METHOD/ 2D FLOW/ NAVIER-STOKES EQUA-

TIONS.

The current work deals with a numerical simulation of 2D incompressible

viscous flow governed by the Navier-Stokes equations. This study can be divided

into two parts. The first part is the investigation and comparison of the perfor-

mance of three finite-difference schemes to find the approximate solution of 2D

incompressible Navier-Stokes equations in form of the stream function. The sec-

ond part is the development and study of a finite-difference scheme to simulate

the 2D incompressible flow in a new form proposed by Aristov and Pukhnachev

(see Doklady Physics, 49(2), 2004).

The benchmark problem of 2D cavity flow is used to compare three finite-

difference schemes for the approximate solution of the Navier-Stokes equations

in form of the bi-harmonic equation for the stream function. The schemes are

different for the approximation of nonlinear terms, that is, the explicit approxima-

tion, the internal iteration techniques, and the operator splitting approach. Three

techniques are compared in terms of their stability, accuracy, and convergence

rate. It is shown that the theoretically stable operator splitting scheme fails at

large Reynolds number while the method of internal iteration gives the reasonable

approximate solution and has the faster convergence rate.



The new form of the Navier-Stokes equations for the 2D viscous incom-

pressible fluid flow proposed by Aristov and Pukhnachev (2004) who introduced

a new function related to the pressure and succeed to derive a coupled system

of two transport equations for the stream function and azimuthal component ve-

locity and one elliptic equation for the new function. The algorithm treats the

equations as an inextricably coupled system which allows to satisfy two conditions

for the stream function without condition on the auxiliary function. The issue of

singularity of the matrix is tackled by adding a small parameter in the boundary

conditions. This new numerical tool is applied to the Taylor-Couette flow between

the concentric rotating cylinders where the upper and lower lids are allowed to ro-

tate independently from the inner cylinder, while the outer cylinder is held at rest.

This flow is utilized as a benchmark test in 2D case. The schemes are thoroughly

validated on grids with different resolutions.

The numerical methods developed in this research work based on Aristov

and Pukhnachev formulation of the Navier-Stokes equations can be used in the

future for in-depth investigations of the new phenomena in rotating and plane 2D

flows.

School of Mathematics Student’s Signature
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CHAPTER I

INTRODUCTION

In this chapter, a briefly introduction to mathematical model of a viscous

incompressible fluid flow is provided. Different forms of the Navier-Stokes equations

(NSEs) are discussed. Mostly, two-dimensional (2D) cases are considered. A new

form of the NSEs proposed by Aristov and Pukhnachev (2004) is represented.

1.1 The Navier-Stokes equations of a viscous incompressible

fluid motion in general case

The flow problem is described in terms of the velocity field and pressure. The

governing equations of a viscous incompressible fluid motion are the NSEs

dv̄

dt
= −∇p + ν∇2v̄, (1.1)

coupled by the continuity equation

∇ · v̄ = 0. (1.2)

Here v̄ is the velocity vector, p is the pressure divided by the constant density, and ν

is the coefficient of kinematic viscosity. The kinematic viscosity ν is assumed to be

constant.
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1.2 The Navier-Stokes equations in form of vorticity-stream

function in 2D plane

The example of 2D flow provides fluid motions parallel to the plane xy. In

many handbook, one can find different form of the NSEs. In this representation,

Quartapelle (1993) is followed. The 2D incompressible NSEs can be formulated by

introducing two scalar variables, the vorticity ω and stream function ψ, in place of

the primitive variables, the velocity v̄ and pressure p. The scalar vorticity ω is the

z−component of the vorticity vector ω̄ = ∇× v̄, normal to the plane, namely,

ω = ∇× v̄ · k̄, (1.3)

where v̄ = (u, v), ∇ =

(
∂

∂x
,

∂

∂y

)
and k̄ is unit vector normal to the plane xy.

In 2D, the condition of incompressibility ∇ · v̄ = 0 can be satisfied exactly by

expressing v̄ in terms of the stream function ψ according to

v̄ = ∇ψ × k̄.

This equation, one expressed in terms of the vector components, gives u =
∂ψ

∂y
and

v = −∂ψ

∂x
. Thus, one obtains immediately

∇ · v̄ = ∇ · (∇ψ × k̄) =
∂

∂x

(
∂ψ

∂y

)
+

∂

∂y

(
−∂ψ

∂x

)
= 0.

In conclusion, taking the curl of the momentum equation (1.1) and make use of the

fact that the curl of a gradient of a scalar (∇× (∇p)) is zero (so that the pressure

terms go away) leads to the vorticity transport equation

∂ω

∂t
+

∂ψ

∂y

∂ω

∂x
− ∂ψ

∂x

∂ω

∂y
= ν∇2ω.

On the other hand, substitution of the expression v̄ = ∇ψ × k̄, into the vorticity

definition (1.3) gives the Poisson equation for the stream function

∇2ψ = −ω.
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(r, θ, z)
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θ

z
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yθ r

z

Figure 1.1 Cylindrical polar coordinates system.

The vorticity-stream function formulation of the NSEs for 2D flow are

∂ω

∂t
+

∂ψ

∂y

∂ω

∂x
− ∂ψ

∂x

∂ω

∂y
= ν∇2ω, (1.4)

∇2ψ = −ω. (1.5)

Substitution of ω = −∇2ψ into the vorticity transport equation (1.4), one has the

following time dependent bi-harmonic equation

∂∇2ψ

∂t
+

∂ψ

∂y

∂∇2ψ

∂x
− ∂ψ

∂x

∂∇2ψ

∂y
= ν∇4ψ. (1.6)

1.3 The Navier-Stokes equations of 2D axisymmetric flow in

cylindrical polar coordinates

An axisymmetric flow is a subject of much interest in many areas of engineering

and has been investigated by many researchers. An axisymmetric flow is one of the

many cases where the NSEs reduce to the 2D problem. There have been a number of

experimental and numerical studies of axisymmetric flows (see some of them, Levit,

1989; Lopez and Perry, 1992a, 1992b; Inamuro, 1997; Stevens, Lopez, and Cantwell,

1999; Iwatsu, 2004).
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An axisymmetric flow is most conveniently described in terms of the cylindrical

polar coordinates (r, θ, z). The cylindrical polar coordinate system (r, θ, z) is illus-

trated in Figure 1.1, where r, θ, and z denote the radial, azimuthal, and axial coor-

dinates, respectively. The corresponding velocity vector is denoted by v̄ = (u, v, w)T .

The NSEs for a viscous incompressible fluid can be written as

ut + uur +
v

r
uθ + wuz − v2

r
= −pr + ν

(
∇2u− u

r2
− 2

r2
vθ

)
, (1.7)

vt + vvr +
v

r
vθ + wvz +

uv

r
= −1

r
pθ + ν

(
∇2v − v

r2
+

2

r2
uθ

)
, (1.8)

wt + uwr +
v

r
wθ + wwz = −pz + ν∇2w, (1.9)

1

r
(ru)r +

1

r
vθ + wz = 0, (1.10)

where the Laplace operator in cylindrical coordinates takes the form

∇2 =
1

r

∂

∂r

(
r

∂

∂r

)
+

1

r2

∂2

∂θ2
+

∂2

∂z2
.

The assumption of axisymmetry implies that the velocity components and pressure

are functions of r and z only. Therefore, the NSEs (1.7)–(1.10) in the case of the

axisymmetric flow can be reformulated as follows

ut + uur + wuz − v2

r
= −pr + ν

(
urr +

1

r
ur − 1

r2
u + uzz

)
, (1.11)

vt + uvr + wvz +
uv

r
= ν

(
vrr +

1

r
vr − 1

r2
v + vzz

)
, (1.12)

wt + uwr + wwz = −pz + ν
(
wrr +

1

r
wz + wzz

)
, (1.13)

ur +
u

r
+ wz = 0. (1.14)
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1.4 The Navier-Stokes equations of axisymmetric flow in

form of vorticity-stream function and angular momen-

tum

For the axisymmetric flow, one can define a stream function in the cylindrical

polar coordinates

u = −1

r
ψz , w =

1

r
ψr. (1.15)

The azimuthal component of vorticity is

ω = −1

r

∂2ψ

∂z2
− ∂

∂r

(
1

r

∂ψ

∂r

)
. (1.16)

It is convenient to introduce the angular momentum J = rv. Here J is proportional

to the circulation. The axisymmetric NSEs in terms of ψ, J , and ω (see for example,

Lopez, 1994) are

Jt − 1

r
ψzJr +

1

r
ψrJz = νEJ, (1.17)

∂ω

∂t
+

1

r2
ψzω − 1

r
ψzωr +

1

r
ψrωz − 2

r3
JJz = ν

(
Eω +

2

r
ωr − 1

r2
ω

)
, (1.18)

Eψ = −rω, (1.19)

where

E =
∂2

∂r2
− 1

r

∂

∂r
+

∂2

∂z2

is the Stokes operator. Substituting Eψ = −rω into equation (1.18) gives the follow-

ing form of the NSEs in terms of the stream function and angular momentum

Jt − 1

r
ψzJr +

1

r
ψrJz = νEJ, (1.20)

∂ Eψ

∂t
+

2

r2
ψzEψ − 1

r
ψz(Eψ)r +

1

r
ψr(Eψ)z +

2

r2
JJz = νE2ψ. (1.21)
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1.5 The Navier-Stokes equations of axisymmetric flow in

Aristov-Pukhnachev’s form

To represent a new form of the NSEs, the results of Aristov and Pukhnachev

(2004) are being followed. The axisymmetric NSEs are written using the cylindrical

polar coordinate system (r, θ, z). It is well known that a system of equations (1.11)–

(1.14) reduces to two equations for the azimuthal velocity component v and stream

function ψ. A new form is based on the following observation. Firstly, substituting

equation (1.15) into equation (1.13), one gets

∂

∂r

(
ψt − 1

r
ψrψz − νEψ

)
+

∂

∂z

(
rp +

1

r
ψ2

r

)
= 0. (1.22)

Therefore, there is a function Φ satisfying the relations

p = − 1

r2
ψ2

r +
1

r
Φr, (1.23)

ψt − 1

r
ψrψz + Φz = νEψ. (1.24)

By the same way, substituting equation (1.15) into equation (1.12), which reads

vt − 1

r
ψzvr +

1

r
ψrvz − v

r2
ψz = ν

(
vrr +

1

r
vr − 1

r2
v + vzz

)
.

Denote J = rv, the equation above becomes

Jt − 1

r
ψz (rvr + v) +

1

r
ψrrψz = ν

(
rvrr + 2vr − vr − 1

r
v + rvzz

)
.

Equation (1.12) can be written in the following form

Jt − 1

r
ψzJr +

1

r
ψrJz = νEJ. (1.25)

Differentiating equations (1.23) and (1.24) with respect to r and z, respectively,

and substituting the resulting expressions into equation (1.11), where u and w are

expressed in terms of ψ obtaining

EΦ =
1

r2

(
J2 + ψ2

z

)
+

2

r
ψr Eψ. (1.26)
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The system of differential equations (1.24), (1.25), and (1.26) is the new form of the

NSEs.

1.6 The 2D plane Navier-Stokes equations in Aristov-

Pukhnachev’s form

The fluid motions parallel to the plane xy are assumed. Next, the transfor-

mation of the viscous incompressible NSEs in 2D to a new form will be represented.

The NSEs in the Cartesian coordinate system (x, y) are

ut + uux + vuy = −px + ν
(
uxx + uyy

)
, (1.27)

vt + uvx + vvy = −py + ν
(
vxx + vyy

)
, (1.28)

ux + vy = 0, (1.29)

where u and v are the velocity components in x− and y−directions, respectively, p

is the pressure, and ν is the kinematic viscosity. Without loss of generality, the fluid

density is taken to be equal to unity, and the fluid is subjected to potential external

forces. In 2D, the condition of incompressibility ∇ · v̄ = 0 can be satisfied exactly by

expressing the velocity vector v̄ = (u, v) in terms of the stream function ψ according

to

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (1.30)

A new form is based on the following observation. The substitution of equation (1.30)

into equation (1.27) yields

∂

∂y
(ψt − ψxψy − ν∆ψ) +

∂

∂x

(
p + ψ2

y

)
= 0, (1.31)

where

∆
def
=

∂2

∂x2
+

∂2

∂y2
.
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Therefore, there is a function Φ which satisfies the relations

p = −ψ2
y + Φy, (1.32)

ψt − ψxψy + Φx = ν∆ψ. (1.33)

Differentiating equation (1.32) and equation (1.33) with respect to y and x, respec-

tively, and substituting the resulting expressions into (1.28), where u and v are ex-

pressed in terms of ψ obtaining

∆Φ = 2ψy∆ψ. (1.34)

The system (1.33)–(1.34) is the new form of the NSEs in the 2D plane flow.

1.7 The boundary conditions for the Navier-Stokes equa-

tions

1.7.1 The boundary conditions for a viscous incompressible

fluid motion

In general case, the statement of the problem for equations (1.1) and (1.2) is

made complete by the specification of suitable boundary and initial conditions. A

typical boundary condition consists in prescribing the value of the velocity v̄ on the

boundary

v̄
∣∣
S

= b̄(x̄S, t), t ∈ [0, T ], (1.35)

where S is the boundary of the domain V occupied by the fluid, b̄ is given function

and x̄S ∈ S. When the boundary is a solid wall in contact with the fluid, the velocity

boundary value b̄ is equal to the velocity of the wall. The condition on the tangential

components of velocity is known as the no-slip condition. Quartapelle (1993, PP.3)

shows no boundary condition for pressure.
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The initial condition consists in the specification of the velocity field v̄0 at the

initial time, t = 0, namely,

v̄
∣∣
t=0

= v̄0(x̄). (1.36)

The boundary velocity b̄ must satisfy, for all t ≥ 0, the global condition

∮
n̄ · b̄ ds = 0, (1.37)

which follows from integrating the continuity equation (1.2) over V and using the

divergent theorem. The vector n̄ denotes the outward unit normal to the boundary

S. The initial velocity field v̄0 is assumed to be solenoidal, i.e.,

∇ · v̄0 = 0. (1.38)

Finally, the boundary and initial data b̄ and v̄0 are assumed to satisfy the following

compatibility condition

n̄ · b̄
∣∣
t=0

= n̄ · v̄0

∣∣
S
, (1.39)

where, of course, n̄ · b̄ (x̄S, t) is taken to be a continuous function of time as t → 0+.

Condition (1.39) is absent in the steady-state version of the problem. To determine

the pressure uniquely additional requirement is needed

p(x̄0, t), ∀ t ∈ [0, T ], x̄0 ∈ V.

1.7.2 The boundary conditions for vorticity-stream function

equations in 2D

The boundary conditions supplementing the vorticity-stream function formu-

lation of the NSEs (1.4) and (1.5) for the 2D flow are deduced by separating the

normal and tangential components of the velocity boundary condition v̄
∣∣
S

= b̄(x̄S, t).

Here S represents the boundary of the 2D domain V . Let n̄ denotes the outward unit
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vector normal to the boundary S and τ̄ is the unit vector tangential to S with anti-

clockwise orientation. Finally, let s be the curvilinear coordinate along the boundary

S. Then, the boundary condition for the normal component is

n̄ · ∇ψ × k̄
∣∣
S

= k̄ × n̄ · ∇ψ = τ̄ · 5ψ =
∂ψ

∂s

∣∣
S

= n̄ · b̄, (1.40)

and for the tangential component

τ̄ · ∇ψ × k̄
∣∣
S

= k̄ × τ̄ · ∇ψ = −n̄ · 5ψ =
∂ψ

∂n

∣∣
S

= τ̄ · b̄. (1.41)

The boundary condition (1.40), after integrating its right-hand side, provides a Dirich-

let condition for ψ. By virtue of the global condition

∮

S

n̄·b̄ ds = 0, such as integration

defines a single-valued function up to an arbitrary additive function of time, namely,

a(s, t) =

∫ s

s1

n̄(s′) · b̄(s′, t) ds′ + A(t),

where s1 is the coordinate of any fixed point of S and s′ is a dummy variable of

integration. To simplify the expression of the boundary conditions for ψ, the term

A(t) is dropped from Dirichlet condition and the notation

b(s, t) = −τ̄ · b̄(s, t),

is introduced so that the two conditions can be written as follows

ψ
∣∣
S

= a,
∂ψ

∂n

∣∣
S

= b, (1.42)

where a =

∫ s

s1

n̄ · b̄ ds′ and b = −τ̄ · b̄. The initial data v̄0 and the boundary data

a(s, t) are assumed to satisfy the conditions

∇ · v̄0 = 0,
∂ a(s, 0)

∂s
= n̄ · v̄0

∣∣
S
. (1.43)

The initial velocity field v̄0 provides the following initial condition for the vorticity

ω|t=0 = ∇× (v̄
∣∣
t=0

) · k̄ = ∇× v̄0 · k̄. (1.44)
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In formulation (1.6), the specification of the Dirichret and Neumann boundary con-

ditions (1.42) poses no difficulty because they are both required to supplement the

fourth-order elliptic operator. It needs to note that no boundary condition for the

vorticity available. This is one of the main difficulty in an approximate solution of

the NSEs in terms of the vorticity-stream function formulation.

1.7.3 The boundary conditions for the Navier-Stokes equa-

tions in Aristov-Pukhnachev’s form

The boundary conditions for the system (1.24), (1.25), and (1.26) are two

boundary conditions for the stream function and no-slip boundary condition for the

angular momentum J = rv. In terms of the functions ψ and J , these conditions are

(compare with boundary conditions (1.42))

∂ψ

∂n

∣∣
S

= b, (1.45)

ψ
∣∣
S

= a, J
∣∣
S

= c, (1.46)

where c is the azimuthal velocity component of the boundary S. To complete the

formulation of the problem for the system (1.24)–(1.25), it is necessary to specify the

initial conditions

ψ = ψ0(r, z), (r, z) ∈ Ω̄, t = 0, (1.47)

J = J0(r, z), (r, z) ∈ Ω̄, t = 0. (1.48)

It is no boundary condition for the function Φ. A difficulty in solving the system of

equations for ψ, J , and Φ supplemented by the boundary conditions above is that two

boundary conditions are specified for ψ while none is available for Φ. This difficulty

is similar to the vorticity-stream function equations in 2D. To overcome the difficulty

caused by the absence of boundary condition for Φ. Aristov and Puknachev (2004)

transform equation (1.26) into the fourth-order equation by applying the operator
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E and using boundary condition
∂ψ

∂n
= 0. In this case the boundary conditions for

ψ, J , and Φ are uncoupled and iterative solution procedures can be used to find

an approximate solution. The weak point of such approach is the necessity to solve

the Neumann problem for the bi-harmonic equation. An uncoupled solution of this

problem can be found up to an arbitrary function which satisfy EΦ̃ = 0.

Now, the results of Aristov and Pukhnachev (2004) are reproduced how to get

of a weakly coupled system with an uncouple boundary condition for the functions

ψ, J , and Φ.

Let R+ be the r > 0 half-plane of the (r, z) plane, Σ be the bounded domain

in R+, ∂Σ be the boundary of Σ, QT = Σ × (0, T ), and ST = ∂Σ × (0, T ). Assume

the closure Σ of domain Σ does not contain points lying on the z−axis.

