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= g(u, û) . . . . . . . . . . . . . . . . 33

6.4 The Equation u′′(x) = u(x)− u(x− r) . . . . . . . . . . . . . . 34

6.4.1 Solutions of the Determining Equation . . . . . . . . . . 34

6.4.2 The Admitted Lie Group . . . . . . . . . . . . . . . . . . 38

6.5 The Equation
∂u

∂t
+ u

∂u

∂x
= û− u . . . . . . . . . . . . . . . . . 39

6.5.1 Solutions of the Determining Equation . . . . . . . . . . 39

6.5.2 The Admitted Lie Group . . . . . . . . . . . . . . . . . . 42

VII Conclusion 46

References 49



VI

Contents (continued)

Page

Appendices

Appendix A Notation 53

Appendix B Derived Equations 54

B.1 The Function
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Chapter I

Introduction

The purpose of this thesis is to develop an algorithm for applying group

analysis to functional differential equations (FDEs).

In applications, many phenomena in Mathematics, Physics, Chemistry and

Biology are modelled by FDEs. A present, most solutions of these equations are of

numerical type, with only approximate solutions obtained. Among all the meth-

ods used for finding exact solutions of differential equations, group analysis of

differential equations is one of the most powerful methods.

Group analysis was first introduced by Sophus Lie in the 1870s. For more

than a hundred years, group analysis has been applied to many types of differ-

ential equations, e.g. ordinary differential equations (ODEs), partial differential

equations (PDEs), differential-difference equations, integro-differential equations,

etc.

Group analysis involves the study of symmetries of differential equations,

with the emphasis on using the symmetries for finding solutions. For ODEs and

PDEs, it provides a systematic procedure to find all symmetries of the equations.

In the case of an ODE, the existence of a symmetry allows us to reduce the

order of the equation. The solution of the original equation can then be obtained

by solving the reduced equation. For the single first order ODE, this method

provides an explicit formula for the general solution.

For a given system of PDEs, group analysis usually cannot determine the

general solution. However, tt may indicate when the system can be transformed
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into an easier form. One can use symmetry groups to determine special types of

solutions, which are invariant under some subgroup of the full symmetry group of

the system. Such solutions are found by solving a reduced system of the differential

equations depending on fewer independent variables than the original system.

Group analysis has been applied to differential-difference equations1 and

integro-differential equations2. There are also a few results related to delay differ-

ential equations (DDEs) and functional differential equations (FDEs).

The main obstacle for applying group analysis to solve DDEs and FDEs is

the non-locality of the equations. To overcome this complexity, Linchuk (2002)

used the theory of formal operators and the principle of factorization. But even

with this approach, the full symmetry group of DDEs and FDEs could not be

found.

While preparing the text of this thesis, the author found an article pre-

senting an approach similar to the approach developed in this thesis (Zawistowski,

2002). But there are no examples and there is no analysis for splitting the deter-

mining equations.

This thesis is devoted to developing an approach which can give all sym-

metries of DDEs and FDEs. Here, the definition of a symmetry group is a group

of transformations converting every solution of an equation into another solution

of the same equation. With this definition of symmetry group, the determining

equations of delay differential equations and functional differential equations can

be obtained. The key for solving the determining equations is the existence of

1See, e.g. Yanenko and Shokin (1973, quoted in Ibragimov, 1996), Dorodnitsyn (1987, quoted

in Ibragimov), and Levi and Winternitz (1991)
2See, e.g. Taranov (1976, quoted in Ibragimov), Bunimovich and Krasnoslobodtsev (1982,

quoted in Ibragimov), Grigoriev and Meleshko (1986, quoted in Ibragimov), and Kovalev, Pus-

tovalov and Senashov (1992, quoted in Ibragimov)
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solutions of initial value problems. The existence theory provides the arbitrari-

ness of variables and functions that enables us to split the determining equations

into systems of several equations. After solving the split equations, one obtains

symmetries of DDEs and FDEs.

The thesis begins with definitions and properties of FDEs and DDEs. A

review of group analysis is then presented. The following two chapters show how

one can apply group analysis to DDEs and FDEs. Examples and conclusion are

presented in the last two chapters.



Chapter II

Functional and Delay Differential Equations

Functional differential equations were first encountered in the late eigh-

teenth century by the Bernoullis, Laplace and Condorcet (Hale, 1971). This type

of differential equation plays a large role in mathematical, physical and biological

modelling : the distribution of prime numbers (Driver, 1977), the two-body prob-

lem of electrodynamics (Driver), geometrical problems (Driver), control systems

(Driver), prey-predator population models (Driver), the modelling gene expression

with differential equations (Chen, He, and Church, 1999), population growth mod-

els, financial mathematics, weather forecasting, etc. Because of their use in many

branches of science, the theory of FDEs has been and is still being developed.

This chapter presents the definition of an FDE and that of a particular type

of FDE, the delay differential equation (DDE).

2.1 Functional Differential Equations

Definition 2.1 (FDE). An equation involving functionals1 of independent vari-

ables, dependent variables and derivatives of dependent variables with respect to

one or more independent variables is called a functional differential equation.

1Some familiarity with the concept of “functional” and related concepts is assumed but a

review is included in C.1, Appendix C. One may find the definition and its concepts from

textbooks, e.g. Kreyszig (1978).
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Examples of FDEs (Hale; Kolmanovskii and Myshkis, 1992) follow:

• a linear retarded FDE ,

u′(x) = ku(x− r),

where k, r are constant, r > 0 and k 6= 0.

• an advanced FDE,

u′(x) = u(x+ r),

where r is constant, r > 0.

• a mixed type FDE,

u′(x) + au(x− r) + bu(x+ r) = 0,

where r, a, b are constant and r > 0, a 6= 0, b 6= 0.

• an FDE with aftereffect,

u(m)(x) = f(x, u(m1)(x− h1(x)), ..., u
(mk)(x− hk(x))), (2.1)

where u(x) ∈ Rn, u(mi) is the mi-order derivative of u with respect to x and

all mi ≥ 0, hi(x) ≥ 0, i = 1, ..., k.

In the literature, equation (2.1) is called

◦ a functional differential equation of retarded type or retarded differential

equation (RDE), if max{m1, ...,mk} < m;

◦ a functional differential equation of neutral type (NDE), if

max{m1, ...,mk} = m; and

◦ a functional differential equation of advanced type (ADE), if

max{m1, ...,mk} > m.
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• a functional integro-differential equation of Volterra type,

u′(x) = f

(
x,

∫ x

x−h(x)

K(x, θ, u(θ))dθ

)
,

where h(x) is a real functional of x such that h(x) ≥ 0.

• a model of two interacting species,

du1

dx
(x) = a1u1(x)− a2u1(x)u2(x)− a3u

2
1(x),

du2

dx
(x) = −a4u2(x) + a5u1(x− h)u2(x− h),

where ai > 0 are constants, i = 1, ..., 4, and delay h > 0 is the average time

between the death of preys and the birth of subsequent predators.

• a model of the human immunodeficiency virus (HIV) epidemic,

dS

dt
(t) = Λ−B(t)− S(t),

(
∂

∂t
+
∂

∂τ
)i(t, τ) = −[1 + α(τ)]i(t, τ),

i(t, 0) = B(t) = S(t)C(T (t))
W (t)

T (t)
,

T = I + S, I(t) =

∫ ∞

0

i(t, τ)dτ,

W (t) =

∫ ∞

0

λ(τ)i(t, τ)dτ,

dA

dt
(t) =

∫ ∞

0

α(τ)i(t, τ)dτ − (1 + ν)A(t),

where S, I and A are the populations of uninfected but susceptible, HIV

infected and fully developed acquired immunodeficiency syndrome (AIDS)

cells respectively, t is time, τ is time elapsed from the moment of infection,

Λ is the (constant) rate of growth of the sexually active population, B(t) is

the number of new cases of infection per unit time, i(t, r) is the infection-age

density, C(T (t)) is the average number of sexual contacts an average person

has in unit time, ν is the average death rate of a person with AIDS, and

τ 7→ λ(τ) is a given nonnegative function.
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Similarly to the classification of differential equations by order, we classify

FDEs according to the order of the highest derivative appearing in the equation.

Definition 2.2. The order of an FDE is the order of the highest derivative of the

unknown function entering in the equation.

Definition 2.3. A solution of an FDE in some region R of the space of the inde-

pendent variables is a function that has derivatives and functionals of derivatives

appearing in the equation in some domain containing R and satisfies the equation

everywhere in R.

As there is yet no general theory for solving FDEs, it is difficult to deal

with an abstract and general equation under the given definition of an FDE. For

the sake of simplicity, the study will begin from a particular case of FDEs, namely

the delay differential equation (DDE), and its theory.

2.2 Delay Differential Equations

Although a DDE is a particular type of FDE, it also plays a role in many fields:

nuclear reactors (Ergen, 1954; Levin and Nohel, 1960; Gorjačenko, 1971, quoted

in Driver, 1977), electron energy distribution in a gas discharge (Sherman, 1960,

quoted in Driver), transistor circuits (Gumowski, 1962, quoted in Driver), photo

emulsions (Silberstein, 1940, quoted in Driver), elasticity (Volterra, 1909; Gurtin

and Sternberg, 1962, quoted in Driver), the spread of infectious diseases (Lotka and

Sharpe, 1923; Wilson and Burke, 1942; London and Yorke, 1973, quoted in Driver),

neurology (Melzak, 1961, quoted in Driver), the respiratory system (Grodins, Buell

and Bart, 1967, quoted in Driver), business cycles and economic growth (Kalecki,

1935; Goodwin 1951; Cooke and Yorke, 1972, quoted in Driver) and the production

and death of read blood cells (Chow, 1974, quoted in Driver).
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Definition 2.4 (DDE). Delay differential equations with one independent vari-

able, or functional differential equations of retarded type, are of the form

u′(x) = f(x, u(g1(x)), ..., u(gq(x))), (2.2)

where x ∈ [x0, β), u : [γ, x] 7→ D, D is an open subset in Rn, u and f are n-vector-

valued, sufficiently time differentiable functions, f : [x0, β) × Dq 7→ Rn, and for

each λ = 1, ..., q, γ ≤ gλ(x) ≤ x, for x0 ≤ x < β.

Note that g1 is usually chosen to be the identity mapping.

Definition 2.5. A solution of equations (2.2), with the initial condition θ(x)

defined on [γ, x0], is a continuous function u : [γ, β1) 7→ D, for some β1 ∈ (x0, β]

such that

1. u(x) = θ(x) for γ ≤ x ≤ x0, and

2. u′(x) = f(x, u(g1(x)), ..., u(gq(x))) for x0 ≤ x ≤ β1.

Remark. The derivative of u at the point x0 is considered only from the

right-hand side.

Definitions 2.4 and 2.5 indicate that initial values of DDEs have to be sat-

isfied for the whole interval considered. In other words, they are of non-local

differential equation type.

