FRACTURE TOUGHNESS OF BaTiO₃ - MgO COMPOSITES SINTERED BY SPARK PLASMA SINTERING

Sirirat Rattanachan^a, Yukio Miyashita^b and Yoshiharu Mutoh^b

^aInstitute of Engineering, Suranaree University of Technology, 111 University Avenue, Muang, Nakhon Ratchasima, Thailand 30000

^bDepartmane of Mechanical Engineering, Nagaoka University of Technology 1603-1 Kamitomioka, Nagaoka-shi 940-2188 Japan

Abstract

BaTiO₃-MgO composites with various compositions were fabricated by using a Spark Plasma Sintering (SPS) method. BaTiO₃-MgO composites with very high density were successfully sintered by SPS method. From the experimental results of as-sintered composites, Vickers hardness decreased and fracture toughness increased with increasing BaTiO₃ content. The higher fracture toughness of BaTiO₃-MgO composite with 10 vol% BaTiO₃ content was achieved compared to monolithic MgO. In order to investigate the effect of piezoelectric BaTiO₃ particles dispersed in MgO matrix, fracture toughness of the polarized composites was also evaluated. After polarization, fracture toughness of the BaTiO₃-MgO composites was improved and higher than that of monolithic MgO, while polarization induced distinct anisotropy in fracture toughness between parallel and perpendicular directions to the poling direction.

Published in: Fracture Mechanices of Ceramics, Vol. 14, White, K.W.; Bradt, R.C.; Sakai, H.; Munz, D. (Editors) 2005, XVIII, ISBN : 0-387-24134-5