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Abstract

The effect of kz variation of the superconducting da2�b2 -wave order parameter on c-axis tunneling spectra of metal–superconductor
junctions is theoretically investigated. In the high transmission limit, the variation does not cause obvious changes in the shape of the
conductance spectrum, while in the tunneling limit the effect is more apparent. The coherence peak of the conductance spectrum gets
wider as the variation of the order parameter is larger. The effect of the variation can be seen more clearly in the spectrum of the deriv-
ative of the conductance in both limits.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Features in metal–superconductor tunneling conduc-
tance spectra are caused by different characteristics of
superconducting order parameter. For instance, a coher-
ence peak in the tunneling spectra is a signature of a large
number of states at the energy gap. It is well known that
the peak position provides accurate measurement for the

conductance peaks in the tunneling spectra of copper-
oxide based superconductors (for a review see [14]). The
existence of this peak in part has provided supporting evi-
dence for da2�b2 -wave symmetry of the order parameter in
these materials.

In this article, the impact on the tunneling spectrum of
the pairing interaction between layers of adjacent unit cells
will be discussed. This interaction, which is different from
magnitude of the superconducting gap [1–3]. Tunneling that between the layers within the unit cell (see for example

spectroscopy is also a valuable tool for obtaining the
gap symmetry of an unconventional superconductor (see
for example Refs. [4–13]). By varying the tunneling junc-
tion orientation, for example in the case of d-wave super-
conductor, with respect to the crystal axes, the
observation of zero-bias conductance peak can be used
to locate sign changes in the gap function and conse-
quently determine its symmetry [4–9]. There have been
many tunneling experiments that revealed zero-bias
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[15–21]), reveals itself as kz variation of the order para-
meter [22,23]: D(/s,kz) = [D0 + D1cos(kzac)]cos2/s. D0 and
D1 are the intralayer and interlayer pairing order parameter
respectively. /s is the direction with respect to the a axis
of the superconductor. kz is the component along the c axis
of the wave vector. ac is the lattice constant along the c

axis.
This article is organized as follows. In the next section, a

brief explanation of the model and method used to calcu-
late the current across the junction will be given. The con-
ductance spectra of c-axis junctions in both limits will be
shown and discussed in Section 3. Section 4 is the conclu-
sion of this article.
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2. Model and method

The metal–superconductor junction is modeled, as
depicted in Fig. 1, as an infinite system, the left half of
which is a metal and the right half of which is a da2�b2 -wave
superconductor. The interface normal is set to be parallel
to the c axis of the da2�b2 superconductor. The insulating
barrier is represented by a delta function potential of
strength H, and the order parameter is taken to be [22,23]

Dk � Dð/s; kzÞ ¼ ½D0 þ D1 cosðkzacÞ� cos 2/s; ð1Þ

where D0 and D1 are the intralayer and interlayer pairing
order parameter respectively, /s is the direction with re-
spect to the a axis of the superconductor, kz is the compo-
nent along the c axis of the wave vector, and ac is the lattice
constant along the c axis. In this article, the magnitude of
the maximum gap Dmax = D0 + D1 is taken to be of order
a tenth of the Fermi energy of the superconductor.

To describe the excitations of the system, the following
Bogoliubov-de Gennes equations with a parabolic disper-
sion are usedcOp þ HdðzÞ � l DkHðzÞ

D�kHðzÞ � cOp þ HdðzÞ � l
� �24 35Uð~rÞ ¼ EUð~rÞ;

ð2Þ

where l is the chemical potential, H(x) is the Heaviside step
function, and

cOp ¼ �
�h2

2mab

o2

ox2
þ o2

oy2

� �
� �h2

2mc

o2

oz2
; ð3Þ

where

mab ¼
m; z < 0;

ms
ab; z > 0

�
ð4Þ

and

mz ¼
m; z < 0;

ms
c; z > 0;

�
ð5Þ

where m is the effective mass of an excitation in the metal
and ms

ab, ms
c are the ab-plane and the c-axis effective masses

of a superconducting quasiparticle respectively. Note that
although this approximate parabolic dispersion is not accu-
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Fig. 1. The metal–superconductor junction is modeled as an infinite
system. The metal and the superconductor occupy the z < 0 region and the
z > 0 region respectively. The delta function of height H represents the
insulating layer. The gap function D(/s,kz) is as described in the text.
rate for the anisotropic dispersion of the copper-oxide
based superconductors, it is enough to capture essential
consequences of the kz variation of the order parameter.
One can improve the model by using a more accurate
tight-binding dispersion.

