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CHAPTER I

INTRODUCTION

Proteins are important polymer molecules in living organisms. They are

assembled from amino acids which are connected together by peptide bonds. There

are twenty naturally occurring amino acids (see Figure A.1 in Appendix A) which are

distinguished by the chemical nature of their side-chains (Van Holde, Johnson, and

Ho, 1998). Salt-bridge or ion-pair interaction is defined as the interaction between

ionized functional groups with opposite charges. They contact each other

approximately at their van der Waals radii. The resulting salt-bridge is stabilized by

attractive electrostatic force which may have some hydrogen bond (H-bond)

characters (Nakamura, 1999). In proteins, for example salt-bridges are formed when a

positively charged side-chain of arginine (Arg) or lysine (Lys) interacts with a

negatively charged side-chain of aspartate (Asp) or glutamate (Glu) (Barlow and

Thornton, 1983).

Salt-bridges or ion-pairs have been of interest since, on average, one-third of

the charged residues in proteins are involved in ion-pairs, and about 76 % of these

play important roles in stabilization of the protein secondary and tertiary structures

(Barlow and Thornton, 1983; Gandini, Gogioso, Bolognesi, and Bordo, 1996). Due to

strong electrostatic interaction, salt-bridges have been recognized to have other

specific functions to perform, especially in globular proteins (Barlow and Thornton,

1983). They were suggested, for example, to act as active mediator for molecular
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recognition in enzymes and proteins (Riordan, McElvany, and Borders, 1977; Kirsch

et al., 1984; Tormo et al., 1994). About 40 % of ion-pairs within proteins involve

arginine-carboxylate (Arg- −COO ) interactions (Barlow and Thornton, 1983; Singh,

Thornton, Snarey, and Campbell, 1987), e.g., the arginine-glutamate (Arg-Glu) and

arginine-aspartate (Arg-Asp) side-chain interactions. Therefore, the guanidinium

( +Gdm ) and formate ( −FmO ) ions (Fülscher and Mehler, 1988; Zheng and Ornstein,

1996), as well as the methylguanidinium ( +MGdm ) and acetate ( −AcO ) ions (Barril,

Alemán, Orozco, and Luque, 1998; Melo et al., 1999), have been frequently chosen as

model systems in the studies of ion-pair interactions between side-chains of proteins.

According to a systematic geometric analysis of the Brookhaven Protein Data

Bank (PDB), the stereochemistry of the side-chain H-bonds of proteins was pointed

out to be characterized by at least three factors; (a) the electronic configuration of the

H-bond acceptor atoms; (b) the steric accessibility of the H-bond donor atoms and; (c)

the conformation of amino acid side-chains (Ippolito, Alexander, and Christianson,

1990). Singh et al. (1987) categorized the geometries of Arg- −COO  interactions by

observing the frequencies that the interacting pairs adopt in 37 high-resolution protein

structures. They found that the most preferential structure for Arg- −COO  interaction

is a planar structure, in which a single N-H…O-C H-bond is the most common type of

interaction; whereas double N-H…O-C H-bonds are also frequently found. Moreover,

the “side-on” doubly H-bonded structures seem to be more favorable than the

“end-on” structures. Mitchell, Thornton, Singh, and Price (1992) evaluated

intramolecular and intermolecular Arg-Asp interactions by extracting structural

information from protein coordinate data, in comparison with the results of the
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electrostatic modeling of +MGdm - −AcO  complex. The results showed that the    

side-on configuration is more favored for the intramolecular interactions. Whereas the

end-on configuration is more preferred for the intermolecular interactions. The

geometrical constraints were suggested to be the main reason for the discrepancy.

Additionally, it was also reported that, the side-on structure is slightly lower in energy

than the end-on structure. Equilibrium structures of the +MGdm - −AcO  complexes

are shown in Figure 1.1.

      a)          b)

Figure 1.1 Equilibrium structures of the +MGdm - −AcO  complexes.

a) The end-on structure.

b) The side-on structure.

