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CHAPTER I

INTRODUCTION

The most fundamental unit, atom, expressing the individual chemical prop-

erties is at first thought to be the smallest particle. Until the discovery of protons,

neutrons, and electrons which are the composition of atoms, only electrons are

classified as a type of elementary particles in lepton family. Fortunately, protons

and neutrons are indeed consisted of another type of elementary particles called

quarks. A bound state of three quarks and a pair of quark-antiquark are respec-

tively baryon such as protons (uud), neutron (ddu), Λ (uds) etc. and meson such

as π± (ud̄, dū), ω (uū+dd̄
2

) and so on. To reveal details of the tiny structure, the

collisions at high energy level of e+e− and pp̄, for example, have been studied.

The investigation of e+e− annihilations has revealed many important and

fascinating phenomena in particle physics in a large energy region ranging from

a few hundred MeV (ππ threshold) to several hundred GeV (W−W+ threshold).

The over-decade research on e−e+ annihilation reaction in both experimental and

theoretical sectors has played a crucial role in confirming the successes of the stan-

dard model at high energies and in originating theoretical models at low energies.

The decay modes ρπ and ωπ are among the most important for the pro-

cesses of e+e− annihilation into hadrons at low energies, giving mainly the 3π and

4π final states, respectively (Akhmetshin et al., 1999; Akhmetshin et al., 2004).

These reactions might be used to study the dynamics of light vector mesons, for

example, ρ′ and ω′, which may be formed as the intermediate states and decay

then into ωπ and ρπ. The information of mesons except the lightest ones is still
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rather rare because of the lack of high-quality experimental data and also effective

theoretical models. In addition, that ρ′ may decay into ω (ρ′ → ωπ) and ω′ to

ρπ (ω′ → ρπ) (Yao et al., 2006) adds more uncertainties to the understanding of

the properties of the intermediate states. The analysis of (Achasov et al, 1999)

confirms that the uncertainties between the ω-like resonance and ρ-like resonance

result to calculations with low accuracy.

Recently, experiments have been set up to study the processes of e+e−

annihilation at low energies (below 2 GeV). The e+e− → π0π0γ process in the

SND experiment studied in the energy region 0.6 − 0.97 GeV gives information

of ρ and ω intermediate state mesons (Achasov et al., 2002; Akhmetshin 2005).

The reaction of ωπ → π0π0γ measured in the center mass energies 0.92 − 1.38

GeV at CMD-2 shows the interference of ρ(770) meson and ρ(1450) meson, which

decays into ωπ0 (Akhmetshin et al., 2003). However, the SND experiment with

the energy up to 1.4 GeV from the threshold (Achasov et al., 2000) revealed that

the experimental cross section can be satisfactorily understood with two excited

states included with the masses mρ′ = 1400 MeV and mρ′′ = 1600 MeV in which

a contribution of the higher state dominates. However, this result contradicts the

theoretical expectation, where ρ′ and ρ′′ are considered as 2S and 1D qq̄ states

respectively and the larger contribution of the lower 2S excitation was predicted.

At the energy range up to 1.8 GeV, the cross section measured with

BABAR detector is well described by a sum of contributions of four isoscalar

resonances (ω, φ, ω′ = ω(1350) and ω′′ = ω(1660)) (Aubert et al., 2004). The sim-

ilar resonances were also reported by the VEPP-2M collider in the energy region

0.98− 1.38 GeV (Achasov, Aulchenko et al., 2002).

The intermediate vector mesons in e+e− annihilation reactions at low en-

ergies could be simple qq states, mixtures of ρ-like and ω-like mesons, or even
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hybrid states (qq plus one or more gluons). The idea of exotic meson (vector hy-

brid) (Donnachie and Kalashnikova, 1999) has been proposed, but the theoretical

results are not in line with the the experimental data. On the other hand, qq̄ struc-

tured mesons with different radial and orbital excitations have been extensively

studied. An earlier work in quark model (Godfrey and Isgur, 1985) predicted a

series of excited vector mesons, with ρ(1450) and ω(1460) being the lowest ρ-type

state with the 23S1 excitation which has a large probability to decay into ωπ0

and the ω-type state with the 13D1 excitation, in respective. The predictions are

consistent with some experimental data but in strong contrast with the observa-

tions of CMD-2 (Akhmetshin et al., 1999) and CLEO (Edwards et al., 2000) which

support the a1(1260) dominance in the reaction e+e− → ωπ.

The prediction in the work (Godfrey and Isgur, 1985) that the meson

ρ(1450) has a bigger probability to decay into ωπ than the ρ-type mesons with

higher masses is not consistent with the results of the SND experiment (Achasov

et al., 2000) that the ρ(1600) meson dominates over the ρ(1400) in the reaction

e+e− → ωπ. However, the results of the recent work (Achasov and Kozhevnikov,

1998) do not contradict the assignment of the ρ(1450) and ω(1420) to the state

23S1.

The properties of the intermediate states in the processes of e+e− annihi-

lation into ρπ and ωπ are still open questions.

In this thesis, we will work in the non-relativistic quark model and the 3P0

model will be employed to study the creation of a light meson pair. The data used

to analyze the calculation are mainly form Novosibirsk.

The main objective is to reveal the dominant dynamics of the reactions

e+e− → ωπ, ρπ at low energies. The study is also expected to lead us to better

understandings of the vector mesons, ρ(1450) and ω(1420).
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This thesis is arranged as follows: In Chapter II, hadrons in non-relativistic

quark model is demonstrated. The 3P0 model, the size parameter, and the effective

coupling constant are discussed in Chapter III. The transition amplitude and the

cross section are shown in Chapter IV and Chapter V consists of discussion and

conclusion. The particle data of ρ, ω, and π is displayed in Appendix A. Appendix

B is the derivation of spatial wave function in three dimensional harmonic oscillator

potential by Shrödinger equation. γ-matrix, trace technology, and reaction of

e+e− → µ+µ− are discussed in Appendix C and D. In Appendix E is the Wigner

9j symbols used in the calculation of decay process.



CHAPTER II

HADRONS IN NON-RELATIVISTIC QUARK

MODEL

Hadrons, the bound state of quarks, can be classified into two groups, a

bound state of three quarks called baryon and a bound state of quark-antiquark

called mesons. Hadrons have been studied by both non-relativistic and relativistic

quark models depending on energy range and mass we are interested. Since we

study the collision events in energy level between 1-2 GeV or around the thresholds

of ρ and ω resonances, the non-relativistic quark model is totally employed. The

important ideas in this model is to construct color, flavor, and spin wave functions

by language of group theory. For the spatial wave function, we work out the

Schrödinger equation with three dimensional harmonic oscillator potential. Even

though in thesis we study only mesons, we will demonstrate the wave functions

for both mesons and baryons.

2.1 Meson Wave Function

The states of mesons can be identified by wave functions in four spaces

which are color, flavor, spin, and spatial spaces.

2.1.1 Color and Spin-Flavor Wave Function

The color wave function of all particles is observed in only a singlet state

|1〉 =
1√
3
|qi〉|q̄i〉 (2.1)
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transformed under SU(3) transformation

U |1〉 =
1√
3
|qi〉|q̄i〉

=
1√
3

∑

j,k

Uji|qj〉U∗
ki|q̄k〉

=
1√
3

∑

j,k

(UU †)jk|qj〉|q̄k〉

=
1√
3
δjk|qj〉|q̄k〉

=
1√
3
|qi〉|q̄i〉. (2.2)

For flavor wave function, method from group theory has been used. The funda-

mental representation D(1, 0), quark flavor, of SU(3) is denoted by the Young

tableaux

,

while the conjugation representation D(0, 1), referred to antiquark flavor, is de-

picted by

.

A meson flavor state is represented by the direct product of quark and antiquarks

states by which the Young Tableaux for mesons are formed as following:

⊗ = ⊕

that is,

D(1, 0)⊗D(0, 1) = D(1, 1)⊕D(0, 0) (2.3)

with the corresponding dimensions begin:
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Table 2.1 Meson nonet

Content Charge Strangeness Pseudoscalar Vector

ud̄ +1 0 π+ ρ+

dū -1 0 π− ρ−

uū 0 0 π0 ρ0

dd̄ 0 0 η0 ω0

ss̄ 0 0 η′0 φ0

us̄ +1 +1 K+ K∗+

ds̄ 0 +1 K0 K∗0

sū -1 -1 k− K∗−

sd̄ 0 -1 K̄0 K̄∗0

3⊗ 3̄ = 8⊕ 1. (2.4)

For spin wave function, each quark and antiquark has two possible spin states,

spin up and spin down, namely Sz = ±1
2
, transformed under SU(2) group. The

representations of mesons in spin space are

2⊗ 2̄ = 3⊕ 1, (2.5)

where the total spin wave function takes the form of triplet (S = 1) and singlet

(S = 0). The spin-flavor conjugation for mesons are

(1f , 1s), (1f , 3s), (8f , 1s), (8f , 3s) (2.6)

where subscript f and s represent flavor and spin, in respective.
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Table 2.2 Flavor wave functions of the pseudoscalar and vector meson nonets

Pseudoscalar Vector Flavor

π+ ρ+ ud̄

π− ρ− −dū

π0 ρ0 1√
2
(dd̄− uū)

η1 ω1
1√
3
(uū + dd̄ + ss̄)

η8 ω8
1√
6
(uū + dd̄− 2ss̄)

K+ K∗+ us̄

k0 K∗0 ds̄

k− K∗− −sū

k̄0 K̄∗0 sd̄

2.1.2 Spatial Wave Function in 1S, 2S, and 1D State

The spatial wave function of mesons can be derived from the radial

Schrödinger equation in spherical polar coordinates

[
d2

dr2
+

2µ

~2
(E − V (r))− l(l + 1)

r2

]
u(r) = 0. (2.7)

The potential V (r) should be an interaction which can provide confinement of

quarks. In common practice, the three dimensional harmonic oscillator potential

is usually employed, taking the form

V (r) =
1

2
µω2r2. (2.8)

The solution or the normalized wave function∗ is

Rnl(r) =

[
2a3n!

Γ(n + l + 3
2
)

]
(ar)le−

1
2
a2r2

Ll+1/2
n (a2r2), (2.9)

∗see Appendix B.
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where L
l+1/2
n (α2r2) are the associated Laguerre polynomials

L(1,
1

2
, a2p2) ≡ Ll+1/2

n (a2r2) =
n∑

k=0

(−1)k

k!

Γ(n + l + 3
2
)

(n− k)!Γ(k + l + 3
2
)
r2k, (2.10)

n, l and a are a principle quantum number, an orbital quantum number, and size

parameter, in respective. n and l run from n, l = 0, 1, 2 . . . Therefore, the wave

function of mesons in momentum space is

ψsp(~p) = e−
1
2
a2p2

(a~p)l

√
2a3n!