2.3 Existence Theory of Solutions of DDEs

One of the main requirements for solving determining equations2 is the existence

of solutions of DDEs. This section presents definitions and theorems concerning

2See definition of determining equation in 3.5, Chapter III.
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the existence theory of solution of DDEs. They are similar, but more general, to

the existence theory for ODEs. The following definitions and theorems come from

Driver (1977).

Consider a delay differential system

u′(x) = f(x, u(g1(x)), ..., u(gq(x))). (2.3a)

By definition 2.4, we may assume that

x− r ≤ gλ(x) ≤ x for x ≥ x0, λ = 1, ..., q,

for some constant r ≥ 0. The initial condition takes the form

u(x) = θ(x) for x0 − r ≤ x ≤ x0.

Note that system (2.3a) is reduced to a system of ODEs if r = 0. It is assumed

that f is defined on [x0, β)×Dq 7→ Rn for some β > x0 and some open set D ⊂ Rn.

Since the notation of system (2.3a) is cumbersome, it would be better to

have a simpler notation.

If u is a function defined at least on [x− r, x] 7→ Rn, then we define a new

function ux : [−r, 0] 7→ Rn by

ux(σ) = u(x+ σ) for − r ≤ σ ≤ 0.

From another point of view, ux is obtained by considering only u(s) for x−r ≤ s ≤

x and then translating this segment of u to the interval [−r, 0]. If u is a continuous

function, then ux is a continuous function on [−r, 0].

Let real numbers r ≥ 0 and x0 be given and let x0 < β ≤ ∞. Let D be an

open set in Rn, and let F be defined on [x0, β)× CD 7→ Rn, where CD is the set of

all continuous functions mapping [γ − x, 0] 7→ D, or CD = C([γ − x, 0],D). Define

F (x, ux) ≡ f(x, u(g1(x)), ..., u(gq(x))).
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Then system (2.3a) can be written as

u′(x) = F (x, ux). (2.3b)

Given any φ ∈ CD, we seek a continuous function u : [x0 − r, β1) 7→ D for

some β1 ∈ (x0, β] such that system (2.3b) is satisfied on [x0, β1) and

ux0 = φ. (2.4)

For the existence of solutions of system (2.3b), it is sufficient to require the

following conditions on F .

Definition 2.6. A function F (x, ux) satisfies the Continuity Condition (C) if

F (x, ux) is continuous with respect to x in [x0, β) for any given continuous function

u : [x0 − r, β) 7→ D.

If F satisfies the Continuity Condition (C) then a continuous function u :

[x0, β1) 7→ D is a solution of equations (2.3b) and (2.4) if and only if

u(x) =


φ(x− x0) for x0 − r ≤ x ≤ x0,

φ(0) +
∫ x

x0
F (s, us)ds for x0 ≤ x ≤ β1.

(2.5)

In order to define a Lipschitz condition, a means for measuring the magni-

tude of elements of CD is required.

For a function ψ ∈ CD,

|ψ|r = sup
−r≤%≤0

|ψ(%)|.

Definition 2.7. Let F : [x0, β)× CD 7→ Rn and let E be a subset of [x0, β)× CD.

If for some K ≥ 0

|F (x, ψ)− F (x, ψ̄)| ≤ K|ψ − ψ̄|r, (2.6)

whenever (x, ψ) and (x, ψ̄) ∈ E , we say that F satisfies a Lipschitz condition (or

F is Lipschitzian) on E with Lipschitz constant K.
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Definition 2.8. A functional F : [x0, β) × CD 7→ Rn is locally Lipschitzian if for

each given (x̄, ψ̄) ∈ [x0, β)× CD there exist numbers a > 0 and b > 0 such that

E ≡ ( [x̄− a, x̄+ a] ∩ [x0, β) )× {ψ ∈ CD : |ψ − ψ̄|r ≤ b}

is a subset of [x0, β)× CD and F is Lipschitzian on E .

Remark. The Lipschitz constant for F depends on the particular set E .

Theorem 2.1 (Local Existence). Let F : [x0, β)× CD 7→ Rn satisfy Continuity

Condition (C) and be locally Lipschitzian. Then, for each φ ∈ CD, equations (2.3b)

and (2.4) have a unique solution on [x0 − r, x0 + ∆) for some ∆ > 0.



Chapter III

Group Analysis

In the latter part of the 19th century, Sophus Lie, a Norwegian mathemati-

cian (1842-1899), introduced the notion of continuous transformation groups, now

known as Lie groups, in order to create a theory of integrating ordinary differential

equations, which is similar to the Abelian theory of solving algebraic equations. He

gave a definition and investigated the fundamental concepts of the group admitted

by a given system of differential equations. Later, these groups were applied to

many types of differential equations. At present, treatment of Lie group of trans-

formations and the differential equations admitted by these groups is called group

analysis of differential equations.

This chapter introduces the basic ideas of Lie groups, which are necessary

for the later chapters. The material in this chapter is reviewed from Bluman

and Kumei (1996), Ibragimov (1996), Ibragimov (1999), Lie (1891), Olver (1993),

Ovsiannikov (1978) and Stephani (1989).

3.1 Lie-point Transformations

Let x = (x1, . . . , xn) be n-tuples of the independent variables and u = (u1, . . . , um)

be m-tuples of the dependent variables. Consider invertible transformations of x

and u

x̄ = (x̄1, . . . , x̄n) = (ϕx
1(x, u; a), . . . , ϕ

x
n(x, u; a)) = ϕx(x, u; a),

ū = (ū1, . . . , ūm) = (ϕu
1(x, u; a), . . . , ϕ

u
m(x, u; a)) = ϕu(x, u; a),

(3.1)
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depending upon a real continuous parameter a, which lies in an open symmetric

interval S, with conditions

ϕx
i (x, u; 0) = xi, i = 1, . . . , n,

ϕu
α(x, u; 0) = uα, α = 1, . . . ,m.

(3.2)

These transformations are assumed to be sufficiently differentiable with respect to

the variables xi and uα, and to be analytic functions of the parameter a.

It is said that these transformations form a one-parameter group G if the

successive action of two transformations is equivalent to the action of another

transformation of the form (3.1), i.e.

ϕx(x̄, ū; b) = ϕx(ϕx(x, u; a), ϕu(x, u; a); b) = ϕx(x, u; a+ b),

ϕu(x̄, ū; b) = ϕu(ϕx(x, u; a), ϕu(x, u; a); b) = ϕu(x, u; a+ b).

(3.3)

In practice, it often happens that the group property is valid only locally, i.e.

only for |a| and |b| sufficiently small. In this case, G is referred to as a local one-

parameter transformation group. In group analysis, local groups are used, which

for brevity will simply be called groups.

The transformations (3.1) are called point transformations, and the group

G is called a group of point transformations. It is readily seen from formulas (3.2)

and (3.3) that the inverse transformation can be obtained by changing the sign of

the parameter:

x = ϕ(x̄, ū,−a), u = ψ(x̄, ū,−a) (3.4)

Let Ta denote the transformation (3.1) of a point (x, u) into the point (x̄, ū), I

denote the identity transformation, T−1
a denote the transformation inverse to Ta,

and TbTa denote the composition of two transformations. Then one may summarize

properties (3.1)-(3.4) as follows:

A set G of transformations Ta is a group of point transformations if

the following hold:
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1. T0 = I ∈ G,

2. TbTa = Ta+b ∈ G,

3. If a ∈ S and Ta ((x, u)) = (x, u) for all (x, u), then a = 0.

The functions ϕx and ϕu can be represented via their Taylor series expan-

sions with respect to the parameter a in the neighborhood of the expansion point

0 and thus the transformations in (3.1) can be written as follows:

x̄i = ϕx
i (x, u; a) = xi + ξi(x, u)a+ · · · ,

ūα = ϕu
α(x, u; a) = uα + ηα(x, u)a+ · · · ,

or

x̄i ≈ xi + ξi(x, u)a, ūα ≈ uα + ηα(x, u)a, (3.5)

where

ξi(x, u) =
∂ϕx

i (x, u; a)

∂a

∣∣∣∣∣
a=0

, ηα(x, u) =
∂ϕu

α(x, u; a)

∂a

∣∣∣∣∣
a=0

.

Given an infinitesimal transformation (3.5), the corresponding group can be com-

pletely determined by the following system of differential equations, called Lie

equations, with appropriate initial conditions:

dϕx
i

da
= ξi(ϕ

x, ϕu), ϕx
i

∣∣∣
a=0

= xi,

dϕu
α

da
= ηα(ϕx, ϕu), ϕu

α

∣∣∣
a=0

= uα.

(3.6)

Consider the first-order differential operator

X = ξ1(x, u)
∂

∂x1

+ · · ·+ ξn(x, u)
∂

∂xn

+ η1(x, u)
∂

∂u1
+ · · ·+ ηm(x, u)

∂

∂um
. (3.7)

Sophus Lie called the operator (3.7) a symbol of the infinitesimal transformation

(3.5). In this thesis, the words infinitesimal generator, infinitesimal operator, group

generator, group operator and Lie operator are used interchangeably.
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The first-order differential operator (3.7) is written briefly as

X = ξi(x, u)
∂

∂xi

+ ηα(x, u)
∂

∂uα
, (3.8)

where the repeated index i means summation with respect to i from i = 1 to n

and the repeated index α means summation with respect to α from α = 1 to m.

3.2 Contact Transformations

Unlike point transformations, contact transformations depend on not only the

independent and dependent variables but also on the first order derivatives.

Let u′ denote the set of first order derivatives uα
,i =

∂uα

∂xi

, α = 1, . . . ,m,

i = 1, . . . , n, and consider a one-parameter group of transformations

x̄i = ϕi(x, u, u
′; a), ūα = ψα(x, u, u′; a), and ūα

,i = ωα
i (x, u, u′; a) (3.9)

in the space of variables (x, u, u′). The transformations (3.9) are referred to as

contact transformations when ūα
,i =

∂ūα

∂x̄i

and they leave invariant the first-order

tangency conditions

dūα − ūα
,i dx̄i = 0, α = 1, . . . ,m.

Note that the repeated index i means the summation with respect to i from i = 1

to n. From here on, summation with respect to the repeated index will be assumed

implicitly.

The corresponding infinitesimal transformations are

x̄i ≈ xi + ξi(x, u, u
′)a, ūα ≈ uα + ηα(x, u, u′)a, ūα

,i ≈ uα
,i + ζα

i (x, u, u′)a, (3.10)

where

dϕi

da
= ξi(ϕ, ψ, ω), ϕi

∣∣∣
a=0

= xi,

dψα

da
= ηα(ϕ, ψ, ω), ψα

∣∣∣
a=0

= uα,

dωα
i

da
= ζα

i (ϕ, ψ, ω), ωα
i

∣∣∣
a=0

= uα
,i,
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and ω denotes the set of transformations of the first derivatives, or ω = {ωα
i }.

