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The research aims at developing parallel algorithms for numerical simula-

tions of turbulent wake dynamics in a linearly stratified fluid. In order to describe

the far turbulent wake flow behind a towed and self-propelled axisymmetric bodies

in a linearly stratified medium, a hierarchy of semi-empirical turbulence models has

been used. Most complex turbulence models are composed of differential equations

for transport of normal Reynolds stresses. Two parallel algorithms for numerical

models of turbulent wake dynamics in a stratified fluid have been developed. The

first one is based on the functional decomposition approach. The second one is

based on the domain decomposition technique. The numerical solutions of the

transport differential equations are obtained by the fractional step method. The

validation of parallel algorithms are done by comparing the numerical results with

available experimental results. The speedups of both parallel algorithms are com-

pared with theoretical estimates. The speedup depending on the latency time and

bandwidth are analyzed. The technique of domain decomposition demonstrated

better speedup than the functional decomposition approach. The computation in

this research was conducted on the two cluster systems.

The present research shows that both developed parallel algorithms are

viable tools to numerical simulations of turbulent wake dynamics in a stratified

fluid and can serve as a basis for numerical experiments with more complicated
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models of turbulence, for example, the numerical simulation of swirling turbulent

wake dynamics in a stratified fluid.
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CHAPTER I

INTRODUCTION

1.1 Different Approaches to the Study of Turbulent Flow

In everyday life, there are many opportunities to observe turbulent flow

such as waterfalls, the buffeting of a strong wind, atmospheric flow, prediction in

weather forecast, the flow around an aircraft, the wake behind bodies. Turbulent

flow is always three-dimensional, unsteady, rotational, and irregular. The irregu-

larity of turbulent motion is due to the inherent nonlinearity of the Navier-Stokes

equations when the Reynolds number is beyond the critical value and turbulent

flow is also stochastic and chaotic. To predict the gross or average behavior of

turbulent flow, a simulation approach and a mathematical model approach must

be used (Batchelor (2000)).

There are two simulation approaches: direct numerical simulation (DNS)

and large-eddy simulation (LES). In DNS, the Navier-Stokes equations are solved

to determine the flow characteristics. Turbulent flow is characterized by a wide

range of length scales and time scales. The idea of the energy cascade is the kinetic

energy entering the turbulence (through the production mechanism) at the largest

scales of the motion. This energy is then transferred (by inviscid processes) to

smaller and smaller scales until, at the smallest scales, the energy is dissipated by

viscous action. Since all length scales and time scales have to be resolved during

the simulation, so DNS and LES are therefore computationally expensive. In LES,

the equations are solved for a ‘filtered’ velocity field, which represents the large-

scale turbulent motions. The equations solved include a model for the influence
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of the smaller-scale motions which are not directly represented. In particular, for

DNS, the computational requirements rise so steeply with the Reynolds number

that the approach is applicable only for the flows of low or moderate Reynolds

numbers.

In the turbulence model approach, the equations are solved for mean quan-

tities. It has been more than a century since Reynolds introduced the aver-

aged Navier-Stokes equations. The averaging process produces a set of turbulent

stresses, known as Reynolds stresses, which are additional unknown variables. The

simplest Reynolds stress models is obtained from a turbulent viscosity hypothesis.

The turbulent viscosity can be calculated from an algebraic relation or it can be

obtained from turbulent quantities such as the turbulent energy e and the dissi-

pation ε for which the transport model equations are solved. In Reynolds stress

models, the transport model equations are solved for the Reynolds stresses. Not all

models are applicable to all flows. In application to a particular flow, the accuracy

of the model can be determined by comparing model calculations with experi-

mental measurements. The discrepancy between measured and calculated flow

properties arises from the inaccuracy of the model, numerical error, measurement

error and discrepancies in the boundary conditions. The important conclusion is

that a comparison between measured and calculated flow properties determines

the accuracy of the model.

The most commonly studied turbulent free shear flows are jets, wakes and

mixing layers. The term ‘free’ implies that these flows are remote from walls and

turbulent flow arises because of mean-velocity differences. Turbulent wake behinds

an axisymmetric body in homogeneous and stratified fluid has been considered in a

number of experiments in (Spedding (2001), Gourlay et al. (2001), Dommermuth

et al. (2002)). The flow that arises in a turbulent wake behind a body that
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moves in a stratified fluid is rather peculiar. With a relatively weak stratification

a turbulent wake first develops essentially in the same way as in a homogeneous

fluid and extends symmetrically. However, buoyancy forces oppose the vertical

turbulent diffusion. Therefore the wake has a flattened form at large distances from

the body and, finally, ceases to extend in the vertical direction. Because of the

turbulent mixing, the fluid density within the wake is distributed more uniformly

than outside it. Buoyancy forces tend to restore the former unperturbed state of a

stable stratification. As a result, convective flows, which give rise to internal waves

in an ambient fluid, arise in the plane perpendicular to the wake axis. Shear flow is

used to validate model of turbulence, because there is no influence of the boundary

and they are sensitive to modifications of the Reynolds stresses. Turbulent wake

is an example of free shear flow which is often selected to verify the predictability

of a turbulent model. Axis pressure gradient and viscous diffusion are small and

a major role in determine flow field more sensitive to modelling of the Reynolds

stress, kinetic energy and dissipation.

As a rule mathematical modelling requires the solution of a large system

of nonlinear differential equation in a complex domain. Finite differential schemes

are widely applied to approximate solutions of boundary value problems. The

finite different method requires the introduction of grid in physical domain of

interest. Even for a small number of grid points in the three-dimensional case,

this modelling process can involve trillions of operations. Thus, these problems

take an unacceptably long time to solve on supercomputer.

1.2 General Context of Parallel Computer

In 1966, Flynn (1966) categorized parallel computer architectures according

to how the data stream and instruction stream are organized. His idea is depicted
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in Figure 1.1. The multiple instruction, single data (MISD) class describes an

Figure 1.1 Classification by Flynn (1966)

empty set. The single instruction, single data (SISD) class contains the normal

single processor computer. The single instruction, multiple data (SIMD) class has

parallelism at the instruction level while the multiple instruction, multiple data

(MIMD) class has parallelism at the level of program execution (each processor

runs its own code).

Recently, many parallel computer systems have appeared, such as IBM,

SUN, SGI, and etc. There are classified by memory access (Schönauer (2000),

Kumar et al. (1994), Hwang (1993), Damaj (2006)), there are two memory clas-

sification as follows:

• Shared memory: Shared memory is memory that is accessed by several com-

petitive processes at the same time. Multiple memory requests are handled

by hardware or software protocols. Each processor has access to all of the

data. Below is a brief description of three different models to construct

shared memory systems (Hwang (1993)).

– The uniform memory access (UMA) model: All processors have equal

access time to the whole memory which is uniformly shared by all pro-
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cessors.

– The nonuniform memory access (NUMA) model: the access time to the

shared memory varies with the location of the processor.

– The cache only memory access (COMA) model: all processors use only

their local cache memory, so that this memory model is a special case

of the NUMA model.

• Distributed memory: Distributed memory is a collection of memory pieces

where each of them can be accessed by only one processor. If one processor

requires data stored in the memory of another processor, then communica-

tion between these processors is necessary.

The way to program a distributed memory parallel computer is message

passing. The Message Passing Interface (MPI) is a standard developed by the

Message Passing Interface Forum (MPIF). It specifies a portable interface for writ-

ing message-passing programs, and aims at practicality, efficiency, and flexibility

at the same time. MPIF with the participation of more than 40 organizations

started working on the standard in 1992. The first draft was published in 1994.

The latest release of the first version is offered as an update to the previous release

and is contained in the second versions (MPI-2). The design goal of MPI is quoted

from “MPI:A Message-Passing Interface Standard” as follows:

• Design an application programming interface.

• Allow efficient communication: Avoid memory-to-memory copying and allow

overlap of computation and communication and offload to communication

co-processor, where available.

• Allow for implementations that can be used in a heterogeneous environment.
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• Allow convenient C and Fortran bindings for the interface.

• Define an interface that can be implemented on many platforms.

• The interface should be designed to allow for thread-safety.

Nowadays, all vendors of parallel computers offer standard parallel libraries

or similar extensions of the operating system, which include all necessary compil-

ers, libraries, etc. such as High Performance Fortran (HPF), Vienna Fortran, and

OpenMPI extensions to C, C++, and Fortran.

Parallel computing is a technology which given an appropriate setup, can

solve the problems faster than by serial computer. A problem may have different

parallel formulations, which result in varying benefits, and all problems are not

equally amenable to parallel processing. To use parallel computing effectively, the

following issues need to be examined:

1 Design of parallel computing: It is important to design parallel comput-

ing that can scale up to a large number of processors and are capable of

supporting fast communication and data among processors.

2 Design of efficient algorithms: A parallel computer is of little use unless

efficient parallel algorithms are available. The design of parallel algorithms

is different from that of the sequential algorithms.

3 Methods for evaluating parallel algorithms: Given a parallel computer and

a parallel algorithm, we need to evaluate the performance of the resulting

system. Performance analysis allows us to answer questions such as “How

fast can a problem be solved using parallel processing?” and “How efficiently

are the processors used?”
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4 Parallel computer languages: Parallel algorithms are implemented on parallel

computers using a programming language. The language must be flexible

enough to allow the efficient implementation and must be easy to program.

5 Portable parallel programs: Portability is one of the main problems with

current parallel computers. Typically, a program written for one parallel

computer requires an extensive modification to make it run on another par-

allel computer.

1.3 Objectives and Overviews of the Thesis

In this research, the mathematical models of the turbulent wake dynamics

in a stratified fluid is considered under the following main objectives:

The main objectives of the research work presented in the thesis are

1 to develop the parallel algorithms for the numerical simulation of turbulent

wake dynamics in a stratified fluid, and to analyze the performance, accuracy,

and range of applicability of numerical models and parallel codes.

2 to apply parallel algorithms to several numerical models of turbulent wake

behind towed and self-propelled bodies in a stratified fluid.

3 to validate the parallel algorithms by comparing the results of numerical

solutions with the experimental and numerical data on decay of turbulent

wake behind towed and self-propelled bodies in a stratified fluid.

4 to estimate the speedup and efficiency of developed algorithms using an

example of a particular model of turbulent wake dynamics in a stratified

fluid.
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The thesis writing is organized as the following. The mathematical models

of turbulent wake dynamics in a stratified fluid is described in Chapter II. The

details of the sequential algorithms and developed parallel function and domain

decomposition algorithms are discussed in Chapter III. The results of validation

of parallel algorithms and numerical experiments are reported and discussed in

Chapter IV. Conclusion, some general comments and some recommendation for

the future work are provided in Chapter V.



CHAPTER II

MATHEMATICAL MODELS OF

TURBULENT WAKE DYNAMICS IN A

STRATIFIED FLUID

2.1 Introduction

The flow that arises in a turbulent wake behind a body that moves in a

stratified fluid is rather peculiar. With a relatively weak stratification, a turbulent

wake first develops essentially in the same way as in a homogeneous fluid and

extends symmetrically. However, buoyancy forces oppose the vertical turbulent

diffusion. Therefore, the wake has a flattened form at large distances from the

body and, finally, ceases to extend in the vertical direction. Because of the turbu-

lent mixing, the fluid density within the wake is distributed more uniformly than

outside it. Buoyancy forces tend to restore the former unperturbed state of a sta-

ble stratification. As a result, convective flows, which give rise to internal waves

in an ambient fluid, arise in the plane perpendicular to the wake axis. Shear flows

are used to validate model of turbulence, because there is no influence of boundary

and they are sensitive to modifications of the Reynolds stresses. Turbulent wake

is an example of free shear flow which is often selected to verify the predictability

of a turbulent model. Axis pressure gradient and viscous diffusion are small and

a major role in determination of the flow field more sensitive to modelling of the

Reynolds stress, kinetic energy and dissipation.
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2.2 Governing Equations

Turbulent wakes in a stratified fluid have been studied by many researchers.

See for example Chernykh and Voropayeva (1999), Spedding (2001), Gourlay et al.

(2001), Dommermuth et al. (2002), Meunier and Spedding (2006) and Moshkin

et al. (2001) where one can find a sufficiently complete survey.

In a series of papers Chernykh et al. (1999, 2008), Moshkin et al. (2001)

and Voropaeva et al. (2000, 2002, 2006, 2008), a hierarchy of semi-empirical

turbulence models of second order are involved for the description of fluid flow in

far turbulent wake behind a towed and momentumless bodies. Most complex of

models include the differential equations for normal Reynolds stresses transfer as

well as equations for triple correlations of the vertical velocity fluctuations.

