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Abstract

 The multigrid method adopted in 

conjunction with the parallel computing is 

presented. The standard multigrid doubling the 

mesh size in all directions, called full-coarsening 

technique, suffers from the partitioning of data 

for parallel computing. To remedy this problem, 

the semi-coarsening technique should be used 

instead. This paper is aimed to present an 

algorithm of the semi-coarsening multigrid 

technique combined with the parallel computing 

technique. The parallel computing technique 

used is the one based on the distributed memory 

machine. The MPI library is adopted in order to 

exchange the data among  processors. The solver 

code is developed for three-dimensional 

turbulent flows and validated with the available 

experimental data. 

1. Introduction 

  In recent years, Computational Fluid 

Dynamics (CFD) has been widely used as a 

design tool in industries due to, for example, the 

lack of instruments to measure some quantities in 

some dangerous zones. In addition, the 

advantages of CFD are the low cost to construct 

and the ability to immediately observe some 

phenomena through a monitor of personal 

computer (PC). However, when the flow 

becomes more complicated, such as turbulent 

flow, the number of data points required to 

capture the physics of flow has to be large 

enough. A single computer is limited to its 

memory and speed. In other words, it may 

compute one problem using a large number of 

iterations and hence longer computational time or 

it cannot sustain to a large number of data at all. 

The convergence rate of iterative methods can be 

greatly improved by using multigrid acceleration 

techniques. The multigrid methods eliminate 
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some errors on the coarser grid that cannot be 

eliminated by the fine grid and then correct the 

solutions up to the finer grid. The time 

consumption, moreover, can be decreased by 

using a large number of computers to 

simultaneously solve the same problem, which is 

the so-called parallel computing.  

 Over the past decade, the standard 

multigrid method has been successful for solving 

several problems, but the efficiency of the 

multigrid methods is reduced dramatically by the 

presence of anisotropies [1]. The anisotropies 

occur when the coefficients of the discretized 

equation vary throughout the domain or when the 

non-uniform grids are used. As a result, several 

literatures attempted to develop a semi-

coarsening multigrid technique to alleviate this 

problem [1,6,7,8,9]. Such efforts focused on the 

development of a smoother that can capture the 

anisotropic characteristics. For example, 

Montero et al [1] developed an alternating-plane 

smoother combined with the full-coarsening 

multigrid technique and a plane-implicit 

smoother in conjunction with a semi-coarsening 

multigrid technique for smoothing out the errors.   

In this paper the combination of the 

parallel computing and the semi-coarsening 

multigrid method for the 3D Reynolds-Averaged 

Navier-Stokes solver is presented. The solver 

code is performed for the steady turbulent flow 

in a three-dimensional cavity. The numerical 

solutions are then compared with the 

experimental data of Prasad and Koseff [13]. To 

take into account the data synchronization, 

interchanging and updating the boundary data at 

the interface between a pair of adjacent 

processors are essential. Therefore, the Message-

Passing Interface (MPI) library is used in the 

present work to perform such a task

2. Numerical Method
2.1 Governing Equations

The flow considered in this work is 3D 

steady turbulent incompressible flow. The 

governing equations are composed of the 

conservation laws of mass, momentum, 

turbulence kinetic energy and dissipation rate of 

turbulence kinetic energy described as follows:  

The conservation of mass can be 

expressed as 

( )
0

j

j

u

x

where  is the fluid density and ju  are the

mean-flow velocity components in x, y and z 

directions for j=1, 2 and 3 respectively. The 

Reynolds-averaged momentum equations can be 

formulated as 
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and the laminar stress tensor and  
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The turbulence kinetic energy equation is 

expressed as 
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The dissipation rate of turbulence kinetic energy 

is given as 
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 The extra terms and damping function 

arising to account for the low Reynolds-number 

region are  
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and the turbulence model constants are as 

follows:  