Applying the operator E to equation (1.26) gives the fourth-order equation

E2Φ = E

[
1

r2

(
J2 + ψ2

z

)
+

2

r
ψr Eψ

]
. (1.49)

One boundary condition for equation (1.49) follows immediately from equa-

tions (1.26), (1.45), and (1.46) with a ≡ b ≡ 0.

EΦ = 0, (r, z, t) ∈ ST . (1.50)

Applying the operator
∂

∂n
to equation (1.26) and using equations (1.45) and (1.46)

with a ≡ 0 and b ≡ 0 yields the second condition

∂ EΦ

∂n
=

2

r

∂ Φr

∂n
Eψ, (r, z, t) ∈ ST . (1.51)

The problem of determining ψ, J , and Φ is finally formulated as follows: to find

those solutions of the system of equations (1.24), (1.25), and (1.49) which satisfy

conditions (1.45)–(1.48), (1.50), and (1.51).
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1.8 Previous research

This section provides the short review of the problem which becomes the

benchmark problem to validate different numerical algorithms in the cases of the 2D

incompressible NSEs (plane and axisymmetric flows).

In recent year, many researchers (i.e., Spotz, 1998; Christov and Tang, 2006;

Tang and Christov, 2006; Zhang, 2006; Kalita, 2007) have studied the accuracy and

performance of the numerical algorithm for the NSEs in 2D. The finite-difference

method is one of the most common discreatization technique in computational fluid

dynamics. The fourth-order equation appears in the 2D NSEs in terms of the stream

function (e.g., Quartapelle, 1993). Many methods for the numerical solution of this

equation have been proposed, see for example Christov and Ridha (1994), Mohanty

(2003), and Christov and Tang (2006). The splitting method is applied for solv-

ing the bi-harmonic boundary-value problems by Christov and Ridha (1994). The

implicit time splitting method for the fourth-order parabolic equation is applied to

the numerical solution and results are obtained by Christov, Pontes, Walgraef, and

Velared (1997).

The lid-driven cavity problem, in general, have been a common experimental

approach used to test or improve numerical schemes. The problem geometry is simple

and 2D. Many researchers have long been studied this flow ranging from the Stokes

flow to higher Reynolds number flow with continued improving accuracy. However,

there is no general opinion about existence of steady require for the high Reynolds

number. Almost everybody except that is the case Re < 5000 steady require is

possible.

In any numerical method, a compromise is needed between accuracy of re-

sults and the computational effort spent in acquiring the results. Resolving all the

quantities of a complex flow proves to be very costly. Moreover, employing highly
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turbulence models to a complex phenomena could give inaccurate simulation results.

With the increasing interest in time periodic, the solution become chaotic. Bruneau

and Saad (2006) compute some periodic solution at Re = 10000. Further, Garcia

(2007) studied the numerical solution in the 2D high Reynolds number in a cavity

flow. Time periodic experiments were performed on different case.

The Taylor-Couette flow provides opportunities for detailed comparison be-

tween the results of experimental and numerical investigation. The Taylor-Couette

flow is the flow between two rotating concentric cylinders. The concentric cylinder

shares the same center, axis or origin with one inside the other. It is simplest example

of an axisymmetric flow can be find in any handbook of fluid mechanics (e.g., Batch-

elor, 2000; Marshall, 2001). This system, first studied at Cambridge University by

Geoffery Ingram Taylor in the 1920s. Taylor’s pioneering work (1923), nearly all of

the research has been related to the stability problem of a viscous liquid between the

rotating inner cylinder and the stationary outer one. The assumption that cylinders

had infinite axial length and the gap between them was narrow is used to calculate. In

recent years, many researchers have investigated the problem of the flow between two

rotating concentric cylinders. The phenomenon of the axisymmetric incompressible

flow which is driven by a rotating bottom lid and sides of cylindrical container has

been extensively studied both numerically (e.g., Lopez and Perry, 1992a; Lopez, 1994;

Inamuro, Yamaguchi, and Ogino, 1997; Lopez and Shen, 1998; Iwatsu, 2004; Lopez,

Marques, and Shen, 2004; Barbosa and Daube, 2005) and experimentally (e.g., Lopez

and Perry, 1992b; Pereira and Sousa, 1997; Stevens, Lopez, and Cantwell, 1999). The

results of the experimental and numerical investigations into the Taylor-Couette flow

in a very short annulus (gap length to width ranging from 0.3 to 1.4) are detailed by

Pfister, Schmidt, Cliffe, and Mullin (1988). Laser-dropper-velocity is used to obtain

quantitative information on the bifurcation set experimentally, and novel flow phe-
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nomena are uncovered. The experimental results are compared with numerical results

which use numerical bifurcation techniques applied to a finite-element discretization

of the NSEs. Mullin and Blohm (2001) have observed bifurcation phenomena in

the flow between a rotating inner cylinder and a fixed outer cylinder. Asymmetric

boundary conditions are used in the problem which has the bottom end wall rotated

with the inner cylinder while the other remains stationary. The focus of that study

is on the steady cellular flows consist of one or three vortices in the aspect ratio

range. Furthermore, the behavior of bifurcation between asymmetric one cell and

symmetric two cell flows have been observed by Mullin, Toya, and Tavener (2002),

and Schulz, Pfister, and Tavener (2003). Mullin and Blohm (2001) have investigated

the flow between one stationary end plate and the other attached to the rotating

inner cylinder. In this sense, the rotation of end cell can be changed. The problem

of flow with independently rotating end plates is studied in detail by Abshagen et al.

(2004). The exchange between two states on two-cell flows is founded. Further, the

effect of outer cylinder rotation on the Taylor-Couette flow at small aspect ratio is

pointed out by Schulz, Pfister, and Tavener (2003).

1.9 Objectives and overview

In the present research, the performance of numerical methods for the 2D

incompressible NSEs in terms of the stream function is studied. In order to study

properties of the explicit, implicit, and modification of explicit schemes (internal

iteration scheme), a comparative analysis of three numerical methods is performed.

The simplest method is an explicit and additional difficulties arise when an implicit

method (operator splitting method) is used. The explicit method has motivated but

it is not difficult in the context of a computational code. The lid-driven cavity is

used as the benchmark problem. Moreover, this dissertation develops and studies a
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numerical algorithm for the NSEs in Aristov-Pukhnachev ’s formulation for 2D plane

and axisymmetric flows. Finite-difference algorithms are validated on the Taylor-

Couette and lid-driven cavity flows.

The main objectives of the dissertation are:

(i) To analyze three numerical methods (explicit method, operator splitting method,

and internal iteration method) for approximate solutions of the NSEs in terms

of the stream function on an example of the lid-driven cavity problem

(ii) To validate and compare results of three finite-difference methods with available

data of numerical simulations and laboratory experiments for wide range of the

Reynolds number up to 10000

(iii) To derive a numerical method for approximate solutions of the NSEs in new

variables proposed by Aristov and Pukhnachev (2004)

(iv) To validate and compare results of numerical solutions using the Taylor-Couette

flow for which there are a lot of data of numerical simulations and laboratory

experiments

At the end of this introduction, the following short overview should procure an

impression of what will be detailed with in the respective chapters of this dissertation.

Chapter II explains the detail of performance of three finite-difference schemes.

After characterizing the methods, the given grid size and the computational effort

will be the focus of this chapter. The solution strategies for the higher Reynolds

number (Re > 5000) are particularly emphasized by the internal iteration method.

In Chapter III, a finite-differences technique is developed for the implementation

of Aristov-Pukhnachev’s form of the Navier-Stokes equations for the modelling ax-

isymmetric viscous incompressible fluid flows.
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Chapter IV contains a brief insight into some issues of the structure of a new

auxiliary function introduced in Aristov and Pukhnachev (2004). This function is

reconstructed from the approximation solution of the NSEs in the stream function and

angular momentum form by a method of an internal iteration developed in Chapter

II.

In Chapter V, a novel finite difference scheme for the prediction of the 2D plane

viscous incompressible flow is developed. The lid-driven cavity flow is used to validate

numerical algorithm. A summary of this work and a recommended future work are

provided in Chapter VI.
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CHAPTER II

COMPARISON OF THREE FINITE

DIFFERENCE SCHEMES FOR STREAM

FUNCTION FORMULATION

The performance of three finite-difference schemes for the approximate solu-

tion of the 2D incompressible NSEs in the stream function representation are exam-

ined. In one scheme, explicit approximation to nonlinear terms is used. The second

one is an operator splitting scheme (i.e., Christov and Tang, 2006). The method of

internal iteration is used to approximate nonlinear convective terms in the third finite-

difference scheme. The schemes are compared on the standard benchmark problem

of the 2D lid-driven cavity flow for the Reynolds number up to 10000. The result

of numerical experiments show the finite-difference scheme with internal iteration on

nonlinearity is more efficient for the high Reynolds number.

2.1 Introduction

Because of the nonlinearity of the NSEs and the implicit nature of the conti-

nuity condition, the practical approximation of any scheme can turn out to be rather

different from the theoretical estimates. This is especially true for very high Reynolds

numbers. Different schemes perform better in different situations. No single scheme

can be best in all distance. That is why in the last several years new schemes have

appeared on ever increasing pace (see for example, Kim and Moin, 1985; Karnaidakis,

Israeli, and Orszag, 1991; Rosenfeld, Kwak, and Vinokur, 1991; Christov and Mari-
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nova, 2001).

The system of incompressible NSEs describes the motion of incompressible

viscous liquid.The coupling of NSEs comes through the nonlinear terms, the con-

tinuity equation, and the boundary conditions. In the numerical solution of the

incompressible NSEs, a serious difficulty arises from the determination of the pres-

sure field. In fact, the continuity equation represents a constraint on the velocity

field to be satisfied. At the time, the unknown pressure function provides the de-

gree of freedom needed to accommodate such a constraint. Thus the pressure field

is not calculated by an explicit time-advancement procedure but requires instead an

implicit determination. This means that the incompressible NSEs are not a system

of Cauchy-Kovalevskaya type (Temam, 1977) and this aspect can be considered to

be their most distinctive feature. Quite naturally, for the implicit pressure function

no boundary conditions have to be prescribed at the rigid boundaries. This is still

another formidable obstacle on the way of constructing fully implicit schemes. In

2D, the pressure can be eliminated from the equations by means of stream function

ψ and vorticity function ω = −∇2ψ (see, ψ − ω formulation in Chapter I) but then

an explicit boundary condition for vorticity is missing.

The implicit nature of the pressure function (or the vorticity function) requires

a special care for stability of algorithms since the explicit decoupling of the boundary

conditions (descendant of the so-called Thom’s condition) imposes significant limita-

tions on the time increment (i.e., Mallison and De Vahl David, 1973; Smagulov and

Christov, 1980; Quartapelle, 1981; Vabishchevich, 1984; Christov and Ridha, 1994,

1995; Iliev and Makarov, 1995) for stability.

The simplest way to avoid difficulty by the lack of boundary condition for

the vorticity is not to use a vorticity function at all. It is called ‘stream function

formulation’, the simultaneous specification of the Dirichlet and Neumann boundary



24

conditions create no difficulty, because the correct posing of the boundary value

problem for the fourth-order elliptic operator ∇4 involves two boundary conditions.

The main purpose of this chapter is to validate an efficiency and accuracy

of three finite-difference schemes for the NSEs in terms of stream function. The

content of this chapter is organized as follows. Next section contains the governing

equations. After that the briefed description of three numerical algorithms are given

in Section 2.3. Results and discussions about performance of three schemes are

presented in Section 2.4, where a detailed comparison with available numerical data

is made.

2.2 Governing equation

The standard benchmark problem for testing the 2D plane NSEs is the driven

cavity flow. The fluid contained inside a squared cavity is set into motion by the

upper wall which is sliding at constant velocity from left to right. The motion of an

incompressible viscous fluid is governed by the NSEs (1.6).

The domain is the unit square cavity, and the viscous incompressible flow is

governed by the 2D time-dependent incompressible NSEs and driven by the upper

wall as seen in Figure 2.1. An unexpected balance of viscous and pressure forces makes

the fluid turn into the square cavity. The properties of these forces depend upon

the Reynolds number, a hierarchy of eddies develops, the large clockwise-rotating

primary, whose location occurs toward the geometric center of the square cavity, and

several small eddies: the counterclockwise-rotating secondary eddies, the clockwise-

rotating tertiary eddies, whose locations occur at the three relevant corners of the

square cavity: bottom left, bottom right, and top left.

Let L be the characteristic length scale associated with the cavity geometry

and U be the characteristic velocity scale associated with the moving boundary. The
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Primary eddy

Bottom left
secondary eddy

Bottom right
secondary eddy

Bottom left
tertiary eddy Bottom right

tertiary eddy

Top left
secondary eddy

U

Figure 2.1 Sketch of the basic features in the 2D flow problem.

following dimensionless quantities are introduced: time, t =
t∗ν
L2

; space, x =
x∗

L
; and

velocity, v =
v∗

U
. The NSEs for a viscous incompressible flow in closed 2D domain Ω

with a piecewise smooth boundary ∂Ω in terms of the stream function ψ are

∂∆ψ

∂t
+ Re

(
∂ψ

∂y

∂∆ψ

∂x
− ∂ψ

∂x

∂∆ψ

∂y

)
−∆2ψ = 0, (x, y) ∈ Ω. (2.1)

Boundary and initial conditions are the following

ψ = 0,
∂ψ

∂n
= b(x, y), (x, y) ∈ ∂Ω, (2.2)

ψ(x, y, 0) = ψ0(x, y), (x, y) ∈ Ω, (2.3)

where n is the vector normal to domain boundary, the Reynolds number is defined

as Re = UL/ν, where ν is the kinematic viscosity.
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2.3 Numerical methods

Three numerical algorithms for a driven cavity flow are represented. The

lid-driven flow occupies the region (the cavity)

Ω =
{
0 6 x 6 1, 0 6 y 6 1

}
.

The flow is induced by the sliding motion of the top wall (y = 1) from left to right.

The no-slip boundary conditions take the following forms

ψ =
∂ψ

∂x
= 0 for x = 0 and x = 1,

ψ =
∂ψ

∂y
= 0 for y = 0,

ψ = 0,
∂ψ

∂y
= 1 for y = 1.

(2.4)

For the sake of simplicity, a uniform grid with hx and hy spacing in x− and

y−direction, respectively, hx =
1

Nx − 1
, hy =

1

Ny − 1
and (xi, yj) =

(
(i −

1.5)hx, (j − 1.5)hy

)
for i = 1, . . . , Nx and j = 1, . . . , Ny is assumed. The mesh is

�

�
O x

x = 0 x = 1

y

y = 1

y = 0

Figure 2.2 Sketch of grid for lid-driven problem.

staggered in x−direction on 0.5hx and in y−direction on 0.5hy with respect to do-
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main boundaries x = 0, x = 1, y = 0, and y = 1. Figure 2.2 shows the sketch of grid.

For all three finite-difference schemes considered below the boundary conditions are

approximated on two-point stencils with the second-order of approximation as follows

ψn
2,j − ψn

1,j = 0; ψn
1,j + ψn

2,j = 0 ⇒ ψn
1,j = ψn

2,j = 0, (2.5)

ψn
Nx,j − ψn

Nx−1,j = 0; ψn
Nx−1,j + ψn

Nx,j = 0 ⇒ ψn
Nx−1,j = ψn

Nx,j = 0, (2.6)

ψn
i,2 − ψn

i,1 = 0; ψn
i,1 + ψn

i,2 = 0 ⇒ ψn
i,1 = ψn

i,2 = 0, (2.7)

ψn
i,Ny

− ψn
i,Ny−1 = hy; ψn

i,Ny−1 + ψn
i,Ny

= 0 ⇒ ψn
i,Ny

= −ψn
i,Ny−1 =

hy

2
, (2.8)

where ψn
i,j = ψ[xi, yj, t

n = (n − 1)τ ], i = 1, . . . , Nx, j = 1, . . . , Ny, and n = 1, 2, . . .

Here τ is the time increment.

2.3.1 Explicit scheme in nonlinear terms

The simplest method is an explicit in which all nonlinear terms are evaluated

using known values at tn. The Laplace operator is approximated by the Crank-

Nicolson scheme. Thus, one has a linear system to calculate the new value of the

unknown at each node. It is clear that each term in equation (2.1) can be approxi-

mated using the central-difference operators for all derivatives.

The explicit finite-difference scheme for equation (2.1) is

(
∆hψ

n+1
)

i,j
− (

∆hψ
n
)

i,j

τ
+ Re

{
(Λyψ

n)i,j

[
(∆hψ

n)i+1,j − (∆hψ
n)i−1,j

2hx

]

− (Λxψ
n)i,j

[
(∆hψ

n)i,j+1 − (∆hψ
n)i,j−1

2hy

] }
− 1

2

(
∆2

hψ
n+1 + ∆2

hψ
n
)

i,j
= 0 (2.9)

where ∆h = Λx2 + Λy2 and ∆2
h = Λx4 + 2Λx2y2 + Λy4 . The difference formulas to be
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used are given by

(Λxψ)i,j =
ψi+1,j − ψi−1,j

2hx

;

(Λyψ)i,j =
ψi,j+1 − ψi,j−1

2hy

;

(Λx2ψ)i,j =
ψi+1,j − 2ψi,j + ψi−1,j

h2
x

;

(Λy2ψ)i,j =
ψi,j+1 − 2ψi,j + ψi,j−1

h2
y

;

(Λx3ψ)i,j =
ψi+2,j − 2ψi+1,j + 2ψi−1,j − ψi−2,j

2h3
x

;

(Λy3ψ)i,j =
ψi,j+2 − 2ψi,j+1 + 2ψi,j−1 − ψi,j−2

2h3
y

;

(Λx2yψ)i,j =
1

2hyh2
x

{
(ψi+1,j+1 − ψi+1,j−1)− 2 (ψi,j+1 − ψi,j−1)

+ (ψi−1,j+1 − ψi−1,j−1)

}
;

(Λxy2ψ)i,j =
1

2hxh2
y

{
(ψi+1,j+1 − ψi−1,j+1)− 2 (ψi+1,j − ψi−1,j)

+ (ψi+1,j−1 − ψi−1,j−1)

}
;

(Λx4ψ)i,j =
ψi+2,j − 4ψi+1,j + 6ψi,j − 4ψi−1,j + ψi−2,j

h4
x

;

(Λy4ψ)ij =
ψi,j+2 − 4ψi,j+1 + 6ψi,j − 4ψi,j−1 + ψi,j−2

h4
y

;

(Λx2y2ψ)i,j =
1

h2
xh

2
y

{
(ψi+1,j+1 − 2ψi+1,j + ψi+1,j−1)− 2 (ψi,j+1 − 2ψi,j + ψi,j−1)

+ (ψi−1,j+1 − 2ψi−1,j + ψi−1,j−1)

}
.

The general sequence of the algorithm is as follows:

Step 1. Set the values of Re, τ , ε, Nx, Ny, and choose an initial guess ψ0
i,j = 0.

Step 2. Consider ψn
i,j as known entities and calculate ψn+1

i,j from the system of al-

gebraic equation (2.9) added by boundary conditions (2.5)–(2.8). The direct

method to solution of banded linear system (2.5)–(2.9) is used. The standard

subroutines DGBSV and DGBSVX of LAPACK as well as subroutine devel-
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oped by Christov (C.I. Christov, Gaussian elimination with pivoting for multi-

diagonal systems, International Report (4), Publisher, University of Reading,

1994) are applied.