To describe a far turbulent wake flow behind an axisymmetric body in a

stratified medium, we use the three-dimensional parabolized system of averaged

NavierStokes equations in the Oberbeck-Boussinesq approximation as follows:

U0
∂Ud

∂x
+ V

∂Ud

∂y
+ W

∂Ud

∂z
=

∂

∂y
〈u′v′〉+

∂

∂z
〈u′w′〉 (2.1)

U0
∂V

∂x
+ V

∂V

∂y
+ W

∂V

∂z
= − 1

ρ0

∂〈p1〉
∂y

− ∂

∂y
〈v′2〉 − ∂

∂z
〈v′w′〉 (2.2)

U0
∂W

∂x
+ V

∂W

∂y
+ W

∂W

∂z
= − 1

ρ0

∂〈p1〉
∂z

− ∂

∂y
〈v′w′〉 − ∂

∂z
〈w′2〉 − g

〈ρ1〉
ρ0

(2.3)

U0
∂〈ρ1〉
∂x

+ V
∂〈ρ1〉
∂y

+ W
∂〈ρ1〉
∂z

+ W
dρs

dz
= − ∂

∂y
〈v′ρ′〉 − ∂

∂z
〈w′ρ′〉 (2.4)

∂V

∂y
+

∂W

∂z
=

∂Ud

∂x
. (2.5)

In equations (2.1)-(2.5), U0 is the free stream velocity; Ud = U0−U is the defect of

the mean free stream velocity component; U, V, W, are velocity components of the

mean flow in the direction of the axes x, y, z; 〈p1〉 is the deviation of the averaged

pressure from the hydrostatic one conditioned by the stratification ρs; g is the

gravity acceleration; 〈ρ1〉 is the mean density defect: ρ1 = ρ − ρs, ρs = ρs(z) is
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the undisturbed fluid density: dρs�dz ≤ 0 (stable stratification), ρ0 = ρs(0); the

dash denotes the pulsation components; the symbol 〈·〉 denotes the averaging. The

coordinate system is related to the moving body in such a way that the velocity

of its motion is equal to −U0, and the z-axis is directed vertically upwards, in

the counter-gravity direction. The fluid density is assumed to be a linear function

of temperature and the stratification is assumed to be weak. Both small items

involving the derivative with respect to the variable x and the factors in the form

of a coefficient of laminar viscosity or diffusion have been omitted in the right

hand sides of equations 2.1-2.4. The schematic diagram of the present problem is

drawn in Figure 2.1.

Figure 2.1 Turbulent wake in a stratified fluid

The system of equations (2.1)–(2.5) is not closed. Below we consider 5

models. For Model 1, the unknown values of the Reynolds stresses 〈u′i2〉, i =

1, 2, 3, 〈u′v′〉 = 〈u′1u′2〉, 〈u′w′〉 = 〈u′1u′3〉 and the turbulent fluxes 〈u′iρ′〉, i = 1, 2, 3,

are determined by the algebraic approximations (see Rodi (1987), Chernykh and

Voropayeva (1999) and Chernykh et al. (2001)):

〈u′iu′j〉
e

=
2

3
δij +

1− c2

c1

(
Pij

ε
− 2

3
δij

P

ε

)
+

1− c3

c1

(
Gij

ε
− 2

3
δij

G

ε

)
, (2.6)

Pij = −
{
〈u′iu′k〉

∂Uj

∂xk

+ 〈u′ju′k〉
∂Ui

∂xk

}
, (2.7)

Gij =
1

ρ0

(〈u′iρ′〉gj + 〈u′jρ′〉gi), i, j, k = 1, 2, 3; (2.8)
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~g = (0, 0,−g), 2P = Pii, 2G = Gii, U1 = U, U2 = V, U3 = W, (2.9)

−〈u′ρ′〉 =
e

c1T ε

[
〈u′w′〉∂〈ρ〉

∂z
+ (1− c2T )〈w′ρ′〉∂U

∂z

]
, (2.10)

−〈v′ρ′〉 =
〈v′2〉
c1T

e

ε

∂〈ρ〉
∂y

= K%y
∂〈ρ〉
∂y

, (2.11)

〈ρ′2〉 = − 2

cT

e

ε
〈w′ρ′〉∂〈ρ〉

∂z
, (2.12)

−〈w′ρ′〉 =
e

C1T ε

[
〈w′2〉∂〈ρ〉

∂z
+ (1− c2T )

g

ρ0

〈ρ′2〉
]

=

(2.13)

=
e〈w′2〉

c1T ε

(
1− 2

1− c2T

c1T cT

g

ρ0

e2

ε2

∂〈ρ〉
∂z

) ∂〈ρ〉
∂z

= Kρz
∂〈ρ〉
∂z

.

Here and below the summation is assumed over repeating indices. To determine the

values of the turbulent kinetic energy e, the dissipation ε and the shear Reynolds

stress 〈v′w′〉, we make use of the differential equations:

U0
∂e

∂x
+ V

∂e

∂y
+ W

∂e

∂z
=

∂

∂y
Key

∂e

∂y
+

∂

∂z
Kez

∂e

∂z
+ P + G− ε, (2.14)

U0
∂ε

∂x
+ V

∂ε

∂y
+ W

∂ε

∂z
=

∂

∂y
Kεy

∂ε

∂y
+

∂

∂z
Kεz

∂ε

∂z
+ cε1

ε

e
(P + G)− cε2

ε2

e
, (2.15)

U0
∂〈v′w′〉

∂x
+ V

∂〈v′w′〉
∂y

+ W
∂〈v′w′〉

∂z
=

∂

∂y
Key

∂〈v′w′〉
∂y

+

(2.16)

+
∂

∂z
Kez

∂〈v′w′〉
∂z

+ (1− c2)P23 + (1− c3)G23 − c1
ε

e
〈v′w′〉,

where the turbulent viscosity coefficients are defined from simplified relation (2.6)

as follows

Key =
1− c2

c1

· e〈v′2〉
ε

, Kεy =
Key

σ
,

Kez =

[
(1− c2)e〈w′2〉 − (1− c3)(1− c2T )

c1T

e2

ε

g

ρ0

〈w′ρ〉
]

c1ε

(
1− (1− c3)

c1c1T

g

ρ0

e2

ε2

∂〈ρ〉
∂z

) ; Kεz =
Kez

σ
,
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So that

−〈u′v′〉 = Key
∂U

∂y
, −〈u′w′〉 = Kez

∂U

∂z
.

The quantities c1, c2, c3, c1T , c2T , cT , cε1, cε2, σ are empirical constants. Their

values are taken to be equal to 2.2, 0.55, 0.55, 3.2, 0.5, 1.25, 1.45, 1.9, 1.3 ,

respectively. The choice of this model of turbulence is due to the following reasons:

it is close to the standard e− ε model of turbulence and we can take into account

the anisotropy of the turbulence characteristics in the wakes in a stratified fluid.

Model 2 is similar to the one presented by Hassid (1980). The main dif-

ference from Model 1 is in the use of modified local equilibrium approximation

(P = ε) for the determination of the components of the tensor of Reynolds stresses

(instead of isotropic relations )

〈u′iu′j〉
e

= −2

3

(1− c2 − c1)

c1

δij +
(1− c2)

c1

Pij

ε
+

(1− c3)

c1

Gij

ε
. (2.17)

For Model 3 (unlike Model 1), we use the following representation of the turbulent

viscosity coefficients

Key = Cs
e〈v′2〉

ε
, Kez = Cs

e〈w′2〉
ε

, Kεy =
Key

σ
, Kεz =

Kez

σ
, Cs = 0.25.

(2.18)

Otherwise, Model 3 is analogous to Model 1.

For Model 4, the values 〈u′2i 〉 (i = 1, 2, 3) are calculated by solving the

corresponding transport differential equations:

U0
∂〈u′2〉

∂x
+ V

∂〈u′2〉
∂y

+ W
∂〈u′2〉

∂z
=

∂

∂y
Key

∂〈u′2〉
∂y

+
∂

∂z
Kez

∂〈u′2〉
∂z

+ P11 + G11

−2

3
ε− C1

ε

e

(
〈u′2〉 − 2

3
e

)
− C2

(
P11 − 2

3
P

)
− C2

(
G11 − 2

3
G

)
, (2.19)

U0
∂〈v′2〉
∂x

+ V
∂〈v′2〉

∂y
+ W

∂〈v′2〉
∂z

=
∂

∂y
Key

∂〈v′2〉
∂y

+
∂

∂z
Kez

∂〈v′2〉
∂z

+ P22 + G22
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−2

3
ε− C1

ε

e

(
〈v′2〉 − 2

3
e

)
− C2

(
P22 − 2

3
P

)
− C2

(
G22 − 2

3
G

)
, (2.20)

U0
∂〈w′2〉

∂x
+ V

∂〈w′2〉
∂y

+ W
∂〈w′2〉

∂z
=

∂

∂y
Key

∂〈w′2〉
∂y

+
∂

∂z
Kez

∂〈w′2〉
∂z

+ P33 + G33

−2

3
ε− C1

ε

e

(
〈w′2〉 − 2

3
e

)
− C2

(
P33 − 2

3
P

)
− C2

(
G33 − 2

3
G

)
, (2.21)

Key = Cs
e

ε
〈v′2〉, Kez = Cs

e

ε
〈w′2〉, e =

(〈u′2〉+ 〈v′2〉+ 〈w′2〉)/ 2.

P11 = 2

(
Ky

(
∂Ud

∂y

)2

+ Kz

(
∂Ud

∂z

)2
)

= 2P, G11 = 0, P22 = 0, G22 = 0,

P33 = 0,

G33 = −2
g

ρ0

〈w′ρ′〉 = 2G, P = 〈u′v′〉∂Ud

∂y
+ 〈u′w′〉∂Ud

∂z
= Ky

(
∂Ud

∂y

)2

+

Kz

(
∂Ud

∂z

)2

,

G = − g

ρ0

〈w′ρ′〉 =
g

ρ0

Kρz
∂ρ

∂z
. Coefficients of viscosity are given by equations

(2.18)

Model 5 includes the transport differential equation for the triple correlation

of vertical fluctuation component 〈w′3〉

U0
∂〈w′3〉

∂x
+ V

∂〈w′3〉
∂y

+ W
∂〈w′3〉

∂z
=

∂

∂y
K3y

∂〈w′3〉
∂y

+
∂

∂z
K3z

∂〈w′3〉
∂z

− 3

{
〈v′w′〉 ∂w′2

∂y
+

〈
w′2〉 ∂w′2

∂z

}
− 3

g

ρ0

〈
w′2ρ′

〉− C3w
〈w′3〉 ε

e
, (2.22)

where

K3y =
1

c4

e

ε

〈v′2〉
1− 1

c4c4θ

e2

ε2

∂ 〈ρ〉
∂z

, K3z =
4

c4

e

ε

〈w′2〉
1− 4

c4c4θ

g

ρ0

e2

ε2

∂ 〈ρ〉
∂z

−〈w′ρ′〉 = 2csϕ
e

ε

(〈
w′2〉 ∂ 〈w′ρ′〉

∂z

)
;

c3w = 13.6, c4 = 2c3w − 2, c4θ = 2/csϕ − 1, csϕ = 0.11

The applicability of Models 1-4 to the calculation of momentumless wakes has

been analyzed in detail in Chernykh and Voropayeva (1999). However, turbulent

wakes behind towed bodies even in a homogeneous fluid substantially differ from
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those behind self-propelled bodies. Model 5 is a simplified variant of a closer model

considered in Voropaeva et al. (2002). Therefore, the applicability of Models 1-5

to the calculation of turbulent wakes behind towed bodies in a linearly stratified

medium can be decided after detailed numerical experiments.

2.3 Initial and Boundary Conditions

The marching variable x in equations (2.1)-(2.4), (2.14)-(2.16), (2.19)-(2.21)

and (2.22) plays the role of time. At the distance x = x0 from the body the

following initial conditions are specified

Ud(x0, y, z) = Θ1(r), e(x0, y, z) = Θ2(r), ε(x0, y, z) = Θ3(r), r
2 = y2+z2, 0 ≤ r < ∞;

〈v′w′〉 = 〈ρ1〉 = V = W = 0, −∞ < z < ∞, −∞ < y < ∞, x = x0.

Here Θ1(r), Θ2(r) and Θ3(r) are the functions consistent with the experimental

data of Lin and Pao (1979) and Hassid (1980) in the homogeneous fluid. There are

additional initial data in the case of Model 4 and Model 5 〈u′2i 〉 =
2

3
e, i = 1, 2, 3,

〈w′3〉 = −cs
e〈w′2〉

ε

∂〈w′2〉
∂z

. At r → ∞ the free stream conditions are specified

(Models 1-3)

Ud = V = W = 〈ρ1〉 = e = ε = 〈v′w′〉 = 0, x ≥ x0. (2.23)

From the symmetry considerations, the solution is determined only in the first

quadrant of the (y, z) plane using the following boundary conditions:

〈v′w′〉 =
∂ 〈ρ1〉

∂y
= V =

∂W

∂y
=

∂Ud

∂y
=

∂e

∂y
=

∂ε

∂y
= 0, y = 0, z ≥ 0,

〈v′w′〉 = 〈ρ1〉 = W =
∂V

∂z
=

∂Ud

∂z
=

∂e

∂z
=

∂ε

∂z
= 0, z = 0, y ≥ 0.

Models 4 and 5 are supplemented by symmetry conditions for normal components

of Reynolds stresses 〈u′2i 〉, i = 1, 2, 3 and 〈w′3〉 = 0, z = 0, y ≥ 0; ∂〈w′3〉
∂y

=
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0, y = 0, z ≥ 0. In the numerical solution of the problem, the boundary

conditions (2.23) corresponding to r → ∞ are translated to the boundaries of a

sufficiently large rectangle 0 ≤ y ≤ y∗; 0 ≤ z ≤ z∗.

The problem variables can be made dimensionless by using the characteris-

tic length D, the body diameter, and the velocity scale U0. As a result, the value

4π2/Fd
2 will appear in the dimensionless equations instead of g, where Fd is the

density Froude number defined as

Fd =
U0T

D
, T =

2π√
ag

=
1

N
, a = −

(
1

ρ0

)
dρs

dz
,

where T , N are the Brunt-Vaisala period and frequency. For the interpretation of

the computational results, it is convenient to introduce the time t related to the

distance from the body

t =
x

U0

, t∗ =
t

T
=

xD

U0DT
=

x∗

Fd

.