1.0k , 1.3 , 0.09C , 1 1.44C ,

2 1.92C and 1 1.0f

2.2 Solution Procedure 

To numerically solve the system of 

partial differential equations (PDEs), the 

equations have to be converted into the system of 

Proceedings of the Seventh International Conference on High Performance Computing and Grid in Asia Pacific Region (HPCAsia’04) 
0-7695-2138-X/04 $ 20.00 IEEE 



algebraic equations and the physical domain has 

to be transformed into the computational domain 

in which the domain is subdivided into a finite 

number of cells or control volumes (CVs). The 

first process is well known in terms of the 

discretization process and the second one is the 

so-called grid generation procedure. To 

discretize the governing equations, a finite 

volume method (FVM) is adopted here in 

conjunction with a collocated grid arrangement 

in which all variables are stored at the cell center 

of CV. In contrast to a collocated grid system, a 

staggered grid system is the system that the 

scalar variables are stored at the cell center but 

the velocity components, u, v and w, are stored 

at the cell face of CV. There are some literatures  

that compared these two strategies, for example, 

 Meier et al [11] concluded that the staggered grid 

arrangement had an advantage over the 

collocated grid when dealing with high pressure 

gradient and multi-phase flow; however, Peric et 

al [12] stated that the collocated grid converged 

faster in some cases, 3 cases in their work, and 

had advantages when multigrid techniques,  non-

orthogonal grids and 3D problem were 

considered.   

 The partial differential equations that 

govern the flow equation described in section 2.1 

can be written in the general form as 

( )j

j j j

u S
x x x

where Table 1 summarizes all the relevant terms. 

Governing equations S

Continuity 1 0 0 

Momentum 
iu t 2
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Table 1. Relevant terms for the governing equations 

 By applying the finite volume 

formulation to the governing equations, the 

convection terms are discretized by the first-

order upwind differencing scheme and the 

second-order central differencing scheme is 

employed for the diffusion and source terms. 

Discretizing all equations gives rise to a system 

of algebraic equation which one can be 

formulated in the standard finite volume form as 

, , , , ,

P P nb nb

E W N S T B

a a S

where  is the volume of CV and E, W, N, S, T 

and B stand respectively for the East, West, 

North, South, Top and Bottom nodes with 

respect to the cell-centered node at P while 

and S  are respectively the dependent variable 

and the source terms which are given in Table 1. 

The coefficients Pa  and nba  contain the 

convection and diffusion fluxes and the 

characteristics of each CV. 

 In general there are two approaches for 

iteratively solving a system of discretised  

equations [1]: First, the couple method where the 

momentum and continuity equations are satisfied 

simultaneously and second, the distributive 

(segregated) or uncouple method in which the 

momentum equations are solved in the first step, 

and then the velocity and pressure are corrected 

in order to satisfy the continuity equation. The 

second approach is adopted in this work and the 

SIMPLE algorithm is used as the process of 

correcting the velocity and pressure to satisfy the 

continuity equation by solving the Poisson type 

of pressure correction equation arising from an 

imbalance mass of continuity equation, and since 

the collocated grid is used; therefore, adopting 

the Rhie and Chow interpolation is necessary to 

avoid the checkerboard of pressure. Once the 

velocity and pressure have been treated in such a 

way that the continuity equation is satisfied, then 

the  k  and  equations are solved subsequently. 

This work employs an explicit point-wise Gauss-

Seidel iterative method for solving the algebraic 

system of discretized equations. The direction of 

sweeping is initiated at the lower-left corner, as 

shown in Fig. 1, and goes to the upper-right 

corner for the even number of iterations. For the 
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odd number of iterations the starting point is at 

the upper-right corner and then sweep down to 

the lower-left corner. Using this strategy, the 

boundary conditions are spread throughout the 

domain faster. Moreover, the alternating 

direction of sweeping can alleviate the problem 

of anisotropies in the case of a sharp gradient 

that does not align with the direction coordinate 

and in the case of non-uniform grid that causes 

the solution coefficients vary throughout the 

domain. The algorithm is depicted in Fig. 1.

