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This thesis deals with an application of group analysis to three-wave equa-
tions in nonlinear optics. These equations are obtained from the phenomenon that
two fundamental beams of light with the same frequency and different polariza-
tions propagate through quadratic nonlinear media. As the result of interaction,
a third beam of second harmonic frequency is generated. Maxwell’s equations and
the slow envelope approximation is used to construct the three-wave equations.

The application of group analysis to partial differential equations starts
from finding an admitted group. The admitted group of the three-wave equations
is an eleven-parameter group. To construct invariant solutions one needs to
classify this group. A classification of the group is equivalent to a classification
of subalgebras of the admitted algebra L;;. The main point of the thesis was
to construct all subalgebras of the admitted algebra L;;, which can be source
of invariant solutions. In this case a reduced system is a system of ordinary
differential equations. The constructing of an optimal system of subalgebras
could be done easily only for small dimensions. Because the admitted algebra of
the three-wave equations is eleven-dimensional, the problem of its classification
was reduced to the study of algebras with small dimensions. The first result
is that all essentially different three-dimensional subalgebras of the algebra Li;
were obtained. Then, invariant solutions with respect to some of subalgebras
of the algebra L;; were studied. And finally the Runge-Kutta method was
employed to study the reduced system.
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Chapter 1

Introduction

Physical and mathematical modelling are very closely related. Physical
phenomena are used to construct mathematical models, and on the other hand,
the solutions of mathematical models are used to explain the physical phenomena.
The most important mathematical models applied in engineering and physics
today are in the form of nonlinear partial differential equations. General solutions
of these equations are usually very difficult to find. By using numerical methods,
only approximate solutions can be obtained, which do not allow for analyzing
the properties of the equations. However, exact solutions are of more interest, as
each exact solution has value, firstly, as an exact description of the real process
in the framework of a given model; secondly, as an analytical solution to compare
with the numerical solutions obtained by various numerical schemes; thirdly, as a
basis to improve the models used. Among all the methods used for finding exact
solutions, group analysis (Ovsiannikov (1978), Olver (1986), Bluman and Kumei
(1996)) can be used with a great variety of equations, and its aim is to reduce the
number of the independent variables. A historical review of group analysis can
be found in Ibragimov (1999) and Lawrence (1999). Review of modern results in
group analysis are collected in the Handbook of Lie group analysis of differential
equations (Ibragimov, 1994, 1995, 1996).

In this research, an application of group analysis is used to find exact so-
lutions of the three-wave equations in nonlinear optics. These equations are ob-
tained from the fact that two fundamental beams of light with the same frequency
w and different polarizations propagate through quadratic nonlinear medium such
as Quartz, Potassium di hydrogen phosphate (K HyPO4) and Ammonium di hy-
drogen phosphate (NHyH;PO,). As the result of interaction, a third beam of
second harmonic frequency is generated. Maxwell’s equations and the slow en-
velope approximation derivation of the three-wave equations can be found, for
example, in Yariv (1989,1991), Butcher and Colter (1990), Dmitriev, Gurzadyan
and Nikogosyan (1991) Robert (1992), Nail and Adrian (1997), Maimistov and
Basharov (1999), Orszag (1999). These equations can be written as follows:

MlAl = iUlAgAzeiAkz,
M2A2 = iO‘QAgAT@iAkZ, (1].)
M3A3 = iU3A1A2€7iAkZ

Here
Al =u; + iU,Q, A2 = us + Z"LL4, A3 = us + iu6,



Ay, Ay are the complex valued amplitudes of two fundamental harmonic fields
with different polarizations and Az is the complex valued amplitude of the second-
harmonic field, M; are the linear differential operators

0

_9. i 0? 0? kj O
0z

T, (] = 17273)7

M. NI
! 2kj<(9x2+8y2> w ot’

0

bi Ox +
z is the coordinate along the propagation direction, (z,y) are the transverse coor-
dinates, t is time, k; o are the linear wave numbers of the fundamental frequencies,
k3 is the linear wave number of the second—harmonic frequency, Ak = ks—(ki+k2)
is the wave vector-mismatch, the symbol * denotes the complex conjugation, 3;
are the walk-off angles of the fundamental and second harmonic, w is the fre-
quency of the light, o; are nonlinear coupling coefficients. We will consider the
case of exact phase-matched condition:only Ak = k3 — (k1 + k2) = 0. System
(1.1) is a system of nonlinear partial differential equations.

There are several reasons for the high level of current interest in studying
the three-wave equations. One of them is that the intense study of nonlinear
effects in optics offers new facilities for optical signal processing as well as long-
distance communication systems. Mostly one-dimensional temporal or spatial
solutions were considered by Yariv (1991), Torner et all (1995). Group analysis
allows constructing more complex representations of solutions.

The application of group analysis to system (1.1) consists of several steps.
The first step is to obtain an equivalence group and admitted group. An equiva-
lence group is a group of transformations that transfers the system of equations
(1.1) into a system with the same differential structure, but with different ar-
bitrary elements. A group of transformations is called an admitted group if
any solution of system (1.1) by means of any transformation from this group is
transferred into a solution of the same system of equations. For the three-wave
equations, the equivalence group and admitted group were constructed in Gor-
chakov and Meleshko (1997). The equivalence group is nine-dimensional and the
admitted group is eleven-dimensional Gy;.

The admitted group Gy; allows dividing all exact solutions of equations
(1.1) into classes of essentially different solutions with respect to G;. Two so-
lutions w1, us are nonessentially different if one is transformable into the other
by a transformation belonging to the group Gi;. Therefore, essentially different
solutions are obtained with respect to different classes of similar subgroups. The
set of all representatives (one from each class) is called an optimal system of
subgroups.

One of the main goals of application of group analysis to differential equa-
tions is construction of representations of solutions. Solutions whose represen-
tations are obtained with the help of the admitted group are called invariant
or partially invariant. These solutions can be constructed with respect to any
subgroup of the group G1;. The concept of invariant solutions permits an orga-
nization of the search process for particular solutions of system (1.1) admitted
by group Gii, with the aid of different subgroups H C G;;. It is expedient in
this research to begin with the lowest possible number of independent variables



and move to successively higher number of independent variables of the studied
H —solutions. It is easier to find solutions with lower rank because the rank is
equal to the number of independent variables in the factor system (S/H).

All invariant solutions (as all solutions) can be divided into essentially dif-
ferent classes. The problem of enumeration of all invariant and partially invariant
solutions of a given finite-dimensional Lie group G1; can be done in two steps.
In the first step, the classification of all subgroups of the admitted group has
to be done. The classification of subgroups is equivalent to the classification of
all subalgebras. All subalgebras are divided into equivalent classes with respect
to the automorphisms of the admitted Lie group G7;. A list of representatives
from each class is called an optimal system. Note that the determination of an
optimal system can be done relatively easy for small dimensionality. For large
dimensionality, we need to use the two—step algorithm developed by Ovsiannikov
(1994). This algorithm allows reducing the problem of the construction of the
optimal system of subalgebras of Lq; to the classification of subalgebras of lesser
dimension. The construction of the optimal system of three-dimensional sub-
groups of the group G1; is one of the main result of the thesis. For the invariant
solutions, which are related with three-dimensional subgroups of the group Gii,
the original system of the three-wave equations reduces to a system of ordinary
differential equations.

Therefore, to find invariant or partially invariant solutions, one needs to
find the optimal system of subalgebras and then for each subalgebra, one has to
find a universal invariant, a representation of a solution, substitute it into the
given system and study the compatibility of the resulting system.

Many parts of this method require the carrying out of a lot of compli-
cated symbolic manipulations. Because this is a very laborious part, we used a
computer for this task. All calculations were done with the REDUCE program
(Hearn, 1999).

The framework of the thesis is as follows. Chapter II introduces notations
of group analysis and provides references to well-known facts on application of
group analysis for constructing exact solutions of partial differential equations.
Chapter III deals with obtaining the three-wave equations from Maxwell’s equa-
tions. Chapter IV is devoted to constructing a three-dimensional part of the
optimal system of subalgebras. At first the factor algebra Lg is studied and then
by using the optimal system of subalgebras of the algebra Ly we obtain the op-
timal system of subalgebras of the algebra Ly;. In Chapter V invariant solutions
for which the original system of the three-wave equations reduces to a system of
ordinary differential equations are studied. To reduced system the Runge-Kutta
method is used. Results of representative calculations are presented.



Chapter 11

Symmetries and Invariant
Solutions

2.1 Introduction

In this chapter, we discuss the classical method for constructing invariant
solutions of partial differential equations. We use this result to determine the
point transformations and to generate invariant solutions of the three wave equa-
tions. Discussions of the standard group method for constructing exact solutions
can be found in the textbooks (Ibragimov, 1994, 1995, 1996, and Ovsiannikov,
1994).

2.2 Admitted groups

In this section, we review the general theory related to group of continuous
transformations.

Let * = (x1,...,7,) € R" be a set of independent variables, u =
(ul,u? ..., u™) € R™ be a set of dependent variables and A be a symmetrical
interval of R

We consider the set of invertible point transformations of the space R

Ti= ®(z,u;a), W = VU'(z,u;a) (2.1)
= 1,2,..n) (j =12 ....m).

Here a € A is a parameter of transformations.
Group analysis uses special kind of invertible transformations. These
transformations compose a local Lie group.

Definition 1 A set of transformations (2.1) is a local one-parameter group G"
if it has the following properties:

P.1. ®(x,u;0) = U(z,u;0) = u for any (x,u) € R

P.2. ®(d(x,u;a), V(x,u;a);b) = ®(x,u;a + b) and
U (D(x,u;a), V(x,u;a);b) = V(x,u;a+ b)
for any a, b, a+be A, (r,u) e R"T™



P.3. If ®(z,u;a) = x and Y(z,u;a) = u then a =0
P. @, ¥ € Cyuo(R™™ x A)

If we expand the function ®¢, U/ into the Taylor series with respect to
parameter a in a neighborhood of a = 0, then we obtain

Eimxi—i-a(%ci)a:o%—... (2.2)

_ . oI
W 4a| — +
da a=0

where (%) : (aa_q:) are functions of r and u that are denoted by &'(x, u)
a=0 a=0

and ¢’(x,u). If a is sufficiently small, then we can write the coordinates of the
image point (Z,u) as

T ~ 1; + a&’, (2.3)
W~ v+ al’

Transformation (2.3) is called an infinitesimal transformation and the vector

(€,m) is called a tangent vector field of the group G. Here & = (£1,€2,...,€"), (=
(¢, ¢3,...,¢™). It can be written in the term of the first-order differential oper-
ator ! 5

ui

; 0
)(__£(x7u>axi
that is also called an infinitesimal generator.
Let us consider the property (P.2) of group transformation (2.1). By dif-
ferentiating the left and right sides of it, we obtain the relations

+ () (2.4)

O (@) = (€0 (@) (2 ua), (25)
% (q;j(x’u;a)) = (gj o (®, \I/)) (x,u;a)

The last equations and property (P.1) of any one parameter group of transfor-
mations (2.1) yields the functions T = ®(z,u;a) and @ = V(z,u;a) which are
solutions of the Cauchy problem

dz;

- ewm, (2.6
i |

— = Jd@.
Tilgeo = @i,  W|,_, =1 (2.7)

Equations (2.6) are called Lie equations.

"We will use the summation convention that a repeated index implies summation over the
values of the index.



Applications of groups of transformations to differential equations require
to know the transformations of derivatives. For the sake of simplicity, we explain
this idea by the case when n =1 and m = 1.

Let ug(x) be a known function. The transformed function u,(z) can be
obtained by the following way. Firstly, one has to solve the equation

T = (z,up(z);0a)

with respect to x. Since the Jacobian g_i‘a:o = (g—i + g—iug) ‘a:O = 1, then by

the inverse function theorem, one can find z = ¢(Z, a) in some neighborhood of
a = 0. Note that there is the identity

T =2 (9(T,a),u(9(7,a)),a). (2.8)

The transformed function u,(x) is

ua(T) = ¥ (9(T,a), uo (9(T, a)) , a). (2.9)
Differentiating the last expression, one gets

dua(T) 0¥ 0Og 0¥ OJuy Jyg

& or o7 ou 0z 0%
T o
= (a_+ 9 )ﬁ. (2.10)

ox UOE

9g

The derivative 32 is obtained by differentiating (2.8) with respect to 7:

00 0y 00 ouy g
or 0T Ou Oz 0%

— 8_¢+8_®.ul @
N or  Oou °)ox

9 ___ - (2.11)

Hence,

Substituting (2.11) into (2.10), we obtain derivative of the transformed function

dug, YV, +uj\Vl,
— —v _h " a). 2.12
dr @, +u)®d, (%, o, up, a) (2.12)

Note that %

= ‘a:O = wug(x). Therefore the infinitesimal transformation of the
derivative is

ul, = ug+al + ...
where ¢; = D(n) — ' D(§). Here D, = 8% + uma% + um% + .... Similarly, we

obtain the infinitesimal transformation of the second derivative

u, = ug + ay, where ¢ = D((1) — u'D(§).



where ¢ = D(G) — u' D(€).

Let x = {x;} be the set of independent variables and u = {u’} the set
of dependent variables. Derivatives of the dependent variables are given by the
sets uq) = {uf}, Uy = {ufa},..., where j = 1,...,m and i,a = 1,...,n.
The derivatives of the differentiable functions u’ can be written in terms of the
operator of the total differentiation D; given below

uf = D),
uga = Da(ug)
where
0 ; 0 ; 0 , .
D, = I, —|—ui%—|—uma—u£+..., (1=1,2,...,n; 7=1,2,...,m). (2.13)

In (2.13) there is a summation over the values of the repeated index « from 1 to
n. The set of transformations in (z,u) space is

T, =P (v,uja), P,y =z (1=1,2,...,n),
wWo=V(z,upa), W _, =4, (j=1,2,...,m),
where a is a real parameter of a one-parameter group of point transformations

in the space of the dependent and independent variables if the group properties
apply. The generator of the group is

, 0 , 0
X =< J — 2.14
£ u) g + Gl u) (2.14)
where £ = 8(% o ¢ = 88—\15 R The first prolongation of the generator (2.14)
is given by
.0 -0 ;0
XM = gi 2 i J_Z
“on 0w, g
where

¢! =D; () —ulD; (€).

The second prolonged generator is

where ‘ . .
/ :DZ'Q(-jl)—’LLJ DiQ(ga); (il,i2:1,2,...,n).

1112 aiy

The higher order prolonged generator is

; 0
[s] — xls=U 4 7
X=X + i1 auj )

i1



where

lj125 = Dis (Ci1~~~is_1) - uiil---is_lDis (ga) X (’il, ig, Ce ,is = 1, 2, . ,n).
Now we relate a local Lie group and differential equations. Let
Fl(l‘,u,U(l),...,U(S)) :O, l:1,2,... (2.15)

be a system of s-th order differential equations and G be a local Lie group of
transformations.

Definition 2 A system of differential equations (2.15) is said to be invariant
under a group G of point transformations if the solutions of the system are merely
permuted among themselves by every transformation of the group G. The group
G s also termed a group admitted by the system. Consequently any solutions of
system of equations (2.15) are converted into solutions of the same system.

Finding symmetries of F; leads to a system of linear and homogeneous
differential equations with respect to the components of an admitted generator.
These equations are called determining equations.

Definition 3 (determining equations)
The equations

xr]

=0 2.16
o (2.16)

are called determining equations.

The determining equations can be split with respect to parametric derivatives.
After splitting, one gets overdetermined system of equations for the coefficients
of the generator. Because this system of equations is overdetermined, one can
solve it.

Theorem 1 If a differential equation admits the operators ¢ - 0 and (' - 0, then
it also admits their commutator [(, ('] - 0.

2.3 Equivalence group of transformations

A system of PDE can be classified by the symbol E(m,n,s,l) where m
is the number of the dependent variables, n is the number of the independent
variables, s is the order of the highest derivative and [ is the number of differential
equations. Normally the differential equations include arbitrary elements (6).
For searching Lie group which are admitted by the original system, one needs
to determine group of transformations that changes arbitrary elements but does
not change the differential structure. An infinitesimal approach (Meleshko, 1996)
was applied for finding this group.



Definition 4 A nondegenerate change of dependent, independent variables and
arbitrary elements which transfers any system of the differential equations of the

gen class
Fi(z,u,p,0) = 0. (2.17)

to the system of equations of the same class but with different arbitrary elements
15 called an equivalence transformation. Here p are the partial derivative from
(U(l), U(g), c. ,U(S))

Group of these transformations with a parameter a can be written as the
following

7, = ®(z,u,0;a), @ =V (x,u,0;a), 7" = 1% (x, u, 6; a), (2.18)

where k = (k',k%- -+ k7) be a set of arbitrary elements. Generators of this group
have the form

X = €0, + (70, + ¢ 0
where

on
da a=0 '

- . 0P’ . » A k k
t = v = J = J = — 9 = 0 —
5 é- (ll’ u? 9) aa azo ) C- C (:1:7 u’ 0) aa 0 ) C C ("B7 u7 0)

a=

Arbitrary elements are obtained by the following way. Let 6y(x,u) be given. By
the inverse function theorem with equation (2.18), we can find v = f(7,%; a) and
u = g(T,u;a). The transformed arbitrary elements are

00(7, ) = 11 (f(Z,4; a), 9(T,T; a), 00(f (7, 4; @), 9(7,7; a); a)) .