2.4 Mathematical Model of Dynamics of Passive Scalar in

Turbulent Wakes in a Stratified Fluids

There is almost no research devoted to the dynamics of passive scalar in

the turbulent wakes behind self-propelled and towed bodies in a stratified fluids.

Passive scalar transport in turbulent wakes behind a body of revolution in a lin-

early stratified media is considered in Moshkin et al. (2004). Along with the

above Models 1-5, the equations for averaged concentration of passive scalar Θ

and dispersion of fluctuations 〈θ′2〉 are solved and they are given by

U0
∂Θ

∂x
+ V

∂Θ

∂y
+ W

∂Θ

∂z
=

∂

∂y
KΘy

∂Θ

∂y
+

∂

∂z
KΘz

∂Θ

∂z
,

∂ 〈θ′2〉
∂z

=
∂

∂y
K1Θy

∂ 〈θ′2〉
∂y

+
∂

∂z
K1Θz

∂ 〈θ′2〉
∂z

− 2 〈v′θ′〉 ∂Θ

∂y
− 2 〈w′θ′〉 ∂Θ

∂z
− NΘ,
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where

KΘy =
e 〈v′2〉
C1T ε

, KΘz =
e 〈w′2〉
C1T ε

, K1Θy =
Cφ 〈v′2〉 e

ε
,

K1Θz =
Cφ 〈w′2〉 e

ε
, 〈v′θ′〉 = −KΘy

∂Θ

∂y
, 〈w′θ′〉 = −KΘz

∂Θ

∂z
, NΘ = CT

〈θ′2〉 ε
e

.

The quantities c1T , cϕ are empirical constants. The bell-shaped functions are used

as initial conditions for Θ , 〈θ′2〉 .



CHAPTER III

SEQUENTIAL AND PARALLEL

ALGORITHMS

In this chapter, we describe the sequential algorithm and the idea of parallel

functional and domain decomposition algorithms to solve the mathematical models

of turbulent wake dynamics in a stratified fluid.

3.1 Sequential Algorithm

For the construction of a finite difference scheme, the new independent

variables are introduced

x′ = x, ξ = χ1(y), η = χ2(z), (x = x′, y = φ1(ξ), z = φ2(η)). (3.1)

This mapping is used to transform the nonuniform mesh in a physical space (x, y, z)

into a uniform rectangular mesh in a computational domain (x′, ξ, η). The govern-

ing equations (2.1)-(2.5) and (2.14)-(2.16) recast according to mesh transformation

(3.1). The functions φ1 and φ2 establish the one-to-one correspondence between

nodes of a uniform mesh in the computational domain and nodes of a nonuniform

mesh in the physical domain. The functions φ1 and φ2 are constructed by tubular

assigning points in the physical plane to the corresponding points in computational

domain. The metrics coefficients are computed by using finite differences. The

choice of mapping (3.1) enables us to condense the mesh nodes in the turbulent

wake neighborhood. In the computational domain (x′, ξ, η) the nodes of the mesh
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in the (ξ, η) plane are distributed uniformly:

ξi = i · 4ξ, ηj = j · 4η, i = 0, . . . , N, j = 0, . . . , M,

ϕ1(ξN) = y∗, ϕ2(ηM) = z∗.

A staggered arrangement of the unknown functions is used:

• Scalar functions as 〈p1〉, 〈ρ1〉, Ud, e, ε, and components of the Reynolds

stresses, 〈u′lu′k〉 are located at the cell center (ξi, ηj) = (i · 4ξ, j · 4η) .

• The horizontal V and vertical W velocity components of the mean velocity

vector are located at the centers of the cell sides normal to them.

In Figure 3.1, a staggered grid is sketched.

f
i,j f

i+1,j

w
i,j−1/2

w
i+1,j−1/2

w
i,j+1/2

w
i+1,j+1/2

i i+1

v
i−1/2,j

j
v

i+1/2,j v
i+3/2,j

1 2 3 4 5
0

0.5

1

1.5

2

Figure 3.1 Staggered grid: filled circles denote f = 〈p1〉, 〈ρ1〉, Ud, e, ε or 〈u′l u′k〉,
filled diamonds denote vertical W z-velocity, filled squares denote V y-velocity

component

Let us use the following notations: the upper index n denotes values of

variables in the wake cross section x = xn = xn−1 + 4xn, lower i, j indexes

denote the quantities at the node ξi = i · 4ξ, ηj = j · 4η, and lower indexes

i+1/2, j+1/2 correspond to the node ξi+1/2 = (i+1/2)·4ξ, ηj+1/2 = (j+1/2)·4η.
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Algorithm of the problem solution is based on the implicit splitting into space

variables for the equations (2.1), (2.4), (2.14)-(2.16), (2.19)-(2.21), and (2.22) and

on the application of an explicit splitting into physical processes to the system of

equations (2.2), (2.3), and (2.5). Let all unknown functions be given at x = xn.

The solution procedure consists of the following steps for computing all unknown

functions in the x direction.

1. The defect of the mean streamwise velocity component Ud is computed by

evaluating the finite-difference approximation of equation (2.1).

2. The velocity components of averaged motion V n+1, W n+1, and the pres-

sure deviation from hydrostatic, 〈p1〉n+1, are computed by using equations

(2.2), (2.3), and (2.5). Here we utilize the idea of the splitting method in

which the computational process is divided into three stages. The first stage

consists in computing the provisional velocity components V ∗, W ∗ with ex-

plicit approximation of equations (2.2), (2.3). Then in a second stage, we

compute 〈p1〉n+1 from solution to the Poisson equation with the Neumann

boundary conditions along axis of symmetry and the Dirichlet boundary con-

ditions along far boundaries. The method of stabilizing correction (Yanenko

(1971)) is used in this stage. Finally, in the third stage, the new velocity

vector components V n+1, W n+1 are computed from requirement of vanish

divergence.

3. Equations (2.4), (2.14)-(2.16), (2.19)-(2.21), and (2.22) are sequentially in-

tegrated with the use of the method of splitting in term of spatial variables

(Yanenko (1971)).

From the consideration of a simple computer code implementation, we have

used the idea of a block analogy of the well-known Seidel method. At the compu-
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tation of the functions 〈ρ1〉n+1, en+1, εn+1, 〈v′w′〉n+1 we have used the quantities

already known at this level x = xn+1, the remaining functions are taken from the

previous level x = xn. As an example, we give the time and space discretization

used in order to solve the transport equations (2.1), (2.4), (2.14)-(2.16), (2.19)-

(2.21), and (2.22) by splitting scheme. Let us consider typical transport equation

written in new coordinates (3.1)

∂f

∂x
+

1

J

∂(zηV f)

∂ξ
+

1

J

∂(yξWf)

∂η
=

1

J

∂

∂ξ

(
zη

yξ

Ky
∂f

∂ξ

)
+

1

J

∂

∂η

(
yξ

zη

Kz
∂f

∂η

)
+Qf . (3.2)

Here zη, yξ denote derivatives with respect lower index, J =
∂(x, y, z)

∂(x′, ξ, η)
= yξ zη is

the Jacobian of the transformation (3.1) and f denotes one of unknown functions

Ud, e, ε, 〈ρ1〉, and so on, Qf is corresponding source terms. To simplify the

notations, we introduce the quantities at the nodes obtained by interpolation

fi,j+1/2 = (fi,j+1 + fi,j)× 0.5, fi+1/2,j = (fi+1,j + fi,j)× 0.5,

and derivatives of coordinate transformations

(zη)i,j+1/2 =
zj+1 − zj

hη

, (yξ)i+1/2,j =
yi+1 − yi

hξ

.

The splitting scheme for equation (3.2) is the following

(f)
n+1/2
i,j − (f)n

i,j

hx

+
1

Ji,j

(zηV
nfn+1/2)i+1/2,j − (zηV

nfn+1/2)i−1/2,j

hξ

= (Qf )i,j

+
1

Ji,j

(
K̂y

)
i+1/2,j

(
(f)

n+1/2
i+1,j − (f)

n+1/2
i,j

)
−

(
K̂y

)
i−1/2,j

(
(f)

n+1/2
i,j − (f)

n+1/2
i−1,j

)

h2
ξ

,

(3.3)

(f)n+1
i,j − (f)

n+1/2
i,j

hx

+
1

Ji,j

(yξW
nfn+1)i,j+1/2 − (yξW

nfn+1)i,j−1/2

hη

=

1

Ji,j

(
K̂z

)
i,j+1/2

(
(f)n+1

i,j+1 − (f)n+1
i,j

)−
(
K̂z

)
i,j−1/2

(
(f)n+1

i,j − (f)n+1
i,j−1

)

h2
η

. (3.4)
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Here K̂y = zη�yξKy, K̂z = yξ�zηKz . Equations (3.3) and (3.4) are solved

sequentially by using direct method for tridiagonal algebraic system.

Equations (2.2), (2.3), and (2.5) for the mean deviation of pressure and ve-

locity vector components in wakes cross section are similar to 2−D incompressible

Navier-Stokes equations in which variable x plays role of the time. In the new co-

ordinate system dimensionless equations (2.2), (2.3), and (2.5) have the following

form

∂V

∂x
+

1

J

∂(zηV
2)

∂ξ
+

1

J

∂(yξWV )

∂η
= −∂zη 〈p1〉

∂ξ
+ F1(〈ρ1〉 , e, ε, 〈v′w′〉), (3.5)

∂W

∂x
+

1

J

∂(zηV W )

∂ξ
+

1

J

∂(yξW
2)

∂η
= −∂yξ 〈p1〉

∂η
+ F2(〈ρ1〉 , e, ε, 〈v′w′〉), (3.6)

1

J

∂

∂ξ
(zηV ) +

1

J

∂

∂η
(yξW ) =

∂Ud

∂x
. (3.7)

Here F1, F2 are represent right-hand side terms in equations (2.2), (2.3). The

partial derivative
∂Ud

∂x
in (3.7) is approximated by the forward finite difference

(
∂Ud

∂x

)n+1

i,j

' (Ud)
n+1
i,j − (Ud)

n
i,j

hn+1
x

= αn+1
i,j .

The three stage computational process is as follows:

• First, equations (3.5), (3.6) are solved without pressure terms. We use ex-

plicit approximation, terms F1, F2 are evaluated on level x = xn

∼
V i+1/2,j −V n

i+1/2,j

hn+1
x

+
1

Ji+1/2,j

(zηV
2)n

i+1,j − (zηV
2)n

i,j

hξ

+

+
(yξWV )n

i+1/2,j+1/2 − (yξWV )n
i+1/2,j−1/2

Ji+1/2,jhη

= (F1(〈ρ1〉 , e, ε, 〈v′w′〉))i+1/2,j,

(3.8)
∼
W i,j+1/2 −W n

i,j+1/2

hx

+
1

Ji,j+1/2

(zηV W )n
i+1/2,j+1/2 − (zηV W )n

i−1/2,j+1/2

hξ

+

+
1

Ji,j+1/2

(yξW
2)n

i,j+1 − (yξW
2)n

i,j

hη

= (F2(〈ρ1〉 , e, ε, 〈v′w′〉))i,j+1/2. (3.9)
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• In the second stage, 〈p1〉n+1 is computed from approximate solution of the

Poisson equation

∂

∂ξ

[
zη

yξ

∂〈p1〉
∂ξ

]n+1

+
∂

∂η

[
yξ

zη

∂〈p1〉
∂η

]n+1

=

1

hn+1
x

{
∂

∂ξ

(
zη

∼
V

)
+

∂

∂η

(
yξ

∼
W

)
− J · αn+1

}
. (3.10)

As mentioned above, the iterative scheme of stabilizing correction is utilized

to solve (3.10). Zero Direchlet boundary conditions are used at far bound-

aries z = z∗ and y = y∗ (〈p1〉n+1
i,Nz∗

= 0, 〈p1〉n+1
Ny∗,j

= 0). At the axes of

symmetry z = 0 and y = 0 the Neumann boundary conditions are approxi-

mated in the following way

〈p1〉2,j − 〈p1〉1,j

hξ

= 0,
〈p1〉i,2 − 〈p1〉i,1

hη

= 0. (3.11)

• In the third stage, the velocity components W n+1, V n+1 are determined as

follows:

V n+1
i+1/2,j =

∼
V i+1/2,j −hn+1

x

1

Ji+1/2,j

·
(

(zη 〈p1〉)n+1
i+1,j − (zη 〈p1〉)n+1

i,j

hξ

)
, (3.12)

W n+1
i,j+1/2 =

∼
W i,j+1/2 −hn+1

x

1

Ji,j+1/2

·
(

(yξ 〈p1〉)n+1
i,j+1 − (yξ 〈p1〉)n+1

i,j

hη

)
. (3.13)

Flowchart of the sequential algorithm of turbulent wake dynamics in a

stratified fluid is depicted in Figure 3.3.
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Figure 3.2 Flowchart of sequential algorithm for Model 4 with equation for passive

scalar

In order to check the accuracy and the efficiency of the mathematical mod-

els and numerical algorithms, we have carried out a series of numerical experi-
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ments. The calculations are conducted on a grid sequence and are compared with

experimental data of Lin and Pao (1979) and Hassid (1980) on the decay of the mo-

mentumless and drag turbulent wakes in a linearly stratified medium. At x = x0

the initial conditions were specified according to Hassid (1980), which agreed with

the experimental data of Lin and Pao (1979) on the decay of a turbulent wake in

a homogeneous fluid.

a) Momentumless wake

Ud(x0, y, z) = Θ1(r) = Ud0

(
1− 8r2

D2

)
exp

(
− 8r2

D2

)
,

e(x0, y, z) = Θ2(r) = E0 · exp

(
−4r2

D2

)
,

ε(x0, y, z) = Θ3(r) =

√
12

D
E

3/2
0 · exp

(
−6r2

D2

)
,

b) Drag wake

Ud(x0, y, z) = Θ̃1(r) = Ud0 exp

(
− r2

A0

)
,

e(x0, y, z) = Θ̃2(r) = E0 · exp

(
− r2

A0

)
,

ε(x0, y, z) = Θ̃3(r) =

√
3

A0

· E3/2
0 · exp

(
−3

2

r2

A0

)
,

A0 =
cdD

2U0

8 · Ud0

.

