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The effect of variation along c axis of the da2−b2-wave order parameter on tunneling spectra of normal
metal-superconductor junctions with various orientations is theoretically investigated. It is found that the
zero-bias conductance peak is virtually unaffected by this variation. In particular, the variation causes a small
decrease in the width and does not change the height. On the contrary, the coherence peak of the conductance
spectra is affected by this variation. The peak gets wider as the c-axis variation of the order parameter is larger.
The width of the coherence peak in tunneling spectrum can thus be used to measure the c-axis variation of the
order parameter.
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I. INTRODUCTION

Different characteristics of superconducting order param-
eters lead to a variety of features that can be observed in
normal metal-superconductor tunneling conductance spectra.
For instance, due to a large number of states at the energy
gap, a coherence peak occurs at the corresponding applied
voltage in the tunneling spectra. It is well known that the
peak position provides accurate measurement for the magni-
tude of the superconducting gap.1–3 For unconventional su-
perconductors, tunneling spectroscopy is a valuable tool for
obtaining the gap symmetry. If there is a sign change in the
order parameter, then a zero-bias conductance peak �ZBCP�
in the tunneling spectrum is predicted.4–8 By varying the
tunneling junction orientation with respect to the supercon-
ductor crystal axes, the observation of the zero-bias conduc-
tance peak can be used to locate sign changes in the gap
function and thus determine its symmetry. There have been
many tunneling experiments that revealed zero-bias conduc-
tance peaks in the tunneling spectra of copper-oxide-based
superconductors �see, for example, Refs. 9–21�. The exis-
tence of this peak in part has provided supporting evidence
for da2−b2-wave symmetry of the order parameter in these
materials.

The tunneling spectra can also potentially be used to mea-
sure the variation of the gap magnitude of anisotropic super-
conductors. The value of the energy gap along the direction
perpendicular to the plane of a smooth junction can be ob-
tained using the position of the coherence peak in the tun-
neling spectrum.22,23 Such additional features occurring in
the spectrum, and their variation with junction orientation,
undoubtedly contain useful information about the gap func-
tion. An understanding of how various characteristics of the
superconducting order parameter determine these features is
needed to correctly extract this information from tunneling
data. For this purpose, the effect that finite pairing interac-
tions along the c axis of layered materials have on the tun-
neling spectra may be considered. For superconductors with
two layers in a unit cell, the c-axis coupling between bilayers
may be included. The effect of the bilayer coupling has been
studied by many groups24–28 and found to have many inter-
esting consequences, such as a contribution to the order pa-

rameter anisotropy25 and the splitting of the coherence peak
in the density of states.27,28 In materials with only one layer
per unit cell, one may include the interaction between layers
of adjacent unit cells.

The hopping of quasiparticles between layers of adjacent
unit cells reveals itself as a nonvanishing kz dispersion rela-
tion of the band structure, while the pairing interaction be-
tween the layers does so as a kz variation of the order param-
eter. The inclusion of the former leads to irreducible
broadening of line shape in angle-resolved photoemission
spectroscopy29 and enhances the splitting of the two bands
with two copper-oxide planes per unit cell.27 There has not
yet been much study of the importance of the c-axis variation
of the order parameter. It was shown that the nonzero inter-
action between the layers of adjacent unit cells can cause the
order parameter to vary along kz as ��� ,kz�= ��0
+�1 cos�kzc��cos 2�,30–32 where �0 and �1 are the intralayer
and interlayer pairing order parameter respectively �for weak
interactions between the planes �1��0�, � is the direction
in the ab plane with respect to the a axis, kz is the z compo-
nent of the wave vector, and c is the lattice constant along
the c axis. This article is a theoretical study of the effect of
such interlayer interactions on tunneling spectra. A principle
goal is to look into this effect on both ab-plane and c-axis
tunneling spectroscopy of quasi-two-dimensional
da2−b2-wave superconductors. As will be shown later, this
variation of the order parameter mainly affects the width of
the coherence peak of the tunneling spectrum of both types
of the junctions. A more rigorous calculation is presented
later in the article, but here a simple explanation for the
qualitative behavior will be given.