If up(x) is a solution of system (2.17) and 6y(x,u) is a concrete value of the
arbitrary element, then we have

T = ®(x,up(x), Op(z,up(z)); a).

By the inverse function theorem, we can find

z = f(T;a)
and we also obtain the transformed function
UO(E) - \IJ(f(f7 a)a uO(f(E> CL)), Qo(f(fv a)v UO(f(E7 a)); a)) . (2'19)

Differentiating (2.19) with respect to Z, we get the transformation p. Since u,(T)
is a solution of the same system with transformed arbitrary elements 6, (7, )
then

Fi (T, ua(Z),Pa(T), 0, (T,u,(T))) =0, 1=1,2,....

The s-th prolongation of infinitesimal generator X¢ is

XE} =X+ Cij@uj + Cgfaei;, + Cgfaekj +. (2.20)
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where
¢ = D" -0k DEer — ok Dl (P
¢% = D¢ — 6 DEer — 05, D0
Here
0 ) N
D, = I~ 4 (0 +0F ) — + ...
‘ Ox; T T (6, + Ou) 08
0 0 ) B
Dt = oF ~ . D=k
n = gg, T mggr T Pw = g Tl T

By the same way as for the admitted group, one can obtain the deter-
mining equations for the equivalence group. Let G(f) be admitted group with
the arbitrary element 6. A set of groups G(f) that is admitted by equations for
all arbitrary elements is called a kernel of groups, corresponding to Lie-algebra,
which is called a kernel of algebra.

2.4 Lie algebra

Before giving a definition of Lie algebra, we need to introduce the commu-
tator. Let X; = £0, + (10, Xo = &0, + (20, be two generators. We define a
new generator X denoted by [Xy, Xs] with the following formula

X = [Xy, Xyg] = (Xi&o — X261) 0 + (X1C2 — X2(1) O
This generator is called a commutator of the generators Xy, Xas.

Definition 5 (Lie algebra) The vector space L over the field of real numbers is
called a Lie algebra if the operation of the commutator [ -, - | satisfies the azioms:

a.1 (bilinearity) : for any Xy, Xo, X3 € L and a, b € R

[(IXl + bXQ, Xg] = a [Xl, Xg] + b [Xg, Xg]
[Xl, CL.XQ + ng] = [Xl, .XQ] + b [-Xh Xg]

a.2 (antisymmetry) : for any X;, Xo € L

[ X1, Xo] = — [ X3, Xi]

a.3 (the Jacobi identity) : for any X,, Xo, X3 € L

[ X1, Xo] X] + [[Xo, Xs] Xu] + [ X3, Xu] X5] =0
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Remark 1 Let L, be an r-dimensional vector space with a basis Xy, Xo, ..., X,.:
1.e., any vector X € L, can be decomposed as the following

k=1
where xy, are coordinates of the vector X in the basis {Xy,..., X}, then L, is a

Lie algebra if
(X, X ZCZJXk, i, j=1,2,...r

with real constants cfj.

Definition 6 (Subalgebra) The vector space N C L is called a subalgebra of the
Lie algebra L if [u,v] € N for any u, v € N.

Definition 7 (Ideal) A subalgebra I C L is called an ideal of the Lie algebra L
if for any w € L, v € I it is also true that [u,v] € I.

One of the main aims of group analysis is a construction of exact solutions.
All solutions can be divided into equivalent classes of solutions.

Definition 8 (Equivalent solutions) Two solutions uy and us are equivalent with
respect to the group G if one is transformable into the another by a transformation
belonging to the group G.

The problem of classification of exact solutions is equivalent to classifica-
tion of subgroups (or subalgebras) of the group G (or the subalgebra L). Because
there is a one-to-one correspondence between groups and algebras we explain here
about classification of subalgebras. In order to give the classification of subalge-
bras, we need to give some definitions.

Definition 9 (Automorphism) Let L, L be Lie algebras and X, Xo € L. A
linear one-to-one map f of L onto L is called an isomorphism if it satisfies the
equation

f (X0, Xol) = [f(X0), f(X2)lp

where the indices L and L denotes the commutators in the corresponding algebras.
An isomorphism of L onto itself is called an automorphism of the Lie algebra L.

In the finite-dimensional case, isomorphic Lie algebras have the same di-
mension. The criterion for the Lie algebras to be equivalent can be stated in terms
of their structural constants. If the Lie algebra L and L are isomorphic, then
there exist bases in them for which their structural constants are correspondingly
equal.

Let L be the Lie algebra. If a set {X;,Xy,...,X,, } is a basis of L, then
we have

(X, X,] Zc (1, 7=1,2,...,n),
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where ¢ are the structural constants. From the table of commutators of the alge-
bra L, we can write a linear system of scalar equations with constant coefficients
for the automorphism A;, (i = 1,2,...,n):

dzT; P :
d—aﬂzz(ﬂmxﬂ, (j=1,2,....n). (2.21)
p=1
Initial values for this system are Z; = x; at a = 0. The solutions of these

equations consist of a set of the automorphisms.

The set of all subalgebras is divided into equivalent classes with respect
to these automorphisms of the admitted Lie algebra L. A list of representatives,
where each element of this list is one representative from every class, is called an
optimal system of subalgebras.

Next, we consider a method for constructing the optimal system. Be-
cause of the difficulties in constructing the optimal system of subalgebras for the
large dimensional Lie algebras, there is a two-step algorithm (Ovsiannikov, 1978),
which reduces this problem to the problem for constructing an optimal system of
algebras with less dimensions.

Let us consider an algebra L with a basis {X;,Xa,...,X;}. According
to the algorithm, the algebra Lj is decomposed on I; & Ny, where [; is an ideal
of the algebra L, and N is a subalgebra of the algebra L. In the same way,
the subalgebra Ny can also be decomposed as N; = I, & Ns. Following the same
process (o — 1) times up to the algebra N,, the optimal system of subalgebras
can be easily constructed.

By gluing ideals [; and subalgebras N, starting from [ = o to [ = 1, one
constructs the optimal system of subalgebras for the algebra L. Note that for
every subalgebra NV; one needs to check subalgebra conditions and to use the au-
tomorphisms to simplify coefficients of these systems. Therefore, the problem for
constructing an optimal system of subalgebras of the algebra L; by this method
is reduced to the problem of classification of algebras with fewer dimensions.

After constructing the optimal system, one can start seeking invariant and
partially invariant solutions of subalgebras from the optimal system.

The concept of invariant solution is based on the fact that the problem of
discovery of an invariant solution is reduced to the integration of a new system of
differential equations, in which the unknown functions depend on a fewer number
of independent variables in comparison with the original system. In this sense,
invariant solutions are found more easily than arbitrary solutions.

Let us consider some subgroup H of the group G. A function F(x,u) (z €
R* uw e R, N =n+m)is said to be an invariant of the subgroup H if for
each point (z,u), it is constant along the trajectory determined by the totality
of transformed point (Z,u) : F(Z,u) = F(x,u). The function F(x,u) is an
invariant of the group H with generators

X(k) = 62]6)(337 u)axz + C(Jk)(x> u)auj, (k’ - 1, 2, ceny 7”)
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if and only if

; oF ; oF

Xy(F) = f(k)(x,u)a—% + (=, U)%

Any r-parameter group H has exactly N —r functionally independent invariants
J = (JYz,u),...,JN""(x,u)). To find an invariant solution with respect to the
subalgebra H, one has to find a universal invariant and to divide the universal
invariant into two parts. The first part of the universal invariant is a function

depending on the second part. For the invariant solutions, it is required that

o(J .., IV
rank( o, ) )—m.

=0, (k=1,2,..,r). (2.22)

Invariant solutions are not the only types of particular solutions that can
be obtained by group analysis. One can consider a class of solutions which gen-
eralizes the concept of an invariant solution. The property which these new
solutions have in common is that they all are found from the knowledge of a
certain subgroup H of the main group G, therefore, such solutions are called
partially invariant solutions.

The concept of invariant and partially invariant solutions permits an or-
ganization of the search process for particular solutions of system (1.1) admitted
by group G, with the aid of different subgroups H C Gy;. It is expedient in
this search to begin with the lowest possible number of independent variables
and move to successively higher number of independent variables of the studied
H —solutions.

It is easier to find solutions with lower rank because the rank is equal to
the number of independent variables in the factor system (S/H).

The algorithm for finding invariant and partially invariant solutions con-
tains an arbitrariness related to the choice of the defect ¢, which satisfies the
following inequalities

max{r, —n,0} <0 < min{r, —1,m — 1}. (2.23)

Here
o (J ..., JNT)
o (ul,...,um)
Where r, denoted general rank of its tangential mapping & of the group G. If
0 = 0 then the solution is invariant, otherwise it is partially invariant.

In the general case, the number of different types of solutions which are
obtained for given n and m, associated with the different pairs (r,,J), depends
only on m and n. A calculation shows that the maximum possible number of
types of invariant and partially invariant solutions is equal to mn. Of course, for
a specific equation E(n,m, k, s), the actual number of types of partially invariant
solutions admitted by the equation, which can be sought by using the subgroup
H of the group G may be less than mn. This can occur if the dimensionality
of the group G is not sufficiently large or because of the necessary condition

m— 0 < 1. (0uJ).

0 =m — rank
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Generally, the classification of the invariant and partially invariant solu-
tions of the given differential equations is done on the same basis. If the rank of
the Jacobi matrix of the first part with respect to the dependent function wu is
equal to the number of the functions u, then it is an invariant solution, otherwise
it is a partially invariant solution. However, for partially invariant solutions, it is
necessary to consider an additional characteristic of the defect . As it was noted,
a knowledge of the admitted group helps to reduce the number of independent
variables by constructing invariant and partially invariant solutions.



Chapter I1I

Three-wave Equations

3.1 Introduction

This chapter is devoted to deriving the three—wave equations. We consider
the propagation of two monochromatic waves with the same frequencies w but
different polarizations in quadratic nonlinear medium. The interaction of this
phenomenon generates the second harmonic and parametric oscillation.

),
Quadratic nonlinear (0))
. 3
Monocromatic . )
medium .
Second harmonic
Q)

Figure 3.1: Second harmonic generation.

To construct the three-wave equations, one needs to study relations be-
tween electric and magnetic field. The interaction of these fields is described by
the Maxwell’s equations.

3.2 The three—wave equations in nonlinear op-
tics

In this section, we explain the derivation of the three-wave equations. The
starting point is the Maxwell equations:

oD
VxH = I+ a,
VXxE = B (3.1)

ot
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and the constitutive equations relating the polarization of the medium to the
displacement vectors

D = gE+P, I=0E,
B = ,LL()(H‘FM),

where I is the current density, E and H are the electric and magnetic field vectors,
respectively; D and B are the electric and magnetic polarizations of the medium,
g0 and pg are the electric and magnetic permeabilities of vacuum, respectively,
o is the conductivity. The total polarization P is separated into its linear and
nonlinear portions

P= 60X[E + Pnl~

In non-linear optics for the magnetic polarizations, it is required that
M = x,,H.

Taking the curl of both sides of equation (3.1) and using divE = 0 and the vector
identity

V x (V x E)=V(divE) — AE = —AE, (3.2)
we get
AE = MQAH
ot
where
p= po(1 + Xm)-

After differentiating the first equation in (3.1) with respect to t and sub-
stituting it into the last equation, we obtain
O0°E 0?P,,

OE
AE = o= 4yl 2
Mooy THE g TH g

(3.3)

where € = go(1 + x;). System (3.3) is not closed. In strong fields for the nonlin-
ear part of the electric polarization P,; of medium, there are phenomenological

expressions
P, =P% 4+pP® 4

where PYU) are the nonlinear part of j-th order. For PY) the following formula is
suggested

P(J) :// dTldTg"'deX(g) (Tl,TQ)E(t—Tl)E(t—Tl_7-2)...
0
E(t_Tl_TQ__Tj)7

where ¥ are tensors of nonlinear susceptibility. We consider medium with
quadratic susceptibility.
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In the general case, equations (3.3) are very complex. To study the non-
linear effects, a perturbation method is applied. According to this method, the
electric field vector is represented in the form

E(z,t) = Z E; (z,t) exp (iw;t) + c.c., (3.4)

where c.c. means complex conjugate terms. These waves generate waves with
the polarization

1 .
P = 5 Z P,exp (iw,t) + c.c. (3.5)

on the frequencies
N
Wq = § :mjwj )
=1

where m; are integer number. As the result in nonlinear medium, the new waves
with these frequencies are generated. At the same time, new waves take part
in interaction of (3.4) into formula for the polarization P®. Each of the elec-
tromagnetic field E; generates two quadratic polarization of medium on doubled
and zero frequencies:

1
P® = @ (w; +w;) E,;E;,

¢ 2
1 \
PO — §x(2) (w; — w;) E;E5. (3.6)

Two electromagnetic waves with different frequencies w; and wj, generate two
more polarizations:

PP = & (w; + wy) E;Ey,

PP = x? (w; — wy) BjE;.

Substituting (3.4) and (3.5) into (3.3), we obtain the chain of the Helmholt equa-
tions :

OE; O’E; | . O
AEj = Mo (8—; ‘I"LWjEj) +/~L5 ( at; + Qlea—t] - wJZEj) +
)
+M< o T2, — WP . (3.7)

If in the result of one act of the interaction of two waves in medium, the third
wave on combined frequency appears, then this is called a three-frequency inter-
action. In order to analyze this process, a method of slowly changing amplitudes
is applied. According to this method, the electromagnetic field and polarization
are represented in the forms

k; ‘
E;(z,y,2,t) = e;A; (x\/ﬁ, (VTN TN (Zw—] - t)) exp (—ik;z),
J

P;Q) (,y,2,1) = PPy (/1 Y/ iz, pt) s exp (—ik;2)
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where e; and p, are unit vectors of polarization of the waves, A; and P, are slowly
changing amplitudes. Substituting these representations into Helmholt equations
(3.6) and leaving terms of the first degree with respect to the small parameter
we obtain
k3 OA, LOA; 1, . )
_ZZQT]Ja—t] + AJ_AJ‘ - Zija—; — ;ijj = azijj - &?ijj -
—aqw?Pj exp (—i (kp; — kj) 2)

k; OA; OA; i w? w3 o
w_jja—;+8_§]+%ALA]+za]ﬁPj €exXp (—’L (kjlhj — k‘]) Z) = AJQ_]{Jj] (€j — e+ ’Lw—]) s

(3.8)
where A} is the Laplacian in (z,y), o; =p;l;, kI = pw’e;

Let us limit our consideration to the field made up of three plane waves, two
of these fields are of the same frequency w, for example w; = ws = w. As the result
of their interaction, the third harmonic with the frequency ws = wi + wy = 2w is
generated. In this case the polarizations are the following equations

P?) = §X(2) (wg — wy) E3E3,
1 *

P(22) = §X(2) (w3 — wl) E3E1,
1

Pg2) = §X(2) (Wl + WQ) E1E2.

Therefore, equations (3.8) become

(9A1 1 k‘l 8A1 . .

L A A AsA; —iA

B + ok 1A+ o o io1AzAj exp (—iAkz),
0A i ko OA . . .

T Tapdiet D = ioehiAiexp (—idk:)
0A5 i ks OA5 , ,

0z 2kt T o o5 A1 exp (i242)

where Ak = k3—k; —ko. In short, these equations can be written as the following:
MlAl = ’L.O'lAgAzeiAkz, M2A2 = ’L.02A3A>{€iAkz, M3A3 = iOgAlAQG_iAkz. (39)

Here M; are linear differential operators

Mj = 0+ 5= (0% + 3) + kw™'0 (= 1,2,3). (3.10)
J

Derivation of equations (3.9) was done without taking account of anisotropy of a
crystal. For anisotropic crystals, the equation divE' = 0 is not correct. Therefore,
in the process of deriving, one needs to use the full version of equation (3.2)

V x (V x E) = V(divE) — AE.
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This will lead to equations (3.9) with the corrected differential operators

]

2k;

J

Mj = 0z 4+ — (0% 4 0) + kjw™' 0y + ;0,, (j =1,2,3). (3.11)
Note that by the equivalence transformations (Gorchakov, Meleshko, 1997) the
coefficients (;, (j = 1,2,3) can be transformed to zero. Therefore, in this thesis
we study the equations with §; =0, (j = 1, 2, 3).



Chapter 1V

Optimal System

4.1 Admitted group and equivalence group

In this section, we describe the equivalence group and group admitted by
system (1.1). This system is written in the individual variables. We set the
variables as follows :

T =t, To=1x, T3 =1y, T4 =2, A =u' +iu®, Ay =ud +iut, A5 =’ + b,
pgzuii,pga:uiixa; (j=1,2,...,6; i,a=1,...,4)
0F = By, 03TF = Ky, 05 =0y, 00 =w, (k=1,2,3).