Here cd is a drag coefficient, and the values of E0 and Ud0 are the initial val-

ues of the turbulent energy and the velocity centerline defect, respectively. These

quantities are chosen to satisfy the experimental data of Lin and Pao (1974,1979)

at x = x0.
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Figure 3.3 Sketch of axial velocity profile at x = x0 in case of momentumless and

drag wakes

The main calculations are performed on a grid with 72 × 37 nodes in the

yz-plane. The nodes of the grid in domain are distributed as follows

yi = i · hy, i = 0, . . . , 31; yi = yi−1 · qy, i = 32, . . . , 72, qy = 1.06,

zj = j · hz, j = 0, . . . , 11; zj = zj−1 · qz, j = 12, . . . , 37, qz = 1.113.

where hy = hz = 0.075. The step in marching direction hn
x is varied from h0

x =

0.055 to hmax
x = 2.0 by the formula hn+1

x = hn
x + 0.055 and is further assumed to

be constant. The refinement of the mesh cell sizes in the wake neighborhood has

led to the deviations in the quantities
√

e0, UD0 which do not exceed 1− 3%.

3.2 Parallel Algorithms

We analyze the sequential algorithm and find out that some components can

be executed simultaneously, for example, the Reynolds stresses can be computed

simultaneously. So in this section, we introduce the techniques of parallel func-

tional and domain decomposition algorithms and how to apply these techniques
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to the mathematical models of turbulent wake dynamics behind an axisymmetric

body in a stratified fluid.

3.2.1 Parallel Functional Decomposition

For a parallel functional decomposition, the functions to be performed on

data are split into multiple jobs. These jobs can then be performed concurrently by

different processes on different data. This decomposition also has an important role

to play as a program structure technique. The parallel functional decomposition

that partitions not only the computation to be performed but also the codes

performing the computation is likely to reduce the complexity of the overall design.

This is often the case in the computer models of complex systems. For example,

a simulation of the earth’s climate may comprise components representing the

atmosphere, ocean, hydrology, ice, carbon dioxide sources, and so on.

The problem of turbulent wake dynamics in a stratified fluid is reduced to

the successive integration system of the transport equations to find averaged ve-

locity components, turbulent energy, dissipation rate, components of the Reynolds

stress tensor and so on.

Suppose we have M jobs Ji, i = 1, 2, . . . ,M which are executed in sequential

order as shown in Figure 3.4.

Figure 3.4 A sequential process

Let ti be the run time of job Ji for i = 1, 2, . . . , M . Hence, the run time of a



28

sequential program TS is

TS =
M∑
i=1

ti.

To utilize the functional decomposition technique, let us assume that the sequential

processes can be executed as k groups of disjoint tasks as depicted in Figure

3.5. where
∑k

j=1 mj = M , tji are the run time of job J j
i and t̃ji are the time of

Figure 3.5 A parallel functional decomposition process

communications for i = 1, 2, . . . , mj and j = 1, 2, . . . , k. Let P be the number of

processors and P ≤ max{mj}j=1,2,...,k. The estimate of parallel run time TP is

TP =
k∑

j=1

(
T j + T j

comm

)
,

where T j and T j
comm are the execution time and the communication time for jth

group j = 1, 2, . . . , k, respectively. So we have

T j ≈
⌈mj

P

⌉
max

1≤i≤mj

tji and T j
comm ≈

mj∑
i=1

(P − 1)) t̃ji .

Here, d·e denotes the ceiling function. Since, t̃ji = tl +
MessageSizej

i

BandWidth
where tl is the

latency time of parallel network and MessageSizej
i is the message size of job J j

i

for j = 1, 2, . . . , k; i = 1, 2, . . . , mj. Therefore, a speedup is

S =

∑M
i=1 ti

∑k
j=1

(⌈mj

P

⌉
max1≤i≤mj

tji +
∑mj

i=1(P − 1)
(
tl +

MessageSizej
i

BandWidth

)) . (3.14)
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For example, let us assume that we have k groups where each group has m

jobs and each job uses t seconds for the execution time and the message size of the

data for all jobs are the same, MessageSizej
i = MessageSize. So, the speedup is

S ≈ m× t(⌈
m
P

⌉× t + m× (P − 1)
(
tl + MessageSize

BandWidth

)) .

If the term of communication time is zero, then the speedup will be about

P times of the sequential algorithm which corresponds to the ideal speedup.

The latency time, bandwidth, and message size of data are important for

speedup as well as the run time of each jobs. Let us derive some relations between

ti, number of processors, message size, and bandwidth when speedup can be greater

than 1 as follows

S =
∑M

i=1 ti

∑k
j=1

(
dmj

P emax1≤i≤mj
tji +

∑mj
i=1(P−1)

(
tl+

MessageSize
j
i

BandWidth

))

<
∑k

i=1 t̂jmj∑k
j=1dmj

P et̂j+∑k
j=1

∑mj
i=1(P−1)

(
tl+

MessageSizej

BandWidth

) (3.15)

where t̂j is the maximum of run time and MessageSizej is the minimum of data

size on stage jth. If the right-hand side of (3.14) is less than 1, then it is clear that

there can be no speedup. Hence, we consider the case of the right-hand side of

(3.15) greater than 1, in which we have the following relations

k∑
j=1

(⌈mj

P

⌉
t̂j

)
+

k∑
j=1

mj∑
i=1

(P − 1)

(
tl +

MessageSizej

BandWidth

)
<

k∑
i=1

t̂jmj

or

k∑
j=1

⌈mj

P

⌉
t̂j −

k∑
j=1

t̂jmj +
k∑

j=1

mj(P − 1)

(
tl +

MessageSizej

BandWidth

)
< 0. (3.16)
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Thus, we separate inequality (3.16) into 2 cases which are possible to gain the

speedup as follows.

Case 1:
∑k

j=1

{⌈mj

P

⌉
t̂j − t̂jmj

}
< 0.

It is clear that
⌈mj

P

⌉
< mj for all j = 1, . . . , k. So, it is the trivial case.

Case 2:
∑k

j=1

{
−t̂jmj + mj(P − 1)

(
tl + MessageSizej

BandWidth

)}
< 0.

If t̂j > (P − 1)
(
tl + MessageSizej

BandWidth

)
for all j = 1, . . . , k, it possible to get

speedup greater than 1.

Next, we consider the organization of computational processes at the lth

stage, we have ml jobs which can be computed independently. So, we use the

PARA_RANGE subroutine to dividing jobs to each processor as follows:

SUBROUTINE

PARA_RANGE(range_start,range_end,nprocs,myid,my_start,my_end)

iwork1 = (rang_end-range_start+1)/nprocs

iwork2 = MOD(rang_end-range_start+1,nprocs)

my_start = myid*iwork1+range_start+MIN(myid,iwork2)

my_end = my_start+iwork1-1

IF (iwork2>myid) my_end=my_end+1

END SUBROUTINE

when range_start and range_end are the first point and the last point of

range; nprocs is the number of processors; myid is the identity of each proces-

sor; my_start and my_end are the start and end point of range for the identity

processor.

Then, we can define the number of jobs for each processor by the following algo-

rithm:



31

CALL PARA_RANGE(1,NJOBs,nprocs,myid,NSTART,NSTOP)

DO i=NSTART,NSTOP

CPUID(i)=myid

ENDDO

!NJ is number of jobs for CPU(myid)

NJ(myid)=NSTOP-NSTART+1

DO i=0,myrank-1

CALL MPI_BCAST(NJ(i),1,MPI_INTEGER,i,MPI_COMM_WORLD,ierr)

ENDDO

k=0

DO i=0,myrank-1

DO j=1,NJ(i)

k=k+1

CPUID(k)=i

ENDDO

ENDDO

where NJOBs is the number of jobs at this stage; CPUID is an array of integers

which identity the jobs to processors; NSTART and NSTOP are the range of jobs for

each processor; myrank is the number of processors.

Therefore, at this stage, each processor can compute its jobs simultaneously

as demonstrated in Figure 3.6.

DO WORK=NSTART,NSTOP

IF(WORK==1)THEN

CALL subroutine job1

ELSEIF(WORK==2)THEN

CALL subroutine job2
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Figure 3.6 Sketch of parallel functional decomposition at the lth stage

ELSEIF(WORK==3)THEN

.

.

.

ELSEIF(WORK==m)THEN

CALL subroutine job(m_l)

ENDIF

ENDDO

After that we need to update the data between processors before going to the next

stage by a broadcasting process as follows:

CALL MPI_BCAST(v_1,s_1,MPI_Type,CPUID(1),MPI_COMM_WORLD,ierr)

CALL MPI_BCAST(v_2,s_2,MPI_Type,CPUID(2),MPI_COMM_WORLD,ierr)

.

.

.
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CALL MPI_BCAST(v_l,s_l,MPI_Type,CPUID(P),MPI_COMM_WORLD,ierr)

Figure 3.7 Data updating in parallel functional decomposition algorithm

Functional decomposition algorithm:

FA1. Initialization step for creating groups of communication for MPI.

FA2. The initial and boundary processes.

FA3. Divide jobs for each processor.

FA4. Compute Ud, V ∗ and W ∗ simultaneously.

FA5. Update data for Ud, V ∗, and W ∗.

FA6. Compute 〈p1〉n+1 by all processors.

FA7. Compute V n+1 and W n+1 on two processors simultaneously.

FA8. Update data for V n+1 and W n+1.

FA9. Compute 〈ρ1〉n+1, εn+1, 〈v′w′〉n+1, 〈u′2〉n+1, 〈v′2〉n+1, 〈w′2〉n+1, and Θn+1 si-

multaneously.
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FA10. Update data for 〈ρ1〉n+1, εn+1, 〈v′w′〉n+1, 〈u′2〉n+1, 〈v′2〉n+1, 〈w′2〉n+1, and

Θn+1.

FA11. Compute en+1.

FA12. Check conditions for the exit loop, if not goto step FA4.

Figure 3.8 Flowchart of parallel functional decomposition algorithm

Figure 3.8 shows the sketch of the flowchart of the parallel functional de-

composition algorithm. Figures 3.9 and 3.10 show the flowchart of parallel func-

tional decomposition algorithm with the number of processors P = 2 and P = 4,

respectively.
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Figure 3.9 Flowchart of functional decomposition with P = 2

3.2.2 Parallel Domain Decomposition

In numerical partial differential equations, domain decomposition methods

solve a boundary value problem by splitting the problem into smaller boundary

value problems on the subdomains and iterate to coordinate the solutions between

the subdomains. The problems on the subdomains are independent, which makes

the domain decomposition methods suitable for parallel computing. However, in

general, “ Domain decomposition” refers to any method that divides the original

problem domain into subdomains and solves locally on each subdomain. We have
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Figure 3.10 Flowchart of the functional decomposition with P = 4
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developed parallel MPI codes to deal with general advection-diffusions partial

differential equations, which are solved by using the splitting method (Yanenko

(1971)). The splitting methods help reduce a multidimensional problem to series of

one dimensional problems. A solution of each one dimensional problem requires an

inversion of a tridiagonal matrix. It is difficult to beat sparse direct factorization

methods for solving the linear systems. Taking into account the special structure

of the transport equation and the particular form of splitting method, we have

developed a parallel algorithm with a reasonable speedup.

Figure 3.11 The range of strip on CPU(K − 1)

In the scheme of the fractional steps, the transition from one time stage of

the calculations to the next is divided into a series of intermediate steps, and it

requires to satisfy the conditions of consistency and stability of the original problem

at each stage. As a result, this method allows a choice of parameters which make

it possible to construct the economical and exact schemes. The techniques of

construction economical finite difference schemes are based on the fractional steps

method developed by Yanenko (1971).

The key idea of splitting method is reduction of a multidimensional prob-

lem to a sequence of one dimensional problems. Only the variables of one space
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direction are involved in computation at each fractional step. As a result, to find

solution at the following time stage we have to solve many banded linear systems

of equations (as a rule they are tridiagonal). It is evident that we can parallelize

over the number of systems. Each processor gets roughly M/P systems if P is the

number of processors and M is the number of systems.

Numerical models of turbulent wake dynamics in a stratified fluid involve

solution of several transport equations which are solved by the implicit splitting

scheme over spatial variables, Yanenko (1971). Let us consider as an example, a

2D problem in a rectangular domain Ω for a typical transport equation (this can

be differential equation for transport turbulent energy, e, dissipation, ε, and so

on).