The conductance spectra of �100� and �001� junctions in
the tunneling limit are similar to the density of states of the
superconductor. By considering the expansion of the energy
dispersion relation, one can identify energy values corre-
sponding to minima, maxima, and saddle points, i.e., Van
Hove singularities �see, for example, Ref. 33, pp. 69–75�. In
the case where ��� ,kz�= ��0+�1 cos�kzc��cos 2�, consider
energies Ek=��k

2+ ���� ,kz��2 close to ���=0,kz=0�=�0

+�1 and to ���=0,kz= ±� /c�=�0−�1, which respectively
are the maximum and minimum values of the gap function
along the ac plane. The energy Ek can be written as an ex-
pansion around k±, where Ek±

=�0±�1, as
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Ek 	 ��0 ± �1� + �1k�
2 + �2k


2 + �3kz
2, �1�

where k� and k
, which are measured from the Fermi surface,
are the components perpendicular and parallel to the Fermi
surface respectively, �1= 1

2 ��vF�2 / ��0±�1�, �2=−��0±�1� /
kF

2 , and �3= 	
1
2�1c2 /�0. In the case of interest here, �1

��0, so �1
0 and �2�0. That is, k± are saddle points.
These saddle points give rise to kinks in the density of states
at Ek±

=�0±�1. The nonzero �1 should therefore lead to a
blunt peak with the width of 2�1 in the density of states.
Here, the definition of the width is the distance in energy
between the two discontinuities of the slopes in the density
of states.

The c-axis variation of the order parameter does not have
much effect on the zero-bias conductance peak. This aspect
will be discussed in more detail in Section III. In the next
section, a brief explanation of the model and method used in
the calculation will be given. The conductance spectra of
ab-plane and c-axis junctions will be shown and discussed in
Sec. III. Section IV is the conclusion of this article.

II. MODEL AND ASSUMPTIONS

This article follows a method, first introduced in Ref. 34
to calculate the transmission probabilities for thermal and
electrical currents of a normal metal-superconductor junction
and, as later used in Ref. 35 to study the transition from the
metallic to the tunneling regimes for a single junction. In this
approach, a normal metal-superconductor junction is mod-
eled as an infinite system, the left half of which is a normal
metal and the right half of which is a superconductor, as
shown in Fig. 1. The insulating barrier is represented by a
delta function potential of strength H. The order parameter is
taken to be

���,kz� = ��0 + �1 cos�kzc��cos 2� , �2�

where �0 and �1 are the intralayer and interlayer pairing
order parameter respectively, � is the direction in the ab
plane with respect to the a axis, kz is the z component of the
wave vector, and c is the lattice constant along the c axis. For
ab-plane tunneling junctions, the interface normal vector lies
somewhere in the ab plane, and for c-axis tunneling junc-
tions the interface normal is parallel to the c axis.

A continuous model is used to describe the electronic
structures of both normal metal and superconductor. That is,

the Bogoliubov-de Gennes equations of the excitations of the
system are

�Ôp + H��x� −  ���s,kz���x�

�*��s,kz���x� − �Ôp + H��x� − �
�U�r�� = EU�r�� ,

�3�

where  is the chemical potential, ��x� is the Heaviside step
function, and

Ôp = −
�2

2mab
 �2

�x2 +
�2

�y2� −
�2

2mc

�2

�z2 , �4�

where

mab = �m, x � 0

mab
s , x 
 0

� �5�

and

mz = �m, x � 0

mc
s, x 
 0

� . �6�

In all cases, mab
s , the ab plane effective mass of a supercon-

ducting quasiparticle, is taken to be equal to m, the effective
mass of an excitation in the normal metal. In the calculation
related to ab-plane junctions, mc

s, the c-axis effective mass of
the superconductor, is set to be infinity for simplicity. In
ab-plane tunneling spectra, the energy dispersion relation
along kz, or the finiteness of mc

s, does not play an important
role, because the currents across the junction are mainly from
the states with velocities parallel to the plane. However, for
the calculation related to c-axis tunneling, mc

s is set to 100 m
to account for the fact that there exists current across the
c-axis junction and that the anisotropy between the ab plane
and the c axis is at least of the order 100.36–39 The two-
component function U�r� � is