Γ(3
2

+ l + n)
L(n,

1

2
+ l, a2p2)Ylm(θ, φ) (2.11)

where ~p is the relative momentum ~p = 1
2
(~pi− ~pj) in which i and j are a quark and

an antiquark. The wave function for ground-state or 1S-state mesons (n = l = 0)

is

ψsp = e−
1
2
a2p2

√
2a3

Γ(3
2
)

L(0,
1

2
, a2p2)Y00(θ, φ)

=

√
a3

π3/4
e−

1
2
a2p2

. (2.12)

For resonance mesons, the spatial wave functions are considered as excited states,

2S and 1D, for instance. The wave function for 2S-state mesons (n = 1, l = 0) is

ψsp = e−
1
2
a2p2

√
2a3

Γ(5
2
)

L(1,
1

2
, a2p2)Y00(θ, φ)

=
1

π3/4

√
2a3

3

(
3

2
− a2p2

)
e−

1
2
a2p2

. (2.13)

For 1D-state mesons (n = 0, l = 2), the spatial wave function is

ψsp = e−
1
2
a2p2

(ap)2

√
2a3

Γ(7
2
)

L(0,
1

2
+ 2, a2p2)Y2m(θ, φ)

=
4

π1/4

√
a3

15
(ap)2e−

1
2
a2p2

Y2m(θ, φ). (2.14)

The root-mean-square radii for mesons are defined in terms of the size

parameters, as follow: For a 1S-wave meson

〈r2〉1/2
1s =

1

2

√
〈Φ1s|r2|Φ1s〉
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=
1

2

√
3

2
a ' 2.5 GeV−1

' 0.5 fm. (2.15)

For a 2S-wave meson

〈r2〉1/2
2S =

1

2

√
〈Φ2s|r2|Φ2s〉

=
1

2

√
3

2
a ' 3.83 GeV−1

' 0.76 fm. (2.16)

For a 1D-wave meson

〈r2〉1/2
1D =

1

2

√
〈Φ2s|r2|Φ2s〉

=
1

2

√
3

2
a ' 7.62 GeV−1

' 1.5 fm. (2.17)

where a = 4.1 GeV−1 and practically fitted to the meson sizes.

2.2 Baryon Wave Function

Since baryons are the bound states of three quarks or three identical

fermions in which each quark is 1
2
-spin particle, the total wave function of baryons

must be antisymmetric. In the nature, the color wave function of all known and ob-

served particles is singlet, that is, wave function is automatically antisymmetric.

Furthermore, Particles are generally considered to occupy a ground-state or S-

state giving the spatial wave function to be symmetric. Therefore, the spin-flavor

coupling wave function must be symmetric.

The detail of each wave function are discussed in the following sections,

starting from color wave function, then spin-flavor wave function, and finally spa-

tial wave function.
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2.2.1 Color and Spin-Flavor Wave Function

The color singlet wave function is

ψc =
1√
6

∑

ijk

εijk|qi〉|qj〉|qk〉 (2.18)

where εijk is Levi-Civita symbol giving +1 for even permutation, −1 for odd per-

mutation and 0 for i = j, j = k, or k = i. Here is some of its properties

εijkεi′jk = 2δii′

εijkεijk = 6

εijkεpqk = δipδjq − δiqδjp





(2.19)

where δij is Kronecker Delta. The flavor wave function of baryon is constructed by

first introducing Young tableaux to be the fundamental representation of SU(3)

where three refers to s, u, and d quarks. The product of three quarks system

formed by the direct product of three fundamental representations is displayed by

direct sum of irreducible representations,

a ⊗ b ⊗ c = a b c ⊕ a b
c

⊕ a c
b

⊕
a
b
c

(2.20)

with corresponding dimension,

3⊗ 3⊗ 3 = 10⊕ 8⊕ 8⊕ 1. (2.21)

The wave functions corresponding to the irreducible representation from the left-

hand side are symmetric, mixed symmetric (λ-type, symmetric for the first two

particles), mixed antisymmetric (ρ-type, antisymmetric for the first two particles),

and antisymmetric, respectively.

The product of fundamental representations of spin states (spin up ↑ and

spin down ↓) transformed under SU(2) is similarly shown in the direct sum of
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irreducible representations

a ⊗ b ⊗ c = a b c ⊕ a b
c

⊕ a c
b

(2.22)

with corresponding dimension

2⊗ 2⊗ 2 = 4⊕ 2⊕ 2. (2.23)

The antisymmetric representation is vanished because we are dealing with SU(2)

group, not SU(3). We now come to the combination between SU(3)flavor and

SU(2)spin to be SU(6) multiplet. The table below shows the easily understandable

concept of the combination read by

Symmetric Mixed Symmetric Antisymmetric

↓ ↓ ↓
Symmetric → S M A

Mixed Symmetric → M S, M, A M

Denote symmetric, mixed symmetric, and antisymmetric representations by S,

M, and A. The explanation is that the product of symmetric representation with

symmetric, mixed symmetric, and antisymmetric representation yields symmetric,

mixed symmetric, and antisymmetric representation, respectively. For the mixed

symmetric representation, the products with symmetric and antisymmetric are

still mixed symmetric but with mixed symmetric the possible products can be

all symmetric depending on types of mixed symmetric representation. In case of

dimensional picture, we have 10S, 8M and 1A in SU(3) and 4S and 2M in SU(2).

The results can read; flavor 10S with 3
2
-spin 4S is totally symmetric, flavor 10S

with 1
2
-spin 2M is absolutely mixed symmetric, and so on.

Of the total 33 × 23 = 216 states, 56 symmetric, 70 λ-type, 70 ρ-type, and
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20 antisymmetric are listed as follow

S : (10, 4) + (8, 2) = 56

M : (10, 2) + (8, 4) + (8, 2) + (1, 2) = 70

A : (8, 2) + (1, 4) = 20.





(2.24)

The spin-flavor wave functions of various permutation symmetries, where

φS(χS), φA(χA), φλ(χλ), and φρ(χρ) are respectively the flavor(spin) symmetric,

antisymmetric, λ-type, and ρ-type symmetric are listed in Table 2.3

Table 2.3 Spin-flavor wave functions of baryons classified by permutation sym-

metry

Represetation type Spin and flavor

and number of state wave function

Symmetric, 56 (10,4): φSχS (8,2): (φρχρ + φλχλ)/
√

2

Antisymmetric, 20 (1,4): φAχS (8,2): (φλχρ − φρχλ)/
√

2

(10,2): φSχλ (8,4): φλχS

λ-type, 70
(8,2): (φρχρ − φλχλ)/

√
2 (1,2): φAχλ

(10,2): φSχρ (8,4): φρχS

ρ-type, 70
(8,2): (φλχρ + φρχλ)/

√
2 (1,2): φAχρ

The explicit form of the baryon spin-flavor wave function can be derived

in the framework of Yamanouchi basis developed in permutation group. What we

need is to get the projection operators for Young tableaux of multiplet states, act

operators onto general states, then automatically obtain the states with symmetry

under permutation group represented by Young tableau. Since we have worked

out the representation matrices of permutation group S3, the projection operators
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are directly written as

P S = 1 + (12) + (13) + (23) + (123) + (132)

P λ = 1 + (12)− 1

2
(13)− 1

2
(23)− 1

2
(123)− 1

2
(132)

P ρ = 1− (12) +
1

2
(13) +

1

2
(23)− 1

2
(123)− 1

2
(132)

PA = 1− (12)− (13)− (23) + (123) + (132)





(2.25)

where P S, P λ, P ρ, and PA are the projection operators for symmetric, λ-type

symmetric, ρ-type symmetric, and antisymmetric state, respectively. Here is the

example of applications. Acting the projection of operators P λ and P ρ onto the

state udu (with u ≡ φu and d ≡ φd), we have

P λudu = udu + duu− 1

2
udu− 1

2
uud− 1

2
duu− 1

2
uud

=
1

2
udu +

1

2
duu− uud (2.26)

P ρudu = udu− duu +
1

2
udu +

1

2
uud− 1

2
duu− 1

2
uud

=
3

2
udu− 3

2
duu. (2.27)

The normalized forms of P λudu and P ρudu are respectively the flavor wave func-

tion for the proton, seen in any text book.

In case of the spin wave function, the spin wave functions with [3]S, [21]λ

and [21]ρ symmetries can be derived by acting the projection operators in Eq.(2.25)

on an arbitrary spin state of quarks, for instance, ↑↓↑ for spin sz = 1
2
. We gain

χS =
1√
3
[↑↑↓ + ↓↑↑ + ↑↓↑]

χλ =
1√
6
[2 ↑↑↓ − ↓↑↑ − ↑↓↑]

χS =
1√
2
[↓↑↑ − ↑↓↑].





(2.28)

To determine the normalization coefficients in the spin wave functions, we treat

the spin up (down) state similar to the u(d)-quark in the construction of flavor

wave functions.
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2.2.2 Spatial Wave Function

The baryon spatial wave function worked out by solving the Schrödinger

equation with harmonic oscillator interaction

V (r) =
1

2
Kr2 (2.29)

takes in momentum space the form,

ψsp = NN e
− 1

2
a2

(
~p1−~p2√

2

)2

e
− 1

2
a2

(
~p1+~p2−2~p3√

6

)2

(2.30)

where NN = 33/4a3

π3/2 , with a2 = 1
(3Km)1/2 where m is the mass of quark.



CHAPTER III

MESON SIZE PARAMETER AND

STRENGTH OF 3P0 QUARK MODEL

3.1 3P0 Quark Model

In this work we study the reactions in a nonperturbative quark model with

the 3P0 quark dynamics which describes the quark-antiquark annihilation and

creation. The 3P0 model, first introduced by Micu (Micu, 1969), has made consid-

erable successes in understanding low-energies hadron physics (Le Yaouanc et al.,

1973, 1974, 1975; Maruyama et al., 1987; Maruyama, Furui et al., 1987; Gutsche

et al., 1989; Dover et al., 1992; Muhn et al., 1996; Yan et al., 1997). The 3P0 decay

model defines the quantum states of a pair of quark and antiquark destroyed or

created from vacuum quantum numbers

IG(JPC) = 0+(0++) (3.1)

to be J = 0, L = 1, S = 1 and T = 0. The derivation of these quantum numbers

is that because of the parity of vacuum, P = +1, the quark-antiquark pair (with

intrinsic negative parity) must be in an odd relative orbital angular momentum.

To obtain the zero total angular momentum, the pair has to be coupled to spin

S = 1 together with orbital angular momentum L = 1 which finally couples to

J = 0, hence 3P0.