even

 odd

1 Processor

even

odd

even

odd

2 Processors

Figure 1. Sweeping direction of an iterative  
smoother 

 Considering the source terms of the k
and  equations in Table 1, most of the terms 

have negative quantities. This may generate the 

negative values of k  and , physically being 

positive, that cause the solutions diverge 

eventually. This problem can be alleviated by 

moving the negative source terms to combine 

with the main coefficient Pa  on the left-hand 

side, and hence the main coefficients become 

dominant. This treatment also has an advantage 

in the viewpoint of numerical stability. 

3. Multigrid Technique 

As well known that the conventional 

iterative methods are deteriorated by the error 

not comparable to the mesh size, the errors are 

eliminated rapidly for the first few iterations and 

then they decrease very slowly. From the Fourier 

analysis, the line of error tracing can be split into 

the combination of several sine and cosine waves 

and these waves can be classified into two 

groups: long and short wave lengths. The short 

wave length error components are well 

eliminated on fine mesh of which the mesh size 

can be comparable to or has the same dimension 

as the wave length of error components. This is 

the reason why the convergence rate is quick 

during the first few steps because the short wave 

length error components can be eliminated and 

the long ones that cannot be eliminated on the 

fine mesh still remain and cause the rate of 

convergence slow down. The main idea of the 

multigrid method is to use the coarser grid to 

smooth out the longer wave length error 

components and determine the correction to 

correct the solutions on the finer mesh. The full 

approximation storage (FAS) version of 

multigrid technique is adopted in this work due to 

the nonlinearity of  the governing equations and 

the multigrid V cycle type is employed. 

To incorporate the FAS technique with 

the SIMPLE algorithm, some special treatment 

must be taken carefully. The velocity 

components are nonlinear but the pressure is 

linear and both the velocities and pressure appear 

in the system of equations. Therefore, the 

pressure is solved through the pressure correction 

equation by the multigrid correction scheme and 

the FAS is used for the solution of the velocity 

components. The current approximation of the 

velocity components, u, v and w, as well as the 

residual of the momentum and pressure 

correction equations are restricted to the next 

coarser grid. Once a coarse grid is visited, the 

coarse-grid pressure is initialized with the  

guessed value of zero every time, and all the 

coefficients together with the mass flux have to 

be recalculated on this grid with the restricted 

solution, and then the process of the SIMPLE 

algorithm is proceeded for a few iterations in a 

similar manner to a single-grid problem with 

additional source terms. As the restriction 

process has gone down to the coarsest grid and 

the coarsest-grid problem is solved, the change in 

the velocity components and the current solution 

of the pressure are then prolonged up to the next 

finer grid for correcting the fine-grid current 

approximation of pressure and velocity 

components. The residuals are transferred to the 

coarser grid by summing up the residual of fine 

grid that contains in the coarse grid CV. The 

restriction and prolongation of variables are 

bilinear interpolation (not trilinear). Even though 

this work is concerned with a 3D case, but in 

order to exploit a full ability of multigrid, the 

semi-coarsened grid is employed in such a way 

that grid is coarsened as coarse as possible only 

on each yz plane in which the number of grid 

points in the x-direction is fixed. Therefore this is 

a similar manner to a 2D case. In addition, this is 

done for the sake of simplicity and appropriately 

when incorporated with parallel computing. The 
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summary of 2 grid levels of multigrid algorithm 

in conjunction with the SIMPLE algorithm is 

shown step by step below: 

