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JUNCTION/SCATTERING METHOD/INSULATING BARRIER 

 
In this thesis, the current density and conductance spectra of one-dimensional 

metal-insulator-metal and metal-insulator-superconductor junctions are studied using 

two different models: Delta-function and Finite-width models. The scattering method 

is used to calculate reflection and transmission probabilities, which then are used to 

obtain the current density and conductance at zero temperature as a function of applied 

voltage.  

When the applied voltage is lower than the barrier potential U, the Finite-width 

model produces similar results to the Delta-function model for both types of junctions. 

When the applied voltage is higher than the barrier potential, both current density and 

conductance spectra of both types of junctions contain oscillations, which are 

dependent on the thickness L of the insulator. These oscillations cannot be produced in 

the Delta-function model. Accordingly to the Finite-width model, the distance in 

energy between two adjacent peaks satisfies (
22
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It is also  shown  in  this  thesis  that one can use the Delta-function model in 

place of the Finite-width model, within 10% accuracy, when the applied voltage is 
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lower than the barrier potential and when the thickness of the insulating layer satisfies 

the inequality 
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unitless parameter describing the insulator is the Delta-function model. Both 

inequality condition and the relation among the insulating parameters are independent 

of the types of the junctions. 
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CHAPTER I 

INTRODUCTION 

 
1.1  Motivation 

Metal-insulator-superconductor (MIS) tunneling spectroscopy has long been 

used to study the properties of a superconductor (Wolf, 1989). Because the energy 

scale involved in the spectroscopy is small, compared to the Fermi energy of the 

metal, the features in the tunneling conductance spectrum reflect mostly the 

characteristics of the superconductor (Wolf, 1989). For instance, in the tunneling limit 

or low transmission limit where the insulating barrier is high, the conductance 

spectrum of a conventional superconductor is proportional to the density of states of 

the superconductor (Bardeen, Cooper, and Schrieffer, 1957; Giaever, 1960; Nicol, 

Shapiro, and Smith, 1960). The energy position where the coherence peak occurs in 

the spectrum provides an accurate measurement of the magnitude of the 

superconducting gap (Giaever, 1960; Nicol, Shapiro, and Smith, 1960). In the limit 

where the barrier is low or in the high transmission limit, the conductance shows the 

consequence of Andreev reflection (Blonder, Tinkham, and Klapwijk, 1982), the 

process in which the transfer of two electrons across the interface occurs (Andreev, 

1964). 

In addition to the  physical properties of  the superconductor, the geometry  of 

the  junction  can  also  affect  the features in the conductance spectrum. For instance, 

the conductance spectrum of a MIS junction may contain oscillations due to the finite 
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thickness of  the  superconductor and the metal. The oscillations due to the finite width 

of the superconductor are called Tomasch oscillations (Tomasch, 1965; Tomasch, 

1966) and those due to the finite width of the metal are called Mcmillan-Rowell 

oscillations (Rowell and McMillan, 1966). The periods of both oscillations depend on 

the width of the layer, the corresponding Fermi velocity, and the magnitude of the 

superconducting gap (Rowell and McMillan, 1966; McMillan and Anderson, 1966). 

These features thus provide a means to measure the Fermi velocity and the magnitude 

of the superconducting gap (Lykken, Geiger, and Mitchell, 1970; Lykken, Geiger, Dy, 

and Mitchell, 1971; Tsokur, Yarygin, Yusupov, Aminov, Hein, Muller, Piel, Wehler, 

Kresin, Rosner, Winzer, and Wolf, 1995; Nesher and Koren, 1999; Nesher and Koren, 

1999; Shkedy, Aronov, Koren, and Polturak, 2004). It is clear that there is a lot of 

physical information that can be extracted from the tunneling data. In order to obtain 

reliable interpretation, one needs to understand quantitatively how characteristics of 

the materials making up the junction as well as the junction geometry affect the 

tunneling conductance spectrum.  

The geometry of the insulator can effect to MIS tunneling spectrum as well. As 

mentioned earlier, when the insulating barrier is high, the conductance spectrum has 

the same shape as the density of states of the superconductor, whereas when the 

insulating barrier is low, the conductance spectrum shows the inverted-gap structure 

due to the Andreev reflection process. It is interesting to study in more details of how 

the characteristics, not only the potential but also the thickness, of the insulating 

barrier affect the tunneling spectroscopy of MIS junction. 
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1.1  Methods of Study 

There are at least two theoretical methods widely used to study tunneling 

junctions: transfer Hamiltonian and scattering method.  In the former approach, one 

assumes that the system is divided into two nearly independent parts by the insulating 

layer and these parts are coupled by a perturbing Hamiltonian, which requires some 

microscopic knowledge of the system.  With this transfer Hamiltonian one can then 

determine the tunneling transfer matrix element. The electron transition rate from one 

side to the other and hence the current can be obtained by using the Fermi Golden 

Rule (Wolf, 1989). Because this approach is based on the perturbation theory, it is 

limited to study of those junctions with either high insulating barriers or thick 

insulating layers. 

In order to study the effect of arbitrary thickness and potential barrier strength, 

a phenomenological scattering method can instead be used. In this formalism (Griffin 

and Demers, 1971; Blonder, Tinkham, and Klapwijk, 1982), it is assumed that the bulk 

wave functions of all regions of the junction can be written as a simple linear 

combination of appropriate wave functions. With suitable matching conditions, which 

depends on the details of each model, one can obtain the reflection and transmission 

probabilities and hence the current across the junction. In the high barrier and clean 

limit with the isotropic superconducting gap, the resulting current from this formalism 

is equivalent to that from the transfer Hamiltonian method (Blonder, Tinkham, and 

Klapwijk, 1982). 

In this thesis, the scattering method is chosen for the study of MIS junction, for 

comparison and study the effect  of  the thickness  of  the layer. Also, two models are 

used to represent the insulating layer.  
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In the first model called Delta-function model, a delta-function potential with 

height H (in units of energy per length) is used to represent the insulator (Blonder, 

Tinkham, and Klapwijk, 1982). In this model, it is obvious that the effect of the finite 

width of the insulating barrier is completely ignored.  

In the second model called Finite-width model, the insulator is represented by 

a more realistic layer of finite thickness (Griffin and Demers, 1971). In this model the 

calculation is more complicated but more complete.  

In this thesis, the theoretical investigation of the dependence on the insulating 

layer of MIS tunneling spectroscopy is carried out. In order to gain better 

understanding of the effect of the insulator on MIS tunneling spectroscopy, metal-

insulator-metal (MIM) tunneling spectroscopy is also studied as a preamble and for 

comparison with MIS tunneling spectroscopy. 

