BIOLOGICAL STUDIES OF THE REPRODUCTIVE CYCLE AND THE EFFECTS OF PHOTOPERIOD UPON THE REPRODUCTIVE SYSTEM IN THE FEMALE NATIVE THAI CHICKEN

Sunantha Kosonsiriluk

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Environmental Biology Suranaree University of Technology

Academic Year 2007

การศึกษาชีววิทยาของวงจรการสืบพันธุ์และผลของช่วงแสงต่อระบบ การสืบพันธุ์ในไก่พื้นเมืองไทยเพศเมีย

นางสาวสุนันทา โกศลศิริลักษณ์

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรดุษฎีบัณฑิต สาขาวิชาชีววิทยาสิ่งแวดล้อม มหาวิทยาลัยเทคโนโลยีสุรนารี ปีการศึกษา 2550

BIOLOGICAL STUDIES OF THE REPRODUCTIVE CYCLE AND THE EFFECTS OF PHOTOPERIOD UPON THE REPRODUCTIVE SYSTEM IN THE FEMALE NATIVE THAI CHICKEN

Suranaree University of Technology has approved this thesis submitted in partial fulfillment of the requirements of the Degree of Doctor of Philosophy.

	Thesis Examining Committee
	(Asst. Prof. Dr. Griangsak Eumkeb)
	Chairperson
	(Asst. Prof. Dr. Yupaporn Chaiseha)
	Member (Thesis Advisor)
	(Prof. Dr. Mohamed El Halawani)
	Member
	(Asst. Prof. Dr. Rungrudee Srisawat)
	Member
	(Assoc. Prof. Dr. Thaweesak Songserm)
	Member
(Assoc. Prof. Dr. Saowanee Rattanaphani)	(Assoc. Prof. Dr. Prapan Manyum)
Vice Rector for Academic Affairs	Dean of Institute of Science

สุนันทา โกศลศิริลักษณ์: การศึกษาชีววิทยาของวงจรการสืบพันธุ์และผลของช่วงแสงต่อ ระบบการสืบพันธุ์ในไก่พื้นเมืองไทยเพศเมีย (BIOLOGICAL STUDIES OF THE REPRODUCTIVE CYCLE AND THE EFFECTS OF PHOTOPERIOD UPON THE REPRODUCTIVE SYSTEM IN THE FEMALE NATIVE THAI CHICKEN) อาจารย์ที่ปรึกษา: ผศ. ดร.ยุพาพร ใชยสีหา, 240 หน้า

การศึกษาการควบคุมด้วยระบบประสาทและระบบต่อมไร้ท่อและบทบาทของช่วงแสงต่อ ระบบสืบพันธุ์ของไก่พื้นเมืองไทยเพศเมียพบว่า ระดับของฮอร์โมนโปรแลกตินในพลาสมามีการ เปลี่ยนแปลงตามวงจรการสืบพันธุ์โดยมีระดับสูงสุดในไก่ที่อยู่ในระยะนั่งฟัก แต่ไม่พบการ เปลี่ยนแปลงของลูติในซิงฮอร์โมนในพลาสมาการศึกษาโดยใช้เทคนิคอิมมูโนฮิสโตเคมิสทรีพบว่า เซลล์ประสาทที่ผลิตวาโซแอกทีฟอินเทสทินอลเปปไทด์กระจายอยู่ทั่วทั้งสมองและพบมากที่สุดที่ สมองส่วนใดเอนเซฟาลอน โดยพบว่าจำนวนเซลล์ประสาทที่มีวาโซแอกทีฟอินเทสทินอลเปปไทด์ ที่บริเวณอินฟันดิบูลานิวเคลียร์คอมเพล็กซ์มีการเปลี่ยนแปลงตามวงจรการสืบพันธุ์และพบเป็น จำนวนมากในไก่ระยะนั่งฟักซึ่งสอดคล้องกับระดับของฮอร์โมนโปรแลกตินในพลาสมา ช่วงแสง อาจมีบทบาทต่อระบบสืบพันธุ์ของไก่พื้นเมืองไทย ผลที่ได้จากการศึกษาโดยรวมแล้วสรุปได้ว่า วาโซแอกทีฟอินเทสทินอลเปปไทด์และฮอร์โมนโปรแลกตินมีบทบาทที่สำคัญยิ่งต่อระบบสืบพันธุ์ ของไก่พื้นเมืองไทยซึ่งเป็นสัตว์ที่มีถิ่นอาศัยอยู่ในแถบเส้นศูนย์สูตร