1. h h h h h

P P nb nba u a u S ,

2 2h h k

P P nb nbA p A p m

hu p , hp p

2 h h h h h h

nb nb P PR a u S a u

3. 2 2h h h

hu I u , 2 2h h h

hR I R

4. 2 2 2 2 2 2h h h h h h

P P nb nbf a u a u R , 2 0hp

5. 2 2 2 2 2 2h h h h h h

P P nb nba u a u S f ,

2 2 0h h k

P P nb nbA p A p m m ,

2hu p , 2hp p

6. 2 2

2 ( )h h h h h

h h hu u I u I u ,

2

2

h h h h

hp p I p

7. h h h h h

P P nb nba u a u S ,

2 2h h k

P P nb nbA p A p m ,

hu p , hp p

where ( )k k k k k k k

t b n s e wm F F F F F F  and 

k is the iteration number and 0m  is evaluated in 

step 4 , F  is the mass flux. It should be noted 

that this algorithm is different from several 

literatures and even among them they are also 

different from each other.  

 In multigrid method, when the 

turbulence model equations are employed on the 

coarse grid, the coarse grid correction often 

causes the turbulence quantities become negative 

and the solutions diverge eventually. Therefore, 

in this work, the turbulence quantities are solved 

only on the finest grid. 

4. Parallelization Technique 

The basic idea of the parallel computing 

is that a number of processors work in 

cooperation on a single task. There are generally 

two types of memory model architecture of 

parallel processors: distributed and shared 

memory models. The first one, each processor 

possesses its own local memory and connects to 

each other through the high-speed 

interconnection network. For the second type, all 

processors do not have its own local memory but 

use the same global memory. However, in the 

viewpoint of programming for controlling the 

instruction, it can be classified into two 

categories: Single Instruction Multiple Data 

(SIMD) and Multiple Instruction Multiple Data 

(MIMD) parallel computing. The first type is also 

called the data parallelization and the second one 

is called the functional parallelization. In this 

work the SIMD is used in conjunction with the 

distributed memory architecture parallel 

machine. The message passing is done by using 

the MPI library.

 In the present work, the data parallel 

computing is chosen because it is more 

appropriate for the present CFD algorithm than 

the functional parallel computing. This is because 

the functions used in the present algorithm are 

the same throughout the calculation procedure. 

Therefore it is easier to partition a whole data 

into several sub-data and use the same operation 

solving simultaneously all the sub-data. The 

details about the exchanging of data among 

processors is documented in the two previous 

works by the authors [14,15].

The parallel computing model used in 

this work is the master-slave model. The master 

is assigned to initialize the necessary data such as 

boundary and initial conditions and send this data 

to the slaves. The slaves receive the 

corresponding data from the master and each 

slave performs the calculation on its own sub-

data with the same code as the sequential 

algorithm does. In the present algorithm, there is 

one processor, typically root processor, which is 

treated as both master and slave. Therefore, it has 

to allocate both overall data and sub-data. This 

leads to the limitation of memory usage. In the 

future work, all the initialized data will be stored 

in the  data file and used as the input data. Then 

let all slaves read their own sub-data and write 

into the output file by themselves. Thus there is 

no longer the master.  

The parallel algorithm for solving the 

steady incompressible turbulent flow is 

summarized as follows: 

1. Solve the momentum equations with an 

initial guess of the pressure field 

2. Calculate the pressure gradient 

3. Exchange the momentum central 

coefficient, Pa , the updated velocity 

components, iu , the updated 

pressure p and the pressure gradient, 

j

p

x
, between the adjacent nodes which 

are used in the pressure correction 

equation and in the Rhie and Chow 

interpolation respectively 

4. Solve the pressure correction, p , for 

three iterations and in each iteration 

Proceedings of the Seventh International Conference on High Performance Computing and Grid in Asia Pacific Region (HPCAsia’04) 
0-7695-2138-X/04 $ 20.00 IEEE 



exchange p  between the adjacent 

processors 

5. Correct the velocity components, iu ,

and the pressure field, p , with  pressure 

correction, p

6. Exchange the velocity components, iu ,

and  the pressure p

7. Solve the turbulence kinetic energy 

equation, k

8. Exchange k

9. Solve the dissipation rate of turbulence 

kinetic energy equation, 

10. Exchange 

11. Update the boundary condition 

12. Check convergence, if not then go to 

step 1 

5. Parallel Multigrid Algorithm 

There are two approaches to incorporate 

the parallel computing with the multigrid method 

[1]: the domain decomposition with multigrid and 

the multigrid with grid partitioning. The domain 

decomposition is first applied to the finest grid. 