Several theoretical investigations were conducted on model salt-bridges in the

gas phase, aqueous and non-aqueous solutions, using both continuum (Zheng and

Ornstein, 1996; Barril et al., 1998) and explicit solvent models (Saigal and Pranata,

1997; Rozanska and Chipot, 2000). The stability of the side-on and end-on

configurations in the gas phase was examined by ab initio calculations, using the

+MGdm - −AcO  complex as an example (Barril et al., 1998; Melo et al., 1999). It was

reported that the side-on structure is more stable than the end-on structure (Barril

et al., 1998; Melo et al., 1999).
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Due to the possibility of proton transfer in H-bonds, the Arg-Glu and Arg-Asp

complexes can take both neutral and zwitterionic forms. In order to obtain

information on the relative stability of these two structures in the gas phase as well as

in polar and nonpolar solvents, Zheng and Ornstein (1996) applied ab initio

calculations, in combination with reaction field theory, on the +Gdm - −FmO

complex. Figure 1.2 shows the neutral and zwitterionic H-bond complexes.

a) b)

Figure 1.2 Structures of the +Gdm - −FmO  complexes.

 a) The neutral H-bond complex.

 b) The zwitterionic H-bond complex.

The results of ab initio calculations (Zheng and Ornstein, 1996) revealed that the

neutral H-bond complex is considerably more stable than the zwitterionic H-bond
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CCl4. In contrast, the zwitterionic H-bond complex is significantly more stable in

polar solvents, such as dimethyl sulfoxide (DMSO) and water. Based on the results of

ab initio calculations with the self-consistent reaction filed (SCRF) on the

+MGdm - −AcO  complex, it was confirmed that, in the gas phase, the neutral form is

more stable than the zwitterionic one (Barril et al., 1998; Melo et al., 1999). It was

also illustrated that, the preference of the ion-pairs over the neutral complexes in polar
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solvents is considerably reduced or even reversed in very low dielectric media, such

as chloroform (Barril et al., 1998). Through an explicit water model, molecular

dynamics (MD) free energy calculations were performed on the +MGdm - −AcO

complex in aqueous solution ( aq]AcOMGdm[ −+ − ), using various approaches to take

into account long-range electrostatic interaction (Rozanska and Chipot, 2000). The

potential of mean force (PMF) for the doubly N-H…O-C H-bond configuration

showed minima which are the characteristics of both close-contact and

solvent-separated ion-pairs (Rozanska and Chipot, 2000). Saigal and Pranata (1997)

presented the free energy profiles of the +Gdm - −AcO and methylammonium

( +MAm )- −AcO  complexes in aqueous solutions using Monte Carlo (MC)

simulations. The +Gdm - −FmO  and +MAm - −AcO complexes serve as models to

represent salt-bridges in the Arg-Asp (or Glu) and Lys-Asp (or Glu) complexes,

respectively. The PMF showed the close-contact ion-pair distances in the

+Gdm - −AcO  and +MAm - −AcO  complexes to be 3.8 and 3.6 Å, respectively. In

both cases, the free energy wells were found to be rather shallow. This implies that, in

aqueous solution, the attractive interactions between the ions are not particularly

strong. Saigal and Pranata (1997) described the existence of double minima on the

free energy profile as a result of the constraint imposed on the relative orientation of

the ions in the PMF calculations.

Although in principle, ab initio calculations with continuum model such as the

SCRF method could provide useful information on molecular association in

continuum solvent characterized by a dielectric constant, more and more theoretical

and experimental evidences showed the necessity to include the details of solvent
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molecules in model calculations, especially for H-bond systems (Keith and Frisch,

1994). This is due to the fact that, continuum models neglect specific short-range

solute-solvent interaction, as well as the behavior and structures of solvent molecules

in the first solvation shell of solute. Continuum models were pointed out to be suitable

only for the systems, in which solvents act only as perturbation on the gas-phase

property of the system (Keith and Frisch, 1994).

According to literature survey, at least four remarks could be made in the field

of salt-bridge interactions in solutions; (a) previous theoretical and experimental

investigations tend to focus attention only on the effects of solute-solute and

solute-solvent interactions; (b) the detail information on the solvent structures

especially in the first solvation shell of solute has been neglected in many

investigations; (c) due to the limitation of computer resources, there has been an

increasing number of theoretical studies made based on continuum models; (d) there

were few theoretical and experimental investigations which combine structural and

energetic effects, as well as the dynamic behavior of solvent molecules in the first

solvation shell of solute, in the study of ion-pairs in solutions etc.