 

1.2  Models and Assumptions 

 Tunneling spectra of two types of junctions, MIM and MIS, are studied using 

the scattering method in this thesis. The insulating layer of each junction is represented 

by two different models as defined in the previous section, i.e., Delta-function and 

Finite-width models. Also, all the junctions are modeled by one-dimensional infinite 

systems, in which either two semi-infinite metals, or a semi-infinite metal and a semi-

infinite superconductor, are joined by either a delta-function like insulating layer, or an 

insulating layer of arbitrary thickness L, as shown pictorially in Fig. 1.1.  

  A parabolic energy dispersion relation is used to describe the conduction bands 

of both metal and insulator, as shown in Fig. 1.2. The Fermi level is set to be in the 
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metal conduction band and to be U below the bottom of the empty conduction band of 

the insulator.  

 

        

 
 
Figure 1.1 Diagram of each type of junction studied in this thesis. Figure (a) shows 

the Delta-function model and Figure (b) represents the Finite-width 

model. 

 

For the superconductor, the excitation energy is taken to be 
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where k
v

 is the Fermi wave vector, m is the mass of a quasiparticle, EF is Fermi energy 

and ∆ is the superconducting gap, which is taken to be constant and independent of the 

position in the superconducting region. Both the suppression of the superconducting 

gap near the surface and the proximity effect are ignored in this thesis. 

 

 
 

Figure 1.2 The energy dispersion relations of (from left to right) the metal, insulator 

and superconductor. The Fermi level is set to be in the conduction band 

of the metal and U below the bottom of the conduction band of the 

insulator.  is the superconducting energy gap.  ∆

 

  In calculating the current and conductance of the junctions, the scattering 

method with the assumption of elastic scattering (Griffin and Demers, 1971; Blonder, 
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Tinkham, and Klapwijk, 1982) is used. Throughout this study, the effect of finite 

temperature on the tunneling spectrum is also ignored. The non-zero temperature is 

expected to smear out sharp features appearing in the tunneling spectrum. Also, each 

interface of the junctions is assumed to be smooth, i.e., the effect of roughness is not 

considered. 

 

1.4 Outline of Thesis 

  This thesis contains the theoretical study of the effect of the insulating layer in 

MIM and MIS tunneling spectroscopy. The scattering method with two models: Delta-

function and Finite-width models, is used to calculate current and conductance spectra 

of all the junctions. The organization of this thesis is as follows. In Chapter II, the 

review of the scatter formalism used to obtain the current and conductance of both the 

MIM and MIS junctions is given. In Chapter III, the current and conductance spectra 

of MIM from both models are presented and compared. The tunneling spectroscopy of 

MIS junction from both models are presented and compared in Chapter IV. Finally, 

the conclusions of this thesis are presented in Chapter V. 

 

 

 

 

 

 

 

 

 



CHAPTER II 

CURRENT AND CONDUCTANCE IN DELTA-

FUNCTION AND FINITE-WIDTH MODELS  

 
In this thesis, two models are considered in studying MIM and MIS junctions: 

Delta-function model and Finite-width model. In the former model, there are two 

regions, one parameter characterizing the insulating layer, and one interface. In the 

latter model, there are three regions, two parameters characterizing the insulating layer 

and two interfaces. In the scattering method, one needs to obtain the wave functions 

describing each region of the junctions and use appropriate matching conditions at 

each interface, in order to get reflection and transmission probabilities, which in turn 

are used to calculate the tunneling current density and conductance as a function of 

applied voltage. This chapter contains all the details of how the wave functions in all 

the regions in each model are obtained, how the suitable matching conditions are used 

to obtain the reflection and transmission probabilities, and how these probabilities are 

used to get the tunneling current density and conductance spectra. 

 

2.1 The Two Models 

The first model used  to study  MIM and MIS junctions is called Delta-function 

model. In this model (see Fig. 2.1), the two metals of MIM junction and  the metal and 

superconductor of  MIS  junction  are located  in the  region  when  x  <  0  and  x  >  0 

respectively. The  insulating  layer  is  represented  by a delta-function barrier potential  
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described as Hδ(x) where H is the strength of the potential located at x = 0. The 

second model is called Finite-width model. In this model, the insulating layer is 

modeled by a layer of finite thickness L (see Fig. 2.2). One of the metals occupies the 

region where  x < 0 and the other metal or the superconductor occupies the x > L 

region. 

 

 

 

Figure 2.1 The diagrams of Delta-function model. The barrier potential of insulating 

layer is represented by Hδ(x). (a) is for MIM junction and (b) is for MIS 

junction.  ∆ is the superconducting gap. 
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Figure 2.2 The diagrams of the Finite-width model. The insulator is represented by a 

barrier of thickness L and U. ∆ is the superconducting gap. The figure (a) 

describes the MIM junction and (b) represents MIS junction. 

 

           There are two wave functions describing the particles in the two regions in the 

Delta-function model and there are three wave functions describing the particles in the 

three regions in the Finite-width model. How to obtain these wave functions is 

described in the next section. The matching conditions of the wave functions used in 
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the former model are the continuity of the wave functions and the discontinuity of the 

slope of the wave functions at x = 0. These conditions lead to two equations to be 

solved for the reflection and transmission probabilities. In the latter model, the 

matching conditions are the continuity of the wave functions and of the slope of the 

wave functions at x = 0 and x = L. These conditions lead to four equations to be solved 

for the reflection and transmission probabilities. 

 

2.2 Energy Spectrum and Wave Function in Each Region 

 2.2.1 MIM Junction 

      For MIM junction, the time-independent Schrödinger equation is used to 

describe the system. That is,  

                   0 ( ) ( )H x E xψ ψ=                                                  (2.1) 

where 
2 2

0 2 ( )
2 F

dH V x
m dx

= − + −
h E , V(x) = Hδ(x) in the Delta-function model (where 

δ(x) is the Dirac delta function) and V(x) = ( )( ) ( ) FU x x L EΘ −Θ − +  in the Finite-

width model (where ( )xΘ  is the Heaviside step function), EF is the Fermi energy, m is 

the electron mass, ( )xψ  is the wave function and E is the excitation energy. Note that 

the Fermi energies of both metals are taken to be the same. The diagrams of energy 

momentum dispersion relations of both metals are shown in Fig. 2.3. 

 The excitation energy of each metal is therefore 

2 2

( )
2 F

kE k
m

E
⎡ ⎤

= −⎢ ⎥
⎣ ⎦

h                                                (2.2) 

where k is the wave vector. 
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Figure 2.3 The sketches of the energy spectrum of the metal (a) on the left and (b) on                         

the right of MIM junction. The full dots (•) represent the states making up 

the wave function of each metal. 