In analogous to a scalar interaction, the vertex in a relativistic approach

for Dirac spinors of the annihilating quark and antiquark or fermion-antifermion
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vacuum interaction can be written in momentum space as

Wij =
1

2
χ†iVijχj (3.2)

with

Vij = (~σi · ~pi − ~σj · ~pj)δ(~pi + ~pj)

= ~σij · (~pi − ~pj)δ(~pi + ~pj) (3.3)

where ~σij defined as

~σij =
~σi + ~σj

2
(3.4)

and having the property

[
χ†iσ

µ
ijχj

]
SM

=
√

2δS,1δµ,−M(−1)M (3.5)

where

σ1
ij = − 1√

2
(σx

ij + iσy
ij)

σ0
ij = σz

ij

σ−1
ij =

1√
2
(σx

ij − iσy
ij).





(3.6)

The interpretation of each Pauli-spinors is as shown; for fermion,

χ(spin up) =




1

0


 χ(spin down) =




0

1


 , (3.7)

for antifermion,

χ̄(spin up) =




0

−1


 χ̄(spin down) =




1

0


 . (3.8)

The operation of ~σij can be understood as the operation of a quark to an antiquark

or the projection of a quark-antiquark pair onto a spin-1 state and it is found that

the latter is more convenient.
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Introducing a one-rank tensor operator Ô1, we have, according to the

Wigner Eckart theorem,

〈0, 0|Ô1µ|J,M〉 = 〈J1,Mµ|0, 0〉〈0||Ô1||J〉

=
(−1)1−M

√
3

δJ,1δM,−µ〈0|Ô1|J〉. (3.9)

Let

〈0|Ô1|J〉 = −
√

6, (3.10)

then

〈0, 0|Ô1µ|J,M〉 = (−1)M
√

2δJ,1δM,−µ. (3.11)

For the flavor, we may introduce a unit operator

ÔF = 1F (3.12)

with the property

〈0, 0|ÔF |T, Tz〉 =
√

2δT,0δTz ,0. (3.13)

Consequently, the 3P0 operator is read in the form

Vij =
1√
3

∑
µ

(−1)1+µ〈0, 0|Sij〈0, 0|FijÔS
−µ,ijO

F
ij

· Y1µ(~pi − ~pj)δ(~pi + ~pj). (3.14)

In case of the decay of a spin-1 state to the quark-antiquark pair, Y ∗
1µ(~pi − ~pj) is

used in place of Y1µ(~pi − ~pj) by the relation

Y ∗
l,m = (−1)mYl,−m. (3.15)

Here, we have used the formula

~A · ~B =
∑

µ

(−1)µA1,−µB1µ
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=
∑

µ

(−1)µY1,−µ( ~A)Y1µ( ~B). (3.16)

Mixed up with other ideas, 3P0 quark model has recently successfully given

creditable results to the two-step process calculation of e+e− annihilation to π+π−

and intermediate ππ scattering (Suebka, 2005; Yan et al., 2005 ).

The reaction ρ′ → πω and ω′ → πρ are similarly investigated, so the

following calculation in the 3P0 quark model displays only the former one. The

transition amplitude then takes the form

Tv = 〈πω|Vqq̄|ρ′〉 (3.17)

where Vqq̄ is the effective vertex for the creation and destruction of a quark-

antiquark pair in quark model, as shown in the form of spin part, flavor part,

color part and a constant of effective strength parameter λ referred to how large of

frequency of the reaction occurs. The effective vertex is alternatively in the form

Vij = λ~σij · (~pi − ~pj)F̂ijĈijδ(~pi + ~pj). (3.18)

Sandwiched (3.18) by the state of πω and ρ′ and applied the 3P0 model, the

effective parameter turns to, as shown in three compositions,

〈0, 0|F̂ij|T, Tz〉 =
√

2δT,0δTz ,0 (3.19)

〈0, 0|Ĉij|qi
αq̄j

β〉 = δαβ (3.20)

〈0, 0|σµ
ij| [χ̄i ⊗ χj]JM〉 = (−1)M

√
2δJ,1δM,−µ (3.21)

where the first, the second, the last represent the flavor, the color and the spin

state in vacuum, respectively. Since the isospin of the vacuum state is zero,

(3.19) is given in this form. For the color state, α and δ are color indices and σ̄

is the Pauli matrix. For simplicity, we consider only S-wave mesons that means

mesons involved have the orbital angular momentum equal to zero or ground state.
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ω

~p3

ρ′

~p5

~p4

π

~p2

~p6

~p1

Figure 3.1 ρ′ → ωπ in the 3P0 non relativistic quark model.

To compute the transition amplitude, we have Ψf and Ψi to be the final

and initial state wave functions, in respective. For ρ, the state of one meson is

|Ψi〉 = Ψspatial

[
1

2

(1)

⊗ 1

2

(2)
]

Si,Mi

[
1

2

(1)

⊗ 1

2

(2)
]

T,Tz

(3.22)

where a spatial wave function (Ψspatial) is different in each radial and orbital ex-

citation. From the particle data book, we know that, for ρ meson, spin Si = 1,

isospin Ti = 1, and isospin projection Tz = 0. The final state |Ψf〉 formed by

coupling of two final S-wave mesons is, as shown,

|Ψf〉 = N1N2e
− 1

8
a2(~p3−~p4)2e−

1
8
a2(~p5−~p6)2

[[
1

2

(3)

⊗ 1

2

(4)
]

S1

⊗
[
1

2

(5)

⊗ 1

2

(6)
]

S2

]

Sf ,Mf

×
[[

1

2

(3)

⊗ 1

2

(4)
]

T1

⊗
[
1

2

(5)

⊗ 1

2

(6)
]

T2

]

T,Tz

(3.23)

where a is the size parameter related to the size of meson.

3.2 Size Parameter Determination

The size parameter a in the meson wave function in Eq. (2.11) can be

determined by studying the process ρ0 → e+e−. The transition amplitude of the
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reaction is derived as

Tρ→e+e− = 〈e+e−|T |qq̄〉〈qq̄|ρ〉

=
∑

α

∑
mqmq̄

∑
tqtq̄

1√
3

C(
1

2

1

2
S, mqmq̄Sz)C(

1

2

1

2
I, tqtq̄Iz)

∫
d~p1

(2π)3/22Eq

ψρ(p1) Tqq̄→e+e− (3.24)

where Tqq̄→e+e− ≡ 〈e+e−|T |qq̄〉, the transition amplitude∗ of a quark-antiquark

pair to an electron-positron pair, can be evaluated by the standard method in

Quantum Field Theory taking the form

〈e+e−|T |qq̄〉 = −eqe

s
ūe(pe− ,me−)γµve(pe+ ,me+)

× v̄q(pq̄,mq̄)γµuq(pq,mq) (3.25)

where s = (pq + pq̄)
2, eq is the charge of quarks, and the Dirac spinors are normal-

ized according to ūu = v̄v = 2m. The decay width is generally in the form

Γ =
1

(4π)2

pf

Ef

∫
dΩ|Tρ→e+e−|2. (3.26)

In the small quark momentum approximation, the decay width for the transition

of a vector meson to an electron-positron pair can be easily calculated,

Γρ0→e+e− =
16πα2Q2

M2
V

|ψ(0)|2 (3.27)

where Q is the squared sum of the charges of the quarks in the meson, with Q2 =

1/2 for ρ, 1/18 for ω, and 1/9 for φ; and ψ(0) = 1/(πa2)3/4 is the coordinate space

wave function of the vector meson at the origin. Using as an input Mρ = 0.7758

GeV, α = 1/137, and the experimental value of Γρ0→e+e− = 7.02 ± 0.11 keV, we

obtain a = 3.847 GeV−1 for the size parameter of ρ meson. The size parameter

may slightly be different from meson to meson.

∗See Appendix C
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3.3 Effective Coupling Constant Determination

We use the reaction ρ → π+π− to determine the effective coupling constant

λ in the quark-antiquark 3P0 vertex,

Vij = λ~σij · (~pi − ~pj)F̂ijĈijδ(~pi + ~pj)

= λ
∑

µ

√
4π

3
(−1)µσµ

ijy1µ(~pi − ~pj)F̂ijĈijδ(~pi + ~pj) (3.28)

where y1µ(~q) = |~q| Y1µ(q̂), ~σij = (~σi + ~σj)/2. ~pi and ~pj are the momenta of quark

and antiquark created form vacuum. F̂ij and Ĉij are the flavor and color operators

projecting a quark-antiquark pair to the respective vacuum quantum number. The

decay width of the reaction is

Γρ0→π+π− =
π

4
M2

ρ

√
1− 4M2

π

M2
ρ

|Tρ0→π+π−|2 (3.29)

where Tρ0→π+π− is the transition amplitude in the center of mass system. We

can consequently determine the effective coupling constant by substituting the

previously calculated transition amplitude to the decay width and comparing then

to the experimental data. The transition amplitude in Eq. (3.29) is demonstrated

as followed,

Tρ0→π+π− = 〈π+π−|Vij|ρ0〉

= λ

√
4π

3

∑
µ

T Sp
µ T S

µ TFTC (3.30)

where

T Sp
µ =

∫
d~Q

(
2a3

Γ(3
2
)4π

)3/2

e−
3
2
a2Q2− 1

12
a2k2

(
4k

3
Y ∗

1µ(k̂)− 2QY ∗
1µ(Q̂))

=

(
2a3

Γ(3
2
)4π

)3/2

4πe−
1
12

a2k2

∫
dQ Q2e−

3
2
a2Q2 4k

3
Y ∗

1µ(k̂)

=
8
√

2 a3/2e−
1
12

a2k2
k

9
√

3 π3/4
(3.31)
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T S
µ = −

√
2〈(1

2

1

2
)1, (

1

2

1

2
)1, 0|(1

2

1

2
)0, (

1

2

1

2
)0, 〉 C

(
1S12

z ; 1,−µ; 0
)

= −
√

3

2
C(1Sz; 1,−µ; 0) (3.32)

TC =
1√
3
〈q(3)

α |〈q̄(4)
α | 1√

3
〈q(5)

γ |〈q̄(6)
γ |Ĉij

1√
3
|qβ〉|q̄β〉

=
1√
3

(3.33)

TF =
√

2〈(1
2

1

2
)1, (

1

2

1

2
)0, 1|(1

2

1

2
)1, (

1

2

1

2
)1, 1〉C (

1T 12
z , 00; 1Tz

)

= 1. (3.34)

The general detailed calculation is shown in the next chapter. Finally, the transi-

tion amplitude of ρ0 → π+π− is

Tρ0→π+π− = −16λ a3/2e−
1
12

a2k2
k

27 π1/4

∑
µ

C(1Sz, ; 1,−µ; 0)

= −16λ a3/2e−
1
12

a2k2
k

27
√

3 π1/4
(3.35)

where λ = 0.92 in the non-relativistic approximation and λ = 2.5 in the min-

imum relativity approximation (Machleidt, Holinde, and Elster, 1987) by which

the transition amplitude takes the form

Tminimum =

√
mπ+

Eπ+

√
mπ−

Eπ−
Tρ0→π+π− . (3.36)



CHAPTER IV

STUDY OF REACTIONS e+e− → ρπ, ωπ

The reactions e+e− → ρπ, ωπ may stem from two possible processes,

namely, the one-step process where the e+e− pair annihilates into a virtual time-

like photon, the virtual photon decays into a qq pair, and finally the qq pair is

dressed directly by an additional quark-antiquark pair pumped out of the vacuum

to form the πω final state, and the two-step process where the e+e− pair annihi-

lates into a virtual time-like photon, the virtual photon decays into a qq pair, the

qq pair first form a vector meson, and finally the vector meson decay into the πω

final state.