Intermolecular potentials to describe the interactions between molecules are

primary input for statistical mechanical simulations, such as MC and MD simulations.

Both MC and MD simulations provide information at the microscopic scale which can

be used to predict macroscopic properties of chemical systems. MC simulations

generate information by sampling configurations of molecules in statistical ensembles

and provide statistical averaged properties, such as thermodynamic and structural

properties. Whereas MD simulations solve the equations of motion by calculations of

instantaneous forces on molecules. The trajectories recorded in the course of MD
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simulations also yield dynamic properties such as transport coefficients (Allen and

Tildesley, 1994; Leach, 1996) and reorientational correlation time (Sagarik, Ahlrichs,

and Brode, 1986).

An alternative theoretical approach to compute intermolecular potentials has

been proposed (Böhm and Ahlrichs, 1982, 1985; Hoinkis, Ahlrichs, and Böhm, 1983;

Böhm, Ahlrichs, Scharf, and Schiffer, 1984; Böhm, Meissner, and Ahlrichs, 1984). It

is called the Test-particle model or briefly T-model since the main contributions to the

interaction energy are derived separately by probing the molecules of interest with

suitable test particles. The major advantage of the T-model over the ab initio

supermolecular approach is that, the T-model is derived by probing molecules of

interest with a spherical test particle. This reduces the degree of freedom to describe

the relative position and orientation of a pair of molecule from six to three. Therefore,

the T-model requires less computer resources compared to ab initio supermolecular

approach; thus the T-model can be applied to larger chemical systems. Moreover, the

T-model incorporates the effects of electron correlation in an approximate way. This

enables the T-model to be applied on large aromatic systems, such as pyridine

(Sagarik and Spohr, 1995), phenol (Sagarik and Asawakun, 1997), and benzoic acid

(Sagarik and Rode, 2000; Sagarik, Chaiwongwattana, and Sisot, 2004). The

intermolecular potentials derived from the T-model have been tested successfully on

various chemical systems, ranging from small molecules (Sagarik et al., 1986; Sagarik

and Ahlrichs, 1986, 1987; Sagarik, Pongpituk, Chaiyapongs, and Sisot, 1991; Sagarik,

1999) to the base pairs of DNA (Sagarik et al., 1991).

In the present study, the structures and energetic of a model salt-bridge formed

from +Gdm and −FmO were studied, both in the gas phase and aqueous solutions. The
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theoretical investigation started with construction of intermolecular potentials to

describe the interactions in the +Gdm -H2O, −FmO -H2O and +Gdm - −FmO

complexes, using the T-model. The T-model potentials were applied in the

calculations of the equilibrium structures and interaction energies of the +Gdm -H2O,

−FmO -H2O and +Gdm - −FmO  complexes in the gas phase. Selected lowest-lying

minimum energy geometries of these H-bond complexes were checked by ab initio

calculations at the MP2 level of theory. This is to ensure that the computed T-model

potentials give reasonable results when applied in MD simulations. The computed

T-model potentials were applied in MD simulations of aq][Gdm+ , aq][FmO−  and

aq]FmO[Gdm −+ −  at 298 K.

In order to obtain information on the preferential hydration sites, the three-

dimensional structures and stability, as well as energetic of H-bond networks in the

first hydration shells of solutes, the MD results were visualized and analyzed using

various probability distribution (PD) maps (Clementi, 1980). The hydration structures

of the complexes were inferred from the oxygen (PDO) and hydrogen probability

distribution (PDH) maps, as well as atom-atom pair correlation function (g(R)). The

energetic of H-bond networks of water in the vicinities of the solutes were analyzed

based on the solute-solvent (AWPD) and solvent-solvent interaction energy

probability distribution (WWPD) maps, together with the total-average interaction

energy probability distribution (AW-WWPD) maps. Dynamic behavior and stability

of water molecules in the first hydration shell of solutes were characterized using

cross section plots derived from average energy landscapes and H-bond lifetimes.
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The results were discussed in comparison with available theoretical and experimental

results of the same and similar systems.