Step 3. If the following criterion is satisfied

max
i,j

∣∣ψn+1
i,j − ψn

i,j

∣∣ 6 ε (2.10)

then the calculations are terminated. Otherwise the index of iterations is

stepped up n := n + 1 and the computation is returned to Step 2.

2.3.2 Operator splitting scheme

The implicit methods are unconditionally stable and allow significantly larger

time steps, with corresponding economy, as long as accuracy is maintained. To

represent an operator splitting scheme, the results from Christov and Tang (2005)

and Marchuk (1975) are needed to formulate.

Theorem 1: Consider the advection operator A = a(x, y)
∂

∂x
+ b(x, y)

∂

∂y
. If a =

a(x, y, t) and b = b(x, y, t) satisfy the continuity equation
∂a

∂x
+

∂b

∂y
= 0 for (x, y) ∈ D

and t > 0, then with t > 0 fixed, (Aχ, χ) = 0 for χ = χ(x, y, t) defined on D̄ × t > 0

if one of the following assumptions holds: (i) χ, as well as a and b, satisfy periodic

boundary conditions on ∂D, with identical values on the opposite sides of rectangle.

(ii) χ vanishes on ∂D or a and b are both zeros on ∂D for t > 0.

Theorem 2: If φ̂ is the grid function approximating χ, it is possible to decompose

A into two operators with respect to different special derivatives and construct corre-

sponding second-order difference operator Ah
x and Ah

y such that Ah = Ah
x + Ah

y and
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(Ah
xφ̂, φ̂) = (Ah

y φ̂, φ̂) = 0, where Ah
x and Ah

y are define as:

(Ah
xφ̂)i,j =

1

2hx

(ai+ 1
2
,jφ̂i+1,j − ai− 1

2
,jφ̂i−1,j),

(Ah
y φ̂)i,j =

1

2hy

(ai,j+ 1
2
φ̂i,j+1 − ai,j− 1

2
φ̂i,j−1),

(2.11)

where

a
n+ 1

2

i+ 1
2
,j

=
a

n+ 1
2

i+1,j + a
n+ 1

2
i,j

2
, a

n+ 1
2

i− 1
2
,j

=
a

n+ 1
2

i,j + a
n+ 1

2
i−1,j

2
,

b
n+ 1

2

i,j+ 1
2

=
b
n+ 1

2
i,j+1 + b

n+ 1
2

i,j

2
, b

n+ 1
2

i,j− 1
2

=
b
n+ 1

2
i,j + b

n+ 1
2

i,j−1

2
.

(2.12)

Let

P = −∂4ψ

∂x
and Q =

∂4ψ

∂y
.

Then the convection terms can be rewritten as follows

Aψ = P
∂ψ

∂x
+ Q

∂ψ

∂y
.

In order to improve the order of approximation in time, one can use the standard

extrapolation formula

ψ̂
n+ 1

2
i,j =

3

2
ψn

i,j −
1

2
ψn−1

i,j = ψ
n+ 1

2
i,j + O(τ 2),

when evaluating the coefficients P and Q. Then

P
n+ 1

2
i,j = − 1

2hy

[(
∆hψ̂

n+ 1
2

)
i,j+1

−
(
∆hψ̂

n+ 1
2

)
i,j−1

]

= −∂4ψ

∂y

(
ihx, ihy, τ(n +

1

2
)

)
+ O(τ 2 + h2

x + h2
y), (2.13)

for i = 2, . . . , Nx − 1 and j = 2, . . . , Ny − 1.

Q
n+ 1

2
ij =

1

2hx

[(
∆hψ̂

n+ 1
2

)
i+1,j

−
(
∆hψ̂

n+ 1
2

)
i−1,j

]

=
∂4ψ

∂x

(
ihx, ihy, τ(n +

1

2
)

)
+ O(τ 2 + h2

x + h2
y), (2.14)

for i = 2, . . . , Nx − 1 and j = 2, . . . , Ny − 1.
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The difference operators C
n+ 1

2
x and C

n+ 1
2

y along direction of x and y respec-

tively, acting upon ψ in the middle time stage (n+ 1
2
) in order to have the second-order

approximation with respect to time are constructed. For the approximation, the no-

tation

ψ
n+ 1

2
ij =

1

2

(
ψn

ij + ψn+1
ij

)
(2.15)

is used and the value of the grid function ψn+1 are considered unknown, but the values

of ψn are treated as known. Since the stream function ψ vanishes on the boundary,

one can use Theorem 1 and 2 to identify the advective operators as follows

(
C

n+ 1
2

x ψn+ 1
2

)
i,j

=
1

2hx

(
P

n+ 1
2

i+ 1
2
,j
ψ

n+ 1
2

i+1,j − P
n+ 1

2

i− 1
2
,j
ψ

n+ 1
2

i−1,j

)

(
C

n+ 1
2

y ψn+ 1
2

)
i,j

=
1

2hy

(
Q

n+ 1
2

i,j+ 1
2

ψ
n+ 1

2
i,j+1 −Q

n+ 1
2

i,j− 1
2

ψ
n+ 1

2
i,j−1

) (2.16)

for i = 2, . . . , Nx − 1 and j = 2, . . . , Ny − 1. Here P and Q are evaluated from the

following finite-differences with second order accuracy O(h2
x + h2

y + τ 2), namely

P
n+ 1

2

i+ 1
2
,j

=
P

n+ 1
2

i+1,j + P
n+ 1

2
i,j

2
, P

n+ 1
2

i− 1
2
,j

=
P

n+ 1
2

i,j + P
n+ 1

2
i−1,j

2
,

Q
n+ 1

2

i,j+ 1
2

=
Q

n+ 1
2

i,j+1 + Q
n+ 1

2
i,j

2
, Q

n+ 1
2

i,j− 1
2

=
Q

n+ 1
2

i,j + Q
n+ 1

2
i,j−1

2
.

(2.17)

Using the definitions of the difference operators C
n+ 1

2
x and C

n+ 1
2

y , the differ-

ence approximation for equation (2.1) based on the Crank-Nicolson scheme can be

constructed in the following form

(4h(ψ
n+1 − ψn))i,j

τ
+

( [
Re(C

n+ 1
2

x + C
n+ 1

2
y )− (Λx4 + Λy4 + 2Λx2Λx2)

]

ψn+1 + ψn

2

)

i,j

= 0 (2.18)

where i = 2, . . . , Nx − 1 and j = 2, . . . , Ny − 1. In Christov and Tang (2005), the

stability and convergence of this scheme have been demonstrated.

The general sequence of the algorithm is as follows:
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Step 1. Set the values of Re, τ , ε, Nx, Ny, and choose an initial guess ψ0
i,j.

Step 2. Calculate ψ1
i,j from the system of algebraic equation (2.9) added boundary

conditions (2.5)–(2.8) by the direct method to solution banded linear system.

The standard subroutines DGBSV and DGBSVX of LAPACK as well as subrou-

tine developed by Christov (C.I. Christov, Gaussian elimination with pivoting

for multi-diagonal systems, International Report (4), Publisher, University of

Reading, 1994) are used.

Step 3. Consider ψn
i,j as known entities and calculate ψn+1

i,j from the system of alge-

braic equation (2.18) added boundary conditions (2.5)–(2.8) by direct method

to solution banded linear system.

Step 4. If the following criterion is satisfied

max
i,j

∣∣ψn+1
i,j − ψn

i,j

∣∣ 6 ε

then the calculations are terminated. Otherwise the index of iterations is

stepped up n := n + 1 and the algorithm is returned to Step 3.

2.3.3 Method with internal iteration in nonlinear terms

The general idea when treating the nonlinear terms is to represent it as an im-

plicit approximation and then to linearize it and to conduct internal iterations. After

the inner iterations converge one obtains, in fact, the solution for the new time stage.

The explicit approximation of nonlinear terms accomplished severe requirement on

time step. A single internal iteration on nonlinear terms induce sense of an implicit

approximation and reduced very severe band on time step. To improve the stability

properties of the explicit approximation of nonlinear terms, one requires a choice for

the number of internal iterations.
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This part present an improvement accuracy is achieved at small additional

expense. The internal iteration scheme may be viewed as a modification of the

explicit scheme (2.9). For the beginning, the internal iteration scheme used only three

iterations. The reasoning behind the choices in this study was that a single iteration

is equivalent to one step of the explicit scheme so, in order to take the economies of

the explicit scheme, it is desirable to perform not too many iteration (three internal

iterations are chose). The method with an internal iteration of nonlinear terms can

be recast in the following form

(
∆hψ

n+1,k
)

i,j
− (

∆hψ
n
)

i,j

τ
+ Re

{ (
Λyψ̃

)
i,j




(
∆hψ̃

)
i+1,j

−
(
∆hψ̃

)
i−1,j

2hx




−
(
Λxψ̃

)
i,j




(
∆hψ̃

)
i,j+1

−
(
∆hψ̃

)
i,j−1

2hy




}
− 1

2

(
∆2

hψ
n+1,k + ∆2

hψ
n
)

i,j
= 0 (2.19)

The general sequence of the algorithm is as follows:

Step 1. Set the values of Re, τ , ε, Nx, Ny and choose an initial guess ψ0
i,j = 0.

Step 2. Let

(a) ψ̃i,j = ψn
i,j then calculate ψn+1,1

i,j from the system of algebraic equa-

tion (2.19) added boundary conditions (2.5)–(2.8) by the direct method

to solution banded linear system. The standard subroutines DGBSV and

DGBSVX of LAPACK as well as subroutine developed by Christov (C.I.

Christov, Gaussian elimination with pivoting for multi-diagonal systems,

International Report (4), Publisher, University of Reading, 1994) are used.

(b) ψ̃i,j =
ψn+1,1

i,j + ψn
i,j

2
then calculate ψn+1,2

i,j from the system of algebraic

equation (2.19) added boundary conditions (2.5)–(2.8).

(c) ψ̃i,j =
ψn+1,2

i,j + ψn
i,j

2
then calculate ψn+1,3

i,j from the system of algebraic

equation (2.19) added boundary conditions (2.5)–(2.8).
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Step 3. If the following criterion is satisfied

max
i,j

∣∣ψn+1,3
i,j − ψn

i,j

∣∣ 6 ε (2.20)

then the calculations are terminated and ψn+1
i,j = ψn+1,3

i,j . Otherwise the index

of iterations is stepped up n := n + 1 and the computation is returned to Step

2.

2.4 Results

The results from numerical simulations of the 2D lid-driven cavity flow were

presented and compared with published observations. Firstly, a comparison was made

between three algorithms that were conducted using the quantities of the stream

function and velocity along the cavity centerlines. Secondly, the simulations were

performed to evaluate effect of the grid on accuracy of the numerical solution.

2.4.1 Comparisons for the stream function

In this paragraph, performance of three finite-difference schemes from the

previous section is discussed. Patterns of stream lines and values and locations of

the extrema of the stream function are analyzed. Values of the vorticity at the same

locations for Re ∈ [0, 10000] are also added. The steady-state computed solution is

defined by the requirement of the absolute error between two time steps which is less

than 10−8.

The vorticity ωi,j is calculated by the following formula

ωi,j = −ψi+1,j − 2ψi,j + ψi−1,j

h2
x

− ψi,j+1 − 2ψi,j + ψi,j−1

h2
y

. (2.21)

Numerical data used for comparisons can be found in Botella and Peyret (1998),

Bruneau and Saad (2006), Christov and Marinova (2001), Spotz (1998), and Garcia

(2007).
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The whole three algorithms give the similar stream function that cannot be

distinguished on the stream line patterns. The geometrical structure of the flow is

displayed in Figures 2.3 and 2.4. To get a feel for the nature of the flow field, it is

best to start by looking the streamlines at the Stoke limit Re = 0, when the non-

linear terms drop out. Presented in Figure 2.3, the driven flow is symmetric around

the vertical centerline. The location of clockwise-rotating primary eddy occurs to-

ward the geometric center of the cavity. For Re = 100, the location of the primary

eddy appears toward the top right. But it is found that, for Re > 300, the center

of the primary eddy has moved lower and back towards the center plane, it moves

toward the geometric center of the square cavity. In the case of Re 6 1000, the

flow is distinguished by the primary eddy in the center and two counterclockwise-

rotating secondary eddies in the bottom corners. For Re > 1000, there is an extra

counterclockwise-rotating eddy in the upper left corner (as seen in Figure 2.4). For

secondary eddies, the corner eddies are symmetric around the midplane in the Stoke

flow. As the Reynolds number increases, both bottom right and bottom left sec-

ondary eddies grow in size. Growth of the bottom right eddy is greater, as shown in

Figure 2.3. As the value of the Reynolds number is increased up to Re = 7500, the

bottom right clockwise-rotating tertiary eddy is uncovered, as shown in Figure 2.6.

Size of the bottom right tertiary and top left eddies increase as the Reynolds number

increased from Re = 7500 to 10000.
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Figure 2.3 Streamline contours for Re = 0, 10, 50, 100, 300, and 500.
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Figure 2.4 Streamline contours for Re = 1000, 2000, 3000, 4000, 5000, and 6000.
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Table 2.1 Comparison of three schemes on the primary eddy at Re = 1000: minimum

of the stream function and location.

Reference Grid ψmin ω xmin ymin

Explicit scheme 52× 52 −0.1096 −1.911 0.540 0.560

Operator splitting 52× 52 −0.1163 −2.077 0.520 0.580

Internal iteration 52× 52 −0.1096 −1.911 0.540 0.560

Explicit scheme 102× 102 −0.1162 −2.022 0.530 0.560

Operator splitting 102× 102 −0.1186 −2.074 0.530 0.560

Internal iteration 102× 102 −0.1162 −2.022 0.530 0.560

Botella et al. (1998) 160 −0.11894 −2.0678 0.5308 0.5652

Spotz (1998) 41× 41 −0.11724 −2.0533 0.5250 0.5750

Christov et al. (2001) 512× 512 −0.11627 – 0.5316 0.5660

Bruneau et al. (2006) 128× 128 −0.11786 −2.0508 0.53125 0.5625

Bruneau et al. (2006) 1024× 1024 −0.11892 −2.0674 0.53125 0.56543

In Table 2.1, characteristics of the primary eddy for Re = 1000 are represented.

It shows values of ψmin, ω, and the space location of the stream function ψmin. Six

top rows display quantities from three finite-difference methods. From five bottom

rows, the quantities obtained by the other authors are displayed. The finite-difference

solutions are also compared with the other authors. As shown, three finite-difference

schemes give the very similar quantities on the grid 102×102. The values of ψmin, ω,

and their locations are in accordance with results observed in the literatures (Botella

and Peyret, 1998; Spotz, 1998; Christov and Marinova, 2001; Bruneau and Saad,

2006).
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Table 2.2 Comparison of three schemes on the bottom right secondary eddy at

Re = 1000: maximum of the stream function and location.

Reference Grid ψmax ω xmax ymax

Explicit scheme 52× 52 1.301× 10−3 0.9891 0.880 0.120

Operator splitting 52× 52 1.597× 10−3 0.9802 0.860 0.120

Internal iteration 52× 52 1.302× 10−3 0.9891 0.880 0.120

Explicit scheme 102× 102 1.611× 10−3 1.005 0.870 0.110

Operator splitting 102× 102 1.699× 10−3 1.079 0.860 0.110

Internal iteration 102× 102 1.611× 10−3 1.006 0.870 0.110

Botella et al. (1998) 160 1.7297× 10−3 1.1098 0.8640 0.1118

Spotz (1998) 41× 41 1.731× 10−3 0.9847 0.8500 0.1250

Christov et al.(2001) 512× 512 1.640× 10−3 – 0.8651 0.1118

Bruneau et al. (2006) 128× 128 1.7003× 10−3 1.1304 0.8594 0.1094

Bruneau et al. (2006) 1024× 1024 1.7297× 10−3 1.1120 0.8643 0.1123

In Table 2.2, characteristics of the bottom right secondary eddy for Re = 1000

are detailed. It reports values of ψmax appears at the center of the bottom right-hand

side eddy, ω, and the space location of the bottom right secondary eddy. Quantities of

ψmax agree with those obtained by the other authors. For the bottom right secondary

eddy, the results with the grid 102× 102 agree within 5% with those obtained by the

other authors and case 52× 52 differ significantly up to 25% with those obtained in

Spotz (1998).
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Table 2.3 Comparison of three schemes on the primary eddy at Re = 5000: minimum

of the stream function and location.

Reference Grid ψmin ω xmin ymin

Explicit scheme 52× 52 −0.09299 −1.422 0.540 0.520

Operator splitting 52× 52 – – – –

Internal iteration 52× 52 −0.09315 −1.431 0.540 0.520

Explicit scheme 102× 102 −0.1092 −1.714 0.520 0.540

Operator splitting 102× 102 −0.1149 −1.848 0.520 0.550

Internal iteration 102× 102 −0.1095 −1.727 0.520 0.540

Christov et al. (2001) 512× 512 −0.116120 – 0.5160 0.5357

Bruneau et al. (2006) 128× 128 −0.11731 −1.8595 0.51562 0.53906

Bruneau et al. (2006) 1024× 1024 −0.12193 −1.9322 0.51465 0.53516

Garcia (2007) 128× 128 −0.1237 – 0.5156 0.5352

Table 2.3 shows values of ψmin, ω, and space locations of the primary eddy

for Re = 5000. On the grid 52 × 52, the method of an operator splitting reaches a

steady solution but this solution does not agree with the numerical solutions obtained

by other authors (Bruneau and Saad, 2006; Christov and Marinova, 2001; Garcia,

2007). At the same time, the explicit and internal iteration schemes reach a ‘correct’

solution. For the primary eddy, results of the operator splitting scheme with the grid

102× 102 agree within 5% with those obtained in Bruneau and Saad (2006) with the

grid 128 × 128 and Christov and Marinova (2001) but the two other schemes differ

significantly up to 10%.
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Table 2.4 Comparison of three schemes on the bottom right secondary eddy at

Re = 5000: maximum of the stream function and location.

Reference Grid ψmax ω xmax ymax

Explicit scheme 52× 52 1.006× 10−3 1.485 0.900 0.060

Operator splitting 52× 52 – – – –

Internal iteration 52× 52 1.006× 10−3 1.483 0.900 0.060

Explicit scheme 102× 102 2.622× 10−3 2.359 0.830 0.070

Operator splitting 102× 102 2.576× 10−3 2.207 0.800 0.080

Internal iteration 102× 102 2.624× 10−3 2.357 0.830 0.070

Christov et al. (2001) 512× 512 2.890× 10−3 – 0.8077 0.0736

Bruneau et al. (2006) 128× 128 2.9313× 10−3 2.7718 0.8047 0.0703

Bruneau et al. (2006) 1024× 1024 3.0694× 10−3 2.7245 0.8057 0.0732

Garcia (2007) 128× 128 3.07× 10−3 – 0.7891 0.0781

Table 2.4 reports values of ψmax, ω, and the space location of the bottom right

secondary eddy. For the bottom right secondary eddy, the quantities ψmax with the

grid 102 × 102 agree within 10% with those obtained in Bruneau and Saad (2006)

with the grid 128× 128 and Christov and Marinova (2001) and differ significantly up

to 15% with those obtained Bruneau and Saad (2006) with 1024 × 1024 mesh and

Garcia (2007).

