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Abstract

Dircet Algorithms for constructing generalized discrete tension splines of
arbitrary degree are given. We derive main property of generalized discrete
tension splines, i.e., partition of unity. Moreover, it is shown the generalized
discrete tension splines form weak Chebyshev systems and their series have a
variation diminishing property. Examples of discrete generalized discrete tension
splines are included.
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Generalized Discrete Tension Splines

Pairote Sattayatham

School of Mathematics, Suranaree University of Technology
University Avenue 111, 30000, Nakhon Ratchasima, Thailand,
pairote@ccs.sut.ac.th

Dircet Algorithms for constructing generalized discrete tension splines of
arbitrary degree are given. We derive main property of generalized
discrete tension splines, i.e., partition of unity. Moreover, it is shown the
generalized discrete tension splines form weak Chebyshev systems and
their series have a variation diminishing property. Examples of discrete
generalized discrete tension splines are included.

1. Introduction

Most of the theory of polynomial splines deals with the ease where the pieces are
tie together by continuity of certain derivatives at the knots. But, in the theory of
discrete splines the ties will involve differences instead of derivatives. We will
talk about the continuous case when derivatives are involved, and the discrete
case when differences are involved.

Discrete splines were introduced by Mangasarian and Schumaker (1971)
as solutions to certain minimization problems involving differences instead of
derivatives and after that they have been studied extensively. Until recently,
Kvasov and Sattayatham (1998) investigated discrete tension splines of degree 3
for the sake of developing algorithm for automatic choice of parameter.

In this paper, we study discrete tension spline of arbitrary degree n>3
which is the generalization of the proceeding one.

* This research was supported in part by Suranaree University of Technology.



2. Discrete tension spline of Arbitrary Degree

Let ©> 0 be a small positive number and f(x) be a continuous function on [a, b].
Suppose that the discrete set {X, X+, . . ., Xx+kt} is a subset of [a, b]. The
forward difference of f(x) on [a, b] is defined as follows:

k k-v
k\ (-~
DX f) = Y ( j D fx+vo) 2.1)
T - 0 ‘tk
v=0
We note that if f is k times differentiable at x then
£ (x) = lim D¥ f(x). (2.2)
T—0

Moreover, the operator Dl: has the property
j k j+k
D! D f(x) = D™ f(x).

Now, let a partition A : a = x,< X, <... <Xy =b begiven on

the segment [a, b] to which we associate a space of discrete tension spline S]n)
whose restriction to a subinterval [x;, x, |, i = 0,1, ..., N~1 is spanned
by the system of linearly independent functions

{Lx, ... x"2, ¢; 1 (0, w; (0}
where ¢; (xX) and y; (X) are continuous function on R.

Definition 2.1 The generalized discrete tension spline of degree n is a function
S(x) € SnD such that forany x € [xi, Xigl 1=0,1,...,N-1

(D () = B, + DY 8(x) ¢ () + DY SCx, ) Wy (%)

where P, |, (X) is a polynomial of degree n-2 and ¢i’n(x) , wi’n(x) are

continuous functions on R satisfying the following properties:

¢i,n (Xi+1 +kt) =0 ; k=02, . .,n-1 (2.3)



v, (X +kt)y = 0 k=202..,n-1 2.4)

D(rn—l) ¢ o (X))

DYy, (k) = L (2.5)

(2)  S(x) must satisfy the continuity condition

Il
B
—
s
-
=
I
i

D} S;_j(x;) = D} 8;(x)) ; r

_ (2.6)
1

I
=
»
Z
|
—_

(3) S(x) € Cla, b).

