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The quantum action (dynamical) principle is exploited to investigate the nature and
origin of the Faddeev–Popov (FP) factor in gauge theories without recourse to path
integrals. Gauge invariant as well as gauge non-invariant interactions are considered to
show that the FP factor needs to be modified in more general cases and expressions
for these modifications are derived. In particular we show that a gauge invariant theory
does not necessarily imply the familiar FP factor for proper quantization.
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1. INTRODUCTION

In earlier communications (Manoukian, 1986, 1987; Manoukian and Siranan,
2005), we have seen that the quantum action (dynamical) principle (Schwinger,
1951a,b, 1953a,b, 1954, 1972, 1973; Lam, 1965; Manoukian, 1985) may be used
to quantize gauge theories in constructing the vacuum-to-vacuum transition ampli-
tude and the Faddeev–Popov (FP) factor (Faddeev and Popov, 1967), encountered
in non-abelian gauge theories (e.g., (Abers and Lee, 1973; Rivers, 1987; ’t Hooft,
2000; Veltman, 2000; Gross, 2005; Politzer, 2005; Wilczek, 2005)), may be ob-
tained directly from the action principle without much effort. No appeal was made
to path integrals, and there was not even the need to go into the well-known com-
plicated structure of the Hamiltonian (Fradkin and Tyutin, 1970) in non-abelian
gauge theories. For extensive references on the gauge problem in gauge theories
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see Manoukian and Siranan (2005). The latter reference traces its historical devel-
opment from early papers to most recent ones.

In the present investigation, we consider the generic non-abelian gauge theory
Lagrangian density

L T = L + L S (1)

and modifications thereof, where

L = −1

4
Ga

µνG
µν
a + 1

2i
[(∂µψ)γ µψ − ψγ µ∂µψ] − m0ψψ + g0ψγµAµψ (2)

L S = ηψ + ψη + Jµ
a Aa

µ (3)

Aµ = Aa
µta, Gµν = ∂µAν − ∂νAµ − ig0[AµAν] (4)

Gµν = Ga
µνta (5)

Ga
µν = ∂µAa

ν − ∂νA
a
µ + g0f

abcAb
µAc

ν. (6)

The ta are generators of the underlying algebra, and the f abc, totally antisymmetric,
are the structure constants satisfying the Jacobi identity, [ta, tb] = if abctc. Note
that Aµ is a matrix. L S is the source term with the J a

µ classical functions, while η,
η are so-called anti-commuting Grassmann variables.

The Lagrangian density L in (2) is invariant under simultaneous local gauge
transformations:

ψ −→ Uψ, ψ −→ ψU−1, (7)

Aµ −→ UAµU−1 + i

g0
U∂µU−1 (8)

Gµν −→ UGµνU
−1 (9)

where U = U (θ ) = exp [ig0θ
ata], θ = θata , θ = θ (x).

Upon setting

∇µ = ∂µ − ig0Aµ (10)

with

∇ab
µ = δab∂µ + g0f

acbAc
µ (11)

we have the basic commutator

[∇µ,∇ν] = −ig0Gµν (12)
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and the identity

∇ab
µ ∇bc

ν Gµν
c = 0. (13)

[The latter generalizes the elementary identity ∂µ∂νF
µν = 0, in abelian gauge

theory, to non-abelian ones, where Fµν = ∂µAν − ∂νAµ.]
We consider gauge invariant (Section 3.) as well as gauge non-invariant

(Section 4.) modifications of the Lagrangian density and show by a systematic use
of the quantum action principle that the familiar FP factor needs to be modified in
more general cases and explicit expressions for these modifications are derived.
In particular, we show that a gauge invariant theory does not necessarily imply
the familiar FP factor for proper quantization, as may be perhaps expected (cf.
Rivers (1987, p. 204), and modifications thereof may be necessary. Before doing
so, however, we use the action principle to derive, in Section 2., the FP factor and
investigate its origin for the classic Lagrangian density L , without recourse to path
integrals, as an anticipation of what to expect in more general cases. Throughout,
we work in the celebrated Coulomb gauge ∂kA

k
a = 0, k = 1, 2, 3.