 

With the assumption that an electron is injected from the left side of the 

junction, the suitable wave functions describing the electron of both metals are as 

follows. The wave function of the electron in the left metal is a linear combination of 

one incident electron state and the reflected electron state of the same energy:  

( ) ikx ikx
L x e beψ −= +                                                (2.3) 

where b is the reflection amplitude. The wave function of the electron in the right 

metal is 

  ( ) ikx
R x ceψ =                                                     (2.4) 

where c is the transmission amplitude. Note that k is always real and 

( )2

m
h
2

Fk E E= + . 
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Figure 2.4 The sketch of the energy spectrum in the insulator region. The full dots (•) 

represent the states making up the wave function in this region. 

 

 In the Finite-width model, the excitation energy of the insulator is written as  

2 2

( )
2

qE q U
m

= +
h                                                  (2.5) 

where q is the wave vector. 

In this region, the wave function of the electron is the sum of the two states of 

the same energy. That is,  

iqx iqx
I fe geψ −= +                                                  (2.6) 

where f and g are the amplitudes for both states. Note that ( )2

2mq E= −
h

U  for         

E > U and ( )2

2mq i U E= −
h

 for E < U. 
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 2.2.2 MIS Junction 

            In order to calculate the tunneling current and conductance spectrum of an MIS 

junction, one starts from the Bogoliubov-de Gennes (BdG) equations: 

 0
* *

0

( )
( ) ( )

( )
H x

x E x
x H

ψ ψ
∆⎛ ⎞

=⎜ ⎟∆ −⎝ ⎠
                                      (2.7) 

where 
2 2

0 2 ( )
2 F

dH V x
m dx

= − + −
h E , V(x) is a potential barrier as defined previously, 

( )( )x x∆ = ∆Θ  in case of Delta-function model and (( ) )x x L∆ = ∆Θ −  in case of 

Finite-width system (where ∆ is taken to be real) and ( )xψ  is a two-component wave 

function, or ( ) k ikx

k

u
x e

v
ψ

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, where uk and vk are the electron-like and hole-like 

quasiparticle amplitudes respectively. The uk and vk are defined as 

     
2 2

k
k

k

E
u

E

ξ

ξ

+
=

+ + ∆
                                             (2.8) 

        
2 2

k

k

v
E ξ

∆
=

+ + ∆
                                             (2.9) 

where 2 2∆k kEξ = − . Again, here the Fermi wave vectors of both metal and 

superconductor are taken to be the same. 

            From the BdG equations, the excitation energy of the metal is 

       
2 2

( )
2 F

k
E k

m
E

⎡ ⎤
= ±⎢ ⎥
⎣ ⎦

h
m                                            (2.10) 

where k is the wave vector. The upper and lower signs refer to electron and hole 

energies respectively.  
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Figure 2.5 The sketch of the energy dispersion relation in the metal region of MIS 

junction. The solid lines represent electron excitations and the dashed 

lines represent hole excitations. The full dots (•) and open dot (ο) 

represent electron and hole states that makes up the wave function in this 

region respectively. 

 

With the assumption that an incident electron comes from the metal side, the 

wave function of the excitation of metal region is a linear combination of the incident 

electron, the Andreev reflected hole and the normal reflected electron of the same 

energy. That is,  

     ( )
1 0 1
0 1 0

ik x ik x ik x
L x e a e b eψ

+ − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

+

                            (2.11) 

where a, b are the Andreev and normal reflection amplitudes respectively. Note that 

( )2

2
F

mk E± = ±
h

E . 
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Figure 2.6 The diagram of energy spectrum of the superconductor. The full dot (•) 

and open dot (ο) represent electron-like and hole-like quasiparticles 

making up the wave function of the superconductor respectively. 

 

 In the superconductor region, the wave function of the excitation is a linear 

combination of two transmitted excitations of the same energy: 

            ( ) ik x ik x
S

u v
x c e d e

v u
ψ

+ −′ ′−⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
                                   (2.13) 

where c and d are the amplitudes of electron-like and hole-like transmitted quasi-

particles respectively. Note that ( )2 2
2

2
F

mk E E±′ = ± −
h

∆ . 
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Figure 2.7 Schematic illustration of the energy dispersion relation in the insulating 

region. The solid line denotes the electron excitation and dashed line 

represents the hole excitation. The full dots (•) and the open dots (ο) 

denote the states making up the wave function in this region. Note that 

q′  is always pure imaginary. 

 

As for the insulator, the excitation energy is  

        
2 2

( )
2

qE q U
m

= ± ±
h                                               (2.14) 

where the upper and lower signs are for electron and hole excitations respectively. 

            The wave function of the excitation in the insulating region is  

1 1 2 2

1 1 0 0
0 0 1 1

iqx iqx iq x iq x
I f e g e f e g eψ ′ ′− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= + + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
                  (2.15) 
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where
1f , 1g , 2f  and  are the amplitudes of the electron and hole excitations that 

make up the wave function in this region. Note that for E > U the wave vector 

2g

( )2

2mq E= −
h

U , for E < U the wave vector ( )2

2mq i U E=
h

− , and 

( )2

2mq i E U′ = +
h

 for all energies.  

 

2.3 Matching Conditions 

The appropriate matching conditions at the interface in the Delta-function 

model are 

( 0) ( 0L Rx x )ψ ψ= = =                                            (2.16) 

( 0) ( 0) 2 ( 0)R L
F R

d d
x x k Z x

dx dx
ψ ψ

ψ= − = = =                          (2.17) 

where L and R refer to the left side and the right side of the insulting barrier, 2
F

mHZ
k

=
h

 

is a dimensionless parameter representing the insulating barrier strength of the 

junction (H is the strength of the potential barrier). 

In the Finite-width model, the appropriate matching conditions at the two 

interfaces are 

( 0) ( 0L Ix x )ψ ψ= = =                                            (2.18) 

( ) (I R )x L x Lψ ψ= = =                                            (2.19) 

( 0) ( 0L Id dx
dx dx

)xψ ψ
= = =                                         (2.20) 

( ) (I Rd d )x L x
dx dx

Lψ ψ
= = =                                        (2.21) 
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where I, L and R refer to the insulating layer, the left side and the right side of the 

insulting layer respectively. 

 

2.4 Transmission and Reflection Probabilities 

 In the case of MIM junction, the reflection and transmission probabilities are 

calculated by assuming that an electron comes from the left region. These probabilities 

are obtained from the matching conditions described in the previous section.   