First-order tangency conditions require ζα
i to satisfy

ζα
i = Di(η

α − ξju
α
,j) + ξju

α
,ji, (3.11)

where Di =
∂

∂xi

+ uβ
,i

∂

∂uβ
+ uβ

,ij

∂

∂uβ
,j

+ . . .+ uβ
,ii1···in

∂

∂uβ
,i1···in

+ . . .

Finally the corresponding infinitesimal generator is

X = ξi(x, u, u
′)
∂

∂xi

+ ηα(x, u, u′)
∂

∂uα
+ ζα

i (x, u, u′)
∂

∂uα
,i

. (3.12)

3.3 Lie-Bäcklund Transformations

Hereafter we employ the notations1 u
1
, u

2
, . . . , for the sets of first-order,

second-order, and other high order partial derivatives {uα
,i}, {uα

,i1i2
}, . . . , where

uα
,i =

∂uα

∂xi

, uα
,i1i2

=
∂2uα

∂xi2∂xi1

, . . .

Let z denote sequence

z = (x, u, u
1
, u

2
, . . .) (3.13)

with elements zν , ν ≥ 1, where, e.g.,

zi = xi, i = 1, . . . , n, zn+α = uα, α = 1, . . . ,m,

with the remaining elements representing the derivatives of u. However, in appli-

cations, one invariably utilizes only finite subsequences of z, denoted by [z].

Definition 3.1. A differential function f([z]) is a locally analytic function : f is

locally expandable in a Taylor series with respect to all arguments. The highest

order of derivatives appearing in f is called the order of the differential function

and is denoted by ord(f), e.g. if f([z]) = f(z, u, u
1
, . . . , u

s
), then ord(f) = s.

1The notations and material in this section follow Ibragimov (1996)
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The space of all differential functions of all finite orders is denoted by A.

This space is a vector space with respect to the usual addition of functions and

becomes an associative algebra if multiplication is the usual multiplication of func-

tions. Furthermore, it has the important property of being closed under the dif-

ferentiation given by Di =
∂

∂xi

+ uα
,i

∂

∂uα
+ uα

,ij

∂

∂uα
,j

+ . . . .

Consider an operator of the form

X = ξi
∂

∂xi

+ ηα ∂

∂uα
+ ζα

i

∂

∂uα
,i

+ ζα
i1i2

∂

∂uα
,i1i2

+ . . . , (3.14)

where ξi([z]), η
α([z]) ∈ A are the differential functions, and

ζα
i = Di(η

α − ξju
α
,j) + ξju

α
,ji,

ζα
i1i2

= Di2Di1(η
α − ξju

α
,j) + ξju

α
,ji1i2

,

· · ·

(3.15)

An operator given by equations (3.14) and (3.15) is called a Lie-Bäcklund operator.

In fact, the operator (3.14) is the infinite-order prolongation2 of

X = ξi
∂

∂xi
+ ηα ∂

∂uα
, ξi, η

α ∈ A. (3.16)

Let [[A]] denote the space of formal power series in one symbol a with

coefficients in A. One can prove that, for any Lie-Bäcklund operator (3.14), there

exists a unique solution of the Lie-Bäcklund equations

dx̄i

da
= ξi(x̄, ū, . . . , ū

s
), x̄i

∣∣
a=0

= xi,

dūα

da
= ηα(x̄, ū, . . . , ū

s
), ūα

∣∣
a=0

= uα,

· · ·

(3.17)

2The concept of the prolongation group and prolonged generator will be given in Section 3.4
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in the space [[A]]. This solution is given by formal power series, i.e.,

x̄i = xi +
∞∑

β=1

Ai
βa

β,

ūα = uα +
∞∑

β=1

Bα
βa

β,

· · ·

(3.18)

with coeffcients Ai
β, B

α
β ∈ A, where Ai

1 = ξi(x, u, . . . , u
s
) and Bα

1 = ηα(x, u, . . . , u
s
).

It is a formal one-parameter group that leaves invariant the infinite-order tangency

condition

dūα − ūα
,jdx̄j = 0, dūα

,i − ūα
,ijdx̄j = 0, . . . .

The formal groups obtained above are called formal Lie-Bäcklund groups of trans-

formations. The formal Lie-Bäcklund group of transformations is called a one-

parameter Lie-Bäcklund group of transformations if the series in equations (3.18)

converge.

Definition 3.2. A Lie-Bäcklund operator (3.16) of the form

X = ηα ∂

∂uα
, ηα ∈ A,

is called a canonical operator.

3.4 Prolongations

By definition, groups of point transformations act only on the space of (x, u) of

n + m variables. However, to apply these groups to differential equations, one

needs the transformations of derivatives. It is thus necessary to extend a group of

point transformations acting on the (x, u)-space to groups of point transformations

acting on the (x, u, u
1
)-space, (x, u, u

1
, u

2
)-space, . . ., (x, u, u

1
, u

2
, . . . , u

s
)-space, s ≥

1, for a given differential equation with order s. These groups are called the
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first prolongation group, the second prolongation group, ...,the s-times prolongation

group, respectively, where the transformations are of the form

x̄ = ϕx(x, u; a) = x+ ξ(x, u)a+ · · · ,

ū = ϕu(x, u; a) = u+ η(x, u)a+ · · · ,

ū
1

= ϕ
u
1(x, u, u

1
; a) = u

1
+ ζ(1)(x, u, u

1
)a+ · · · ,

...

ū
s

= ϕ
u
s(x, u, u

1
, . . . , u

s
; a) = u

s
+ ζ(s)(x, u, u

1
, . . . , u

s
)a+ · · · .

The prolongation transformation formulas3 of the components {ūα
,i} of ū

1
are

determined by

ūα
,1

ūα
,2

...

ūα
,n


=



(ϕ
u
1)α

1 (x, u, u
1
; a)

(ϕ
u
1)α

2 (x, u, u
1
; a)

...

(ϕ
u
1)α

n(x, u, u
1
; a)


= A−1



D1ϕ
u(x, u; a)

D2ϕ
u(x, u; a)

...

Dnϕ
u(x, u; a)


,

where A−1 is the inverse (assumed to exist) of the matrix

A =



D1ϕ
x
1 D1ϕ

x
2 · · · D1ϕ

x
n

D2ϕ
x
1 D2ϕ

x
2 · · · D2ϕ

x
n

...
...

...

Dnϕ
x
1 Dnϕ

x
2 · · · Dnϕ

x
n


,

and the prolongation transformations formulas of the components {ūα
,i1···is} of ū

s

3See more detail in Bluman and Kumei (1996)
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are determined by

ūα
,i1···is−11

ūα
,i1···is−12

...

ūα
,i1···is−1n


=



(ϕ
u
s)α

i1···is−11(x, u, u
1
, . . . , u

s
; a)

(ϕ
u
s)α

i1···is−12(x, u, u
1
, . . . , u

s
; a)

...

(ϕ
u
s)α

i1···is−1n(x, u, u
1
, . . . , u

s
; a)



= A−1



D1[(ϕ
u

s−1)α
i1···is−1

(x, u, u
1
, . . . , u

s−1
; a)]

D2[(ϕ
u

s−1)α
i1···is−1

(x, u, u
1
, . . . , u

s−1
; a)]

...

Dn[(ϕ
u

s−1)α
i1···is−1

(x, u, u
1
, . . . , u

s−1
; a)]


.

The formulas of the coefficients, ζα
i , . . . , ζ

α
i1···is , of the infinitesimal generator

are determined by

ζα
i = Di(η

α)− uα
,jDi(ξj),

ζα
i1i2

= Di2(ζ
α
i1
)− uα

,i1jDi2(ξj),

...

ζα
i1···is = Dis(ζ

α
i1···is−1

)− uα
,i1···is−1jDis(ξj).

Thus the first prolonged generator of (3.8) is

X(1) = X + ζα
i

∂

∂uα
,i

= ξi
∂

∂xi

+ ηα ∂

∂uα
+ ζα

i

∂

∂uα
,i

,

and the s-times prolonged generator is also written similarly:

X(s) = X(s−1) + ζα
i1···is

∂

∂uα
,i1···is

.

This concept of the prolongation group can also be applied to groups of

contact transformations and Lie-Bäcklund groups of transformations.
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3.5 Symmetry Groups

Lie related groups and differential equations through the following idea.

Definition 3.3 (Admitted group). A symmetry group of a system of differential

equations is a group of transformations mapping every solution to another solution

of the same system. A symmetry group is also termed the group admitted by the

system, or an admitted group, and that system of differential equations is said to

be invariant under the symmetry group.

Consider a system of differential equations,

F (x, u, u
1
, · · · , u

s
) = 0. (3.19)

Let u = υ(x) be a solution of system (3.19) and let the transformations depending

on a parameter a, x̄ = ϕx(x, u; a), ū = ϕu(x, u; a), belong to a group admitted by

system (3.19). Therefore, by the definition of an admitted group,

x̄ = ϕx(x, υ(x); a),

ū = ϕu(x, υ(x); a),

must be another solution of system (3.19). Hence

F (x̄, ū, ū
1
, · · · , ū

s
) = 0, (3.20)

whenever u satisfies system (3.19). This implies that system (3.20) is invariant

with respect to the parameter a:

∂F (x̄, ū, ū
1
, · · · , ū

s
)

∂a

∣∣∣∣∣
a=0, (3.19)

≡ 0. (3.21)

Definition 3.4. Equation (3.21) is called the determining equation.



Chapter IV

Application of Group Analysis to DDEs

In this thesis, an algorithm for finding a symmetry group for a given DDE

is suggested beginning from constructing the determining equation. The deter-

mining equation obtained is an equation of unknowns ξ and η (or ξ, η and ζ in

the case of contact transformations, or ξ, η, ζ, . . . , in the case of Lie-Bäcklund

transformations). After solving the determining equation, one can find groups of

transformations by solving the Lie equations, equations (3.6), as mentioned in the

previous chapter.

For the sake of simplicity, only equations of a single dependent variable and

a single independent variable are considered in this chapter.

4.1 Constructing Determining Equations

Let G be a symmetry group of transformations ϕa admitted by the DDE (2.2).

Here ϕa is defined by

x̄ = ϕx(x, u; a), ū = ϕu(x, u; a),

which depend on a real parameter a, x ≡ ϕx(x, u; 0) and u ≡ ϕu(x, u; 0). Suppose

u = υ(x) is a solution of the equation (2.2).

One can relate this solution with another solution, a transformed solution,
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of the same equation by letting

x̄ = ϕx(x, υ(x); a), (4.1)

ū = ϕu(x, υ(x); a). (4.2)

In order to write ū as a function of x̄, we first have to derive

x = ψ(x̄; a) (4.3)

from equation (4.1).

For ODEs, the local inverse function theorem guarantees equation (4.3).

But for DDEs, the domain of the function ϕx is considered not only in a neighbor-

hood of x, but also in an interval [x− r, x]. By definition of an admitted group, it

is required that the symmetry group possesses the property that allows equation

(4.1) to be derivable to equation (4.3).