2. ACTION PRINCIPLE AND THE ORIGIN OF THE FP FACTOR

To obtain the expression for the vacuum-to-vacuum transition amplitude
〈0+ |0−〉, in the presence of external sources J a

µ , ηa , ηa , as the generator of all
the Green functions of the theory, no restrictions may be set, in particular, on the
external current J a

µ , coupled to the gauge fields A
µ
a , such as ∂µJ a

µ = 0, so that
variations of the components of J a

µ may be carried out independently, until the
entire analysis is completed, and all functional differentiations are carried out to
generate Green functions. This point cannot be overemphasized. As we will see,
the generality condition that must be adopted on the external current J a

µ together
with the presence of dependent gauge field components in (Aµ

a ), as a result of
the structure of the Lagrangian density L in (2) and the gauge constraint, are
responsible for the origin and the presence of the FP factor in the theory for a
proper quantization in the realm of the quantum action principle.

We define the Green operator Dab(x, x ′) satisfying the differential equation
[
δac�∂2 + g0f

abcAb
k∂k

]
Dcd (x, x ′) = δ4(x, x ′)δad . (14)

Since the differential operator on the left-hand side of Dcd (x, x ′) is independent
of the time derivative, Dcd (x, x ′) involves a δ(x0 − x ′0) factor. Using the gauge
constraint, one may, for example, eliminate A3

a in favor of A1
a , A2

a . That is, we
may treat the A3

a as dependent fields.
The field equations are given by

∇ab
µ G

µν

b = − (
δν

σ δac − gνk∂kD
ab∇bc

σ

) [
J σ

c + g0ψγ σ tcψ
]

(15)
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with µ, ν = 0, 1, 2, 3, k = 1, 2, 3, and
[
γ µ ∇µ

i
+ m0

]
ψ = η (16)

ψ

[
γ µ

←
∇∗

µ

i
− m0

]
= −η (17)

where ∇µ is defined in (10).
The canonical conjugate variables to A1

a , A2
a , are given by

πi
a = Gi0

a − ∂−1
3 ∂iG30

a , i = 1, 2. (18)

With π0
a = 0, π3

a = 0, we may rewrite (18) as

πµ
a = Gµ0

a − ∂−1
3 gνk∂kG

30
a (19)

k = 1, 2, 3. One may then readily express G
µ0
a as follows:

Gµ0
a = πµ

a − gµk∂kDab

[
J 0

b + g0ψγ 0tbψ + ∇bc
ν πν

c

]
. (20)

We note that the right-hand side of (20) is expressed in terms of the independent
fields A1

a , A2
a , their canonical conjugate momenta and involves no time derivatives.

Here we recall that A3
a is expressed in terms of A1

a , A2
a with no time derivative.

Accordingly, with the (independent) fields and their canonical conjugate momenta
kept fixed, we obtain the following functional derivative

δ

δJ ν
b (x ′)

Gµ0
a (x) = −gµkδ0

ν ∂kDab(x, x ′) (21)

µ, ν = 0, 1, 2, 3, k = 1, 2, 3. On the other hand, Gkl
a = ∂kAl

a − ∂lAk
a , k, l =

1, 2, 3, may be expressed in terms of the independent fields A1
a , A2

a and involves no
time derivatives. Accordingly with A1

a , A2
a and their canonical conjugate variables

kept fixed, we also have

δ

δJ ν
b (x ′)

Gkl
a (x) = 0. (22)

Similarly, with ψ and ψ kept fixed, we have the obvious functional derivative
expression

δ

δJ ν
b (x ′)

[ψ(x)γ µtaψ(x)] = 0. (23)

The action principle gives

∂

∂g0
〈0+ |0−〉 = i

〈
0+

∣∣
∣∣

∫
(dx) L̂ I

∣∣
∣∣0−

〉
(24)
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where

L̂ I = ∂

∂g0
L = −1

2
f abcAb

µAc
νG

µν
a + ψγ µAµψ. (25)

We may also write

f abcAb
µAc

νG
µν
a = 2f abcAb

kA
c
0G

k0
a + f abcAb

kA
c
l G

kl
a (26)

and set (−i)δ/δJµ
a = A′a

µ , (−i)δ/δη = ψ ′, (−i)δ/δη = ψ
′
. [Here we note that

G′a
µν on the right-hand side of (5.30) of Manoukian (1986) should be replaced by

F ′a
µν = ∂µA′a

ν − ∂νA
′a
µ .]