The two-component wave function Uð~rÞ is

Uð~rÞ ¼
U Mð~rÞ; z < 0;

U Sð~rÞ; z > 0;

�
ð6Þ

where the subscripts M and S represent the metal and
superconducting sides respectively.

Due to the translational symmetry along the plane of
junction interface, the two wave functions can be written as

UMð~rÞ ¼ UMðzÞeiðkxxþky yÞ; ð7Þ
USð~rÞ ¼ USðzÞeiðkxxþky yÞ; ð8Þ

where UMðzÞ ¼ U M0eiqzz and USðzÞ ¼ U S0eikzz. The match-
ing conditions for the wave functions at the interface are

UMðz ¼ 0Þ ¼ USðz ¼ 0Þ � U 0; ð9Þ

ZU 0 ¼
1þ m=ms

c

4kF

oU S

oz

����
0þ
� oU N

oz

����
0�

� �
; ð10Þ

where Z = mH/(�h2kF) and kF is the magnitude of the Fermi
wave vector of the superconductor.

The bulk excitation energies for the normal metal are

Eq ¼
�h2

2m
ðq2

z þ k2
x þ k2

yÞ � l � �nq; ð11Þ

where the plus and minus signs are for electron and hole
excitations respectively. For the superconductor,

Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

k þ jDkj2
q

; ð12Þ

where

nk ¼ �
�h2

2ms
ab

ðk2
x þ k2

yÞ þ
�h2

2ms
c

k2
z � l

� �
: ð13Þ

The amplitude of an excitation, UN0, in the normal metal is
1
0

� �
for an electron and is

0
1

� �
for a hole, whereas the

amplitude of an excitation in the superconductor is

US0 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jE þ nkj2 þ jDkj2
q E þ nk

Dk

� �
�

uk

vk

� �
: ð14Þ

The wave function of each side is a linear combination of
all the appropriate excitations of the same energy and the
momentum that has the same component perpendicular
to the interface normal. That is,

UMðzÞ ¼
1

0

� �
eiqþz þ a

0

1

� �
eiq�z þ b

1

0

� �
e�iqþz; ð15Þ

USðzÞ ¼ c
ukþ

vkþ

� �
eikþz þ d

u�k�

v�k�

� �
e�ik�z; ð16Þ

where
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q� ¼
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are the parallel-to-the-interface-normal components of the
normal and superconducting wave vectors respectively, and
a, b, c, d are the Andreev reflection, the normal reflection,
the same-branched transmission, and the cross-branched
transmission amplitudes respectively. These amplitudes
can be obtained from the matching conditions in Eqs. (9)
and (10). It should be mentioned that in all the calculations
related to the transmission and reflection probabilities in
this work, all the terms of the same order or smaller than
(D/EF), which is taken to be 0.1 in this article, are ignored.
The effect of terms of order (D/EF) was discussed in Ref.
[24].