At the high Reynolds number the flow becomes more complicated and signif-

icantly finer grids are needed in the vicinity of the walls where the dynamics of the

flow is dominated by the viscosity. The coarse grid in general will not resolve the

viscous layer near the boundary. In an example, as can be seen on the grid 52× 52,

the operator splitting method can not get a correct solution. Moreover, the other
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two have value of ψmax differ significantly up to 67% with those obtained Bruneau

and Saad (2006) with 1024× 1024 mesh. With these observations, one can conclude

that grid refinement affects the size and position of the eddies. This conclusion can

be drawn by examining in Figures 2.5 and 2.6 where the internal iteration method

used on the grid 52× 52 and 102× 102 for Re = 7500.
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Figure 2.5 Streamline contours for Re = 7500 on the grid 52× 52.
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One can see, loss of the vortex structure occurs on the bottom right and

top left secondary eddies. The turbulence within a lid-driven cavity is maintained

by continuous production of the kinetic energy from the lid (moving wall). Only

the internal iteration scheme used for higher Reynolds number Re > 7500. The

comparisons of numerical results from simulations are presented in Table 2.5. The

vortex structures are shown in Figure 2.6 for the Reynolds number Re = 7500 and

Re = 10000 on 102 × 102 mesh. The quantity of ψmin on the primary eddy agree

within 1% with those obtained in Goyon (1996) for Re = 7500 while differ significantly

up to 12% with Christov and Marinova (2001) in case Re = 10000.
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2.4.2 Comparisons for the velocity components

In this part, the velocity profiles for the horizontal and vertical lines through

the geometrical center of the cavity are presented. The profiles of u (velocity in

x−direction) along the vertical cross section and v (velocity in y−direction) along

the horizontal cross section are shown in Figures 2.7 and 2.8 which generated using

the grid 102 × 102. The values of the velocity were marked with the different line:

explicit scheme; − − − operator splitting scheme; − · −· internal iteration

scheme. The values of the extrema of the velocity through the cavity center are given

in Tables 2.6 and 2.7 for the case Re = 1000 and Re = 5000, respectively.

Table 2.6 shows that results from numerical simulations using the operator

splitting scheme on both grids agree within 3% with those obtained in Botella and

Peyret (1998). The two other schemes differ significantly up to 10% in the case of

the grid 52× 52.
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Figure 2.7 Velocity profiles through the cavity center, Re = 1000.
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Figure 2.8 Velocity profiles through the cavity center, Re = 5000.
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Table 2.7 Extrema of the velocity through the center lines of the cavity at Re = 5000.

Reference Grid umin ymin vmax xmax vmin xmin

Explicit scheme 52× 52 −0.349 0.080 0.324 0.100 −0.525 0.980

Operator splitting 52× 52 – – – – – –

Internal iteration 52× 52 −0.349 0.080 0.324 0.100 −0.525 0.980

Explicit scheme 102× 102 −0.400 0.080 0.393 0.090 −0.530 0.960

Operator splitting 102× 102 −0.418 0.090 0.421 0.080 −0.540 0.950

Internal iteration 102× 102 −0.401 0.080 0.393 0.090 −0.530 0.960

Since a majority of the disagreement was observed on the grid 52 × 52 at

Re = 5000, it seems necessary to refine the grid to get results close to the true

solution. Analyzing the results obtained in this section, it seems plausible to conclude

the numerical accuracy depends on the grid used. This statement is substantiated

by results presented in the following part, where a grid convergence studied.
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2.4.3 Convergence

To evaluate the grid dependence on spatial variables the solution was obtained

on a sequence of grids with 32× 32, 62× 62, and 122× 122 nodes. To estimate the

rate of convergence, the validity of expression

fe ≈ fh + Chα (2.22)

is accepted where fe and fh are quantities related to the exact and computed so-

lutions, respectively. Coefficients C and α independent of h. Since given solutions

on three grids equation (2.22) can be solved for three unknowns fe, C, and α. In

Tables 2.8 and 2.9, values of ψmin were computed minimum values of the stream

function. Parameter αmin represents the rate of convergence when in equation (2.22)

instead f used ψmin. Table 2.8 represents a steady-state. The solutions are qualified

as steady when the absolute error between two time steps which is less than 10−8 on

a significant time interval. The solutions show the second-order rate of convergence

of finite-difference methods. Table 2.9 shows the results of a numerical experiment

at fixed moment of time t = 0.1. This clearly shows that the rate of convergence of

three schemes is the second-order.
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Table 2.10 Number of iterations to reach steady solution for Re = 100, hx = hy =

1

50
, and different τ .

τ Explicit scheme Operator splitting Internal iteration

0.0030 Divergence Divergence 108

0.0010 243 Divergence 243

0.0005 458 458 458

0.0001 1986 1985 1986

Table 2.11 Number of iterations to reach steady solution for Re = 1000, hx = hy =

1

50
, and different τ .

τ Explicit scheme Operator splitting Internal iteration

0.00008 Divergence Divergence 1588

0.00005 Divergence Divergence 2404

0.00003 Divergence 3581 3757

0.00002 5276 5082 5340

0.00001 9606 9174 9667

0.000005 17251 16365 17312

For fixed values of hx and hy, the number of iterations needed for convergence

to steady-state (reach criterion (2.10)) depend on τ . For definiteness, the Reynolds

numbers Re = 100 and Re = 1000 were selected to present. The largest value of

time-step τ ∗ and number of iterations to reach steady-state are shown in Tables 2.10

and 2.11 for Re = 100 and Re = 1000, respectively. The minimal number of iteration

for each scheme is shown in a bold face. The minimal number of iterations on the
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grid 52 × 52 are 5276 iterations , 3581 iterations, and 1588 iterations for the cases

of the explicit, operator splitting, and internal iteration schemes, respectively. One

can observe that the minimal number of the internal iteration method is less than

the other two. Moreover, the results show that the internal iteration method requires

slightly larger time-step.

0 500 1000 1500
−8

−7

−6

−5

−4

−3

−2

−1

Iteration No.

lo
g 

10
 (

ε n)

 

 

Explicit   (τ = 0.00002)
Operator (τ = 0.00003)
Internal   (τ = 0.00008)

Figure 2.9 Iteration history for Re = 1000.

To show the history of convergence, Figure 2.9 is plotted in case Re = 1000

on the grid 52 × 52. It shows the absolute error εn versus the number of iterations

when the largest value of time-step τ ∗ (as shown in Table 2.11) used and

εn = max
i,j

∣∣ψn
i,j − ψn−1

i,j

∣∣ .

The iterations were started with zero initial data and were terminated when N =

1500. In Figure 2.9, the error of internal iteration method decrease faster than the

error of explicit and operator splitting schemes. From comparison, its is observed

that the internal iteration method seem to be performing better than the other two

methods.
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Table 2.12 Largest value of time-step τ ∗ for different Re.

Grid Re Explicit scheme Operator splitting Internal iteration

τ ∗ τ ∗ τ ∗

52× 52 100 1× 10−3 5× 10−4 3× 10−3

200 3× 10−4 2× 10−4 7× 10−4

500 7× 10−5 6× 10−5 1× 10−4

1000 2× 10−5 3× 10−5 8× 10−5

2000 6× 10−6 1× 10−5 4× 10−5

3000 3× 10−6 1× 10−5 2× 10−5

4000 1× 10−6 - 2× 10−5

5000 9× 10−7 - 2× 10−5

102× 102 100 5× 10−4 2× 10−4 2× 10−3

200 1× 10−4 1× 10−4 3× 10−4

500 4× 10−5 2× 10−5 1× 10−4

1000 1× 10−5 1× 10−5 3× 10−5

2000 2× 10−6 6× 10−6 1× 10−5

3000 1× 10−6 4× 10−6 8× 10−6

4000 1× 10−6 3× 10−6 7× 10−6

5000 5× 10−7 2× 10−6 5× 10−6
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Table 2.12 shows τ ∗ for which it is possible to reach a steady solution which

correspond to other investigators. The results show that finite-difference solutions on

the grid 52× 52 are not acceptable for the case Re = 4000 and Re = 5000 which the

operator splitting method used. It is shown that the present schemes converges to a

‘correct’ solutions in all the cases Re 6 3000 considered. These calculations indicate

that the proposed schemes are stable even when used the coarse mesh and relatively

largest time-step. If the grid spacing is too coarse, then the operator splitting scheme

will not compute a qualitatively correct solution for Re > 3000 as seen in the fourth

column of Table 2.12. If precise information increase the Reynolds number Re > 3000

is needed and it is not cost-effective to use a small grid spacing, then the other two

methods (explicit and internal iteration methods) should be considered to obtain

this information. Moreover, the internal iteration method requires slightly larger

time-step.

Also, the increase of the time to computational when the Reynolds number

increased can be observed. The following Table 2.13 shows that the modification of

explicit method (the internal iteration method) can reduce the computational time

for higher Reynolds number (Re > 1000).
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Table 2.13 Minimal number of iteration for different Re when t = 0.42.

Grid Re Explicit scheme Operator splitting Internal iteration

τ ∗ No. τ ∗ No. τ ∗ No.

51× 51 100 1× 10−3 420 5× 10−4 840 3× 10−3 140

200 3× 10−4 1400 2× 10−4 2100 7× 10−4 600

500 7× 10−5 6000 6× 10−5 7000 1× 10−4 4200

1000 2× 10−5 21000 3× 10−5 14000 8× 10−5 5250

2000 6× 10−6 70000 1× 10−5 42000 4× 10−5 10500

3000 3× 10−6 140000 1× 10−5 42000 2× 10−5 21000
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Figure 2.10 Curves based on the data in Table 2.13.

Computations were carried out on a personal computer with 2.4 GHz CPU.

The CPU time per one time step (/one iteration) on the grid 52×52 is about 2.22031,

2.20781, and 6.61875 sec for cases of the explicit, operator splitting, and internal iter-
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ation schemes, respectively. Table 2.13 shows the results of solving the problem (2.1)

using three finite-difference schemes. The six different Reynolds numbers are dis-

played in the second column of Table 2.13. The next columns show the largest value

of τ ∗ and the number of iterations required to obtain a solution at the moment of

time t = 0.42. Since the operator splitting scheme involves roughly 1/3 time as much

work per method of the internal iteration and roughly the same time as the explicit

scheme then the operator splitting method is slower than the other two methods for

Re < 500, but probably not for Re > 500. Figure 2.10 shows the CPU-time needed

to find solution at the moment of time t = 0.42 with largest value of the parameter

τ ∗ on the grid 52× 52.

2.5 Conclusion

This chapter is based upon three finite-difference schemes (explicit, operator,

and internal iteration). The solutions computed with these schemes are in good

agreement with the numerical data of other research (e.g., Shen, 1991; Botella and

Peyret, 1998; Goyon, 1996; Bruneau and Saad, 2006; Christov and Marinova, 2001;

Spotz, 1998). The numerical results are demonstrated that the internal iteration

is one method to compute the characteristic of flow for the high Reynolds number.

The largest time increment of three internal iterations scheme gives convergence to

solution roughly three times faster as explicit scheme is founded.

As important feature that the internal iteration method allows coarsening of

the grid depending on the flow solution. This feature is extremely useful for accuracy

predicting flow fields in region with the high Reynolds number. Moreover, the rate

of convergence of internal iteration scheme to solution is decreased faster than the

explicit scheme.
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CHAPTER III

NEW NUMERICAL METHOD FOR THE

SIMULATION OF 2D AXISYMMETRICAL

VISCOUS INCOMPRESSIBLE FLOW

In the present work, a finite-difference technique is developed for the imple-

mentation of a new method proposed by Aristov and Pukhnachev (Doklady Physics,

49(2), (2004)) for modelling axisymmetric viscous incompressible fluid flows. A new

function is introduced that is related to the pressure and a system similar to the vor-

ticity/stream function formulation which is derived for the cross-flow. This system

is coupled to an equation for the azimuthal velocity component. The scheme and

algorithm treat the equations for the cross-flow as an inextricably coupled system

which allows one to satisfy two conditions for the stream function with no condition

on the auxiliary function. The issue of singularity of the matrix is tackled by adding

a small parameter in the boundary conditions. The scheme is thoroughly validated

on girds with different resolutions.

The new numerical tool is applied to the Taylor flow between concentric ro-

tating cylinders when the upper and lower lids are allowed to rotate independently

from the inner cylinder, while the outer cylinder is held at rest. The phenomenology

of this flow is adequately represented by the numerical model, including the hystere-

sis that takes place near certain specific values of the Reynolds number. Thus the

present results can be construed to demonstrate the viability of the new model. The

success can be attributed to the adequate physical nature of the auxiliary function.
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The proposed technique can be used in the future for in-depth investigations of the

bifurcation phenomena in rotating flows.

3.1 Introduction

Axisymmetric-rotating flows have been studied for a variety of reasons. Their

technological applications are many (e.g., centrifugal pumps, cyclone separators and

so on). Their importance to geophysical flows is indicated over a large range of scales

(e.g., tornadoes, hurricanes, ocean circulations). Axisymmetric-rotating flows occur

for an example in flows past axisymmetric bodies. The axisymmetric jet also belongs

under this class. A familiar and well studied example of axisymmetric flow is the flow

between concentric cylinders where the inner rotates, which is commonly called the

Taylor-Couette problem. The transition from azimuthal Couette flow to a cellular

Taylor vortex flow has been recognized as a cornerstone of hydrodynamic stability

theory.

Traditionally, axisymmetric-rotating flows have been treated by representing

NSEs in cylindrical coordinates. The stream function, or the velocity and pressure

field are used to numerical simulation in many research. In Youd and Barenghi (2005)

the governing equations are solved by a finite-difference method using the stream-

function vorticity formulation. The equations are discretised using second-order ac-

curate centred differences and are time stepped using a combination of second-order

accurate Crank-Nicolson and Adam-Bashfort methods. In series of works (Brown

and Lopez, 1990; Lopez, 1990; Lopez and Perry, 1992) the mechanism of vortex

breakdown in swirling flows is studied. A comparison between experimental visu-

alization and numerical simulations is presented. The system of NSEs is solved by

employing the stream-function vorticity formulation, where the pressure does not ap-

pear explicitly. In Inamuro, Yamaguchi, and Ogino (1997) the NSEs with boundary
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conditions are solved using a finite-volume method based on the SIMPLE algorithm.

The QUICK scheme is used for the convective terms. The finite-element package

ENTWIFE is utilized to numerical solution of the steady axisymmetric NSEs in Pfis-

ter, Schmidt, Cliffe, and Mullin (1988), Mullin and Blohm (2001), Mullin, Toya, and

Tavener (2002), Abshagen et al. (2004). The nonlinear dynamics of the flow in a

short annuals driven by the rotating of the inner cylinder and bottom end wall was

considered in Lopez, Marques, and Shen (2004). To uncouple the velocity vector and

the pressure in the incompressible NSEs a projection scheme is used. For the space

variables a Legendre-Fourier approximation is utilized.

A new form of the NSEs of axisymmetric motion of a viscous incompressible

fluid have been proposed in Aristov and Pukhnachev (2004). The axisymmetric NSEs

in terms of new functions contain two transport equations for the stream function

and the azimuthal velocity component and one elliptic equation for new unknown

function which coupled new unknown function with other.

The main purpose of this chapter and its sequel is to develop and validate

an efficient and accurate numerical scheme for the axisymmetric NSEs in terms of

new variables developed in Aristov and Pukhnachev (2004). The plan of this chapter

is the following. Section 3.2 contains the governing equations of motion. Section

3.3 includes detailed description of numerical algorithm. Results of evaluation of

scheme in this research are presented in Section 3.4, where a detailed comparison

with available numerical and experimental data is made. The problem of the onset

of Taylor vortices in a viscose fluid contained between concentric rotating cylinders is

an excellent benchmark problem for axisymmetric flows. The scheme of this study is

evaluated with a combined numerical and experimental study Abshagen et al. (2004)

of steady bifurcation phenomenon in a modified Taylor-Couette geometry where the

end plates of the flow domain are allowed to rotate independently of the inner cylinder.
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3.2 Governing equations

The Taylor-Couette flow provides opportunities for detailed comparison be-

tween the results of experimental and numerical investigations. Following Abshagen

et al. (2004), a variant of standard Taylor-Couette flow geometry where the end

plates (lids) can rotate independently from the inner cylinder is considered.

Ωe

L

Ri

Ro

Ωi

D

Ωe

Figure 3.1 Sketch of the flow domain.

A schematic of the flow geometry is shown in Figure 3.1 where are also defined

the parameters of the flow geometry:Ri = is the radius of the inner cylinder, Ro = is

the radius of the outer cylinder, L = is the axial length (height), Ωi = is the angular

velocity of the inner cylinder, Ωe = is the angular velocity of the lids. Both the inner

cylinder and the lids have the same axis and direction of rotation.

The lids rotate simultaneously with the same angular speed, and the ratio

between the rate of rotation of the ends Ωe and the inner cylinder Ωi defines a

dimensionless control parameter Ω = Ωe/Ωi. The non-dimensional parameters of the

problem are

Re =
DRiΩi

ν
, Ω =

Ωe

Ωi

, Γ =
L

D
, η =

Ri

Ro

, D = Ro −Ri, (3.1)
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where Re is the Reynolds number, Ω is the ratio of the angular speeds of the inner

cylinder and end plates, and Γ (aspect ratio) is the ratio between the hight of the

equipment L and the gap width D. The system of equations (1.11)–(1.14) is rendered

dimensionless as follows

r =
r∗

D
, z =

z∗

D
, t =

t∗ν
D2

, v =
v∗D
ν

, p =
p∗D2

ν2
, (3.2)

where the gap width D is used as the length scale, and the diffusive time across the

gap, D2ν−1, as the time scale.

In Abshagen et al. (2004) are presented sufficiently complete results from a

combined numerical and experimental study of steady bifurcation phenomena in a

modified Taylor-Couette geometry where the end plates of flow domain are allowed

to rotate independently of the inner cylinder. The flow in the Taylor-Couette system

with one stationary end plate and the other attached to the rotating inner cylinder

was studied in Mullin and Blohm (2001) and Lopez, Marques, and Shen (2004).

Now, the results of article Aristov and Pukhnachev (2004) will be followed.

The new form of the axisymmetric NSEs are written using the cylindrical polar

coordinate system (r, θ, z)

ψt − 1

r
ψrψz + Φz = Eψ, (3.3)

Jt − 1

r
ψzJr +

1

r
ψrJz = EJ, (3.4)

EΦ =
1

r2

(
J2 + ψ2

z

)
+

2

r
ψrEψ. (3.5)

The main target of recent work is to develop and validate a finite-difference scheme to

approximate solution of equations (3.3)–(3.5). Below, only the case where the no-slip

conditions are satisfied at the boundary of the flow domain will be considered. In

terms of the functions ψ and J , these conditions are represented in the form

∂ψ

∂n
= 0, ψ = 0, J = Ωr2, (3.6)
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where
∂ψ

∂n
means derivative in the direction of normal vector to the boundary, Ω is

the rate of rotations of boundary surface. To close the formulation of the problem it

is necessary to specify the initial conditions

ψ = ψ0(r, z), J = J0(r, z), t = 0. (3.7)

Equation (3.4) and boundary condition (3.6) for the function J can be solved inde-

pendently under assumption that the function ψ is given. A difficulty in solving the

system of equations for ψ and Φ supplemented by the boundary conditions above

is that two boundary conditions are specified for ψ while none is available for Φ.