The results obtained from the present study will lead to a better understanding

of salt-bridge interactions in proteins. It is also expected that the T-model potentials

can be further applied on larger molecules in biological systems.



CHAPTER II

RESEARCH METHODOLOGY

In the present work, the optimized geometries of the +Gdm and −FmO  ions

were obtained from ab initio calculations at MP2/6-311++G(d,p) and MP2/6-311++G

(3df,3pd) levels of theory, respectively. They were kept constant throughout the

calculations. The optimal bond lengths and angles of the ions are listed in Table C.1

(see Appendix C).

2.1 The T-model potentials

The derivation of the T-model has been discussed in detail elsewhere (Böhm

and Ahlrichs, 1982, 1985; Hoinkis et al., 1983; Böhm, Ahlrichs, Scharf, and Schiffer,

1984; Böhm, Meissner, and Ahlrichs 1984). Here only some relevant aspects of the T-

model are summarized.

Within the framework of the T-model, the interaction energy ( modelTE −∆ )

between molecules A and B is written as a sum of the first-order interaction energy

( 1
SCFE∆ ) and a higher-order energy term ( rE∆ ).

rEEE 1
SCFmodelT ∆+∆=∆ − (1)

1
SCFE∆  accounts for the exchange repulsion and electrostatic energies. It is

computed from ab initio SCF calculations and takes the following analytical form:

∑∑
∈ ∈ 











+











+

++−
=∆

Ai Bj ij

ji

ji

jiij

R
qqR

ρρ

σσ
expE1

SCF (2)
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 i and j in Eq.(2) label the sites of molecules A and B. iσ , iρ  and iq  are the site

parameters. ijR  is the site-site distance. The first term in Eq.(2) relates to the size and

shape of interacting molecules A and B. The exponential parameters in Eq.(2) are

derived by probing molecule A, as well as B, in various directions with an uncharged

spherical test particle. A nitrogen (N) atom in its average of terms state has been

proved to be the most suitable (Böhm and Ahlrichs, 1982). The repulsion energies

between A and N, as well as B and N, are calculated using ab initio calculations at

Hartree-Fock level of theory. These repulsion energies are employed to determine the

exponential parameters iσ , and iρ , by means of least squares fits and combination

rules. The point charges, iq  and jq , are computed from the requirement that a

point-charge model reproduces the electrostatic potentials of molecule of interest. The

CHelpG charges (Breneman and Wiberg, 1990) in Gaussian 98 (Frisch et al.,

Computer software, 1998) were shown to be applicable and quite practical (Sagarik,

1999; Sagarik and Rode, 2000). Therefore, in the present study, the point charges for

+Gdm and −FmO  were determined by a fit of the electrostatic potentials at points

selected according to the CHelpG scheme (Breneman and Wiberg, 1990). For the

+Gdm and −FmO  ions, the electrostatic potentials employed in the fit were computed

from ab initio calculations at the HF/6-311++G(d,p) and HF/6-311++G(3df,3pd)

levels of theory, respectively. Due to the symmetry, the dipole moment for +Gdm  is 0

D; whereas that for −FmO is 1.90 D, which is in good agreement with those reported

by Cummins and Gready (1994) between 1.6 to 1.7 D.

rE∆ in Eq.(1) represents the dispersion and polarization contributions to the

T-model potential. rE∆  could be determined from both theoretical and experimental
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data. A calibration of the incomplete potential to the properties related to

intermolecular interactions, such as the second virial coefficients (B(T)), dimerization

energies or potential energy of liquid etc., seems to be the most appropriate choice.

rE∆  takes the following form:

( )∑∑
∈ ∈

−−=∆
Ai Bj

ijijijij
r RRFC 66E (3)

where

( ) ( ){ }
elsewhere,1

28.1if,128.1exp 020

=

<−−= ijijijijijij RRRRRF (4)

and

( ) ( ) 21216
6

2
3

jjii

ji
ij NN

CC
αα

αα

+
= (5)

0
ijR  in Eq.(4) is the sum of van der Waals radii of interacting atoms. Eq.(5) is the

Slater-Kirkwood relation. iα  and iN in Eq.(5) denote the atomic polarizability and

the number of valence electrons of the corresponding atom, respectively. ( )ijij RF  in

Eq.(4) is a damping function, introduced to correct the behavior of 6−
ijR  at short ijR

distance. Only 6C in Eq.(5) is unknown.

