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Abstract

The photon propagator in the C[ erenkov radiation o! a charged particle moving in a dielectric slab immersed within
another dielectric medium is derived. From the vacuum-to-vacuum transition amplitude, an explicit expression is
obtained for the photon number density of given frequency of photons radiated per unit path length of the particle. In
particular, it is shown that near threshold, the density behaves like sin h

#
rather than of the well known behavior of sin2 h

#
for uniformly extended media and may be of interest experimentally, where h

#
is the C[ erenkov-cone half-angle. The

derived expression is applied to the visible region. The analysis is given from a "eld-theory view-point. ( 1999
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1. Introduction

There has been much interest recently
[1}4,14}16] in the classic C[ erenkov radiation [5,6]
and its experimental veri"cation has been repeated
many times over the years (cf. [7}9,17,18]). Its nu-
merous applications in particle detection, in nu-
clear and cosmic ray physics, in high-energy
physics and tests of properties of materials have
been well documented (cf. [10,19,20]). The purpose
of this work is to carry out a systematic analysis of
C[ erenkov radiation o! a charged particle moving

in a plane homogeneous isotropic dielectric slab of
permitivity i

1
with the latter immersed in another

homogeneous isotropic dielectric medium of per-
mitivity i

2
'i

1
via the Green's function (propaga-

tor) of the photon. With the physical problem in
mind, a direct derivation is given for the latter and
then we use the vacuum-to-vacuum transition
amplitude (e.g., [1,11,14]) to obtain an explicit ex-
pression for the number [1,12,14,21,22] density of
photons radiated within a given frequency range as
the particle transverses a unit distance parallel to
the surface of the slab and, for simplicity, at mid-
point. Of particular interest in our results are that
near threshold for emission, the density behaves
like sin h

#
rather than of the well known behavior of
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sin2 h
#
for uniformly extended media and may be of

interest experimentally, where h
#

is the C[ erenkov-
cone half-angle. This may provide an overall en-
hancing factor for emission. Secondly, near thre-
shold, the density is seen to be damped out at
higher frequencies unlike the well known constant
behavior for uniformly extended media. This also
may be of interest experimentally. An application is
given to the visible region and the number of
photons emitted is estimated. The permitivities are
allowed, in general, to be frequency dependent in
the formalism.

The paper is organized as follows. In Section 2,
the boundary conditions for the photon propaga-
tor are spelled out and the expression for the latter
is derived with the physical problem in mind. In
Section 3, we obtain an explicit expression for the
photon number density for emission within a fre-
quency range (u, u#du) as the particle traverses
a given path length ¸, and the important positivity
of the density is established. Section 4 deals with the
threshold behavior of the number density.

2. The photon propagator

We work in the celebrated temporal gauge
A0"0 (cf. [1,13,14]) for the propagator. The per-
mitivity varies along the z-axis as

i(z)"i
1
, !a/2(z(a/2,

i(z)"i
2
, z'a/2, z(!a/2, (1)

where a denotes the thickness of the slab of per-
mitivity i

1
. The Green's function will be denoted by

Dij(x@, x), x"(x0, x
@@
, z), where x

@@
lies parallel to

the surfaces of the slab, x0"ct; i, j"1, 2, 3. Once
and for all, we set !a/2(z(a/2, where the
motion of the charged particle takes place, and
eventually set z"0 corresponding to its trajectory
(Section 3). The photon propagator for the problem
at hand reduces in projecting out the i"j"1
component of Dij(x@, x).

2.1. Case !a/2(z@(a/2

Dij(x@, x) consists of two parts:

Dij(x@, x)"Dij
1
(x@, x)#Dij

2
(x@, x), (2)

where Dij
1
(x@, x) is the particular solution of

[(!T@2#i
1
L@02)dim#L@iL@m]Dmj

1
(x@, x)

"dijd4(x@, x), (3)

and Dij
2
(x@, x) is the homogeneous solution of Eq. (3)

with the right-hand side of the latter replaced by
zero. For x@0'x0, the solution to Eq. (3) is well
known (cf. [1,14]):

Dij
1
(x@, x)"iPJi

1

d3k
(2p)3

e*Ji1
k > (x{~x)e~*k(x{0~x

0)

2k

]Adij!
kikj

k2 B, (4)

k,DkD. For Dij
2
(x@, x) we have

[(!T@2#i
1
L@02)dim#L@iL@m]Dmj

2
(x@, x)"0; (5)

or equivalently

(!T@2#i
1
L@02)Dij

2
(x@, x)"0, (6)

(!T2#i
1
L02)Dij

2
(x@, x)"0, (7)