This difficulty is similar to the vorticity-stream function equations in 2D. To over-

come the difficulty caused by the absence of boundary condition for Φ in Aristov and

Pukhnachev (2004) authors transform equation (3.5) into the fourth-order equation

by applying the operator E and using boundary condition
∂ψ

∂n
= 0. In this case, the

boundary conditions for functions ψ and Φ are uncoupled and iterative solution pro-

cedures can be used to find approximate solution. The weak point of such approach

is the necessity to solve the Neumann problem for the bi-harmonic equation. Uncou-

pled solution of this problem can be found up to arbitrary function, which satisfies

the Stokes equation EΦ̃ = 0.

3.3 Computational technique

A finite-difference scheme for a variant of standard Taylor-Couette flow geom-

etry where the end plates can be rotated independently from the inner cylinder will

be represented and validated. This problem was studied in Abshagen et al. (2004).

The Couette flow occurs in the region

Q = { η

1− η
< r <

1

1− η
, 0 < z < Γ}.
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A sketch of domain geometry and main notations are shown in Figure 3.1. For the

sake of simplicity, a uniform grid with hr and hz spacing in r− and z−direction,

respectively,

hr =
1

(Nr − 2)
, hz =

Γ

(Nz − 2)
,

Qh =
{
(ri, zj)|ri =

η

1− η
+ (i− 1.5)hr, zj = (j − 1.5)hz, i = 1, . . . , Nr,

j = 1, . . . , Nz

}

is assumed. The mesh is staggered in r−direction on 0.5hr and in z−direction on

r

z

0

Γ

η

1−η

1 2 Nr

2

Nz

1

1−η

Figure 3.2 Computational domain with the grid.

0.5hz with respect domain boundaries. Such grid allows one to use central differences

to approximate boundary conditions with the second-order on two-point stencils.

Figure 3.2 shows the sketch of grid.

Consider first a time and spatial discretization of equation (3.4), the function

J is treated on a half-time steps tn+ 1
2 , while the function ψ is taken on the main time

step tn. To approximate partial derivatives, the central finite-differences are used.

The Crank-Nicolson approach utilized to increase the order of approximation with
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respect time. The full discrete equations are

J
n+1/2
i,j − J

n−1/2
i,j

τ
=

1

8rihrhz

(
ψn

i,j+1 − ψn
i,j−1

) (
J

n+1/2
i+1,j − J

n+1/2
i−1,j + J

n−1/2
i+1,j − J

n−1/2
i−1,j

)

− 1

8rihrhz

(
ψn

i+1,j − ψn
i−1,j

) (
J

n+1/2
i,j+1 − J

n+1/2
i,j−1 + J

n−1/2
i,j+1 − J

n−1/2
i,j−1

)

+
1

2

(
EJ

n+1/2
i,j + EJ

n−1/2
i,j

)
, i = 2, . . . , Nr − 1, j = 1, . . . , Nz − 1,

(3.8)

where

EJi,j =
(Ji+1,j − 2Ji,j + Ji−1,j)

h2
r

− (Ji+1,j − Ji−1,j)

2rihr

+
(Ji,j+1 − 2Ji,j + Ji,j−1)

h2
z

. (3.9)

Equation (3.8) are supplemented by the boundary conditions

J
n+ 1

2
1,j + J

n+ 1
2

2,j

2
= Re

η

1− η
,

J
n+ 1

2
Nr−1,j + J

n+ 1
2

Nr,j

2
= 0, j = 1, . . . , Nz,

(3.10)

J
n+ 1

2
i,1 + J

n+ 1
2

i,2

2
= ReΩr2

i

1− η

η
,

J
n+ 1

2
i,Nz−1 + J

n+ 1
2

i,Nz

2
= ReΩr2

i

1− η

η
, i = 1, . . . , Nr.

The system of algebraic equations (3.8)–(3.10) can be solved by a direct method or

by a suitable iterative method. In the numerical experiments, the standard routines

DGBSV and DGBSVX of LAPACK are used.

Equations (3.3) and (3.5) for ψ and Φ are considered as a coupled system.

This formulation is based on the idea of regarding the two boundary conditions for

ψ as actual conditions for the ψ − Φ system. The second-order central-difference

approximations are employed for the operators in equations (3.3) and (3.5). The

system of difference equations is

ψn+1
i,j − ψn

i,j

τ
− (ψn

i+1,j − ψn
i−1,j)(ψ

n+1
i,j+1 − ψn+1

i,j−1) + (ψn+1
i+1,j − ψn+1

i−1,j)(ψ
n
i,j+1 − ψn

i,j−1)

8rihrhz

+

(
Φn+1

i,j+1 − Φn+1
i,j−1

)

2hz

=
1

2

(
Eψn+1

i,j + Eψn
i,j

)
,

(3.11)
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EΦn+1
i,j =

1

r2
i

(
(J

n+1/2
i,j )2 +

1

4h2
z

(ψn
i,j+1 − ψn

i,j−1)(ψ
n+1
i,j+1 − ψn+1

i,j−1)

)

+
1

2rihr

(
(ψn

i+1,j − ψn
i−1,j)Eψn+1

i,j + (ψn+1
i+1,j − ψn+1

i−1,j)Eψn
i,j

)
,

i = 2, . . . , Nr − 1, j = 2, . . . , Nz − 1.

(3.12)

Equations (3.11)–(3.12) are supplement by the boundary conditions in the following

form

ψn+1
2,j + ψn+1

1,j

2
= 0,

ψn+1
2,j − ψn+1

1,j

hr

= 0,
ψn+1

Nr,j + ψn+1
Nr−1,j

2
= 0,

ψn+1
Nr,j − ψn+1

Nr−1,j

hr

= 0,

j = 1, . . . , Nz, (3.13)

ψn+1
i,2 + ψn+1

i,1

2
= 0,

ψn+1
i,2 − ψn+1

i,1

hz

= 0,
ψn+1

i,Nz
+ ψn+1

i,Nz−1

2
= 0,

ψn+1
i,Nz

− ψn+1
i,Nz−1

hz

= 0,

i = 1, . . . , Nr.

To represent equations (3.11)–(3.13) as a linear system with a banded matrix, equa-

tions are reordered. First, two new indices according to the equations

k(i,j) = 2(i− 1)Nz + 2j − 1, i = 1, . . . , Nr,

m(i,j) = 2(i− 1)Nz + 2j = k(i,j) + 1, j = 1, . . . , Nz

are introduced. Each node (i, j) of the grid Qh associates with two indices k(i,j) and

m(i,j). An index k(i,j) is odd and an index m(i,j) is even. It is easy to see that

k(i+1,j) = k(i,j) + 2Nz, k(i,j+1) = k(i,j) + 2,

k(i−1,j) = k(i,j) − 2Nz, k(i,j−1) = k(i,j) − 2, (3.14)

and

m(i+1,j) = m(i,j) + 2Nz, m(i,j+1) = m(i,j) + 2,

m(i−1,j) = m(i,j) − 2Nz, m(i,j−1) = m(i,j) − 2. (3.15)

Let σk represents ψi,j and σm(= σk+1) represents Φi,j. Substituting σk instead ψi,j

and substituting σm instead Φi,j into equations (3.11)–(3.13), the algebraic system
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can be recast as the following

σn+1
k − σn

k

τ
− 1

8rihrhz

( (
σn

k+2Nz
− σn

k−2Nz

) (
σn+1

k+2 − σn+1
k−2

)
+

(
σn+1

k+2Nz
− σn+1

k−2Nz

)

(
σn

k+2 − σn
k−2

) )
+

1

2hz

(
σn+1

k+1 − σn+1
k−3

)
=

1

2

(
Eσn+1

k + Eσn
k

)
,

(3.16)

Eσn+1
m =

1

ri

(
(Ji,j)

2 +
1

4h2
z

(σn
m+1 − σn

m−3)(σ
n+1
m+1 − σn+1

m−3)

)

+
1

ri

(
(σn

m+2Nz−1 − σn
m−2Nz−1)

2hr

Eσn+1
m−1 +

(σn+1
m+2Nz−1 − σn+1

m−2Nz−1)

2hr

Eσn
m−1

)
.

(3.17)

Boundary conditions (3.13) can be recast as following

σn+1
k + σn+1

k+2Nz

2
= 0,

σn+1
m+2Nz−1 − σn+1

m−1

hr

= 0, i = 1, j = 1, . . . , Nz, (3.18)

σn+1
k + σn+1

k−2Nz

2
= 0,

σn+1
m−1 − σn+1

m−2Nz−1

hr

= 0, i = Nr, j = 1, . . . , Nz, (3.19)

σn+1
k + σn+1

k+2

2
= 0,

σn+1
m+1 − σn+1

m−1

hz

= 0, j = 1, i = 1, . . . , Nr, (3.20)

σn+1
k + σn+1

k−2

2
= 0,

σn+1
m−1 − σn+1

m−3

hz

= 0, j = Nz, i = 1, . . . , Nr, (3.21)

where

Eσk =
(σk+2Nz − 2σk + σk−2Nz)

h2
r

− (σk+2Nz − σk−2Nz)

2rihr

+
(σk+2 − 2σk + σk−2)

h2
z

.

Equations (3.18)–(3.21) are an approximation of the boundary conditions ψ = 0 and

∂ψ

∂n
= 0 at boundaries r =

η

1− η
, r =

1

1− η
, z = 0 and z = Γ. According to this

representation, the linear system of a coupled formulation of the ψ −Φ problem can

then be written as

Bl−2Nz−1σ
n+1
l−2Nz−1 + Bl−2Nzσ

n+1
l−2Nz

+ Bl−3σ
n+1
l−3 + Bl−2σ

n+1
l−2 + Bl−1σ

n+1
l−1 + Blσ

n+1
l +

Bl+1σ
n+1
l+1 + Bl+2σ

n+1
l+2 + Bl+2Nz−1σ

n+1
l+2Nz−1 + Bl+2Nzσ

n+1
l+2Nz

+ Bl+2Nz+1σ
n+1
l+2Nz+1 = Fl,

(3.22)

where l = 1, . . . , 2NzNr. The matrix of system (3.22) has upper and lower band

widths 2Nz + 1. The standard subroutines DGBSV and DGBSVX of the LAPACK
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are used to compute the solution of linear system (3.22). The matrix of this system is

singular to working precision (as shown by DGBSVX the reciprocal condition number

is zero). To make numerically nonsingular algebraic system , use of modification of

the matrix is made. A small perturbation in the equations (3.20)–(3.21)is induced,

which approximate the boundary conditions
∂ψ

∂n
= 0 at boundaries z = 0 and z = Γ.

Now, boundary conditions are as follow

σn+1
k + σn+1

k+2Nz

2
= 0,

σn+1
m+2Nz−1 − σn+1

m−1

hr

= 0,

σn+1
k + σn+1

k−2Nz

2
= 0,

σn+1
m−1 − σn+1

m−2Nz−1

hr

= 0,

σn+1
k + σn+1

k+2

2
= 0,

σn+1
m+1 − σm−1

hz

= −εσn+1
m ,

σn+1
k + σn+1

k−2

2
= 0,

σn+1
m−1 − σn+1

m−3

hz

= −εσn+1
m .

(3.23)

The effect of a small parameter ε to changes of a condition number of the matrix

and relative output error are studied. Figure 3.3 shows the log-plot of the condition

number (as computed by the routing DGBSVX of the LAPACK) versus the parameter

1/ε. It is interesting to point out that, for a considered range of ε ∈ [10−4, 10−14],

an estimate of a relative error (as computed by DGBSVX) was of order 10−300. In

the next paragraph, influences of a parameter ε on a solution of a problem of the

Taylor-Couette flow which is studied experimentally and numerically in Abshagen et

al. (2004) will be studied.

3.4 Numerical example

3.4.1 Structure of two-cell flows

The Taylor-Couette flow provides opportunities for detailed comparison be-

tween the results of experimental and numerical investigations. In Abshagen et al.

(2004) sufficiently complete results are presented from a combined numerical and ex-
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Figure 3.3 Condition number versus 1/ε as computed by DGESVX.

perimental studies of a steady bifurcation phenomena in a modified Taylor-Couette

geometry where the end plates of flow domain are allowed to rotate independently

from the inner cylinder.

The computation results for the case η =
Ri

Ro

= 0.5, Re = 80 and Γ = 2 are

represented in Figure 3.1. A stream line plot in the (r, z) plane is shown in the first

row of figures. The bottom row represents isolines of the function Φ. These flow

configurations has arisen by continuous increase in the Reynolds number from zero.

The patterns of stream line are in excellent agreement with results of Abshagen et

al. (2004). As mention in Abshagen et al. (2004) when Ω = 0, the flow state is

characterized by inward flow adjacent to both end plates and return outward flow

toward the outer cylinder in a narrow jet at the axial mid-plane. If the end plates

co-rotating with inner cylinder (Ω = 1), a different flow configuration appears when

the Reynolds number is increased from zero. The direction of flow is opposite to that

in the case of Ω = 0. When the rotation rate of the end plates was increased from

zero to one (Ω = 1), two different flow pattern mutated smoothly into each other
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by varying the rotation rate of the end plates Ω. The computational experiments

shown that flow pattern changed in the range of Ω between 0.3 and 0.32 which are

agreed with Abshagen et al. (2004). Flow patterns in Figure 3.4 are in a good

agreement with the flow pattern in Abshagen et al. (2004) for the same parameters.

The maximum values of the stream function are given in Table 3.1. A choice of these

values is governed by the data available in Abshagen et al. (2004). This table shows

that the scheme gives the same data as in Abshagen et al. (2004).

Table 3.1 Comparison of ψmax/Re for the values Ω = 0, 0.3, 0.304,

0.32, 1 and Re = 80, Γ = 2.

Ω 0 0.3 0.304 0.32 1

Present (42× 82) 0.04257 0.00855 0.00584 0.01636 0.10010

Abshagen 0.04270 0.00869 0.00578 0.01667 0.10014

A comparison of Table 3.1 demonstrates that numerical model based on equa-

tions (3.3)–(3.5) is in close agreement with computational and experimental data

Abshagen et al. (2004).
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Figure 3.4 Contour plots of the stream function ψ at Γ = 2 and Re = 80.
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Figure 3.5 Contour plots of the function J at Γ = 2 and Re = 80.
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Figure 3.6 Contour plots of the function Φ at Γ = 2 and Re = 80.
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Figure 3.7 Contour plots of the pressure P at Γ = 2 and Re = 80.
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Figure 3.8 Contour plots of the vorticity at Γ = 2 and Re = 80.

To evaluate grid dependence on spatial variables the solution obtained on a

sequence of grids with 12 × 22, 22 × 42, and 42 × 82 nodes. To estimate rate of

convergence, the validity of expression

fe ≈ fh + Chα (3.24)

is accepted where fe and fh are quantities related to an exact and computed solutions,

respectively. Coefficients C and α independent of h. Since given solutions on three

grids equation (3.24) can be solved for three unknowns fe, C, and α. In Tables 3.2–3.4

ψh
max, Φh

max, and Jh
max were computed maximum values of the stream function ψ, new

function Φ, and function J , respectively. Parameters αψ, αΦ, and αJ , correspond to

rate of convergence received from equation (3.24). Indices ψ, Φ, and J point out that

maximum value of the stream function ψ, maximum value Φ, or maximum value J

used in equation (3.24) instead f , respectively. In all cases represented in Tables 3.2–

3.4 the flow is steady Abshagen et al. (2004). The solutions are qualified as steady

when the relative error between two time steps which is less than 10−6 on a significant

time interval

maxi,j

∣∣fn+1
i,j − fn

i,j

∣∣
maxi,j

∣∣fn+1
i,j

∣∣ 6 10−6

where fi,j = {σi,j, Ji,j}.
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Table 3.2 Results from a simulation on grid sequence and maximum values of the

stream function at Re = 80.

Ω Mr ×Nz hr = hz ψh
max εψ αψ

0 12× 22 0.1 3.20003 0.212157 2.53377

22× 42 0.05 3.37555 0.036637

42× 82 0.025 3.40586 0.006327

0.30 12× 22 0.1 0.475481 0.224815 1.88292

22× 42 0.05 0.639341 0.060955

42× 82 0.025 0.683769 0.016527

0.304 12× 22 0.1 0.430896 0.045125 1.17625

22× 42 0.05 0.456053 0.019968

42× 82 0.025 0.467185 0.008836

0.32 2× 22 0.1 0.993318 0.343278 1.81581

22× 42 0.05 1.23909 0.097506

42× 82 0.025 1.30890 0.027696

1 12× 22 0.1 7.80202 0.212172 2.53090

22× 42 0.05 7.97748 0.036712

42× 82 0.025 8.00784 0.006352
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Table 3.3 Results from a simulation on grid sequence and maximum values of the

function Φ at Re = 80.

Ω Mr ×Nz hr = hz Φh
max εΦ αΦ

0 12× 22 0.1 175.920 82.3162 1.08608

22× 42 0.05 132.378 38.7742

42× 82 0.025 111.868 18.2642

0.30 12× 22 0.1 140.289 102.198 0.974381

22× 42 0.05 90.1057 52.0143

42× 82 0.025 64.5645 26.4731

0.304 12× 22 0.1 137.050 106.815 1.09096

22× 42 0.05 80.3790 50.1442

42× 82 0.025 53.7749 23.5401

0.32 2× 22 0.1 123.901 105.662 1.08790

22× 42 0.05 67.9472 49.7085

42× 82 0.025 41.6239 23.3852

1 12× 22 0.1 335.942 331.660 1.08564

22× 42 0.05 160.554 156.272

42× 82 0.025 77.9144 73.6326



79

Table 3.4 Results from a simulation on grid sequence and maximum values of the

function J at Re = 80.

Ω Mr ×Nz hr = hz Jh
max εJ αJ

0 12× 22 0.1 119.675 0.094704 2.89812

22× 42 0.05 119.686 0.083704

42× 82 0.025 119.768 0.001704

0.30 12× 22 0.1 137.882 6.06125 1.05748

22× 42 0.05 141.031 2.91225

42× 82 0.025 142.544 1.39925

0.304 12× 22 0.1 138.788 6.60877 1.41176

22× 42 0.05 142.896 2.50077

42× 82 0.025 144.440 0.95677

0.32 2× 22 0.1 146.941 6.63921 1.04834

22× 42 0.05 150.370 3.21021

42× 82 0.025 152.028 1.55221

1 12× 22 0.1 456.634 25.3367 0.871270

22× 42 0.05 468.120 13.8507

42× 82 0.025 474.399 6.27900
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Table 3.5 Effect of parameter ε on numerical solutions (grid- 22×42).

Ω ε ψmin ψmax Φmin Φmax Jmin Jmax

0 10−2 −3.68293 3.68293 −87.1066 142.977 −39.9864 120.014

10−6 −3.37560 3.37560 −96.6644 132.361 −40.3143 119.686

10−8 −3.37555 3.37555 −96.6659 132.378 −40.3144 119.686

10−10 −3.37555 3.37555 −96.6612 132.477 −40.3144 119.686

10−14 −3.37555 3.37555 −95.6708 140.492 −40.3144 119.688

1 10−2 −6.53545 6.53545 −322.564 110.315 −150.655 473.445

10−6 −7.97720 7.97720 −425.924 160.543 −155.978 468.122

10−8 −7.97748 7.97748 −425.944 160.554 −155.980 468.120

10−10 −7.97748 7.97748 −425.947 160.573 −155.980 468.120

10−14 −7.97748 7.97748 −422.439 190.444 −155.980 468.120
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Figure 3.9 Effect of ε for Re = 80, η = 0.5, and Γ = 2. − · − ε = 10−2; − ¦ − ε =

10−6; − ◦ − ε = 10−10; −+− ε = 10−14.
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Computational was carried out on a personal computer with 2.4 GHz CPU

and the CPU-time per one time step (/one iteration) on the grid 22× 42 was about

0.31989 sec.