The values of 6C  could be varied within a wide range and careful variation of

6C  seems not lead to significant changes in the potential energy surface (PES). For

some microsolvated systems, the values of 6C  were determined by adjusting the 6C

parameters to reproduce the interaction energies computed from ab initio calculations.

This includes, for example, the phenol-H2O 1 : 1 complex (Sagarik and Asawakun,

1997), benzoic acid dimer ((BA)2), the BA-H2O 1 : 1 complex (Sagarik and Rode,
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2000) and (NH2OH)2 (Sagarik, 1999). The calibration procedure employed in the

present work consists of three basic steps as follows; (a) the T-model parameters for

the +Gdm  and −FmO  ions, with 6C = 1.0, were applied in the calculations of the

equilibrium structures and interaction energies of the +Gdm -H2O, −FmO -H2O and

+Gdm - −FmO  1 : 1 complexes in the gas phase; (b) all the global minimum energy

geometries predicted by the T-model potentials were reoptimzed using ab initio

calculations at the MP2/6-311++G(d,p) level for the +Gdm -H2O and +Gdm - −FmO

complexes, and at the MP2/6-311++G(2d,2p) level for the −FmO -H2O complex. The

interaction energies of the reoptimized geometries were corrected using conventional

single point counterpoise correction of the basis set superposition error (BSSE) (Boys

and Bernardi, 1970); (c) the 6C  parameters for the complexes were readjusted, using

the corresponding MP2 interaction energies as guide lines. The computed 6C

parameters for the +Gdm -H2O, −FmO -H2O and +Gdm - −FmO  complexes are 1.13,

1.54 and 2.48, respectively. The T-model parameters for water were taken from

Sagarik et al. (1991). The T-model parameters for +Gdm , −FmO  and water are

summarized in Table C.2 (see Appendix C). The basic steps in the construction of

T-model potential are illustrated in Figure B.1 (see Appendix B).

2.2 MD simulations

In order to provide insights into the structures and energetic of the H-bond

networks of water in the first hydration shell of the +Gdm  and −FmO  ions, as well as

the +Gdm - −FmO  complex, the T-model potentials computed in the previous section

were applied in NVE-MD simulations of aq][Gdm+ , aq][FmO−  and
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aq]FmO[Gdm −+ −  at 298 K. In MD simulations in general, an ion or an ion-pair was

put at the center a cubic box subject to periodic boundary conditions. The solute was

surrounded by five hundred water molecules, with the density of the aqueous

solutions maintained at 1.0 g/cm3. The cutoff radius was half of the box length. The

Ewald summation was applied to account for the long-range Coulomb interaction.

Fifty thousand MD steps of 0.0005 ps were devoted to equilibration and one hundred

thousand steps to property calculations. The schematic diagram showing all important

steps in MD simulations is illustrated in Figure B.2 (see Appendix B).

The primary energetic results obtained from MD simulations were the average

solute-solvent interaction energies (< solv-solu
aqE >) and the average solvent-solvent

interaction energies (< solv-solv
aqE >), as well as the average potential energy of aqueous

solutions (< pot
aqE >). These energy values were the results of the average over the MD

steps and the number of solvent molecules. They are summarized in Table 3.1,

together with all the MD simulations conditions employed in the present study.

To fulfill all the major objectives, six series of MD simulations were

performed in the present study. MD- aq][Gdm+  and MD- aq][FmO−  represent MD

simulations, in which single ions and water molecules were considered. In MD

simulations of aq]FmO[Gdm −+ − , the most stable configuration of the +Gdm - −FmO

1 : 1 complex in the gas phase, similar to the structure b in Figure 1.2, was chosen as

a representative ion-pair. The atom numbering systems of +Gdm - −FmO  are given in

Figure 2.1.
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Figure 2.1 Atom numbering systems of the +Gdm - −FmO  1 : 1 complex.