At very high energies the reactions e+e− → ρπ, ωπ are likely dominated

by the one-step process while in the low-energy region, especially close to the

threshold, the reactions are expected to be dominated by the two-step process. It

is found that the reactions e+e− → ππ, NN at low energies are dominated by the

two-step process (Suebka, 2005; Yan et al., 2005).

For one-step process shown in Fig. 4.1, the transition amplitude of the

reactions e+e− → ρπ, ωπ might be expressed formally as

T1 = 〈πω|Vqq|qq〉〈qq|T |e+e−〉 (4.1)

where 〈qq|T |e+e−〉 is simply the transition amplitude of e+e− to a primary quark

pair while 〈πω|Vqq|qq〉 denotes the amplitude of the process of a qq pair to the

πω final state. Vqq is the effective vertex for creation and destruction of a quark-

antiquark pair in quark models. In this work we will employ the 3P0 quark-

antiquark dynamics which has been proven the most successful non-relativistic
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quark model.

ω
�p4

�p1

�p3

π

�p2

e+

e−

Figure 4.1 Reaction e+e− → ω(ρ)π in one-step process.

For two-step process shown in Fig. 4.2, the transition amplitude of the

reactions e+e− → ρπ, ωπ for the two step process takes the form

T2 = 〈πω|Vqq|ρ′〉〈ρ′|G|ρ′〉〈ρ′|qq〉〈qq|T |e+e−〉 (4.2)

where 〈ρ′|qq〉 is simply the wave function of the intermediate meson ρ′, 〈ρ′|G|ρ′〉
the Green function describing the propagation of the intermediate meson, and

〈πω|Vqq|ρ′〉 the transition amplitude of ρ′ annihilation into the πω pair in non-

relativistic quark models.

ω

�p3

�p5

�p4

π

ρ′

�p2

�p6

�p1

e+

e−

Figure 4.2 Reaction e+e− → ω(ρ)π in two-step process.

The difficult part in working out the transition amplitude Eq. (4.2) is to
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calculate the decay of an intermediate particle by means of 3P0 model. Here, we

demonstrate the general detailed calculation of an intermediate meson decaying

into two mesons. The wave function of a meson and two mesons are, respectively,

|m〉 =

[
1

2

(1)

⊗ 1

2

(2)
]

TTz

[[
1

2

(1)

⊗ 1

2

(2)
]

S′12S′12z

⊗ Ylm

]

S12S12
z

R12
nl

= C(S ′12S ′12
z , l12m12; S12S12

z )

[
1

2

(1)

⊗ 1

2

(2)
]

T 12T 12
z[

1

2

(1)

⊗ 1

2

(2)
]

S′12S′12z

R12
nlY

12
lm (4.3)

and

|m1m2〉 =

[[
1

2

(3)

⊗ 1

2

(4)
]

T ′T ′z

⊗
[
1

2

(5)

⊗ 1

2

(6)
]

T ′′T ′′z

]

TTz[[[
1

2

(3)

⊗ 1

2

(4)
]

S′S′z

⊗ Yl′m′

]

J ′

⊗
[[

1

2

(5)

⊗ 1

2

(6)
]

S′′S′′z

⊗ Yl′′m′′

]

J ′′

]

JJz

Rn′l′Rn′′l′′

=

[[
1

2

(3)

⊗ 1

2

(4)
]

T ′T ′z

⊗
[
1

2

(5)

⊗ 1

2

(6)
]

T ′′T ′′z

]

TTz

∑

sl

〈(S ′S ′′)S, (l′l′′)l, J |(S ′l′)J ′ , (S
′′l′′)J ′′ , J〉

[[[
1

2

(3)

⊗ 1

2

(4)
]

S′S′z

⊗
[
1

2

(5)

⊗ 1

2

(6)
]

S′′S′′z

]

SSz

⊗ [l′m′ ⊗ l′′m′′]lm

]

JJz

Rn′l′Rn′′l′′

=

[[
1

2

(3)

⊗ 1

2

(4)
]

T ′T ′z

⊗
[
1

2

(5)

⊗ 1

2

(6)
]

T ′′T ′′z

]

TTz

〈(S ′S ′′)S, (l′l′′)l, J |(S ′l′)J ′ , (S
′′l′′)J ′′ , J〉

C(SSz, lm; JJz)

[[
1

2

(3)

⊗ 1

2

(4)
]

S′S′z

⊗
[
1

2

(5)

⊗ 1

2

(6)
]

S′′S′′z

]

SSz

[l′m′ ⊗ l′′m′′]lm Rn′l′Rn′′l′′

=

[[
1

2

(3)

⊗ 1

2

(4)
]

T ′T ′z

⊗
[
1

2

(5)

⊗ 1

2

(6)
]

T ′′T ′′z

]

TTz
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〈(S ′S ′′)S, (l′l′′)l, J |(S ′l′)J ′ , (S
′′l′′)J ′′ , J〉

C(SSz, lm; JJz)

[[
1

2

(3)

⊗ 1

2

(4)
]

S′S′z

⊗
[
1

2

(5)

⊗ 1

2

(6)
]

S′′S′′z

]

SSz

C(l′m′, l′′m′′; lm)Rn′l′Yl′m′Rn′′l′′Yl′′m′′ . (4.4)

The transition amplitude of the decay of any intermediate meson is

T = 〈m1m2|O|m〉 (4.5)

where |m1m2〉, |m〉 and O are a final state wave function, an initial state wave

function and an interaction operator, respectively. We use the interaction operator

from 3P0 model,

Vij = λ~σij · (~pi − ~pj)F̂ijĈijδ(~pi + ~pj)

= λ
∑

µ

√
4π

3
(−1)1+µσµ

ijY1µ(~pi − ~pj)F̂ijĈijδ(~pi + ~pj). (4.6)

Then, the transition amplitude is

T = 〈m1m2|O|m〉

=
∑

µ

A T Sp
µ T S

µ TCTF (4.7)

where

A = λ

√
4π

3
C(S ′12S ′12

z , l12m12; S12S12
z )C(SSz, lm; JJz)C(l′m′, l′′m′′; lm)

〈(S ′S ′′)S, (l′l′′)l, J |(S ′l′)J ′ , (S
′′l′′)J ′′ , J〉

T Sp
µ =

∫
dQL1L2L e−

3
2
a2Q2− 1

12
a2k2

(
4k

3
Y ∗

1µ(k̂)− 2QY ∗
1µ(Q̂))

al′1+l′2+lY ∗
l′1m′

1
(2 ~Q−

~k

3
)Y ∗

l′2m′
2
(2 ~Q−

~k

3
)Yl12m12(2 ~Q +

2~k

3
)

T S
µ = −

√
2〈(1

2

1

2
)S12, (

1

2

1

2
)1, S|(1

2

1

2
)S ′, (

1

2

1

2
)S ′′, S〉C (

S12S12
z ; 1,−µ; SSz

)

TC =
1√
3
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TF =
√

2〈(1
2

1

2
)T 12, (

1

2

1

2
)0, T |(1

2

1

2
)T ′, (

1

2

1

2
)T ′′, T 〉C (

T 12T 12
z , 00; TTz

)
(4.8)

and L1, L2, and L which are functions of n′1, l
′
1, n

′
2, l

′
2, n, and l take the form,

L(n, l, m) =

√
2a3n!

Γ(3
2

+ l + n)
L(n,

1

2
+ l, a2(2 ~Q +

2~k

3
)2). (4.9)

Next, the detailed calculation of color, flavor, spin and spatial space is displayed.

4.1 Color, Flavor, Spin, and Spatial Transition Amplitude

The transition amplitude of color part is

TC = 〈m1m2|OC |m〉

=
1√
3
〈q(3)

α |〈q̄(4)
α | 1√

3
〈q(5)

γ |〈q̄(6)
γ |Ĉij

1√
3
|qβ〉|q̄β〉

=
1

3
√

3
δαβδαγδγβ

=
1

3
√

3
δαα

=
1√
3

(4.10)

where

〈0, 0|Ĉij|qi
αq̄j

β〉 = δαβ (4.11)

and α and β are color indices. The transition amplitude of spin part is

T S
µ =

[〈
1

2

(3)

⊗ 1

2

(4)
∣∣∣∣
S′S′z

⊗
〈

1

2

(5)

⊗ 1

2

(6)
∣∣∣∣
S′′S′′z

]

SSz

OS

∣∣∣∣
1

2

(1)

⊗ 1

2

(2)
〉

S12S12
z

= 〈(1
2

1

2
)S36, (

1

2

1

2
)S45, S|(1

2

1

2
)S ′, (

1

2

1

2
)S ′′, S〉

[〈
1

2

(3)

⊗ 1

2

(6)
∣∣∣∣
S36S36

z

⊗
〈

1

2

(4)

⊗ 1

2

(5)
∣∣∣∣
S45S45

z

]

SSz

(−1)1+µσµ
ij

∣∣∣∣
1

2

(1)

⊗ 1

2

(2)
〉

S12S12
z

= 〈(1
2

1

2
)S36, (

1

2

1

2
)S45, S|(1

2

1

2
)S ′, (

1

2

1

2
)S ′′, S〉C (

S36S36
z , S45S45

z ; SSz

)
[〈

1

2

(3)

⊗ 1

2

(6)
∣∣∣∣
S36S36

z

〈
1

2

(4)

⊗ 1

2

(5)
∣∣∣∣
S45S45

z

]

SSz

(−1)1+µσµ
ij

∣∣∣∣
1

2

(1)

⊗ 1

2

(2)
〉

S12S12
z
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= 〈(1
2

1

2
)S36, (

1

2

1

2
)S45, S|(1

2

1

2
)S ′, (

1

2

1

2
)S ′′, S〉C (

S36S36
z , S45S45

z ; SSz

)