Then, the multigrid method is used to solve the  

problem inside each block, that is, the multigrid 

V-cycle is applied in each local finest grid. Since 

inter-domain connection is limited to the finest 

level, thus communications are only required at 

this level. For the multigrid with grid 

partitioning, however, the multigrid method is 

used to solve the problem over the whole grid in 

which the grid is partitioned among processors at 

each level. Therefore, communications are 

required at each level. 

 Domain decomposition methods are 

often used with the finite element method on 

parallel computers [12]. They are easier to 

implement and require fewer communications 

only on the finest grid. Additionally, they can be 

applied to general multiblock grids. On the other 

hand, the domain decomposition methods lead to 

algorithms which are numerically different from 

the sequential version and have a negative 

impact on the convergence rate. Grid partitioning 

retains the convergence rate of the sequential 

algorithm. Moreover, it requires more 

communication overhead because the data 

exchange at each grid level. Several literatures 

adopted the grid partitioning technique, for 

examples, [10, 12]. In the present work, the 

domain decomposition is employed in 

combination with the semi-coarsening multigrid 

technique. Some literatures adopted the semi-

coarsened grid, for examples [6,7,8,9], for the 

reason of an anisotropic characteristic of a 

problem such as grid clustering. In this work, a 

coarsened grid is used on the yz plane which is 

the x-semicoarsening and the domain 

decomposition is applied in the x-direction. 

Llorente et al [6] reported that for the problem 

size of 643, the computing time of z-semi-

coarsening, say xy plane coarsened grid, is about 

17% larger than x-semicoarsening (yz-plane 

coarsened grid). This paper will pursue such a 

work.

6. Results and Discussion 

This work is based on the development 

of a CFD code. Therefore, the code is firstly 

validated by solving the standard benchmark 

problem and the results are compared with the 

reference data. Since the solver code is focused 

on the 3D turbulent flow. The popular benchmark 

problem is a lid-driven cavity flow and the 

reference data are the experimental results of 

Prasad and Koseff [13]. The u- and v-velocity  

components along the centerline of a cavity are 

plotted against the reference data at Re= 3,200 

and 10,000  as shown in Fig. 2 and Fig. 3 

respectively. The present results agree very well 

with the experimental data. 

The next step is to find an optimal 

number of multigrid levels. The solver code 

performs the computation with the 643 uniform 

grid points at Re=3,200 only because a highly 

nonlinear behavior cause the multigrid method 

fail to perform a computation at Re=10,000 and 

also because of the limitation of memory usage. 