We note that (2.1), (2.3) and (2.4) imply that

DO ¢, o (x,) = DPwi(x) =0 3 r=01...,0-1 (27
Moreover the coﬁtinuity condition (2.6) implies that

S, (x;+kt) = §; (x;+kt) ; k=01.., n-1. (2.8)

We denote Sr? the set of splines satisfying Definition 2.1 The function
) i ,(x) and wy; (x) depend on the tension parameters which influence

essentially the spline behaviour. We call then the defining relations. In practice,
one takes

d)i’n(x) = (‘pl(q1>tl)h123 Wi’n(x) = \Ui’n(pia tl)hlza O S pi9 qi< «©

Here t;=(x-x;)/h; and h;= (x;{;;-%;) ; i=12,...,N=-1 In the
limiting case when p,, q; >, we require that limpi_No v.(p;» q;) =0,
limqi_)OO ©,(p;> t;) = 0 so that the formula (1) in Definition (2.1) turns into a

polynomial function of degree (n). If p, = q; = 0, we get a discrete polynomial
spline with

6. (x) = (xiH«x)(xH_l—x+vfc)...(><i+1—x+(n—l)t)/n!hi

vy (x) = (X, = x)NX; —X+7T) . .. (xi—x+(n—1)t)/n!hi.



Consider the problem of construction of a basis in the space SnD consisitng of the

functions with a local 'support of minimal length. For this, it is convenience for
us to extend the mesh A by adding points

Xop< oo <X <a<h<xy, <. < Xy,

Since dim(S2) = (n+ 1N - n(N-1) = n+N, it is suffice to construct the

system of linearly independent splines B j X)) 5 )= -n...,N-1 in Sr?
such that
Bj,n x)>0 ; xe¢€ (xj+(n——l)t, Xj+n+l) (2.9)
B, =0 ; xe (xj,xmﬂ) (2.10)
N-1
> B; ,(x) =1, for x €[ab] (2.11)
j=-n

Since the splines B in (x) must satisfy definition (2.1), then by refering to the
conditions (2.3), (2.4) and (2.9), (2.10) the graph of B i (x) has a small ripple
in the inteval [xj, X; +kt] (k=1,...,n-1) where it can go to negative.

See Figure 1.

Figure 1. A generalized discrete tension spline B i3 (%)
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It follows from (2.8) and 2.10) that
Bj’n(xj) =B (x;+1) = ... = B, ,(x;+(n-D1) = 0. (2.12)
The equation (2.12) implies that
DB (x) =0 ; r=01 R (2.13)

Moreover, since B in (x) = 0 outside the interval (x i* Xjen +1)> then

DB, (Xjpe) =0 5 £=01..,(n-D. (2.14)

According to Definition 2.1, the basis spline B i (x) which is different

from zero only in the interval (x i* Xjen 1) should have form

Di“"l) B (XD vin(® 5 XS x <X,

P2 + DU VB (x5, ) 05,0 (0)
-1
+ Dgn ) Bj,n(xj+l+1) Wj+€,n(x)
Bj,n(x) = < (2.15)

XJ+eSXSXJ+£+I’ £= 1,...,n—1

(n-1)
Dr Bj,n(xj+n) ¢j+n,n(x) ’ Xj+n SXs Xj+n+1

0 5 x & (X} Xjnep)

\

The form of Bj,n (x) in (2.15) for x € [xj+k, Xj+k+1]’ k = 0, n has been

simplified in virtue of the relation (2.12) and (2.13). Taking into account the
continuity condition (2.6), we have the relation '

r
(X"Xj+e)

n-2
- (n~1) (1)
Py =P, 050 + DIVB, (xp,) D, Dz, =
r=0 ) )

¢=1...,n (2.16)



where D'(cr) Zivon = br[Dgr) Wj+€—-1,n(xj+€)_D£r) ¢j+€,n(xj+€)] for some
constants br, r=20,1...,n-2

To see this, let us fixed ¢ < {1, 2, ...,n-1}.
It follows from (2.15) that

_1 ‘
Bin() =Py 1000 + DIV B) (xp,, )by, 1 (0)

+ Dgn—l) B',n(xj+€) Wj+€—1,n(x) > Kjagp SXSX 2.17)

j+e
Bin(®) =P, (0 + Dgn—l) B;n(Xj.p) Pivprn(X)
-1 .
+ Dgn )Bj,n(xj+€+l) Yion(X) Xjpg SX S Xy (218)
we obtain from the equations (2.17) and (2.18) that