With these notations the functions F; = Fj(z,u,p,0),(l =1,2,..,6) in (2.15) are
defined by (1.1). We assume that the generator has representation in the form

X = 51($’ u, e)axl + Cj(xa u, e)auﬂ + Cek (Qf, u, 9)89’“
and prolonged operator is
X=X+ (x,u,0)0, + L (2,u,0)0, + Cgf(:)s, u, 0)Opr + sz(:v, u, 0)89kj

The coefficients of the prolonged operator are defined by formulae (2.20). The
determining equations are B
(X Fi] g0 = 0. (4.1)

Because the arbitrary elements 6% are constants, one needs to append the addi-
tional equations

=0, (% =0; (j=1,2,...,6;i=1,2,...,4; k=1,2,...,10).
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The result of the calculations is the equivalence group with the basis of the
generators:

X¢ = 20, +ydy + 20, — 30 _ a0, — k10, — ka0,
X§ = to —wi,,

X5 = wtd, + 320 kaOp,,

X{ = 20: + Zi:l 9.

Xg = (k) Mk — (B3 — Bo)wt — (ksfa — kof33)2) (1a0uy — ug0u,+
+u68u5 - u5a“6) - (kQ)_laﬁ2 - (k3)_18ﬁ37

Xg = 20’1601 — (U38u3 + U48u4 + u50u5 + u60u6),

X; = 20’2802 — (Ulaul + uQ8u2 + u50u5 + U68u6)7

Xg = 20’3803 — (Ulaul -+ u20uZ -+ U38u3 + u4('3u4),

X = 20, +ydy + 220, +2t0, — 230 _ 0O, — Sooy Balp,.

Remark. In the experiments, it is very important to have 87 + 33 + 32 # 0.
However, in this case, an admitted group is very complicated. Group equivalence
makes it possible to transform to equivalent system with 3; = 0. It essentially
simplifies the calculations.

In the strength of the equivalence group, we consider 3; = 0; = 1,2,3.
The admitted Lie group corresponds to the Lie algebra Ly, with the generators :

X1 = 833, XQ = 8y, X3 = (‘33, X4 = y@s — Z)’Jay,

X; 20, + Y0, + 220, 4+ 2t0; — 230 _ UaOy..,

X6 = .77X10 + z@m, X7 = yXl() + zé’y, Xg = 8t,

Xo = (k1 —ko)zXi0+ (k1 + k2)z — 2wt) X1y,

Xio = ki(ue0y, — u10y,) + ko(wsOyy — us0y,) + (k1 + k2)(u60u; — us0y,),
Xll = lﬁ (UQaul — Ulﬁuz) + kg(u48u3 — u38u4) + (/ﬁ - kg)(u(;@us — u58u6).

The table of commutators is

X, X X3 Xy X5 Xe X X X
X0 0 0 -X, Xi X O 0 0
X 0 0 X5 X 0 Xy 0 0
X3 0 0 2X3 X X, 0 @ X10 + BoX11
X4 0 0 X; —Xg 0 0
X5 0 X6 X7 —2X8 2X9
X; 0 0 0 0
X7 0 0 0
Xs 0 —wX11
X 0

Here ag = (k1 —k2)/2, Bo = (k1+k2)/2. Two generators Xy and X7, constitute
the center of the algebra. Inner automorphisms are constructed with the help of
the table of commutators.

To construct automorphisms, one has to solve the Lie equations. For
example, for the automorphism A;, we have the system of ordinary differential
equations



dfl _ dfg _ dfm

2 =-F, — ==

da = %5 da

and the initial values at a =0

T =1, T2 =9, Tig = T10-
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Therefore, the automorphism A; only changes the coordinates 1, xs and x19 by
the formulae

T =21+ a1T5, To = Tog — A1X4, Tip = T10 + A1T6.

Other coordinates are not changed.

AQZ
Agi

A4I

By the same way, we obtain the automorphisms A;

Ty = 21+ Qo%4, To = To+ A5, Tio = T1p + A2T7,

T1 = X1 +azxe, To = T+ azry, Tz = x3+ 2azxs,
T10 = T10 + QazTy, Ti1 = T11 + Poazo,

(1=2,...,9):

T1 = x1cos(ay) — xosin(ay), Ty = x1sin(aq) + 2 cos(ay),
T = xg cos(ay) — x7sin(ay), Ty = wgsin(ay) + 7 cos(ay),

fl = CL5_1[E17 EQ = Cl5_ll'2, 53 = CL5_2J]3, T6 = a5Zg,
fg = a5_2x8, fg = a%xg,

Ty = T1 — AeT3, Te = Te — AeTs, T7 = T7 — ATy,
Tog = Ty — A7¥3, Tg = Te + 7%y, T7 = T7 — A7T5,
Tg = Xg + 2agT5, Ty = T11 — Wagly,

T7 = asxr,

2
—_ ag.
T10 = 10 — AeT1 + be?n

— a
T1p = 10 — a7T2 + 5 T3,

T1p = T10 — QAyT3, T11 = T11 — Ag(wTs — Box3), To = Tg — 2a9Ts.

Also there are two involutions

E, 7 = -2, Ts= —xg,

Ey 1Ty = —x9, Ty = —x7,

which correspond to the change of the independent variables x on —x and y on
—1, respectively.

4.2 Decomposition of the algebras L,

Before constructing an optimal system, we study an algebraic structure of

the algebra Lq;. Let us consider the vector space Lg spanned by the operators
X1, Xo, ..., Xg. Note that the space Ly is not a subalgebra, because, for exam-
ple [X1, Xg] = X190 € Lyg. Assume that H = {Y},Y5,...,Y;} is a k-dimensional
subalgebra of the algebra Ly;. Operators Y;, (i =1,2,...,k) are

11 9
V=Y, + Z TioXa, Y= Zl’mXa,
a=1

a=10
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where the first part belongs to the space Ly, and the second part belongs to the
center { X9, X11}. The rank of the matrix @ = (x;;) composed of the coefficients
zy, (i=1,2,...,k j=1,2,...,11) is equal to k. The rank of the matrix @
composed of the first 9 columns of the matrix ) can be equal to either k, k — 1
or k — 2. If the rank is equal to £ — 1 or k — 2, then, without loss of generality,
Y, € {Xi0,X11}. In this case the rank of the Jacobi matrix of the universal
invariant with respect to the dependent functions is less than the number of
the dependent variables. The reson for this is that the process of finding the
universal invariant can start from the operator Y; which are expressed in term
of the dependent variables only. Therefore, for constructing invariant solutions,
we only have to consider the subalgebras of the first kind, where the rank of the
matrix @Q is equal to k. This means that the vectors Y;, (i = 1,2,...,k) are
linearly independent.
Conditions for H to be a subalgebra give

Y;, Y] Z C0i=1,2,... k.

Because the operators Xig, X1 constitute a center, then

Y Y] = Vi, Y] any + Yy,

where Y;; € {X10, X11}. Hence the operators Y;, (i = 1,2,...,k) constitute
k-dimensional subalgebra of the factor algebra L9 = Lq1/{X10, X11}. A basis
of Ly can be chosen consisting of the classes X;/{ X1, X11}, (1 = 1,2,...,9).
Because {Xjg, X171} is a center, then, for the classes X;/{ X0, X11}, one can
use the same automorphisms (without considering transformations of Xy and
Xi1) as for the operators X;. Therefore, this allows simplifying the process of
constructing the optimal system of subalgebras of the algebra Lq;. At first, one
can construct an optimal system of subalgebras of Lg. This gives the operators
Y ;. Then the operators Y, can be supplemented by the operators from the center
YV, =Y, + Za 10 TiaXa. On the next step, one needs to check the subalgebra
conditions for the operators Y; in L;; and check a possibility to simplify the
coefficients x;,, (o = 10,11) by the automorphisms.

Let us consider the factor algebra Lg. A basis of Lg can be chosen, con-
sisting of the classes X;/{X10, X11}, (1 =1,2,...,9). Later, for the sake of sim-
plicity, we write X; for the basis element Xz/{Xm,Xll} €Ly, (i=1,2,...,9).
Because the zero class of Lg consists of the operators ¢; X9+ 2 X171, then a table
of commutators of the algebra Lg can be obtained from the table of commutators
of Ly; by letting the element (¢; X719 + 2 X11) =0 € L.

As noted before, the automorphisms of the algebra Lq; can be used for
the algebra Lg. To construct an optimal system of subalgebra of the algebra
Ly, we use two-steps algorithm, which is explained earlier. According to this
algorithm on the first step, the algebra Lg is decomposed as I; & Ny, where
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I = {X;, Xy, X3} is an ideal and Ny = { Xy, X5, X¢, X7, X5, Xo} is a subalgebra.
At the same time, the subalgebra N; can also be decomposed as N1 = I, & Ny
with the ideal I, = {Xg, X7} and the subalgebra Ny = { X4, X5, Xs, Xo}. After
these decompositions, the subalgebra N, is four-dimensional. Its optimal system
can be easily constructed.

4.3 Classification of the algebra L,

Let us classify the algebra L, = { X}, X5, Xg, Xo}. The table of commuta-
tors of the algebra L, is

X4 X5 X8 X9
0 0 0 0
0 0 —2Xs 2X,

Xs| 02Xy 0 0
0 —2Xy 0 0

The automorphisms are

A4 D Ty =Ty, Ty =Ts, Tg = T3, L9 = Ty,

As: Ty=xy, Ts=uwx5, Tg=ase >, Ty=19e”,
Ag: Ty=m4, Tz =15 Tg= g+ 2ax5, Ty = Ty,
Ag . f4ZZL‘4, 55:1‘5, ESZZL‘& EQZZL‘Q—QGIE).

There is one involution
E: f4 = —y, T5 = Is, Tg = Is, Tg = X9.

Let us study an optimal system of the algebra L. For convenience, we
will denote the generators X; by 1. A short description of different cases is given
in tables D.1, E.1 and F.1

4.3.1 One-dimensional subalgebras of the algebra L,

Let Y = 244+ 255 + 238 + 299 which constitutes a one-dimensional
subalgebra of the algebra L. The process of simplification of the coefficients of
the operator Y is separated in the following cases.

Case 1. Assume that x5 # 0, then we can divide Y by x5. Hence, without
loss of generality one can consider

Y:x44+5+$88+$99

By the transformation Ag and Ag, we can transform to xg = 0 and z9 = 0.
Other transformations cannot change x4. Therefore, in the case when x5 # 0 the
class of equivalent subalgebras is described by the operators 8 + z44.

Case 2. Assume that x5 = 0, then we have Y = 244 + 238 + 299.
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Case 2.1. Let x4 # 0. By dividing the operator Y by x4, we obtain
Y =4 + 248 + 249.
Case 2.1.1. Let g # 0. By the automorphism Ag, the operator Y
is transformed to 4 + 8 + 249.
Case 2.1.2. If 23 =0, then Y =4 4 249.
Case 2.1.2.1. If xg # 0, then the operator Y can be trans-
formed by the automorphism As to 4 9, which is transformed by involution F
to the operator 4 + 9.
Case 2.1.2.2. If 9 = 0,then the representative of the class
is the operator 4.
Case 2.2. Let 24 = 0, this means that Y = 28 + 249.
Case 2.2.1. If 25 # 0, then Y can be divided by 25 : Y = 8 + 249.
Case 2.2.1.1. If xg # 0, then by the automorphism As, the
operator Y is transformed to 8 + 9, where ¢ = +£1.
Case 2.2.1.2. If 2 = 0, then Y = 8.
Case 2.2.2. Let zg = 0. Because Y # 0, then the representative
of the class is the operator 9.

4.3.2 Two-dimensional subalgebras of the algebra L,

Let a subalgebra be formed by the operators

Y1 =and + a129 + a138 + 0149, Yo = a4 + a229 + 238 + 1249

where ay1, a2, ai3, @14, a1, a2, as3 and agy are arbitrary constants. Note that
a11 Q12 Az aig
Q21 Q22 A23 A4

Case 1. Assume that a;p # 0. We can divide Y; by a;5. Hence, by
subtracting the operator (ags/a;2)Y; from Ys, one can take agss = 0. By the
automorphisms Ag and Ag, the operator Y; is transformed to Y, = 5 + a;:4.
After checking subalgebra conditions, we have

the rank of the matrix is equal to two.

[a114 + 95,0014 + a238 + a249] = a(a14 + 5) + B(a214 + a8 + a249)

where o and (§ are arbitrary constants. By calculating the left hand side and
comparing the coefficients in the left hand side with coefficients in the right hand
side, we have

—2(1238 + 2(1249 = (OéCLH + 6@21)4 + Oé5 + ﬁa238 + ﬁa249.

Therefore
(B+2)ags =0, (B—2)az =0, Bay =0.
Further consideration depends on value of the coefficients a1, ass3, agq.
Case 1.1. If as3 # 0, then 8 = —2 and agy = 0,a9; = 0. By the
automorphism Ag the operators Y; and Y, are transformed to Y; = a4 + 9,

Y, =8.
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Case 1.2. If ay3 = 0 and a9y # 0, then 8 = 2 and as; = 0. Hence,
the operators Y7 and Y are ) = a4 +5,Y, = 9.

Case 1.3. If ass3 = 0 and agy = 0, then ag; # 0. Then operators Y;
and Y, are Y, = 5,Y, = 4.

Case 2. :Assume that a;o = 0. If asy # 0 then by changing Y] and Y3, this
case corresponds to the previous case. Hence, one can take ags = 0. Therefore,
the operations are Y] = a14+a138 +a149,Ys = a9,4 + a34 + a249. By checking
the subalgebra condition, we have

[V1,Y2] = 0 = a(and + a138 + a149) + B(an4 + as38 + a249),
with some coefficient «, 5. Hence
aayy + Bag =0,  aaz + Bagz =0,  aayy + Bags = 0.

Further consideration depends on value of the coefficients aq1, as1, ai3, as3, a4
and asy.
Case 2.1. Let a;; # 0. After dividing Y; by a1, one can take
a3 = 1. Without loss of generality one can also take as; = 0.
Case 2.1.1. Let agy # 0. After dividing the operator Y5 by
ass, and excluding 4 from Y, we obtain Y, =4 4+ 138, Y, =9 + a238.
Case 2.1.1.1. If ay3 # 0, then by the automorphism
Ay the coefficient aq3 is transformed to 1

Yi=4+8, Y,=9+ay8.

Case 2.1.1.2. If a3 = 0 and as3 # 0 then by the
automorphism As; the operators Y; and Y; are transformed to 4,8 + 9, where
e=+1.

Case 2.1.1.3. If a3 = 0 and ae3 = 0 then Y} =
4 7,=9.

Case 2.1.2. Let agy = 0. In this case we have the operators
4: + CL149, 8

Case 2.1.2.1. If a4 # 0 then, by the automorphism
As, the coefficient a4 can be transformed to 1. Hence, we get Y; = 4+9,Y, = 8.

Case 2.1.2.2. If 14 =0 then Y; =4,Y;, = 8.

Case 2.2. Let a;; = 0. We remind that aj3 = ass = 0. Note that if
as # 0), then we have the previous case by changing Y; and Y;. Hence, ag; = 0.
In this case we obtain ¥; = 8,Y, = 9.

4.3.3 Three-dimensional subalgebras of the algebra
Ly

Let a subalgebra be formed by the operators

Yi = CL114: + CL125 + CL138 + CL149
Y2 = a214 + CL225 + CL238 + (1249
Ys = and+ azd + a8 + a9
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where a;;, (i =1,2,3; j =1,2,3,4) are arbitrary constants. Note that rank of
the matrix

ail a1z a1z a4

Q21 Q22 (23 (A24

as1 a3z 33 Aa34

is equal to three.

Case 1.

Assume that ai;s # 0, then by taking linear combinations one can take
a2 = 1 and ags = azs = 0. By the automorphisms Ag and Ag the coefficients a3
and a4 can be transformed to zero. Hence, the operators are Y; = a;14+5, Yy =
a214 + CL238 + CL249, YE), = a314 + CL338 + CL349.

Case 1.1. If ay; # 0, then we can take as; = 1 and a1; = ag; = 0.
Hence, the operators are Y, = 98, Yo = 4 4 0938 4+ 0249, Y5 = 0338 + a3,9.
Case 1.1.1. If agz # 0, then we can take az3 = 1 and as3 = 0.
Hence, the operators are Y, =5, Yo =4 4+ 0949, Y5 = 8 + a349.
The operators Yi, Y5, Y3 must constitute a subalgebra. Let us consider the
commutators

[5, 4 + a249] = 2@249 = &15 —+ ﬁl (4: + CL249) + Y1 (8 + a349) s
[5, 8 + CL349] = 2&349 = 0525 + 62 (4 + CL229) + V2 (8 + CL349) s

with some constants aq, as, (1, B2, viand . Hence ay = 0, a0 = 0, 1 =
0,0, =0,v =0,v% = 0,as = 0, a3y = 0. Therefore, the operators Y;, Y,
and Y3 can be transformed to Y; =5, Y5 =4 and Y3 = 8.