Now we use the rule of functional differentiations (cf. Manoukian (2006),
Ch. 11) that for an operator O(x)

(−i)
δ

δJ
µ
a (x ′)

〈0+ |O(x)|0−〉 =
〈
0+

∣∣∣
(
Aa

µ(x ′)O(x)
)
+

∣∣∣0−
〉

− i
〈
0+

∣∣∣ δ

δJ
µ
a (x ′)O(x)

∣∣∣0−
〉

(27)

where (. . .)+ denotes the time-ordered product, and the functional derivative of
O(x) in the second term on the right-hand of (27) is taken as in (21)–(23) with
the (independent) fields and their canonical conjugate momenta kept fixed. Here
we recall that A3

a may be expressed in terms of A1
a , A2

a and involves no time
derivatives.

From (24)–(27), together with (21)–(23), we obtain

∂

∂g0
〈0+ |0−〉 =

∫
(dx)

[
iL̂

′
I(x) − f bcaA′b

k ∂kD′ac(x, x)
]
〈0+ |0−〉 . (28)

Using a matrix notation

Dab(x, x ′) =
[〈

x

∣∣∣∣

(
1

�∂2 − ig0Ak∂k

)∣∣∣∣x
′
〉]ab

, (29)

the notation

T r[f ] =
∫

(dx) f aa(x, x), (30)

and the fact that f bcaAb
k = i(Ak)ca , we may rewrite the second factor within the

square brackets in (28) as

T r

{
−iA′

k ∂k 1

[�∂2 − ig0A′
l ∂ l]

}
. (31)
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An elementary integration over g0 from 0 to some g0 value then gives the familiar
FP factor for 〈0+ |0−〉 in (28)

det

[
1 − ig0

1
�∂2

A′
k ∂k

]
. (32)

3. GAUGE INVARIANCE AND MODIFICATION OF THE FP FACTOR

Now consider the modification of the Lagrangian density L in (2):

L −→ L + λψψGa
µνG

µν
a ≡ L 1 (33)

which is obviously gauge invariant under the simultaneous local gauge transfor-
mations in (7)–(9).

The field equations corresponding to the Lagrangian density L 1T = L 1 + L S,
where L S is defined in (3), are given by

∇ab
µ

([
1 − 4λψψ

]
G

µν

b

)
= − (

δν
σ δac − gνk∂kD

ab∇bc
σ

)

× [
J σ

c + g0ψγ σ tcψ
]

(34)

[
γ µ ∇µ

i
− λGa

µνG
µν
a + m0

]
ψ = η (35)

ψ

[
γ µ

←
∇∗

µ

i
+ λGa

µνG
µν
a − m0

]
= −η. (36)

The canonical conjugate momenta to A1
a , A2

a are given by

πi
a = [1 − 4λψψ]Gi0

a − ∂−1
3 ∂i[1 − 4λψψ]G30

a (37)

i = 1, 2. One may then express Gk0
a as follows:

[
1 − 4λψ(x)ψ(x)

]
Gk0

a (x) = πk
a (x) − ∂k

∫
(dx ′) Dab(x, x ′)

[
J 0

b (x ′)

+ g0ψ(x ′)γ 0tbψ(x ′) + ∇′bc

j πj
c (x ′)

]
(38)

k = 1, 2, 3, with π3
a set equal to zero.

With the (independent) fields and their canonical conjugate momenta kept
fixed, we then have

[
1 − 4λψ(x)ψ(x)

] δ

δJ ν
b (x ′)

Gk0
a (x) = −∂kDab(x, x ′) δ0

ν . (39)
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The equal time commutation relations of the independent fields A1
a(x), A2

a(x)
are given by

δ(x0 − x ′0)
[
Ai

a(x), πj

b (x ′)
] = iδabδ

ij δ4(x − x ′) (40)

with i, j = 1, 2. From the gauge constraint, we may then write

δ(x0 − x ′0)
[
Ak

a(x) , π l
b(x ′)

] = iδab

[
δkl − δk3∂−1

3 ∂l
]
δ4(x − x ′) (41)

with now k, l = 1, 2, 3.
From (38), (41), we then obtain the commutation relation