~1
DI B;,(x) = DV P, | ,(x) + D" "B (xpp ) D 6, L ()

-1 :
+ Din )Bj,n(XJM) Dﬁr) Vireo1n(X) Xjre-1 S X < X5,

and

D" Bjy(0 = DV Py, 10 + DIV B (x,,,) 6, (%)

-1 .
# DY B () D i a0 5 g, S x Xjes1:

By continuity condition (2.6) at x = x.

j+g> one gets

(r) — (D
DY Pin-2(xjs) = DY Pi o a2 (Xjep) +

(n-1) (r) (r)
D" B 1 () [DY Wireotn(Xjug) = D7 0,0 (x5, )]

r=0,1...,n-2 (2.19)



We note that Dgr) Oivomin(Xjrg) = Dgr) Wippn(X;,,) =0 by equation (2.3)
and (2.4) respectively.

Now, let us suppore that

n-2 (X'Xj+€)r

Pipaa(X) = Z a, (2.20)
r=0

r!l
where
— p(n) —
a, = Pj,rz,n-z (Xjg) = b, Dgr) Pj,e,n—z(xj+e)

for some constatnts b S 0,1,..., n-2 and by virtue of (2.2), we can

easily see that b, »>1 as 1—0.
Substitute (2.19) into (2.20), we get

n-2 (x=-x.,)f
_ (r) jxt
P ina(¥) = 2. b DS P a2 () - o
r=0 :

n-2
-1
+ D3 B;  (Xip) > D(rr) Zi+t,n
r=0

(2.21)

= (r) ()
where D: Zivgn = b, [D; Wj+£—1,n(xj+£) - D} ¢j+£,n(xj+€)]'

Since b, [Dgr) ISR CIW) b Pj(,rz)—l,n—z(XjM) as t—>0, then

P; z,n;z(x) in (2.21) can be approximated by

n-2
— -1 )
Pj,e,n—z(x) = Pj,e-l,n-z(x) + Dgn )Bj,n(x'+€) Z D(rr Zi4n ol
r=0 )

J

¢=1...,n (2.22)

As in (215), P, (%)

0, ¢ =0,n Then by repeated application of
(2.22), we are ‘



Using the normalization condition (2.11), for x e [x i X +1] and using (2.15),

(2.16), we get

J

. i1 j
Z BJ-,3 x) = ¢j,3 (X){ Z D?) B ; (xj)} W (x) { Z D?) B, 5 (Xj“)ji

i=j-3 i=j-3 i=j-2
(2) QY]
- DY B, 3 (Xj.) Dy 2y, 5 (X=¥j3) +

DP B, ; x)DVz s (x-y;5) = 1.

Hence, by virtue of the linear independence of functions 1, x, ¢ i3 (x), and

Vi3 (x), we obtain the equations

j-1 j
2 _ 2

> Dg)Bw(xj) =y D§>Bi,3(xj+1) - 0

¢=j-3 t=j-2

DP B, 5 (x;,,)DPz,, , -DP B, ;(xpDP 2,5 =0 (2.24)

j+L3

2 I 2 ., -
Dg)Bj—2,3 (%j,1) Dg)zj+1,3 Yi+1,3 ~ Dg)Bj-l,.’, (x;) Dy7 25 3¥55,5 = L

It follows immediately from the system (2.24) and by using the shift of index, we
obtain the following formulas

1

(D
DY 253 Wja2,3= Ve, 3]

2
Dg)Bj,S (Xj41)

-1 1 1
DP B, (x.,,) = +
3 K2 1 g .
: DY Zivaz [ Y237 Yiens o Y337 Y23
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Figure 1. The discrete B-splines of order k = 1,2, 3 (from left to

right) on a uniform mesh with step size h = 1, no tension and
discretization parameter 7 = 0.1.
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Figure 2. Same as Fig. 1, but with discretization parameter 7 = 0.33.
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Figure 3. Same as Fig. 1, but with discretization parameter 7 = 0.5.
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3. Series of Discrete GB-splines