U�r� � = �UN�r� �, x � 0

US�r� �, x 
 0
� . �7�

The matching conditions for the wave functions at the inter-
face of ab-plane junctions are

UN�x = 0� = US�x = 0� � U0, �8�

ZU0 =
1 + m/mab

s

4kF
��US

�x
�

0+
− ��UN

�x
�

0−
� , �9�

where Z=mH / ��2kF� and kF is the magnitude of the Fermi
wave vector of the superconductor. For c-axis tunneling
junctions, the first condition remains the same, but in the
second condition mab

s must be replaced with mc
s.

Due to the translational symmetry along the plane of in-
terface, for ab-plane junctions the two wave functions can be
written as

UN�r� � = UN�x�ei�kyy+kzz�, �10�

FIG. 1. The normal metal-superconductor junction is repre-
sented by an infinite system. The normal metal and the supercon-
ductor occupy the x�0 region and the x
0 region, respectively.
The insulating layer is represented by a delta function of height H.
The gap function is taken to be da2−b2-wave with variation along kz,
��� ,kz�= ��0+�1 cos�kzc��cos 2� as described in the text.
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US�r� � = US�x�ei�kyy+kzz�, �11�

where UN�x�=UN0eiqx and US�x�=US0eikx. In the case where
the interface normal is parallel to c axis, the following re-
placements are needed: x→z , y→x, and z→y.

The bulk excitation energies for the normal metal are

E�q� � = ± �q, �12�

where the plus and minus signs are for electron and hole
excitations respectively, and

�q = �
�2

2m
�q2 + qy

2 + qz
2� −  �ab-plane junctions�

�2

2m
�q2 + qx

2 + qy
2� −  �c-axis junctions� . �

�13�

For the superconductor,

E�k�� = ��k
2 + ����,kz��2, �14�

where

�k = �
�2

2mab
s �k2 + ky

2� +
�2

2mc
s kz

2 −  �ab-plane junctions� .

�2

2mc
s k2 +

�2

2mab
s �kx

2 + ky
2� −  �c-axis junctions� . �

�15�

Note that for an ellipsoidal surface one can always find
new coordinates kx�, ky�, kz�, in which it becomes spherical.

That is, kx�=kx
�m* /mab

s =kF cos � sin �, ky�=ky
�m* /mab

s

=kF sin � sin �, and kz�=kz
�m* /mc

s =kF cos �, where m*,kF
are adjustable parameters.

The amplitude of the excitations, UN0, in the normal metal
is � 1

0
� for electrons and is � 0

1
� for holes, whereas the amplitude

of the excitations in the superconductor is

US0 =
1

��E + �k�2 + ����,kz��2
 E + �k

���,kz�
� . �16�

The wave function of each side is a linear combination of all
the appropriate excitations of the same energy and the mo-
mentum that has the same component perpendicular to the
interface normal. That is,

UN�x� = 1

0
�eiq+x + a0

1
�eiq−x + b1

0
�e−iq+x, �17�

US�x� = cuk+

vk+
�eik+x + du−k−

v−k−
�e−ik−x, �18�

where

q± = �2m� ± E�/�2 − qy
2 − qz

2,

k± = �2m� ± �E2 − �2��,kz��/�2 − ky
2 − kz

2

are the parallel-to-the-interface-normal components of the
normal and superconducting wave vectors, respectively, and

a, b, c, and d are the Andreev reflection, the normal reflec-
tion, the same-branched transmission, and the cross-
branched transmission amplitudes, respectively. These am-
plitudes are obtained using the matching conditions in Eqs.
�8� and �9�.