Case 1.1.2. If ag3 = 0 then a4 has to be nonzero. Hence, we
can take ass = 1 and agy = 0. Therefore the operators are Y, = 5, Y5 = 4 4 0938
and Y3 = 8. By checking the subalgebra conditions, we have

[5, 4 + (1238] = —26L238 =ad + 6 (4: + CL238) + ’}/9,

with some coefficient o, 3 and v. Hence a =0, § =0, v = 0, asg = 0. Therefore,
the operators Y7, Y5 and Y3 can be transformed to Y; =9, Y, =4, Y3 = 9.
Case 1.2. Assume that as; = 0. If a3; # 0, then by changing Y5
and Y3 this case corresponds to the previous case. Hence, one can take as; = 0.
Because the rank of the matrix
( Q23 Q24 )
ass asq

is equal to 2, then by taking linear combinations the operators Y7, Y5 and Y3 can
be transformed to Y; =a;;4+5, Yo =8, Y3 =9.

Case 2.
Assume that a;o = 0. From case 1, we can take asy = ass = 0. since the
rank of the matrix
ajp a2 aiz aig
21 Q22 dA23 A4
az1 (32 Aaz3 A34
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is equal to 3, then by taking linear combinations one can account that Y; =

4,Y,=8,Y;=09.

4.3.4 Four-dimensional subalgebra of the algebra L,

Let a subalgebra be formed by the operators

}/1 = CL114 + a125 + a138 + CL149,
Y, a214 + a228 + a8 + a9,
YE; CL314 + a325 + Cl338 + CL349,
Y4 = G414 + Cl425 + a438 + G449,

where a;;, (4,7 = 1,2,3,4) are arbitrary constants. Note that the rank of the
matrix

ail G2 a13 Qai4

Q21 G292 (23 (24

as1 Az a3z AaA34

ay1 Q42 A43 Q44

is equal to four. Therefore,

Vi=4Y,=95Y;=8Y,=9,

The optimal system of the algebra Ly = {4, 5, 8, 9} is the following:

Dimension
1 2 3 4
4 45 45 8 4.5 8.9
8 4,8 4.5 9
9 4.9 4 8,9
4+9 8,9 5+244.8,9
5+ 2,4 8,4+9
8+¢9 49+ ¢8
4+8+!L‘99 5+ZL’44,8
5 + l’44:, 9
4+ 8,9+ 258

where x4, xg and g are arbitrary real parameter and € = +1.

4.3.5 Optimal system of subalgebras of the algebra
L¢=1{4,5,6,7,8,9}

The next step is a construction of an optimal system of the algebra Lg =
{4,5,6,7,8,9}. We construct it by gluing the subalgebras from the optimal
system of the algebra L, with the ideal I, = {6, 7}.

The table of commutators of the algebra Lg is
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Xy X5 X Xy Xs Xy
Xy 0 0 X7 =X 0 0
X5 0 0 Xe X7 —2Xg 2X,
Xe | X7 —X¢ O 0 0 0
X7 X¢ —X7 0 0 0 0
Xg 0 2X3 0 0 0 0
Xy 0 —2X9 0 0 0 0

Ay Tg=1x6C080 — x7Sina, Ty = Tgsina + x7cosa,
A5 © T = x6e%, Ty = x7€%,Tg = J]g@iQa,fg = .17962a,
AG . fﬁ = Tg — a5, 5721‘7—&1‘4,

A7 . T :.’136‘1'@1'4, T7:£L‘7—&$5,

Ag T Tg :x8+2ax5,

Ag : fg = T9 — 2@1’5

and two involutions are

El DXy = — Ty, Tg = — g,
E2 DTy = —XT4, 57 = —X7.

Here we give one example of the process of gluing. Other elements of the
optimal system of the algebra Lg are constructed similarly.

Let us consider the subalgebra {5 + z44,9} and the ideal I, = {6,7}.
To construct two-dimensional subalgebras of the algebra Lg we use the matrix of
coefficients

X@ X7 X4 X5 X8 X9
hy hy|xzy 1 0 0
hs hy | O 0O O 1

for three-dimensional subalgebras of the algebra Lg the matrix is

Xe X7 | Xy X5 Xs Xy
hl hg T4 1 0 0
hs hgy| O 0 O 1
hs hg | O 0 0 0

and for a four-dimensional case, it is

Xe X7 | Xy X5 Xs Xy
hl hg T4 1 0 0
hs hgy | O 0 O 1
hs he| O 0 0 O
h7 hg | O 0 0 0

Note that the rank of the matrix

B = (hs hg)
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in the three-dimensional case is equal to one and in the four-dimensional case the

rank of the matrix
[ hs hs
o= (i)

is equal to two. Hence, the matrix B is reduced to either
B=(1hsg) or B=(01)

and the matrix C is the unit matrix

o~ (42)

Let us consider three-dimensional subalgebras. Assume that the matrix
B = (1 hg). Then without loss of generality one can take hy = hy = 0. By the
automorphisms A, and A7, the matrix of coefficients is transformed to

Xe X7 | Xy X5 Xg Xy
0 0 |xs 1 0 0
0O hy | O 0 O 1
1 o0 0 0 O

The subalgebra conditions give

(244 +5, 9+ hy 7] = a(x44+5) + (9 + hyT) +~6

where «, (§ and -y are arbitrary constants. By calculating the left side, we have

—24h46 +29 + hyT = a(z44 + 5) + B(9 + hy7) +16.

Comparing the coefficients in the left side with the coefficients in the right side,

we obtain
B=2 hi=0, =0

Considering another commutator, we have

2,4+ 5, 6] =a(zs4+5)+ (9 + haT) ++6.

By calculating the left side and comparing the coefficients, we obtain z, = 0.
Therefore, in this case the subalgebra can be transformed to {9, 6, 9}. The
optimal system of the algebra Lg is given in Appendix D.

4.3.6 Optimal system of subalgebras of the algebra
Ly

After constructing the optimal system of subalgebras of the algebra Lg,
the next step is a construction of an optimal system of the algebra Lg =



31

{1, 2, 3, 4, 5, 6, 7, 8, 9}, by gluing subalgebras from the optimal sys-
tem of the algebra Lg with the ideal I; = {1, 2, 3}.
The table of commutators of the algebra Lg is

X1 X Xy Xy X5 X¢ X7 Xg Xy
X1 0 0 0 —X2 T 0 0 0 0
Xo| 0O 0 0 1 T 0 0 0 0
X3 0 0 0 0 21‘3 Ty i) 0 0
X4 ) —T 0 0 0 7 —Tg 0 0
X5 —Xr1 —XT2 —21’3 0 0 Tg T —2268 2279
X6 0 0 —T1 — X7 Tg 0 0 0 0
X;1 O 0 —X9 X T 0 0 0 0
Xs| O 0 0 0 20 0 0 0 0
Xo| O 0 0 0 -2z 0 0 0 0

The automorphisms are

Al . fl = + al‘5,fz = T2 — ATy,
Ay 1 Ty =21+ ary, To = 19 + axs,
A3 T :$1+CL$6,T2 :x2+ax7,fg :x3+2a:r;5,
Ay 1 T1=x1Cc080 — x98ina, Ty = T18ina + x9cosa,
Tg = TgCOSa — Tr7sina, Ty = Tgsina + x7cosa,
A5 T =x1e 4Ty = a0 4, T3 = 1'3672(1,
Tg = xge”, Ty = x7€%, T3 = $86_2a,fg = l‘9€2a
Ag © Ty =11 — ar3,Tg = Tg — AT5, Ty = T7 — (L4,
A7 I Tg = X9 — QT3,Tg — Tg + A4, T7 — T7 — QTs5,
Ag Ts :ZE8+2CLI5,

Ag . fg = L9 — 2@1’5
and two involutions are
Ei: Ty =—x1, Ty=—214, Tg= —Ts,
Ey: Ty = —xy, Ty=—w4, Ty =—27.

As it was seen on the algebra Lg, the process of constructing an optimal
system of subalgebras of the algebra Lg by gluing the algebra Lg and the ideal
I consists of the following steps. On the first step, the vectors

3 9

Y;‘ = Zainj+Zbinj, (izl,Q,...,k>,
j=1 j=4

}/i-l—k = ZCZ‘J‘X]' (i:1,2,...,8>,

are composed. Here the vectors

9
Z binj
=1

are basis elements from the one of k-dimensional subalgebras Lj of the opti-
mal system of the algebra Lg. In matrix form, this step can be explained as a
construction of the matrix
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B
0

1231456789
A
C

where the matrices A, B and C consist of the coefficients a;j, bin, cgj, (i =
L2,...0k 7 =4,5,...,9 a=4,5...,9 0 =1,2,...,s). On this step, the
matrix A is arbitrary. The rank of the matrix

A B
(¢ o)
is equal to k + s and this is the dimension of the subalgebra from the algebra Lg.
The matrix C is chosen to be the simplest by taking linear combinations and has
to take all possible values of the given rank s. Note also that, the matrix A can
be simplified with the help of the matrix C.

The process of checking the subalgebra conditions is very cumbersome. For
example, for 8-dimensional subalgebra, in order to check subalgebra conditions,
one needs to construct Cg» = 28 commutators and check their linear dependence
on the basis generators of the subalgebra. Therefore for this step, we need to use
a computer for the calculation. In this research, we use the Reduce-program (see

Appendix A).

Here we consider one example for constructing initial data for the Reduce-
program. Let us take the subalgebra {X4, Xo} of the algebra Ls. We will glue
the ideal I, to this subalgebra. The maximum possible dimension of subalgebra
of the algebra Lg after gluing a subalgebra to I is five. In this case, the matrix
C is a 3 x 3 square matrix, the rank of which is equal to 3. Hence, by linear
combinations of rows, this matrix can be transformed to the identical matrix

C=E:
A B
E O

By taking linear combinations of rows of the last matrix one can eliminate the
elements of the matrix A, Therefore, we obtain the initial data

o OO O
o= OoOlo olN
— o oo oW
o o olo R~
OO OO O Ut
=N oNolieolNelle))
o o olo ol
o O Oolo ol
o o ol o

Let us consider four-dimensional subalgebras of the algebra Lg. In this
case, the rank of the matrix C is equal to two.

Assume that ¢, + 3, # 0, then without loss of generality we can account
that ci1 = 1, co1 = 0. Because the rank of the matrix C is equal to two, then
C3y + €33 # 0.
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First, assume that ces # 0, then one can take coo = 1, ¢12 = 0. Hence, in
this case the matrix C for the initial data is

. 10013
C_<0 1 023>

By taking linear combinations the matrix A can be transformed to the matrix

o 00&13
A_(O 0 CL23)

and the initial data for the Reduce-program in this case are

1 2 3/45 6789
0 0 a3/ 1 0 0 0 0 O
0 0 ag|0 0 0 0 0 1
1 0 ¢3(0 0 0 0 0 O
0 1 e|0 0 0 0 0 0

Now assume that coy = 0, then co3 # 0 and one can take co3 = 1. Note that in
this case by the automorphism A4 one can transform c;o to zero. The matrix A
by taking linear combinations is transformed to the matrix

0 a12 0
A —
( 0 929 0 )
and by the automorphism A; the element a5 can also be transformed to zero.
Hence, the initial data for the Reduce-program are

1 2 3|45 6789
0o 0 oy1 0 0 O 0 O
0 ap 00 O 0 O O 1
1 0 0}j0 0 O O 0 O
0o 0 1,0 0 0 O 0 O

For the three-dimensional case the table of coeflicients is

1 2 3|45 6 789

ann aip apz | 1
a1 Qg azs | 0
0

oo O
oo O
oo O
oo O
ol O

€11 Ci2 (13

If ¢, + 2, # 0, then using the automorphism A, we can take ¢;; = 1, ¢5 = 0.
In this case by linear combinations and by the automorphism A; the matrix A
is transformed to the matrix

A:(O 0 CL13)
0 azp ass

and the initial data for the Reduce-program are
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1 2 3[4 5 6 789
0O 0 as3|1 0O 0O 0 0 O
0 Q92 A23 0 0 0 0 0 1
1 0 ¢330 0 0 0 0 O

If ¢, + 3y = 0, then ¢y3 # 0, without loss of generality we can take c¢;3 = 1.
After linear combinations and the automorphism A; and A, the initial data in
this case are

1 2 3|4 5 6 7 8 9
a; 0 O0O]1 O O O O O
o1 A22 0 0 0 0 0 0 1

0 0O 1]0 O O O O O

In the same way we determined matrices for all subalgebras of the algebra
Lg. The result of this analysis is initial data (see in Appendix B) for the computer
program, which checks the subalgebra conditions. This Reduce-program is given
in Appendix A. It must be noted that a computer cannot do full analysis of
checking the subalgebra conditions, because this requires analysis of a nonlinear
system of equations, which are obtained after taking commutators. But many of
these equations can be simplified by using computer (taking linear combinations)

After calculations and analysis of these calculations we obtain the optimal
system of subalgebras of the algebra Lg. The list of subalgebras of the optimal
system consists of 299 representative classes (see the table in Appendix E).

4.4 Three—dimensional subalgebras of the alge-
bra L11

As explained before, the next step in constructing the optimal system
of subalgebras of the algebra L; invariant solutions is to study the subalgebra
conditions of the subalgebras {Y;,...,Ys} where

11 9
Yi - ?z + Z miozXom ?z - Zl‘ioch~
a=1

a=10

Here {71, e ,Yk} with
9
Y, = Z%‘aya € Ly,
a=1

is an element of the optimal system of the factor algebra Lg and the rank of the
matrix Q composed the coefficients z;, (i =1,2,...,k; a=1,2,...,9) is equals
to k.

In this thesis, we study three-dimensional subalgebras of the algebra L.
Three-dimensional subalgebras allow obtaining an invariant solutions, which re-
duce the initial system of partial differential equations to a system of ordinary
differential equations.
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The result of calculations of the optimal system of three-dimensional sub-
algebras of the algebra Li; (after running the Reduce-program and analysis of the
calculations) consists of 417 classes. According to the discussion on subalgebras
explained before, only 196 classes of subalgebras can have invariant solutions.
The table of subalgebras is given in Appendix F. In the table, o, 3,¢,e; and &,
are arbitrary constants with ¢ = +1,e1 # 0,65 # 0. All subalgebras are written
in symbolical form: only number of the basis generators are given.



Chapter V

Invariant Solutions of the
Three-wave Equations

In this chapter, we study invariant solutions of the three-wave equations,
which reduce the initial system of partial differential equations to a system of
ordinary differential equations. We are confined to considering three-dimensional
subalgebras of the algebra Li;. The list of all essentially different (nonsimilar)
three-dimensional subalgebras that can have invariant solutions is presented in
Appendix F and it consists of 196 classes. Note that the subalgebras in which
one of the basis elements is Xy have to be excluded from our consideration.
The reason for excluding such class of subalgebras is the same as in the case of
subalgebras with the operators ¢y X190+ c2 X1 being in the basis of subalgebra: the
rank of the Jacobi matrix of an universal invariant with respect to the dependent
variables is less than number of the dependent functions. Therefore, from 417
classes, only 196 classes can have invariant solutions.

In this section, some of invariant solutions are presented. As noted be-
fore, these solutions reduce the initial system of partial differential equations to a
system of ordinary differential equations. To solve the ordinary differential equa-
tions, we use the forth-order Runge-Kutta method. For the sake of complete
consideration, this method is explained in Appendix G.

5.1 Subalgebra 1 : {4,5 a3+ 8}

The basis of this subalgebra consists of the generators
Xy = y0, — 20y, X5 = 20, — y0, + 220, + 2t0, — 2uy,0,,, a X3+ Xg = a0, + 0,.

In order to find invariant solution, one needs to find a universal invariant of this
subalgebra. Let a function

f = f(t> x,Y,z, U1, U2, Uus, Us, Us, uﬁ)
be an invariant of the generator X,. This means that
yfz —axf, =0.
The general solution of this equation is

2 2
f:F(t,.fE +y ,Z,Ul,’LLQ,Ug,U4,’LL5,U6).



37

After substituting it into the equation
(Ong + Xg)f =0

we obtain the equation
O{FZ + Ft =0.

The general solution of this equation is

f = 90(71757 Uy, U2, U3, Uyg, Us, u6)7

where r = 22 4+ y? and Z = z — at. Substituting the last representation into the
equation
(x0y + YOy + 220, + 2t0; — 2uy,0y, ) f =0,

we obtain
(2r90r + 22902 - Quk@uk) = 0.

Hence, the universal invariant of this subalgebra consists of the invariants

:r;2+y2
z— ot

, (z—at)ug, (k=1,2,...,6).