∂U

∂t
+ V

∂U

∂y
+ W

∂U

∂z
=

∂

∂y

(
Ky

∂U

∂y

)
+

∂

∂z

(
Kz

∂U

∂z

)
+ F, in Ω× [0, T ], (3.17)

U(0, y, z) = U0(0, y, z), (y, z) ∈ Ω,

U(t, y, z) = g(t, y, z), (y, z) ∈ ∂Ω× [0, T ],

(3.18)

For the sake of simplicity, assume uniform tensor-product grid in the domain Ω

Ωh = {(yi, zj)|yi = i4y, zj = j4z,

i = 0, . . . , M + 1; j = 0, . . . , N + 1; 4y = 1/M ; 4z = 1/N ; }

The splitting scheme is written in two half time-steps as follows. During the first

half step the following discretization is used

U
n+1/2
i,j − Un

i,j

4t
+ Vi,j

U
n+1/2
i+1,j − U

n+1/2
i−1,j

24y
=

(Ky)i+1/2,j(U
n+1/2
i+1,j − U

n+1/2
i,j )− (Ky)i−1/2,j(U

n+1/2
i,j − U

n+1/2
i−1,j )

4y2 + Fi,j

(3.19)
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and during the second half step

Un+1
i,j − U

n+1/2
i,j

4t
+ Wi,j

Un+1
i,j+1 − Un+1

i,j−1

24z
=

(Kz)i,j+1/2(U
n+1
i,j+1 − Un+1

i,j )− (Kz)i,j−1/2(U
n+1
i,j − Un+1

i,j−1)

4z2 .

(3.20)

Equation (3.19) can be written in the tridiagonal format

U
n+1/2
0,j = g(0, zj)

−aijU
n+1/2
i−1,j + cijU

n+1/2
i,j − bijU

n+1/2
i+1,j = fi,j, i = 1, 2, . . . , M ; j = 1, 2, . . . , N,

U
n+1/2
M+1,j = g(yM , zj) (3.21)

Therefore, at each fixed j one has a linear system of M equations with a tridiagonal

matrix. So, we can simply parallelize the computation in (3.21) by assigning N/P

systems of three-point equations to each processor. For processor K, namely

CPU(K − 1), it will solve the system of equations for j = (K−1)N
P

+ 1, . . . , KN
P

.

With this parallelization strategy, the coefficient matrix needs to be distributed

row-wise as demonstrated in Figure 3.12.

We use the subroutine PARA_RANGE to find the range of row-strip and

column-strip on CPU(K-1) as shown in Figure 3.11 while j_start, j_end, i_start

and i_end can be determined by

CALL PARA_RANGE(1,M,nprocs,myid,j_start,j_end)

and

CALL PARA_RANGE(1,N,nprocs,myid,i_start,i_end).

After that, we can define the blocks of data updating for each processor as follows

SUBROUTINE block(imin,imax,jmin,ista,iend,jend,iotype,inewtype)

INCLUDE ’mpif.h’
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Figure 3.12 The sketch of domain decomposition process in direction of Y−axis

INTEGER imin,imax,ista,iend,jsta,jend

INTEGER iblock(2),idisp(2),itype(2)

CALL MPI_TYPE_EXTENT(ioldtype,isize,ierr)

ilen = iend - ista + 1 jlen = jend - jsta + 1

CALL MPI_TYPE_VECTOR(jlen,ilen,imax-imin+1,ioldtype,itemp,ierr)

iblock(1) = 1

iblock(2) = 1

idisp(1)=0

idisp(2)=((imax-imin+1)*(jsta-jmin)+(ista-imin))*isize

itype(1) = MPI_LB

itype(2) = itemp

!Construct the sub-block

CALL MPI_TYPE_STRUCT(2,iblock,idisp,itype,inewtype,ierr) CALL

MPI_TYPE_COMMIT(inewtype,ierr)

return

END
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If each processor computes all its grid points, then we need to update the data

blocks before we go to the next computation by the following algorithm

!sending and receiving updated data

DO ir = 0,nprocs-1

IF (ir /= myid) THEN

CALL MPI_ISEND(U,1,itype2(ir,myid),ir,1,MPI_COMM_WORLD,ireq1(ir),

ierr)

CALL MPI_IRECV(U,1,itype2(myid,ir),ir,1,MPI_COMM_WORLD,ireq2(ir),

ierr)

ENDIF

ENDDO

!check for status of sending and receiving data

DO ir =0,nprocs-1

IF (ir/=myid) THEN

CALL MPI_WAIT(ireq1(ir),status,ierr)

CALL MPI_WAIT(ireq2(ir),status,ierr)

ENDIF

ENDDO

Equations (3.20) of the second half step can be written in a tridiagonal

format

Un+1
i,0 = g(yi, 0)

−ai,jU
n+1
i,j−1 + ci,jU

n+1
i,j − bi,jU

n+1
i,j+1 = fi,j, j = 1, 2, . . . , N ; i = 1, 2, . . . , M,

Un+1
i,N+1 = g(yi, zN) (3.22)

Therefore, at each fixed i one has a linear system of N equations with tridiagonal
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matrix. So, on CPU(K − 1), it will solve a system of equations for i = (K−1)M
P

+

1, . . . , KM
P

. Figure 3.13 shows the direction of computation of column-wise for the

second step of the splitting scheme.

Figure 3.13 The sketch of domain decomposition process in direction of X−axis

We can compute in parallel on every strip in the direction of the X−axis for

the first step and on every strip in the direction of the Y−axis for the second step.

Consequently, we need to redistribute the updated data between the row-splitting

and column-splitting or vice versa. The scheme of data updating is depicted in

Figure 3.14

Let us consider a grid of size M × N and assume that one grid node re-

quires t seconds for computation. So, for all nodes of the grid require (M ×N)× t

seconds. Let P be the number of processors and each processor works with

(M ×N) /P nodes of grid. Hence, each processor requires (M ×N × t) /P sec-

onds and [P × (P − 1)] times for updating data blocks. Therefore, the speedup

is

S =
N ×M × t

N×M×t
P

+ P × (P − 1)× (
tl + MessageSize

BandWidth

) . (3.23)
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Figure 3.14 Updating data blocks on each processor

To consider the conditions of speedup, let us assume that T is the sequential

run time, that is T = N ×M × t. To get the speedup, we must have

T
T
P

+ P × (P − 1)× (
tl + MessageSize

BandWidth

) > 1 (3.24)

or

T > T
P

+ P (P − 1)
(
tl + MessageSize

BandWidth

)

T

(
P − 1

P

)
> P (P − 1)

(
tl + MessageSize

BandWidth

)

T > P 2
(
tl + MessageSize

BandWidth

)
. (3.25)
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Hence, to get the speedup, we must have

T > P 2

(
tl +

MessageSize

BandWidth

)
.

There is no speedup if

T ≤ P 2

(
tl +

MessageSize

BandWidth

)
.

It means that we may have used too many processors or the message size of problem

and the latency time of the parallel system is too high and the bandwidth is too

small. So, the sequential time will be less than or equals to the parallel time in

which case we will have a bad speedup.

In the next chapter, we show the validation of our parallel algorithms, the

speedup, and the numerical results of the parallel program on two different clusters.



CHAPTER IV

VALIDATION AND NUMERICAL RESULTS

4.1 Comparison of Parallel and Sequential Algorithms

For the far turbulent wake behind a towed body in a linear stratified

medium, a hierarchy of semi-empirical turbulent models was described in Chernykh

et al. (1999, 2006, 2008) and Voropayeva (2000, 2002), etc. The most complex

model comprises differential equations for transport of normal Reynolds stresses.

In total, this model consists of 12 differential equations. These equations are solved

by using the splitting techniques of Yanenko (1971). In the sequential algorithm,

this model requires 14 jobs, which are executed sequentially. We chose this model

to implement the ideas of the functional and domain decomposition developed in

Chapter III.

The reliability of the five models is considered in the work of Chernykh

(1999, 2006), Moshkin et al. (2001). It demonstrated that all models except

Model 2 give reasonable results which correspond to the numerical and experi-

mental data of Lin and Pao (1973, 1974, 1979). The numerical results using the

parallel codes were compared with the results using the sequential code to guar-

antee the correctness of the parallel algorithms. Therefore, the performance of

parallel algorithms is discussed in this chapter.

First, we utilize the idea of the functional decomposition. In the second

approach, we use the idea of the domain decomposition to each of the 14 jobs

solved in a sequential sequence. It means that each job with the splitting scheme is

realized by parallel domain decomposition algorithm with all available processors.
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The results of parallel functional decomposition algorithm and parallel domain

decomposition algorithm are compared with Lin and Pao’s experimental data and

Hassid’s computational results (Lin and Pao (1973, 1974, 1979), Hassid (1980))

and obtained by the execution of the sequential algorithm.

The comparison of results for the density Froude number Fd = 31 is pre-

sented in Figures 4.1-4.4. Figures 4.1 and 4.2 show the time variation of the

dimensionless axial velocity defect Ud = Ud(x, 0, 0) in the case of drag and mo-

memtumless wakes, respectively. The symbols ◦ and • correspond to Lin ans

Pao’s experimental data. The dashed lines correspond to the results of Hassid’s

numerical experiments ( Hassid (1980)). The symbols O and H indicate the com-

putational results by the sequential algorithm. The symbols . and I indicate

the computational results by the domain decomposition algorithm. The symbols

¤ and ¥ indicate the computational results by the functional decomposition al-

gorithm. Analogous data for the dimensionless axial values of turbulent energy

e0 = e0(x) = e(x, 0, 0) are presented in Figures 4.3-4.4.

Tables 4.1-4.4 show the computational results obtained from the sequen-

tial, functional decomposition and domain decomposition algorithms for the den-

sity Froude number Fd = 280. Tables 4.1 and 4.2 compare the non-dimension

values of axial turbulent energy for different distances. Table 4.1 corresponds to

momentumless wake and Table 4.2 corresponds to drag wake. Tables 4.3 and 4.4

show the comparison of the values of non-dimensional axial velocity defect for the

momentumless and drag wakes respectively. Tables 4.5 and 4.6 show the decay of

dissipation ε in the momentumless and drag wakes, respectively.
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Figure 4.1 Comparison of the axial values of the longitudinal velocity component

defect, Ud(x) in the wake behind a towed body calculated by the sequential algo-

rithm and parallel algorithms with Lin and Pao’s experimental data and Hassid’s

computational results
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Figure 4.2 Comparison of the axial values of the longitudinal velocity component

defect, Ud(x) in the wake behind a self-propelled body calculated by the sequen-

tial algorithm and parallel algorithms with Lin and Pao’s experimental data and

Hassid’s computational results
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Figure 4.3 Comparison of the axial values of the turbulent energy, e0(x) in the

wake behind a towed body calculated by the sequential algorithm and parallel

algorithms with Lin and Pao’s experimental data and Hassid’s computational re-

sults
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Figure 4.4 Comparison of the axial values of the turbulent energy, e0(x) in the

wake behind a self-propelled body calculated by the sequential algorithm and par-

allel algorithms with Lin and Pao’s experimental data and Hassid’s computational

results
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x/D e (sequential alg.) e (functional decomp.) e (domain decomp.)

12.00 0.42813E-01 0.42890E-01 0.42813E-01

19.00 0.33442E-01 0.33436E-01 0.33442E-01

63.65 0.13778E-01 0.13744E-01 0.13778E-01

119.22 0.80534E-02 0.80220E-02 0.80534E-02

252.74 0.41380E-02 0.41117E-02 0.41380E-02

947.74 0.13891E-02 0.13771E-02 0.13891E-02

1502.74 0.96091E-03 0.95273E-03 0.96091E-03

Table 4.1 Axial values of the dimensionless turbulent energy, e, depending on the

distance in the momentumless wake, Fd = 280

x/D e (sequential alg.) e (functional decomp.) e (domain decomp.)

12.00 0.46145E-01 0.46144E-01 0.46145E-01

19.00 0.33749E-01 0.33737E-01 0.33749E-01

63.35 0.21323E-01 0.21258E-01 0.21323E-01

118.78 0.14147E-01 0.14093E-01 0.14147E-01

252.24 0.79067E-02 0.78716E-02 0.79067E-02

947.24 0.29912E-02 0.29963E-02 0.29912E-02

1502.24 0.21874E-02 0.21867E-02 0.21874E-02

Table 4.2 Axial values of the dimensionless turbulent energy, e, depending on the

distance in the drag wake, Fd = 280
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x/D Ud (sequential alg.) Ud (functional decomp.) Ud (domain decomp.)

12.00 0.84457E-01 0.84848E-01 0.84457E-01

19.00 0.50144E-01 0.50165E-01 0.50144E-01

63.65 0.11243E-01 0.11336E-01 0.11243E-01

119.22 0.54013E-02 0.54826E-02 0.54013E-02

252.74 0.27806E-02 0.28392E-02 0.27806E-02

947.74 0.14482E-02 0.14851E-02 0.14482E-02

1502.74 0.12296E-02 0.12611E-02 0.12296E-02

Table 4.3 Axial values of the dimensionless axial velocity defect, Ud, depending

on the distance in the momentumless wake, Fd = 280

x/D Ud (sequential alg.) Ud (functional decomp.) Ud (domain decomp.)

12.00 0.21287E-00 0.21288E-00 0.21287E-00

19.00 0.17274E-00 0.17276E-00 0.17274E-00

63.35 0.73696E-01 0.73956E-01 0.73696E-01

118.78 0.44832E-01 0.45083E-01 0.44832E-01

252.24 0.27355E-01 0.27544E-01 0.27355E-01

947.24 0.16515E-01 0.16626E-01 0.16515E-01

1502.24 0.14563E-01 0.14622E-01 0.14563E-01

Table 4.4 Axial values of the dimensionless axial velocity defect, Ud, depending

on the distance in the drag wake, Fd = 280
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x/D ε (sequential alg.) ε (functional decomp.) ε (domain decomp.)

12.00 0.21002E-03 0.21176E-03 0.21002E-03

19.00 0.80929E-04 0.80946E-04 0.80929E-04

63.65 0.36783E-05 0.36947E-05 0.36783E-05

119.22 0.61573E-06 0.61726E-06 0.61573E-06

252.74 0.69568E-07 0.69330E-07 0.69568E-07

947.74 0.19673E-08 0.19434E-08 0.19673E-08

1502.74 0.59178E-09 0.58408E-09 0.59178E-09

Table 4.5 Axial values of the dimensionless turbulent dissipation, ε, depending

on the distance in the momentumless wake, Fd = 280

x/D ε (sequential alg.) ε (functional decomp.) ε (domain decomp.)

