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A rigorous upper bound is derived for the exact ground-state energy of N negative charged 
bosons and N motionless, i.e. fixed, positive charges with Coulomb interactions in 2D for 
arbitrary N /> 4 giving rise to an Na-upper bound. The consistency of such an N 2 behaviour 
is also investigated by examining a lower bound to the ground-state energy. 
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1. Introduction 

There has been much interest in recent years in physics in 2D e.g. [1-4] and 
the role of the spin and statistics theorem which is tied up to the dimensionality of 
space [4]. It has thus become important to investigate the nature of matter in 2D 
in the simplest case when the system is not being subject to stringent constrained 
statistics. It is equally important to study the nature of such "bosonic matter" to see 
if the well-known instability (implosive character) of such matter in 3D [5-7] will 
persist in 2D or it will turn it to a stable or even to an explosive phase. To answer 
such questions, we derive a rigorous upper bound for the ground-state energy EN of 
the system with N negatively charged bosons and N motionless, i.e., fixed, positive 
charges, with Coulombic interactions. By doing so, in particular, we do not dwell 
on the fate and dynamics of the positive background which undoubtedly involves 
complicated dynamics. We obtain an N 2 behaviour which is to be compared to the 
N 5/3 one of Dyson [5-7] in 3D, implying even a more violent collapse of such a 
system in 2D since the system of (2N + 2N) particles will be favourable over two 
systems each with (N + N) particles, brought into contact, and the energy release 
upon collapse will be proportional to ((2N) 2 -  2(N) a) which will be overwhelmingly 
large for large N, e.g. N ~ 10 23. Thus the system becomes unstable and stable 
planar configurations, for example, do not even arise. The present paper deals with 
a mathematically rigorous treatment of such a system by deriving an explicit upper 
bound for the exact ground-state energy EN. 
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For N ~> 4 denoting the number of the negative (or positive) charges, (N/4) 1/2 
being a real number may be written as 

( N ) l / 2  = n + g ,  0 ~ e <  1, (1.1) 

where n is natural number. We then derive the following upper bound for ground-state 
energy EN, which is the main result of our paper. 

THEOREM 1.1. 
(me4~  U 2 

EN < -- ~ - ~ j  32rr2( 1 + e/n) 4 (1.2) 

for all N >~ 4. Here m denotes the smallest mass of the negatively charged bosons. 

This is to be compared with the corresponding N 5/3 law [5-7] in 3D. Again 
(1.2) is consistent with the collapse of such matter. Intuitively, such an N 2 behaviour 
is easily seen as follows. Consider the system to be a square of sides L. The 
uncertainty principle provides a zero-point kinetic energy of the N bosons to be of 
the order Nh2/mL 2. On the other hand, each particle feels the Coulomb potential 
of its nearest neighbour at some effective distance d, with negligible interactions 
with charges farther away due to screening, giving rise to an electrostatic energy of 
the order -NeZ /d .  To fit the N bosons in the square we then have N ~ (L/d)  z, 
giving d ~ L / N  1/2. Hence for the total energy EN we have Nh2/mL 2 -  N3/2e2/L. 
Optimization over L gives L ~ 2h2/me2N 1/z leading to EN ~-(me4/41i2)N 2. 

In Appendix, the consistency of such an N 2 behaviour is also investigated by 
examining a lower bound to the ground-state energy. 

2. Derivation of  the upper bound 

The Hamiltonian under study is given by 

N p2 N N e 2 N e 2 N e 2 .. 

/=1 2 m  i=1 j = l  x i  -~ l { j  . • ]-~i - -  x j ]  " " R i  - R j  

where ~i and /~j refer, respectively, to the negative and positive charges, and m is 
taken to be the smallest of the masses of the negative charges. 

We introduce an N-particle trial function 

1 
Oxt (Xl . . . . .  XN) - -  ~ Z ~b (X(Tgl)) • • • t~ (X(7/'k)) lpl (X(Tt'k+l)) • • • I ~ N _  k (X(~N))  , 

7 r  

(2.2) 
where k = 4n 2 (see (1.1)). The sum is over all permutations 0rl . . . . .  zrN} of 
{1 , . . . ,N}  such that 
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For the single-particle trial functions we take 

n(1 4~(x) = . ~ cos \-2-L-JJ -~ ~L (x), Ixil <~ L, (2.4) 

and is zero otherwise, and for j = 1 , . . . ,  N -  k 

VI. ( 1 ( ~ r ( ~ - - L [ ) ~  . *J (:~) = . ~ 0 0  c°s \ 2L0 ] ]  =- dpL°(x - ~'j)' Ixi - L{I <<" Lo, (2.5) 

and are zero otherwise, also 
LJ -- jO0(1, 1), (2.6) 