The representation of the invariant solution of this subalgebra has the following
form

up = (z —at) 'or(q), (k=1,2,...,6)

with arbitrary functions ¢x(q), (k=1,2,...,6). Here ¢ = (2* + 4%)/(z — at).
The functions ¢x(g) have to satisfy the equations, which are obtained after sub-
stituting the representation of the invariant solution into the initial system. The
system for the functions ¢ (q) is called a reduced system. Hence, the functions
¢r(q) must satisfy the equations

2qu§—;;1 + QW% + k1g(aks — w)% — o1k1w(¢3¢5 + ¢ade) + ki (ks —w)de = 0,
—QW(ICZ—;? - 2w% + kig(aky — w)% + o1kw(Pse — dads) + ki(aky — w)dr = 0,
QWQOS—;B + 2w% + kog(aks — W)% — 02kow(P105 + P2g6) + ka(aks — w)ps = 0,
—QWQOZ;—? - QM% + kagq(aks — w)% + o2kow (P16 — P295) + ka(aks —w)gs =0,
2000 1+ 208 1 B0 ka1~ 105 K+ (ks — ) =0,
—2006_1(1;—526 - QW% + k%q% - kswqci% + osksw (P14 — P2p3) + ks(aksdr — wes) = 0.

(5.1)

The reduced system is a system of the second order ordinary differential
equations. For constructing solution of this system, we use the fourth-order
Runge-Kutta method. The result of the calculations is illustrated in Figures H.1,
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H.2 and H.3 in Appendix H. The initial values (¢ = 1.0) for the calculations were
the following :

$1 =02, ¢=03, ¢3=04, ¢;4=05, ¢5=06, ¢=07,

do;
dq

=10, (i=1,2,...,6).

5.2 Subalgebra 24 : {3,4,5}

The basis of this subalgebra is
X3 = az, X4 = y@m — xay, X5 = x@m — yﬁy -+ 2282 -+ 2t8t — 2uk8uk

Let a function
f - f(t7x7y7z7u17u27u37u47u57u6)

be an invariant of the generator X3. This means that
f:=0.
The general solution of this equation is
f=F(t,x,y,uy, usg, us, Ug, us, Ug).
After substituting it into the equation X, f = 0, we obtain the equation
yb, —xF, =0
The general solution of this equation is
=t 2* +y* uy, ug, us, ug, us, Ug),
Substituting the last representation into the equation
(x0y + Y0y + 220, + 2t0, — 2u,0,,)f =0,

we obtain
(2re, + 2tpr — 2ugpy, ) = 0.

where r = 22 + y2. Hence, the universal invariant of this subalgebra consists of
the invariants ) )
T°+y

t
The representation of the invariant solution is

(2D, (B=1,2,...,6).

we = (2% + %) Tonlq), (k=1,2,...,6).
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with arbitrary functions ¢x(q), (k = 1,2,...,6) and q = (2 + y?)/t. After
substituting this representation into the initial system, we obtain the reduced
system of the ordinary differential equations:

2 d°1 dgn Ay

2wq iz qud—q - k%q2d—q — o1kiw(P3ps + dads) +2w)p1 = 0,
—2wq20§—q¢22 + QWQ% - k%f% + o1k1w(dsds — gads) — 2w)ps = 0,

2wy’ d;j; - QWQ% - kqu% — 02kow (P15 + P2cds) + 2w)3 = 0,
—2wqg? d;;i“ + 2qu% = kSqQ%B + 02kaw($106 — $2¢5) — 2w)ds = 0,(5.2)

QWQQOS—;D; - QWQ% - kgf% + o3ksw(P2ds — P103) + 2w)ds = O,
—2wq? Cf;;;ﬁ + QWCJCZ? - k:)Q,C]QCil¥¢;1 + 03k3w(P104 + P2d3) — 2w)dg = 0.

The result of the calculations is illustrated in Figures H.4, H.5 and H.6 in
Appendix H. The initial values (¢ = 1.0) for the calculations were the following :

pr =02, ¢y=03, ¢3=04, ¢s=05 &5 =06 ¢s=D0.7,

do;
dq

5.3 Subalgebra 25 : {3,4+¢;10 4 a11,5}

For this subalgebra, it is more convenient to use dependent variables :
917 U1, 627 V2, 037 U3, where

Uy = v1 cos by, uz = vy cosby, us = v3cosbs,

Uy = 1 8in 6y, uy = vy 8inby, ug = v3sin b3,
U9 Uy Ug

tanf; = —, tanf, = —, tanf; = —.
(751 us Us

The system (1.1) can be written as follows :
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86 82'02 82?)2
2kow—— —_—
+ 2w8z}+w<8x2+8y2)

—20'21)1’03]{)2(4) COS(93 - 01 - 62)
8 8 892 81)2 28?} 81}2
ez e R — ko —=

Yor or oy oy 2ot o
+205vv3kow sin(fy + 6 — 03)

2 2
+2k3w%} tw (a vy M)

[\

%0, 8292
) =) + 2

{2%%9; [(863> 1

Y

(
(
oo () + (%)
(
(
(

0z or?  0y?
—2031)1’02]{)3(4) COS(93 - 01 - 92)
@283 6283 iy w@@g 81}3 803 81)3 2% ok w%
v\ g2 T or 0x Yoy oy ot Y%

—|—20'3U1U2k33w sin(@l + 02 - 93)

The generators of the subalgebra {3,5,4 + £1;10} in this case are
0., x0; + Y0y + 220, + 2t0; — 2010, — 2020y, — 2030,,,

y@m — .I'ay — &1 [klagl + k2892 + (kl + kg)ags} .

Let a function
f = f(t7‘r7y727917027937 7U17U27U3)

be an invariant of the generator X3. This means that
f-=0.
The general solution of this equation is
f=F(ty,01,05, 05, v1,v9,03).
After substituting it into X5 f = 0, we obtain the equation
xFy +yF, + 2tF, — 20, F,, — 2voF,, — 2u3kF,, = 0.
The general solution of this equation is

f = @(Tay7 917027937,017@27@3)7

40
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where T = 22/t and § = y?/t. The function f has to satisfy one more equation
(y@x — a:Oy — 61[k1891 + ]{32692 + (k’l + k2)893])f = O

Hence, for the function ¢ there is the equation

2/ 7Y (pz — py) — €1lkrpe, + ko, + (k1 + k2)pg,] = 0.

Therefore, the universal invariant of this subalgebra consists of the invariants

22 22
01 — e1ky arcsin ———— | , 05 — g1k arcsin — |,
1— &1k 21y 2 — E1R2 2+

. a2 2?2 + 9
05 — e1k3 arcsin ( o y2> , . Yy , Uit, vat, vst

The representation of the invariant solution is

2
0; = ¢i(q) — e1k; arcsin ( %) . (1=1,2,3).

2 2
vy =tV (x Y ) (1=1,2,3).

t

where ¢ = (2% +y?)/t. Substituting the representation of the invariant solution of
the subalgebra {3,4+¢,10+a11,5} into system (5.3), we obtain the reduced
system of ordinary differential equations:

d2
d“¢1 d¢1 A% ¢1 > Vi
4 8wq— —— + dvyw— + 2kiq
V1Wq e + dq dq + vlwdq+ d
+201k1wv2vgsin(¢1+¢2+¢3)+2k%v1 = 0,
d* s dpy dVsy P2
4 — — 4+ 4vw— 2k;
U g B gy A R d
+20’2]€1W?)1U38in(¢1+¢2+¢3)+2k%’02 = O,
d*p3 dps dVs P3 Vs
4 8wq————= + dvzw—= + 2k3q
V3wW(q e + dwq dq dq + 4vzw dq + d

+20’3]€1WU1U2 sm(gbl + qbg + ¢3) -+ 2]{?%1)3 == 07 (54)

d*Vi dgr v
A — — Ao wg? (ﬂ) — 21}1qu2—1 + dwg—
dq dq dq

+201 k1wquavs cos(dr + ¢p + ¢3) — efkiwv; = 0,
A2V des\” 2 Vs
dwg* —= — dvowg? (d_q) — 209 k§q2d—q + 4w qdq
+209kowquivz cos(pr + ¢ + P3) — 6fk§wv2 = 0,
42V dos\ 2
A — — Avgwg? dos " _ QngSQQ@ + 4w
dq dq d

+203k3wquivs cos(¢y + ¢o + ¢3) — erkawry = 0.
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The result of the calculations is illustrated in figures H.7, H.8 and H.9 in
Appendix H. The initial values (¢ = 1.0) for the calculations were the following :
01 =0.2, ¢po =03, ¢p3=0.4, V; =0.5, Vo =0.6, V3 =0.7,

do; dVi

=1.0 =10; (:=1,2,3
dq ) dq ) (Z ) b )

5.4 Subalgebra 31 : {1,5,a3 + 8}

This subalgebra is composed of the generators

6
X1 =0p, aXs+ X =00, + 0, X5 =10, +y0,+ 220, +2t0, —2Y w0,
k=1

Let a function

f - f(t7 x,Y,z, U1, Uz, U3, Uq, Us, u6>
be an invariant of the generator X;. This means that
The general solution of this equation is

f = F(t’ Y, 2, U1, U2, U3, Uyg, Us, uﬁ)'
After substituting it into the equation

(OéXg + Xg)f =0

we obtain

The general solution of this equation is
f=0ly, 2 — at,ui, uz, us, ug, us, u),
Substituting the last representation into the equation
(x0y + Y0y + 220, + 2t0, — 2u,0,, ) f =0,

we obtain
(ypy + 22z — 2upepy,) =0,
where Z = z — at. Hence, the universal invariant of this subalgebra consists of

the invariants ;
Z—
——, Yur, k=1,2,...,6.
Y

The representation of the invariant solution is

U = y_2¢k(Q)a (k = 1727 .- '76)7
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where ¢ = (z — at)/y?. After substituting this representation into the initial

system, we obtain the reduced system of ordinary differential equations:

2wq? d;bl - 300(]?1 + k1q*(aky — w)% — kiwo1(P3¢s + Pads) + 3wdr
—2wq? d*¢: + 3cuq¢2 + k1q2(ak‘1 - w)(b— + kywoi(p3ps — Pads) — 3w

dq dq dq
20T 300 | o (aks — )2~ hwoa(rds + dade) + B

dg? dq dq

d2
—2wq® djg + 3WQ§ + kog? (aky — )g; + kowos (106 — P205) — 3w
d2

2&)(]2% — 3wq§2 + ozk:2 22; kgqud—z + kswos(Pads — d1003) + 3wds
—2w de 32 (6% 3 d_q — kgwq %q + k3w03(¢1¢4 — ¢2¢3) — Swgbﬁ

(5.5)

The result of the calculations is illustrated in figures H.10, H.11 and H.12 in
Appendix H. The initial values (¢ = 1.0) for the calculations were the following :

b1 =02, ¢s=03, ¢3=04, ¢s=05 &5 =06 ¢s=D0.7,

do;
dq’

(i=1,2,....6).

5.5 Subalgebra 34 (a« =0):{3,5,8}
This subalgebra is composed of the generators
X3 = 0., X5 =20, +y0, + 220, + 2t0; — 2u,0,,, Xg = O;.

Let a function
f - f(tyfayazﬂllyu%U37U47U57U6)

be invariant of the generator X3, it means that
F,=0.
The general solution of this equation is
f=F(t,x,y,uy,ug, ug, ug, us, Ug).
After substituting it into the equation
Xsf =0

we obtain the equation
Ft - 0



The general solution of this equation is

f - ¢<I7 Y, u1, Uz, U3, Uq, Us, uﬁ)'

Substituting the last representation into the equation

(x0y + Y0y + 220, + 2t0, — 2u,0,,)f =0,

we obtain

TPz + YPy — 2Uppy, = 0.
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Hence, the universal invariant of this subalgebra consist of the invariants

2
— T Uk,

k=1,2,...,6

and the representation of the invariant solution of this subalgebra is

up, = i (q)

k=1,2,...,6,

where ¢ = y/x. After substituting this representation into the initial system, the

reduced system is

>y

2
1
(" + )dq2

2
— +1
(q ) lq2

s

2
1
(¢ + )dq2

2
— +1
(q ) lq2

d*¢s
dq?
d* ¢
dq?

(¢*+1)

—(¢*+1)

d* s

&>y

4 GQ% — %101 (G35 + dads) + 6y

~ 605 4 2o (6uh — 0u6) — G

+ 605 = 2hara(0ns + dac) + 6

~ 00 4 Zhar(1n — dad) — G

#0054 2haoalatn — d16n) + G
doy

— 6q—— + 2k303(P104 — P203) — 6bs

dq

(5.6)

The result of the calculations is illustrated in figures H.13, H.14 and H.15 in
Appendix H. The initial values (¢ = 0.01) for the calculations were the following

(bl — 10,

¢2 - 20,

¢3 = 307 ¢4 = 407 ¢5 = 507

=10, (i=1,2,...,6).

¢6 = 607

5.6 Subalgebra 34 (a #0):{3,a4+ 5,8}

This subalgebra is composed of the generators

X3 =0, Xs =0, aXy+ X5 = a(y0, —x0,) + 20, + y0y + 220, + 20y — 2uy,0,, -
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Let a function
f=f(t, 2y, 2,u1, ug, us, ug, us, ug)
be an invariant of the generator X3, it means that
f.=0.
The general solution of this equation is
f=F(t,x,y,uy, us, us, Ug, us, Ug).
After substituting it into Xgf = 0, we obtain the equation
F,=0.
The general solution of this equation is

f=w(x,y, w1, uz, uz, ug, us, ug).
Substituting the last representation into the equation
(aXy+ X5)f =0,
we obtain

(z — ay)es + (az + y)py — 2uppy, = 0.
Hence, the universal invariant of this subalgebra consist of the invariants

Y
2 arctan =

arctan<y>—%ln(a:2+y2),uke o, (k=1,2,...,6)
x

and the representation of the invariant solution of this subalgebra is

up, = e~ a AN g g (arctan% - %ln(:c2 + yQ)) , (k=1,2,...,6),
or
up = e 20 + %) (o),
where ¢ = arctan (£) — ¢ In(2? + y?).
After substituting this representation into the initial system we obtain the
reduced system

2

2¢°(a® + 1)%1 +2¢°(a” — 1) fql ki0?01(6s05 + ¢ads) + 2061 = 0,
2

2¢° (0 + 1)dd;z;2 +2¢*(1 — )di; — k10?01 (d3de — dahs) — 2qpy = 0,
2

2¢°(a? + 1%—523 +2¢%(o® — )d%” — koa?oa(p1os + Pacds) + 2q03 = 0,
2

2 + 1)% L1 - a%% _ ksa2os(nds — dads) — 2061 = O,
2

2 (0 + 1>C;—j§ L2 (a? )di; T ks03(dahs — bra) + 2405 = O,

3/ .2 d2¢6 2 2 d¢6 2
2¢°(a” + 1)d—q2 +2¢°(1 — )d—q + ksato3(p1d4 + P203) — 29 = 0.

(5.7)
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The result of the calculations is illustrated in figures H.16, H.17 and H.18 in
Appendix H. The initial values (¢ = 0.5) for the calculations were the following :

¢1 = 1.0, ¢2 = 2.0, ¢3 = 3.0, ¢4 = 4.0, ¢5 = 5.0, ¢6 = 6.0,

doi
dgq

=10, (i=1,2,...,6).

5.7 Subalgebra 37 : {3,4,8}
Basis operators of this subalgebra are
X3 = (92, X4 = Jfay — y@x, Xg = 8t.

Let a function
f - f(t7x7y7z7u17u27u37u47u57u6)

be invariant of the generator X3, it means that
f:=0.
The general solution of this equation is
f=F(t,x,y,uy, usg, us, Ug, us, Ug).
After substituting it into Xgf = 0, we obtain the equation
F=0.
The general solution of this equation is
f =@, y,u, us, us, uy, us, ug).
Substituting the last representation into the equation X, f = 0, we obtain
Ypa — w0y = 0.
Hence, the universal invariant of this subalgebra consists of the invariants
P u, (k=1,2,...,6).
The representation of the invariant solution of this subalgebra is
ue = ¢r(q), (k=1,2,...,06)

where ¢ = 22 + y%. After substituting this representation into the initial system,
the reduced system is
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2qd;;§ 200 — hu(6adn + du) = O,

~200% — 2% 4 oyt — 6a6n) = 0.
205 2% ios(tnds + ) = 0,

—QqCSC? - 2%‘ + kyoa (P16 — dadhs) = 0, (5.8)
225 2% oy(at— n0) = 0,

_ qd;(jiﬁ - 2%6 T haoa(rs + ada) = O,

The result of the calculations is illustrated in figures H.19, H.20 and H.21 in
Appendix H. The initial values (¢ = 1.0) for the calculations were the following :

b1 =02, ¢o=04, ¢3=06, ¢,=08, ¢5=10, ¢s=0.06,

do;
dq

=10, i=1,2,...,6.

5.8 Subalgebra 137 : {1,3,5}
The subalgebra is composed of the generators
X1 =0,, Xs=0,, X5 =20, +y0, + 220, + 2t0; — 2uy0,, .