[
1 − 4λψ(x)ψ(x)

] [
Aka(x ′) ,Gk0

a (x)
]
δ(x0 − x ′0)

= 2iδaaδ
4(x − x ′) − ∂k

∫
(dx ′′) Dab(x, x ′′)∇′′bc

j

× [
Aka(x ′), πj

c (x ′′)
]
δ(x0 − x ′0), (42)

where we recall that Dab(x, x ′′) involves the factor δ(x0 − x ′′0). The latter then
implies that the last term in (42) is given by

−i∂k

∫
(dx ′′) Dab(x, x ′′)∇′′ba

j [δkj − δk3∂ ′
3
−1

∂ ′j ]δ3(x′ − x′′) δ(x0 − x ′0). (43)

Now we take the limit x′ → x in the latter and integrate over d3x to obtain

−i

∫
(dx ′′)

∫
d3x

[
∂j − ∂j

]
Dab(x, x ′′)∇′′ba

j δ3(x − x′′) δ(x0 − x ′0) = 0. (44)

This result will be used later in deriving the modification of the FP factor.
The action principle gives

∂

∂λ
〈0+ |0−〉 = i

∫
(dx)

〈
0+

∣∣ψ(x)ψ(x)Ga
µν(x)Gµν

a (x)
∣∣0−

〉
. (45)

Consider the matrix element
〈
0+

∣∣(Ga
µν(x)Gµν

a (x ′)
)
+
∣∣0−

〉 = 2
〈
0+

∣∣(Ga
k0(x)Gk0

a (x ′)
)
+
∣∣0−

〉

+ 〈
0+

∣∣(Ga
kl(x)Gkl

a (x ′)
)
+
∣∣0−

〉
. (46)

The second term is simply equal to

G′a
kl (x)G′kl

a (x ′) 〈0+ |0−〉 (47)

expressed in terms of functional derivatives using our notation below Eq. (26).
While to determine the first term, we rewrite

Ga
k0(x) =

∫
(dz) δ4(x − z)∇ac

k (z)Ac
0(z) −

∫
(dz) δ4(x − z) ∂z

0A
a
k (z). (48)
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We then have
〈
0+

∣∣∣
(
Ga

k0(x)Gk0
a (x ′)

)
+

∣∣∣0−
〉
= G′a

k0(x)G′k0
a (x ′) 〈0+ |0−〉

+
∫

(dz) δ4(x − z) δ(z0 − x ′0)
〈
0+

∣∣[Aa
k (z) ,Gk0

a (x ′)
]∣∣0−

〉

−i

∫
(dz) δ4(x − z)∇′ac

k (z)

〈
0+

∣∣∣∣
δ

δJ 0
c (z)

Gk0
a (x ′)

∣∣∣∣0−

〉
(49)

where the second term comes from the non-commutativity of the time derivative
and the time ordering operation as resulting from the last term in (48), and the
third term follows from the rule of functional differentiation in (27) as resulting
from the first integral in (48).

From (38), (42), (44), the right-hand side of (49) simplifies for x ′ → x to
[
G′a

k0(x)G′k0
a (x) + �′(x)

]〈0+|0−〉 (50)

where

�′(x) = 2
∫

(dz)
δ4(z − x)

[1 − 4λψ
′
(x)ψ ′(x)]

K ′(x, z) (51)

K ′(x, z) = i
[
δaaδ

4(0) + 1

2
∂x
k ∇′ac

k (z)D′
ac(x, z)

]
(52)

involving a familiar δ4(0) term.
All told, the expression (45) becomes

∂

∂λ
〈0+ |0−〉 = i

∫
(dx) ψ

′
(x)ψ ′(x)G′a

µν(x)G′µν

a (x) 〈0+ |0−〉

+ 2i

∫
(dx) ψ

′
(x)ψ ′(x)�′(x) 〈0+ |0−〉 (53)

which upon an elementary integration over λ leads to

〈0+ |0−〉 = eiM ′
exp

[
iλ

∫
(dx) ψ

′
(x)ψ ′(x)G′a

µν(x)G′µν

a (x)