Normally, the range of the energy E relevant to the tun-
neling experiments is of order meV whereas the Fermi en-
ergy is of order 0.1–1 eV. Therefore, the following approxi-
mations for q± and k± are applicable:

q+ = q− = �qF sin �N cos �N �ab-plane junctions�
qF cos �N �c-axis junctions� �

�19�

k+ = k− = �kF cos �S �ab-plane junctions�

kF�mc
S

m* cos �S �c-axis junctions� , �
�20�

where qF denotes the magnitude of the Fermi wave vector of
the normal metal. Note that the different values for k± in
ab-plane and c-axis junctions are due to different junction
orientation and different Fermi surfaces. As already men-
tioned, without losing generality of the results, cylindrical
Fermi surface can be used to calculate the conductance of
ab-plane junctions �see Fig. 2�. However, in case of c-axis
junctions one needs to include the three dimensionality in the
Fermi surface by taking mc

s to be finite. Therefore, kF,m* in
Eq. �20� are taken to be the parameters that satisfy
�2kF

2 / �2m*�=EF
S , the Fermi energy of the superconductor.

Using the conservation of the momentum parallel to the sur-
face, the relationships between the polar angles for ab-plane
junctions are

qF sin �N sin �N = kF sin �S, �21�

qz = qF cos �N = kz. �22�

Similarly, for c-axis junctions the relationships are

FIG. 2. The sketches of the Fermi surfaces of the layered super-
conductors used to calculate the conductance spectra of �a� ab-plane
junctions and �b� c-axis junctions. For simplicity, a cylindrical
Fermi surface is used for ab-plane junctions, whereas an ellipsoidal
Fermi surface is used for c-axis junctions. The shadowed region of
each surface indicates the states contributing to the current across
the junction.
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qF sin �N sin �N = kF�mab
s

m* sin �S sin �S, �23�

qF sin �N cos �N = kF�mab
S

m* sin �S cos �S. �24�

By following the formalism in Ref. 35, one can obtain the
expression for the current across the junction as a function of
the applied voltage V as

INS�V� =
e�

�2��3 � dq� vqx
�1 + A�q�� − B�q���

��f�Eq − eV� − f�Eq�� , �25�

where � is the volume, vqx
is the component parallel to the

interface normal vector of the group velocity of the incoming
electron, f�E� is the Fermi-Dirac distribution function, and
A= �a�2�q− /q+�, B= �b�2 are the probabilities of Andreev and
normal reflections, respectively.

The conductance of the ab-plane junction at zero tem-
perature is then

GNS
ab �V� =

dINS
ab

dV
,

=
2me3�

�2���3 V� d�N� d�N sin2 �N cos �N

��1 + A�V,�N,�N� − B�V,�N,�N�� , �26�

where � is the volume, and �N ,�N are the angles in spherical
coordinates for the normal metal. In the calculation, qF is set
to be 10kF, and c=3a, where a is the lattice constant along
the a axis.

By the same token, the expression for the conductance for
c-axis junctions at zero temperature can be obtained as

GNS
c �V� =

2me3�

�2���3 V� d�N� d�N sin �N cos �N�1

+ A�V,�N,�N� − B�V,�N,�N�� . �27�

In addition to the same parameter set as just mentioned, in
the calculation related to c-axis cases, m* is taken to be mab

s .
The limits of both integrals can be found by comparing the
Fermi surfaces of the metal and superconductor.

III. RESULTS AND DISCUSSION

The plots of normalized conductance as a function of ap-
plied voltage of all tunneling spectra are shown in Figs. 3–6.
The normalized conductance is defined as the conductance
divided by its value at infinite applied voltage. Only the tun-
neling limit is considered. �Z is taken to be 10 in both junc-
tion types.� Also, qF is taken to be equal to 10kF to ensure
that all states with positive Fermi velocities of the supercon-
ductor are involved in the tunneling process.