Let a function
f = f(t,x,y,z,ul,ug,u3,u4,u5,u6)

be invariant of the generator X7, it means that
fr=0.
The general solution of this equation is
f=Fl(ty,z u,u, us, uy, us, Ug).
After substituting it into X3f = 0, we obtain the equation
F,=0.
The general solution of this equation is

f - @(@ Y, U1, Uz, U3, Uq, Us, UG)'
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Substituting the last representation into the equation X;f = 0, we obtain

Yy + 2t — 2upp,, = 0.

Hence, the universal invariant of this subalgebra consists of the invariants

7, U,kt, k:1,2,...,6

The representation of the invariant solution of this subalgebra is
U, :t_1¢k:(Q)> k= 1a27"'767

where ¢ = (y?)/t. After substituting this representation into the initial system,
the reduced system is

d? d d
2wq d;ll +w ;;1 k3 di; — o1k1w(d3ds + dads) — kigs = 0,
d? d d
—2wq dj; - dgiz k2 % + o1k1w(pspe — Gas) — k’f@ = 0,
d? d d
2wq d;;g +w d(bqg kiq fq Ookow (P15 + Pags) — kaps = 0,
d? d d
—2wq djzl B da;4 K2 di; + ookaw(brds — dods) — k2bs = 0, (5.9)
e
d
2wy d% Wdi; — k3q d¢2 + o3ksw(gads — rb3) — K3y = 0,
d? d d
—2wq d;f — (z; k3 diql + o3ksw (s + pod3) — k3 = 0,

The result of the calculations is illustrated in figures H.22, H.23 and H.24 in
Appendix H. The initial values (¢ = 1.0) for the calculations were the following :

b1 =02, ¢y=04, ¢3=06, ¢s=08, & =10, ¢s=D0.7,

dgi
dgq

=10, (i=1,2,...,6).

5.9 Subalgebra 144 : {1,2,a3 + 4}
This subalgebra is composed of the generators
X1 = (927, X2 = ay, OéXg + X4 = Oéaz + yax — xf)y.

Let a function
f = f(t7x7y7z7u17u27u37u47u57u6)

be an invariant of the generator X;. This means that
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The general solution of this equation is
f=F(t,y, z,u1, us, us, uy, Us, Ug).
After substituting it into X5 f = 0, we obtain the equation
F,=0.
The general solution of this equation is
f=wl(t, z,u1, us, ug, uy, us, Ug)-
Substituting the last representation into the equation aX3 + X4, we obtain
¢, = 0.
Hence, the universal invariant of this subalgebra consists of invariants
t, ug, (E=1,2,...,6).
The representation of invariant solution of this subalgebra is
up = o(t), (k=1,2,...,6).

After substitution this representation into the initial system. The reduced system
is

822 o1l — Ga6s) = O
B2 4 ovoldads — duts) = 0,
B0 s6165 — dads) = 0,
kg% + oow(P106 — Pag5) = 0, (5.10)
629 1 os(an — 0165) = 0,
625 4 (0101 + 6a6y) = 0,

The result of the calculations is illustrated in figures H.25, H.26 and H.27 in
Appendix H. The initial values (¢ = 0.0) for the calculations were the following :

¢1 — 01, gbg - 02, ¢3 - 03, §b4 - 04, ¢5 - 05, ¢6 - 06,

5.10 Subalgebra 158 : {1,2,a3 + 8}

This subalgebra is composed of the generators

Xl = 633, X2 = Gy, OéXg + Xg = a@z + 8t.
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Let a function
f - f(t,x,y,z,ul,uz,u3,u4,u5,u6)

be an invariant of the generator X;. This means that
fz=0.
The general solution of this equation is
f=Fl(ty,z u,us, us, uy, us, Ug).
After substituting it into X, f = 0, we obtain the equation
F,=0.
The general solution of this equation is
f=wl(t, z,u, us, us, uy, us, Ug)-
Substituting the last representation into the equation aX3 + Xy, we obtain
ap, + ¢ = 0.
Hence, the universal invariant of this subalgebra consists of invariants
z—at, up, k=1,2,...,6
The representation of invariant solution of this subalgebra is
up = ¢r(q), k=1,2,...,6.

where ¢ = z — at. After substituting this representation into the initial system.
The reduced system is

(w— Oélﬁ)ci%2 — 0w (P3¢s + ads) = 0,

(w— akn% 4 o1w(dsds — duds) = O,

(w— ak2)% — 02w (P105 + P20s) = 0,

(w— 04/62)62%3 + 0w (P16 — P2005) = 0, (5.11)
—ak3% + w% + o3w(pogs — 13) = 0,
d d
—Oéksdi;l + wdi; + o3w(P10a — P2gp3) = 0.

The result of the calculations is illustrated in figures H.28, H.29 and H.30 in
Appendix H. The initial values (¢ = 0.0) for the calculations were the following :

¢1 = 017 ¢2 = 027 ¢3 = 037 ¢4 = 047 ¢5 = 057 ¢6 = 067
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5.11 Subalgebra 171 : {1,3, a2+ 8}

This subalgebra is composed of the generators
X1 == a'r; X3 = (92, OéXQ + Xg == ozﬁy + @.

Let a function
f = f(t,l',y,Z,U17U2,U3,U47U5,U6>

be an invariant of the generator X;. This means that
fz=0.
The general solution of this equation is
f=F(t,y, z,uy, us, us, uy, us, Ug).
After substituting it into X3f = 0, we obtain the equation
F,=0.
The general solution of this equation is
f=(t,y,ur, ug, us, uy, us, ug).
Substituting the last representation into the equation a X, + Xg, we obtain
apy, + ¢ = 0.
Hence, the universal invariant of this subalgebra consists of invariants
y—at, ug, k=1,2,...,6
The representation of invariant solution of this subalgebra is
up = op(q), k=1,2,...,6.

where ¢ = y — at. After substituting this representation into the initial system.
The reduced system is

wd;;;l - 2ak2% — 201wk (¢35 + Padds) = 0,

—wd;? 20k’ jl + 20ywky (P36 — das) = 0,
wd;j?’ — 20k — a4 — 200wk (¢105 + datds) = 0,

_wd;(ju — 20k3 f‘"’ + 209wk (P16 — das) = O, (5.12)
wd;? — 2ak2di + 203whs(dats — dr3) = 0,

&l o, k2= 491 + 203wks($104 + dad3) = 0.

dq? dq



52

The result of the calculations is illustrated in figures H.31, H.32 and H.33 in
Appendix H. The initial values (¢ = 0.0) for the calculations were the following :

$1 =02, ¢=03, ¢3=04, ¢;4=05, ¢5=06, ¢=07,

do;
dq

=10, (i=1,2,...,6).



Chapter VI

Conclusion

6.1 Thesis summary

In this thesis, we have considered the application of group analysis to the
three—wave equations, which describe the behavior of beam lights propagating
through a nonlinear medium.

6.1.1 Problems

The three—wave equation were derived from the Maxwell’s equations
by using the slow envelope approximation method. In the compact form, these
equations can be written as follows

. * 1Akz
MlAl = 201A3A26 s
M2A2 = ’L'O'QAgAiezAkZ,
M3A3 = Z‘UgAlAQ@iZAkZ

Here
Ay = uy +iug, Ay = us + iuy, As = us + tug

are complex-valued amplitudes; A;, Ay are the amplitudes of two fundamental
harmonic fields with different polarizations; As is the amplitude of the second-
harmonic field; M; are linear differential operators

0

i 0 0? k; O
sza“‘ﬁj J

0 :

oz " 2/{j<8x2 * 8y2) o (7=123)

z is the coordinate along the propagation direction; (z,y) are the transverse
coordinates; t is time; ki, ko are the linear wave numbers of the fundamental
frequencies; k3 is the linear wave number of the second—harmonic frequency;
Ak = k3—(k1+ko) is the wave vector-mismatch; the symbol x denotes the complex
conjugation; 3; are the walk—off angles of the fundamental and second harmonic;
w is the frequency of the light and o; are nonlinear coupling coefficients. We
have studied the case of exact phase—matched condition:Ak = 0. Mostly one—
dimensional temporal or spatial solutions of these equations were considered.
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Therefore, it is natural to investigate more complex representations of solutions.
Group analysis can do it.

The application of group analysis consists of several steps. After finding
an equivalence and admitted groups one has to construct an optimal system
of subgroups (subalgebras). The admitted algebra of the three—wave equations
is eleven-dimensional. The construction of an optimal system of subalgebras
can be done relatively easy for small dimensions. Therefore, this problem was
divided into several steps. In the first step, we classified the factor algebra Lg =
L11/{X10, X11}, where { X7, X11} is the center of the algebra L;;. The algebra Lqg
is difficult to be classified. Its classification is divided into several steps. The main
problem of the thesis was to construct all subalgebras of the algebra L;, which
can be the source of invariant solutions with a system of ordinary differential
equations as a reduced system.

6.1.2 Results

1. For the classification of the algebra Lg, the two—steps algorithm devel-
oped by Ovsiannikov (1978) was used. The algebra Lg was decomposed into the
ideal I; = { X1, X5, X3} and the subalgebra Ny = { X4, X5, X6, X7, X5, Xo}. The
subalgebra N; was decomposed into the ideal I, = {Xg, X7} and the subalgebra
Ny = {X4, X5, Xg, Xo}. Optimal systems of the algebras Ny, N; and then Lg
were constructed. The optimal system of N, consists of 21 representative classes,
the optimal system of N; consists of 53 classes and the optimal system of the
algebra Lg consists of 299 classes.

2. The Reduce-program for checking subalgebra conditions was prepared.

3. All essentially different three-dimensional subalgebras of the algebra
L, were obtained.

4. Invariant solutions with respect to some of subalgebras of the algebra
Ly, were studied. For the reduced systems, the Runge-Kutta method was used.

6.2 Limitations

The present research of an application of group analysis is used for find-
ing exact solutions of the three-wave equations (1.1) in nonlinear optics. We
limit the research to invariant solutions whose reduced systems contain only one
independent variables.
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Appendix A

Reduce-program Checking for
Subalgebra Conditions

%off echo$

share ork,orj,ssu,lak;

symbolic procedure fir(ff)$

begin scalar ssu;

ssu:=cadr ff;

return ssu;

end;

symbolic procedure seco(ff)$

begin scalar ssu;

ssu:= reverse ff;

Ssu:= car ssu;

return ssu;

end;

algebraic procedure creatmat(k_mat,n)$
begin

if not (modd=m) then begin
write("\hline");

write("\hline");
write("\end{tabular}");
write("\begin{tabular}{|1[1]1[}");
write("\hline");

write("N & Generator & Tab Norm. \\ ");
write("\hline");

write("\hline");

write(" \multicolumn{3}{lc|}{r=",m,"} \\ ");
write("\hline");

model :=0; modd:=m;

end;

m:=k_mat;

if k_mat=8 then for k:=1:m do for j:=1:n do ama(k,j):=am8(k,j);
if k_mat=7 then for k:=1:m do for j:=1:n do ama(k,j):=am7(k,j);
if k_mat=6 then for k:=1:m do for j:=1:n do ama(k,j):=am6(k,j);
if k_mat=5 then for k:=1:m do for j:=1:n do ama(k,j):=amb(k,j);
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if k_mat=4 then for k:=1:m do for j:=1:n do ama(k,j):=amé(k,j);
if k_mat=3 then for k:=1:m do for j:=1:n do ama(k,j):=am3(k,j);
if k_mat=2 then for k:=1:m do for j:=1:n do ama(k,j):=am2(k,j);
if k_mat=3 then for k:=1:m do begin

for j:=3:n do ama(k,j-2):=am3(k,j);
for j:=1:2 do ama(k,9+j):=am3(k,j);
end;
matrix pri(l,n);
for k:=1:m do for j:=1:n do
if (che(ama(k,j))=1 or ama(k,j)=E) then aa(k,j):=ama(k,j) else
if not (ama(k,j)=0) then clear aa(k,j)$

pois(m,n)$
for k:=1:m do for j:=1:n do aa(k,j):=0$
end$

algebraic procedure pois(m,n)$
begin integer mn;
symbolic operator seco$
symbolic operator fir$
for k:=1:m do oper(k):=for 1j:=1:n sum aa(k,1lj)*x(1j);
mn:=0;
for k:=1:(m-1) do for j:=(k+1):m do
begin
mn:=mn+1;
op(mn) :=for kl:=1:n sum for 1j:=1:n sum aa(k,kl)*aa(j,1lj)*com(kl,1j);
sk(mn) :=sop(k,j);
end;
mnl:=mn+m;
for k:=1:m do
begin
op(k+mn) :=for kl:=1:n sum for 1j:=1:n sum z(kl)*aa(k,1j)*com(kl,1j);
end;
for k:=1:m do begin
for 1:=1:n do if aa(k,1)=1 then 11:=1;
for kj:=1:mnl do op(kj):=op(kj)-df (op(kj),x(11))*oper (k) ;
end;
kkn:=0 ;
for kj:=1:m do for kl:=1:n do
if not (aa(kj,k1)=0 or aa(kj,kl)=1 or aa(kj,kl)=E ) then
begin
kkn:=kkn+1; y(kkn):=aa(kj,kl); la(kkn):=la(kj,kl);
end;
gh:=0;
for kj:=1:mn do for 1l:=1:n do bk(kj,1):=df (op(kj),x(1));
for kj:=1:mn do for kl:=1:n do if not(bk(kj,k1l)=0) then
if che(bk(kj,kl))=1 then begin
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gh:=2; opkj:=kj;
return;
end;
if gh=2 then go to ssi;
for kj:=1:mn do for kl:=10:11 do
if not (bk(kj,k1)=0) then begin % end O
for k:=1:kkn do begin % end 2
ord:=0;
s:=df (bk(kj,k1),y(k));
if not (s=0) then begin 7% end 3
ss:=df(s,y(k)); if not (ss=0) then ord:=2 else ord:=1;

if ord = 1 then for sl:=1:kkn do if not (df(s,y(sl)) = 0) then ord:=0;
if ord = 2 then for 1:=1:kkn do if not (df(ss,y(1))=0) then ord:=3;
end;

if ord = 1 then if not(che(s)=1) then ord := O;
if ((ord=1) or
((ord=2) and (2*bk(kj,k1)-df(bk(kj,k1l),y(k),2)*y(k)**2=0) ) )
then begin 7 end 4
lak:=la(k);
ork:=fir (lak);
orj:=seco(lak);
if k_out=1 then begin
if ord = 1 then write("denom s =", s );
if ord = 2 then write("coef. = ", bk(kj,kl)," =0 " );
end;
if ord=1 then
aa(ork,orj) :=aa(ork,orj)-bk(kj,kl)/s
else aa(ork,orj):=0;

clear y(k);
end;
end;
end; model :=model+1;
if k_out=3 then
write (MK M model =(",m,",",model,")xx***x") ;

for k:=1:mn do if not (op(k)=0) then if
k_out=1 then
write ("op(",k,") := commut of ",sk(k),":=",op(k)," =0");
upor:=1; for j:=1:n do
for k:=upor:m do
begin
if df (oper(k),x(j))=1 then
if k=upor then upor:=upor+l else
if not (k=upor) then begin
sl:=oper (k) ; s2:=oper(upor); clear oper(k),oper (upor);
oper (upor) :=s1; oper (k) :=s2;
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upor :=upor+1;
end;
end;
if k_out=1 then <<
for k:=1:m do
write ("oper(",k,") := ",oper(k)) ;
write (" o ");
>>
else if not (k_out=3) then begin % end O
write(model) ;
write(" & ");
for kj:=1:m do begin % end 1
kk:=1;
for k:=1:n do begin % end 2
s:=df (oper(kj) ,x(k));
if not (s=0) then begin % end 3
if kk=2 then write(" + ");
if not (s=1) then write(s," * ", k) else write(k);

kk:=2;

end; % 3

end; % 2
if not (kj=m) then write(" , ");
end;
write(" \\ ");
write("\hline");
end;

for k:=(1+mn) :mnl1 do if not (op(k)=0) then
if k_out=4 then
for kj:=1:n do begin

s:=df (op(k) ,x(kj)); if not (s=0) then

write ("for normal.: ", s," =0 ");
end;
go to ss2;
ssl:
if k_out=4 then
write ("commutator of ", sk(opkj),
" contradicts to SC  op(",opkj,")= ",op(opkj));
ss2:
end;
end;

end$
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Initial Data for the Program for
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Initial Data for the Program for

the Algebra L
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Appendix D

Optimal System of the Algebra
L

Table D.1: Subalgebras of the optimal system of the algebra Lg.