It should be mentioned that, for the dimerization of alanine dipeptide in

aqueous solutions (Su and Gallicchio, 2004), a relatively large free energy barrier

corresponding to the intermediate state is characterized by a single hydration layer of

interstitial water molecules which separates the close-contact dimer from the

solvent-separated structure. It is, therefore, of interest to study the hydration structures

and stability of such an intermediate state in aq]FmO[Gdm −+ − . Since the preliminary

PMF calculations on aq]FmO[Gdm −+ −  (Sagarik and Chaiyapongs, 2004) revealed

two shallow minima at ≈CCR L  3.9 and 6.3 Å on the free energy profile, these two

configurations were adopted in the present MD simulations. They correspond to the

close-contact and solvent-separated +Gdm - −FmO  structures, respectively; the two

minima are separated by a very low free energy barrier. In the present study,

MD- XR
frozen,aq]FmO[Gdm =−+ −  symbolizes the MD simulations, in which the

+Gdm - −FmO  complex with CCR L = X was frozen in the course of MD simulations.

Therefore, MD- XR
frozen,aq]FmO[Gdm =−+ −  with CCR L = 3.9 and 6.3 Å could assimilate,

respectively, the initial and intermediate states, in which the H-bonds in the

close-contact ion-pair are disrupted by water molecules in the interstitial H-bond

network.
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The stability of the close-contact and solvent-separated +Gdm - −FmO

complexes in aqueous solutions was discussed based on the results of

MD- XR
free,aq]FmO[Gdm =−+ − . In MD- XR

free,aq]FmO[Gdm =−+ − , two consecutive

equilibration steps were carried out before property calculations took place. In the

first equilibration step, the +Gdm - −FmO  complex with CCR L = X was treated as a

supermolecule, in which both +Gdm  and −FmO  ions were not allowed to move in the

course of MD simulations. After water molecules were well-equilibrated, all

molecules inside the simulation box, including the +Gdm  and −FmO  ions, were

allowed to freely move in the second equilibration.

The hydration structures in aq][Gdm+ , aq][FmO−  and aq]FmO[Gdm −+ − were

primarily analyzed using the atom-atom pair correlation functions (g(R)) and the

average running coordination number (n(R)). The three-dimensional structures of the

H-bond networks of water in the aqueous solutions were visualized using the PDO

and PDH maps. In the present case, they represent static pictures of the H-bond

networks of water in the first hydration shells of solutes. In the constructions of the

PDO and PDH maps, the molecular plane of solute was assumed to coincide with the

XY plane of the simulation box (with Z = 0 Å). The volumes above and below the

molecular plane of solute were divided into layers, with the thickness of 1 Å. In each

layer, the PDO and PDH maps were computed at 61×61 grid intersections, by

following the trajectories of oxygen and hydrogen atoms of water in the course of MD

simulations. The PDO and PDH maps were represented by contour lines. SURFER

program (Golden Software, Computer software, 1997) was employed in the

construction of the contour maps. For simplicity the maximum and minimum values
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of the contour lines, as well as the contour interval were chosen to be the same for all

the PDO and PDH maps.

In order to obtain insights into the interaction energy distributions in

aq][Gdm+ , aq][FmO−  and aq]FmO[Gdm −+ − , a similar approach was adopted to

construct the AWPD, WWPD and AW-WWPD maps. The AWPD maps were derived

from the average interaction energies between the water molecules at the grid

intersections and the ion or ion-pair, whereas the WWPD maps were computed based

on the average interaction energies between the water molecules at the grid

intersections and all other water molecules in aqueous solutions. In the present study,

the AW-WWPD maps represent the average potential energy landscapes of the

H-bond networks of water. They were computed by combination of the AWPD and

WWPD maps (Sagarik and Dokmaisrijan, 2005). Only the negative interaction

energies were displayed in the AWPD, WWPD and AW-WWPD maps.

Since the dynamic behavior of water molecules in the H-bond networks was

one of the main objectives, additional MD analyses were made. Due to the fact that

the mobility of water molecules depends on the transition energy barriers, which

could be estimated from the average potential energy landscapes, the AWPD, WWPD

and AW-WWPD maps were examined in details. Various cross section plots of the

average potential energy landscapes were generated by taking vertical slices along

predefined profile lines, through the surfaces of the AW-WWPD maps, as well as the

AWPD and WWPD maps (Sagarik and Dokmaisrijan, 2005). In the present study, the

cross section plots computed from the longitudinal profile lines could be associated

with the transition energy barriers to water exchange within, as well as between, the

H-bond networks (< L
aqE >). Whereas those derived from the transverse profile lines
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are related to the transition energy barriers to water exchange between the H-bond

networks and the outsides (< T
aqE >).

