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ABSTRACT

Real-world data often suffer from corruptions or
noise. The most serious negative impact of noise is
that it can reduce machine learning performance in
tetms of leaming accuracy. Most learning
algorithms have integrated various approaches to
handle noisy data. However, rare research has been
conducted to systematically explore the impact of
noise, especially when noise occurs at different
attributes. We investigate the effect of class noise,
noise in principal attributes, and noise in irrelevant
attributes to the learning accuracy. Our conclusions
can be served as a preliminary step toward the
designing of handling mechanisms for a specific
kind of noise.
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1. INTRODUCTION

Noise is a random etror in data. Noisy data contain
incorrect attribute values caused by many possible
reasons, for instance, faulty data collection
instruments, human errors at data entry, errors in
data transmission. If noise occurs in the training
data, it can lower the performance of the learing
algorithm, The most serious effect of noise is that it
can confuse the learning algorithms to produce
complex and distorted results, The long and
complex results are dued to the attempt to fit every
training data into the concept descriptions. This
situation is named the overfitting problem.

Most learning algorithms are designed
with the awareness of noisy data. Thus, there exist
some mechanisms in dealing with noise, for
example, the ID3 algorithm® uses the prepruning
technique to avoid growing a decision tree too deep
down to cover the noisy training data, Some

algorithms adopt the technique of postprocessing to
reduce the complexity of the learning results.
Postprocessing technique includes the cost-
complexity pruning, reduced error pruning, and
pessimistic pruning described in Quinlan™.

Even though most existing learning
algorithms  include  various  noise-handling
techniques, the existence of noise can still affect
the learning results negatively. The focus of this
paper is to observe the impact of noise to the
learning algorithms. We categorize noise into three
groups: class noise, noise in principal attributes,
and noise in irrclevant attributes, We investigate
the relationship between various groups of noise
and learning accuracy. Our conclusions can be
used to enhance the handling techniques specific to
the noise of different types.

2. EXPERIMENTAL METHODOLOGY

We study the impact of noise on three data sets:
Monkl (124 instances), lonosphere (234
instances), and Chess (2,130 instances). These data
sets are UCPE standard data for testing the
performance of machine learning algorithms. We
generate noise varying from 0% to 45% on
different groups of attributes. Class noise' is an
occurrence of random error in target attribute (i.e.,
the instances are mislabeled). Attribute noise is a
random error in predicting attributes. Every
aftribute except a class attribute has an equal
probability of noise occurrence. Instead of simply
studying attribute noise, we extend our
investigation to the impact of noise that occurs in
the principal attributes, i.e., atiributes highly
correlate to class prediction, and the impact of
noise if it occurs at less-relevant attributes.

We test the impact of noise on two
learning algorithms: naive Bayes, and neural
network. These algorithms are known as a noise-



tolerant system. We compare their noise-tolerant
performance when noise is introduced to the class
attribute, the principal predicting attributes, and
attributes  irrelevant to the prediction. For
consistency, we supply the same data set to each
test.

3. RESULTS AND DISCUSSIONS

The tolerance against class noise of naive Bayes
and neural network algorithms tested on three data
sets is shown in Figure 1. The effects of noise in
principal attributes and irrelevant attributes are
shown in Figures 2 and 3, respectively.
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The experimental results reveal that:

Class noise has more impact on the neural
network algorithm than on the naive Bayes.
This negative effect can be noticed clearly on a
targe data set (Chess data).
When noise occurs in highly predictive (or
principal) attributes, it has much more effect
on the neural network algorithm than the
naive Bayes.
For the small data set (Monkl), noise in
irrelevant attributes has no effect on both
algorithms. But on larger data set, this kind of
noise can slightly degrade the performance of
the neural network algorithm.
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Figure 1. The effect of class noise
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Figure 2. The effect of principal attribute noise

4. CONCLUSION

Noise i 2 data set can happen in different forms:
(1) misclassification or wrong labeled instauces,
{2) errorneous or distorted attribute values, (3)
contradictory or duplicate instances having
different labels, (4) missing attribute values, All
kinds of noise can more or less affect the learning
performance. We specific our investigation to the
fist two kinds of neise, which are termed class

noise and attribute noise, respectively. Class noise
has been studied extensively by many researchers,
whereas attribute noise is less thoroughly studied.
We extend the study on attribute noise by
categorize it further to principal attribute noise
and irrelevant attribute noise. We find that
principal attribute noise has more negative impact
on the learning performance than the class noise.
Noise in irrelevant atiributes can somehow affect
the neural network algorithm. Our fuiure research
is to extend our study and 1o design a handling
mechanisin specific to each kind of noise.



Naive Bayes
Monkl

100

8G —

60

40

Accuracy(%)

20

0 -

\\(}4’ e e \ﬁ\e .gg\n qsg‘@ rﬁg\n fb@\c' (§3\° b§\° ﬁ\\_‘
< Noise(%)

lonosphere

Accuracy(%)
£
L~
k\

72 4

0% 1% 5% 10% 15% 20% 25% 30% 35% 40% 45%

Noise{%)

Chess

100

a0

80

40

Accuracy(%)

20

0 -

0% 1% 5% 10% 15% 20% 25% 30% 35% 40% 45%
Noise{%)

Neural Network

80
€ w
o
£
g 4¢
20
0 T r T - v v -
\@cﬁ g ge ge g q§\° 'I‘Jg\n n}@\e 'gg\" &\" ﬁ\n
< Nois (%)
95
e - f\
g~ Y NS\,
:,;-' 85
: ./ Vv
3 80
o
<
75
e ' T 1 3 T T T g T ]
0% 1% 5% 10% 15% 20% 25% 30% 35% 40% 45%
Nois e{%)
100 ——gmsapm—g—t +* A duaame 2 * 2 2
80
£
5 60 —
B
3 40
o
<
20
0 —

0% 1% 5% 10% 15% 20% 25% 30% 35% 40% 45%
Noise (%)

Figure 3. The effect of irrelevant attribute noise
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