δS36,S12δS36
z ,S12

z
(−1)1+µ(−1)S45

z

√
2δS45,1δS45

z ,−µ

= −
√

2〈(1
2

1

2
)S12, (

1

2

1

2
)1, S|(1

2

1

2
)S ′, (

1

2

1

2
)S ′′, S〉C (

S12S12
z ; 1,−µ; SSz

)
(4.12)

where

〈0, 0|σµ
ij|[χ̄i ⊗ χj]JM〉 = (−1)M

√
2δJ,1δM,−µ. (4.13)

The transition amplitude of the flavor part is

TF =

[〈
1

2

(3)

⊗ 1

2

(4)
∣∣∣∣
T ′T ′z

⊗
〈

1

2

(5)

⊗ 1

2

(6)
∣∣∣∣
T ′′T ′′z

]

TTz

OF

∣∣∣∣
1

2

(1)

⊗ 1

2

(2)
〉

T 12T 12
z

= 〈(1
2

1

2
)T 36, (

1

2

1

2
)T 45, T |(1

2

1

2
)T ′, (

1

2

1

2
)T ′′, T 〉

[〈
1

2

(3)

⊗ 1

2

(6)
∣∣∣∣
T 36T 36

z

⊗
〈

1

2

(4)

⊗ 1

2

(5)
∣∣∣∣
T 45T 45

z

]

TTz

F̂ij

∣∣∣∣
1

2

(1)

⊗ 1

2

(2)
〉

T 12T 12
z

= 〈(1
2

1

2
)T 36, (

1

2

1

2
)T 45, T |(1

2

1

2
)T ′, (

1

2

1

2
)T ′′, T 〉C (

T 36T 36
z , T 45T 45

z ; TTz

)
[〈

1

2

(3)

⊗ 1

2

(6)
∣∣∣∣
T 36T 36

z

〈
1

2

(4)

⊗ 1

2

(5)
∣∣∣∣
T 45T 45

z

]

TTz

OF

∣∣∣∣
1

2

(1)

⊗ 1

2

(2)
〉

T 12T 12
z

= 〈(1
2

1

2
)T 36, (

1

2

1

2
)T 45, T |(1

2

1

2
)T ′, (

1

2

1

2
)T ′′, T 〉C (

T 36T 36
z , T 45T 45

z ; TTz

)

δT 36,T 12δT 36
z ,T 12

z

√
2δT 45,0δT 45

z

=
√

2〈(1
2

1

2
)T 12, (

1

2

1

2
)0, T |(1

2

1

2
)T ′, (

1

2

1

2
)T ′′, T 〉C (

T 12T 12
z , 00; TTz

)
(4.14)

where

〈0, 0|F̂ij|T, Tz〉 =
√

2δT,0δTz ,0. (4.15)

The normalized spatial wave function is

ψsp = e−
1
2
a2p2

(ap)l

√
2a3n!

Γ(3
2

+ l + n)
L(n,

1

2
+ l, a2p2)Ylm(θ, φ) (4.16)

where ~p is the relative momentum ~p =
~pi−~pj

2
. Let

L(n, l, m) =

√
2a3n!

Γ(3
2

+ l + n)
L(n,

1

2
+ l, a2p2) (4.17)
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where, L(n, 1
2

+ l, a2p2) is the generalized Laguerre polynomial. The special tran-

sition amplitude is

T Sp
µ =

∫
d~p1d~p2d~p3d~p4d~p5d~p6(L∗1e−

1
8
a2(~p3−~p4)2al1Y ∗

l1m1
(~p3 − ~p4))

(L∗2e−
1
8
a2(~p5−~p6)2al2Y ∗

l2m2
(~p5 − ~p6))Y

∗
1µ(~p4 − ~p5)δ(~p4 + ~p5)δ(~p1 − ~p3)

(L e−
1
8
a2(~p1−~p2)2alYlm(~p1 − ~p2))δ(~p2 − ~p6)δ(~p1 + ~p2)δ(~p3 + ~p4 − ~k) (4.18)

where

Y ∗
l1m1

(~p3 − ~p4) ≡ (~p3 − ~p4)
l1Y ∗

l1m1
(p̂34)

Y ∗
l2m2

(~p5 − ~p6) ≡ (~p5 − ~p6)
l2Y ∗

l2m2
(p̂56)

Ylm(~p1 − ~p2) ≡ (~p1 − ~p2)
lYlm(p̂12)





(4.19)

and p̂ij = ~pij/|~pij|. The transition amplitude then turns to

T Sp
µ =

∫
d~p1(L1e

− 1
8
a2(2~p1−~k)2al1Y ∗

l1m1
(2~p1 − ~k))(L2e

− 1
8
a2(2~p1−~k)2al2Y ∗

l2m2
(2~p1 − ~k))

Y ∗
1µ(2~p4)(L e−

1
8
a2(2~p1)2al1Ylm(2~p1))

=

∫
d~p1L1L2L e−

3
2
a2[(~p1−~k

3
)2+ k2

18
]Y ∗

1µ(2~k − 2~p1)a
l1+l2+lY ∗

l1m1
(2~p1 − ~k)

Y ∗
l2m2

(2~p1 − ~k)Ylm(2~p1). (4.20)

Let ~Q = ~p1 − ~k
3
, the transition amplitude becomes

T Sp
µ =

∫
d~QL1L2L e−

3
2
a2Q2− 1

12
a2k2

(
4k

3
Y ∗

1µ(k̂)− 2QY ∗
1µ(Q̂))

al1+l2+lY ∗
l1m1

(2 ~Q−
~k

3
)Y ∗

l2m2
(2 ~Q−

~k

3
)Ylm(2 ~Q +

2~k

3
) (4.21)

However,the spatial transition amplitude seems more complicated than other types

of amplitude because it depends on which state we are interested, that is, 2S and

1D states.
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4.2 Spatial Transition Amplitude in 2S Wave

The general form of spatial transition amplitude in previous section is

Tsp =

∫
d~QL1L2L e−

3
2
a2Q2− 1

12
a2k2

(
4k

3
Y ∗

1µ(k̂)− 2QY ∗
1µ(Q̂))al1+l2+l

Y ∗
l1m1

(2 ~Q−
~k

3
)Y ∗

l2m2
(2 ~Q−

~k

3
)Ylm(2 ~Q +

2~k

3
) (4.22)

In case of e+e− annihilation into 2 mesons with n′1 = n′2 = l′1 = l′2 = 0 and

n = 1, l = 0, the amplitude then turns to

Tsp =

∫
d~Q

2a3

Γ(3
2
)

√
2a3

Γ(5
2
)

e−
3
2
a2Q2− 1

12
a2k2

(
4k

3
Y ∗

1µ(k̂)− 2QY ∗
1µ(Q̂))

1

4π
√

4π
L(1,

1

2
, a2( ~Q +

~k

3
)2) (4.23)

Consider a term

L(1,
1

2
, a2( ~Q +

~k

3
)2) =

3

2
− a2( ~Q +

~k

3
)2

=
3

2
− a2(Q2 +

k2

9
+

2

3

∑
ν

(−1)νQ1νk1−ν)

=
3

2
− a2Q2 − a2k2

9
− 2a2

3

∑
ν

(−1)νY1ν( ~Q)Y1−ν(~k) (4.24)

where ~Q · ~k =
∑

ν(−1)νQ1νk1−ν , Q1ν = Y1ν( ~Q) = QY1ν(Q̂) and k1−ν = Y1−ν(~k) =

kY1−ν(k̂). Substitute (4.24) into (4.23),

Tsp =

∫
d~Q

2a3

Γ(3
2
)

√
2a3

Γ(5
2
)

e−
3
2
a2Q2− 1

12
a2k2

(
4k

3
Y ∗

1µ(k̂)− 2QY ∗
1µ(Q̂))

1

4π
√

4π
(
3

2
− a2Q2 − a2k2

9
− 2a2

3
Qk

∑
ν

(−1)νY1ν(Q̂)Y1−ν(k̂)))

=

√
2a9/2

√
3π9/4

e−
1
12

a2k2

∫
d~Q e−

3
2
a2Q2

{
2kY ∗

1µ(k̂)− 4a2k

3
Q2Y ∗

1µ(k̂)− 4a2k3

27
Y ∗

1µ(k̂)

− 8a2k2

9
Q

∑
ν

(−1)νY1ν(Q̂)Y1−ν(k̂)Y ∗
1µ(k̂)− 3QY ∗

1µ(Q̂) + 2a2Q3Y ∗
1µ(Q̂)

+
2a2k2

9
QY ∗

1µ(Q̂) +
4a2

3
Q2k

∑
ν

(−1)νY1ν(Q̂)Y1−ν(k̂)Y ∗
1µ(Q̂)

}
. (4.25)
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We have found that some terms in (4.25) vanished because

∫
dΩ YlmY ∗

l′m′ = δll′δmm′ (4.26)

∫
dΩ Ylm =

∫
dΩ Y ∗

l′m′ = 0 (4.27)

then (4.25) turns to

Tsp =

√
2a9/2

√
3π9/4

e−
1
12

a2k2

∫
d~Q e−

3
2
a2Q2

(2kY ∗
1µ(k̂)− 4a2k

3
Q2Y ∗

1µ(k̂)− 4a2k3

27
Y ∗

1µ(k̂)

+
4a2

3
Q2k

∑
ν

(−1)νY1ν(Q̂)Y1−ν(k̂)Y ∗
1µ(Q̂))

=

√
2a9/2

√
3π9/4

e−
1
12

a2k2

(
4
√

2π3/2k

3
√

3a3
Y ∗

1µ(k̂)− 8
√

2π3/2k

9
√

3a3
Y ∗

1µ(k̂)− 8
√

2π3/2k3

81
√

3a
Y ∗

1µ(k̂)

+
4a2

3

∫
d~Q e−

3
2
a2Q2

Q2k
∑

ν

(−1)νY1ν(Q̂)Y1−ν(k̂)Y ∗
1µ(Q̂))

=

√
2a9/2

√
3π9/4

e−
1
12

a2k2

[(
4
√

2kπ3/2

9
√

3a3
− 8

√
2k3π3/2

81
√

3a
)Y ∗

1µ(k̂)

+
4a2

3

∫
dQ e−

3
2
a2Q2

Q4k
∑

ν

(−1)νY1−ν(k̂)]δµν

=

√
2a9/2

√
3π9/4

e−
1
12

a2k2

(
4
√

2kπ3/2

9
√

3a3
− 8

√
2k3π3/2

81
√

3a
+

2k
√

2π

9
√

3a3
)Y ∗

1µ(k̂)

= BY ∗
1µ(k̂) (4.28)

where

B =

√
2a9/2

√
3π9/4

e−
1
12

a2k2

(
4
√

2kπ3/2

9
√

3a3
− 8

√
2k3π3/2

81
√

3a
+

2k
√

2π

9
√

3a3
)

= αk(1− βk2) (4.29)

and

α =
8(aπ)3/2(1 + 1

2π
)e−

1
12

a2k2

27π9/4

β =
4πa2

9(2π + 1)
. (4.30)
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4.3 Spatial Transition Amplitude in 1D Wave

For 1D wave calculation, we similarly start from the general form of spatial

transition amplitude which is

Tsp =

∫
d~QL1L2L e−

3
2
a2Q2− 1

12
a2k2

(
4k

3
Y ∗

1µ(k̂)− 2QY ∗
1µ(Q̂))al1+l2+l

Y ∗
l1m1

(2 ~Q−
~k

3
)Y ∗

l2m2
(2 ~Q−

~k

3
)Ylm(2 ~Q +

2~k

3
) (4.31)

In case of e+e− annihilation into 2 mesons with n′1 = n′2 = l′1 = l′2 = 0 and

n = 0, l = 2, the amplitude then turns to

Tsp =

∫
d~Q

2a3

Γ(3
2
)

√
2a3

Γ(7
2
)

e−
3
2
a2Q2− 1

12
a2k2

(
4k

3
Y ∗

1µ(k̂)− 2QY ∗
1µ(Q̂))a2 1

4π
Y2m(2 ~Q +

2~k

3
) (4.32)

where L(0, 5
2
, a2( ~Q +

~k
3
)2) = 1. Consider a term

Y2m(2 ~Q +
2

3
~k) = Y2m(~p) (4.33)

From

Ylm(~r) ≡ rlYlm(r̂) = (α~λ + β~ρ)lYlm(r̂)

=
√

4π
l∑

lλlρ

∑
mλmρ

δlλ+lρ,l

[
(2l + 1)!