L@iDij(x@, x)"0, LjDij(x@, x)"0. (8)

Eqs. (6) and (7) together imply that, in particular,
for a, b"1,2, quite generally we may write

Dab
2
(x@, x)"iPJi

1

d3k
(2p)3

e*Ji1
K > (x{@@~x

@@)e~*k(x{0~x
0)

2k

][ e*Ji1q(z{~z)Aab(k)#e*Ji1q(z{`z)Bab(k)], (9)

where k"(K, q), k"DkD, and Aab, Bab are un-
known. For z"0, the above in Eq. (9) must be an
even function in z@ by symmetry. That is

Dab
2
(x@, x)"iPJi

1

d3k
(2p)3

e*Ji1
K > (x{@@~x

@@)e~*k(x{0~x
0)

2k

]cos(Ji
1
qz@)Gab

`
(k), (10)

where we have set z"0 and Gab
`

(k) is yet to be
determined. Upon combining Eqs. (4) and (10) we
are led (x@0'x0, z"0) to

Dab(x@, x)"iPJi
1

d3k
(2p)3

e*Ji1
K > (x{@@~x

@@)e~*k(x{0~x
0)

2k

]CAdab!
KaKb

k2 B e*Ji1qz{#cos(Ji
1
qz@)Gab

`
(k)D.

(11)
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We will also need to "nd the general structure of
D3b(x@, x). To this end we may infer from the "rst
relation Eq. (8) that (x@0'x0, z"0)

D3b(x@, x)"iPJi
1

d3k
(2p)3

e*Ji1
K > (x{@@~x

@@)e~*k(x{0~x
0)

2k

]C
!qKb

k2
e*Ji1qz{!i

sin(Ji
1
qz@)

q
KaGab

`D. (12)

Quite generally Gab
`

is of the following form

Gab
`
"AdabA`

(k)!
KaKb

k2
B
`

(k)B, (13)

where A
`

and B
`

are to be determined.

2.2. Case z@'a/2 (or z@(!a/2)

For z@'a/2, we use the notation Dij
;

(x@, x) for
the Green function. The equations for the latter are

(!T2#i
1
L02)Dij

;
(x@, x)"0, (14)

(!T@2#i
2
L@02)Dij

;
(x@, x)"0, (15)

L@iDij
;
(x@, x)"0, LjDij

;
(x@, x)"0. (16)

Quite generally, Dab
;

(x@, x), a, b"1, 2, has the
structure (x@0'x0):

Dab
;
(x@, x)"

P
d2K
(2p)2

dq

2p

dq@
2p

dk0

2p

]e* K > (x{@@~x
@@)e*q{z{e~*qze~*k

0(x{0~x
0) e~*k

0(x{0~x
0)DI ab;.

(17)

Eqs. (14) and (15) give, respectively,

(K2#q2!i
1
k02)DI ab

;
"0, (18)

(K2#q@2!i
2
k02)DI ab

;
"0, (19)

from which we infer, in particular, that with

q@"A
i
2

i
1

k2!K2B
1@2

sgn q,Q, (20)

k"(K2#q2)1@2,DkD, where sgn q"DqD for
q'0, sgn q"!DqD for q(0, we may write

Dab
;
(x@, x)"iPJi

1

d3k
(2p)3

e*CJi1
K > (x{@@~x

@@)e~*k(x{0~x
0)

2k

]e*Ji1Qz{(e~*Ji1qzGab
1
(k)#e*Ji1qzGab

2
(k)) (21)

k"(K,q), which may be rewritten as z"0 as

Dab
;
(x@, x)"iPJi

1

d3k
(2p)3

e*Ji1
K > (x{@@~x

@@)e~*k(x{0~x
0)

2k

]e*Ji1Qz{Gab
;
(k) (22)

in terms of a new function Gab. By using Eq. (16) we
also have (x@0'x0, z"0)

D3b
;

(x@, x)"iPJi
1

d3k
(2p)3

e*Ji1
K > (x{@@~x

@@)e~*k(x{0~x
0)

2k

]e*Ji1Qz{(!KaGab
;

(k)/Q). (23)

Similar expressions may be given for z@(!a/2
which, however, due to symmetry, are not essential
here.