12.00 0.44275E-03 0.44291E-03 0.44275E-03

19.00 0.11068E-03 0.11087E-03 0.11068E-03

63.35 0.12594E-04 0.12645E-04 0.12594E-04

118.78 0.27430E-05 0.27560E-05 0.27430E-05

252.24 0.35925E-06 0.35989E-06 0.35925E-06

947.24 0.12583E-07 0.12619E-07 0.12583E-07

1502.24 0.42757E-08 0.42988E-08 0.42757E-08

Table 4.6 Axial values of the dimensionless turbulent dissipation, ε, depending

on the distance in the drag wake, Fd = 280



52

It can be seen that the results obtained from the three algorithms agree well

(see Figures 4.1-4.4) with Lin and Pao’s experiments, Lin and Pao (1973, 1974,

1979). Tables 4.1-4.6 show the results of computations by the functional decom-

position algorithm as well as the results by the domain decomposition algorithm

which coincide with the results of sequential computation. The dynamics of a tur-

bulent wake and internal wakes generated by the wake in a linearly stratified fluid

are illustrated in Figures 4.5-4.6. The Froude number was assumed to be equal 280

which corresponds to the conditions of one of the laboratory experiments of Lin

and Pao (1979). It is not surprising that the patterns of isolines 〈ρ1〉/(aDρ0Fr
1/4
D )

drawing by the results from the functional and domain decomposition algorithms

are the same. Figure 4.5 shows the isolines 〈ρ1〉/(aDρ0Fr
1/4
D ) in momentumless

wake for the moments of time t/T = 1, t/T = 2 and t/T = 3, respectively. The

level of isolines varies from −0.015 to 0.015 with a step of 0.005. Analogous results

for the drag wake are presented in Figure 4.6.

4.2 Results of Experimental Performance of Parallel Algo-

rithms

For numerical experiments, the sequential and parallel algorithms are com-

piled and run by using two clusters of Solaris (Cluster-I) and Linux (SUT-HPCC)

operating systems which are located at School of Mathematics and High Per-

formance Computing Center of Suranaree University of Technology. Cluster-I is

based on PC sever with 10 processors of Opteron (2 cores) 1.6 GHz, 8 GB of RAM,

Intel (4 cores) 2.0 GHz, 8 GB of RAM, and two machines of AMD (2 cores) 2.4

GHz, 2 GB of RAM. SUT-HPCC is based on 7 machines of 2 Quad cores Xeon

2.33 GHz, 8 GB of RAM and 7 machines of 2 Dual cores Xeon 3.0 GHz, 4 GB
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Figure 4.5 Isolines 〈ρ1〉/(aDρ0Fr
1/4
D ) =const. Momentumless wake, Fd = 280.

Functional and domain decomposition, (a) t/T = 1, (b) t/T = 2 and (c) t/T = 3
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Figure 4.6 Isolines 〈ρ1〉/(aDρ0Fr
1/4
D ) =const. Drag wake, Fd = 280. Functional

and domain decomposition, (a) t/T = 1, (b) t/T = 2 and (c) t/T = 3
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of RAM. On both clusters, we used the Sun FORTRAN compiler of Sun Studio

11 with MPI 2.0 library. Latency time and bandwidth are estimated by using the

program of Nielsen (2003) and was 5.2E − 5 sec, 118MB/sec for Cluster-I, and

5.9E − 5 sec, 260MB/sec for SUT-HPCC.

The run time of the sequential code is used as a measure of the run time on

one processor. In this study, the run time starts after generating an initial state.

Wall-clock time is used to record the run time. The wall clock time (Schönauer

(2000), Kumar et al. (1994)) is used to represent the total run time since it includes

the idle time and communication time.

To perform experimental estimation of speedup and efficiency, we utilize

Model 4. For parallel functional decomposition, the analysis of the numerical

model shows that it can be represented in the form of 5 independent groups of

tasks. In the notations of Figure 3.5, we have m1 = 3, m2 = 1, m3 = 2, m4 = 7

and m5 = 1. The jobs in each group can be executed independently.

The execution times are shown in Tables 4.7 and 4.8 for Cluster-I and in

Tables 4.9 and 4.10 for SUT-HPCC. The performance results for both clusters in

terms of speedup characteristics are shown in Figures 4.7 and 4.8. These figures

give the detailed statistics of the parallel code on 1, 2, 4, 7 and 8 processors for

Cluster-I and SUT-HPCC. We estimate the speedup of parallel functional and

domain decomposition on the following grids 400×750, 600×1150 and 800×1550

nodes in z and y directions, respectively. Tables 4.11-4.14 show the numerical

efficiency of parallel functional and domain decompositions on Cluster-I and SUT-

HPCC, respectively.

The performance results for parallel runs for both clusters depend on grid

size. The speedup of parallel functional decomposition increases almost linearly up

to four processors, after that, it starts to deviate away from the perfect speedup,
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while the speedup of parallel domain decomposition increases linearly up to eight

processors.

Grid size 400x750 600x1150 800x1550

NCPUs Time Speedup Time Speedup Time Speedup

1 6824.52 - 14058.94 - 27420.92 -

2 5593.86 1.22 11247.15 1.25 19727.28 1.39

4 3554.43 1.92 6994.49 2.01 13183.13 2.08

7 3174.19 2.15 6361.51 2.21 11718.34 2.34

Table 4.7 Speedup results of the functional decomposition algorithm on Cluster-I

Grid size 400x750 600x1150 800x1550

NCPUs Time Speedup Time Speedup Time Speedup

1 6824.52 - 14058.94 - 27420.92 -

2 4382.75 1.56 8824.99 1.59 16876.53 1.62

4 2293.28 2.98 4608.72 3.05 8874.08 3.09

7 1683.57 4.05 3426.01 4.10 6368.64 4.31

8 1564.32 4.36 3171.43 4.43 6039.14 4.54

Table 4.8 Speedup results of the domain decomposition algorithm on Cluster-I
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Grid size 400x750 600x1150 800x1550

NCPUs Time Speedup Time Speedup Time Speedup

1 4913.07 - 11952.72 - 25420.44 -

2 3584.59 1.37 8417.48 1.42 17614.25 1.44

4 2516.09 1.95 5683.31 2.10 12058.83 2.11

7 2134.25 2.30 4927.48 2.43 10291.68 2.47

Table 4.9 Speedup results of the functional decomposition algorithm on SUT-

HPCC

Grid size 400x750 600x1150 800x1550

NCPUs Time Speedup Time Speedup Time Speedup

1 4913.07 - 11952.72 - 25420.44 -

2 3125.54 1.57 7431.28 1.61 14869.83 1.71

4 1628.22 3.02 3850.87 3.10 8173.77 3.11

7 1186.73 4.14 2851.70 4.19 5846.71 4.35

8 1120.38 4.39 2686.21 4.45 5487.65 4.63

Table 4.10 Speedup results of the domain decomposition algorithm on SUT-

HPCC
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Grid size 400x750 600x1150 800x1550

NCPUs Speedup Efficiency Speedup Efficiency Speedup Efficiency

2 1.22 0.6100 1.25 0.6250 1.39 0.6950

4 1.92 0.4800 2.01 0.5025 2.08 0.5200

7 2.15 0.3071 2.21 0.3157 2.34 0.3343

Table 4.11 Efficiency results of the functional decomposition algorithm on

Cluster-I

Grid size 400x750 600x1150 800x1550

NCPUs Speedup Efficiency Speedup Efficiency Speedup Efficiency

2 1.56 0.7800 1.59 0.7950 1.62 0.8100

4 2.98 0.7450 3.05 0.7625 3.09 0.7725

7 4.05 0.5786 4.10 0.5857 4.31 0.6157

8 4.36 0.5450 4.43 0.5538 4.54 0.5675

Table 4.12 Efficiency results of the domain decomposition algorithm on Cluster-I
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Grid size 400x750 600x1150 800x1550

NCPUs Speedup Efficiency Speedup Efficiency Speedup Efficiency

2 1.37 0.6850 1.42 0.7100 1.44 0.7200

4 1.95 0.4875 2.10 0.5250 2.11 0.5275

7 2.30 0.3286 2.43 0.3471 2.47 0.3529

Table 4.13 Efficiency results of the functional decomposition algorithm on SUT-

HPCC

Grid size 400x750 600x1150 800x1550

NCPUs Speedup Efficiency Speedup Efficiency Speedup Efficiency

2 1.57 0.7850 1.61 0.8050 1.71 0.8550

4 3.02 0.7550 3.10 0.7750 3.11 0.7775

7 4.14 0.5914 4.19 0.5986 4.35 0.6214

8 4.39 0.5488 4.45 0.5563 4.63 0.5788

Table 4.14 Efficiency results of the domain decomposition algorithm on SUT-

HPCC
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Figures 4.7 and 4.8 show the speedup results of parallel functional and

domain decompositions on the different grid size, 400× 750, 600× 1150 and 800×
1550 on Cluster-I and SUT-HPCC.
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Figure 4.7 Speedup results of grid size 400× 750, 600× 1150 and 800× 1550 on

Cluster-I

Figures 4.9-4.14 show the comparison between the theoretical speedup and

the numerical speedup on both clusters of parallel functional and domain decom-

position algorithms, respectively. The speedups obtained by both the parallel

functional and domain decomposition algorithms are in reasonably well agreement

with the theoretical estimate. Theoretical speedup is higher than experimental

speedup due to not perfect balance of computational and communication time of

different jobs.
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parallel domain decomposition on Cluste-I and SUT-HPCC, grid size=400× 750
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CHAPTER V

CONCLUSIONS

In this final chapter, the major contributions made in this research are

summarized, and conclusions are made from the presented results. Finally, rec-

ommendations are presented for future research efforts.

5.1 Contributions

The following contributions made in this research can be summarized as

follows:

1. Two parallel algorithms and parallel computer codes for numerical models

of a turbulent wake dynamics in a stratified fluid have been developed and

validated. The first is based on the functional decomposition approach. The

second one is based on the domain decomposition techniques. The solution

of the transport differential equations are obtained by the fractional step

methods.

2. Theoretical estimates of speedups for both functional and domain decompo-

sition techniques are derived.

3. The speedups of both algorithms are compared with the theoretical esti-

mates.

4. Both parallel algorithms are successfully applied to the model of turbulent

wake behind axisymmetric towed and self-propelled bodies in a linearly strat-



69

ified fluid. The model comprises differential equations for transport of normal

Reynolds stresses and passive scalar.

The computation in this study was conducted on the Sun Solaris PC clus-

ter and Linux PC cluster in School of Mathematics and High Performance Com-

puting Cluster of the Suranaree University of Technology (Nakhon Ratchasima,

Thailand). Numerical simulation have been performed on a variety of grids. The

parallel codes were tested on 8 CPUs. The computer codes are developed by

FROTRAN-90 language and MPI library.

5.2 Conclusions

The following conclusions can be made from the present work.

1. The theoretical estimates and numerical experiments demonstrate the signif-

icant speedup of both parallel algorithms in comparison with the sequential

one. The results of numerical simulations of turbulent wake dynamics in

a stratified fluid using parallel algorithms are in good agreement with the

experimental data and results of numerical simulation by the sequential code.

2. The run time of the functional decomposition algorithm is faster than the

run time of sequential code about two times while the run time of the domain

decomposition algorithm is faster than that of the sequential code for more

than 4 times when we use seven CPUs.

3. To distribute the tasks between CPUs and organize the communications of

the parallel functional decomposition algorithm is simpler when compared

with the parallel domain decomposition algorithm. But the functional de-

composition algorithm has a limitation on the number of processors used

and has the lower limit of maximal speedup.
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4. The effect of latency time, bandwidth and message size on the speedup have

also been analyzed.

Finally, the present research shows that both developed parallel algorithms

can be the viable tools to numerical simulations of turbulent wake dynamics in

a stratified fluid and can serve as a basis for numerical experiments for more

complicated models of turbulence.

5.3 Recommendations for Future Research

Future work should include the mixed techniques of the functional and

domain decompositions to solve the mathematical models of a turbulent wakes

dynamics in a stratified fluid. Also, the developed methods for new mathematical

models of turbulence can be applied to numerical simulation with more compli-

cated flow problems for instance, the turbulent wake dynamics in linearly and

nonlinearly stratified fluids, as well as the numerical simulation of swirling turbu-

lent wake dynamics in a stratified fluid.
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APPENDIX A

THE COMPUTATION OF THE

THEORETICAL SPEEDUP

In this Appendix, we show by the example how to estimate the theoretical

speedup. In this example, we chose the largest grid of grid size 800 × 1550, and

computed the speedpup for the SUT-HPCC cluster.

A.1 The Theoretical Speedup of the Domain Decomposi-

tion Algorithms

To estimate the theoretical speedup of the domain decomposition algorithm

on SUT-HPCC, we use the measured latency time, tl = 5.9E−5 sec, 260 MB/sec of

the bandwidth and the sequential run time of all subroutines for the computation

of one iteration.

Table A.1 shows the sequential run time for each component, the commu-

nication times, and the speedup. The message size for a grid of size 800× 1550 is

determined by

MessageSize =
800× 1550× 8

10242 × P 2
MB.