สาขาวิชาชีววิทยา	ลายมือชื่อนักศึกษา
ปีการศึกษา 2550	ลายมือชื่ออาจารย์ที่ปรึกษา
	ลายมือชื่ออาจารย์ที่ปรึกษาร่วม

SUNANTHA KOSONSIRILUK: BIOLOGICAL STUDIES OF THE REPRODUCTIVE CYCLE AND THE EFFECTS OF PHOTOPERIOD UPON THE REPRODUCTIVE SYSTEM IN THE FEMALE NATIVE THAI CHICKEN. THESIS ADVISOR: ASST. PROF. YUPAPORN CHAISEHA, Ph.D. 240 PP.

LUTEINIZING HORMONE/NATIVE THAI CHICKEN/PHOTOPERIOD/
PROLACTIN/REPRODUCTIVE CYCLE/VASOACTIVE INTESTINAL PEPTIDE

Neuroendocrine regulation and the roles of photoperiod upon the reproductive system of female native Thai chickens were elucidated. Plasma prolactin (PRL) levels changed throughout reproductive stages with the highest level in incubating hens (B) whereas the changes in plasma luteinizing hormone (LH) levels were not observed. Immunohistochemistry studies revealed that distributions of vasoactive intestinal peptide (VIP) immunoreactivity were found throughout the brain and predominantly in the diencephalon. The changes of VIP-immunoreactive neurons in the infundibular nuclear complex were observed across reproductive stages with the greatest density were found in B and mirrored the plasma PRL levels. Photoperiod might play a role in the reproduction. In conclusion, VIP and PRL play a pivotal role in reproduction in this equatorial species.

School of Biology	Student's Signature
Academic Year 2007	Advisor's Signature
	Co-advisor's Signature

ACKNOWLEDGEMENTS

I would like to express my sincere and deepest gratitude to my kind advisor, Asst. Prof. Dr. Yupaporn Chaiseha for her expert advice and guidance. She has been considerate and support throughout my time as her graduate student. I would also like to extend my appreciation to my co-advisor Prof. Dr. Mohamed El Halawani for his valuable advice and hospitality throughout the time when I was in his laboratory.

I would also like to express my appreciation to Asst. Prof. Dr. Griangsak Eumkeb, Assoc. Prof. Dr. Thaweesak Songserm, and Asst. Prof. Dr. Rungrudee Srisawat, for taking the time to serve on my thesis committee.

The production of this dissertation would not be possible without the full financial support of The Royal Golden Jubilee Ph.D. Program.

My dissertation research was facilitated by the expert technical teaching by Asst. Prof. Dr. Aree Thayananuphat and Orlan Youngren. I would also like to extend my appreciation to the Department of Pathology, Kasetsart University for providing the cryostat, Suranaree University Farm for providing the barn for the experimental animals. I am thankful to Natagarn Sartsoongnoen and Nattiya Prakobsaeng for their helps, sympathy, friendship, and sincere encouragement.

Finally, I would like to express my deep gratitude to my parents and my family for their love, support, and understanding that helped me to overcome many difficult moments. Thank you very much.

CONTENTS

	rage
ABST	RACT IN THAI
ABST	RACT IN ENGLISHII
ACKI	NOWLEDGEMENTSIII
CONT	TENTSIV
LIST	OF TABLESVIII
LIST	OF FIGURESX
CHAI	PTER
I	INTRODUCTION1
	1.1 Rational of the Study
	1.2 Research Objectives
II	LITERATURE REVIEW7
	2.1 Neuroendocrine Regulation of the Avian Reproductive Cycle
	2.1.1 Gonadotropin Releasing Hormone-I/Follicle Stimulating
	Hormone-Luteinizing Hormone System8
	2.1.2 Vasoactive Intestinal Peptide/Prolactin System11
	2.2 Prolactin: Structure, Function, and Regulation of Secretion14
	2.2.1 The Structure of Prolactin
	2.2.2 The Function of Prolactin
	2.2.2.1 Prolactin Function in Mammals20
	2.2.2.2 Prolactin Function in Birds

CONTENTS (Continued)