The transformed solution ū = υa(x̄) can be written as a function of x̄ by

ū = υa(x̄) = ϕu(ψ(x̄; a), υ(ψ(x̄; a)); a). (4.4)

So

ū′ =
dυa(x̄)

dx̄
= (ϕu

,1 + ϕu
,2υ

′(ψ(x̄; a)))
∂ψ(x̄; a)

∂x̄
, (4.5)

where f,i denotes the partial derivative of f with respect to i-th argument.

By equation (2.2), F (x̄, ūx̄) can be written as

f(x̄, ϕu(ψ(g1(x̄); a), υ(ψ(g1(x̄); a)); a), ..., ϕ
u(ψ(gq(x̄); a), υ(ψ(gq(x̄); a)); a).

Let Ξ(x, ux, u
′) = u′ − F (x, ux). Then

Ξ(x, ux, u
′) ≡ 0, (4.6)

for u = υ(x) and x in some interval considered. Since the transformation ϕa trans-

forms a solution to another solution of the same system, this means that Ξ(x̄, ūx̄, ū
′)
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depending on the independent variable x̄ and the parameter a is identically equal

to zero :

Ξ(x̄, ūx̄, ū
′) ≡ 0.

With the symmetry transformation ϕa, the function Ξ is invariant with respect to

the parameter a. Thus

∂Ξ(x̄, ūx̄, ū
′)

∂a

∣∣∣∣∣
a=0

= 0, (4.7)

where equation (4.6) is satisfied, is a determining equation for the DDE.

Remark. In differential equations there are two approaches for finding determin-

ing equations, using variables (x̄, a) and using the variables (x, a). The determining

equations obtained by both approaches are equivalent, that is, they are identical

on the manifold of solutions. For FDEs and DDEs, however, finding determining

equations via the approach using (x̄, a) is simpler.

4.2 Splitting the Determining Equations

One can simplify the obtained determining equation by splitting it with respect to

the variables and functions involved into several equations.

Let

ξ(x, u) =
∂ϕx(x, u; a)

∂a

∣∣∣∣∣
a=0

and η(x, u) =
∂ϕu(x, u; a)

∂a

∣∣∣∣∣
a=0

.

By equations (4.4) and (4.5), one obtains1

∂ū′

∂a

∣∣∣
a=0

=
∂ (dυa(x̄)/dx̄)

∂a

∣∣∣
a=0

= η,1(x, υ(x))

+ [η,2(x, υ(x))− ξ,1(x, υ(x))] υ
′(x)

− ξ,2 (x, υ(x))[υ′(x)]2 − ξ(x, υ(x))υ′′(x),

∂ū(gλ(x̄))

∂a

∣∣∣
a=0

=
∂υa(gλ(x̄))

∂a

∣∣∣
a=0

=− ξ(gλ(x), υ(gλ(x)))υ
′(gλ(x))

+ η(gλ(x), υ(gλ(x))),

(4.8)

1See details in Appendix B.
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where gλ(x) is a delay term which is x − r ≤ gλ(x) ≤ x, λ = 1, . . . , q. Note that

the partial derivatives in equation (4.8) hold x̄ constant.

Let ∆ and Θλ denote the right hand side terms of each of the equations

(4.8) respectively. Equation (4.7) then becomes[
q∑

λ=1

Ξ,λ+1 (x, ux, u
′)Θλ + Ξ,q+2 ∆

]
(4.6)

≡ 0. (4.9)

Then the variables and functions involved are:

• x, υ(x), υ(gλ(x)), υ
′(gλ(x)), υ

′′(gλ(x)), ...

• the functions η and ξ of (x, υ(x)) or of (gλ(x), υ(gλ(x))) and their derivatives

η,1 , ξ,1 , η,2 , ξ,2 , ...

where λ = 1, ..., q.

Note that υ′(x) is not an involved function because equation (4.9) is con-

sidered on the manifold (4.6), i.e. υ′(x) = F (x, ux).

The determining equation (4.9) is a first order delay partial differential equa-

tion for the unknowns ξ and η, which must be satisfied identically for any x ≥ x0

in a neighborhood of x0 and for any solution υ(x) of equation (4.6). For any initial

function θ(x), x ∈ [γ, x0], the local existence theorem 2.1 guarantees the existence

of a solution υ(x). Therefore, by the arbitrariness of x ∈ [γ, β1] and the initial func-

tion θ(x), the variable x and the functions υ(x), υ(gλ(x)), υ
′(gλ(x)), υ

′′(gλ(x)), ...,

can be considered as arbitrary elements. If the determining equation is written

as a polynomial of these arbitrary elements, the coefficients of monomials in the

equation must vanish. This allows us to split the determining equation into a

system of several equations, becoming an overdetermined system which can be

solved analytically. Examples of splitting the determining equations and solving

the resulting overdetermined systems are given in Chapter VI.
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4.3 Another Representation of the Determining Equations

for DDEs

One found that

∂Ξ(x̄, ūx̄, ū
′)

∂a

∣∣∣∣∣
a=0

=

q∑
λ=1

Ξ,λ+1 (x, ux, u
′)Θλ + Ξ,q+2 ∆. (4.10)

Equation (4.10) also coincides with the equation obtained by applying the prolon-

gation of the canonical Lie-Bäcklund operator,

X̃ = (η(x, u)− ξ(x, u)u′) ∂u +

q∑
λ=1

(η(gλ(x), uλ)− ξ(gλ(x), uλ)u
′
λ)∂uλ

,

where uλ = υ(gλ(x)), to equation (4.6), i.e.

∂Ξ(x̄, ūx̄, ū
′)

∂a

∣∣∣∣∣
a=0

= X̃(1)Ξ, (4.11)

where

X̃(1) = X̃ +
(
η,1(x, u) + [η,2(x, u)− ξ,1(x, u)]u

′ − ξ,2 (x, u)[u′]2 − ξ(x, u)u′′
)
∂u′ .

Thus, the determining equation (4.7) can also be written as

X̃(1)Ξ
∣∣∣
(4.6)

≡ 0. (4.12)



Chapter V

Application of Group Analysis to FDEs

Although FDEs are defined in a more general way than DDEs, the algo-

rithm for finding a symmetry group for an FDE is only slightly different from the

algorithm discussed in the previous chapter.

By definition of a symmetry group as a group of transformations converting

any solution of a differential equation into a solution of the same equation, the

possibility where the equation admitting the group has no solution can be excluded.

However, there is no general theory which guarantees the existence of a solution

of a given FDE. Hereafter, the considered FDEs are assumed to have solutions.

5.1 Constructing Determining Equations

The algorithm for finding a symmetry group for a given FDE also starts from

constructing a determining equation a priori.

Let

Ξ(χ1, . . . , χq) = 0 (5.1)

be a system of functional differential equations, where χ1, . . . , χq are functionals

of (x, u, u
1
, . . . , u

s
). Let G be a symmetry group of transformation ϕa admitted by

a system of FDEs (5.1):

x̄ = ϕx(x, u; a), ū = ϕu(x, u; a),

which depend on a real parameter a, x ≡ ϕx(x, u; 0) and u ≡ ϕu(x, u; 0). Suppose

u = υ(x) is a solution of equation (5.1).
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The solution can be related with another solution of the same equation by

letting

x̄ = ϕx(x, υ(x); a), (5.2)

ū = ϕu(x, υ(x); a). (5.3)

One must assume a priori that the group possesses the property that equation

(5.2) can be derived to

x = ψ(x̄; a) = (ψ1(x̄; a), . . . , ψn(x̄; a)). (5.4)

Then the transformed solution ū = υa(x̄) and its derivatives can be written as

functions of x̄ by

ūα = υα
a (x̄) = ϕu

α(ψ(x̄; a), υ(ψ(x̄; a)); a),

ūα
,i =

∂υα
a (x̄)

∂x̄i

=
n∑

β=1

(ϕu
α),β

∂ψβ(x̄; a)

∂x̄i

+
m∑

γ=1

(
(ϕu

α),(n+γ)

n∑
β=1

υγ
,β(ψ(x̄; a))

∂ψβ(x̄; a)

∂x̄i

)
,

...

Let ū
1
, . . . , ū

s
be the sets {ūα

,i}, . . . , {ūα
,i1···is} and χ̄1, . . . , χ̄q be the functionals

χ1, . . . , χq of (x̄, ū, ū
1
, . . . , ū

s
) respectively. It can be said that Ξ(χ̄1, . . . , χ̄p) must be

invariant with respect group G if u = υ(x) is an solution of system (5.1).

Therefore the determining equations for FDEs (5.1) can be defined by

∂Ξ(χ̄1, . . . , χ̄p)

∂a

∣∣∣∣∣
a=0

≡ 0, (5.5)

where system (5.1) satisfies.

5.2 Splitting the Determining Equations

To solve determining equations for FDEs, one can simplify them by splitting into

several equations with respect to the variables and functions involved.



29

Let

ξi(x, u) =
∂ϕx

i (x, u; a)

∂a

∣∣∣∣∣
a=0

and ηα(x, u) =
∂ϕu

α(x, u; a)

∂a

∣∣∣∣∣
a=0

,

i = 1, . . . , n, α = 1, . . . ,m.

The determining equations (5.5) are equations for unknown functions ξi and

ηα. Because of the assumption of existence of a solution of a given FDE, the initial

value problem has solutions for arbitrary initial values and functions. Hence, the

solution υ(x), its derivatives, and the functionals of υ(x) and its derivatives can

also be considered as arbitrary elements. If the determining equations (5.5) are

written as polynomials of these arbitrary elements, the coefficients of monomials

in the equations must vanish. This enables us to split the equations with respect

to arbitrary elements. After splitting, the process of solving the determining equa-

tions for FDEs is similar to the process of obtaining solutions of the determining

equations of ODEs and PDEs.

A demonstration will be given in the next chapter.

5.3 Another Representation of the Determining Equations

for FDEs

Comparing determining equations for ODEs, PDEs and DDEs, one can also write

the determining equations for FDEs in an infinitesimal generator form.

Let

X̌Ξ =
∂Ξ(χ̄1, . . . , χ̄p)

∂a

∣∣∣∣∣
a=0

, (5.6)

where X̌ = ϑβ∂χβ
. The coefficient ϑβ is determined by the partial Fréchet deriva-

tive1 of χ̄β with respect to a parameter a at a = 0, β = 1, . . . , p.

1See the definition of partial Fréchet derivative in Section C.3, appendix C.
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The determining equations (5.5) can also be written in the form

X̌Ξ
∣∣∣
(5.1)

≡ 0.

Thus we have another representation of the determining equations for FDEs.



Chapter VI

Applications of the Developed Algorithm to

DDEs and FDEs

In this chapter, the algorithm developed is applied to some DDEs and FDEs.

Determining equations and solutions of determining equations of DDEs and FDEs

are constructed here. For the examples in Sections 6.1-6.3, we only construct

determining equations. For the examples in Sections 6.4 and 6.5, we more fully

explore the implications of our work by solving the determining equations and

examining the admitted Lie groups.