2.3. Applications of the boundary conditions

The boundary conditions for D*b(x@, x) are given
by

Dab(x@, x), (24)

i(z@)D3b(x@, x), (25)

[L@aD3b(x@, x)!L@3Dab(x@, x)], (26)

a, b"1, 2, are continuous at z@"$ a/2.
The application of these boundary conditions at

z@"#a/2, for example, give from Eqs. (11)}(13),
(22) and (23), respectively:

Adab!
KaKb

k2 B e*Ji1qa@2#cos (Ji
1
qa/2)Gab

`

"e*Ji1Qa@2Gab
;

, (27)

i
1Ce*Ji1qa@2A!

qKb

k2 B!i
sin(Ji

1
qa/2)

q
KaGab

`D
"i

2
e*Ji1Qa@2G3b

;
, (28)
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KaCe*Ji1qa@2A!
qKb

k2 B!i
sin(Ji

1
qa/2)

q
Kb

]AA`
!

K2

k2
B
`BD!qCe*Ji1qa@2Adab!

KaKb

k2 B
#i sin(Ji

1
qa/2)Gab

`
]"[KaG3b

;
!QGab

;
]e*Ji1Qa@2,

(29)

where in writing Eq. (29), we have used Eq. (13).
A tedious analysis of the B. C. in Eqs. (27)}(29)
determines the functions A

`
, B

`
relevant to the

problem at hand:

A
`
"

(q!Q)e*Ji1qa@2

Q cos(Ji
1
qa/2)!iq sin(Ji

1
qa/2)

, (30)

B
`

k2
"

1

Qk2
e*Ji1qa@2

[ii
1
Q sin(Ji

1
qa/2)!qi

2
cos(Ji

1
qa/2)]

]C(i2
Q!i

1
q)q

#i
(i

2
!i

1
)k2(q!Q)sin(Ji

1
qa/2)

[Q cos(Ji
1
qa/2)!iq sin(Ji

1
qa/2)]D. (31)

2.4. The photon propagator

The photon propagator for the physical problem
at hand corresponds to a"1"b, z"0"z@,
x@
2
"0"x

2
in Eq. (9), where the charged particle

moves in the x
1

direction x"(x
1
, x

2
, z). That is,

from Eqs. (9) and (12) (x@0'x0):

D11(x@, x)"iPJi
1

d3k
(2p)3

e*Ji1K1(x@
1~x1)e~*k(x{0~x

0)

2k

]C(1#A
`

)!
(K

1
)2

k2
(1#B

`
)D, (32)

where A
`
, B

`
are given by Eqs. (30), (31), respec-

tively. Here k"(K
1
, K

2
, q), k"DkD, and from Eq.

(19), Q may be rewritten as

Q"AA
i
2

i
1

!1Bk2#q2B
1@2

sgn q. (33)

The integrand in Eq. (32) is an even function of K
2
.

The q integral over q may be rewritten over the
region 0(q(R, by replacing qP!q over the
!R(q(0 region. A tedious analysis from Eqs.
(30)}(33), then shows that we may, equivalently to
Eq. (32), write

D11(x@, x)"4iP
=

~=

dK
1

2p P
=

0

dK
2

2p P
=

0

dq

2p

]
e*Ji1K1(x@

1~x1)e~*k(x{0~x
0)

2k
AC1!

i
1
(K

1
)2

k2
BD,

(34)

where

A"

qQ

Q2 cos2(Ji
1
qa/2)#q2 sin2(Ji

1
qa/2)

, (35)

B"

(i
2
!i

1
)k2 sin2(Ji

1
qa/2)#i

2
q2

i2
1
Q2 sin2(Ji

1
qa/2)#i2

2
q2 cos2(Ji

1
qa/2)

.

(36)

A and B are real.
We insert the unit operator

P
=

0

dud(u!kc)"1 (37)

in Eq. (34). Also the K
2
!q integrals suggest to

integrate for the latter in polar coordinates:
q"R cos h, K

2
"R sin h with 0)R(R, 0)

h)p/2. With the help of the delta function in Eq.
(37) we may then explicitly integrate over R to
obtain

D11(x@, x)"
i

2pcP
=

0

duP
=

~=

dK

2p2
HA

u2

c2
!

K2

i
1
B

]e*K(x@
1~x1)e~*u(x{0~x

0)@c

]P
p@2

0

dhA
1A1!

c2K2

u2
B
1B , (38)

where we have "nally made the change of variable

Ji
1
K

1
"K, A

1
"A given in Eq. (35),

B
1
"

(i
2
!i

1
)sin2(Z cos h)#i

2
q2

i2
1
Q2sin2(Z cos h)#i2

2
q2cos2(Z cos h)

(39)
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and now

q"A1!
1

i
1
A
cK

u B
2

B
1@2

cos h , (40)

Q"A
i
2

i
1

!1#A1!
1

i
1
A
cK

u B
2

Bcos2 hB
1@2

, (41)

Z"Ji
1

ua

2cA1!
1

i
1
A
cK

u B
2

B
1@2

. (42)