 In the case of MIM junction, the reflection probabilities of the reflected 

electron B(E) in the both models are equal to the ratio of the current density due to the 

reflected electron and that of the incident electron. Thus,   

2( ) ( )B E b E=                                                  (2.22) 

similarly, the transmission probability C(E) is   

2( ) ( )C E c E=                                              (2.23) 

The conservation of the number of particles requires                          

C(E) + B(E) = 1                                                (2.24) 

In the case of MIS junction, there are two reflection probabilities, the normal 

reflection B(E), which has the same form as in Eq. (2.22) and the Andreev reflection 

A(E) probabilities. A(E) is equal to 

             2 k
( ) ( )A E a E

k

−

+=                                               (2.25) 

there are also two transmission probabilities. The probability of transmission of the 

electron-like quasiparticle C(E) is equal to 

         2 2( ) ( ) (C E c E u 2 )k k
k

v
k

+

+

′
= −                                    (2.26) 
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and the transmission probability of hole-like quasiparticle D(E) is 

   ( )2 2 2( ) ( ) k k
k

D E d E u v
k

−

+

′
= −                                   (2.27) 

The conservation of the number of particles requires 

( ) ( ) ( ) ( ) 1A E B E C E D E+ + + =                                    (2.28)    

 

2.5 Current and Conductance Formulae 

 The current density tunneling across the junction in the +x direction is given by 

 
2k k k k

k

eLj n v e dk n
π

→ = =∑ ∫ v                                       (2.29) 

where  is number of electron tunneling across the junction, which is equal to 

, where T(E) is the total electron transmission probability and  

is the Fermi-Dirac distribution function, and the group velocity 

kn

( ) ( )kn T E f E= ( )f E

1
k

dEv
dk

=
h

. Note that 

the sum or the integration is over all the states with the positive group velocities. For 

an MIM junction, ( ) ( )1T E B E= −  and for an MIS junction, 

. From Eq. (2.29), by changing the integration variable from k 

to E, one obtains, 

( ) ( )1T E A E B E= + − ( )

( ) ( ) 
2
Lej dE T E f
π

∞
→

−∞

= ∫h
E                                       (2.30) 

when there is no applied voltage across the junction, the net current density is zero; 

that is, the current density flowing to the right is equal to the left: 

    ( ) ( ) 
2
Lej j dE T E f E
π

∞
→ ←

−∞

= = ∫h
                                 (2.31) 
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when  there  is  a  positive applied  voltage V across the junction, the current density to  

 

the right becomes 

        ( ) ( ) 
2
Lej dE T E f E
π

∞
→

−∞

= ∫h
eV−                                   (2.32) 

therefore, the net current density at this voltage is  

( ) ( ) ( )( ) 
2net
Lej j j dE T E f E eV f E
π

∞
→ → ←

−∞

= − = − −∫h
               (2.33) 

at zero temperature, the net current density becomes 

       ( ) ( )
0

, 0  
2

eVLe
netj eV T dE T E

π
→ = = ∫h

                                (2.34) 

the conductance is the derivative of current density with respect to the applied voltage: 

( ) netdj
G eV

dV

→

=                                                 (2.35) 

Thus, at zero temperature, the conductance of MIM and MIS junctions are 

( ) ( )(
2

MIM 1
2

e LG eV B eV
π

= −
h

)                                      (2.36) 

  ( ) ( ) ( )(
2

MIS 1
2

e LG eV A eV B eV
π

= + −
h

)                                (2.37) 

respectively. 

 

 

 

 

 

 

 

 

 



CHAPTER III 

MIM TUNNELLING SPECTROSCOPY 

 

   The current density and conductance spectra of MIM junction obtained from 

the Delta-function model and the Finite-width model are shown and discussed in this 

chapter. As already mentioned in the previous chapter, the junction is represented by a 

one-dimensional infinite system in both models. The Fermi wave vectors of both 

metals are assumed to have the same magnitude.  

In the Delta function model, the effect of the insulating barrier, which is 

characterized by the parameter Z (as defined as 2
F

mHZ
k

=
h

 is a dimensionless 

parameter), on both current density and conductance spectra are investigated. 

Similarly, in the Finite-width model, the dependence of the current density and 

conductance spectra on the insulating barrier, which is characterized by the two 

parameters U (the barrier potential) and L (the width of the barrier), is studied.   

For simplicity, the effect of finite temperature is not considered. The finite 

temperature is expected not to affect the positions of the main features in both current 

density and conductance spectra. 

 

3.1 Delta-Function Model 

The plots of both the current density and conductance as a function of applied 

voltage in the Delta-function model are illustrated in Fig. 3.1.  
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Figure 3.1 The plots of (a) current density j and (b) conductance G as a function of 

applied voltage at different values of parameter Z: Z = 0, 1 and 3. 
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The current density and the conductance are found to be 

   ( ) ( )2
02 1

eV
F

F

E ELej eV dE
E E Zπ

⎛ ⎞+⎜=
⎜ + +⎝ ⎠
∫ ⎟

⎟
                                  (3.1) 

( ) ( )
2

22 1
F

F

eV ELeG eV
eV E Zπ

⎛ ⎞+⎜=
⎜ + +⎝ ⎠h

⎟
⎟

                                (3.2) 

As can be seen in Fig. 3.1, when there is no barrier strength (Z = 0), it is not 

surprising to get the conductance plot to be equal to 1. When Z is non-zero and 

becomes bigger, the current flowing through the junction gets smaller and so does the 

conductance.    

 

3.2 The Finite-Width Model 

In this model the expressions of the current density and the conductance are 

more complicated than in the Delta-function model. That is, 

For E < U, 

( )
2

0 2

1
2 ( )1 11 sinh (

4 ( )( )

eV

F
F

F F

Lej eV dE
U E

U E Lk
E E U E E

π

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟⎛ ⎞⎛ ⎞+⎜ ⎟+ −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟+ −⎝ ⎠ ⎝ ⎠⎝ ⎠

∫
)

      (3.3) 

( )
2

2
2

1
2 ( )1 11 sinh (

4 ( )( )
F

F
F F

LeG eV
U E

U eV Lk
eV E U eV E

π

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟⎛ ⎞⎛ ⎞+⎜ ⎟+ −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟+ −⎝ ⎠ ⎝ ⎠⎝ ⎠

h
)

     (3.4) 
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For E > U,  

( )
2

0 2

1
2 ( )1 11 sin ( )

4 ( )( )

eV

F
F

F F

Lej eV dE
U E

E U Lk
E E E U E

π

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟⎛ ⎞⎛ ⎞+⎜ ⎟+ −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟+ −⎝ ⎠ ⎝ ⎠⎝ ⎠

∫  (3.5) 

        ( )
2

2
2

1
2 ( )1 11 sinh (

4 ( )( )
F

F
F F

LeG eV
U E

eV U Lk
eV E eV U E

π

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟⎛ ⎞⎛ ⎞+⎜ ⎟+ −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟+ −⎝ ⎠ ⎝ ⎠⎝ ⎠

h
)

  (3.6) 

Figures 3.2 - 3.3 show the current density and conductance spectra as a 

function of applied voltage in the model. The both spectra show strong dependence on 

the barrier potential and the thickness of the insulator. 