By following the formalism in Ref. [25], one can obtain
the expression for the current across the junction as a func-
tion of applied voltage as

IMSðV Þ ¼
eX
8p3

Z
d3qð1þ AðqÞ � BðqÞÞvz

� ½f ðEq � eV Þ � f ðEÞ�; ð17Þ

where X is the volume, vz is the component parallel to the
interface normal of the group velocity of the incoming elec-
tron, f(E) is the Fermi–Dirac distribution function, and
A = jaj2q�/q+, B = jbj2 are the probabilities of Andreev
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Fig. 2. On the top panel, three normalized conductance curves with different va
The plots of the derivatives of the conductance spectra are shown in the lowe
and normal reflections, respectively. The conductance can
thus be obtained from

GðV Þ ¼ dIMS

dV
: ð18Þ

In all cases considered in this article, the ab plane effective
mass of a superconducting quasiparticle is taken to be
equal to the effective mass of an excitation in the metal.
The c-axis effective mass of a superconducting quasiparticle
is taken to be 100 times that of the ab plane effective mass
to account for the anisotropy between the ab plane and the
c axis, which is at least of the order 100 [26] in most copper-
oxide based superconductors.
3. Results

The normalized conductance spectra and their deriva-
tives in different limits at zero temperature are shown in
Figs. 2–4. Note that the normalized conductance is defined
as the conductance divided by its value at infinite applied
voltage, and the maximum gap is defined as Dmax =
D0 + D1. In the Andreev limit (Fig. 2), the conductance
spectra show the inverted-gap structure for all values of
D1. At first glance, the effect of non-zero values of D1 is
not very obvious on the overall shape of the conductance
spectra. The peak of the inverted-gap structure at zero volt-
age is unaffected by the variation of the order parameter.
Taking a closer look, one can then see that the non-zero
values of D1 result in a kink, or the abrupt change in the
1 1.5
Δmax

= 0

1 1.5
Δmax

lues of D1 are shown. The value of Z is set to 0 to reflect the Andreev limit.
r panel, where the arrows indicate the features occurring at D0 � D1.
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Fig. 3. On the top panel, three normalized conductance spectra with different values of D1 are shown. The value of Z is set to 1. The plots of the derivatives
of the conductance spectra are shown in the lower panel, where the arrows indicate the features occurring at D0 � D1.
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Fig. 4. On the top panel, three normalized conductance curves with different values of D1 are shown. The value of Z is set to 8. The plots of the derivatives
of the conductance curves are shown in the lower panel, where the arrows indicate the features occurring at D0 � D1.
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slope of the conductance, at D0 � D1. This change can be
seen more easily as a sharp dip at D0 � D1 in the plot of
the derivative of the conductance spectrum.
The conductance spectra in the intermediate limit
(Fig. 3) are similar to those in the Andreev limit. The over-
all shape of the conductance spectrum is very little affected
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by the c-axis variation of the order parameter. The effect is
more obvious in the plots of derivatives of the conductance
spectra, which show similar features to those in the And-
reev limit.

Unlike in the Andreev limit, the effect of the variation
can be clearly seen in the conductance spectra in the tunnel-
ing limit. The coherence peak around the maximum gap
becomes wider as D1 gets bigger. The peak-like edge moves
inwards and away from Dmax, as D1 is increased. More
specifically, the position of this edge occurs at D0 � D1.
At Dmax, the feature occurring instead is an inflection point.
The effect is also obvious in the plot of the derivative of the
conductance spectrum. At D0 � D1, the derivative of the
conductance spectrum changes sign from positive to nega-
tive and at the maximum gap a very sharp dip occurs.

4. Conclusion

This article is a theoretical investigation of the conse-
quence of the c-axis interlayer pairing interaction in c-axis
tunneling spectroscopy. Such interaction results in a varia-
tion in the gap function along kz. This variation more obvi-
ously affects the conductance spectrum in the tunneling
limit than in the Andreev limit. Particularly, the variation
causes the widening of coherence peak in the tunneling
limit, whereas in the Andreev limit it causes a change in
slope around the maximum gap. The width of the coher-
ence peak in the conductance spectrum in the tunneling
limit and the distance in energy between the two distin-
guished features in the derivative of the conductance spec-
trum in both limits are proportional to the interlayer
pairing order parameter, D1.

The kz variation of the order parameter is expected to
affect the in-plane tunneling spectra in a similar fashion
as well. As shown in Ref. [27], in the tunneling limit the
coherence peak becomes wider as D1 gets bigger and its
width is also proportional to D1.
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