3. The photon number density and its positivity

For the charged particle, we specialize in a cur-
rent density J"(J

1
, 0, 0) in the form

J
1
(x)"f (x

1
, t)d (x

2
)d (z) , (43)

x"(ct, x
1
, x

2
, z). The vaccum-to-vacuum transi-

tion amplitude in the presence of a current density
J
1
(x) is given by (cf. [1,11,12,14,22])

S0
`
D0

~
T"

]expC
i

2+c3P(dx@)(dx)J
1
(x@)D11(x@,x)J

1
(x)D (44)

and hence for the average number of photons emit-
ted by J

1
we have [1,12,14,22] from Eqs. (38) and

(43)

SNT"
1

8p2+cP
=

0

duP
=

~=

dKHA
u2

c2
!

K2

i
1
B

]D fI (K, u)D2G(K, u) , (45)

where

G(K, u)"
2

pP
p@2

0

d hA
1A1!

c2K2

u2
B
1B , (46)

where A
1
, B

1
, q, Q, Z de"ned through Eqs.

(38)}(42).
For a charged particle of charge e we write

f (x
1
, t)"evd(x

1
!vt) (47)

to obtain formally by a double Fourier transform

D fI (K, u)D2"2pe2dAK!

u
vBP

L

0

dx
1

, (48)

where ¸ denotes the distance travelled by the
particle. The average number density of photons
emitted with (angular) frequency within the interval
(u, u#du) as the particle traverses a distance ¸ is
then

SN(u, ¸)T"
a¸
c

GA
u
v
, uB (49)

with the threshold condition obtained from Eq. (48)

and the step function in Eq. (45) to be Ji
1
b'1,

where b"v/c, and a"e2/(4p+c) is the "ne-struc-
ture constant. In detail

GA
u
v
, uB"

2

pP
p@2

0

dh qQ(Q2cos2(Z cos h)

#q2sin2(Z cos h))~1

C1!
1

b2

(i
2
!i

1
)sin2(Z cos h)#i

2
q2

[i2
1
Q2sin2(Z cos h)#i2

2
q2cos2(Z cos h)]D ,

(50)

where now

q"(1!1/i
1
b2)1@2cos h,

Q"(i
2
/i

1
!1#(1!1/i

1
b2)cos2h)1@2 , (51)

Z"Ji
1

ua

2c
(1!1/i

1
b2)1@2 . (52)

3.1. Positivity of SN(u,¸)T

To establish the very essential positivity of
SN(u, ¸)T given in Eq. (49), we derive a chain
of some inequalities. To this end we note that with
the condition i

2
'i

1
set, the second term in the

square brackets in the integrand in Eq. (50) without
the minus sign

(i
2
!i

1
)sin2(Z cos h)#i

2
q2

b2i2
1
Q2sin2(Z cos h)#b2i2

2
cos2(Z cos h)

(*0)

(53)

as indicated is positive. To establish the positivity
of G(u/v, u) in Eq. (50) we have to show that the
expression in Eq. (53) does not exceed one since
qQ*0 in Eq. (50). To this end, the denominator in
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Eq. (53) may be rewritten as

b2i2
1
(Q2!q2)sin2(Z cos h)#b2(i2

1
sin2(Z cos h)

#i2cos2(Z cos h))q2"b2i
1
(i

2
!i

1
)sin2

](Z cos h)#b2(i2
1
sin2(Z cos h)

#i2
2
cos2(Z cos h))q2

"(i
2
!i

1
) sin2(Z cos h)

#b2i2
1CA

i
2

i
1

!1B
sin2(Z cos h)

cos2h

#sin2(Z cos h)#
i2
2

i2
1

cos2(Z cos h)Dq2, (54)

where we have used the de"nitions in Eq. (51). We
have the following chain of inequalities:

b2i2
1CA

i
2

i
1

!1B
sin2(Z cos h)

cos2h
#sin2(Z cos h)

#

i2
2

i2
1

cos2(Z cos h)D
*b2i

1
i
2Csin2(Z cos h)#

i
2

i
1

cos2(Z cos h)D
"b2i

1
i
2C1#A

i
2

i
1

!1Bcos2(Z cos h)D
*b2i

1
i
2
*i

2
, (55)

thus establishing from (54) that the expression in
Eq. (53) does not exceed one, and hence of the
positivity of SN(u, ¸)T.