The results are depicted in Fig. 4. It is found that, 

for 6 multigrid levels, the line of the residual 

reduction is nearly coincided with 5 multigrid 

levels. Therefore, this work, in the case of 643

grid points, uses 5 grid levels for further testing 

the parallel multigrid performance. Although 

some literatures stated that 4 grid levels are  

sufficient for solving the incompressible flow 

problems especially in [3] that uses the full-

coarsening multigrid for solving both 

recirculating laminar and turbulent flows with a 

non-orthogonal collocated grid. For the result of 

this work, in the series of 2k  grid points, where 

k= 1, 2, 3, … are the thk grid level and k=1 is the 

coarsest grid, the optimal number of grid levels is 

the number that the finest grid is coarsened in 

such a way that the coarsest grid is the 22 grid 

points. 
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Figure 2. Re=3,200 

Figure 3. Re=10,000 

The optimal number of multigrid levels 

in this work is 5 levels. The parallel computing is 

performed by partitioning the data only in the x-

direction among all processors. Once the data is 

partitioned, each processor contains various yz 

plane of data, and then the multigrid V-cycle is 

applied on the chunk of data of each processor 

by doubling the mesh size only on the yz plane 

and not changing in the x coordinate. The 

residuals are plotted against a computing time by 

varying the number of processors including a 

non-parallel version of a single grid are shown in 

Fig. 5. The overshoot of all lines is due to 

initiating the calculation with the laminar flow 

for the first 200 iterations and then use the latest 

solution to initialize the turbulent flow. It seems 

that for the problem size of 643 grid points using 

8 processors is an optimum because the 

computing time of 16 processors is slightly 

smaller than that of 8 processors. Fig. 6 shows 

the speed up, S , based on the sequential time, 

ST , of a single grid.    

The final discussion is the effect of 

using a non-uniform grid. Grid points are 

generated with the cubic polynomial function in 

which the two points next to the left and right  

Figure 4. The residual of 64
3
 grid points with  

 the different number of grid levels 

boundaries are first specified to be the constraints 

of a cubic polynomial. The rest points are 

distributed according to the cubic polynomial. A 

spacing of the two points next to the boundary is 

calculated by multiplying a clustering factor, 

more than zero, to the spacing of a uniform grid. 

If the factor is 1, grid points are uniform, and if it 

is less than 1, grid points are clustered at 

boundary. In Fig. 8, the clustering factor used is 

0.9. It is found that the rate of convergence of the 

non-uniform grids is slower than the uniform 

ones, especially when employing the smaller 

number of processors. For other clustering 

factors, less than 0.9, the solution converges very 

slowly as shown in Fig. 7 in which 4 processors 

are used. Fig. 9 is an evaluation of a smoother 

sweeping direction. The numbers at the lines are 

the clustering factor, 1.0 for uniform grid. The 

alternating sweeping direction is the one depicted 

in Fig. 1. It is astonishing that the alternating 

sweeping direction makes the non-uniform grid 

faster than the uniform grid. It can be viewed 

analogously as painting a wall. Moving a brush 

alternately from left to right and right to left will 

fill the wall with color faster than moving the 

brush in one direction only. Moreover, if the wall 

is divided into four zones and four painters paint 

the wall simultaneously, the wall will be filled 

with color even much faster. In addition, it can be 

seen from Fig. 9 for the early stage, initiated by a 

laminar flow calculation, that the computing time 

is nearly equal in all clustering factors. 

Thereafter, the rate of residual reduction is 

distinctly different. This means that the non-

uniform grid is severely affected by the turbulent 

flow behavior. Fortunately, see Fig. 9 again, the 

alternating sweeping direction can significantly 

remedy the problem of anisotropy caused by the 

non-uniform grid.       
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7. Conclusions 

A multigrid technique incorporated with 

the parallel computing is presented. The FAS 

multigrid version is adopted in this work with a 

semi-coarsening technique. The coarsened grid is 

applied on the yz plane and then the parallel 

computing is applied for the x-data partitioning. 

This strategy makes the multigrid method to 

have the number of grid levels as many as 

possible. The non-uniform grid degrades the 

performance of the present algorithm in which 

the optimum clustering factor used in this work 

is 0.9. The use of an alternating sweeping 

direction has an advantage of alleviating the 

effect of a non-uniform grid. The solver code is 

developed for the incompressible 3D turbulent 

flow. The code is validated with the 

experimental data and the obtained results agree 

very well. 

   Figure 5. The residual of 64
3
 grid points  

   with the different number of processors  
   including the residual of a sequential  
   single grid. 

Figure 6. Speed up based on the 
            single grid sequential computing 

Figure 7. The residual with various  
        clustering factors  

Figure 8. Effect of a non-uniform grid. 

Figure 9. Effect of sweeping direction using 4  
processors
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