According to Definition 2.1, we have denoted SnD to be the set of splines
S(x) with n-1 continuous divided differences such that in any subinterval
[xi, XM], 1=20,1,...,N-1, they are spanned by the functions

(Lx X2, 0,00, w0}

Using the method of Schumaker (19531), it is easy to show that the splines
B; n(x), j= —n,...,N-1, have minimum length supports, are linearly

independent, and form a basis in the space SnD can be uniquely represented in

the form

N-1
S(x) = .Z b B, (%)

j=-3
with some constant coefficient bJ. iy
Let us suppose that each step size h, = x,  —x; of the mesh
Ara = X, < X, < .. <Xy=Db isan integer multiple of the same tabulation

step T of some detailed uniform refinement on [a, b].

For 6 € R, t>0 define
R, = {9 +it|iis an integer}

and let Reo = R. Forany a,b € R and t>0 let

[2,b], = [a,b]NR,..

By equation (2.9), the splines BJ. (x) j = —-n,...,N=1 are nonnegative
functions on [a, b]_ and as a consequence, we can reprove the main results of

Sattayatham (1995) for series of generalized discrete tension splines. Even more,
one can obtain those results from corresponding assertions for generalized
discrete tension splines as a limiting particular case when T — 0.

12
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Let f(x) be a function defined on the discrete set [a, b] . We say that
f(x) has a zero at the point t € [a, b]_ provided

f(t) - or f(t).-f(t+1) < 0.

When f(x) vanishes at a consecutive set of points of [a, b] , f(x) is 0 at

t,...,t+(r=D%, but f(t-1).f(t+rt) # 0, then we call the set

T = {t, t+1, ... ,t+(r—l)t} a multiple zero of f(x), and we define its
multiplicity by
I, if f(t-7).f(t+rr) <0 and r is odd
Z.(f) = §1, if f(t-7).f(t+rz) > 0 and r is even

r+1, otherwise .

This definition assures that f changes sign at a zero if and only if the zero is of
odd multiplicity (see Figure 4 for example)

! 3 ]

[ w 1] ek}
1 i i | - T 1 t ./ T

L)
Vasy P\
A7 24
t c J
Simple zeros Double zero

Figure 4.  Zeros of a generalized discrete tension spline.

1 H
1 1]

>

Triple zero

Let Z[a b] (f (x)) be the number of zero of a function f(x) on the discrete set

[a, b]_, counted according to their multiplicity.

Theorem 3.1 (Rolle’s Theorem for Generalized Discrete Splines). For any
S(x) € Sr?,

Z[ayb]r(D'r S(x)) 2 2,y (S(0) - 1 (3.1)

13



Proof : First, if S(x) has a z-tuple zero on the set T = {t,...,t+(r—1)t}, it
follows that Di S(x) has a z-1-tuple zero on the set T' = {t,...,t+(r—2)'c}.

Similarly, if S(x) has a z-tuple zero on an interval, then Di S(x) hasa z-1-
tuple zero on the same interval. Now if T, and T, are two consecutive zero
sets of S, then it is trivially true that Di S(x) must have sign change at some

point between T; and T, . Counting all of these zeros as in the case of ordinary
polynomial splines, we arrive at the assertion (3.1). This proves the Theorem #

Theorem 3.2 For every S(x) e Sr? that is not identically zero in any

subsegment [xi, X i=20,1,...,N-1. Wehave

i+1]’

Ziyy (8(0) < N+n-L.

Proof : Using the same method of B.I. Kvasov and P. Sattayatham [1998],
one can show that

N-1

(n~1) -

D"VS(x) = X b, B (%
j=-1

where
(n—-1)
DI v (), X;< X <X,
— (n=1)
Bj,l(x) =y D; ¢j+l(x), X, S X <X
0, otherwise.