Next, some numerical experimental results related with effect of ε on the

solution will be shown. If the problems (3.16), (3.17), and (3.23) are solved by

different ε, results listed in Table 3.5 are found, where dependence on ε of the maximal

and minimal components of the solution are represented. Variations of ε in the range

10−6 − 10−10 have no significant influence on quantities shown in Table 3.5. Values

ε < 10−14 correspond to reciprocal condition number less than computer accuracy

(as computed by DGBSVX). Figure 3.9 shows values of stream function versus z for

r = 1.5 and Ω = 0 and 1, ε varies from 10−2 to 10−14. Figures 3.10 and 3.11 show

the values of Φ at domain boundaries. One can observe that if 10−10 ≤ ε ≤ 10−6 the

variations of Φ at boundaries are negligible. If ε too small, ε ≤ 10−12, Φ oscillates near

‘correct’ computed values. It is interesting to note that more significant oscillations

were observed only at boundary of internal rotating cylinder (r = 1). One can see

that for ε ∈ [10−14, 10−6] values of the stream function change less than 1%.
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In order to illustrate the influence of rotation rate Ω on Φ distribution in more

clear manner, computed boundary values of Φ for a range of Ω is shown in Figure 3.12.

The surface plots of Φ(r, z) for Ω = 0, 0.3, 0.32, and 1 are displayed in Figure 3.13.

It is noted that first that Φ(r, 0) = Φ(r, 2), e.g., boundary values of Φ on top and

bottom covers the same. Figure 3.12 shows ‘correct’ computed boundary values at

r = 1 and r = 2 of Φ for different control parameter Ω. In the case Ω = 0 (the

end plates do not rotate) function Φ has positive maximum at the middle of domain

z = 1, if Ω = 1 (the end plates rotate synchronically with internal cylinder) Φ has

negative extremum. Probably these have relation with direction of flow at z = 1.
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Figure 3.13 Surface plots of calculated Φ for Ω = 0, 0.3, 0.32, 1.0, Re = 80, η = 0.5,

and Γ = 2.
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3.4.2 Exchange process between one- and three-cell flows as

a function of Re and Γ

In the case where both end walls rotate only states with even number

of vortices are observed. Experimental and numerical study of the flow in a

Taylor-Couette system with the bottom end plate attached to the inner cylinder and

other stationary was considered in Mullin and Blohm (2001), Lopez, Marques, and

Shen (2004). In Mullin and Blohm (2001) (as can seen in Figure 3.14) observations

were generally made by varying the Reynolds number at fixed values of the aspect

ratio. Re was increased or decreased in small steps of around 1% and left for a

some time to allow transient behavior to decay. It has been observed in Mullin

and Blohm (2001) that at an aspect ratio of the increasing Re led to the initial

development of a steady three-cell flow which then collapsed to a single-cell state

at a critical value of Re via a saddle-node bifurcation. The algorithm is utilized

to compute a ‘typical’ sequence of states in case represented in Mullin and Blohm

(2001). Aspect ratio fixed Γ = 3.226, Re was increased in small step by the formulae

Re = Re0(1 − exp(−0.05(n − 1))), where n is the number of time step. The two

steady states with two and three vortices are shown in Figure 3.15. At a Re0 of

approximately 75 a definite three-cell state is established. This state is shown in

Figure 3.15 (a). When Re0 is increased to approximately 312 the cell adjacent to the

rotating bottom grows at the expense of the other two cells. This situation can be

seen in Figure 3.15 (b). Further increase of Re0 to approximately 350 leads to the

collapse to a single-cell state. If Re is then reduced back (The simulation is started

from state which corresponds to Re0 = 350) Re = 350− 38.4(1− exp(−0.05(n− 1)))

to approximately 312 then the single-cell shown in Figure 3.15 (c) is observed. The

grid consisted of 32 × 62 nodes and time step was equal to 0.001. The results of

our numerical experiments exactly corresponds to the case represented in Mullin
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and Blohm (2001), where results of numerical simulations compared with results of

physical experiments.

Figure 3.14 Sequence of flow pattern plots at Γ = 3.226 by Mullin and Blohm

(2001). Three-cell at Re = 75.3. Three-cell at Re = 257.9. Single-cell at Re = 311.6.
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Figure 3.15 Sequence of flow pattern plots at Γ = 3.226. Three-cell at Re = 75.3.
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The dynamics of the flow in a short annulus driven by the rotation of the inner

cylinder and bottom end wall is considered in Lopez, Marques, and Shen (2004). In

this part, authors consider the parameter regime Re ∈ [100, 200], Γ ∈ [2.5, 3.25] and

η = 0.5. In particular, they pointed out that for Re = 100 and low Γ, the flow

consists of a single meridional cell, driven essentially by the rotation of the bottom

end wall. As the length of the cylinders is increased (i.e., increasing Γ), at fixed Re,

the rotating inner cylinder begins to play a more important role in the driving of the

flow. Moreover, as Γ approaches 3, the flow undergoes a transition from the single

meridional overturning cell structure to a three-cell structure with the middle cell

counter-rotating (in the meridional plane) compared to the other two. At low Re,

this transition from a one-cell state to a three-cell state is smooth and non-hysteretic.
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The results of numerical experiments are shown in Figures 3.16–3.18. Fig-

ures 3.16–3.18 shows the streamlines ψ, isolines of azimuthal velocity component

J = rv, and isolines of Φ of the steady axisymmetric states, respectively, at Re = 100

as Γ is varied between 2.50 and 3.00. At Γ between about 2.7 and 2.8, the boundary

layer on the rotating inner cylinder separates and a small weak separation bubble

forms. The flow near the separation point advects flow with high angular momentum

into the interior. As Γ is increased above 2.8, the separation bubble extends further

into the interior, although its axial extent remains small. At about Γ = 2.81, the

separation streamline extends to the stationary outer cylinder where it re-attaches; at

the outer cylinder at slightly lower z the boundary layer also separates and attaches

at the inner cylinder, and a three-cell state is established. With further increase in Γ

, the weak middle cell strengthens and grows in axial extent, as seen in Figure 3.16(g)

for Γ = 3.00. The numerical simulations of the axisymmetric short Taylor-Couette

annulus flow are totaly consistent with scenario represented in Lopez, Marques, and

Shen (2004).

The observation was focused on the exchange process between one and three-

cell flows as a function of Re and Γ. The dependence of the size of the bottom driven

vortex on Re for a range of aspect ratios Γ is plotted in Figure 3.19. Height of the cell

as percentages of total height are plotted on the vertical axis. They were determined

using numerical simulation. While Re was increased, the three-cell state appeared

gradually until the bottom cell begin to shrink. Therefore, increasing of Re causes

the growth of end-cell and collapse to a single cell state.
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Figure 3.19 Cell size of the bottom vortex in a steady-cell state plotted as a function

of Re for a various of Γ; height of the bottom cell g as percentage of the total height

L of annulus is plotted on the vertical axis.

3.4.3 Taylor-Couette flow in a small aspect ratio

The dynamics of the Taylor-Couette flow in a small aspect ratio annulus (where

the length of the cylinders is half of the annulus gap between them) is numerically

investigated by Lopez and Marques (2003). In this paper, authors consider the dy-

namics of the flow which is driven by the inner cylinder only for Re = 540, η = 0.675,

and Γ = 0.5. The results of numerical experiments in this dissertation are shown in

Figure 3.20. The structure of this flow is clear from the contours of the angular mo-

mentum J and radial velocity component u. A two-cell counter-rotating meridional

flow is formed to balance the fluid advected by the jet. These cells return swirling

fluid back towards the inner cylinder along the stationary end walls, as shown by the
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Figure 3.20 Contour plots at Γ = 0.5, η = 0.675, and Re = 540.

radial velocity u in part of Figure 3.20.

3.5 Conclusion

The new formulation for the axisymmetric Navier-Stokes flows proposed by

Aristov and Pukhnachev (2004), is implemented numerically. The approximations

for the different functions are staggered in time. Thus the equation for the azimuthal

velocity component is decoupled from the rest of the equations and is approximated on

fractional time steps. The equations for the stream function, ψ and the new unknown

function of Aristov-Pukhnachev’s formulation, Φ are considered as a coupled system

at full time steps. The coupling for the latter system is crucial because of the lack
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of boundary conditions for the new functions and the presence of two boundary

conditions for the stream function. After special renumbering the grid points of

hopscotch-type, the coupled system is formulated as a single system and solved by a

LAPACK algorithm.

The main difficulty with this formulation is that the coupled system for ψ and

Φ is singular. To avoid the singularity, part of the Neumann boundary conditions

for the composite function are replaced by Robin boundary conditions with a small

parameter multiplying the function. The result is that the originally infinite condition

number of the system behaves as 1000ε−1 and even for very small ε ∝ 10−10, the

Gaussian elimination is perfectly stable. The impact on the results of the actual value

of the artificial small parameter is judiciously evaluated by numerical experiments and

shown that for ε ∝ 10−6 the results are correct within six significant digits which is

much better than the truncation error.

The new numerical model is applied to the flow between two rotating cylinders

when the lids are also allowed to rotate. This particular Taylor-Couette flow exhibits

a rich phenomenology depending on the relative rotations of the lids. This study

shows that the new technique performs robustly and allows one to follow accurately

the rearrangement of the flow patterns with the changes of the relative rotation of

the lids, Ω. The results are in good quantitative agreement with Mullin and Blohm

(2001), Abshagen et al. (2004), and Lopez, Marques, and Shen (2004) in the common

ranges of the main parameters.

The present paper shows that the Aristov-Pukhnachev’s formulation is a viable

approach to the axisymmetric Navier-Stokes flows and can serve as a basis for efficient

numerical models.
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CHAPTER IV

FINITE DIFFERENCE METHOD FOR

AXISYMMETRIC FLOW IN STREAM

FUNCTION AND ANGULAR MOMENTUM

FORM

As note before this chapter, the internal iteration method is reasonable to ap-

proximate solution of the NSEs in the stream function formulation. In this chapter,

the results of numerical simulation of the Taylor-Couette flow by method of the inter-

nal iteration are compared with those obtained using numerical techniques developed

for the new form of the NSEs.

4.1 Governing equations

The motion of an axisymmetric incompressible viscous fluid is governed by

the NSEs (1.11)–(1.14). Let D be the characteristic length scale associated with the

Taylor-Couette flow geometry. The following dimensionless variables: time, t =
t∗ν
D2

;

space, r =
r∗

D
, z =

z∗

D
; and velocity, v =

v∗D
ν

are defined.

The axisymmetric NSEs for a swirling flow written in the stream function and

angular momentum form using the cylindrical coordinates (r, θ, z) with corresponding

the velocity components (u, v, w) are

Jt − 1

r
ψzJr +

1

r
ψrJz = EJ, (4.1)

∂Eψ

∂t
+

2

r2
ψzEψ − 1

r
ψz(Eψ)r +

1

r
ψr(Eψ)z +

2

r3
JJz = E2ψ. (4.2)
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The main target of recent work is to develop and validate a finite-difference scheme

to approximate solution of equations (4.1)–(4.2). Moreover, obtained solution is used

to reconstruct a new unknown function in Aristov-Pukhnachev’s form of the NSEs.

Below, only the case where the no-slip conditions satisfied at the boundary of the

flow domain will be considered. In terms of the functions ψ and J , these conditions

are represented in the form

∂ψ

∂n
= 0, ψ = 0, J = Ωr2, (4.3)

where
∂ψ

∂n
means derivative in the direction of the normal vector to the boundary,

Ω is the rate of rotations of the boundary surface. To close the formulation of the

problem it is necessary to specify the initial conditions

ψ = ψ0(r, z), J = J0(r, z), t = 0. (4.4)

4.2 Computational technique

Equations (4.1)–(4.2) hold in the region Q. The numerical treatment of these

equations is based on the finite-difference method used to discreatize the (r, z)−region

Q. To use the mesh staggered in r−direction on 0.5hr and in z−direction on 0.5hz

with respect domain boundaries is used. Such grid allows one to use the central-

differences to approximate boundary conditions with the second-order on two-point

stencils. Technically, equation (4.1) is approximated as using the central finite-

difference as follow:

J
n+1/2
i,j − J

n−1/2
i,j

τ
=

1

8rihrhz

(
ψn

i,j+1 − ψn
i,j−1

) (
J

n+1/2
i+1,j − J

n+1/2
i−1,j + J

n−1/2
i+1,j − J

n−1/2
i−1,j

)

− 1

8rihrhz

(
ψn

i+1,j − ψn
i−1,j

) (
J

n+1/2
i,j+1 − J

n+1/2
i,j−1 + J

n−1/2
i,j+1 − J

n−1/2
i,j−1

)

+
1

2

(
EJ

n+1/2
i,j + EJ

n−1/2
i,j

)
, i = 2, . . . , Nr − 1, j = 2, . . . , Nz − 1,

(4.5)
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where

EJi,j =
(Ji+1,j − 2Ji,j + Ji−1,j)

h2
r

− (Ji+1,j − Ji−1,j)

2rihr

+
(Ji,j+1 − 2Ji,j + Ji,j−1)

h2
z

. (4.6)

Equation (4.5) are supplemented by the boundary conditions

J
n+ 1

2
1,j + J

n+ 1
2

2,j

2
= Re

η

1− η
,

J
n+ 1

2
Nr−1,j + J

n+ 1
2

Nr,j

2
= 0, j = 1, . . . , Nz,

(4.7)

J
n+ 1

2
i,1 + J

n+ 1
2

i,2

2
= ReΩr2

i

1− η

η
,

J
n+ 1

2
i,Nz−1 + J

n+ 1
2

i,Nz

2
= ReΩr2

i

1− η

η
, i = 1, . . . , Nr.

The system of algebraic equations (4.5)–(4.7) can be solved by a direct method or by

a suitable iterative method. In numerical experiments, the standard routines DGBSV

and DGBSVX of LAPACK are used.

Now, the internal iteration method is used to approximate solution of equa-

tion (4.2) as follows:

(
Ehψ

n+1,k
)

i,j
− (

Ehψ
n
)

i,j

τ
+

2

r2
i

(
Λzψ̃

)
i,j

(
Ehψ

n
)

i,j

− 1

ri

(
Λzψ̃

)
i,j




(
Ehψ̃

)
i+1,j

−
(
Ehψ̃

)
i−1,j

2hr


+

1

ri

(
Λrψ̃

)
i,j




(
Ehψ̃

)
i,j+1

−
(
Ehψ̃

)
i,j−1

2hz




− 1

r2
i hz

J
n+ 1

2
i,j

(
J

n+ 1
2

i,j+1 − J
n+ 1

2
i,j−1

)
= E2

hψ
n+1
i,j , (4.8)

where Eh = Λr2−1

2
Λr+Λz2 and E2

h = Λr4− 2

ri

Λr3+
3

r2
i

Λr2− 3

r3
i

Λr− 2

ri

Λrz2+2Λr2z2+Λz4 .

The central-difference operators are used for all derivatives

(Λrψ)ij =
ψi+1,j − ψi−1,j

2hr

;

(Λzψ)ij =
ψi,j+1 − ψi,j−1

2hz

;

(Λr2ψ)ij =
ψi+1,j − 2ψi,j + ψi−1,j

h2
r

;

(Λz2ψ)ij =
ψi,j+1 − 2ψi,j + ψi,j−1

h2
z

;
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(Λr3ψ)ij =
ψi+2,j − 2ψi+1,j + 2ψi−1,j − ψi−2,j

2h3
r

;

(Λz3ψ)ij =
ψi,j+2 − 2ψi,j+1 + 2ψi,j−1 − ψi,j−2

2h3
z

;

(Λr2zψ)ij =
1

2hzh2
r

{
(ψi+1,j+1 − ψi+1,j−1)− 2 (ψi,j+1 − ψi,j−1)

+ (ψi−1,j+1 − ψi−1,j−1)

}
;

(Λrz2ψ)ij =
1

2hrh2
z

{
(ψi+1,j+1 − ψi−1,j+1)− 2 (ψi+1,j − ψi−1,j)

+ (ψi+1,j−1 − ψi−1,j−1)

}
;

(Λr4ψ)ij =
ψi+2,j − 4ψi+1,j + 6ψi,j − 4ψi−1,j + ψi−2,j

h4
r

;

(Λz4ψ)ij =
ψi,j+2 − 4ψi,j+1 + 6ψi,j − 4ψi,j−1 + ψi,j−2

h4
z

;

(Λr2z2ψ)ij =
1

h2
rh

2
z

{
(ψi+1,j+1 − 2ψi+1,j + ψi+1,j−1)− 2 (ψi,j+1 − 2ψi,j + ψi,j−1)

+ (ψi−1,j+1 − 2ψi−1,j + ψi−1,j−1)

}
.

The boundary conditions are approximated on two-point stencils with the second-

order of approximation as follows

ψn
2,j − ψn

1,j = 0; ψn
1,j + ψn

2,j = 0 ⇒ ψn
1,j = ψn

2,j = 0, (4.9)

ψn
Nr,j − ψn

Nr−1,j = 0; ψn
Nr−1,j + ψn

Nr,j = 0 ⇒ ψn
Nr−1,j = ψn

Nr,j = 0, (4.10)

ψn
i,2 − ψn

i,1 = 0; ψn
i,1 + ψn

i,2 = 0 ⇒ ψn
i,1 = ψn

i,2 = 0, (4.11)

ψn
i,Nz

− ψn
i,Nz−1 = 0; ψn

i,Nz−1 + ψn
i,Nz

= 0 ⇒ ψn
i,Nz

= −ψn
i,Nz−1 = 0, (4.12)

where ψn
i,j = ψ[xi, yj, tn = (n− 1)τ ], i = 1, . . . , Nr, j = 1, . . . , Nz, n = 1, 2, . . .

4.3 Results

The developed here numerical method to have new evidences to corroborate

the characteristic of the function Φ on the Taylor-Couette flow are applied. The case
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when both end plates rotate with the same angular velocity, while independently from

the inner cylinder and the outer cylinder is held at rest is considered. The Re = 80,

η = 0.5, Γ = 2 and Ω = 0, 1 are fixed.

The results from numerical simulations in terms of ψ−J for the axisymmetric

flow are presented and compared with the numerical results in Aristov-Pukhnechev’s

form. Table 4.1 represents the comparison maximum values of the stream function

and angular momentum. The contour of streamlines for Ω = 0 and Ω = 1 are shown

in Figure 4.1 which generated using either grid 32 × 62. In Figures 4.2 and 4.3, the

values of the function Φ on the boundaries are marked with different lines:

ψ−J ’s form; · · ·· Aristov-Pukhnechev’s form. Note that the function Φ is computed

from ψ after the iteration converge. They are in close agreement with computation

data from Aristov-Pukhnechev’s form.

Table 4.1 Comparison of ψ̃max = ψmax/Re and Jmax for the values Ω = 0, 1 and

Re = 80, Γ = 2.