6.1 A Linear Retarded Equation

Consider the linear retarded equation,

u′(x) = ku(x− r), (6.1)

where k, r =const, r > 0 and k 6= 0. This equation is of DDE type.

Let G be an admitted group of transformations

x̄ = ϕx(x, u; a), ū = ϕu(x, u; a),

and

ξ(x, u) =
∂ϕx(x, u; a)

∂a

∣∣∣∣∣
a=0

and η(x, u) =
∂ϕu(x, u; a)

∂a

∣∣∣∣∣
a=0

.
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We find that:

X̃(1) [u′(x)− ku(x− r)] = η,1(x, u(x)) + [η,2(x, u(x))− ξ,1(x, u(x))]u
′(x)

− ξ,2 (x, u(x))[u′(x)]2 − ξ(x, u(x))u′′(x)

− k [η(x− r, u(x− r))− ξ(x− r, u(x− r))u′(x− r)] ,

where

X̃ = (η(x, u(x))−ξ(x, u(x))u′(x))∂u+(η(x−r, u(x−r))−ξ(x−r, u(x−r))u′(x−r))∂ur

and ur = u(x− r).

Hence, the determining equation for equation (6.1) is

η,1(x, u(x)) + [η,2(x, u(x))− ξ,1(x, u(x))] ku(x− r)

−ξ,2 (x, u(x))[ku(x− r)]2 − ξ(x, u(x))ku′(x− r)

−k [η(x− r, u(x− r))− ξ(x− r, u(x− r))u′(x− r)] = 0.

6.2 An Integro-Differential Equation

For an integro-differential equation

u′(x) =

∫ 0

−r

ux(s)ds, (6.2)

where r =const and r > 0, one obtains

X̃(1)

(
ū′(x̄)−

∫ 0

−r
ūx̄(s)ds

)
=

η,1(x, u(x)) + [η,2(x, u(x))− ξ,1(x, u(x))]u
′(x)

−ξ,2 (x, u(x))[u′(x)]2 − ξ(x, u(x))u′′(x)

−
∫ 0

−r
[η(x+ s, u(x+ s))− ξ(x+ s, u(x+ s))u′(x+ s)] ds.

The determining equation for the integro-differential equation (6.2) follows:

η,1(x, u(x)) + [η,2(x, u(x))− ξ,1(x, u(x))]
∫ 0

−r
ux(s)ds

−ξ,2 (x, u(x))[
∫ 0

−r
ux(s)ds]

2 − ξ(x, u(x))
∫ 0

−r
u′(x+ s)ds

−
∫ 0

−r
[η(x+ s, u(x+ s))− ξ(x+ s, u(x+ s))u′(x+ s)] ds = 0.
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6.3 The Equation
∂u

∂t
+ u

∂u

∂x
= g(u, û)

Let us consider the equation

∂u

∂t
+ u

∂u

∂x
= g(u, û), (6.3)

where u = u(x, t), û = u(x, t− r), r > 0, and g is a function of u and û such that

∂g

∂û
6= 0 (otherwise it is not a delay differential equation.)

Let G be an admitted group of transformations

x̄ = ϕx(x, t, u; a), t̄ = ϕt(x, t, u; a), ū = ϕu(x, t, u; a),

and

ξ(x, t, u) =
∂ϕx(x, t, u; a)

∂a

∣∣∣∣∣
a=0

, η(x, t, u) =
∂ϕt(x, t, u; a)

∂a

∣∣∣∣∣
a=0

,

ζ(x, t, u) =
∂ϕu(x, t, u; a)

∂a

∣∣∣∣∣
a=0

.

The determining equation for equation (6.3) is

X̃(1)

(
∂u

∂t
+ u

∂u

∂x
− g(u, û)

) ∣∣∣∣∣
∂u
∂t

+u ∂u
∂x

=g(u,û)

= 0, (6.4)

where

X̃(1) = ζu∂u + ζ û∂û + ζux∂ux + ζut∂ut ,

ζu = −ξ(x, t, u)u,1 − η(x, t, u)u,2 + ζ(x, t, u),

ζ û = −ξ(x, t− r, û)û,1 − η(x, t− r, û)û,2 + ζ(x, t− r, û),

ζux = −ξ,1(x, t, u)u,1 − ξ,3(x, t, u)[u,1]
2 − ξ(x, t, u)u,11

− η,1(x, t, u)u,2 − η,3(x, t, u)u,1u,2 − η(x, t, u)u,12

+ ζ,1(x, t, u) + ζ,3(x, t, u)u,1,

ζut = −ξ,2(x, t, u)u,1 − ξ,3(x, t, u)u,1u,2 − ξ(x, t, u)u,12

− η,2(x, t, u)u,2 − η,3(x, t, u)[u,2]
2 − η(x, t, u)u,22

+ ζ,2(x, t, u) + ζ,3(x, t, u)u,2,
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and u,1 =
∂u

∂x
(x, t), u,2 =

∂u

∂t
(x, t), û,1 =

∂u

∂x
(x, t− r), û,2 =

∂u

∂t
(x, t− r),

g,1(u, û) =
∂g

∂u
(u, û), g,2(u, û) =

∂g

∂û
(u, û).

Hence, the determining equation of equation (6.3) is

ζ,2(x, t, u) + [ζ,3(x, t, u)− η,2(x, t, u)] g(u, û)− η,3(x, t, u)[g(u, û)]
2

−ζ(x, t, u)g,1(u, û)− ζ(x, t− r, û)g,2(u, û)

+ [ζ,1(x, t, u)− η,1(x, t, u)g(u, û)]u

+ [ζ(x, t, u)− ξ,2(x, t, u)− ξ,3(x, t, u)g(x, û)]u,1

+ [η,2(x, t, u)− ξ,1(x, t, u)) + η,3(x, t, u)g(u, û)] [uu,1]

+η,1(x, t, u)[u
2u,1]

+ [ξ(x, t− r, û)− ξ(x, t, u)] g,2(u, û)û,1

+ [η(x, t− r, û)− η(x, t, u)] g,2(u, û)û,2 = 0.

(6.5)

6.4 The Equation u′′(x) = u(x)− u(x− r)

6.4.1 Solutions of the Determining Equation

Consider the initial value problem

u′′(x) = u(x)− u(x− r), (6.6a)

u′(x0) = u1, ux0(s) = ψ(s), s ∈ [x0 − r, x0], (6.6b)

where r is a constant, r > 0.

The initial value problem (6.6a),(6.6b) is equivalent to the problem

u′(x) =

∫ 0

−r

ux(s)ds, ux0(s) = ψ(s), s ∈ [x0 − r, x0]. (6.7)

Let G be an admitted group of transformations

x̄ = ϕx(x, u; a), ū = ϕu(x, u; a),

and

ξ(x, u) =
∂ϕx(x, u; a)

∂a

∣∣∣∣∣
a=0

and η(x, u) =
∂ϕu(x, u; a)

∂a

∣∣∣∣∣
a=0

.
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Then the determining equation for equation (6.6a), which is considered in a neigh-

borhood N+
ε (x0)

1 and a solution u(x) of equation (6.6a), is

X̃(2) (u′′(x)− u(x) + u(x− r))

∣∣∣∣
u′′(x)=u(x)−u(x−r)

= 0. (6.8)

Here,

X̃(2) = X̃(1) + ζu′′∂u′′ ,

X̃(1) = (η(x, u(x))− ξ(x, u(x))u′(x))∂u

+ (η(x− r, u(x− r))− ξ(x− r, u(x− r))u′(x− r))∂ur + ζu′∂u′ ,

ζu′ = η,1(x, u) + [η,2(x, u)− ξ,1(x, u)]u
′ − ξ,2 (x, u)[u′]2 − ξ(x, u)u′′,

ζu′′ = η,11(x, u) + [2η,12(x, u)− ξ(x, u)]u′ + [η,22(x, u)− 2ξ,2(x, u)] [u
′]

2

− ξ,22(x, u) [u′]
3
+ [η,2(x, u)− 2ξ,1(x, u)]u

′′ − 3ξ,2(x, u)u
′u′′ − ξ(x, u)u′′′.

The explicit form of the determining equation (6.8) is

η,11(x, u(x))− η(x, u(x)) + η(x− r, u(x− r))

+ [η,2(x, u(x))− 2ξ,1(x, u(x))]u(x)

+ [2ξ,1(x, u(x))− η,2(x, u(x))]u(x− r)

+ [2η,12(x, u(x))− ξ,11(x, u(x))− 3ξ,2(x, u(x))u(x)]u
′(x)

+3ξ,2(x, u(x))[u(x− r)u′(x)]

+ [ξ(x, u(x))− ξ(x− r, u(x− r))]u′(x− r)

+ [η,22(x, u(x))− 2ξ,12(x, u(x))] [u
′(x)]2

+ξ,22(x, u(x))[u
′(x)]3 = 0.

(6.9)

Equation (6.9) must be identical for any solution of the problem

(6.6a),(6.6b). For the fixed value x0, the values of a solution u(x) and its first

1Neighborhood N+
ε (x0) means a neighborhood of x0, which contains x, x > x0.
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derivative at the points x0 and x0 − r are:

u(x0) = ψ(x0),

u(x0 − r) = ψ(x0 − r),

u′(x0) = u1,

u′(x0 − r) = ψ′(x0 − r).

Since the value u1 and the function ψ are arbitrary, the values u(x0), u(x0−

r), u′(x0) and u′(x0 − r) must also be arbitrary. Since x0 is arbitrary, this implies

that, in the determining equation (6.9), the elements u(x), u(x − r), u′(x) and

u′(x− r) are arbitrary.

In the determining equation (6.9), the unknown functions ξ and η and their

derivatives depend only on x, u(x) and u(x− r). Then equation (6.9) can be split

with respect to u′(x) and u′(x− r) into 5 equations, i.e.

u′(x) : 2η,12(x, u)− ξ,11(x, u)− 3ξ,2(x, u)u+ 3ξ,2(x, u)ur = 0, (6.10)

u′(x− r) : ξ(x, u)− ξ(x− r, ur) = 0, (6.11)

[u′(x)]2 : η,22(x, u)− 2ξ,12(x, u) = 0, (6.12)

[u′(x)]3 : ξ,22(x, u) = 0, (6.13)

1 : η,11(x, u(x))− η(x, u(x)) + η(x− r, u(x− r)) (6.14)

+ [η,2(x, u(x))− 2ξ,1(x, u(x))]u(x)

+ [2ξ,1(x, u(x))− η,2(x, u(x))]u(x− r),

where ur = u(x − r). Because u and ur are independent, equation (6.11) implies

that the function ξ(x, u) does not depend on u. Thus equations (6.10)-(6.12)
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become

2η,12(x, u)− ξ′′(x) = 0, (6.15)

ξ(x)− ξ(x− r) = 0, (6.16)

η,22(x, u) = 0. (6.17)

Equation (6.17) implies η = κ1(x)u + κ2(x). The determining equation is now

reduced to

κ′′2(x)− κ2(x) + κ2(x− r)

+ [κ′′1(x)− 2ξ′(x)]u+ [2ξ′(x)− κ1(x) + κ1(x− r)]ur

+ [2κ′1(x)− ξ′′(x)]u′ = 0.