The communication time (Tcomm) can be approximated by

Tcomm = P (P − 1)

(
tl +

MessageSize

Bandwidth

)

= P (P − 1)

(
0.000059 +

800× 1550× 8

10242 × P 2 × 260

)
. (A.1)

In the implicit splitting method, we need to update data twice for 10 components
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and once for 4 components. So, in one iteration, we require (10× 2 + 4) Tcomm of

the communication time. By formula (A.1), this amounts to 0.00146P (P − 1) +

0.8733(P − 1)/P .

A.2 The Theoretical Speedup of the Functional Decompo-

sition Algorithms

This an example of estimation for 4 CPUs (CPU(0), CPU(1), CPU(2) and

CPU(3)). In the algorithm, we use the MPI_BCAST command to update the data

of message size 800 × 1550 which was measured to require about 0.014392 sec of

the communication time.

Stage 1: For Ud, V ∗ and W ∗, we can compute Ud on CPU(0) and CPU(2). Since

the run time of V ∗ and W ∗ are small when compared with Ud, hence, we

can compute these two components on the same processors of CPU(1) and

CPU(3). Then we can update the data simultaneously between CPU(0)-

CPU(1) and CPU(2)-CPU(3).

Stage 2: All processors can compute for 〈p1〉n+1 simultaneously.

Stage 3: For V and W , we assign CPU(0) and CPU(2) to compute for V while CPU(1)

and CPU(3) compute for W . Then we can update the data simultaneously

between CPU(0)-CPU(1) and CPU(2)-CPU(3).

Stage 4: In this stage, there are 7 components of 〈ρ1〉, ε, 〈v′w′〉, 〈u′2〉, 〈v′2〉, 〈w′2〉 and

Θ. So we can compute simultaneously for 〈ρ1〉 on CPU(0), ε on CPU(1),

〈v′w′〉 and 〈u′2〉 on CPU(2) and 〈v′2〉 and 〈w′2〉 on CPU(3). We need to

update the data for all processors (except for the passive scalar Θ).

Stage 5: For e, all processors can compute simultaneously.
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Grid size 800x1550

NCPUs P=1 P=2 P=4 P=8 P=16

Ud 0.927328 0.463664 0.231832 0.115916 0.057958

V ∗ 0.424598 0.212299 0.106149 0.053075 0.026537

W ∗ 0.413166 0.206583 0.103292 0.051646 0.025823

〈p1〉 2.498945 1.249473 0.624736 0.312368 0.156184

V 0.431262 0.215631 0.107816 0.053908 0.026954

W 0.408874 0.204437 0.102219 0.051109 0.025555

〈ρ1〉 1.335131 0.667566 0.333783 0.166891 0.083446

ε 1.003255 0.501628 0.250814 0.125407 0.062703

〈v′w′〉 0.976604 0.488302 0.244151 0.122075 0.061038

〈u′2〉 0.973988 0.486994 0.243497 0.121749 0.060874

〈v′2〉 0.991730 0.495865 0.247933 0.123966 0.061983

〈w′2〉 0.980651 0.490326 0.245163 0.122581 0.061291

Θ 0.991672 0.495836 0.247918 0.123959 0.061979

e 0.360719 0.180359 0.090180 0.045090 0.022545

Tcomm - 0.439468 0.671946 0.843409 1.158533

TP 12.717923 6.798430 3.851427 2.433150 1.953403

Speedup - 1.870715 3.302133 5.226938 6.510650

Table A.1 The theoretical speedup of the domain decomposition algorithm for

grid size=800× 1550 on SUT-HPCC
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NCPUs P=1 P=4

stage j=1 Ud 0.927328 0.927328

V ∗ 0.424598

W ∗ 0.413166

Tcomm - 0.043176 (3 messages)

stage j=2 〈p1〉n+1 2.498945 2.498945

Tcomm - -

stage j=3 V 0.431262 0.431262

W 0.408874

Tcomm - 0.028784(2 messages)

stage j=4 〈ρ1〉 1.335131 1.335131

ε 1.003255

〈v′w′〉 0.976604

〈u′2〉 0.973988

〈v′2〉 0.991730

〈w′2〉 0.980651

Θ 0.991672

Tcomm - 0.086352 (6 messages)

stage j=5 e 0.360719 0.386185

Tcomm - -

Total 12.717923 5.711697

Speedup - 2.226645

Table A.2 The theoretical speedup of the functional decomposition algorithm for

grid size=800× 1550 on SUT-HPCC



APPENDIX B

TERMINOLOGY

B.1 Finite Difference Method

The principle of the finite-difference method is to replace the differential

operators by combinations of algebraic finite-difference quotients that can be re-

ceived from truncations of Taylor series. When all the partial derivatives in a

given partial differential equation are replaced by finite-difference quotients, the

resulting algebraic equation is called difference equation, which is an algebraic

representation of the partial differential equation.

B.2 The Method of Stabilizing Corrections

In this research we use the iterative method of stabilizing corrections (Ya-

nenko (1971)) for computing the finite difference equation (3.10) for pressure. The

method of stabilizing corrections, which was introduced by Douglas and Rachford

(1956) and formulated in its general form by Douglas and Gunn (1964), is a very

general and effective method for the construction of schemes with fractional steps.

We present here the general iterative scheme of stabilizing corrections for elliptic

equations. In our explanation, we follow Yanenko (1970).

For the elliptic equation

Lu + f =
m∑

i,j=1

aij
∂2u

∂xi∂xj

+ f = 0. (B.1)
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the parallel between the iterative schemes and integration schemes of the corre-

sponding parabolic equation

∂u

∂t
=

m∑
i,j=1

aij
∂2u

∂xi∂xj

+ f. (B.2)

is always valid, i.e., the solution of the unsteady problem (B.2) approaches the

solution of the steady problem with the same boundary conditions, regardless of

the choice of initial data. The scheme of stabilizing corrections is

un+1/m − un

τ
= Λ11u

n+1/m + (Ω− Λ11)u
n,

un+2/m − un+1/m

τ
= Λ22(u

n+2/m − un),

· · · = · · · ,

un+1 − un+(m−1)/m

τ
= Λmm(un+1 − un),

(B.3)

where Ω =
n∑

i,j=1

Λij. After eliminating fractional steps, the equivalent scheme in

whole steps is

un+1 − un

τ
= Λun+1 + (Ω− Λ)un − τ

∑
i<j

ΛiiΛjj(u
n+1 − un)+

+τ 2
∑

i<j<k

ΛiiΛjjΛkk(u
n+1 − un) + · · ·

+(−1)m−1Λ11 . . . Λmmτm−1(un+1 − un),

Λ =
m∑

i=1

Λii, i, j, k = 1, . . . , m.

(B.4)

From (B.4) complete consistency follows at any m. Scheme (B.3) is strongly

stable. The main idea of the scheme of stabilizing correction is to solve at each

fractional step the system of algebraic equations only with tridiagonal matrix.

Next we give a short description of the “sweep” method of solution of three-

point equations and the cyclic elimination method for three-point equations. The

three-point equations arise from three-point difference schemes designed to find

periodic solutions of second-order ordinary differential equation and also when
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approximating the solutions of equations with partial derivatives in cylindrical

bipolar coordinates.

B.3 The Elimination Method for Three-Point Equations

(Samarskij (1989))

Suppose we must solve the following system of three-point equations

c0y0 − b0y1 = f0, i = 0,

−aiyi−1 + ciyi − biyi+1 = fi, 1 ≤ i ≤ N − 1,

−aNyN−1 + cNyN = fN , i = N,

(B.5)

or, in vector form,

AY = F (B.6)

where Y = (y0, y1, . . . , yN)T is the vector of unknowns, F = (f0, f1, . . . , fN)T is the

right hand side vector, and A is the square (N + 1)× (N + 1) matrix with real or

complex coefficients.

A =




c0 −b0 0 0 · · · 0 0 0 0

−a1 c1 −b1 0 · · · 0 0 0 0

0 −a2 c2 −b2 · · · 0 0 0 0

· · · · · · · · · · ·
0 0 0 0 · · · −aN−2 cN−2 −bN − 2 0

0 0 0 0 · · · 0 −aN−1 cN−1 −bN−1

0 0 0 0 · · · 0 0 −aN cN




Systems of the form (B.5) arise from a three-point approximation to a

boundary-value problem for second-order ordinary differential equations with con-

stant and variable coefficients, and also when realizing difference schemes for equa-

tions with partial derivatives.
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Following the idea of Gauss’ method, we carry out the elimination of the

unknown in (B.5). We introduce the notation α1 = b0/c0, β1 = f0/c0 and write

(B.5) in the following form

y0 − α1y1 = β1, i = 0,

−aiyi−1 + ciyi − biyi+1 = fi, 1 ≤ i ≤ N − 1,

−aNyN−1 + cNyN = fN , i = N,

(B.7)

Take the first two equations of the system (B.7)

y0 − α1y1 = β1, −a1y0 + c1y1 − b1y2 = f1.

Multiply the first equation by a1 and add it to the second equation. We get

(c1 − a1α1)y1 − b1y2 = f1 + α1β1 or, after dividing by c1 − a1α1

y1 − α2y2 = β2, α2 =
b1

c1 − α1a1

, β2 =
f1 + a1β1

1 − α1a1

.

All the remaining equations of the system (B.7) do not contain y0, therefore this

stage of the elimination process is completed. As a result we obtain a new “re-

duced” system

y1 − α2y2 = β2, i = 1,

−aiyi−1 + ciyi − biyi+1 = fi, 2 ≤ i ≤ N − 1,

−aNyN−1 + cNyN = fN , i = N,

(B.8)

which does not contain the unknown y0 and which has a structure analogous to

(B.7). When this system has been solved, the unknown y0 is found from the

formula y0 = α1y1 + β1. We can apply the above described elimination procedure

to system (B.8). At the second stage, the unknown y1 is eliminated, at the third

y2, and so forth. At the end of the lth stage we obtain a system for the unknowns
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yl, yl + 1, · · · , yN

yl − αl+1yl+1 = βl+1, i = 1,

−aiyi−1 + ciyi − biyi+1 = fi, l + 1 ≤ i ≤ N − 1,

−aNyN−1 + cNyN = fN , i = N,

(B.9)

and formulas for finding yi for i ≤ l − 1

yi = αi+1yi+1 + βi+1, i = l − 1, l − 2, . . . , 0. (B.10)

The coefficients αi and βi, clearly, are found from the formulas

αi+1 =
bi

ci − αiai

; βi+1 =
fi + aiβi

ci − αiai

; i = 1, 2, . . . , ; α1 =
b0

c0

, β1 =
f0

c0

.

Substituting l = N − 1 in (B.9), we obtain a system for yN and yN−1

yN−1 − αNyN = βN ,−aNyN−1 + cNyN = fN (B.11)

from which we find yN = βN+1, yN−1 = αNyN + βN .

Combining these equations with (B.10) (l = N − 1), we obtain the final

formulas for finding the unknowns

yi = αi+1yi+1 + βi+1, i = N − 1, N − 2, . . . , 0,

yN = βN + 1,
(B.12)

where αi and βi are found from the recurrence formulas

αi+1 =
bi

ci − aiαi

, i = 1, 2, . . . , N − 1, αi =
b0

c0

,

βi+1 =
fi + aiβi

ci − aiαi

, i = 1, 2, . . . , N, βi =
f0

c0

.
(B.13)

Thus, the formulas (B.12) and (B.13) describe Gauss’method which, when applied

to the system (B.5), is given a special name - the elimination method. The coef-

ficients αi and βi are called the elimination coefficients, formulas (B.13) describe

the forward elimination pate, and (B.12) the backward path. Since the values yi are
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found sequentially in reverse order, the formulas (B.12) and (B.13) are sometimes

called the right-elimination formulas.

An elementary count of the arithmetic operations in (B.12) and (B.13)

shows that realizing the elimination method using these formulas requires 3N

multiplications, 2N +1 divisions and 3N additions and subtractions. If there is no

difference between arithmetic operations, the total number of operations required

for the elimination method is Q = 8N + 1. Of this total, 3N − 2 operations are

used for computing αi, and 5N + 3 operations for computing βi and yi.

Notice that the coefficients αi do not depend on the right-hand side of the

system (B.5), but are determined solely by the coefficients ai, bi, ci of the difference

equations. Therefore, if we must solve a series of problems (B.5) with different

right-hand sides, but with the same matrix A, then the elimination coefficients αi

are only computed for the first problem of the series. Thus solving the first problem

in the series costs Q = 8N + 1 operations, but solving each of the remaining

problems only costs 5N + 3 operations.

In conclusion we indicate the order of the computations for the formulas of

the elimination method. Beginning with α1 and β1, we calculate and store αi and

βi using (B.13). Then the solutions yi are found using (B.12).

B.4 Run Time and Speedup

Run time: The serial run time (TS) of a program is the time elapsed

between the beginning and the end of its execution on a sequential computer.

The parallel run time (TP ) is the time that elapsed from the moment that a par-

allel computational starts to the moment that the last processor finishes execution.

Speedup: Speedup is a measure that captures the relative benefit of
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solving a program in parallel. It is defined as the ratio of the time taken to solve

a program on a single processor to the time required to solve the same prob-

lem on a parallel computer. We denote speedup by the symbol S (i.e. S = TS/TP ).

Efficiency: Only an ideal parallel system containing P processors can

deliver a speedup equal to P since, parallel computing have the time of communi-

cations. Efficiency is defined as the ratio of speedup to the number of processors

(i.e. E = S/P ). In an ideal parallel system, efficiency is equal to 1. In practice,

speedup is less than P and efficiency is between zero and one.



APPENDIX C

FREQUENTLY USED MPI SUBROUTINES

In this Appendix, we review the main subroutines of using MPI library

(Aoyama and Nakano (1999)).