where Do is a constant, constrained such that L <~ Lo <~ Do~2, and will 
be optimally chosen later on below Lemma 2.2. The intervals { - L  ~< xi <~ L}, 
{j  Do - Lo <<. xi <~ j Do + L0} for j = 1 . . . . .  N - k (i = 1, 2) are then all disjoint 
and the functions q~(:7), 7tj(Y) are nonoverlapping and automatically satisfy (2.3). 
Physically, they correspond, respectively, to particles localized in boxes of sides 
2L and 2L0 with the center of the first at the origin of the coordinate system, 
while the others, of sides 2L0, are translated by the vector LJ from the origin. 
Such localizations of the particles in these ( N -  k + 1) boxes make the analysis 
manageable. The Coulomb interaction being of long range, there are nontrivial 
interactions between particles in different boxes as well. The key point is that we 
localize k = 4n 2 of the negative particles in the first box. Below we will also set 
k of the positive charges in the first box too. 

Since ~P does not necessarily coincide with the ground-state wave function, we 
have for the ground-state energy the upper bound 

EN <<, (qJ] H ]qJ). (2.7) 

The single-particle average kinetic energies are given by 

h2 f - 7r2h2 
T = 2m j d2y ]~7~b(Y)] 2 -- 4mL2,  (2.8) 

/i2 f -~ _. Tj = Iv j(x)l z  2h2 -- 4mLZ ° -- T °, (2.9) 
= ]  

and for the multi-particle state 

N ~h2 f ~Tjq-/ XN) 2 j=~ ~ d Z Y l . . .  d2yu (Xl . . . . .  -.= [kT + (U - k) TO]. (2.10) 

For the expectation value on the right-hand side of (2.7) we have 

N e2 
(~[ H [q~) = [kT + (U - k) T °] + (V1) -]- (V2) "q- Z (2.11) 

t < j  
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where 

Nf[k (V1) = - - e  2 ~  d22 ]2-- /~j l  
N--k  

- - ~ L ( x ) +  1 2 + i / _ # j  4%(x) , (2.12) 

(V2) -~k(k 1) 

N - k  

+e2 J='E f d22 d22' - 2'1 _ _  i__,j ] ~20 (2/) 

N - k  [, -. -* 

We2 d2x d2x'  q b L ° ( x ) [ x  - -  2 '  + E i - -  " " (2.13) 

We set 
-* 1 ~ ~ N - k  /~k+l = L . . . .  , /~N (2.14) 

and choose the vectors /~1 . . . . .  /~k to lie within the first box, with center at the 
origin, thus placing k positive charges in this box. We then establish the following 
key inequality embodied in the following lemma. 

LEMMA 2.1. 

[ e2(N + k - 1 )  e2 ] 
(qJ[ n [g2) ~< kT -t- (H1) -t- (N - k) T O -F D0 ~ / ~ 0  ' (2.15) 

where 

 fd2212 -- -~k(ke2 f (H1) = -ke 2 /~j [ ~b2(2) + - 1) d22 d22, ~',~'hE q~, 12 - 2'1 ~ ' L ° ~ l  .~2 q,aj 

k 
-t-e2 Z 1 

i<j [Ri - Rj[" (2.16) 

To derive the above inequality, we note that (V1), defined in (2.12), may be 
bounded as follows 

h l 1 f d 2 2  2 . (V1) <<. -e2k E 022 _~jlqb~(~)--e2(N--k) -~-~bLo(X), (2.17) 
j=l  [2 • 

where we have noted the overall negative sign of (V1), and we have conveniently 
chosen an upper bound with the summation going up to k instead of up to N. 

Now we use the following bounds 

ILJl  Oo, I L ' -  LJl ~> ~¢/2Do (2.18) 
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for i (=j, 
[Y-Y'-LJ[~>D0, [~ __ ~,.~_ ~__i __ ~j [  ~ DO- (2.19) 

(2.20) 

such that 1 ~< i < j ,  and the 

This inequality then leads to 

e2k3/2  
(H1) 4 (2.22) 

8L 

~2h2 e2k 3/z [ 7t'2h 2 e2(N + k - 1) e z ] 
EN ~ ~---~k 8 ~  + (N - k) L 4---~o + xLo ~ / ~ 0  ' (2.23) 

where we have set Do = xLo, x ~ 2, which will be conveniently and consistently 
chosen. 