(2lλ + 1)!(2lρ + 1)!

]1/2

(αλ)lλ(βρ)lρ

〈lm|lλmλlρmρ〉Ylλmλ
(λ̂)Ylρmρ(ρ̂), (4.34)

we have

Y2m(2 ~Q +
2

3
~k) =

√
4π

2∑

lQlk

∑
mQmk

δlQ+lk,2

[
5!

(2lQ + 1)!(2lk + 1)!

] 1
2

(2Q)lQ(
2

3
k)lk

〈2m|lQmQlkmk〉YlQmQ
(Q̂)Ylkmk

(k̂)

= (
5!

5!1!
)

1
2 (2Q)2δmmQ

Y2mQ
(Q̂) + (

5!

1!5!
)

1
2 (

2

3
k)2δmmk

Y2mk
(k̂)
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+
∑

mQmk

√
4π(

5!

3!3!
)

1
2
4

3
Qk〈2m|1mQ1mk〉Y1mQ

(Q̂)Y1mk
(k̂)

=
∑

mQmk

4
√

10

3
√

3
Qk
√

4π〈2m|1mQ1mk〉Y1mQ
(Q̂)Y1mk

(k̂)

+ 4Q2Y2m(Q̂) +
4

9
k2Y2m(k̂). (4.35)

Insert (4.35) into (4.32),

Tsp =

∫
d~Q

2a3

Γ(3
2
)

√
2a3

Γ(7
2
)

e−
3
2
a2Q2− 1

12
a2k2

(
4k

3
Y ∗

1µ(k̂)− 2QY ∗
1µ(Q̂))

a2

4π

[
4Q2Y2m(Q̂) +

4

9
k2Y2m(k̂)

+
∑

mQmk

4
√

10

3
√

3
Qk
√

4π〈2m|1mQ1mk〉Y1mQ
(Q̂)Y1mk

(k̂)
]

=
4a13/2

√
15π7/4

e−
1
12

a2k2

∫
d~Q e−

3
2
a2Q2

(
16k

3
Q2Y2m(Q̂)Y ∗

1µ(k̂)

+
16k3

27
Y2m(k̂)Y ∗

1µ(k̂)− 8Q3Y2m(Q̂)Y ∗
1µ(Q̂)− 8

9
Qk2Y2m(k̂)Y ∗

1µ(Q̂)

+
∑

mQmk

16
√

40πk2

9
√

3
Q〈2m|1mQ1mk〉Y1mQ

(Q̂)Y1mk
(k̂)Y ∗

1µ(k̂)

−
∑

mQmk

8
√

10

3
√

3
kQ2

√
4π〈2m|1mQ1mk〉Y1mQ

(Q̂)Y1mk
(k̂)Y ∗

1µ(Q̂)). (4.36)

We have found that some terms in (4.36) are vanished because

∫
dΩ YlmY ∗

l′m′ = δll′δmm′ (4.37)

∫
dΩ Ylm =

∫
dΩ Y ∗

l′m′ = 0. (4.38)

(4.36) turns to

Tsp =
4a13/2

√
15π7/4

e−
1
12

a2k2

∫
d~Q e−

3
2
a2Q2

[16k3

27
Y2m(k̂)Y ∗

1µ(k̂)

−
∑

mQmk

8
√

10

3
√

3
kQ2

√
4π〈2m|1mQ1mk〉Y1mQ

(Q̂)Y1mk
(k̂)Y ∗

1µ(Q̂)
]

=
4a13/2

√
15π7/4

e−
1
12

a2k2
[32

√
2k3π3/2

81
√

3a3
Y2m(k̂)Y ∗

1µ(k̂)

−
∫

d~Q e−
3
2
a2Q2

∑
mQ

16
√

10π

3
√

3
kQ2〈2m|1mQ, 1m−mQ〉
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Y1mQ
(Q̂)Y1, m−mQ

(k̂)Y ∗
1µ(Q̂)

]

=
4a13/2

√
15π7/4

e−
1
12

a2k2
[32

√
2k3π3/2

81
√

3a3
Y2m(k̂)Y ∗

1µ(k̂)− 16
√

10π

3
√

3
k

∫
dQ Q4e−

3
2
a2Q2

∑
mQ

〈2m|1mQ, 1m−mQ〉δmQ,µY1, m−mQ
(k̂)

]

=
4a13/2

√
15π7/4

e−
1
12

a2k2
[32

√
2k3π3/2

81
√

3a3
Y2m(k̂)Y ∗

1µ(k̂)− 16
√

5kπ

27a5

〈2m|1µ; 1,m− µ〉Y1, m−µ(k̂)
]

= A1Y2m(k̂)Y ∗
1µ(k̂) + A2Y1, m−µ(k̂) (4.39)

where

A1 =
128

√
2a7/2k3

243
√

5π1/4
e−

1
12

a2k2

A2 = − 64a3/2k

27
√

3π3/4
〈2m|1µ; 1,m− µ〉e− 1

12
a2k2

(4.40)

We can write the transition amplitude in the form of summation of orbital angular

momentum,

T =
∑

l′m′
Tl′m′Y ∗

l′m′(k̂) (4.41)

where the complex conjugate stands for the outgoing wave. Factors Tl′m′ are

worked out from

Tl′m′ =

∫
dΩ T Yl′m′(k̂). (4.42)

For l′ = 1, we have

T1,m′ =

∫
dΩ (A1Y

∗
1,µ(k̂)Y2m(k̂) + A2Y1,m−µ(k̂))Y1m′(k̂). (4.43)

By means of

∫
dΩY ∗

lm(θ, φ)Yl′m′(θ, φ) = δll′δmm′ (4.44)

Y ∗
1µ(k̂) = (−1)µYl,−µ(k̂) (4.45)
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and

∫
sin θdθdφ Y ∗

l3,m3
(θ, φ)Yl1m1(θ, φ)Yl2m2(θ, φ)

=

√
(2l1 + 1)(2l2 + 1)

4π(2l3 + 1)
C(l1l2l3, 000)C(l1l2l3,m1m2m3), (4.46)

the first term of Eq. (4.43) becomes

∫
dΩ A1Y

∗
1,µ(k̂)Y2m(k̂)Y1m′(k̂) = A1

√
5

4π
C(121, 000)C(121; m′,m, µ)

= −A1

√
5

4π

√
2

5
C(121; µ−m,m, µ)

= −A1

√
1

2π
C(121; µ−m,m, µ) (4.47)

and the latter turns to

∫
dΩ A2Y1,m−µ(k̂)Y1m′(k̂) =

∫
dΩ A2(−1)m′

Y1,m−µ(k̂)Y ∗
1,−m′(k̂)

= A2(−1)m′
δm−µ,−m′

= a2(−1)µ−m〈2,m|1µ; 1,m− µ〉. (4.48)

where

a2 = − 64a3/2k

27
√

3π3/4
e−

1
12

a2k2

.

Then, (4.43) is as shown

T1,m′ = −A1

√
1

2π
C(121; µ−m,m, µ) + a2(−1)µ−m〈2,m|1µ; 1,m− µ〉. (4.49)

For l′ = 2, we have

T2m′ =

∫
dΩ (A1Y

∗
1µ(k̂)Y2m(k̂) + A2Y1,m−µ(k̂))Y2m′(k̂). (4.50)

By Eqs. (4.44), (4.45), and (4.46), we obtain

T2m′ = 0 (4.51)
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where C(221, 000) = 0. For l′ = 3, we have

T3m′ =

∫
dΩ (A1Y

∗
1,µ(k̂)Y2m(k̂) + A2Y1,m−µ(k̂))Y3m′(k̂)

=

∫
dΩ A1Y

∗
1,µ(k̂)Y2m(k̂)Y3m′(k̂)

= A1

√
5 · 7
4π · 3 C(321, 000)C(321; m′,m, µ)

= A1

√
3

4π
C(321; µ−m,m, µ). (4.52)

Hence, the spatial transition amplitude is

Tspatial =
∑

l′m′
Tl′m′Y ∗

l′m′(k̂)

= T1m′Y ∗
1m′(k̂) + T3m′Y ∗

3m′(k̂)

= (−A1

√
1

2π
C(121; µ−m,m, µ) + a2(−1)µ−m〈2,m|1µ; 1,m− µ〉)

· Y ∗
1,µ−m(k̂) + A1

√
3

4π
C(321; µ−m,m, µ)Y ∗

3,µ−m(k̂) (4.53)

where

A1 =
128

√
2a7/2k3

243
√

5π1/4
e−

1
12

a2k2

a2 = − 64a3/2k

27
√

3π3/4
e−

1
12

a2k2

.

4.4 Total Cross Section

The total transition amplitude form Eq. (4.2) is

Te+e−→m1m2
= 〈πω|Vqq|ρ′〉〈ρ′|G|ρ′〉〈ρ′|qq〉〈qq|T |e+e−〉

= Tm→m1m2〈ρ′|G|ρ′〉Te+e−→m (4.54)

where Tm→m1m2 is the transition amplitude of the intermediate meson decay into

two mesons as shown in the previous section, Te+e−→m is the transition amplitude

of the annihilation of an electron and a positron into the intermediate meson,
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and 〈ρ′|G|ρ′〉 is the Green function describing the propagation of the intermediate

meson and taking the form

〈ρ′|G|ρ′〉 =
1

Ecm −Mm − iΓ
2

, (4.55)

where Mm is the mass of an intermediate meson, and Γ is the decay width of the

intermediate meson. The cross section can be obtained form

σ =
2πE1E2q

4p
√

sEcm

∫
|Te+e−→m1m2

|2dΩ (4.56)

where E1E2, p,
√

s, q are the product of the energy of each meson, the energy of

electron, the center of mass energy, and the momentum of each outgoing meson,

respectively.