	Page
2.2.3 Neuroendocrine Regulation of Prolactin Secretion	23
2.2.3.1 Prolactin Regulation in Mammals	25
2.2.3.2 Prolactin Regulation in Birds	26
2.2.4 Photostimulation of Prolactin Secretion	27
2.3 Dopamine: Structure, Function, and Regulation of PRL Secretion	28
2.3.1 The Structure of Dopamine	28
2.3.2 The Function of Dopamine	29
2.3.3 Dopamine as the PIF in Mammals	30
2.3.4 Dopamine Regulation of PRL Secretion in Birds	33
2.4 Vasoactive Intestinal Peptide: Structure, Function, and Regulation of	
PRL Secretion	35
2.4.1 The Structure of Vasoactive Intestinal Peptide	35
2.4.2 General Function of Vasoactive Intestinal Peptide	38
2.4.3 Neuronal Function of Vasoactive Intestinal Peptide	39
2.4.4 Vasoactive Intestinal Peptide as the PRF in Mammals	40
2.4.5 Vasoactive Intestinal Peptides as the PRF in Birds	41
2.4.6 The Presence of VIP-ir Neurons in the Avian Brain	44
2.4.7 Photoperiodic Regulation of Vasoactive Intestinal Peptide	
Secretion	46
2.5 Photoperiodic Control of the Avian Reproductive Cycle	48
2.5.1 Avian Reproductive Cycle: Role of Photoperiod	48
2.5.2 Light Detection in Birds	51

CONTENTS (Continued)

		Page
	2.5.3 Photoperiodic Regulation of Reproduction in Birds	54
	2.5.4 Seasonal Reproduction in Birds	57
	2.6 The Studies of the Native Thai Chicken Reproduction	59
	2.7 References.	61
III	CIRCULATING PROLACTIN AND LUTEINIZING HORMONE	
	LEVELS DURING THE REPRODUCTIVE CYCLE OF NATIVE	
	THAI CHICKENS	123
	3.1 Abstract.	123
	3.2 Introduction	124
	3.3 Materials and Methods	130
	3.4 Results.	133
	3.5 Discussion	149
	3.6 References.	154
IV	DISTRIBUTION OF VASOACTIVE INTESTINAL PEPTIDE	
	IMMUNOREACTIVITY IN THE BRAIN OF THE NATIVE THAI	[
	CHICKEN	169
	4.1 Abstract	169
	4.2 Introduction	170
	4.3 Materials and Methods	172
	4.4 Results	177
	4.5 Discussion.	192
	4.6 References	200

CONTENTS (Continued)

		Page
V	EFFECTS OF PHOTOPERIOD UPON THE REPRODUCTIVE	
	SYSTEM OF THE NATIVE THAI CHICKEN	210
	5.1 Abstract	210
	5.2 Introduction	211
	5.3 Materials and Methods	216
	5.4 Results	219
	5.5 Discussion	228
	5.6 References	232
CURR	RICULUM VITAE	240

LIST OF TABLES

Table	Page
Ш	CIRCULATING PROLACTIN AND LUTEINIZING HORMONE
	LEVELS DURING THE REPRODUCTIVE CYCLE OF NATIVE
	THAI CHICKENS
3.1	Reproductive characteristics of the native Thai chickens during the
	reproductive cycles. Values are expressed as the mean \pm SEM. Values
	with different letters are significantly different (P<0.05)142
3.2	Plasma PRL and LH concentrations in the native Thai chickens in each
	reproductive stage (n=10). Values are expressed as the mean \pm SEM.
	Values with different letters are significantly different (P<0.05)144
3.3	Mean \pm SEM of age, body weight, ovary and oviduct weights of the
	native Thai chickens in each reproductive stage (n=25). Values with
	different letters are significantly different (P<0.05)148
IV	DISTRIBUTION OF VASOACTIVE INTESTINAL PEPTIDE
	IMMUNOREACTIVITY IN THE BRAIN OF THE NATIVE THAI
	CHICKEN
4.1	Abbreviations of brain areas. Nomenclature and abbreviations are from
	a stereotaxic atlas of the brain of the chick (Kuenzel and Masson, 1988)181

LIST OF TABLES (Continued)