Here the functions Dg“"l) ¢.(x) and D(T“_l) v, (x) are assume to be
monotonous and nonnegative on these subsegments. Hence Z[a b] (D;‘"1 S(x))
< N. Then according to the Rolle’s Theorem 3.1, we find that Z[ b] (S8(x))

a’

< N+n-1. This complete the proof.

Denote by supp B; (x) = {x eR__| B, (x> 0} the discrete

support of the spline Bj’n(x), i.e. the discrete set (xj+(n-Dr, Xjrn+1) -

14



Theorem 3.3 Assume that §_ < C_ | < ... < §y_, are prescribed points

in the discrete line Ra . Then

D = det(Bj G =2 0, b k= —-n,... ,N-1
and strict positivity holds if and only if
Cj € supp, Bj’n(x), j= -n,...,N-1. (3.1

Proof : let us prove the theorem by induction. It is clear that the theorem holds
for one basis function. Assume that it also holds for (/—1) basis functions. Let

us show that if (3.1) is satisfied, then D # 0 for ¢ basis functions.
Let G, #supp B, (%), then §, lies to the left with respect to the

discrete support of B, (x). This implies that the last column (line) of the
determinant D consists of zeros, i.e., D=0. If {, esupp B, (x) andD =0,

then there exists a nonzero vector € = (C_,, ..., €y_,—1) such that

f-n-1
S = 2, ¢;B; (&) k= -n .., f-n-1,ie, the spline

j=-n
S(x) has ¢ zeros. But this contradicts to Theorem 3.2, which states that S(x) can
have no more than (¢ —1) zeros. Hence € = 0 and D = 0.

Now it only remains to prove that D > 0 if (3.1) is satisfied. Let us
choose x, +t< ¢, <X, ,—71 forall k. Then the diagonal elements of D are

positive and all the elements above the main diagonal are zero, is D > 0. It is
clear that D depends continuously on &, k =-n,...,¢-n-1, and D # 0

for Cg € supp. By n(X). Hence the determinant D is positive, if condition
(3.1) is satisfied. This completes the proof.

The following three corollaries follow immediately from the theorem.

Corollary 3.1 The system of generalized discrete B-splines {B ia(X)},
j = —n,...,N-1, associated with kriots on R, ; is a weak Chebyshev system

according to the definition given in Schumaker (1981) i.e., for any
Eon< & ns1< .- <Cnorin R, ;, wehave D20 and D >0 ifand only if

15



condition (3.1) is satisfied. If the latter is satisfied, the generalized spline
S(x) = Zj\i—_g b; 3 B; 3(x) has nomore than N +2 zeros.

Corollary 3.2 If the condition of Theorem 3.3 are satisfied, the solution of the
interpolation problem

S(gl) = fi’ 1 = —-n, .. .,kN—l, fl e R (32)
exists and is unique.

Let A = {aij}, i=1..,m j=1..,n, be a rectangular m x n

matrix with m < n. The matrix A is said to be totally nonnegative (totally
positive) (e.g., see Karlin (1968)) if all the minors of any order of the matrix are
nonnegative (positive), i.e. forall 1<p<m, we have

det(a; ;,) 2 0 (>0) forall i<ij<..< I, <m
1<ji<...<i,<n
Corollary 3.3 For arbitrary integer —n < Vop < oo < Vo p g S N-1 and
Con<Cipsr1< ... < Cp-n-1s in R, . we have

D, = det{Bvi,n(gj)} >0, i,j= -n,..,p-n~1

and D, >0 ifandonlyif §; € supp, By n(x), i= -n,...,p-n-1,ie,

the matrix {Bj’n (Ci)} , 1,j = =n,...,N=1 is totally negative.

The last statement is proved by induction on the basis of Theorem 3.3 and
the recurrence relations for the minors of the matrix {B in (G )} . The proof does

not differ from that cited by Schumaker (1981).

De Boor and Pinkus [1977] proved that linear systems with totally
nonnegative matrices can be solved by the Gauss method without choosing a

point element. Thus the system (3.2) can be solved efficiently by conventional
sweeping method.