6-Dimension

N | Generator
1 14,5,6,7,8 9

5-Dimension

N | Generator | N | Generator

2 14,5,6,7,8|4 [4,6,7,8,9

3 14,5,6,7,9|5 |5+ 1x44,6,7,8,9
4-Dimension

N | Generator | N | Generator

6 [4,5,6,7 |12[4,6,7,9+ &8

7 14,589 [13|/4+9,6,7,8

8 14,6,7,8 |14 |5+ 144,6,7,8

9 [4,6,7,9 |15 |5+ x44,6,7,9

1015,6,8,9 |16 ]4+8,6,7, 9+ 28

1116,7,8,9

3-Dimension

N | Generator | N | Generator

17 14,5,8 24 16,7,9

18 14,5,9 25 |14+9,6,7

19 14,6,7 26 | 6,7, 84+ ¢9

20 1 4,8, 9 27 | 5+ w44, 6, 7
2115,6,8 28 | 5+ 144, 8,9

22 15,6,9 29 |4+ 8+ 299,6, 7
2316,7,8 306,84+ 277,9 + 2,7




2-Dimension

N | Generator | N | Generator

3114,5 38 | 5+ 244, 9

32 14,8 39 [ 4,8 +¢9

33 15,9 40 | 4 + 8,9 + 258

34 15,6 41 | 6, 8 4+ 277

3516,7 42 1 6,9 4+ 277

36 14+9,8 43 16,8 +9 + 2,7

37T |5+ x44,8 |44 | 8 + 266 + 277, 9 + 46

1-Dimension

N | Generator | N | Generator
4510 50 | 8 + z46

46 | 4 51 | 9 + 246

47 1 6 52 | 4 + 8 41499
48 14+ 9 53 | 8 + €9 + x¢6
49 | 5 + x44

78



Appendix E

Optimal System of the Algebra
Ly

Table E.1: Subalgebras of the optimal system of the algebra Lg.

9-Dimension

N | Generator
111,2,3,4,5,6,7,8,9

8-Dimension

N | Generator
2 11,2,4,5,6,7, «a3+8,9

7-Dimension

N | Generator N | Generator

311,2,4,5,6,7,9 6 1,2, a3+4,6,7,

4 11,2,4,5,6,7, 3+ 8 63+8,v34+9

5 11,2, a4+ 5,6,7, 711,2,4,6,7,33+8,9

63+8,9
6-Dimension

N | Generator N | Generator
8 14,5,6,7,8,9 1911,2, a3 +4+£8,6,7,
9 11,5,6,7,8,9 v34+08+9
10]11,2,4,5,a3+8,9 20011,2, 03 +4+4+¢€9,6,7,
11]1,2,5,6,3+8,9 v3+8
1211,3,5,6,8,9 21 11,2, 83+4,6,7, a3+ 8
1311,2,4,5,6,7 2211,2,4,6,7, a3 +8
14 11,2, 04+4+5,6,7,9 23| 1,2, a3+6,334+7,
1511,2,6445,6,7, a3+ 8 v3+8,03+9
16 1,2, a3 +4,6,7, 24 11,2,6, 83+ 7,v3+8,

634+e8+9 ) 9
1711,2,a3+4,6,7,634+9|[25|1,2,6,7,vy3+8,03+9
1811,2,4,6,7,9




H-Dimension

N | Generator N | Generator
26| 4,5,6,7,9 44 11,2,5,6,9
27 14,5,6,7,8 4511,3,5,6,9
281 B44+5,6,7,8,9 46 [ 1,2,5,6, a3+ 8
29 14, -a24+6,l1+7,89 4711,3,5,6, 8
30(4,6,7,8,9 48 11,2,03 46, u 3+ a7+ 8,
3113,4,5,8,9 v3+pB8T7T+9
32|11+a256,63+8,9 49 11,2,6, 43 +8,9
3312,5,6,8,9 50 1,3, a2+6,02+8,
3411,5,6,7,9 v2+9
35(1,5,6,7,8 5111,3,6,8,9
6|1, a2+6,83+7,v2+8,[|52]|1,2,a0d4+5,6,7
02+9 53 11,2, «3+4,6,7
3711,6,7,8,9 54 11,2, 03 +4+9,6,7
3811,2,4,5,9 55 | 1,2, 09+ 334+4+8,6,7
39(1,2,4,5, a3+ 8 5 11,2, 03+6,83+7
40 11,2, 64+5 a3+8,9 v3+8
4111,3,5,8,9 57 11,2, 3+4+6,83+7
42 11,2, a3 +4,33+8, ¥y3+€9+8
v3+9 58 | 1,2, a3 +6,083+7,
43 11,2,4, 63+ 8,9 vy3+9
4-Dimension
N | Generator N | Generator
59 | 4,5, a3 +38,9 2|16024+6,-01+7,8,9
60 | 5,6, 8,9 7316,7,8 9
61 |4,5 6,7 7413,4,5,9
62| 64+5,6,7,9 75| 3,4,5,8
63| 34+5,6,7,8 761,55 a3+89
64 |4, -a24+6,al+7, 7713, ad4+5,89
e8+9 78 13,4,8,9
65 |4, -a2+6,al+7,9 9 11+a2,5 6,9
66 | 4,6,7,9 80 | 2, 5, 6,
674+e8 -a2+6,al+7, (|8 |14+a256, 03+8
68+9 8212, 56,8
68|4+¢9 -a2+6, 83 |1+ a2 33+6,
al+17,8 vy2+p(B3-aT) +8,
69 |4, -a2+6,al+7,8 02+ Kk (B3-aT)+9
70 | 4,6,7, 8 84 |1+ a2,6,8 9
M|lal+062+6,~v1+T7, 8 | 1,62+4+6,u(a3+7)+8,
J1+8 ul+v2+9 024+ Kk (@3+T7)+9

80



4-Dimension

k14+v2+67+9

N Generator N Generator

86 |1,82+6, u2+8, 1071 1,2, v3+ab6+y7+8,
k(a34+T7)+9 K3+ 056+9

87 |1, a3 +6,v2+ (3+8, 108 11,3, 724+ a6 + 8,
02+~v3+9 02+ 0656+9

8 |1, u2+6,33+8, 109 1 1,3,8,9
02+v3+9 110 | 1,2, 5,6

89 |1,6,534+8,9 111 11, 3,5,6

0 | L,p24+6,v24+8~v3+9| 112 (1,2, 73+ 6,

91 | L, u2+6,v2+8 v2+9 034+a7+8+¢9

92 11,6,8,9 113 11,3, 02 +6,624+8+¢9

93 |2,v3+4+6,01 4+ a7+ 8, 114 11,2, 834+6,vy34+aT7+8
wl+067+9 1151 1,2,6,v3+ 8

94 12,6,8,9 116 | 1,3, 02+ 6,2+ 8

95 |1,2,4,5 117 11, 3,6, 8

9% |1,2,64+5,9 118 11,2, 834+6,vy34+a7+9

97 11,3,5,9 119 1 1,2,6,9

98 |1,2,604+5 a3+38 120 11,3, 2 +6,624+9

99 |11,3,5,8 121 1 1,3,6,9

100 1,2, a3+4,834+8+9||122 1,2, a03+6,33+7

101 11,2, a3+4,634+9 123 11,2,6,7

102 11,2,4,9 124 | 1,5,6,7

103 1,2, a3+ 4+ €8, 1251, a24+6,83+7,v2+8
63+7v8+9 126 | 1, a2+ 6,02+ 7,

104 11,2, 03+4+€9,33+8 Yy2+€9+8

105 11,2, 3 +4,63+8 12711, a2 +6,634+7,v2+9

106 | 1,2,4, 33+ 8

3-Dimension

N Generator N Generator

128 1 4,5,9 137 16,8,9

129 14,5, 3+ 8 138 | 3,4, 5

130 | 644+5 a3+8,9 139 11,5,9

1Bl |a3+4,63+8v3+9 140 | 3, 4+ 5,9

132 14,33+ 8,9 141 | 1,5, a3 + 8

133 15,6,9 142 13,634+ 5,8

134 15,6, 8 143 13,4,e8+9

135 ad3+6,31+7v2+S8, 144 1 3,4, 9
pl4+v24+9 145 13,4 +¢8, a8+ 9

136 | @ 2 + 6, 146 | 3,4 +¢9,8
B1l+~v2+puT7+8, 147 1 3,4, 8




3-Dimension

N Generator N Generator

148 | 1, pu(v3+7)+d56+09, 178 | 1, v 2 + 6, 8
a2+ 0(y3+7) +Kk6+8 179 11,6, 8

1499 |1, 24+ p3+ K6+ 8, 1802, a3+6,81+~y7+38
vy3+d6+9 181 12,6, 8

150 | 1, u6+a(k3+7)+8, 182 |1+ a2,v3+6,
724+66+9 B2+4+v(a7-v3)+9

1|1, a3+ K6+ 8, 183 |1+ a2,6,9
7240649 184 | 1,v2+6,v (u3+7)+9

152 [ 1,a3+8,9 185 |1, a2+ 33+6,u3+9

1531, a2+ Kk6+ 8, 186 | 1,6, 3 + 9
v24+064+9 187 (1,53 +6,9

154 11,8, 9 188 |1, a2 +6,9

15513, al+8 61+~v2+9 189 11,6, 9

156 | 3,8, 31+9 190 |2, a34+6,81+~v7+9

157 13,8, 9 191 12,6,9

158 |1 +a2 5,6 192 |1, a2+4+6,83+7

159 12,5, 6 193 11,6, 7

160 | a4+ 5,6, 7 194 [ 1,2, 346

161 |4, a2 +6,81+7 1951 1,2, 6

162 |44+9 a2+6,1+7 196 | 1,3, a2+ 6

163 | a9+ 8+ 4,52+ 6, 197 1 1,3, 6
y14+7 198 | 1,2, a4+ 5

164 | a2+6,61+7,v1+38 199 | 1,3, 5

165 | a2+4+6,01+ 7, 200 1,2, 03 +44+8+ 039
v1+4¢e9+8 201 1,2, a3+4+¢9

166 | 1 + a2, 53 + 6, 202 | 1,2, 3 + 4
Y2+ pu(a7-03)+8+e9([203|1,2,4

167 | 1, 32 + 6, 204 | 1,2, a3+ 0656+8+¢9
p(7+v3)+8+¢9 206 | 1,2, a3 +8+¢9

168 | 1, a2+ (3 + 6, 206 | 1,3, 02+ 056+8+¢9
w3+8+¢€9 207 | 1,2, 3+ 36+ 8

169 |1,634+6,u2+8+¢9 208 | 1,2, 3+ 8

170 |1, a2 4+6,u2+8+¢9 209 | 1,3, a2+ 36+ 8

171 | 2, 3 + 6, 210 | 1, 3, 8
Bl+~y7+8+¢9 211 1,2, a3+ 36 +9

172 |1+ a2,v3+6, 212 1,2, 03+ 9
B2+v(a7-~3)+8 213 1,2, 9

1731+ a?2,6,8 214 | 1,3, 2+ 36 + 9

174 | 1,v2+6,v (u3+7)+8 21511, 3,9

175 | L, a2+ 3346, 03 +8 216 |3 +1,63+2,v3+9

176 | 1,6, © 3 + 8 217 | 1, a3+ 2,66 +~v3+9

177 11,334+6,8 218 | 1,3, 2+ 9

82



2-Dimension

N Generator N Generator

219 [ 4,5 252 |1+ a2, 33+6
220 | a4+ 5,9 253 |1+ 2,6

21 | ad4+5 63+8 254 | 1,3 + 6

222 |l a3 +4,03+e849 255 | 1,2+ 6

223 | a3+4+4,634+9 256 | 1,6

224 | 4,9 257 (2, a3+6

225 a3 4+4+e8,33+~7v8+9 || 25826

226 |a34+4+9,83+8 259 | 1,5

27T a3 +4+4, 6348 260 | 3, 4+ 5

228 4,63+ 8 261 | 3,4+e8+ a9
220 |l + B2+ (u3+6)+8,(262|3,44+¢9

v(p3+6)+9 263 | 3, 4
230 a1l +B24+v64+07+8, 264 | 1 + «a 2,

K24+ v6+9 B(p3+6)+8+¢c9
231 |al+pB3+8 u3+9 266 [ 1L, u34+B86+8+¢€9
232 1 834+8 u1u3+9 266 |1, pu24+386+8+¢€9
233 | a2+ B (p3+6)+8, 267 | 2, (u3+6)+8+c¢

y1+d62+9 268 | 2,63 +8+¢9
234 a2+ P6+8vy14+52+9 /269 |2, a0a1l+8+¢9
235 | p3+8 al+9 270 | 3, a1 +8+¢9
236 | 3 +28,9 271 13,84+ ¢9
237 | pl+8 al+pB2+9 272 |1+ a2, 8(n3+6)+ 8
2388, al+9 273 | 1,83+ a6+ 8
239 18,9 2714 11,63+ 8
240 | 5, 6 275 | 1,82+ a6+ 8
241 a3 +6,8614+~v2+8+¢e9 || 276|1,8
242 | 2+6,1+~v2+84+9 || 277 2,8 (L3 +6)+8
243 | a34+6,81+~v2+8 278 | 3, a1 + 8
244 |l a246,81+~v24+07T+8||279] 3,8
245 | 6, 8 280 | 14+ a2, B8(p3+6)+9
246 |3 +6,81+~v2+9 281 1,83 +a6+9
247 246,81 +~v24+07+9||282|1,82+a6+9
248 1 6,9 283 11,9
249 |6, a1l + 32+ 7 284 12,8 (u3+6)+9
250 |a24+6,-al+7 285 |3, a1+ 9
251 16,7 286 | 3,9
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1-Dimension

N Generator N Generator

287 1 0 294 | 9 + a3

288 | 1 295 | 9 4+ a2

289 | 2 296 | 9 + ab + (62 + 3

290 | 3 297 |44+ 8 + a3 + (9

291 | 4 + o3 298 | 8 + 9+ a2 + B3 + 16
292 | 6 + a2 + (3 299 | 8+ 9+ al + B2 + 3
203 |44+ 9+ a3
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Appendix F

Optimal System of
three-dimensional Subalgebra of
the Algebra L

Table F.1: Subalgebras of the optimal system of 3-dimension of the algebra L1,
which can have invariant solutions.

N | generators N | generators
1 14,5 a3+8 12 | 4 + 10 + e211, w3 + (o8,
2 |4+ 5104 all, 5, B3+ 8 B3+ 9
3 14,5410+ all, 53+ 8 || 13 |4, B3+ 9,
4 |44 al0+ e211, 5,83 + 8 w3 + (o8 + al0 + [oeall
5 4,54+ al0+ 611, 83+8 (|14 |4, w3+8, a3+ 9+ &1l
6 |4+¢e10,5+ 11, B3+ 8 || 15 | 4 + 10, o 349,
7 4 + 5211, 5+ 5110, 53 + 8 w3 + 608 + 608211
8 |4, w3+ (8, a3 +9 16 | 4 + €110, w3 + [p8, a3 + 9
9 |44 10+ all, w3 + Bo8, || 17 | 4 + e211, a3 + 9,

63 +9 w3 + ﬁ08 + ﬂofillo
10 | 4, w3 + 8 + Bye110 + all, || 18 | 4, w3 + (3u8 + (ye110,

B3 +9 a3 +9
11 14, w3 +8, a3 + 1049




N | generators N | Generator

19 | 4 4 511, w3 + (o8, 53 | 1 + 110 + all, (8 + w3,
a3 +9 9+ 53

20 | 4, w3 + Bo8 + [oeall, 54 | 1, Bo(8 + B7 + all) + w3,
a3 +9 w9 + y(B7 + 3)

2115,6,8 55 | 1, Bo(8 + €110 + all) + w3,

22 | 5+ .10 + all, 6, 8 + all) + w3, 9 + (3

23 | 5+ al0 + &,11, 6, 8 56 | 1, Bo(8 + B7) + w3,

24 13,4,5 w9 + 110 + o (B7 + 3)

25| 3,4+ 10 + all, 5 57 | 1, 308 + w3,

26 |3,4,5+ 10 + all 9+ a3 + 10

27 1 3,4 + al0 + &,11, 5 58 | 1 4+ al0 + e,11,

28 13,4, 5 + al0 + 511 w9 + (87 + 3),

29 | 3,4 + £,10, 5 + £,11 Bo(8 + B7) + w3

30 | 3,4+ e,11,5 + 10 59 | 1+ al0 + e911, 38 + w3,

31(1,5 a3 + 8 9 + 3

32 11,5+ 610 +all, 33 +8 || 60| 1, 5o(8 + 87 + e311) + w3,

331,54+ al0 + &1, 33 + 8 w9 + (BT + 3)

34 13,5+ a4, 8 61 | 1, Bo(8 + al0 + £,11)

35| 3,04 + 5+ ¢ 10 + 311, 8 + w3, 9 + B3

36 |3, ad + 5+ 10 4+ 11,8 || 62 | 1, 5o(8 + 87) + w3,

3713, 4,8 w9 4 €511 + (37 + 3)

38 | 3+ &110 + all, 4,8 63 | 1, 308 + w3,

39 3,4+ 10 + all, 8 9+ a3 + &,11

40 | 3, 4,8 4+ 10 + all 64 | 1 + £110, w9 + (67 + 3),

41 | 3 + al0 + 511, 4, 8 Bo(8 + BT + e211) + w3

42 3, 4 + «ol0 + 8211, 8 65 | 1+ 8110, 60(8 + 8211) + w3,

431 3,4,8 + a 10 + &11 9+ a3

44 | 3 + £,10, 44,11, 8 66 | 1 + 110, Go(8 + B7) + w3,

45 | 3 + €110, 4, 8 + 511 w9 + a(B7 + 3)