3.2. Expression for SN(u, ¸)T

Upon using the de"nitions (51), (52) in Eqs. (49)
and (50) we obtain the "nal expression

SN(u, ¸)T"
a¸
c

2

nP
p@2

0

dh f
1
(cos h, u) f

2
(cos h, u),

(56)

where

f
1
(cos h, u)"

sin3h
#
((b!1)#sin2h

#
cos2h)1@2

[(b!1)cos2(Z cos h)#sin2h
#
cos2h]

cos h, (57)

f
2
(cos h, u)"

(b!1)sin2(Z cos h)#Fcos2h
(b!1)sin2(Z cos h)#G sin2h

#
cos2h

,

F"b(sin2h
#
!1)#sin2(Z cos h)#b2cos2(Z cos h),

G"sin2(Z cos h)#b2cos2(Z cos h), (58)

where

b"i
2
/i

1
, (59)

sin h
#
"(1!1/i

1
b2)1@2, (60)

Z"Ji
1

ua

zc
sin h

#
. (61)

In particular for i
2
Pi

1
,i, aP0,

f
1
(cos h, u)

sin2h
#

P1, f
2
(cos h, u)P1,

and we recover the classic result for uniformly ex-
tended media

SN(u, ¸)T
0
"

a¸
c

sin2h
#
. (62)

4. Threshold behavior

Of particular interest is the threshold behavior
sin h

#
&0 of SN(u, ¸)T in Eqs. (56)}(58). To this

end

f
1
(cos h, u)K

sin3h
#
cos h

(b!1)1@2
, (63)

f
2
(cos h, u)K

b(b!1)

(b2#(b!1)u2i
1
a2/4c2)

1

sin2h
#

(64)

and the h-integral in Eq. (56) is readily carried out
to give

SN(u, ¸)TK
4a¸

paJi
1
A

u
0

u2#u2
0
Bsin h

#
, (65)

where

u
0
"

2c(i
2
/i

1
)

a(i
2
!i

1
)1@2

. (66)

The sin h
#
behavior in Eq. (65), rather than sin2h

#
as

in Eq. (62), is to be noted, as well as the frequency
dependence in the denominator.
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We consider the visible region, and we assume,
approximate constancy of the permitivities in this
region to obtain

N(u
2
, u

1
)"P

u1

u2

duSN(u, ¸)TK
4a

pJi
1
A
¸

aB
]sin h

#
tan~1A

(u
1
!u

2
)/u

0
1#u

1
u

2
/u2

0
B, (67)

where we take u
1
/cK1.653]105/cm, u

2
/cK

8.380]104/cm. For example consider a layer of
hydrogen gas i

1
"i(H

2
)"1.00026, of thickness a,

trapped long enough in air, i
2
"i(air)"1.00060,

so that the particle traverses a distance ¸. Then

u
0

c
"1.085]102/a. (68)

Since (u
1
u

2
)1@2/c&105/cm, we may consider the

following three cases.

I. a&10~3cm.

This corresponds to the case u2
0
&u

1
u

2
. For

de"niteness, let a"10~3 cm, then with
a"(137)~1, Eq. (67) gives

N(u
2
, u

1
)/¸K3 sin h

#
photons/cm. (69)

II. a<10~3cm.

Of course, a cannot be taken arbitrarily large
here because of the approximation made in Eqs.
(63) and (64). This case corresponds to u

1
u

2
<u2

0
and hence

N(u
2
, u

1
)/¸K

9.29]10~3

a
sin h

#
u

0A
u

1
!u

2
u

1
u

2
B

K

6]10~6

a
sin h

#
(70)

and for aK1 cm,

N(u
2
, u

1
)/¸K6]10~6sin h

#
photons/cm. (71)

Needless to say that Eq. (71) is the number of
photons radiated per charged particle and the re-
sult may be signi"cant when there is a large number

of radiating particles.

III. a;10~3cm.

In this case the a dependence in Eq. (67) essentially
disappears since u

1
u

2
;u2

0
, and (u

0
a) is indepen-

dent of a, and we obtain

N(u
2
, u

1
)/¸K7 sin h

#
photons/cm. (72)

Eqs. (69), (71) and (72) are to be compared with
N

0
(u

2
, u

1
)/¸ as obtained from Eq. (62) for uni-

formly extended media for the same frequency
range. The latter is given by

N
0
(u

2
, u

1
)/¸"a sin2h

#
(u

1
!u

2
)/cK595 sin2h

#

photons/cm. (73)

It is interesting to note that the problem sets
a scale a&10~3 cm at which the number of photo-
ns may be arbitrarily enhanced over the uniformly
extended media when a particle moves arbitrarily
close to its threshold value. An enhancement that
may occur in Eq. (69) or a suppression that may
occur in Eq. (71) over the uniformly extended media
may be a clear indication of an inhomogeneity
of the permitivity with a given extension around
the charged particle and may be of experimental
interest.
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