As can be seen from Fig. 3.2 (a), when the insulating layer is thick and the 

applied voltage is less than the barrier potential, there is very small tunneling current 

density flowing across the junction. When the voltage is higher than the potential, the 

current density starts increasing steadily and there is an oscillation with an increasing 

period as well. These oscillations can be seen more apparently in the conductance 

spectra as seen in Figs. 3.2 (b) and 3.3 (b). The amplitudes of the oscillations are 

decreased as the applied voltage is increased. 

When the insulating thickness is varied, it can be seen in Fig. 3.3 (a) that for thin 

barrier (LkF = 1) the tunneling current density is non-zero even when the applied 

voltage is less than the barrier potential, and it is increased with the applied voltage. 

This non-zero current is due to the fact that when the insulating layer is thin, only a 

small decay in the magnitude of the wave function in the insulating region occurs. The 

oscillations  in  the  current density cannot be seen clearly in the case where the barrier  
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Figure 3.2 The plots of (a) current density j and (b) conductance G as a function of 

applied voltage at different the barrier potential U = 0.5 EF, EF and 2 EF, 

when the thickness LkF = 5. 

 

 

 

 

 

 

 

 



  

27

0 0.5 1 1.5 2 2.5 3
eV/E

F

0

0.5

1

1.5

2

2.5

3

j (
A

rb
itr

ar
y 

un
its

)
Lk

F
=1, U=E

F

Lk
F
=5, U=E

F

Lk
F
=10, U=E

F

 
       (a) 

 
 
 
 

0 0.5 1 1.5 2 2.5 3
eV/E

F

0

0.2

0.4

0.6

0.8

1

G
 (A

rb
itr

ar
y 

un
its

)

Lk
F
=1, U=E

F

Lk
F
=5, U=E

F

Lk
F
=10, U=E

F

 
       (b) 

 
Figure 3.3 The plots of (a) current density j and (b) conductance G as a function of 

applied voltage at different the thickness LkF = 1, 5 and 10, when the 

potential barrier U = EF. 
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thickness is too small. 

When the barrier is thick, as mentioned in the previous paragraph, the 

tunneling current density is very small when the applied voltage is less than the barrier 

potential. The oscillation in the current density spectrum is more apparent, when the 

thickness is large enough. These oscillating features are prominent in the conductance 

spectrum (Fig. 3.3 (b)) and the period of the oscillation is smaller for a thicker 

insulating layer.  

The period of the oscillations is associated with the properties of the insulating 

layer. It corresponds to the difference between the two adjacent energy levels of the 

electrons in the insulating layer of thickness L. The energy levels of an electron in the 

insulating layer of thickness L in vacuum can be found to be 

                 
22

2n
nE U

m L
π⎛ ⎞= + ⎜ ⎟

⎝ ⎠
h                                     (3.7) 

where n = 1, 2, 3, … . When the insulating layer is sandwiched between two metals, 

these energy levels coincide with the applied voltage where the transmission 

probability is the highest and can be seen as the maxima in the conductance spectrum.                

The distance in applied voltage between the adjacent maxima is                                         

(
22

2 1
2nE

m L
π⎛ ⎞ )n∆ = ⎜ ⎟
⎝ ⎠

h
+                                             (3.8) 

which is increased with the energy level n and is decreased with the thickness L. 

 

3.3 Comparison and Equivalency of the Two Models 

It  is obvious  that  the  Finite-width  model is more realistic in representing the  
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real system. It provides more information about the insulating layer than the Delta-

function model. However, the calculation in the Finite-width model, which is involved 

three regions and two parameters characterizing the insulating barrier, is much more 

complicated than that in the Delta-function model, which is involved two regions and 

only one parameter for the barrier. As already shown in the previous section, in the 

Finite-width model one can see the oscillation occurring in both current density and 

conductance spectra at the voltage higher than the barrier potential. This feature 

cannot be seen if one uses the Delta-function model to represent the junction. 

The current density and conductance spectra in the Delta-function model are 

similar to those in the Finite-width model when the applied voltage is less than the 

barrier potential and where the thickness L of the insulator region is small. This 

similarity suggests that as long as the insulating layer of the junction is thin enough, 

one may use the Delta-function model in place of the Finite-width model. Now the 

question is how thick is thin enough. To answer the question, one can compare the 

value of the conductance at zero voltage from the two models. The conductance at 

zero voltage from the Delta-function model is 

2

1( 0, )
1DG eV Z

Z
= =

+
                                            (3.9) 

the conductance at zero voltage from the Finite-width model is 

2
2

1( 0, , )
( )11 sinh

4

F

F
F

F F

G eV L U
U E U Lk

UE E

= =
⎛ ⎞⎛ ⎞⎛ ⎞+

+ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

              (3.10)                        

where kF and EF are the Fermi wave vector and the Fermi energy of the metal region. 

( )/ F FU E LkIn  the  limit  where << 1, one can  find the relationship between  
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the insulating parameters of the two models by approximating ( )sinh x x≈ for x << 1 

and equating the two equations above. The relation is,  

( )
2

F
F

F

U E
Z Lk

E
+

=                                               (3.11) 

which reflects the equivalency of the two models. The Delta-function model with the 

parameter Z as shown in the equation above can lead to the same results as the Finite-

width model with the equivalent U and L with the condition ( )/ F FU E Lk <<1. To be 

more specific, one can show that Eq. (3.11) can be used within 10% accuracy as long 

as the insulating layer is   

3 / 22
3 ( )

F
F

F

E
Lk

U U E
≤

+
                                          (3.12) 

Note that when the barrier potential is high, the thickness must be very thin. 

Figs. 3.4 – 3.5 show the plots of the current density and conductance spectra 

from both models using the insulating parameters according to Eq. (3.11) and the 

condition (3.12). 