For ab-plane junctions, the junction orientations are char-
acterized by �, the angle between the a axis of the supercon-
ductor and the interface normal. Three junction orientations,
�=0,� /16,� /4, are considered here. Figure 3 shows the
conductance plots of �=0, or �100� junctions, for different
values of �1. The coherence peak around the maximum en-
ergy gap grows wider as �1 increases. This peak has edges,
where the slope of the conductance changes quite abruptly.
The lower energy edge is at �0−�1 and the higher energy
edge is at the maximum gap, �max=�0+�1. At the latter
edge, which appears to be an inflection point of the conduc-
tance curve, the slope does not change as suddenly as it does
at the former. It should be noted that, although the argument
presented in the Introduction regarding the density of states

FIG. 3. �Color online� The conductance curves of �100� junc-
tions for different values of �1. The inset shows the detailed con-
ductance curve around maximum gap, �max=�0+�1. The vertical
solid line indicates the maximum gap and the dotted vertical line
marks �0−�1, where �1=0.06�0 as an example.

FIG. 4. The conductance curves of �110� junctions for different
values of �1. The inset shows the entire conductance curves over
the same voltage range. The three dotted vertical lines are plotted at
�0−�1 where �1 /�0=0.1, 0.04, and 0, respectively.
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correctly accounts for the positions of these peak edges, it
cannot explain why the lower energy edge appears as a kink,
while the higher energy edge appears as an inflection point or
a smooth curve.

The effect of the kz variation of the order parameter is not
apparent in the conductance spectra of �110�, or �=� /4,
junctions. As can be seen in the inset of Fig. 4, the increase
in �1 does not cause dramatic changes in either the width or
height of the zero-bias conductance peak. The closer look at
the conductance spectra reveals that the height is constant,
whereas the width narrows slightly as �1 /�0 increases. Also,
the inflection point of the spectrum moves inward to �0
−�1. The constant height and the weakly varying width can
be understood by considering the following expression for
zero-bias conductance peak in the tunneling limit40

GZBCP�eV� =
4e2

h
� 2�k

2

�eV�2 + �k
2�

ky,kz

, �28�

where the angular brackets denote the average over ky and kz,
�k= 1

2�kPk where Pk is the transmission probability of the
junction when the superconductor is in the normal state. The
peak height is equal to 8e2 /h, obviously independent of �k.
As for the width, because the maximum width of
2�k

2 / ��eV�2+�k
2� as a function of eV for each kz varies from

1
2 Pk��0−�1� �for kz= ±� /c� to 1

2 Pk��0+�1� �for kz=0�, the
value of �2�k

2 / ��eV�2+�k
2��ky

for kz=0 would have the largest
width and that for kz= ±� /c would have the smallest width.
Thus, the width of zero-bias conductance peak, which is the
result of an average over all ky and kz, becomes narrower as
�1 gets bigger. However, the relative change in this width is
only �1 /�max�1.

Figure 5 depicts the conductance spectra of �=� /16
junctions for different values of �1. In addition to the zero-
bias conductance peak, another much smaller coherence peak
occurs around ��0−�1�cos 2�. This value is the magnitude

of the order parameter of states with k� parallel to the inter-
face normal. The increase in �1 affects this peak in the same
way as it does the coherence peak in the tunneling spectra of
�100� junctions. The sharper edges, where the slopes change
sign, are at ���=0,kz=0�= ��0+�1�cos�� /8�. There are
also inflection points occurring at ����=0,kz= ±� /c��
= ��0−�1�cos�� /8�.