(6.18)

The equation 2κ′1(x) − ξ′′(x) = 0, which is obtained by splitting equation

(6.18) with respect to u′, implies

κ1(x) =
ξ′(x)

2
+ C1, (6.19)

where C1 is a constant.

Equation (6.16) shows that ξ is periodic, i.e. ξ(x) = ξ(x− r). By equation

(6.19), κ1 must also be periodic, i.e. κ1(x) = κ1(x− r). The determining equation

(6.18) is again reduced to

κ′′2(x)− κ2(x) + κ2(x− r) +

[
ξ′′′(x)

2
− 2ξ′(x)

]
u+ 2ξ′(x)ur = 0. (6.20)

After splitting equation (6.20) with respect to ur, it shows that ξ′(x) = 0

or ξ = C2, where C2 is constant.

The above process gives us

ξ = C2,

η = C1u+ κ2(x),
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where C1 and C2 are arbitrary constants and κ2(x) is an arbitrary solution of the

equation

κ′′2(x)− κ2(x) + κ2(x− r) = 0.

The functions ξ and η can be used for finding group of transformations by using

Lie equations.

The infinitesimal generator corresponding to the admitted Lie group is

X = C2∂x + (C1u+ κ2(x))∂u. (6.21)

6.4.2 The Admitted Lie Group

Even though we know that one can find the group corresponding to the infinitesimal

generatorX (6.21) by using the Lie equation, it is difficult to solve the Lie equation,

which includes the undetermined function κ2(x). Here, a particular function κ2(x)

will be considered in order to find a particular group admitted by equation (6.6a).

Consider

κ2(x) = C3e
µx,

where C3 is an arbitrary constant, and µ is the positive solution of the equation

e−µr + µ2 − 1 = 0. (6.22)

Let

F(µ) = e−µr + µ2 − 1,

hence, the derivative of F with respect to µ is

F ′(µ) = −re−µr + 2µ.

Here, the function F is continuous, F(0) = 0, F ′(µ) < 0 for µ ≤ 0. Obviously,

there exists only one µ∗ > 0 such that

F ′(µ∗) = 0.
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Since F ′(µ) > 0, where µ > µ∗, the function F is strictly increasing where µ > µ∗

and F(µ) > 0 when µ is sufficiently large. Thus there exists only one positive µ∗∗

such that F(µ∗∗) = 0. This guarantees the existence of the positive solution of

equation (6.22).

The infinitesimal generator X corresponding to the particular κ2(x) is

X = C2∂x + (C1u+ C3e
µx)∂u.

By the Lie equations, the group corresponding to the infinitesimal generator

X can be found by solving the problem

dx̄

da
= C2, x̄

∣∣∣∣
a=0

= x,

dū

da
= C1ū+ C3e

µx̄, ū

∣∣∣∣
a=0

= u.

In this case, the group of transformations is

C1 = 0, C2 = 0, C3 6= 0 : x̄ = x, ū = C3e
µxa+ u;

C1 = 0, C2 6= 0 : x̄ = x+ aC2, ū = C4e
µx
(
eµC2a − 1

)
+ u, C4 =

C3

C2

;

C1 6= 0, µC2 − C1 6= 0 : x̄ = x+ aC2, ū = eC1a
(
u+ C5e

µx
[
ea(µC2−C1) − 1

])
,

C5 =
C3

µC2 − C1

;

C1 6= 0, µC2 = C1 : x̄ = x+ aC2, ū = eC1a (u+ aC3e
µx) .

6.5 The Equation
∂u

∂t
+ u

∂u

∂x
= û− u

6.5.1 Solutions of the Determining Equation

Consider the initial value problem

∂u

∂t
+ u

∂u

∂x
= û− u, (6.23)

where u = u(x, t), û = u(x, t− r), r > 0, with initial condition

u(x, s) = $(x, s), s ∈ [t0 − r, t0].
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The initial value problem (6.23) has a solution for any arbitrary value t0

and any arbitrary given function $(x, s), s ∈ [t0 − r, t0] (Brandi, 2002).

Let G be an admitted group of transformations

x̄ = ϕx(x, t, u; a), t̄ = ϕt(x, t, u; a), ū = ϕu(x, t, u; a),

and

ξ(x, t, u) =
∂ϕx(x, t, u; a)

∂a

∣∣∣∣∣
a=0

, η(x, t, u) =
∂ϕt(x, t, u; a)

∂a

∣∣∣∣∣
a=0

,

ζ(x, t, u) =
∂ϕu(x, t, u; a)

∂a

∣∣∣∣∣
a=0

.

The determining equation of equation (6.23) is

ζ,2(x, t, u) + ζ(x, t, u)− ζ(x, t− r, û)

+ [η,2(x, t, u) + ζ,1(x, t, u)− ζ,3(x, t, u)]u

+ [η,1(x, t, u)− η,3(x, t, u)]u
2 + [2η,3(x, t, u)− η,1(x, t, u)] [uû]

+ [ζ,3(x, t, u)− η,2(x, t, u)] û− η,3(x, t, u)û
2

+ [ζ(x, t, u)− ξ,2(x, t, u)]u,1 + [η,2(x, t, u) + ξ,3(x, t, u)− ξ,1(x, t, u)]uu,1

+ [η,1(x, t, u)− η,3(x, t, u)]u
2u,1 − ξ,3(x, t, u)ûu,1 + η,3(x, t, u)uûu,1

+ [ξ(x, t− r, û)− ξ(x, t, u)] û,1 + [η(x, t− r, û)− η(x, t, u)] û,2 = 0,

(6.24)

where u,1 =
∂u

∂x
(x, t), u,2 =

∂u

∂t
(x, t), û,1 =

∂u

∂x
(x, t− r), and û,1 =

∂u

∂t
(x, t− r).

Because of the arbitrariness of the value t0 and the function $(x, s), one

can consider the variables u,1, û,1, û,2, u, û, x and t as independent and arbitrary in

the determining equation (6.24).

Splitting the determining equation (6.24) with respect to û,1 and û,2, one

obtains

ξ(x, t− r, û)− ξ(x, t, u) = 0, (6.25)

η(x, t− r, û)− η(x, t, u) = 0, (6.26)
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respectively.

Because u and û are independent, then equations (6.25) and (6.26) imply

that the functions ξ(x, t, u) and η(x, t, u) do not depend on the variable u and

ξ(x, t) = ξ(x, t− r), η(x, t) = η(x, t− r).

Determining equation (6.24) is now simplified to

ζ,2(x, t, u) + ζ(x, t, u)− ζ(x, t− r, û)

+ [η,2(x, t) + ζ,1(x, t, u)− ζ,3(x, t, u)]u

+η,1(x, t)u
2 − η,1(x, t)[uû]

+ [ζ,3(x, t, u)− η,2(x, t)] û

+ [ζ(x, t, u)− ξ,2(x, t)]u,1 + [η,2(x, t)− ξ,1(x, t)]uu,1

+η,1(x, t)u
2u,1 = 0.

(6.27)

Splitting the determining equation (6.27) with respect to u,1, one obtains

ζ(x, t, u) = ξ,2(x, t)− [η,2(x, t)− ξ,1(x, t)]u− η,1(x, t)u
2.

After that, the determining equation (6.27) is simplified to

ξ,22(x, t) + [2ξ,12(x, t) + η,2(x, t)− η,22(x, t)]u

+ [ξ,11(x, t) + 2η,1(x, t)− 2η,12(x, t)]u
2

−η,11(x, t)u
3 − 3uûη,1(x, t)

−η,2(x, t)û+ η,1(x, t)û
2 = 0.

(6.28)

Splitting determining equation (6.28) with respect to û and û2 implies that

η is constant. Let η = C3, where C3 is an arbitrary constant. After splitting the

determining equation (6.28) with respect to u and u2, one obtains

ξ,11(x, t) = 0,

ξ,12(x, t) = 0,

ξ,22(x, t) = 0,

or ξ(x, t) = C1x+C2 +C4t where C1, C2 and C4 are arbitrary constants. However,

equation (6.25) implies that C4 must vanish.
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Therefore ξ = C1x+ C2, η = C3 and ζ = C1u.

The infinitesimal generator corresponding to the Lie group is

X = (C1x+ C2)∂x + C3∂t + C1u∂u. (6.29)

One of these nonzero constants can be assumed equal to 1.

6.5.2 The Admitted Lie Group

The Lie group admitted by the equation (6.23) can be obtained by solving the

problem

dx̄

da
= C1x̄+ C2, x̄

∣∣∣∣
a=0

= x,

dt̄

da
= C3, t̄

∣∣∣∣
a=0

= t,

dū

da
= C1ū, ū

∣∣∣∣
a=0

= u.

Here, by theorem in C.4, appendix C, there must be two functionally independent

invariants. In order to find the group of transformations and invariants, one may

calculate according the following cases :

Case 1. C1 = 0, C2 = 0, C3 = 1 :

The group of transformations is

x̄ = x, t̄ = t+ a, ū = u.

After solving the characteristic system, the invariants are u and x. According to

the algorithm for constructing invariant solutions, one has to assume dependence

of one invariant on another. Then the representation of an invariant solution is

u = H1(x),

where H1 is defined by the equation

H1(x)H
′
1(x) = 0.
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This equation is obtained by substituting the representation of the invariant

solution into equation (6.23).

Case 2. C1 = 0, C2 = 1, C3 = 0 :

The group of transformations is

x̄ = x+ a, t̄ = t, ū = u.

The invariants are u and t. Then the representation of an invariant solution is

u = H2(t),

where H2 is defined by the equation

H ′
2(t) = H2(t− r)−H2(t).

Case 3. C1 = 0, C2 6= 0, C3 = 1 :

The group of transformations is

x̄ = x+ C2a, t̄ = t+ a, ū = u.

The invariants are u and x−C2t. Then the representation of an invariant solution

is

u = H3(x− C2t),

where H3 is defined by the equation

H ′
3(x̃) (H3(x̃)− C2) = H3(x̃+ C2r)−H3(x̃), x̃ = x− C2t.

Case 4. C1 = 1, C2 = 0, C3 = 0 :

The group of transformations is

x̄ = xea, t̄ = t, ū = uea.
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The invariants are
u

x
and t. Then the representation of an invariant solution is

u = xH4(t),

where H4 is defined by the equation

H ′
4(t) +H4(t)

2 +H4(t)−H4(t− r) = 0.

Case 5. C1 6= 0, C2 = 0, C3 = 1 :

The group of transformations is

x̄ = xeC1a, t̄ = t+ a, ū = ueC1a.

The invariants are
u

x
and C1xe

−C1t. Then the representation of an invariant solu-

tion is

u = xH5(C1xe
−C1t),

where H5 is defined by the equation

t̃H ′
5(t̃)

(
H ′

5(t̃
)
− C1) +H5(t̃)

2 +H5(t̃)−H5(e
C1r t̃) = 0, t̃ = C1xe

−C1t.