As can be seen from Figs. 3.4 - 3.5, both current density and conductance 

spectra from the two models lie on top of each other within 10% accuracy. The results 

get worse as the thickness L gets larger or the potential gets bigger. It is worth noted 

that the bigger value of L affects the similarities of the two models more than the 

higher barrier potential. 
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Figure 3.4 The plot of current density spectra with (a) thickness LkF = 0.2 (for U = EF, 

Z = 0.2 and for U = 3EF, Z = 0.4) and (b) the barrier potential U = EF (for 

LkF = 0.2, Z = 0.2 and for LkF = 0.6, Z = 0.6).  
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Figure 3.5 The plot of conductance spectra with (a) thickness LkF = 0.2 (for U = EF,      

Z = 0.2 and for U = 3 EF, Z = 0.4) and (b) the barrier potential U = EF (for 

LkF = 0.2, Z = 0.2 and for LkF = 0.6, Z = 0.6).  
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3.4 Conclusions  

The current density and conductance spectra of MIM junction in the Delta-

function and Finite-width models are presented in this chapter. The Delta-function 

model is a simple model as it involves a fewer number of regions and only one 

parameter charactering the insulating layer. This simplicity limits the results of the 

Delta-function model to be valid only when the applied voltage is smaller than the 

barrier potential and the thickness of the insulating layer is small. The current density 

and conductance spectra obtained from the Finite-width model contain oscillations 

when the applied voltage is higher than the barrier potential. The periods of the 

oscillations are not constant and depend on the thickness of the barrier. One learns 

from these results that as long as the main features, of interest, do not occur at higher 

energy scale than the barrier potential and the insulating layer is made thin enough, the 

Delta-function model can be used to study MIM junctions and the parameter Z can be 

related to U and L according to Eq. (3.11). 

 In the next chapter, the current density and conductance spectra of MIS 

junctions are considered. The similar relationships of the insulating parameters of the 

two models are also obtained. 

 

 

 

 

 

 

 

 



CHAPTER IV 

MIS TUNNELLING SPECTROSCOPY 

   
In this chapter, the effect of the insulating layer on the tunneling spectroscopy 

of MIS junction in the both Delta-function and Finite-width models are considered. In 

particular, in the Delta-function model, how the electric current density and 

conductance spectra are affected by Z, the parameter characterizing the insulator, is 

reviewed. In the Finite-width model, the effect of the thickness L and the barrier 

potential U of the insulating barrier is investigated. The results from both models are 

discussed in details and, similar to MIM junction in the previous chapter, the condition 

when the Delta-function model can be used in place of the Finite-width model is also 

given in this chapter. 

Throughout this chapter, the calculations are also limited to one-dimensional 

system in both models and the current density and conductance spectra are those at 

zero temperature. The Fermi wave vectors of both metal and superconductor are 

assumed to have the same magnitude.  

 

4.1 Delta-Function Model 

 In this model, the normal reflection probability B(E) is found to be 

  ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

4 4

1 3 2 5

4 4

1 4 2 6

k k

k k

u E W E W E v E W E W E
B E

u E W E W E v E W E W E

+
=

+
                  (4.1) 

and the Andreev reflection probability A(E) is 
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( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

2 2 2

4 4

1 4 2 6

4 (k k

k k

k E k E u E v E k E k E
A E

u E W E W E v E W E W E

+ − + −′ ′+
=

+

)
              (4.2) 

when W1(E), W2(E), W3(E), W4(E), W5(E) and W6(E) are defined as 

   ( ) ( ) ( )( )( )2 2 2
1 4 FW E k E k E k Z− −′= + +                                (4.3) 

       ( ) ( ) ( )( )( )2 2 2
2 4 FW E k E k E k Z+ −′= − +                                (4.4) 

                   ( ) ( ) ( )( )2 2 2
3 ) 4 FW E k E k E k Z+ +′= − +                                 (4.5) 

( ) ( ) ( )( )2 2
4 ) 4 FW E k E k E k Z+ +′= + + 2                                 (4.6) 

( ) ( ) ( )( )2 2 2
5 ) 4 FW E k E k E k Z+ −′= + +                                 (4.7) 

( ) ( ) ( )( )2 2 2
6 ) 4 FW E k E k E k Z+ −′= − +                                 (4.8)  

where k+(E), k-(E), (E), k +′ k −′ (E), uk(E) and vk(E) are ( ) 2

2 ( )F
mk E E E± = ±

h
, 

( ) ( ) ( )
2 2

2 2
2 2

2 2

2 ,  F k
m Ek E E E u E

E E

± + − ∆′ = ± − ∆ =
2

E

+ − ∆ + ∆
h

,

( )
2

2 2
kv E

E E

∆
=

+ − ∆ + ∆2

k

. 

 Since the range of energy of interest in MIS tunneling spectroscopy is in the 

same order of the superconducting gap, which is much less than the Fermi energy, the 

following approximations are used:  Fk k+ −′ ′ ′= =  and Fk k+ − k= = .  and  are 

taken to be the same. The inequality of the magnitude of both Fermi wave vectors 

affects the current density and conductance spectra in the same way as when Z is 

increased (Blonder and Tinkham, 1983). 

Fk′ Fk
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 With these approximations and assumptions, one gets 

    ( )
( ) ( )( ) ( )

( ) ( ) ( )( )

22 2 2 4

22 22 ( )

k k

k k k

u E v E Z Z
B E

Z u E v E u E

− +
=

− +
2

                          (4.9) 

Note that when E < ∆, B(E) becomes  

  ( )
( )( )

( )( )

2 4 2 2

22 2 2 2

4

2 1

Z Z E
B E

E E Z

+ ∆ −
=

+ ∆ − +
                                 (4.10) 

and when E ≥ ∆, one obtains 

( )
( )( )

( )( )

2 4 2 2

22 2 2 2

4

2 1

Z Z E
B E

E E Z

+ − ∆
=

+ − ∆ +
                                 (4.11) 

As for the Andreev reflection probability, one obtains 

     ( )
( ) ( )

( ) ( ) ( )( )
2 2

22 22 ( )

k k

k k k

u E v E
A E

Z u E v E u E
=

− +
2
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                  (4.12) 

When E < ∆, A(E) is 

( )
( )(

2

22 2 2 22 1
A E

E E Z

∆
=

+ ∆ − +
                                 (4.13) 

and when E ≥ ∆, A(E) is equal to 

( )
( )( )

2

22 2 2 22 1
A E

E E Z

∆
=

+ − ∆ +
                                 (4.14) 

  As can be seen from Eq. (4.10), when Z is small, the probability of normal 

reflection is small for E < ∆, whereas the Andreev reflection probability is close to 1. 

That is, for a transparent barrier, the transfer of electron when E < ∆ is dominated by 

the  two-particle  process, i.e., for  one  incident  electron, there can be two transmitted  
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electrons. In case of large Z, the normal reflection probability is 

( )
( )2 2

1 EB E
2E Z

≈ −
− ∆

 and the Andreev reflection probability 

is ( ) ( )
2

2 2 4
A E

2E Z
∆

≈
− ∆

. 

  Thus, the current density as a function of applied voltage at zero temperature is  

   ( )
( )

( )

2 2 4 2 2

22 2 2 2
0

4
 1

2 2 1

eV Z Z ELej eV dE
E E Zπ

⎛ ⎞∆ − + − ∆⎜ ⎟= +
⎜ ⎟+ − ∆ +⎝ ⎠

∫                     (4.15) 

and the conductance is 

   ( )
( ) ( )

( ) ( ) ( )

22 2 4 2
2

22 2 2 2

4
1

2 2 1

Z Z eVe LG eV
eV eV Zπ

⎛ ⎞∆ − + − ∆⎜ ⎟= +⎜ ⎟⎜ ⎟+ − ∆ +
⎝ ⎠

h
                  (4.16) 

  In Fig. 4.1, the current density and conductance as a function of applied 

voltage at different values of Z are shown.  