Optimizations over L and L0 give 

47r2h 2 
L -- me2kV2, Lo = 

with 

O < 4 [ 1 - ~ ( N + k - 1 ) l < ' S ~ - 2 k l / 2 x  2 , x ) 2 .  (2.25) 

2~/2Yr 2h 2 1 

m e 2 4  [1 4"2(Nx+k-1) ] 

With kl/2>~ 2, we may choose 

4~/'2 
X = - - ( N  + k - 1) (2.26) 

which is obviously greater than 2, giving 

2~/27r2h2 
L0 -- > L. (2.27) 

m e  2 

Since the last term on the right-hand side of (2.23), involving the ( N -  k) 
factor, now leads to a strictly negative contribution proportional to N, we may 

(2.24) 

for (H1) defined in (2.16). 

LEMMA 2.2. 

Also 
Do 

for j = k +  1 , . . . , N  (see (2.14)), and all i 
decomposition 

N 1 k 1 N j-1 1 

{ ~; RJl - /<~j [ ~i - /~J l  + ~ ~ I/~i -- /~Jl' (2.21) i< j  - -  j=k+l i=1 

and the strict negativity of (2.12), to obtain the inequality given in (2.15). 
We finally use the following lemma, proved below, which gives an upper bound 
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further bound (2.23) from above by the sum of the first two terms only which is 
proportional to N 2. 

Accordingly, we obtain the strict bound 

(me4~  N 2 1 
EN < - -  ~ 2ti2 ] 32Jr 2 [1 + e/n] 4 (2.28) 

for all N ~> 4, where we have used the fact that k = N(1 + e / n ) - 2 =  4n 2. 
Since (1 + e/n) < 2, we also have the conservative bound 

( m e 4 ~  U 2 

EN < -- Ik2h 2 ] 5127t2 (2.29) 

for all N ~> 4. 
For large bosonic systems, e.g. for n >~ 50, i.e. for N ~> 104, 

( m e 4 )  N 2 

EN < - -  ~, 2h  2 ,] 3--~-z. (2 .30 )  

Therefore, it remains to prove the bound in (2.22) of Lemma 2.2. To this 
end, we follow the construction given in [6] and partition the unit interval [0, 1]: 
O = a o < a l < a 2 < . . . < a n = l  such that 

aj 1 
(2.31) 

for j = 1, . . . , n .  
Let 

aj = aj - a j-1 (2.32) 

and note that 

~ otj = 1. (2.33) 
j = l  

Let B(i, j )  denote a box of sides 0t i X 0t j, then [6] 

k 2 4 f d2 ~ d2.~ , 1 (H1) ~ < - ~ - ~  Z / ~ ( ~ )  ~p12(:~'), (2.34) 
B(i,j) d B(i,j) I ~ -- ~¢tl 

where ~bl(~) denotes 4~z(:~) with L formally replaced by one. The factor 4 in 
(2.34) arises as a consequence of the fact that for the box at the origin of sides 
2L x 2L, - L  <~ xi <~ L, thus defining 4 regions of smaller boxes B(i, j) .  Since 

~ / 2  2 in the in (2.34), obtain integrals w e  

2 n ~  1 2 n 4 
(H1)  ~< 2L ~< , (2.35) 

. .  ~ ~ i 2 / ~  ---- L n 2 

t,J 
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where in writing the last inequality we have used the Cauchy-Schwarz one. On the 
other hand, n 

n 

E ~ / 2  + ot~ ~< ~ (ai + a j )  = 2n, (2.36) 
t,J i , j  

which when substituted in the last inequality in (2.35) gives (2.22), since k-----4n z. 
The single-particle trial functions we have chosen in (2.4), (2.5), turned out to 

be relatively optimal in a large class of trial functions we have investigated. These 
functions defined on bounded domains, vanishing at their boundaries, were also 
suitable for the problem at hand as these domains are nonoverlapping and made 
our analysis manageable. Their simplicity also allowed us to make sharp explicit 
estimates. A proliferation of the method given in (1.1) for N may be continued as 
follows by writing (if ~1 5 ~ 0) 

( N ) l / 2  = nl - [ -  E1, (2.37) 

where nl t> 1, letting kl = 4nl 2, we continue in this manner to define n2 ~> 1, by 

-~ -~- n 2 --}- e 2 (2.38) 

if ez # 0, and so on, by defining in turn k2 = 4n 2 . . . .  , kb = 4n 2, until we reach a 
natural number b such that 

( N - (kl + . . " + kb) ) '/2 
4 = eb+l. (2.39) 

For example, for N = 23, kl = 16, k2 = 4 and b = 2. Unfortunately, b is not 
always greater than one, and our method of grouping the particles, as done above, 
with the proliferation just spelled out through the steps (2.37)-(2.39) turns out to 
be not useful. 