46 | 3 + €511, 4 4+ 10, 8 67 | 1+ .10, 38 + w3, 9 + a3

47 1 3,4 + 110, 8 + 511 68 | 1 + eo11, 5p(8 + B7) + w3,

48 | 3 + 511, 4, 8 + £,10 w9 + (BT + 3)

49 | 3,4 + g911, 8 4+ 10 69 | 1 + 911, Bo(8 + £,10) + w3,

50 | 1, Bo(8 + a 7) + w3, 9+ a3
w9 + B(a7 + 3) 70 | 1, Bo(8 + B7) + w3,

511, 308 + w3, 9 + a3 w9 + (67 + 3)

92 | 1+ &,10 + Oéll, 71 1, ﬁ0(8 + 8110) + w3,

ﬁo(g + ﬁ 7) + w3,
w9 + (67 + 3)

94+ a3

86



N | Generator N Generator
72 | 14 e911, By8 + w3, 98 | a2+ 6, 81 + 7T+ 711, 8
9+ a3 99 | a2+ 6, 61+ 7,
73 | 1, afp8 + w(ald + ag7), 8 + 110 + 11
a2 +9 100 | a2 + 6, B1 + 7,
74114 10 + all, 52+ 9 8 + 710 + e,11
B8 + w(f 3 + aT7), 101 | a2 4+ 6 + 511,
75 | 1, aBo(8 + B11) ag7), BL+T7,8+ 10
+w@3+a2+9 102 | a2 + 6, B1 + 7 + &911,
76 | 1, afp8 + w(ad + ag7), 8 + 10
a2+ 9+ 10 103 | a2 + 6, B1 + 7,8 + €9
7711+ al0 + e11, B2 + 9 104 | a2 + 6 + B11, 41 + 7,
B6o8 + w(83 + ap7), 8 + €9
78 | 1, 38 + w(a3d + 7), 105 | a2 + 6, f1 + 711 4+ 7,
a2 + 9 + e911 &+ €9
79 |1+ 2,10, a2 + 9, 106 | a2 + 6, B1 + 7,
afy(8 + e211) 8 4+ €9+ £10 + 11
+ w (043 + Oé()?) 107 | @2 + 6 + 82117
80 | 1+ eyl1, a 249, Bl 47,8+ e9
afo8 + w (a3 + agT7) 108 | a2 4+ 6, 1 + 7,
81 | 1, B8 + w(ald + ag7), 8 + €9 + v10 + e,11
a2+ 9 109 | a2 4+ 6, 1 + 7,
8212,5,6 8 + €9 + e511
8312, 5 10 + all, 6 110 | a2 + 6 + e,11, 81 + T,
84 12,5+ al0 + e,11, 6 8 + 9 + £,10
85 | ad +5,6,7 11| a2 + 6, B1 + 7 + 11,
8 | a4 + 5 + 110 + 11,6, 7 8 +¢e9 4 £,10
87| ad +5+ 810 + 11,6, 7 || 1122, 6,8 + 9
88 14,6, 7 113 | 2 4+ 10 + a 11, 6, 8 + €9
89 | 4+ ¢,10 + all, 6, 7 114 [ 2,6 + all, 8 + €9
90 | 4 + al0 + 511, 6, 7 115 2,6,8 + €9 + £,10+all
9114+4+9,6,7 116 | 2 + 10 + &211, 6, 8 4+ €9
92 |44+ 9+610+all,6,7 |[117]2,6,8 + e9 + al0 + e11
93144+ 9+ al0 4+ e911,6, 7 118 | 2 4+ £110, 6 4+ 511, 8 + €9
94 14+ 84+ a9,6,7 119 | 2 4+ 110, 6, 8 + €9 + 511
95 | 4+ 8+ a9 4+ £110 + B11, || 120 | 2 + £311, 6, 8 + €9 + £,10
6, 7 121 | 2, 6 + 511, 8 +€9 + 110
96 | 4 + 8 + a9 + (510 + 911, || 122 |2, a3 + 6 + (11, 8
6,7 123 | 2 + 110 + 11, 6 + (3, 8
97 | a2 + 6 + B11, 71 + 7,8 || 1242, 6 + a3, 8 + 10 + B11
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N Generator N Generator
125 | 2 + al0 4+ 6911, 6 + (63,8 || 158 | 1, 2, a3 + 8
126 | 2, 6 + a3 + 211, 8 159 | 1 4+ 10 + f11, 2, a3 + 8
127 12,6 + a3, 8 + 10 + 911 || 160 | 1,2 + £,10 + G11, a3 + 8
128 | 2 + 2110, 6 + a3 4+ 211, 8 || 161 | 1, 2, a3 + 8 + 110 + (11
129 | 2 + 110, 6 + a3, 8 + 911 || 162 | 1 + B10 4+ 211, 2, a3 + 8
130 | 2 + &911, 6 4+ a3, 8 163 | 1,2 + P10 + e911, a3 + 8
131 2,6 + a3, 8 + e911 164 | 1,2, a3 + 8 + B10 + &511
132 | 2 + e911,6 + a3, 8 + 110 || 165 | 1 + €110, 2 + 511, a3 + 8
133 12,6 + ad + e311, 8 + 110 || 166 | 1 4+ €110, 2, a3 + 8 + &511
134 11,2, 04+ 5 167 | 1+e511, 2 + £110,a3 + 8
135 | 1, 2, a4 + 5 46,10 + (11 168 | 1, 2 + 2110, a3 + 8 + e511
136 | 1,2, a4 + 5 + [10 4+ 511 || 169 | 1 + e911, 2, a3 + 8 + £110
137 11,3,5 170 | 1, 2 + e911, a3 + 8 + 110
138 | 1, 3,5 + 10 + 11 17111, 3, a2 + 8
139 | 1, 3, 5 4+ (10 + &511 172 | 1 + 10 + p11, 3, a2 + 8
140 11,2, a3 4+4+84+ 39 173 | 1, 3 + &110+011, a2 + 8
141 11,2, a3 +4+ 8 174 1 1, 3, a2 + 8 + 110 + F11
4+ 9 4 511 175 | 1 + 810 4+ e211, 3, a2 + 8
142 1 1,2, a3 + 4 + 59 176 | 1, 3 + P10 + e511, a2 + 8
143 11,2, a3 +4 + 9 + e511 177 1 1, 3, a2 + 8 + B10 + &511
144 11,2, a3 + 4 178 | 1 4+ €110, 3 4+ 211, a2 4+ 8
145 11,2, a3 +4 + 110 + G11 || 179 | 1 + 110, 3, a2 + 8 + &511
146 | 1,2, a3 + 4 + B10 + 911 || 180 | 1 + 511, 3 + €110, a2 + 8
147 11,2, a3 + 8 + €9 181 | 1,3 + 110, a2 + 8 + &511
148 | 1 + .10 4+ (11, 2, 182 | 1 + &511, 3, a2 + 8 4+ £,10
ad + 8+ €9 183 | 1,3 + 211, a2 + 8 + £110
149 | 1, 2 + £,10 + p11, 184 11,2, a3+ 9
a3 + 8 + €9 185 | 1 + &110 + B11, 2, @3 4+ 9
150 | 1,2, a3 + 8 + €9 + (11 186 | 1,2 + 10 + 811, @3 + 9
151 | 1 + B10 + e911, 2, 187 11,2, a3 4+ 9 + p11
a3 + 8 + €9 188 | 1 4+ B10 + 311, 2, a3 + 9
152 | 1, 2 + B10 4 e511, 189 | 1,2 + P10 + e911, a3 + 9
a3 + 8 + €9 190 | 1,2, a3 + 9 + e511
153 | 1 + £110, 2 4 511, 191 | 1 + £110, 2 + e511, @3 + 9
a3 + 8 + €9 192 | 1+ 6110, 2, a3 + 9
154 | 1 + e911, 2 + 110, 193 | 1 + e211, 2 4+ €110, @3 + 9
a3 + 8 + €9 194 11,2 + 10, @3 + 9
155 | 1,2 + 2110, a3 + 8 + €9 195 | 1 4+ 6911, 2, a3 + 9
156 | 1 + &511, 2, a3 + 8 + €9 196 | 1,2 + e511, @3 + 9
157 | 1,2 4+ &911, a3 + 8 + €9
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Appendix G

Fortran-program of the
Fourth-order Runge-Kutta
Method

For solving ordinary differential equations we use fourth-order Runge-

Kutta method. Here for the sake of complete consideration we explain it.
Let

d

% = F(.T,y), y(SU()) =%Yo
be a Cauchy problem. One of the Runge-Kutta methods with step size h is given
by the formula

h
Yie1 = Yi + g(/ﬁ + 2Ky + 2k3 + ky),

where ki = F(z;,y;), ko = F(z; + %, yi + 2k1), ks = Fz;i + 2,y + k), ky =
F(x; + h,y; + hks). We apply this algorithm for reduced systems. Some of these
systems are second order. For the second order system of equations one has to

reduce this system to a first order. We use the following way for reducing.
Let ,
{ T =F(z.0.9),
¢(ro) = ¢o, ¢'(z0) = b

be a Cauchy problem. This problem can be rewritten as the following

{ % =z, g_; :f([E,gZS,Z),
¢(ro) = ¢o, 2(w0) = 1.

For the obtained system of first order equations one can use Runge-Kutta method
described above with

y=1(2)7, F=(zf)"

Example of program in Fortran

REAL P(12),PP(12),S5P(4,12),0Q,Q,H,T1,T2,T3,T4,S1,S2,83,54
INTEGER N

OPEN (12,FILE=’0RG1’)

OPEN (21,FILE=’FH1’)



OPEN (22,FILE=’FH2’)
OPEN (23,FILE=’FH3’)
OPEN (24,FILE=’FH4’)
OPEN (25,FILE=’FH5’)
OPEN (26,FILE=’FH6’)
OPEN (27,FILE=’FHT7’)
DATA Q,P,N,H/1.0,
= .2,.3,.4,.5,.6,.7,6%x1.0,10,0.1/
DATA SI1,SI2,SI3,K1,K2,K3,AL,0M/7*1.,2./
WRITE (*,100) H
100  FORMAT(’STEP SIZE H =’,E10.4)
WRITE (*,150)
WRITE (12,150)
150 FORMAT (4X,’Q’,6X,’F1’,9X,’F2’,9X,’F3’,9X,’F4’ ,9X
= ,’F5’,9X,’F6°)
T1= 0.5%K1%(AL*K1-0M)/0OM
T2= 0.5%K2* (AL*K2-0M) /0OM
T3= 0.5%(AL*K3%*2) /0M
T4= 0.5%K3
S1=(0.5%K1*SI1)/Q
S2=(0.5%K2%SI2)/Q
S3=(0.5%K3*SI3)/Q
S4=1.0/Q
DO 600 I=1,N
DO 300 J=1,12
PP(J)=P(J)
300 CONTINUE
QQ=Q
DO 400 J=1,4
DO 320 K=1,12
SP(J,K)=FUNC(K,PP,T1,T2,T3,T4,S1,S2,S3,54)
320 CONTINUE
IF (J.LT.3) THEN
QQ=Q+0.5%H
DO 340 K=1,12
PP (K)=P(K)+0.5%H*SP(J,K)
340 CONTINUE
ELSE
IF (J.EQ.3) THEN
QQ=Q+H
DO 360 K=1,12
PP (K)=P (K) +H*SP (J,K)
360 CONTINUE
ELSE
DO 380 K=1,12



380

400

450

480
490
600

ENDIF

CONTINUE
Q=Q+H

WRITE(*,450) Q, (P(K),K=1,6)
WRITE(12,450) Q, (P(K),K=1,6)
FORMAT(F5.2,6E11.4)

WRITE(21,480)
WRITE(22,480)
WRITE(23,480)
WRITE(24,480)
WRITE(25,480)
WRITE(26,480)
WRITE(27,490)
FORMAT(E11.4)
FORMAT (F5.2)
CONTINUE
CLOSE (12)
CLOSE (21)
CLOSE (22)
CLOSE (23)
CLOSE (24)
CLOSE (25)
CLOSE (26)
CLOSE (27)

STOP
END

P(1)
P(2)
P(3)
P(4)
P(5)
P(6)
Q
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P(K)=P(K)+0.1667*H*(SP(1,K)+2.*SP(2,K)
+2.%SP(3,K)+SP(4,K))
CONTINUE
ENDIF

C %k >k >k >k 3k 3k 5k 5k 5k ok >k >k >k 3k 3k ok ok 3k 5k %k >k >k k 3k 5k 5k 5k 5k >k >k >k >k 3k 3k 5k 5k 5k >k >k 5k 5k 5k 3k 5k 5k 5k >k %k %k 5k %k %k 5k 5k >k >k >k %k >k %k %k >k >k >k k

FUNCTION FUNC(X,PP,T1,T2,T3,T4,S1,S2,S3,54)
REAL PP(12)
IF (K.LT.7) THEN
FUNC = PP(K+6)

RETURN
ENDIF

IF (K.EQ.7) THEN
FUNC=-S4*PP (7)-T1*PP(8)
+S1% (PP (3) *PP (5)+PP (4)*PP(6) ) - (T1*S4*PP (1))

RETURN

ENDIF

IF (K.EQ.8) THEN



END
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FUNC=-S4*PP (8)+T1*PP(7)
+S1* (PP (3) *PP (6) -PP (4) *PP(5) ) +(T1xS4*PP (2))
RETURN
ENDIF
IF (K.EQ.9) THEN
FUNC=-S4xPP (9)-T2*PP (10)
+S2* (PP (1) *PP (5) +PP (2) *PP (6) ) - (T2*S4*PP (3) )
RETURN
ENDIF
IF (K.EQ.10) THEN
FUNC=-S4*PP (10)+T2*PP (9)
+S2x (PP (1) #*PP (6) PP (2) *PP (5) )+ (T2xS4*PP (4))
RETURN
ENDIF
IF (K.EQ.11) THEN
FUNC=-S4*PP (11)-T3*PP (8)+T4*PP (12)
+S3% (PP (1) *PP (3)-PP(2) *PP (4) ) -T3%S4*PP (2) +T4*S4*PP (6)
RETURN
ENDIF
FUNC=-S4*PP (12)+T3*PP (7)-T4*PP(11)
+S3% (PP (1) *PP (4)+PP (2) *PP (3) ) +T3%S4*PP (6) -T4*S4*PP (5)
RETURN



Appendix H

Figures

The Figure H.1, H.2 and H.3 show the result of calculation of system (5.1) for
the Runge-Kutta method (h = 0.1)
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The Figure H.4, H.5 and H.6 show the result of calculation of system (5.2) for
the Runge-Kutta method (h = 0.1)
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The Figure H.7, H.8 and H.9 show the result of calculation of system (5.4) for
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The Figure H.10, H.11 and H.12 show the result of calculation of system (5.5)

for the Runge-Kutta method (h = 0.1)
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The Figure H.13, H.14 and H.15 show the result of calculation of system (5.6)
for the Runge-Kutta method (h = 0.01)

(pl (P2
0.21 0.3
0.2 0.29¢

0.19 0.28

0.18 0.271

0.17 0.26

0.16 0.251

0.15 0.24r

0.14 0.23r1

0.13 0.221

0.12 0.21

0.11 . . . . q 0.2 . . . . q
0.02 0.04 0.06 0.08 0.1 0.02 0.04 0.06 0.08 0.1

Figure H.13: Graphs of ¢1, ¢»

0, 0,
0.4 0.491
0.39 0.481
0.38 0.47}
0.37
0.46
0.36
0451
0.35
0.441
0.34
0.43}|
0.33
0.32 0421
0.31 0.41
0.3 q 0.4 q
0.02 0.04 0.06 0.08 0.1 0.02 0.04 0.06 0.08 0.1
Figure H.14: Graphs of ¢3, ¢4
b P
0.59 0.691
0.58 0.68
0.57 0.671
0.56 0.66
0.55 0.651
0.54 0.641
0.53 0.631
0.52 0.621
0.51 0.61
05 n n n n q 0.6 n n n n q
0.02 0.04 0.06 0.08 0.1 0.02 0.04 0.06 0.08 0.1

Figure H.15: Graphs of ¢5, ¢



98

The Figure H.16, H.17 and H.18 show the result of calculation of system (5.7)
for the Runge-Kutta method (h = 0.05)
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The Figure H.19, H.20, H.21 show the result of system (5.8) for the
Range-Kutta method (h = 0.1)
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The Figure H.22, H.23 and H.24 show the result of calculation of system (5.9)
for the Runge-Kutta method (h = 0.01)
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The Figure H.25, H.26 and H.27 show the result of calculation of system (5.10)
for the Runge-Kutta method (h = 0.01)
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The Figure H.28, H.29 and H.30 show the result of calculation of system (5.11)
for the Runge-Kutta method (h = 0.01)
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The Figure H.31, H.32 and H.33 show the result of calculation of system (5.12)
for the Runge-Kutta method (h = 0.05)
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