In case of two intermediate ρ mesons, the total transition amplitude used

to calculate the cross section is in the form of the summation of each transition

amplitude

Te+e−→m1m2
= T ρ′

e+e−→m1m2
+ T ρ

e+e−→m1m2
. (4.57)



CHAPTER V

RESULTS AND DISCUSSIONS

Shown in Fig. 5.1 are the theoretical predictions and experimental data for

the cross section of the reaction e+e− → ωπ0. Note that for comparing with the

experimental data of the reaction e+e− → ωπ0 → π0π0γ, we have multiplied our

theoretical predictions by the decay branch ratio (0.087) of the ω(780) to π0γ. In

the theoretical calculation we have included both ρ(1450) and ρ(770) mesons as the

intermediate meson states. There is no free parameter in the study. The relevant

masses and widths of mesons are taken from the particle table∗, and the effective

coupling constant of the 3P0 quark vertex is fixed to be 2.5 by the reaction ρ → ππ

and the meson length parameter is fixed to be 3.847 by the reaction ρ → e+e−.

It is found in Fig. 5.1 that the theoretical prediction, with the ρ(1450)

meson being in the 2S-state, is well close to the experimental data while the result

from a 1D-state ρ(1450) is too small. Therefore, one may comfortably concluded

that the ρ(1450) meson is in the 2S-state.

Although both ρ(1450) and ρ(770) mesons, as the intermediate states, con-

tribute to the reaction e+e− → ωπ0, the theoretical result reveals that the ρ(1450)

meson dominate over the ρ(770). The broad peak in Fig. 5.1 stem mainly from

the occurrence of ρ(1450) meson.

That the prediction for the cross section of the reaction e+e− → ωπ0 in

the two-step process with the ρ(1450) as the intermediate state reproduces well

the experimental data at energies below 1.4 GeV leaves no room for the one-step

∗See Appendix A
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process to contribute to the reaction at a sizable scale at this energy region. For

higher energies one may have to include more mesons into the intermediate states

and/or to consider the contribution of the one-step process.

The reaction e+e− → ρπ0 is also studied in the work though data are

very scarce. ρ is a broad meson with a width of Γ = 150 MeV, and hence can

not be observed directly in experiments. It is usually detected via the coincident

measurement of its 2π decay products. Since there are a large number of particles

with masses around 1 GeV decaying into 2π, it is very difficult to distinguish ρ

from other mesons in the reaction e+e− → π+π−π0. In our knowledge, there exists

only one set of experimental data from the work (Antonelli et al., 1992). There

are apparently two resonances in the experimental data, with the first probably

from the decay of ω(1420) meson while the second from the ω(1650).

Presented in Fig. 5.2 are the theoretical predictions for the cross section of

the reaction e+e− → ρπ0 in the two-step process where the ω(1420) and ω(780)

mesons are included into the intermediate meson states. Again, there is no free

parameter in the study. The relevant masses and widths of mesons are taken from

the particle table, and the effective coupling constant of the 3P0 quark vertex and

the meson length parameter are the same as for the reaction e+e− → ωπ0.

It is found in Fig. 5.2 that the theoretical prediction, with the ω(1420)

meson being a 2S-state, is much larger than the experimental data. Therefore,

one may rule out that the ω(1420) is a 2S meson. With the ω(1420) meson as a

1D meson, the calculated cross section is more or less consistent with the data,

hence one may suggest that the ω(1420) meson is likely to be dominated by the

1D-wave.
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Figure 5.1 Theoretical prediction for the cross section of reaction e+e− → ωπ0 →
π0π0γ in two-step process with ρ′ in both 2S (solid line)and 1D (dotted line) waves.

Experimental data taken from the SND (Achasov et al., 2000), DM2 (Bisello et

al., 1991), CMD2 (Akhmetshin et al., 1999).
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Figure 5.2 Theoretical prediction for the cross section of reaction e+e− → ρπ0

in two-step process with ω′ in both 2S (solid line) and 1D (dotted line) waves.

Experimental data taken from the DM2 (Antonelli et al., 1992). The cross section

simulated from ω in 2S-wave is multiplied by a factor 1/4.
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In conclusion, the reaction e+e− → ωπ0 and e+e− → ρπ0 are investigated in

the 3P0 non-relativistic quark model without any free parameter. The experimental

data of both reactions are fairly reproduced in the work. The study suggests that at

the energy region from the threshold to 1.4 GeV the two-step process is dominant

over the one-step one. The experimental data of the reaction e+e− → ωπ0 strongly

dictate a 2S-wave ρ(1450) while the data of the reaction e+e− → ρπ0 prefer

ω(1420) being a 1D-wave meson.
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APPENDIX A

PARTICLE DATA

Data are from J. Phys. G 33, (2006).

Table A.1 Pseudoscalar meson ( spin = 0 )

Meson Quark content Charge Mass (MeV) Lifetime (s)
Principal
decays

π± ud̄, dū +1,−1 139.570 2.60× 10−8 µνµ

π0 (uū− dd̄)/
√

2 0 134.977 8.4× 10−17 γγ

Table A.2 Vector meson ( spin = 1 )

Meson Quark content Charge
Mass

(MeV)
Full width
Γ (MeV)

Principal
decays

ρ ud̄, dū, (uū− dd̄)/
√

2 ±1, 0 775.5 ± 0.4 149.4 ± 1.0 ππ

ω (uū + dd̄)/
√

2 0 782.6 ± 0.1 8.49 ± 0.08 π+π−π0



APPENDIX B

THREE DIMENSIONAL HARMONIC

OSCILLATOR

The potential of harmonic oscillator is widely employed to study the inter-

action in quark-antiquark system of mesons and three quarks system of baryon.

The main character of potential considered to be harmonic is

V (r) ∝ r2. (B.1)

In the spherical coordinate, the radial schrödinger equation is

[
d2

dr2
+

2µ

h̄2
(E − 1

2
µω2r2)− l(l + 1)

r2

]
u(r) = 0 (B.2)

where

u(r) = rR(r). (B.3)

Eq. (B.2) can be contracted to

[
d2

dρ2
− l(l + 1)

ρ2
+ λ− ρ2

]
u(ρ) = 0 (B.4)

by introducing the dimensionless variable

ρ = αr

λ =
2E

h̄ω

(B.5)

where

α =
(µω

h̄

)1/2

. (B.6)
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The study of an asymptotic behavior of u(ρ) leads to, when ρ → 0,

u(ρ) ∼ ρl+1 (B.7)

and, when ρ →∞,

[
d2

dρ2
− ρ2

]
u(ρ) = 0. (B.8)

The solution of asymptotic equation is

u(ρ) ∼ e−ρ2/2. (B.9)

According to the asymptotic behaviors in Eqs. (B.7) and (B.9), the solution of

u(ρ) in (B.4) is assumed as

u(ρ) = e−ρ2/2ρl+1g(ρ). (B.10)

Introduced y = ρ2 and inserted (B.10) into (B.4), equation of g(ρ) becomes

y
d2g(y)

dy2
+

[
(l +

3

2
)− y

]
dg(y)

dy
−

[
1

2
(l +

3

2
)− λ

4

]
g(y) = 0. (B.11)

This is the Kummer-Laplace differential equation whose solution, regular at the

origin, is

g(y) = CF

(
l

2
+

3

4
− λ

4
, l +

3

2
, y

)
(B.12)

where C is a constant and F is the confluent hypergeometric function,

F (α, γ, ρ) = 1 +
α

γ

ρ

1!
+

α(α + 1)

γ(γ + 1)

ρ2

2!
+ . . .

=
∞∑

k=0

(α)k

(γ)k

ρk

k!
. (B.13)

The spherical wave function or the simultaneous eigenfunction of the observables

(H, L2, Lz) reads

ψnlm(r, θ, φ) = Rnl(r)Ylm(θ, φ) (B.14)
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where Rnl(r) is the radial wave functions and Ylm(θ, φ) is the spherical harmonics.

From (B.12), the radial wave function behaves

Rnl(r) ∼ (αr)le−
1
2
α2r2

F (−n, l +
3

2
, α2r2). (B.15)

The normalized wave function reads

Rnl(r) = α3/2

[
2l+2−n(2l + 2n + 1)!!√

πn![(2l + 1)!!]2

]
(αr)le−

1
2
α2r2

F (−n, l +
3

2
, α2r2). (B.16)

It is more often and convenient to write the above equation in terms of Lagurre

polynomials,

Rnl(r) =

[
2α3n!

Γ(n + l + 3
2
)

]
(αr)le−

1
2
α2r2

Ll+1/2
n (α2r2) (B.17)

where L
l+1/2
n (α2r2) are the associated Laguerre polynomials

Ll+1/2
n (α2r2) =

n∑

k=0

(−1)k

k!

Γ(n + l + 3
2
)

(n− k)!Γ(k + l + 3
2
)
r2k. (B.18)

The radial wave functions have the orthogonal property

∫ ∞

0

r2drRnl(r)Rn′l(r) = δnn′ . (B.19)

By the Fourier transformation, the analytical wave function of a harmonic oscil-

lator in momentum space is shown

ψnlm(~p) =
1

(2π~) 3
2

∫
d~rψnlm(~r)e−i~p·~r = (−i)2n+lRnl(p)Ylm(~p) (B.20)

where

Rnl(r) =

[
2β3n!

Γ(n + l + 3
2
)

]
(βr)le−

1
2
β2r2

Ll+1/2
n (β2r2) (B.21)

and

β =
1

α~
(B.22)
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In our calculation, the spatial wave functions in momentum space are always used

and β is interpreted as a size parameter in unit of GeV−1. For mesons (quark-

antiquark boundstates), ~p is the momentum of the center of mass

~p =
~p1 − ~p2

2
(B.23)

where ~p1 and ~p2 are momentums of quark and antiquark, respectively.



APPENDIX C

γ-MATRICES AND TRACE TECHNOLOGY

Four dimensional γ-matrices are defined by the anticommutation relation

{γµ, γν} ≡ γµγν + γνγµ = 2γµν + 1n×n. (C.1)

Definitions base on “An Introduction to Quantum Field Theory”∗ with priority.