Table	Pa	age
V	EFFECTS OF PHOTOPERIOD UPON THE REPRODUCTIVE	
	SYSTEM OF THE NATIVE THAI CHICKEN	
5.1	Ovary and oviduct weights of the native Thai chickens in each	
	treatment group of Experiment I (n=15). Values (Mean \pm SEM)	
	with different letters are significantly different (P<0.05)	223
5.2	Percentages of the number of laying hen, the presence of F1-F5 follicles,	
	and the presence of SYF and SWF of the native Thai chickens	
	in each treatment group of Experiment I	224
5.3	Ovary and oviduct weights of the native Thai chickens in each treatment	
	group of Experiment II (n=15). Values (Mean \pm SEM) with different letters	
	are significantly different (P<0.05)	226
5.4	Percentages of the number of laying hen, the presence of F1-F5 follicles,	
	and the presence of SYF and SWF of the native Thai chickens	
	in each treatment group of Experiment II	226

LIST OF FIGURES

Figure Page	
II	LITERATURE REVIEW
2.1	Primary structures of the PRLs of various vertebrate species.
	(-) indicates positions left blank to optimize alignment of
	amino acid sequences. Residues common to all PRLs are shown in
	boldface. PD, PRL domain. PD1-PD4 indicates the four highly
	conserved domains of the PRLs (Sinha, 1995)
2.2	Sequence homology (%) among PRLs of different species (Sinha, 1995)19
2.3	The amino acid sequence of VIP, PHI, secretin, glucagon, and GIP.
	The one-letter notation for amino residues. a: the C-terminal amino acid
	is in the amide form. p: porcine, b: bovine, c: chicken,
	m: mammalian (Rosselin et al., 1982)37
III	CIRCULATING PROLACTIN AND LUTEINIZING HORMONE
	LEVELS DURING THE REPRODUCTIVE CYCLE OF NATIVE
	THAI CHICKENS
3.1	The native Thai chickens, Pradoohangdam breed. (A) Male and female
	chickens. (B) Laying hen. (C) Incubating hen. (D) Rearing hen136
3.2A	Plasma PRL and LH concentrations during the reproductive cycles
	from Bird #21137
3.2B	Plasma PRL and LH concentrations during the reproductive cycles
	from Rird #22

Figure	e	Page
3.2C	Plasma PRL and LH concentrations during the reproductive cycles	
	from Bird #23	138
3.2D	Plasma PRL and LH concentrations during the reproductive cycles	
	from Bird #27	138
3.2E	Plasma PRL and LH concentrations during the reproductive cycles	
	from Bird #28	139
3.2F	Plasma PRL and LH concentrations during the reproductive cycles	
	from Bird #30	139
3.2G	Plasma PRL and LH concentrations during the reproductive cycles	
	from Bird #31	140
3.2H	Plasma PRL and LH concentrations during the reproductive cycles	
	from Bird #34	140
3.2I	Plasma PRL and LH concentrations during the reproductive cycles	
	from Bird #35	141
3.2J	Plasma PRL and LH concentrations during the reproductive cycles	
	from Bird #60	141
3.3A	Plasma PRL levels in the native Thai chickens in each reproductive sta	age
	(n=10). Values are expressed as the mean \pm SEM. Values with different	nt
	letters are significantly different (P<0.05)	143

Figure	Page
3.3B	Plasma LH levels in the native Thai chickens in each reproductive stage
	(n=10). Values are expressed as the mean \pm SEM. Values with different
	letters are significantly different (P<0.05)
3.4A	The ovaries of the native Thai chickens in each reproductive stage145
3.4B	The oviducts of the native Thai chickens in each reproductive stage146
3.5	Ovary and oviduct weights of the native Thai chickens in each
	reproductive stages (n=25). Values are expressed as the mean \pm SEM.
	Values with different letters are significantly different (P<0.05)147
IV	DISTRIBUTION OF VASOACTIVE INTESTINAL PEPTIDE
	IMMUNOREACTIVITY IN THE BRAIN OF THE NATIVE THAI
	CHICKEN
4.1	Changes in plasma PRL concentrations in each reproductive stage of the
	native Thai chickens. Values are presented as the mean \pm SEM (n=10).
	Significant differences between means are denoted by different letters
	(P<0.05)
4.2	Schematic diagrams of coronal sections from rostral to caudal (A-F)
	showing the distribution of VIP-ir cells (black dots) throughout the brain
	of the laying native Thai chicken. Coronal illustrations were redrawn
	from the chicken brain atlas (Kuenzel, 2002) with nomenclature
	(Kuenzel and Masson, 1988). The number in the upper right hand
	corner shows the anterior distance in mm from the zero coordinates