Figure 6 shows the conductance plots of �001� junctions,
for different values of �1. Similar to �100� junctions, the
coherence peak around the maximum energy gap becomes
wider as �1 gets bigger. The slope of the conductance
changes abruptly from being positive to negative at �0−�1.
The other edge, which is an inflection point, occurs at the
maximum gap. It should be noted for �001� junctions the
abrupt change in slope of the conductance curve at �0−�1
causes a sharper peak than in the spectra of �100� junctions.

In summary, the c-axis variation of da2−b2-wave does not
affect zero-bias conductance peak but it causes the widening
of the coherence peak of the conductance spectra. The width
of the peak is proportional to the magnitude of the c-axis
pairing order parameter. These results suggest that the width
of the coherence peak of tunneling conductance of
da2−b2-wave superconductors can be used as a measurement
of the strength of the interlayer pairing interaction. The wid-
ening of the coherence peak has been seen in
Bi2Sr2CaCu2O8+� and YBa2Cu3O7 �see, for example, Refs.
41 and 42�. From a rough estimation of the width of the
coherence peak �see note43�, �1 of optimally doped
Bi2Sr2CaCu2O8+� is around 5 meV, or �1=0.13�0 �from
data in Ref. 41�, and �1 of YBa2Cu3O7 is around 7 meV, or
�1=0.18�0 �from data in Ref. 42�. It should be noted that
because Bi2Sr2CaCu2O8+� is a bilayer material, the widening
of this peak may be due to the bilayer splitting. As men-
tioned earlier, the bilayer splitting can cause the splitting of
the coherence peak and the size of the splitting depends on

FIG. 6. �Color online� The conductance curves of �001� junc-
tions for different values of �1. The inset shows the detailed con-
ductance curve around maximum gap �max=�0+�1. The vertical
solid line marks the maximum gap and the dotted vertical line in-
dicates �0−�1, where �1=0.06�0.

FIG. 5. �Color online� The conductance curves of �=� /16 junc-
tions for different values of �1. The inset shows the conductance
curve around the smaller coherence peak. The vertical lines are
plotted at ��0±�1�cos�� /8� where �1 /�0=0.1 and 0, respectively.
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the strength of the bilayer interaction.28 Therefore, if the
splitting is smaller than the experimental resolution of the
conductance spectrum, the coherence peak may appear to be
broadened instead of appearing as two peaks. In order to
distinguish whether the observed width is due to the c-axis
variation or the bilayer splitting, the energy resolution of the
measurement must be much smaller than the splitting.

Although a continuous model was employed here, it is
expected that the main qualitative results will also be valid
for a discrete model. For instance, as shown in Ref. 22, for
junctions with orientation away from �100� and �110�, in ad-
dition to a coherence peak at the magnitude of the energy
gap along the interface normal vector and a ZBCP, there
exists another peak at the magnitude of the energy gap at the
edge of the surface-adapted Brillouin zone. This peak will be
affected by the kz variation of the energy gap in the same
way as is the coherence peak and the peak at the magnitude
of the energy gap along the interface normal.

IV. CONCLUSION

This article is a theoretical study of the effect of c-axis
variation of da2−b2-wave order parameter, i.e., of finite inter-
layer pairing, on tunneling spectroscopy of normal metal-

layered superconductor junctions. The c-axis variation of the
order parameter has been found to have an insignificant ef-
fect on the zero-bias conductance peak. The height of the
zero-bias conductance peak in fact does not change with the
degree of the variation. The width decreases when the inter-
layer pairing order parameter gets stronger. However, this
decrease is very small. This small effect on the width of the
zero-bias conductance peak is not surprising. It was shown
that the width is also unaffected by the presence of impurities
and surface roughness.44

The c-axis variation of the order parameter has much
larger effect on the coherence peak in the tunneling spec-
trum. The variation of the order parameter causes the widen-
ing of coherence peak. It is found that the width of the peak
is proportional to the interlayer pairing order parameter, �1.
The results indicate the conductance spectra, which contain
coherence peaks, can be used to detect the c-axis variation of
the order parameter.
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