Reference Ω = 0 Ω = 1

ψ̃max Jmax ψ̃max Jmax

Present 0.04237 119.732 0.09976 472.341

Aristov–Pukhnachev’s form 0.04249 119.729 0.10002 472.318

Abshagen et al. (2004) 0.04270 – 0.10014 –
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Figure 4.1 Contour plots of stream function at Γ = 2, η = 0.5, and Re = 80.
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Figure 4.2 ‘Exact’ calculated boundary values of Φ(1, z) in the case Re = 80,

η = 0.5, and Γ = 2 for Ω = 0 and Ω = 1.
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Figure 4.3 ‘Exact’ calculated boundary values of Φ(2, z) in the case Re = 80,

η = 0.5, and Γ = 2 for Ω = 0 and Ω = 1.

4.4 Conclusion

The results of this chapter shown suffice to illustrate that the new formulation

of the Navier-Stokes equation purposed by Aristov and Pukhnachev (2004) can be

used to simulate the axisymmetric flow. The simulation uncovered here can be used

to corroborate the geometric structure of the boundary of the function Φ in Chapter

III.
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CHAPTER V

FINITE DIFFERENCE FOR NEW FORM OF

THE NAVIER-STOKES EQUATIONS FOR 2D

PLANE FLOW

In the present work, a finite-difference method is developed for a new form

of the Navier-Stokes equations proposed by Pukhnachev (2004) who introduces a

new function that is related to the pressure and stream function. The scheme and

algorithm treat the equations as a coupled system which allows one to satisfy two

conditions for the stream function with no condition on the new function. The

numerical algorithm is applied to the lid-driven cavity flow as the benchmark problem.

The characteristic of this flow was adequately represented by the new numerical

model.

5.1 Introduction

In the present study, the NSEs in terms of new variables for the 2D plane vis-

cous incompressible flow had been introduced. The idea of Aristov and Pukhnachev

(2004) and Pukhnachev (2004) for the cases of 2D axisymmetric and 2D plane mo-

tions were followed. The 2D NSEs in terms of the new functions contain one transport

equation for the stream function and one elliptic equation for the new unknown vari-

able. This system resembles the vorticity and stream function’s form but the physical

meaning of the coupling function is different.

It may be worthwhile to briefly mention why the 2D flow is important. It has



108

applications in the industry (e.g. progressive cavity pumps) and important to the

scientific world, specifically in fluid mechanics. In general, a viscous fluid flow inside

a driven cavity has been a common experiment approach used to check or improve

numerical techniques (see for example, Botella and Peyret, 1998; Spotz 1998; Christov

and Marinava, 2001; Bruneau and Saad, 2006).

The content of this chapter is organized as follows. In the next section, a

new formulation of the NSEs with the no-slip boundary conditions was derived. Sec-

tion 5.3 briefly describes the problem used for the test case and detailed description

of numerical algorithm. The results of validation of the finite difference scheme are

presented in Section 5.4. The detailed comparisons with available numerical and

experimental data are made.

5.2 New Formulation of the Navier-Stokes equations

To make presentation self completed first demonstrate the transformation of

the viscous incompressible NSEs to a new form. The 2D plane viscous incompressible

flow is governed by the NSEs in the Cartesian coordinate system (x, y),

ut + uux + vuy = −1

ρ
px + ν

(
uxx + uyy

)
, (5.1)

vt + uvx + vvy = −1

ρ
py + ν

(
vxx + vyy

)
, (5.2)

ux + vy = 0, (5.3)

where u and v are the velocity components in x− and y−directions, respectively;

p is the pressure, ρ is the fluid density, and ν is the kinematic viscosity. The fluid

is subjected to potential external forces. In 2D, the constrain of incompressibility

∇ · v̄ = 0 can be satisfied exactly by expressing the velocity vector in terms of the

stream function ψ according to

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (5.4)



109

A new form is based on the following observation. The substitution of equation (5.4)

into equation (5.1) yields

∂

∂y
(ψt − ψxψy − ν∆ψ) +

∂

∂x

(
1

ρ
p + ψ2

y

)
= 0, (5.5)

where

∆
def
=

∂2

∂x2
+

∂2

∂y2
.

Therefore, there is a function Φ satisfies the relations

1

ρ
p = −ψ2

y + Φy, (5.6)

and

ψt − ψxψy + Φx = ν∆ψ. (5.7)

Differentiating equation (5.6) and equation (5.7) with respect to y and x, respectively,

and substituting the resulting expressions into (5.2), where u and v are expressed in

terms of ψ obtaining

∆Φ = 2ψy∆ψ. (5.8)

The main target of recent work is to develop and validate a finite-difference scheme

to approximate solution of problems (5.7)–(5.10). The case of the no-slip conditions

satisfied at the boundary of the flow domain will be considered only. In terms of the

function ψ only, boundary conditions are

ψ = 0,
∂ψ

∂n
= b(x, y), (5.9)

where
∂ψ

∂n
means derivative in the direction of the normal vector to the boundary.

To complete the formulation of the problem it is necessary to specify the initial

conditions

ψ = ψ0(x, y), Φ = Φ0(x, y), t = 0. (5.10)
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5.3 Numerical Technique

The standard benchmark problem for testing the 2D NSEs is the driven cavity

flow as shown in Figure 5.1. The fluid contained inside a squared cavity is set into

motion by the top wall which is sliding at constant velocity from left to right. Let

L be the characteristic length scale associated with the cavity geometry and U be

the characteristic velocity scale associated with the moving boundary. The non-

Primary eddy

Bottom left
secondary eddy

Bottom right
secondary eddy

U

Figure 5.1 Square cavity with an infinitely long plate.

dimensional parameter of the problem is

Re =
LU

ν
, (5.11)

is the Reynolds number. The system of equations (5.1)–(5.3) is rendered dimension-

less as follows

x =
x∗

L
, y =

y∗

L
, t =

t∗ν
L2

, u =
u∗

U
, v =

v∗

U
. (5.12)

To discuss the detail of numerical algorithm, the lid-driven cavity flow is considered.

The domain Q = {0 6 x 6 1, 0 6 y 6 1}, is covered with a uniform staggered grid

Qh = {(xi, yj)|xi = (i− 1.5)hx, yj = (j − 1.5)hy, i = 1, . . . , Nx, j = 1, . . . , Ny}
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with spacings

hx =
1

Nx − 2
, hy =

1

Ny − 2
,

in the x− and y−directions, respectively. Such grid allows one to use the central

differences to approximate boundary conditions with the second-order on two-point

stencils.

The essential element of the proposed here algorithm is that equations (5.7)

and (5.8) for ψ and Φ are considered as a coupled system. Note that ψ and Φ are

evaluated on the full-time steps. This formulation is based on the idea of regarding

the two boundary conditions for ψ as actual conditions for the ψ − Φ system. The

second-order central-difference approximations for the operators in equations (5.7)

and (5.8) are employed. The system of difference equations is

ψn+1
i,j − ψn

i,j

τ
−Re

(ψn
i+1,j − ψn

i−1,j)(ψ
n+1
i,j+1 − ψn+1

i,j−1) + (ψn+1
i+1,j − ψn+1

i−1,j)(ψ
n
i,j+1 − ψn

i,j−1)

8hxhy

+ Re

(
Φn+1

i+1,1 − Φn+1
i−1,j

)

2hx

=
1

2

(4ψn+1
i,j +4ψn

i,j

)
, (5.13)

4Φn+1
i,j =

1

2hy

[
(ψn

i,j+1 − ψn
i,j−1)4ψn+1

i,j + (ψn+1
i+1,j − ψn+1

i−1,j)4ψn
i,j

]
,

i = 2, . . . , Nx − 1, j = 2, . . . , Ny − 1. (5.14)

The boundary conditions are written in the following form

ψn+1
2,j + ψn+1

1,j

2
= 0,

ψn+1
2,j − ψn+1

1,j

hx

= 0,

ψn+1
Nx,j + ψn+1

Nx−1,j

2
= 0,

ψn+1
Nx,j − ψn+1

Nx−1,j

hx

= 0,

j = 1, . . . , Ny,

ψn+1
i,2 + ψn+1

i,1

2
= 0,

ψn+1
i,2 − ψn+1

i,1

hy

= 0,

ψn+1
i,Ny

+ ψn+1
i,Ny−1

2
= 0,

ψn+1
i,Ny

− ψn+1
i,Ny−1

hy

= 1,

i = 1, . . . , Nx.

(5.15)

Equations (5.13)–(5.15) are a coupled system of a linear equation. To combine equa-

tions (5.13)–(5.15) as a single linear system with a banded matrix, two new indices
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are introduced as follows

k(i,j) = 2(j − 1)Nx + 2i− 1, i = 1, . . . , Nx,

m(i,j) = 2(j − 1)Nx + 2i = k(i,j) + 1, j = 1, . . . , Ny.

Each node (i, j) of the grid Qh associates with two indices k(i,j) and m(i,j). An index

k(i,j) is an odd number and an index m(i,j) is an even number. It is easy to see that

k(i+1,j) = k(i,j) + 2, k(i,j+1) = k(i,j) + 2Nx,

k(i−1,j) = k(i,j) − 2, k(i,j−1) = k(i,j) − 2Nx,

(5.16a)

m(i+1,j) = m(i,j) + 2, m(i,j+1) = m(i,j) + 2Nx,

m(i−1,j) = m(i,j) − 2, m(i,j−1) = m(i,j) − 2Nx.

(5.16b)

Now, a new grid function σk is introduced. It is defined on the composite grid where

σk represents ψi,j and σm(= σk+1) represents Φi,j. Substituting σk instead ψi,j and

substituting σm instead Φi,j into equations (5.13)–(5.14), the algebraic system can be

recast as the following form

σn+1
k − σn

k

τ
+

Re

8hxhy

[ (
σn

k+2 − σn
k−2

) (
σn+1

k+2Nx
− σn+1

k−2Nx

)
+

(
σn+1

k+2 − σn+1
k−2

)

(
σn

k+2Nx
− σn

k−2Nx

) ]
− Re

2hx

(
σn+1

k+1 − σn+1
k−3

)
=

1

2

(
∆σn+1

k + ∆σn
k

)
,

(5.17a)

∆σn+1
m =

(σn
m+2Nx−1 − σn

m−2Nx−1)

2hy

∆σn+1
m−1 +

(σn+1
m+2Nx−1 − σn+1

m−2Nx−1)

2hy

∆σn
m−1, (5.17b)

where

∆σk =
(σk+2 − 2σk + σk−2)

h2
x

+
(σk+2Nx − 2σk + σk−2Nx)

h2
y

.

Since the straightforward implementation of the algorithm leads to a problem

with a numerically singular matrix. There are different ways to regularize the prob-

lem. Adding a small term at the boundary gives the best results is found. According
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to this idea, equation (5.15) can be rewritten for the function σ as follows

σn+1
k + σn+1

k+2

2
= 0,

σn+1
m+1 − σn+1

m−1

hx

= −εσn+1
m , i = 1, j = 1, . . . , Ny, (5.18a)

σn+1
k + σn+1

k−2

2
= 0,

σn+1
m−1 − σn+1

m−3

hx

= −εσn+1
m , i = Nx, j = 1, . . . , Ny, (5.18b)

σn+1
k + σn+1

k+2Nx

2
= 0,

σn+1
m+2Nx+1 − σn+1

m−1

hy

= 0, j = 1, i = 1, . . . , Nx, (5.18c)

σn+1
k + σn+1

k−2Nx

2
= 0,

σn+1
m−1 − σn+1

m−2Nx−1

hy

= 1, j = Ny, i = 1, . . . , Nx. (5.18d)

If the steady flow is needed then the algorithm can be considered as an iterative

procedure. Iterations are terminated at the certain time n = N when the following

criterion is satisfied

maxi,j

∣∣σN+1
i,j − σN

i,j

∣∣
maxi,j

∣∣σN+1
i,j

∣∣ 6 10−8.

Note that the linear system for the coupled formulation of the ψ−Φ problem can be

written as the following multi-diagonal system for the composite grid function σ

Bl−2Nx−1σ
n+1
l−2Nx−1 + Bl−2Nxσ

n+1
l−2Nx

+ Bl−3σ
n+1
l−3 + Bl−2σ

n+1
l−2

+ Bl−1σ
n+1
l−1 + Blσ

n+1
l + Bl+1σ

n+1
l+1 + Bl+2σ

n+1
l+2

+ Bl+2Nx−1σ
n+1
l+2Nx−1 + Bl+2Nxσ

n+1
l+2Nx

+ Bl+2Nx+1σ
n+1
l+2Nx+1 = Fl, (5.19)

where l = 1, . . . , 2NyNx. The matrix of the linear system (5.19) is banded with

2Nx +1 lower and upper bandwidths. The standard routings DGBSV and DGBSVX

of the LAPACK routine are used to compute the solution of equation (5.19).

5.4 Results

A validation test involves the 2D cavity flow at the Reynolds number up to

1000, wherein the flow is laminar and steady. Computations were performed for the

lid-driven cavity problem on the grids 32× 32 up to 102× 102.
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The coupling for the latter system is crucial because of the lack of boundary

conditions for the new function and the presence of two boundary conditions for

the stream function. After special renumbering the grid points, the coupled system

was formulated as a single system and solved by LAPACK routine. To avoid the

singularity, small parameter ε was added in part of the Neumann boundary condition.

The impact of ε on the results was judiciously evaluated by numerical experiments

and shown that for ε ∈ [10−10, 10−4] the approximate solution agreed with know test

case.

In order to validate the scheme, the extrema values of the stream function and

space location were compared with Botella and Peyret (1998), Christov and Marinova

(2001), Bruneau and Saad (2006). Table 5.1 reports the characteristics of the primary

and right bottom secondary eddies at Re = 100 and Re = 1000. These tables show

the extrema values of ψ and the space location of the extrema values of ψ. Top

rows present the quantities obtained from simulation. Then bottom rows display the

quantities obtained by the other authors. For the primary vortex in cases Re = 100

and 1000, the numerical results agree within 5% with those obtained by the other

authors. For the secondary vortex in case Re = 1000 with the grids 52 × 52 agree

within 5% with Christov and Marinova (2001) but differ significantly up to 10% with

those obtained by Botella and Peyret (1998). The geometrical structures of the flow

are displayed in Figures 5.2 and 5.3 that were generated on grid 102 × 102. Note

that the values of u (velocity along x−direction), v (velocity along y−direction), and

vorticity ω were computed from ψ after the iteration converge. The values of u, v,

and ω inside the domain were approximated using central-difference scheme while the

values of u, v, and ω on the boundary were approximated using one side first-order

difference scheme.

In Figure 5.4, the centerline u− and v−velocity profiles were compared with
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data of Ghia, Ghia, and Shin (1982). The computational had been done for the

Reynolds number Re = 1000 with the grid 102 × 102. The velocity profiles are

similar to the data of Ghia, Ghia, and Shin (1982).
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Figure 5.2 Stream function ψ, vorticity ω, u, and v contours for the lid-driven cavity

flow at Re = 100.
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Figure 5.3 Stream function ψ, vorticity ω, u, and v contours for the lid-driven cavity

flow at Re = 1000.
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Figure 5.4 Vertical centerline u−profile and horizontal centerline v−profile for the

lid-driven cavity flow at Re = 1000.
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Re=200 Re=300
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Figure 5.5 Contours of Φ for the lid-driven cavity flow.
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Figure 5.5 shows the contour of a function Φ to understand the behavior of

the function Φ for the different Reynolds number. Pattern of contour lines of Φ were

drawn for the several Reynolds numbers, Re = 50, 100, 200, 300, 500, and 1000. The

set of figures was generated on the grid 52× 52 with the parameter ε = 10−6.

5.5 Conclusion

The finite-difference scheme developed and validated for the new formulation

for the 2D Navier-Stokes equations proposed in Pukhnachev (2004). The new numer-

ical algorithm demonstrated good accuracy and reasonable efficient for the lid-driven

cavity was applied. The results of numerical experiments shown that the new formu-

lation is a viable approach to the 2D Navier-Stokes flow.
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CHAPTER VI

CONCLUSIONS

In this last chapter, first the major contributions made in this research are

summarized, and then conclusions are drawn from the presented results. Finally,

recommendations are presented for future research efforts.

6.1 Contributions

The contributions made in this research can be categorized as follows:

(i) Development of three finite-difference schemes for the 2D incompressible Navier-

Stokes in terms of the stream function using the Crank-Nicolson approximation

of the bi-harmonic term and differ by approximation of nonlinear convective

terms

(ii) Application of these methods to the lid-driven cavity flow up to Re = 10000

(iii) Development of the novel finite-difference schemes for a new form of the Navier-

Stokes equation proposed by Aristov and Pukhnachev (2004) and Pukhnachev

(2004)

(iv) Application of these novel finite-difference schemes to the Taylor-Couette flow

between two rotating cylinders when the lids are also allowed to rotate

(v) Application of these novel finite-difference schemes to the lid-driven cavity flow

up to Re = 1000
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First, three algorithms for the 2D incompressible Navier-Stokes equations have

been presented. All terms of the Navier-Stokes equations are approximated by the

central finite-differences and the idea of the Crank-Nicolson approach utilized to

the bi-harmonic operator. Nonlinear terms are approximated by an explicit way

(explicit scheme), an operator splitting technique (operator splitting scheme), and

use of internal iteration on nonlinearity in third scheme (internal iteration scheme).

The operator splitting scheme is absolutely stable. The explicit scheme and internal

iteration scheme have simple computer realization. All three schemes have been

compared on a benchmark problem of the lid-driven cavity flow. For the moderate

Reynolds numbers up to 3000, three schemes have good accuracy and the maximum

value of time increment to get convergence is smallest for an explicit scheme but

largest for an internal iteration scheme. For the higher Reynolds number greater

than 3000, the operator splitting scheme does not work on a coarse grid and the

internal iteration scheme demonstrate the best performance. The explicit scheme

requires a large computational time due to a small time increment.

Second, a new formulation of the 2D Navier-Stokes equations is derived ac-

cording to Aristov and Pukhnachev (2004) and Pukhnachev (2004). A introduced

new function is related to the pressure and a system that is similar to the vortic-

ity/stream function formulation is derived. A novel numerical algorithm for the new

form of the Navier-Stokes equations has been developed. The scheme and algorithm

treat equations for the stream function and new unknown function as an inextricably

coupled system which allows one to satisfy two boundary conditions for the stream

function with no condition on the auxiliary function. The issue of singularity of

the matrix is tackled by adding a small parameter in the boundary conditions. The

scheme is thoroughly validated on girds with different resolutions.
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The new numerical tool is applied to the Taylor flow between concentric rotat-

ing cylinders when the upper and lower lids are allowed to rotate independently from

the inner cylinder, while the outer cylinder is held at rest. The phenomenology of

this flow is adequately represented by the numerical model, including the hysteresis

that takes place near the certain specific values of the Reynolds number.

Finally, the presented finite-difference scheme is applied to the lid-driven cav-

ity. Thus the numerical results demonstrate the viability of the new model.

6.2 Conclusions

The following conclusions can be drawn from the present work.

First, for very high Reynolds numbers the nonlinearity of the Navier-Stokes

equations and the implicit nature of the continuity condition can turn out to the

rather different from theoretical properties. The internal iteration scheme shown

better properties compare with the operator splitting scheme for which absolute sta-

bility have been proven.