It should be augmented that, when a particular water molecule leaves the first

hydration shell, its place is occupied nearly simultaneously by another water

molecule. Therefore, the residence time has been frequently used in the discussion of

the dynamic behavior of water molecules in the first hydration shells of solutes

(Wüthrich, 1995). The measured residence times seem to be very sensitive to the

methods used, and could be approximated in general by MD simulations and NMR

experiments (Odelius and Laaksonen, 1999). However, both approaches have

advantages and disadvantages (Wüthrich, 1995; Brunne, Liepinsh, Otting, Wüthrich,

and van Gunsteren, 1993). For examples, due to the fact that the H-bond formations

and disruptions take place very often and very fast in the first hydration shell of

solutes, the residence times derived from MD simulations could vary in a wide range

(Brunne et al., 1993), depending on the path taken by individual water molecule;

whereas NMR experiments can more effectively detect the long-lived hydration water

(Wüthrich, 1995). From literature survey, there have been various approaches to

calculate the residence times from MD simulations (Odelius and Laaksonen, 1999;

Brunne et al., Impey, Madden, and McDonald, 1983). The one proposed by

McDonald (Impey et al., 1983) seems to be relatively straight forward and widely

used, especially for spherical symmetric solutes such as monovalent ions (Impey

et al.; Smith and Dang, 1994). Since the ions and ion-pair considered here are more

complicated and the intention is only to characterize the mobility of water molecules

in the H-bond networks in terms of the average potential energy landscapes.

Therefore, the H-bond lifetime proposed by Sagarik (Sagarik and Dokmaisrijan,
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2005) was employed in the present study. The so-called “the longest H-bond lifetime”

(τA-H…B, max) was approximated from the percentage of the MD steps, during which a

specific pair of H-bond donor and acceptor coming close enough to continuously

engage in H-bond. The H-bond donor and acceptor were considered to engage in

H-bond when the donor-acceptor distance was shorter than 4 Å (Barlow and

Thornton, 1983; Case et al., Computer software, 1999). Attention was focused on

cyclic-bifurcated H-bonding features, since preliminary MD simulations showed that

they dominated in aq][Gdm+ , aq][FmO−  and aq]FmO[Gdm −+ − .

2.3 Computer softwares and facilities

All calculations in the present study were performed at the School of

Chemistry, Institute of Science, SUT. The following computers and standard

computational chemistry softwares were used.

- Compaq alpha1000 XP1000 and Compaq alpha DS20.

- DEC alpha 600/5-266.

- COLUMBUS system programs developed by Ahlrichs et al. (1985).

- Gaussian 98 package (Frisch et al., Computer software, 1998).

- Moldy MD simulations program (Refson, Computer software, 1996).

- SURFER contouring program (Golden Software, Computer software,

1997).

- AMBER version 6 (Case et al., Computer software, 1999) etc.



CHAPTER III

RESULTS AND DISCUSSION

3.1 Equilibrium structures in the gas phase

Since the main objectives of the present study were to investigate hydration

structures and stability of the ions and the ion-pair in aqueous solutions, the analysis

of the equilibrium structures and interaction energies in the gas phase was made only

to sample check the potential energy surfaces, as well as to test the applicability and

reliability of the computed T-model potentials. This is to ensure that the T-model

potentials will give reasonable results when applied in MD simulations. Due to the

fact that different theoretical approaches yield different results, comparisons with

available theoretical and experimental data were not made rigorously in the following

subsections.

 The absolute and some low-lying minimum energy geometries for the

+Gdm -H2O, −FmO -H2O and +Gdm - −FmO  complexes, computed from the T-model

potentials, are illustrated in Figures 3.1 to 3.3, respectively. modelTE −∆  and some

characteristic H-bond distances and angles, together with the corresponding results

from MP2 calculations, are included in the figures for comparison.