The results obtained here are consistent with those from the previous work by 

Blonder, Tinkham and Klapwijk (Blonder, Tinkham, and Klapwijk, 1982). In the case 

where Z is small, there is excess current due to Andreev reflection, which results in 

higher value of the conductance when eV < ∆ than that of the conductance when eV > 

∆. In the case where Z is large, there is a small tunneling current when eV < ∆. When 

eV > ∆, the current is increased linearly. These features in the current spectrum cause 

the conductance spectrum to have the same shape as the density of states of the 

superconductor. 
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Figure 4.1 The plots of (a) current density j and (b) conductance G as a function of 

applied voltage. The different values of Z are 0, 1 and 3. 
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4.2 Finite-Width Model 

In this model, both normal reflection probabilities are expressed in much more 

complicated formulae than those in the Delta-function model. After using the 

approximations , Fk k k+ −= = Fk k k+ −′ ′ ′= =  and assume Fk kF′ = , one obtains the 

following expressions for both reflection probabilities.  

For E < U, 

( ) ( ) ( ) ( ) ( ) ( )
( )

( )

22
2 2

1 2 2

4
1

( )

q E L
F

k k

F

k e
B E M E C E u E D E v E

q E k

⎛ ⎞
⎜ ⎟= + +
⎜ ⎟+⎝ ⎠

+     (4.17) 

      ( )
( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )

2 2

2 2 2 2cosh sinh

k k

F

q E C E v E D E u E
A E

q E q E L k q E L

′ +
=

′ ′ ′+

2

                  (4.18) 

 
where C(E) and D(E) are the probabilities of the electron-like and hole-like quasi-

particle, respectively. These probabilities are defined as 

( )
( ) ( ) ( )( ) ( ) ( )

( ) ( )

22 222 2 2

2 3

4 sinhF k F Fk u E q E q E k q E L k q E
C E

M E M E

224⎡ ⎤′ ′+ + ′⎢ ⎥⎣ ⎦=
+

(4.19)           
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( ) ( )

22 222 2

2 3

4 sF k Fk v E q E q k q E L
D E

M E M E

2inh⎡ ⎤′ ′+⎢ ⎥⎣ ⎦=
+

             (4.20) 

where M1(E), M2(E) and M3(E) are 

( ) ( )
( ) ( ) ( )

2

1 2 2 2 2cosh sinhF

q E
M E

q E q E L k q E L

⎛ ⎞
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                  (4.21)                       
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                    (4.23) 

where the wave vector q(E) and q′ (E) in this case are ( ) ( )2

2mq E U E= −
h

 and                       

( ) ( )2

2mq E i E U′ = +
h

.                                     

For E > U, 
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( )
( )

2
2 2

1 2 2

2

2

4
( )

            

F
k k

F

F

F

k
B E N E C E u E D E v E

q E k
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where  
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22 22 2 2 2 2

2 3

4 sinhF k F Fk u E q E q E k q E L k q E
C E
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             (4.27) 

while N1(E), N2(E) and N3(E) are defined as 

( ) ( )
( ) ( ) ( )
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1 2 2 2 2cos sinF
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                     (4.30)                       

Where q(E) and q′ (E) are ( ) ( )2

2mq E E U= −
h

 and                       

( ) ( )2

2mq E i E U′ = +
h

.                                            

 As shown in Fig. 4.2, for large U and thick L (LkF > 1), the shapes of both 

current density and conductance spectra are similar to those in the Delta-function 

model in the case where Z is large. One can obtain the results similar to those in the 

Delta-function model when Z is small by, taking L to be thin (see Fig. 4.2 in the case 

where LkF = 0.5 and Fig. 4.3 where LkF = 2). 

In the Finite-width model, one can obtain oscillation features in the current 

density and conductance spectra, which cannot be reproduced by the Delta-function 

model, when U is small and L is thick enough (see Fig. 4.4 and Fig. 4.5 for LkF = 50). 

Similar to the oscillations occurring in MIM junctions in the Finite-width model, the 

oscillations in MIS tunneling spectra occur due to the properties of the insulating 

layer. The distance in energy between peak to peak in the conductance spectrum is 

(
22

2 1
2nE

m L
π⎛ ⎞ )n∆ = ⎜ ⎟

⎝ ⎠
h

+                                            (4.31)  

where n is positive integer (n = 1, 2, 3…) and L is the thickness of the insulator. Note 

that the first peak occurs at the energy which is must be greater than both ∆ and U.  

 

 

 

 

 

 

 

 



  

42

0 0.5 1 1.5 2 2.5 3
eV/∆

0

1

2

3

4

j (
A

rb
itr

ar
y 

un
its

)
U=10 ∆, Lk

F
=0.5

U=100∆, Lk
F
=0.5

 
     (a) 

 
 
 
 

0 0.5 1 1.5 2 2.5 3
eV/∆

0.8

1

1.2

1.4

1.6

1.8

2

G
 (A

rb
itr

ar
y 

un
its

)

U=10 ∆, Lk
F
=0.5

U=100 ∆, Lk
F
=0.5

 
        (b) 

 
Figure 4.2 The plots of (a) current density j and (b) conductance G as a function of 

applied voltage at different the barrier potential U = 10 ∆ and 100 ∆, 

when the thickness LkF = 0.5. ∆ = 0.01 EF. 
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Figure 4.3 The plots of (a) current density j and (b) conductance G as a function of 

applied voltage at different the barrier potential U = 10 ∆ and 100 ∆, 

when the thickness LkF = 2. ∆ = 0.01 EF. 
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Figure 4.4 The plots of (a) current density j and (b) conductance G as a function of 

applied voltage at different the thickness LkF = 1, 35 and 50, when the 

potential barrier U =  ∆. ∆ = 0.01 EF. 
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Figure 4.5 The plots of (a) current density j and (b) conductance G as a function of 

applied voltage at different the thickness LkF = 1, 35 and 50, when the 

potential barrier U = 2 ∆. ∆ = 0.01 EF. 
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            The peak-to-peak distance is increased with n. When the insulating layer is 

thicker, the peak-to-peak distance in the conductance spectrum is shorter. 

 

4.3 Comparison and Equivalency of the Two Models 

Similar to MIM junction, one can see that the Finite-width model is more 

realistic in representing the real systems. It provides more information about the 

insulating layer than the Delta-function model, i.e., one can see oscillations occurring 

in both current density and conductance spectra at the voltage higher than the barrier 

potential. This feature cannot be seen if one uses the Delta-function model to represent 

the junction. 