Figure	Pag	ge
	given in the stereotaxic atlas of the chick brain. For abbreviations,	
	see Table 4.1	34
4.3	Photomicrographs of coronal sections in the septal area of the laying	
	native Thai chicken brain demonstratating the distribution of CSF-	
	contacting neurons located in the LSOm (A) and the SL contains a	
	dense plexus of VIP-ir fibers and a few VIP-ir cells (B). Original magnification	n
	X20. For abbreviations, see Table 4.1	35
4.4	Photomicrographs of coronal sections within the INF illustrating	
	numerous VIP-ir cells in the IN-IH area and a dense accumulation of	
	VIP-ir fibers in ME of the laying native Thai chicken brain (A; Original	
	magnification X10). Rectangles indicate areas from which following	
	photomicrographs were taken. Higher magnification of the VIP-ir	
	neurons was demonstrated in the IN-IH area (B; Original magnification	
	X40). Enlargement image of a dense arrangement of VIP nerve terminals	
	in the external layer of ME were demonstrated (C; Original	
	magnification X20). For abbreviations, see Table 4.1	36
4.5	Photomicrographs of coronal sections in the hypothalamus and	
	surrounded areas of the laying native Thai chicken brain demonstrating	
	magnification X40). C, D Scattered VIP-ir cells located in the AM	
	and LHy were illustrated (C, D; Original magnification X20). VIP-ir	
	fibers were shown in the PHN and some oriented parallel to the third	
	ventricle (E; Original magnification X20). VIP-ir fibers found in nCPa	

Figure	Page
	(F ; Original magnification X20). For abbreviations, see Table 4.1187
4.6	Photomicrographs of coronal sections demonstrating the distribution of
	VIP-ir cells in mesencephalon of the laying native Thai chicken brain.
	The specific binding of VIP antibody was observed within the GCt (A),
	AVT (B), and TPc (C; Original magnification X20). Higher
	magnification of VIP-ir cells from Fig. 4.6C was shown (D; Original
	magnification X40). For abbreviations, see Table 4.1
4.7	Photomicrographs of coronal sections of the laying native Thai chicken
	brain demonstrating VIP-ir cells lined in the cortex layer of the Cb (A; Original
	magnification X10), whereas no immunostaining was observed
	in the pituitary (B). Original magnification X4 Insert: higher magnification
	of VIP-ir cells in the Cb; Original magnification X40. For abbreviations,
	see Table 4.1
4.8	Photomicrographs of coronal sections of the native Thai
	chicken hypothalamus demonstrating the distribution of VIP-ir cells
	and fibers within the INF of the native Thai chicken at different
	reproductive stages (n=6). (A): NL, (B): L, (C): B, (D): R. Original
	magnification X10. For abbreviations, see Table 4.1190
4.9	The changes of the number of VIP-ir neurons within the INF of
	the native Thai chicken hypothalamus in each reproductive stage (n=6).
	Values with different letters are significantly different (P<0.05)191

Figur	re	Page
\mathbf{V}	EFFECTS OF PHOTOPERIOD UPON THE REPRODUCTIVE	
	SYSTEM OF THE NATIVE THAI CHICKEN	
5.1	The photoperiod of Nakhon Ratchasima province across the	
	year 2006 (Hydrographic Department, 2006)	221
5.2	The ovary of the laying native Thai hen shows the presence	
	of F1-F5 follicles, small yellow follicles (SYF), small white follicles	
	(SWF), and post-ovulatory follicles (POF)	222
5.3	Ovary and oviduct weights of the native Thai chickens in each	
	treatment group of Experiment I (n=15). Values (Mean \pm SEM) with	
	different letters are significantly different (P<0.05)	223
5.4	The number of cumulative laying hens in each treatment group of	
	Experiment I	224
5.5	Body weights (Mean \pm SEM) of the native Thai chickens in	
	each treatment group of Experiment I	225
5.6	Ovary and oviduct weights of the native Thai chickens in each treatment	
	group of Experiment II (n=15). Values (Mean \pm SEM) with	
	different letters are significantly different (P<0.05)	225
5.7	The number of cumulative laying hens in each treatment group of	
	Experiment II	227
5.8	Body weights (Mean \pm SEM) of the native Thai chickens in each	
	treatment group of Experiment II	227