Case 6. C1 = 1, C2 6= 0, C3 = 0 :

The group of transformations is

x̄ = (x+ C2)e
a − C2, t̄ = t, ū = uea.

The invariants are
u

x+ C2

and t. Then the representation of an invariant solution

is

u = (x+ C2)H6(t),

where H6 is defined by the equation

H ′
6(t) +H6(t)

2 +H6(t)−H6(t− r) = 0.
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Case 7. C1 = 1, C2 6= 0, C3 6= 0 :

The group of transformations is

x̄ = (x+ C2)e
a − C2, t̄ = t+ C3a, ū = uea.

The invariants are
u

x+ C2

and (x + C2)e
− t

C3 . Then the representation of an in-

variant solution is

u = (x+ C2)H7

(
(x+ C2)e

− t
C3

)
,

where H7 is defined by the equation

τH ′
7(τ)

(
H7(τ)−

1

C3

)
+H7(τ)

2H7(τ)−H7(τe
r

C3 ) = 0, τ = (x+ C2)e
− t

C3 .



Chapter VII

Conclusion

The goal of this thesis was to develop an algorithm for applying group

analysis to functional differential equations.

The definitions and theorems concerning group analysis for DDEs and FDEs

were established in the thesis. The given algorithms show how one can obtain a

symmetry group for DDEs and FDEs. The method of applying group analysis to

FDEs consists of the following steps:

• Constructing the determining equations.

The construction of determining equations plays a key role in this algorithm.

Determining equations are obtained through invariance of the given FDEs

with respect to symmetry transformations: transformations which map any

solution of the equation to a solution of the same equation. Thus, the exis-

tence of solutions of the considered FDE is required a priori.

• Splitting the determining equations.

In order to simplify the determining equations, one can split them into several

equations. The main idea that allows us to split the determining equations

is the arbitrariness of the initial elements of the problem.

• Solving the determining equations.

After solving the system of split equations, the result obtained will be used

for finding the symmetry transformations via the Lie equations. These sym-
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metry transformations can be used to find invariant solutions as is done for

applications of group analysis to ODEs and PDEs.

Through the above discussion, we have obtained a tool for solving functional

differential equations.

Even though the definition of an admitted group given in the thesis follows

the classical definition of an admitted group given by Lie (1891), the algorithm

developed in the thesis allows constructing determining equations without the re-

quirement of the existence of the solution. This leads us to the definition of an

admitted group which has weaker condition:

An admitted group is a group of transformations, which is obtained from

solving the determining equation.

For ODEs and PDEs, the classical definition of an admitted group and the

latter definition are equivalent for some classes of equations. For FDEs, however,

the admitted groups obtained by the alternative definition are more general than

the admitted groups obtained by the classical definition. The study of the differ-

ence between symmetry groups for FDEs obtained by both definitions are subjects

of further research.

The concept of admitted group suggested in this thesis applied to DDEs

and FDEs is extendable to other types of transformations such as contact trans-

formations and Lie-Bäcklund transformations.

Finally, the author expects that one may extend the concepts of group

analysis given in this thesis to other type of equations, e.g. stochastic equations.
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Appendix A

Notation

SET-THEORETICAL SYMBOLS

∅ Empty set

∈ Element of a set

⊂ Set inclusion

∩ Intersection of sets

∪ Union of sets

× Product of sets

⊗ Tensor multiplication

⊕ Direct sum of sets

{...} Set, characterized by elements inside braces

{x|S} Set of elements, possessing property S

B(X, Y ) Vector space of all bounded linear operators from a normed space X

into a normed space Y

C(A,B) Set of all continuous mappings A→ B

Cs(Ω) s-times continuously differentiable real-valued functions on Ω

R Set of real numbers

C Set of complex number

Rn Real Euclidean space of n-dimensional column vectors, with norm | · |



Appendix B

Derived Equations

Let x be the independent variable and u be the dependent variable. Con-

sider an ordinary differential equation

F (x, u, u′, ..., u(s)) = 0. (B.1)

Let

x̄ = ϕx(x, u; a),

ū = ϕu(x, u; a),

with conditions

x ≡ ϕx(x, u; 0),

u ≡ ϕu(x, u; 0),

be transformations of group admitted by equation (B.1).

Define

ξ(x, u) =
∂ϕx(x, u; a)

∂a

∣∣∣∣∣
a=0

,

η(x, u) =
∂ϕu(x, u; a)

∂a

∣∣∣∣∣
a=0

.

If u = υ(x) is a solution of equation (B.1), then it implies that

x̄ = ϕx(x, υ(x); a), (B.2)

ū = ϕu(x, υ(x); a), (B.3)

is also a solution of equation (B.1).
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Suppose that one can derive

x = ψ(x̄; a),

from equation (B.2), where x ≡ ψ(x; 0).

Hereafter, all constructions are considered in the space of variables (x̄, ū, a),

i.e.

x̄ ≡ ϕx(ψ(x̄; a), υ(ψ(x̄; a)); a), (B.4)

ū = υa(x̄) = ϕu(ψ(x̄; a), υ(ψ(x̄; a)); a), (B.5)

where x̄ is the independent variable and ū is the dependent variable.

B.1 The Function
∂ū (gλ(x̄))

∂a

∣∣∣∣∣
a=0

Differentiating equation (B.4) with respect the parameter a, one obtains

∂x̄

∂a
=
∂ϕx(ψ(x̄; a), υ(ψ(x̄; a)); a)

∂a
. (B.6)

If the variable x̄ is fixed, equation (B.6) is

0 = ϕx
,1(ψ(x̄; a), υ(ψ(x̄; a)); a)

∂ψ(x̄; a)

∂a

+ ϕx
,2(ψ(x̄; a), υ(ψ(x̄; a)); a)υ′(ψ(x̄; a))

∂ψ(x̄; a)

∂a

+ ϕx
,3(ψ(x̄; a), υ(ψ(x̄; a)); a).

Hence

∂ψ(x̄; a)

∂a
=

−ϕx
,3(ψ(x̄; a), υ(ψ(x̄; a)); a)

ϕx
,1(ψ(x̄; a), υ(ψ(x̄; a)); a) + ϕx

,2(ψ(x̄; a), υ(ψ(x̄; a)); a)υ′(ψ(x̄; a))
.

(B.7)
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Other derivatives are

ϕx
,1(ψ(x̄; a), υ(ψ(x̄; a)); a)

∣∣∣
a=0

=

[
lim
h→0

ϕx(ψ(x̄; a) + h, υ(ψ(x̄; a)); a)− ϕx(ψ(x̄; a), υ(ψ(x̄; a)); a)

h

]
a=0

=

[
lim
h→0

ϕx(ψ(x̄; a) + h, υ(ψ(x̄; 0)); 0)− ϕx(ψ(x̄; a), υ(ψ(x̄; 0)); 0)

h

]
a=0

=

[
lim
h→0

ψ(x̄; a) + h− ψ(x̄; a)

h

]
a=0

=

[
lim
h→0

h

h

]
a=0

= 1,

ϕx
,2(ψ(x̄; a), υ(ψ(x̄; a)); a)

∣∣∣
a=0

=

[
lim
h→0

ϕx(ψ(x̄; a), υ(ψ(x̄; a)) + h; a)− ϕx(ψ(x̄; a), υ(ψ(x̄; a)); a)

h

]
a=0

=

[
lim
h→0

ϕx(ψ(x̄; 0), υ(ψ(x̄; a)) + h; 0)− ϕx(ψ(x̄; 0), υ(ψ(x̄; a)); 0)

h

]
a=0

=

[
lim
h→0

ψ(x̄; 0)− ψ(x̄; 0)

h

]
a=0

=

[
lim
h→0

0

h

]
a=0

= 0,

and

ϕx
,3(ψ(x̄; a), υ(ψ(x̄; a)); a)

∣∣∣
a=0

=

[
lim
h→0

ϕx(ψ(x̄; a), υ(ψ(x̄; a)); a+ h)− ϕx(ψ(x̄; a), υ(ψ(x̄; a)); a)

h

]
a=0

=

[
lim
h→0

ϕx(ψ(x̄; 0), υ(ψ(x̄; 0)); a+ h)− ϕx(ψ(x̄; 0), υ(ψ(x̄; 0)); a)

h

]
a=0

=

[
lim
h→0

ϕx(x̄, υ(x̄); a+ h)− ϕx(x̄, υ(x̄); a)

h

]
a=0

= [ξ(x̄, υ(x̄))]a=0

= ξ(x, υ(x)).
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Similarly, one can find derivatives

ϕu
,1(ψ(x̄; a), υ(ψ(x̄; a)); a)

∣∣∣
a=0

=

[
lim
h→0

ϕu(ψ(x̄; a) + h, υ(ψ(x̄; a)); a)− ϕu(ψ(x̄; a), υ(ψ(x̄; a)); a)

h

]
a=0

=

[
lim
h→0

ϕu(ψ(x̄; a) + h, υ(ψ(x̄; 0)); 0)− ϕu(ψ(x̄; a), υ(ψ(x̄; 0)); 0)

h

]
a=0

=

[
lim
h→0

υ(x̄)− υ(x̄)

h

]
a=0

=

[
lim
h→0

0

h

]
a=0

= 0,

ϕu
,2(ψ(x̄; a), υ(ψ(x̄; a)); a)

∣∣∣
a=0

=

[
lim
h→0

ϕu(ψ(x̄; a), υ(ψ(x̄; a)) + h; a)− ϕu(ψ(x̄; a), υ(ψ(x̄; a)); a)

h

]
a=0

=

[
lim
h→0

ϕu(ψ(x̄; 0), υ(ψ(x̄; a)) + h; 0)− ϕu(ψ(x̄; 0), υ(ψ(x̄; a)); 0)

h

]
a=0

=

[
lim
h→0

υ(ψ(x̄; a)) + h− υ(ψ(x̄; a))

h

]
a=0

=

[
lim
h→h

h

h

]
a=0

= 1,

and

ϕu
,3(ψ(x̄; a), υ(ψ(x̄; a)); a)

∣∣∣
a=0

=

[
lim
h→0

ϕu(ψ(x̄; a), υ(ψ(x̄; a)); a+ h)− ϕu(ψ(x̄; a), υ(ψ(x̄; a)); a)

h

]
a=0

=

[
lim
h→0

ϕu(ψ(x̄; 0), υ(ψ(x̄; 0)); a+ h)− ϕu(ψ(x̄; 0), υ(ψ(x̄; 0)); a)

h

]
a=0

=

[
lim
h→0

ϕu(x̄, υ(x̄); a+ h)− ϕu(x̄, υ(x̄); a)

h

]
a=0

= [η(x̄, υ(x̄))]a=0

= η(x, υ(x)).