The current density and conductance spectra in the Finite-width model are 

similar to those in the Delta-function model, when the applied voltage is less than the 

barrier potential and in the limit where the thickness L of the insulator region is small. 

This similarity suggests that one can find the equivalency of the two models when the 

insulating layer of the junction is thin. To obtain the equivalency, like in the case of 

MIM junction, one can compare the value of the conductance at zero voltage from the 

two models. The conductance at zero voltage from the Delta-function model is 

2

2( 0, )
(2 1)DG eV Z

Z
= =

+ 2                                        (4.32) 

and the conductance at zero voltage from the Finite-width model is  

( )
( ) ( )

22 2
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4 4
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F F
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F F

G eV L U
U E U EU Lk

UE E UE
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where kF and EF are the Fermi wave vector and the Fermi energy of the 

superconductor region. By considering in the limit of ( )2 / FU E LkF << 1 and 

comparing the two equations above and, one can obtain the relation of the parameter Z 

from the Delta-function model and the parameters U and L from the Finite-width 

model as   

( )
2

F
F

F

U E
Z Lk

E
+

=                                                (4.34) 

which is the exactly the same as that for MIM junction. This result is not very 

surprising because it is the properties of the insulating layer being considered, 

independent of the properties the materials on either side of the layer. 

The relation in Eq. (4.34) can provide the same shapes of current density and 

conductance spectra from the two models within 10% as long as  

3 / 22
3 ( )

F
F

F

E
Lk

U U E
≤

+
                                           (4.35) 

which is again the same as in the case of MIM junction  

In Figs. 4.6 and 4.7, the plots of the current density and conductance spectra 

from the two models using the insulating parameters according to Eq. (4.34) and the 

condition (4.35) are shown. 

As shown in Figs. 4.6 and 4.7, both current density and conductance spectra 

from the two models are the same within 10%. The results get worse as the thickness L 

gets larger or the potential gets bigger. Again, it is worth noted that the bigger values 

of L affect the similarities of the two models more than the higher barrier potential. 
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Figure 4.6 The plot of current density spectra with (a) thickness LkF = 0.2 (for U = 

100 ∆, Z = 0.2 and for U = 300 ∆, Z = 0.4) and (b) the barrier potential    

U = 100 ∆ (for LkF = 0.2, Z = 0.2 and for LkF = 0.6, Z = 0.6). ∆ = 0.01 EF. 
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Figure 4.7 The plot of conductance spectra with (a) thickness LkF = 0.2 (for U =     

100 ∆, Z = 0.2 and for U = 300 ∆, Z = 0.4) and (b) the barrier potential   

U = 100 ∆ (for LkF = 0.2, Z = 0.2 and for LkF = 0.6, Z = 0.6). ∆ = 0.01 EF. 
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4.4 Conclusions 

In this chapter, the tunneling current density and conductance spectra of MIS 

junction in both Delta-function and Finite-width models are examined. In the Delta-

function model, the spectra depend strongly on the barrier strength Z, and in the Finite-

width model, they depend on U and L. The shapes of both current density and 

conductance spectra from the Finite-width model are similar to those from the Delta-

function model when the applied voltage is less than U. More specifically, when L is 

thin, the shapes are similar to those in the Delta-function model when Z is small and, 

when L is thick they are similar to those in the Delta-function model when Z is big. 

The Delta-function model cannot produce oscillations in the current density 

and conductance spectra. These oscillations are seen in the Finite-width model when 

the applied voltage is higher than the barrier potential. The peak-to-peak distance of 

the oscillation is not constant and depends on the thickness of the barrier. One learns 

from these results that as long as the main features, in which one is interested, do not 

occur at higher energy scale than the barrier potential (which is always the case for 

MIS junction) and the insulating layer is made thin enough, the Delta-function model 

can be used to study MIS junction and the parameter Z can be related to U and L 

according to Eq. (4.34). 

 

 

 

 

 

 

 

 

 



CHAPTER V 

CONCLUSIONS 

 
In the thesis, the current density and conductance spectra of the both one-

dimensional MIM and MIS junctions in two models are investigated by using the 

scattering method. In the Delta-function model, the insulator is represented by a delta-

function barrier potential, which is characterized by a unitless parameter Z. In the 

Finite-width model, the insulator is represented by a layer of thickness L with a barrier 

potential U. Eventhough, the latter model is obviously more realistic, it is much more 

complicated because it involves more parameters and more interfaces. Therefore, one 

would incline to use the Delta-function model because of its simplicity. One of the 

questions, which this work is done to find the answer for, is when it is reasonable to 

use the Delta-function model in place of the Finite-width model. 

It is found in this work that both limitations in and the conditions for using the 

Delta-function model is independent of the types of junctions, i.e., they are the same 

for both MIM and MIS junctions, since they are related to the properties of the 

insulator. Both Delta-function and Finite-width models give similar results for both 

types of junctions as long as the applied voltage is less than the barrier potential. This 

is usually the case because the barrier potential in most experiments are of order eV or 

more, while the range of interest of the applied voltage is of order meV or less. 

It  is shown  in  this  thesis  that  the Delta-function model can only be used in  
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place of the Finite-width model only when 1
2

FE
F ULk << , where kF and EF are the 

Fermi wave vector and energy of the metal respectively. (Note that U is generally is of 

the same or one order of magnitude smaller than EF.) When this condition is satisfied 

the two models can be used interchangeably and the parameters characterizing the 

insulator from both models are related to one another through the following 

expression. 

     
( )

2
F

F
F

U E
Z Lk

E
+

=                                            (5.1) 

More specifically, if 

                         
( )

3 / 22
3

F
F

F

E
Lk

U U E
≤

+
                       (5.2) 

The current density and conductance spectra of both MIM and MIS junctions obtained 

from both models are the same within 10%, if one uses the relation (5.1) within the 

condition (5.2) is satisfied.  

 When the applied voltage is higher than the barrier potential, the current 

density and conductance spectra obtained from the Finite-width model contain 

oscillations. These oscillations cannot be explained by the Delta-function model. The 

first peak of the oscillation occurs at the applied voltage just higher than U. The 

distance in energy between two adjacent peaks is not constant, as can be seen from the 

following relation. 

( )1
22

2
2nE n

m L
π⎛ ⎞∆ = +⎜ ⎟
⎝ ⎠

h                                              (5.3)  

where  n  is  a  positive  integer. This  finding  indicates that if one needs to obtain the 

information  about  the  insulator from tunneling spectroscopy, one will need to apply   
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high voltage and use the Finite-width model to represent the system.   
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