The consistency of the N 2 behaviour is also investigated by examining a lower 
bound to the ground-state energy in Appendix. 
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Appendix 
In this appendix, the consistency of an N 2 behaviour is investigated by examining 

the nature of a lower bound to EN. To this end, we use a well-known lower bound 



422 c. MUTHAPORN and E. B. MANOUKIAN 

[8] to the repulsive Coulomb energy established originally in 3D, 

_12 f d32 d~2' p(2)12 - 2'1-'p(2') 

f -. N/z 2~r d3X pZ(X) (A.1) 
/x 2 2 

valid for any real p (X) and any constant /~ > 0. 
Although the i~i in (A.1) are 3D-vectors, the inequality should apply, as is, for 

the J~i having zero third components. To this end, we may take Xi = (x}l),/} 2), 0),  

Xi ---- (X} 1), X}2)) • 
Upon introducing the particle number density in 2D, 

f d 2 . ~  " = N,  tT(x) (A.3) 

and in view of investigating the nature of a lower bound to EN, we may choose 

p(X) = o'(~) ® (a - Ix(~)l) 2a ' (A.4) 

where a > 0 is so far arbitrary. In anticipation of an N2-1ower bound, we may also 
rewrite the arbitrary parameter /z = N3., where )~ > 0 is also arbitrary. 

From (A.4), (A.1), we then obtain the elementary bound 

8 f  1 

_!2 f d2~d2~' ~(~) I~ - zl-'  ~(z) 

fd2~ cr2(y) N2~" 
• 2 N2 a -- - - ~  , (A.5) 

where in obtaining a lower bound to the second term on the right-hand side of 
(A.1), we have noted that 

V/(~ _ ~,)2 _]_ (x(3) _ x,(3))2 ~ i~ _ s~'] 

and used the normalizability of ® ( a -  Ix(3)l) /2a to one over x (3). 
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An identical copy t o  (A.5) may be written down for the positively charged 
particles' coordinates Ri. 

Finally, in the spirit of the 3D analysis [9], we use a lower bound to the 
expectation value T of the kinetic energy operator in 2D [10]. 

LEMMA A.1 (A Lieb-Thirring bound) 

~h2 f T /> ~ d2~ a2(X), (A.6) 

where M may be taken to be the largest of the masses of the negative charges. 

With m replaced by M in (2.1), we obtain from (A.5) and the corresponding 
expression for the Ri coordinates 

(vVl H I~) >~ T - e2N 

--e 2 [ d2k (1  -- - j~-~l~(~l ~. -~) 
2~e 2 [ d 2k 

)v2N2a J(2~) 2 I ~- I,~(..)12 
N2~.e 2, (A.7) 

where ~(k) is the Fourier transform of a(:7), and in writing the second term on 
the right-hand side of (A.7), we have used the bound 

N 

j=l 

uniformly for all Rj. 
Since ( 1 -  e-ka)/k <~ a, (A.6) and (A.7) give 

(A.8) 

<~, ~,~> ~ f ~ I~1 [(LV2MN Jrh2 e2a 

-N2~.e 2 

Optimization over a gives a-----~/2-~/N)~, leading to 

f 
-N2~.e 2. 

2~re2 ) e2Na] 
~2NZa ] "a(~:) - 

(A.9) 

Finally, we may choose L = 4Me22vt~ /h  2, and introduce the one-particle 

(A.10) 
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density 

~ro(£) = ~r (.~) / N, 

to obtain the lower bound 

(qJl H IqJ) ~> - \ 2he ] 8 N 2 - -  

f d2;~ O'o(.~ ) = 1, (A.11)  

hZrc N [ d2k ~ -~ 
4M j (2z r )2  I o(k)l (A.12) 

which for N sufficiently large gives rise to an NZ-power behaviour provided ~0(k) 

is integrable, or more precisely provided 

L [ d2f¢ I~0(f¢)[ (A.13) 
N J (27r) 2 

remains bounded for N --+ do. Intuitively, an N 2 behaviour of the right-hand side 
of (A.12) for large N may be inferred. The reason is that for large N, fro scales as 
o'0(£N1/2), therefore ~o(kN -1/2) for the Fourier transform and fd2k [~0(kN-1/2)[ = 

N f d 2 k  [~0(k)[. Thus altogether the right-hand side of (A.12) would grow as N 2. 
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