16
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University Development fellow. Chulalongkorn University,
Bangkok, Thailand (Ph.D. Student)

Instructor in Mathematics, Srinakharinwirot University,
Pitsanuloke, Thailand.

Doctor of Philosophy (Functional Analysis, Mathematics)
Chulalongkorn University, Bangkok, Thailand (Thai

Government Fellow)

Master of Science (Differential Geometry, Mathematics)
Chulalongkorn University, Bangkok, Thailand (Thai
Government Fellow)

Bachelor of Science (Mathematics), Thammasat University,
Bangkok Thailand.

IV. POST-DOCTORAL FELLOWSHIPS AND TRAINING

1994

1992

1992

1992

1990

Short-term training in Computer Aided in Geomertic Design

K

University of Sains Malaysia, Penang, Malaysia

CIMPA Summer School of Robotics and Computer Vision,
Sophia Antepolis, Nice, France (CIMPA & French

Government Scholarship)

CIMPA Summer School of Structural Optimization, Sophia
Antepolis, Nice, France (CIMPA & French Government
Scholarship)

Short-term training in Partial Differential Equation with
empbhasis on Wavelets and P.D.E.’s, University of Waseda,

Tokyo, Japan.

Summer School on Differential Geometry, Chulalongkorn

University, Bangkok, Thailand.
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1989

CIMPA Summer School of Artificial Intelligence, Sophia

Antepolis, Nice, France (CIMPA & Thammasat University
Scholarship)

V. AREAS OF SPECIALIZATION

Teaching, Research and Consultancies in the following fields:

Mathematics :  Functional Analysis

Mathematical Method in Computer Aided Geometric Design

V1. PUBLICATIONS

A. SCIENTIFIC ARTICLES

1.

Sattayatham, P. A Convergence to Infinity in Banach Lattices,
J. Natl. Res. Council Thailand 23 (2), 32-39 (1991).

Sattayatham, P. Some Properties of Solutions to Semilinear Heat
Equations, Proceeding of the Mathematical Research, Chiang-mai Univ.
vol. 2,, 26-28 (1992).

Sattayatham, P. The Hyperplane Mean of a Non-negative Subharmonic
Function, Science and Technology Journal, Thammasat University, vol. 2,
No.1, 1-7 (1993)

Sattayatham, P. On the Functions that Preserve Harmonicity in the
Euclidean Space, SEA Bull. Math., Vol. 17 No.1, 45-50 (1993)

Sattayatham P. Semi-Continuous Functions in Banach Lattices, ]. of
Physical Science, USM, Malaysia, Vol.5, 103-116 (1994).
Sattayatham P. and B.I. Kvasov Generalized tension B-splines of
arbitrary degree, submitted to Int J. Comp. and Applied Math. (1995).

Sattayatham P. and B. I Kvasov Fair-Shape-Preserving Approximation

via Tension B-splines, Proceeding of the Mathematics of Surface, Univ.of
Dundee, 1996.

4

Sattayatham P. and X.L. Xiang, Nonlinear Delay Evolution Equation,
to appear in JOTA, 1998.
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B. BOOKS (Written in Thai)

1. Sattayatham, P. Mathematical Statistics. Srinakharinwirot Univ.

Press, 1983.

2. Sattayatham, P. Functions of Complex Variables. Srinakharinwirot Univ.
Press, 1984.

3. Sattayatham, P. Elementary Differential Topology. Srinakharinwirot Univ.
Press, 1985.

4. Sattayatham, P. Advanced Calcu'lus. Thammasat Univ. Press, 1992
Sattayatham, P. Calculus. Suranaree Univ. Press, 1993

6. Sattayatham, P. Partial Differential Equation. Suranaree Univ. Press,
1995. | |

C. INVITED ARTICLE

1. Sattayatham P. Introduction to the Subject of Wavelets and P.D.E.’s,
given at the Annual Meeting in Mathematics Khon Kaen Univ., May 1995.
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