58

Hence

∂ψ(x̄, a)

∂a

∣∣∣∣∣
a=0

=
−ξ(x, υ(x))
1 + 0υ′(x)

= −ξ(x, υ(x)). (B.8)

Differentiating (B.5) with respect to the parameter a (the variable x̄ is fixed), one

obtains

∂ū

∂a
=
∂υa(x̄)

∂a
=
∂ϕu(ψ(x̄; a), υ(ψ(x̄; a)); a)

∂a

= ϕu
,1(ψ(x̄; a), υ(ψ(x̄; a)); a)

∂ψ(x̄; a)

∂a

+ ϕu
,2(ψ(x̄; a), υ(ψ(x̄; a)); a)υ′(ψ(x̄; a))

∂ψ(x̄; a)

∂a

+ ϕu
,3(ψ(x̄; a), υ(ψ(x̄; a)); a).

Thus

∂ū

∂a

∣∣∣
a=0

= (0 + 1υ′(x)) (−ξ(x, υ(x))) + η(x, υ(x))

= η(x, υ(x))− υ′(x)ξ(x, υ(x)).

For the function ū with delay term, one obtains

∂ū (gλ(x̄))

∂a
=
∂υa (gλ(x̄))

∂a

= ϕu
,1 (∂ψ(gλ(x̄); a), υ(ψ(gλ(x̄); a)); a)

∂ψ(gλ(x̄); a)

∂a

+ ϕu
,2 (ψ(gλ(x̄); a), υ(ψ(gλ(x̄); a)); a) υ

′(ψ(gλ(x̄); a))
ψ(gλ(x̄); a)

∂a

+ ϕu
,3 (ψ(gλ(x̄); a), υ(ψ(gλ(x̄); a)); a) .

This gives

∂ū (gλ(x̄))

∂a

∣∣∣
a=0

= (−ξ(gλ(x), υ(gλ(x)))) + η(gλ(x), υ(gλ(x)))

= η(gλ(x), υ(gλ(x)))− υ′(gλ(x))ξ(gλ(x), υ(gλ(x))).
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B.2 The Function
∂ū′

∂a

∣∣∣∣∣
a=0

The derivative of the transformed function ū(x̄) is defined as the following:

ū′ =
dū

dx̄
=
∂ϕu(ψ(x̄; a), υ(ψ(x̄; a)); a)

∂x̄

= ϕu
,1(ψ(x̄; a), υ(ψ(x̄; a)); a)

∂ψ(x̄; a)

∂x̄

+ ϕu
,2υ

′(ψ(x̄; a))(ψ(x̄; a), υ(ψ(x̄; a)); a)
∂ψ(x̄; a)

∂x̄
. (B.9)

Since

∂x̄

∂x̄
=
∂ϕx(ψ(x̄; a), υ(ψ(x̄; a)); a)

∂x̄
,

1 = ϕx
,1(ψ(x̄; a), υ(ψ(x̄; a)); a)

∂ψ(x̄; a)

∂x̄

+ ϕx
,2(ψ(x̄; a), υ(ψ(x̄; a)); a)υ′(ψ(x̄; a))

∂ψ(x̄; a)

∂x̄
.

Hence

∂ψ(x̄; a)

∂x̄
=

1

ϕx
,1(ψ(x̄; a), υ(ψ(x̄; a)); a) + ϕx

,2(ψ(x̄; a), υ(ψ(x̄; a)); a)υ′(ψ(x̄; a))
.

(B.10)

Equations (B.9) and (B.10) imply

ū′ =
Φ1

Φ2

, (B.11)

where

Φ1 = ϕu
,1(ψ(x̄; a), υ(ψ(x̄; a)); a) + ϕu

,2(ψ(x̄; a), υ(ψ(x̄; a)); a)υ′(ψ(x̄; a))

and

Φ2 = ϕx
,1(ψ(x̄; a), υ(ψ(x̄; a)); a) + ϕx

,2(ψ(x̄; a), υ(ψ(x̄; a)); a)υ′(ψ(x̄; a)).

Differentiating equation (B.11) with respect to the parameter a, one has

∂ū′

∂a
=

Φ2
∂Φ1

∂a
− Φ1

∂Φ2

∂a

[Φ2]2
,
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where

∂Φ1

∂a
=
[
ϕu

,11 + ϕu
,12υ

′] ∂ψ
∂a

+ ϕu
,13

+

[[
ϕu

,21 + ϕu
,22υ

′] ∂ψ
∂a

+ ϕu
,23

]
υ′

+ ϕu
,2υ

′′∂ψ

∂a
,

and

∂Φ2

∂a
=
[
ϕx

,11 + ϕx
,12υ

′] ∂ψ
∂a

+ ϕx
,13

+

[[
ϕx

,21 + ϕx
,22υ

′] ∂ψ
∂a

+ ϕx
,23

]
υ′

+ ϕx
,2υ

′′∂ψ

∂a
.

The second order derivatives in the last expressions are

ϕx
,11

∣∣∣
a=0

= 0,

ϕx
,12

∣∣∣
a=0

= ϕx
,21

∣∣∣
a=0

= 0,

ϕx
,13

∣∣∣
a=0

= ξ,1(x, υ(x)),

ϕx
,23

∣∣∣
a=0

= ξ,2(x, υ(x)),

ϕu
,11

∣∣∣
a=0

= 0,

ϕu
,12

∣∣∣
a=0

= ϕu
,21

∣∣∣
a=0

= 0,

ϕu
,13

∣∣∣
a=0

= η,1(x, υ(x)),

ϕu
,23

∣∣∣
a=0

= η,2(x, υ(x)).

Hence

Φ1

∣∣∣
a=0

= 0 + 1 · υ′(x) = υ′(x),

Φ2

∣∣∣
a=0

= 1 + 0 · υ′(x) = 1,
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∂Φ1

∂a

∣∣∣∣∣
a=0

= [0 + 0υ′(x)] [−ξ(x, υ(x))] + η,1 (x, υ(x))

+ [[0 + 0υ′(x)] [−ξ(x, υ(x))] + η,2 (x, υ(x))] υ′(x)

+ 1 · υ′′(x) [−ξ(x, υ(x))]

= η,1 (x, υ(x)) + η,2 (x, υ(x)) υ′(x)− ξ(x, υ(x))υ′′(x),

and

∂Φ2

∂a

∣∣∣∣∣
a=0

= [0 + 0υ′(x)] [−ξ(x, υ(x))] + ξ,1 (x, υ(x))

+ [[0 + 0υ′(x)] [−ξ(x, υ(x))] + ξ,2 (x, υ(x))] υ′(x)

+ 0 · υ′′(x) [−ξ(x, υ(x))]

= ξ,1 (x, υ(x)) + ξ,2 (x, υ(x)) υ′(x).

Thus

∂ū′

∂a

∣∣∣∣∣
a=0

=
1 · [η,1 + η,2υ

′(x)− ξυ′′(x)]− υ′(x) [ξ,1 + ξ,2υ
′(x)]

12

= η,1 + [η,2 − ξ,1] υ
′(x)− ξ,2 [υ′(x)]

2
+ ξυ′′(x).



Appendix C

Some Material for Review and Reference

C.1 Definition of a Functional

Mapping. Let X and Y be sets and A ⊂ X be any nonempty subset. A mapping

(or transformation) T from A into Y is obtained by associating with each x ∈ A

a single y ∈ Y , written y = Tx and called the image of x with respect to T .

Operator. In Calculus, the real line R and real-valued functions on R (or on a

subset of R) are ususally considered. Obviously, any such function is a mapping

of its domain into R. Generally we consider more general spaces, such as metric

spaces, or normed spaces, and mappings of these spaces.

In the case of vector spaces and in particular, normed spaces, a mapping is

called an operator.

Functional. A functional is an operator whose range lies on the real line R or in

the complex plane C.

C.2 Inverse Function Theorem

Inverse function theorem. Let E and F be Euclidean spaces and U be open

in E. Let x0 ∈ U , and f : U 7→ F be a Cs map. Assume that the derivative

f ′(x0) : E 7→ F is invertible. Then f is locally Cs-invertible at x0. If ϕ is its local

inverse, and y = f(x), then ϕ′(x) = f ′(x)−1.

See proof in Lang (1997).
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C.3 Fréchet Derivatives

Fréchet derivatives. Let X, Y be normed linear spaces, U ⊂ X open, f : X 7→ Y

and x ∈ U . Then f is Fréchet differentiable at x if there is an element A ∈ B(X, Y )

such that if

R(x, h)
def
= f(x+ h)− f(x)− Ah,

then

lim
h→0

‖R(x, h)‖Y

‖h‖X

= 0.

We call A the Fréchet derivative of f at x and denote it by

f ′(x) = Df(x).

Higher order Fréchet derivatives.

Dnf(x) = DDn−1f(x), n = 2, 3, . . .

Note: Let X, Y be normed linear spaces, U ⊂ X open, f : X 7→ Y and

x ∈ U . Then

f(x) ∈ Y,

Df(x) ∈ B(X, Y ),

D2f(x) ∈ B(X,B(X, Y )) = B2(X, Y ),

...

Dnf(x) ∈ B(X,Bn−1(X, Y )) = Bn(X, Y ),

where Bn(X,Y ) is the space of bounded n-linear maps (i.e. linear in each variable

separately)

f : X × · · · ×X︸ ︷︷ ︸
n−components

7→ Y.
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Partial Fréchet derivatives. Let Xi and Y be normed linear spaces and X =

X1 ⊕ · · · ⊕Xm. Let U ⊂ X be open and F : U 7→ Y . Let x = (x1, . . . , xm) ∈ U .

Fix k ∈ {1, . . . ,m}. For z near xk in Xk, (x1, . . . , xk−1, z, xk+1, . . . , xm) lies in U .

Define fk(z) = F (x1, . . . , xk−1, z, xk+1, . . . , xm). (Thus fk(z) maps an open subset

of Xk into Y .)

If fk has a Fréchet derivative at z = xk, we say F has a k-th partial derivative

at x and define

DkF (x) = Dfk(xk).

(Note DkF (x) ∈ B(Xk, Y ).)

C.4 Invariants

Invariant. A function F (x) is called an invariant of a group G of transformations

(3.1) if F remains unaltered where one moves along any path curve of the group

G. In other words, F is an invariant if F (Ta(x)) = F (x) identically in x and a in

a neighborhood of a = 0.

A Basis of Invariants. A one-parameter group G of transformations in Rn has

precisely n−1 functionally independent invariants. Any set of independent invari-

ants, ψ1(x), . . . , ψn−1(x), is termed a basis of invariants of G. The basis is not

unique. One can obtain basic invariants, the left-hand sides of n− 1 first integrals

ψ1(x) = C1, . . . , ψn−1(x) = Cn−1,

from the characteristic system of equations

X(F ) ≡ ξi(x)
∂F (x)

∂xi

= 0,

i.e.

dx1

ξ1(x)
= · · · = dxn

ξn(x)
.



65

An arbitrary invariant F (x) of G is given by the formula

F = Φ(ψ1(x), . . . , ψn−1(x)).

See more details and proofs in Ibragimov (1999).
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