]
〈0+ |0−〉λ=0 (54)

where

M ′ = −
∫

(dx)(dz) δ4(x − z) ln[1 − 4λψ
′
(x)ψ ′(x)]K ′(x, z) (55)

and 〈0+ |0−〉λ=0 is the vacuum-to-vacuum amplitude corresponding to the
Lagrangian density L T in (1) involving the FP factor in (32). That is, the fa-
miliar FP factor gets modified by a multiplicative factor exp[iM ′] for the gauge
invariant Lagrangian density L 1 in (33).
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4. GAUGE BREAKING INTERACTIONS

In the present section we consider the addition of a gauge breaking term to
the Lagrangian density L in (2). It is well known that even the addition of the
simple source term L S in (3) to L causes difficulties (cf. Rivers (1987), p. 204) in
the quantization problem in the path integral formalism as the action

∫
(dx)L T(x),

with L T(x) defined in (1), is not gauge invariant. We will see how easy it is to
handle the addition of a gauge breaking term to L T.

Consider the Lagrangian density

L 2T = L T + λ

2
Aa

µAµ
a ψψ. (56)

Then an analysis similar to the one in Section 3. shows that

Gk0
a = πk

a − ∂kDab

[
J 0

b + λA0
bψψ + g0ψγ 0tbψ + ∇bc

ν πν
c

]
. (57)

Using the fact that

∂kG
k0
a = ∇ab

k ∂kA
0
b (58)

we obtain upon multiplying (57) by

∇ca
l ∂l 1

�∂2
∂k

and using (14), we obtain
(

∇ca
l ∂l 1

�∂2
∇ab

k ∂k

)
A0

b = −J 0
c − λA0

cψψ + . . . (59)

where the dots correspond to terms independent of J 0
b and A0

b. We introduce the
Green operator Nbe(x, x ′) satisfying

[
∇ca

l ∂l 1
�∂2

∇ab
k ∂k + λδcbψ(x)ψ(x)

]
Nbe(x, x ′) = δceδ4(x − x ′) (60)

to obtain from (59)

δ

δJ 0
b (x)

A0
b(x) = −Nbb(x, x). (61)

Hence the action principle and (61) give

∂

∂λ
〈0+ |0−〉 = i

2

∫
(dx) A′a

µ (x)A′µ
a (x)ψ

′
(x)ψ ′(x) 〈0+ |0−〉

− 1
2

∫
(dx) ψ

′
(x)ψ ′(x)N ′bb(x, x) 〈0+ |0−〉 . (62)
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Upon integrating the latter over λ, by using in the process (60), we obtain

〈0+ |0−〉 = exp

[

−1

2
T r ln

(

1 + λ

∇′
l ∂ l(�∂2)−1 ∇′

k ∂k

ψ
′
ψ ′

)]

× exp

[
i
λ

2

∫
(dx) A′a

µ (x)A′µ
a (x)ψ

′
(x)ψ ′(x)

]
〈0+ |0−〉λ=0 (63)

showing an obvious modification of the FP factor with the latter occurring in
〈0+ |0−〉λ=0.

5. CONCLUSION

The quantum action (dynamical) principle leads systematically to the FP of
non-abelian gauge theories with no much effort. It is emphasized, in the process
of the analysis, that no restrictions may be set on the external current J a

µ , coupled
to the gauge field A

µ
a (such as ∂µJ a

µ = 0), until all functional differentiations with
respect to it are taken so that all of its components may be varied independently.
We have considered gauge invariant as well as gauge non-invariant interactions
and have shown that the FP factor needs to be modified in more general cases
and expressions for these modifications were derived. [It is well known that even
the simple gauge breaking source term L S in (3) causes complications in the
path integral formalism. The path integral may, of course, be readily derived
from the action principle.] The presence of the source term L S in the Lagrangian
density is essential in order to generate the Green functions of the theory from the
vacuum-to-vacuum transition amplitude, as a generating functional, by functional
differentiations. We have also shown, in particular, that a gauge invariant theory
does not necessarily imply the familiar FP factor for proper quantization. Finally
we note that even for abelian gauge theories, as obtained from the bulk of the
paper by taking the limit of f abc to zero and replacing ta by the identity, may
lead to modifications, as multiplicative factors in 〈0+ |0−〉, as clearly seen from
the expressions in (55) and (63).
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