C.1 Environmental Subroutines

1.1 MPI INIT

Purpose : Initializes MPI.

Usage: CALL MPI INIT(ierr)

Parameters:

INTEGER ierr: The Fortran return code.

Description: This subroutine initializes MPI. All MPI programs must call this

subroutine once and only once before any other MPI subroutine.

1.2 MPI COMM SIZE

Purpose: Returns the number of processes in the group associated with a com-

municator.

Usage: CALL MPI COMM SIZE(comm, size, ierror)

Parameters:

INTEGER comm: The communicator.

INTEGER size: An integer specifying the number of processes in
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the group comm.

INTEGER ierror: The Fortran return code.

Description: This routine returns the size of the group associated with a commu-

nicator.

1.3 MPI COMM RANK

Purpose: Returns the rank of the local process in the group associated with a

communicator.

Usage: CALL MPI COMM RANK(comm, rank, ierror)

Parameters:

INTEGER comm: The communicator.

INTEGER rank: An integer specifying the rank of the calling

process in group comm.

INTEGER ierror: The Fortran return code.

Description: This routine returns the rank of the local process in the group

associated with a communicator. MPI COMM RANK indicates the rank of

the process that calls it in the range from 0..size - 1, where size is the return

value of MPI COMM SIZE.

1.4 MPI FINALIZE

Purpose: Terminates all MPI processing.

Usage: CALL MPI FINALIZE(ierror)

Parameters:

INTEGER ierror: The Fortran return code.
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Description: Make sure this routine is the last MPI call. Any MPI calls made

after MPI FINALIZE raise an error.

1.5 MPI ABORT

Purpose: Forces all processes of an MPI job to terminate.

Usage: CALL MPI ABORT(comm, errorcode, ierror)

Parameters:

INTEGER comm: The communicator of the processes to abort.

INTEGER errorcode: The error code returned to the invoking

environment.

INTEGER ierror: The Fortran return code.

Description: If any process calls this routine, all processes in the job are forced

to terminate.

C.2 Collective Communication Subroutines

2.1 MPI BCAST

Purpose : Broadcasts a message from root to all processes in comm.

Usage: CALL MPI BCAST(buffer, count, datatype, root, comm,

ierror)

Parameters:

buffer : The starting address of the buffer.

INTEGER count : The number of elements in the buffer.

INTEGER datatype: The data type of the buffer elements.

INTEGER root : The rank of the root process.
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INTEGER comm : The communicator.

INTEGER ierror : The Fortran return code.

Description : This routine broadcasts a message from root to all processes in

comm. The contents of roots communication buffer is copied to all processes

on return. The type signature of count, datatype on any process must be

equal to the type signature of count, datatype at the root. This means the

amount of data sent must be equal to the amount of data received, pairwise

between each process and the root. Distinct type maps between sender and

receiver are allowed. All processes in comm need to call this routine.

2.2 MPI REDUCE

Purpose : Applies a reduction operation to the vector sendbuf

over the set of processes specified by comm and places

the result in recvbuf on root.

Usage : CALL MPI REDUCE(sendbuf, recvbuf, count, datatype, op,

root, comm, ierror)

Parameters :

sendbuf : The address of the send buffer (IN).

recvbuf : The address of the receive buffer.

INTEGER count : The number of elements in the send buffer.

INTEGER datatype : The data type of elements of the send

buffer.

INTEGER op : The reduction operation.

INTEGER root : The rank of the root process.

INTEGER comm : The communicator.

INTEGER ierror : The Fortran return code.
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Description : This routine applies a reduction operation to the vector sendbuf

over the set of processes specified by comm and places the result in recvbuf on

root. Both the input and output buffers have the same number of elements

with the same type. The arguments sendbuf, count, and datatype define

the send or input buffer and recvbuf, count and datatype define the output

buffer.

2.3 MPI ALLREDUCE

Purpose : Applies a reduction operation to the vector sendbuf over the set of

processes specified by comm and places the result in recvbuf on all of the

processes in comm.

Usage : CALL MPI ALLREDUCE(sendbuf, recvbuf, count, datatype,

op,comm, ierror)

Parameters :

sendbuf : The starting address of the send buffer (IN).

recvbuf : The starting address of the receive buffer. sendbuf and

recvbuf cannot overlap in memory (OUT)

INTEGER count : The number of elements in the send buffer

(IN)

INTEGER datatype : The data type of elements of the send

buffer (handle) (IN)

INTEGER op : The reduction operation (handle) (IN)

INTEGER comm : The communicator (handle) (IN)

INTEGER ierror : The Fortran return code
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Description : This routine applies a reduction operation to the vector sendbuf

over the set of processes specified by comm and places the result in recvbuf

on all of the processes.

2.4 MPI BARRIER

Purpose : Blocks each process in comm until all processes have called it.

Usage : CALL MPI BARRIER(comm, ierror)

Parameters :

INTEGER comm : The communicator (handle) (IN)

INTEGER ierror : The Fortran return code

Description : This routine blocks until all processes have called it. Processes

cannot exit the operation until all group members have entered. All processes

in comm need to call this routine.

C.3 Point-to-Point Communication Subroutines

3.1 MPI SEND

Purpose : Performs a blocking standard mode send operation.

Usage : CALL MPI SEND(buf, count, datatype, dest, tag, comm,

ierror)

Parameters :

buf : The initial address of the send buffer (IN).

INTEGER count : The number of elements in the send buffer

(IN).
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INTEGER datatype : The data type of each send buffer element

(handle) (IN).

INTEGER dest : The rank of the destination process in comm.

INTEGER tag : The message tag.

INTEGER comm : The communicator (handle) (IN).

INTEGER ierror : The Fortran return code.

Description : This routine is a blocking standard mode send. MPI SEND causes

count elements of type datatype to be sent from buf to the process specified

by dest. dest is a process rank which can be any value from 0 to n-1, where

n is the number of processes in comm. The message sent by MPI SEND can

be received by either MPI RECV or MPI IRECV.

3.2 MPI RECV

Purpose : Performs a blocking receive operation.

Usage :CALL MPI RECV(buf, count, datatype, source, tag, comm,

status, ierror)

Parameters :

buf : The initial address of the receive buffer (OUT).

INTEGER count : The number of elements to be received (IN).

INTEGER datatype : The data type of each receive buffer

element (handle) (IN).

INTEGER source : The rank of the source process in comm,

MPI ANY SOURCE.

INTEGER tag : The message tag or MPI ANY TAG (IN).

INTEGER comm : The communicator (handle) (IN).
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INTEGER status : The status object (OUT).

INTEGER ierror : The Fortran return code.

Description : MPI RECV is a blocking receive. The receive buffer is storage

containing room for count consecutive elements of the type specified by

datatype, starting at address buf. The message received must be less than

or equal to the length of the receive buffer. If all incoming messages do not

fit without truncation, an overflow error occurs. If a message arrives that is

shorter than the receive buffer, then only those locations corresponding to

the actual message are changed. MPI RECV can receive a message sent by

either MPI SEND or MPI ISEND.

3.3 MPI ISEND

Purpose : Performs a nonblocking standard mode send operation.

Usage : CALL MPI ISEND(buf, count, datatype, dest, tag, comm,

request, ierror)

Parameters :

buf : The initial address of the send buffer (IN).

INTEGER count : The number of elements in the send buffer

(IN).

INTEGER datatype : The data type of each send buffer element

(handle) (IN).

INTEGER dest : The rank of the destination process in comm.

INTEGER tag : The message tag.

INTEGER comm : The communicator (handle) (IN).

INTEGER request : The communication request (handle) (OUT).
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INTEGER ierror : The Fortran return code.

Description : This routine starts a nonblocking standard mode send. The

send buffer may not be modified until the request has been completed by

MPI WAIT. The message sent by MPI ISEND can be received by either

MPI RECV or MPI IRECV.

3.4 MPI IRECV

Purpose : Performs a nonblocking receive operation.

Usage : CALL MPI IRECV(buf, count, datatype, source, tag, comm,

request, ierror)

Parameters :

buf : The initial address of the receive buffer (OUT).

INTEGER count : The number of elements in the receive buffer

(IN).

INTEGER datatype : The data type of each receive buffer

element (handle) (IN).

INTEGER source : The rank of source, MPI ANY SOURCE.

INTEGER tag : The message tag or MPI ANY TAG (IN).

INTEGER comm : The communicator (handle) (IN).

INTEGER request : The communication request (handle) (OUT).

INTEGER ierror : The Fortran return code.

Description : This routine starts a nonblocking receive and returns a handle to

a request object. A nonblocking receive call means the system may start

writing data into the receive buffer. Once the nonblocking receive operation
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is called, do not access any part of the receive buffer until the receive is

complete. The message received must be less than or equal to the length

of the receive buffer. If all incoming messages do not fit without trunca-

tion, an overflow error occurs. If a message arrives that is shorter than the

receive buffer, then only those locations corresponding to the actual mes-

sage are changed. If an overflow occurs, it is flagged at the MPI WAIT or

MPI TEST. MPI IRECV can receive a message sent by either MPI SEND

or MPI ISEND.

3.5 MPI WAIT

Purpose : Waits for a nonblocking operation to complete.

Usage : CALL MPI WAIT(request, status, ierror)

Parameters :

INTEGER request : The request to wait for (handle) (INOUT).

INTEGER status : The status object (OUT).

INTEGER ierror : The Fortran return code.

Description : MPI WAIT returns after the operation identified by request

completes. If the object associated with request was created by a

nonblocking operation, the object is deallocated and request is set to

MPI REQUEST NULL.

C.4 Derived Data Types

4.1 MPI TYPE CONTIGUOUS

Purpose : Returns a new data type that represents the concatenation of count

instances of oldtype.
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Usage : CALL MPI TYPE CONTIGUOUS(count, oldtype, newtype,

ierror)

Parameters :

INTEGER count : The replication count (IN).

INTEGER oldtype : The old data type (handle) (IN).

INTEGER newtype : The new data type (handle) (OUT).

INTEGER ierror : The Fortran return code.

Description : This routine returns a new data type that represents the concate-

nation of count instances of oldtype. MPI TYPE CONTIGUOUS allows

replication of a data type into contiguous locations. newtype must be com-

mitted using MPI TYPE COMMIT before being used for communication.

4.2 MPI TYPE VECTOR

Purpose : Returns a new data type that represents equally spaced blocks. The

spacing between the start of each block is given in units of extent (oldtype).

Usage : CALL MPI TYPE VECTOR(count, blocklength, stride,

oldtype, newtype, ierror)

Parameters :

INTEGER count : The number of blocks (IN).

INTEGER blocklength : The number of oldtype instances in each

block (IN).

INTEGER stride : The number of units between the start of each

block (IN).

INTEGER oldtype : The old data type (handle) (IN).

INTEGER newtype : The new data type (handle) (OUT).
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INTEGER ierror : The Fortran return code.

Description : This function returns a new data type that represents count equally

spaced blocks. Each block is a concatenation of blocklength instances of old-

type. The origins of the blocks are spaced stride units apart where the

counting unit is extent(oldtype). That is, from one origin to the next

in bytes = stride * extent (oldtype). newtype must be committed using

MPI TYPE COMMIT before being used for communication.

4.3 MPI TYPE COMMIT

Purpose : Makes a data type ready for use in communication.

Usage : CALL MPI TYPE COMMIT(datatype, ierror)

Parameters :

INTEGER datatype : The data type that is to be committed

(handle) (INOUT).

INTEGER ierror : The Fortran return code.

Description : A data type object must be committed before you can use it in

communication. You can use an uncommitted data type as an argument

in data type constructors. This routine makes a data type ready for use in

communication. The data type is the formal description of a communication

buffer. It is not the content of the buffer. Once the data type is committed

it can be repeatedly reused to communicate the changing contents of a buffer

or buffers with different starting addresses.

4.4 MPI TYPE EXTENT
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Purpose : Returns the extent of any defined data type.

Usage : CALL MPI TYPE EXTENT(datatype, extent, ierror)

Parameters :

INTEGER datatype : The data type (handle) (IN).

INTEGER extent : The data type extent (integer) (OUT).

INTEGER ierror : The Fortran return code.

Description : This routine returns the extent of a data type. The extent of a data

type is the span from the first byte to the last byte occupied by entries in this

data type and rounded up to satisfy alignment requirements. Rounding for

alignment is not done when MPI UB is used to define the data type. Types

defined with MPI LB, MP UB or with any type that contains MPI LB or

MPI UB may return an extent which is not directly related to the layout

of data in memory. Refer to MPI TYPE STRUCT for more information on

MPI LB and MPI UB.

4.5 MPI COMM SPLIT

Purpose : Splits a communicator into multiple communicators based on color

and key.

Usage : CALL MPI COMM SPLIT(comm, color, key, newcomm, ierror)

Parameters :

INTEGER comm : The communicator (handle) (IN).

INTEGER color : An integer specifying control of subset assign-

ment (IN).

INTEGER key : An integer specifying control of rank assignment

(IN).
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INTEGER newcomm : The new communicator (handle) (OUT).

INTEGER ierror : The Fortran return code.

Description : MPI COMM SPLIT is a collective function that partitions the

group associated with comm into disjoint subgroups, one for each value of

color. Each subgroup contains all processes of the same color. Within each

subgroup, the processes are ranked in the order defined by the value of the

argument key. Ties are broken according to their rank in the old group. A

new communicator is created for each subgroup and returned in newcomm.

If a process supplies the color value MPI UNDEFINED, newcomm returns

MPI COMM NULL. Even though this is a collective call, each process is

allowed to provide different values for color and key.
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