Second, the steady solutions of the lid-driven cavity flow problem have been

received by the internal iteration scheme up to Re=10000.

Third, the new formulation for 2D plane and axisymmetric Navier-Stokes flows

proposed by Aristov and Pukhnachev (2004) and Pukhnachev (2004) is implemented

numerically.

Fourth, the present dissertation shows that the Aristov-Pukhnachev’s formu-

lation is a viable approach for 2D plane and axisymmetric Navier-Stokes flows and

can serve as a basis for efficient numerical models.

Finally, the proposed technique can be used in the future for in-depth investi-

gations of the bifurcation phenomena in rotating flows.
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6.3 Recommendations for future research

The following recommendations can be given for future research based on the

current work. As the first category, convergence acceleration techniques for internal

iteration scheme are suggested for further developed. Even though the current in-

ternal iteration scheme allows to get solution up to Re=10000 the fervor research is

required for higher Reynolds number.

As the second category, the developed method for the new form of the Navier-

Stokes equations can be applied to a numerical simulation of more complicated flow

problem such as, the axisymmetric flow past body or the two-dimensional flow past

circular cylinder.

As the last category, further investigation of developed methods is encour-

aged. The success can be attributed to the adequate physical nature of the auxiliary

function.
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APPENDIX A

DEFINITIONS OF MAIN TENSOR

OPERATIONS IN THE CURVILINEAR

COORDINATE SYSTEM

For the sake of simplicity we consider here coordinates in three-dimensional

Euclidean space R3. All facts and definitions are valid in arbitrary space Rn.

A set of triples (K1, K2, K3), where K1, K2, K3 are real numbers, is called an

arithmetic spaces A3. For all elements of A3 the operations of summation, subtrac-

tion and multiplication by a scalar, and dot product are defined by usual way. For

example,

(K1, K2, K3) · (L1, L2, L3) = K1L1 + K2L2 + K3L3.

Let Ω ⊂ R3(x̄) be an open set. A one-to-one and reciprocal continuously

differentiable mapping K : Ω −→ A3 is called a coordinate system. This mapping is

defined by the formula

x̄ → K(x̄) = (K1(x̄), K2(x̄), K3(x̄)).

The values of the functions Ki(x̄) are called the coordinates (curvilinear coordinates)

of the point x̄.

For any fixed point x0 the equation K i(x̄) = K i(x̄)0 determines a coordinate

surface Πi ⊂ R3. This coordinate surface passes through the point x̄0. Any pair

Πi, Πj of these surfaces is intersected along the curves

l1 = Π2 ∩ Π3, l2 = Π3 ∩ Π1, l3 = Π1 ∩ Π2,
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which are called coordinate curves (or curvilinear axes of coordinates). Along the

li-line only the coordinate K i is changed; two other coordinates are constants. Let a

point x̄ ∈ Ω be fixed. At this point there are vectors

ēi =
∂x̄

∂K i
, ē i =

∂Ki

∂x̄
= ∇Ki, (i = 1, 2, 3), (A.1)

which form a basis {ēi} and cobasis {ē i} in R3. These bases are called a coordinate

basis and cobasis of the coordinate system K at the point x̄. A vector ēi is a tangent

vector to the coordinate line li. The vector ēi are normal to the coordinate surface

Πi. A vector v̄ can be decomposed along either basis or cobasis vectors

v̄ = viē
i = viēi.

The components vi are called covariant components of the vector v̄ and the compo-

nents vi are called contravariant components of the vector v̄. A coordinate system is

called orthogonal (at a point or on a set) if its basis is orthogonal (at the point or on

the set).

ēi · ēj = 0, ē i · ē j = 0, (i 6= j).

The fundamental tensor and its inverse are defined by

gij = ēi · ēj, gij = ē i · ē j. (A.2)

Coordinates of the fundamental tensor g with respect to an orthogonal coordinate

system are

(gij) =




g11 0 0

0 g22 0

0 0 g33




, (gij) =




g11 0 0

0 g22 0

0 0 g33




,

where

gii = |ēi|2 =

∣∣∣∣
∂x̄

∂Ki

∣∣∣∣
2

, gii =
∣∣ē i

∣∣2 =
∣∣∇Ki

∣∣2 , i = 1, 2, 3; |g| = [ē1 · (ē2 × ē3)]
2 .
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Vectors of a coordinate basis {ēi} depend on x̄ or on (K1, K2, K3) = K(x̄). The

derivatives of the basis vectors can be represented in terms of the basis {ēi}

∂ēi

∂Kj
= Γs

ij ēs,

where the coefficients Γs
ij are called Christoffel’s symbols of second-order. Note that

the Christoffel’s symbols are not components of any tensor. These symbols are sym-

metric with respect to lower indices

Γs
ij = Γs

ji.

A dual formula for the representation of the Christoffel’s symbols is

∂ē i

∂Kj
= −Γi

jsē
s.

The Christoffel’s symbols are related to the derivatives of the fundamental tensor

Γl
ij =

1

2

(
∂gis

∂Kj
+

∂gjs

∂Ki
− ∂gij

∂Ks

)
gls. (A.3)

Note that

Γs
is =

1√
|g|

∂
√
|g|

∂Ki
, (i = 1, 2, 3),

where |g| = det(gij). Covariant derivatives are expressed in terms of partial deriva-

tives with respect to corresponding coordinates, Christoffel symbols and components

of a tensor. The simplest are covariant derivatives of a scalar field F which coincide

with the usual partial derivatives

F,i =
∂F

∂Ki
.

The covariant derivatives of the covariant and contravariant components of a second

order tensor Φ are

Φij,l =
∂Φij

∂K l
− Γs

liΦsj − Γs
ljΦis,

Φij
,l =

∂Φij

∂K l
+ Γi

lsΦ
sj + Γj

lsΦ
is.

(A.4)
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Similarly, the covariant derivatives of the mixed components are

Φ.j
i.,l =

∂Φ.j
i.

∂K l
− Γs

liΦ
.j
s. + Γj

lsΦ
.s
i. ,

Φj.
.i,l =

∂Φj.
.i

∂K l
− Γs

liΦ
j.
.s + Γj

lsΦ
s.
.i .

(A.5)

In the above equations and everywhere below, a comma with an index in a subscript

denotes covariant differentiation. A derivative of the vector field v̄ is the second order

tensor which is denoted by the symbol

(
∂v̄

∂x̄

)
. Covariant and mixed coordinates of

the

(
∂v̄

∂x̄

)
are

(
∂v̄

∂x̄

)

ij

=
∂vi

∂Kj
− Γs

ijvs = vi,j,

(
∂v̄

∂x̄

)i

,j =
∂vi

∂Kj
+ Γi

jsvs = vi
,j.

(A.6)

The divergence of a vector field v̄ is a scalar

divv̄ = tr

(
∂v̄

∂x̄

)
= ei

(
∂v̄

∂x̄

)
〈ei〉 .

The divergence can be expressed in terms of the covariant derivatives of the con-

travariant components of vector field v̄

div v̄ = vi
,i =

∂vi

∂K i
+ Γi

isv
s =

∂vi

∂Ki
+

vi

√
|g|

∂
√
|g|

∂Ki
=

1√
|g|

∂

∂Ki

(√
|g|vi

)
. (A.7)

The vector

∇F =
∂F

∂x̄
=

∂F

∂K i
ē i

is called a gradient of the scalar function F . Covariant components of the gradient

vector are

(∇F )i = F,i =
∂F

∂K i
. (A.8)

The scalar

4F = div (∇F ) = ((∇F )i),i = (gis(∇F )s),i =
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=

(
gis ∂F

∂Ks

)

,i

= gis

(
∂F

∂Ks

)

,i

= gis

[
∂2F

∂Ks∂Ki
− Γα

is

∂F

∂Kα

]

is called the Laplace operator of the scalar function F . We can rewrite this formula

in the following form

4F =
1√
|g|

∂

∂Ki

(√
|g|gis ∂F

∂Ks

)
. (A.9)

A curl of a vector v̄ is a vector

curl v̄ = E−1

〈(
∂v̄

∂x̄

)
−

(
∂v̄

∂x̄

)∗〉
.

For obtaining contravariant components of this vector there is

E 〈curl v̄〉 =

(
∂v̄

∂x̄

)
−

(
∂v̄

∂x̄

)∗
.

In one uses a right-handed basis, then ε123 = ē1 · (ē2 × ē3) =
√
|g|, the contravariant

components of curl v̄ are

(curl v̄)1 =
1√
|g|

(
∂v3

∂K2
− ∂v2

∂K3

)
,

(curl v̄)2 =
1√
|g|

(
∂v1

∂K3
− ∂v3

∂K1

)
,

(curl v̄)3 =
1√
|g|

(
∂v2

∂K1
− ∂v1

∂K2

)
.

(A.10)

The divergence of a tensor is a vector. The s-th contravariant component of this

vector is

(div P )s = P sj
,j = div (P

s
) + Γs

jαP jα (A.11)

where P
s

= (P s1, P s2, P s3) is s-th row of a matrix which represents second-order

tensor P and

div (P
s
) =

∂P sj

∂Kj
+ Γj

jαP sα.

The vector

∆v̄ = div

(
∂v̄

∂x̄

)
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is called the Laplace operator of the vector v̄. Contravariant components of this

vector are

(4v̄)l = gij

((
∂v̄

∂x̄

)l.

.j

)

,i

= gij(vl
,i),j = gij

[
∂vl

,i

∂Kj
− Γs

jiv
l
,s + Γl

jsv
s
,i

]
=

= gij

[(
∂2vl

∂Kj∂Ki
+

∂Γl
is

∂Kj
vs + Γl

is

∂vs

∂Kj

)
− Γs

ji

(
∂vl

∂Ks
+ Γl

sαvα

)

+Γl
js

(
∂vs

∂Ki
+ Γs

iαvα

) ]
.

After regrouping, one has

(4v̄)l = (4vl) + 2gijΓl
is

∂vs

∂Kj
+ gij

(
∂Γl

is

∂Kj
− Γα

jiΓ
l
αs + Γl

jαΓα
is

)
vs (A.12)

where (4vl) = gij

[
∂2vl

∂Kj∂Ki
− Γs

ji

∂vl

∂Ks

]
is the Laplace operator of scalar function vl.

The vector

dv̄

dt
=

∂v̄

∂t
+

∂v̄

∂x̄
〈v̄〉

Covariant and contravariant components of the acceleration are

(
dv̄

dt

)

i

=
∂vi

∂t
+ vsvi,s =

∂vi

∂t
+ vs ∂vi

∂Ks
− Γj

isv
svj,

(
dv̄

dt

)i

=
∂vi

∂t
+ vsvi

.,s =
∂vi

∂t
+ vs ∂vi

∂Ks
+ Γi

jsv
jvs.

(A.13)

If vectors of coordinate bases and cobases are not normed, then components of tensors

have different numerical values in different bases even if directions of basis vectors

coincides. Numerical values of tensor components divided by the length of corre-

sponding basis or cobasis vectors, which define these components are called physical

components of the tensor. For example, if ai = āēi are covariant coordinates of a

vector ā, then the physical components are

ãi =
ai

|ēi| , (A.14)
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the covariant components of a tensor Lij related with the physical components as

L̃ij =
Lij

(|ēi| |ēj|) . (A.15)



APPENDIX B

THE CYLINDRICAL COORDINATE SYSTEM

The transformation K from the rectangular coordinates to the cylindrical co-

ordinates can be expressed as

K1 =
√

x2 + y2, K2 = arctan
y

x
, K3 = z,

where the inverse mapping K−1 is

x = r cos θ, y = r sin θ, z = z, (0 ≤ θ ≤ 2π).

Coordinate surfaces r = const > 0 are circular cylinders (coaxial to z−axis), θ =

const are half-planes passing through z−axis and z = const are planes perpendicular

to z−axis. Coordinate curves are: l1 (intersection of θ = const and z = const) are

straight rays going from z−axis and perpendicular to it; l2 (intersection of r = const

and z = const) are circles (these circles lie on the planes, which are perpendicular to

z−axis with a center in the z−axis); l3 (intersection of r = const and θ = const) are

straight lines that are parallel to z−axis.

The basis and cobasis of the cylindrical coordinate system are orthogonal and

consist of the vectors

e1 =
∂x

∂K1
=

(
∂x

∂r
,
∂y

∂r
,
∂z

∂r

)
= (cos θ, sin θ, 0),

e2 =
∂x

∂K2
=

(
∂x

∂θ
,
∂y

∂θ
,
∂z

∂θ

)
= r(− sin θ, cos θ, 0),

e3 =
∂x

∂K3
=

(
∂x

∂z
,
∂y

∂z
,
∂z

∂z

)
= (0, 0, 1),

e1 =
∂K1

∂x
=

(
∂K1

∂x
,
∂K1

∂y
,
∂K1

∂z

)
= (cos θ, sin θ, 0),
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e2 =
∂K2

∂x
=

(
∂K2

∂x
,
∂K2

∂y
,
∂K2

∂z

)
=

1

r
(− sin θ, cos θ, 0),

e3 =
∂K3

∂x
=

(
∂K3

∂x
,
∂K3

∂y
,
∂K3

∂z

)
= (0, 0, 1).

Hence,

e1 = (cos θ, sin θ, 0), e2 = r(− sin θ, cos θ, 0), e3 = (0, 0, 1),

e1 = (cos θ, sin θ, 0), e2 =
1

r
(− sin θ, cos θ, 0), e3 = (0, 0, 1).

The fundamental tensor is

(gij) =




1 0 0

0 r2 0

0 0 1




, (gij) =




1 0 0

0
1

r2
0

0 0 1




, |g| = r2.

The Christoffel symbols (A.3) for the cylindrical coordinate system are

Γ2
12 = Γ2

21 =
1

r
, Γ1

22 = −r

and all others are equal to zero. For example,

Γ2
12 =

1

2
g2s

(
∂g1s

∂K2
+

∂g2s

∂K1
− ∂g12

∂Ks

)
=

1

2
g22

(
∂g12

∂K2
+

∂g22

∂K1
− ∂g12

∂Ks

)
=

1

2

1

r2
2r =

1

r
.

For the permutation tensor is ε123 = r with

ε123 = ε231 = ε321 = −ε321 = −ε213 = −ε132.

Since cylindrical coordinate system is orthogonal, then all physical components

of any type coincide. Let (u, v, w) be physical components of a vector v, then the

tensor components of the vector v are

(v1, v2, v3) = (u,
v

r
, w), (v1, v2, v3) = (u, rv, w).

We remind that physical components of a vector are related with covariant compo-

nents by the formulae:

ṽ2 =
v2

|e2| =
v2

r
, v2 = rṽ2 = rv.
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Let P ij are contravariant components of a second order tensor P. The physical com-

ponents of P̃ ij are

P̃ ij =
P ij

(|ei||ej|) .

For examples of the cylindrical coordinate system are

P̃ 21 =
P 21

(|e2||e1|) = rP 21, P 21 =
1

r
P̃ 21 =

1

r
Pθr.

Hence, if the physical components of a tensor P are

P =




Prr Prθ Prz

Pθr Pθθ Pθz

Pzr Pzθ Pzz




,

then contravariant components of the tensor P are

(P ij) =




Prr
1
r
Prθ Prz

1
r
Pθr

1
r2 Pθθ

1
r
Pθz

Pzr
1
r
Pzθ Pzz




.

The coordinates of the gradient of a function F is

(∇F )1 = (∇F )1 =
∂F

∂r
,

(∇F )2 =
∂F

∂θ
, (∇F )2 =

1

r2

∂F

∂θ
,

(∇F )3 = (∇F )3 =
∂F

∂z
.

A matrix of covariant derivatives

Φi
,j =

∂Φi

∂Kj
+ Γi

jsΦ
s

is (here i is the number of a row)

(vi
,j) =




∂u

∂r

∂u

∂θ
− v

∂u

∂z
1

r

∂v

∂r

1

r

∂v

∂θ
+

v

r

1

r

∂v

∂z
∂w

∂r

∂w

∂θ

∂w

∂z




.
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Because

div v =
1√
g

∂

∂Ki

(√
gvi

)
,

the divergence of a vector v can be expressed as follows

∇ · v =
1

r

∂(ru)

∂r
+

1

r

∂v

∂θ
+

∂w

∂z
.

Similar for the Laplace operator of a function F in expression (A.9) hence,

4F =
1

r

∂

∂r

(
r
∂F

∂r

)
+

1

r2

∂2F

∂θ2
+

∂2F

∂z2
.

Here we use the representation (A.10) for contravariant components of curl of a vector

v leading to

ω1 =
1

r

∂w

∂θ
− ∂v

∂z
, ω2 =

1

r

∂w

∂z
− 1

r

∂w

∂r
, ω3 =

1

r

∂(rv)

∂r
− 1

r

∂u

∂θ
.

The divergence of a tensor P is a vector with contravariant components. By using

equation (A.11), yields

(div P )1 = div (P
1
)− 1

r
Pθθ, P

1
= (Prr,

1

r
Prθ, Prz),

(div P )2 = div (P
2
) +

1

r2
(Prθ + Pθr), P

2
= (

1

r
Pθr,

1

r2
Pθθ,

1

r
Pθz),

(div P )3 = div (P
3
), P

1
= (Pzr,

1

r
Pzθ, Pzz).

Therefore,

(div P )1 =
1

r

∂

∂r
(rPrr) +

1

r

∂

∂θ
(Prθ) +

∂

∂z
(Prz)− 1

r

∂

∂θ
(Pθθ),

(div P )2 =
1

r

∂

∂r
(Pθr) +

1

r2

∂

∂θ
(Prθ) +

1

r

∂

∂z
(Pθz) +

1

r2
(Prθ + Pθr),

(div P )3 =
1

r

∂

∂r
(rPzr) +

1

r

∂

∂θ
(Pzθ) +

∂

∂z
(Pzz).

The Laplace operator of a vector v is the vector with contravariant components

4 (v)1 = 4 (u)− 2

r2

∂v

∂θ
− u

r2
,
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4 (v)2 = 4
(v

r

)
+

2

r

(v

r

)
+

2

r3

∂u

∂θ
,

4 (v)3 = 4 (w).

The acceleration has the components

(
dv

dt

)1

= D(u)− v2

r
,

(
dv

dt

)2

=
1

r
D(v) +

uv

r2
,

(
dv

dt

)3

= D(w),

where

D(f) =
∂f

∂t
+ u

∂f

∂r
+

v

r

∂f

∂θ
+ w

∂f

∂z
.



CURRICULUM VITAE

NAME: Kanyuta Poochinapan. SEX: Female. NATIONALITY: Thai.

DATE OF BIRTH: March 25, 1977. MARITAL STATUS: Single.

EDUCATIONAL BACKGROUND:

- B. Sc. in Mathematics, Chiang Mai University, Chiang Mai, Thailand, 1999.

- M. Sc. in Applied Mathematics, Chiang Mai University, Chiang Mai, Thailand,

2001.

- Student (Non-degree), Department of Mathematics, University of Louisiana at

Lafayette, Lafayette, Louisiana, USA, August 2005 - July 2006.

WORK EXPERIENCE:

- Lecturer in Mathematics Department, Chiang Mai University, Chiang Mai,

Thailand since 2001.

SCHOLARSHIPS:

- The Ministry of University Affairs of Thailand (MUA), 2003-2005.


	Kanyuta_D4510444.pdf
	Main_new7777.pdf