Specific Weyl or chiral representations are

γ0 =




0 1

1 0


 ; γi =




0 σi

−σi 0


 (C.2)

where σi is Pauli matrices,

σ1 =




0 1

1 0


 ; σ2 =




0 −i

i 0


 ; σ3 =




1 0

0 −1


 . (C.3)

To easily attack QED problems, the trace techniques produced by R. P.

Feynman has been a very important tools. Here are some proves and properties.

The prove of trace of one γ matrix is

tr(γµ) = tr(γ5γ5γµ) since (γ5)2 = 1

= −tr(γ5γµγ5) since {γµ, γ5} = 0

= −tr(γ5γ5γµ) using cyclic properties of trace

= −tr(γµ)





(C.4)

where γ5 =



−1 0

0 1


. Any parameter equal to minus itself must be vanished.

The result is also applied to trace of odd number of γ matrix. For the trace of two

∗Michael E. Peskin and Daniel V. Schroeder, 1995
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γ matrices, we use the anticommutation property and the cyclic property of trace,

tr(γµγν) = tr(2gµν · 1− γµγν) (anticommutation)

= 8gµν − tr(γµγν) (cyclicity). (C.5)

Hence trγµγν = 4gµν . The trace of any even number of γ matrices are evaluated

in the same way by anticommuting the first γ matrix all the way to right, then

cycle it back to the left. For the trace of four γ matrices, we have

tr(γµγνγργσ) = tr(2gµνγργσ − γνγµγργσ)

= tr(2gµνγργσ − γν2gµργσ + γνγρ2gµσ − γνγργσγµ). (C.6)

Using the cyclic property on the last term and moving it to the left hand side, we

obtain

tr(γµγνγργσ) = gµνtr(γργσ)− gµρtr(γµγσ) + gµσtr(γνγρ)

= 4(gµνgρσ − gµρgνσ + gµσgνρ). (C.7)

For γ5 = iγ0γ1γ2γ3, the trace of γ5 and any odd number of other matrices is

vanish. The trace of γ5 itself, however, is also zero,

tr(γ5) = tr(γ0γ0γ5) = −tr(γ0γ5γ0) = −tr(γ0γ0γ5) = −tr(γ5) = 0. (C.8)

These are summary of trace theorems;

tr(1) = 4

tr(any odd number of γs) = 0

tr(γµγν) = 4gµν

tr(γµγνγργσ) = 4(gµνgρσ − gµρgνσ + gµσgνρ)

tr(γ5) = 0

tr(γµγνγ5) = 0

tr(γµγνγργσγ5) = −4iεµνρσ.





(C.9)
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The last formula can be simplified by

εαβγδεαβγδ = −24

εαβγµεαβγν = −6δµ
ν

εαβγδεαβρσ = −2(δµ
ρ δν

σ − δµ
σδν

ρ).





(C.10)

The order of all γ matrices can be reversed,

tr(γµγνγργσ . . .) = tr(. . . γσγργνγµ). (C.11)

Two γ matrices with similar indices dotted together can be reduced by

γµγµ = gµνγ
µγν =

1

2
gµν{γµ, γν} = gµνg

µν = 4. (C.12)

In addition, several γ matrices dotted together and having the following form can

be reduced by contraction identities, easily proved by using the anticommutation

relations,

γµγνγµ = −2γν

γµγνγργµ = −2gνρ

γµγνγργσγµ = −2γσγργν .





(C.13)

All these properties are important in the QED calculation of differential cross

section.



APPENDIX D

REACTION OF e+e− → µ+µ−

The e+e− → µ+µ− reaction has been the primary process to study a pair

of quark-antiquark bound state. In this case, the calculation corresponding to

charges is only treated by quantum electrodynamics. However, the final state

of muon reaction is crucially different from the quark-antiquark final state in

which there are not free quark observed so far. The transition amplitude is

modified to avoid free a quark problem by coupling both quark and antiquark to

its bound state, mesons. We want to show the whole calculation by starting form

e+e− → µ+µ−. A Feynman diagram of the reaction is

e− µ+

µ−e+

q
γµ γν

The transition amplitude is, from the feynman diagram,

T = v̄(p′)(−ieγµ)u(p)

(−igµν

q2

)
ū(k)(−ieγν)v(k′)

=
ie2

q2

(
v̄(p′)γµu(p)

)(
ū(k)γµv(k′)

)
. (D.1)

The factor e2 will be modified later to Q2 where Q is charges of quark. To find

the differential cross section, we need to find a complex conjugate of T leading to

|T |2. The complex conjugate of T is

T ∗ =
ie2

q2

(
ū(p)γµv(p′)

)(
v̄(k′)γµu(k)

)
(D.2)
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and

|T |2 =
e4

q4

(
v̄(p′)γµu(p)ū(k)γµv(k′)

)(
ū(p)γµv(p′)v̄(k′)γµu(k)

)
(D.3)

where

(v̄γµu)∗ = u†(γµ)†(γ0)†v = u†(γµ)†γ0v = u†γ0γµv = ūγµv. (D.4)

Since the beam of electron and position is unpolarized and the detector cannot

distinguish the polarization, |T |2 is averaged over spins of electron and positron

and summed over muon spins, that is,

1

2

∑
s

1

2

∑

s′

∑
r

∑

r′
|T (s, s′ → r, r′)|2. (D.5)

By trace technology, (D.3) becomes

1

4

∑
spins

|T |2 =
16e4

q4

(
p′µpν + p′νpµ − gµν(p · p′ + m2

e)
)

· (kµk
′
ν + kνk

′
µ − gµν(k · k′ + m2

µ)
)

=
8e4

q4

[
(p · k)(p′ · k′) + (p · k′)(p′ · k) + m2

µ(p · p′)
]

(D.6)

where me = 0 because of high energy approximation or electron mass much fewer

than muon mass. Let the reaction occur in the center of mass frame and all

momenta, energies and mass be

p = (E,Eẑ); p′ = (E,−Eẑ)

k = (E, k); k′ = (E,−k)

|k| =
√

E2 −m2
µ; k · ẑ = |k| cos θ

q2 = (p + p′)2 = 4E2; p · p′ = 2E2

p · k = p′ · k′ = E2 − E|k| cos θ; p · k′ = p′ · k = E2 + E|k| cos θ.

Eq. (D.6) turns to

1

4

∑
spins

|T |2 =
8e4

16E4

[
E2(E − |k| cos θ)2 + E2(E + |k| cos θ)2 + 2m2

µE
2
]
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= e4

[(
1 +

m2
µ

E2

)
+

(
1− m2

µ

E2

)
cos2 θ

]
. (D.7)

The differential cross section of two final states is

(
dσ

dΩ

)

CM

=
1

2Ea2Eb|va − vb|
|p1|

(2π)24Ecm

|T (pa, pb → p1p2)|2 (D.8)

where E, |va − vb|, p are the energy of each initial particle, the relative velocity

of the beams as viewed from the laboratory frame, and the momentum of final

particle, respectively. In the case of e+e− → µ+µ−, Ea = Eb = Ecm

2
and |va−vb| =

2c = 2, c = 1, and p1 = k. The cross section of the reaction is

dσ

dΩ
=

1

2Ecm2

|k|
16π2Ecm

· 1

4

∑
spins

|T |2

=
α2

4E2
cm

√
1− m2

µ

E2

[(
1 +

m2
µ

E2

)
+

(
1− m2

µ

E2

)
cos2 θ

]
(D.9)

where α = e2

4π
. Integrated over angular part, the cross section is

σtotal =
4πα2

3E2
cm

√
1− m2

µ

E2

(
1 +

m2
µ

2E2

)
. (D.10)



APPENDIX E

WIGNER’S 9J SYMBOLS

In the calculation of four quarks system or two mesons, the selection of

coupled pair of quarks corresponding to initial state has played a role. To help

couple independently, Wigner’s 9j symbols mainly used in the coupling of four

angular momenta is employed. Suppose there are four angular momenta ~Ji with

i = 1, 2, 3, 4 in different spaces, the eigenstates of the operators (J2
i , Jzi) are |li,mi〉.

The direct product states

|j1j2j3j4; m1m2m3m4〉 ≡ |j1m1〉|j2m2〉|j3m3〉|j4m4〉 (E.1)

are the eigenstates of operators (J2
i , Jzi) and form a complete basis in the direct

product space of dimension (2j1 + 1)(2j2 + 1)(2j3 + 1)(2j4 + 1) with the transfor-

mation according to the direct production representation

D(~λ) = Dj1(~λ)⊗Dj2(~λ)⊗Dj3(~λ)⊗Dj4(~λ). (E.2)

The operator operating on the eigenstates is

~J = ~J1 + ~J2 + ~J3 + ~J4. (E.3)

The eigenstate of the total angular momentum can be formed by different ways.

We can couple the first and the second momenta to j12 and the third and the

fourth momenta to j34, then couple both together to the total angular momentum

j,

|(j1 ⊗ j2)j12 ⊗ (j3 ⊗ j4)j34 ; jm〉. (E.4)



62

Another ways is to couple the first and the third momenta to j13 and the second

and the fourth momenta to j24, and then combine together to the total angular

momentum j,

|(j1 ⊗ j3)j13 ⊗ (j2 ⊗ j4)j24 ; jm〉. (E.5)

The relation between above bases is

|(j1 ⊗ j2)j12 ⊗ (j3 ⊗ j4)j34 ; jm〉

=
∑
j13j24

〈(j1j3)j13(j2j4)j24 ; jm|(j1j2)j12(j3j4)j34 ; jm〉

· |(j1 ⊗ j3)j13 ⊗ (j2 ⊗ j4)j24 ; jm〉 (E.6)

with

〈(j1j3)j13(j2j4)j24 ; jm|(j1j2)j12(j3j4)j34 ; jm〉

=
√

(2j12 + 1)(2j34 + 1)(2j13 + 1)(2j24 + 1) ·





j1 j2 j12

j3 j4 j34

j13 j24 j





(E.7)

where




j1 j2 j12

j3 j4 j34

j13 j24 j





(E.8)

is called Wigner’s 9j symbols. Here are some properties of the Wigner’s 9j symbols




j1 j2 j12

j3 j4 j34

j13 j24 j





= (−1)R





j3 j4 j34

j1 j2 j12

j13 j24 j





= (−1)R





j2 j1 j12

j4 j3 j34

j24 j13 j





(E.9)





j1 j2 j12

j3 j4 j34

j13 j24 j





=
∑

k

(−1)2k(2k + 1)
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j1 j3 j13

j24 j k









j2 j4 j24

j3 k j34









j12 j34 j

k j1 j2





(E.10)





j1 j2 j12

j3 j4 j34

j13 j24 0





= δj12j34δj13j24
(−1)j2+j3+j12+j13

√
(2j12 + 1)(2j13 + 1)




j1 j2 j12

j4 j3 j13


 (E.11)

where R = j1 + j2 + j3 + j4 + j12 + j34 + j13 + j24 + j.
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