3.1.1 The +Gdm -H2O complex

In general, the results on the +Gdm -H2O 1 : 1 complex are as expected

namely, a cyclic-bifurcated N-H…Ow H-bond structure, structure a in Figure 3.1,
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represents the global minimum energy geometry in the gas phase. Both N-H…Ow

H-bonds in structure a are identical, with two N-H groups of +Gdm  acting as proton

donors toward the oxygen atom of water. The +Gdm  and H2O molecular planes are

perpendicular, with the N-H…Ow H-bond distance and modelTE −∆  of 2.93 Å and –72.9

kJ/mol, respectively. Starting from structure a, MP2/6-311++G(d,p) yielded the same

structure. The BSSE corrected interaction energy of structure a, MP2CPE∆  in Figure

3.1, is –68.0 kJ/mol. The T-model predicted structure b to be 9.3 kJ/mol less stable

than structure a. For structure b, the +Gdm  and H2O molecular planes are coplanar,

with the cyclic-bifurcated N-H…Ow H-bond distance and modelTE −∆  of 3.01Å and

–63.6 kJ/mol, respectively. The relative orientations of water molecules in structures a

and c, as well as in structures b and d, are similar. However, the water molecules in

structures c and d are H-bonded to the +Gdm  ion through a single N-H…Ow H-bond,

with the +Gdm  and H2O molecular planes perpendicular and coplanar with each

other, respectively. modelTE −∆  of structures c and d are almost the same, –59.0 and

–58.4 kJ/mol, respectively. The N-H…Ow H-bond distance in structure d is slightly

longer than structure c. Structure e represents another type of cyclic-bifurcated

H-bond in the +Gdm -H2O 1 : 1 complex, with modelTE −∆  and the N-H…Ow H-bond

distance of –46.9 kJ/mol and 2.75 Å, respectively.
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   Figure 3.1 Equilibrium structures and interaction energies of the +Gdm -H2O

                     1 : 1 complex in the gas phase computed from the T-model potentials.

                     [….] the values obtained from MP2/6-311++G(d,p).
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Only limited number of low-lying minimum energy geometries of the

+Gdm -H2O 1 : 1 complex were reported in the literature (Jorgensen and

Tirado-Rives, 1988; Gao, 1994; Field, Bash, and Karplus, 1990). Based on the OPLS

potentials and ab initio calculations with the 6-31G(d) basis set (Field et al., 1990),

structure a possesses the interaction energies of –74.4 and –76.1 kJ/mol, respectively.

Whereas the AM1/TIP3P (Gao, 1994) and ab initio calculations (Field et al., 1990)

predicted the C...Ow distances to be 3.22 and 3.41 Å, respectively. Structure d was

inferred from the OPLS potentials and ab initio calculations to be an additional

minimum energy geometry, with the interaction energies of -66.0 and –57.7 kJ/mol,

respectively (Field et al., 1990).

 3.1.2 The −FmO -H2O complex

The T-model potential predicted a cyclic-bifurcated Ow-Hw…O

H-bond structure, structure a in Figure 3.2, to be the absolute minimum energy

geometry for the −FmO -H2O  1 : 1 complex. Structure a consists of two symmetric

Ow-Hw…O H-bonds, with water molecule acting as proton donors toward the −COO

group. Both Ow-Hw…O H-bond distances are 2.91 Å, with modelTE −∆  of –75.2

kJ/mol. MP2/6-311++G(2d,2p) geometry optimization predicted the same structure,

with slightly shorter Ow-Hw...O H-bond distance. MP2CPE∆  for structure a is –69.7

kJ/mol. The second and third low-lying minimum energy geometries for the

−FmO -H2O 1 : 1 complex are represented by a single Ow-Hw...O H-bond formation,

with modelTE −∆  of –62.6 and –55.6 kJ/mol, respectively; the Ow-Hw...O H-bond

distances are 2.90 and 2.81 Å, respectively.
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Figure 3.2 Equilibrium structures and interaction energies of the −FmO -H2O

                 1 : 1 complex in the gas phase computed from the T-model potentials.

                 [….] the values obtained from MP2/6-311++G(2d,2p).
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Three low-lying minimum energy geometries similar to those of the

present study were reported for the −FmO -H2O (Lukovits, Karpfen, Lischka, and

Schuster, 1979; Jorgensen and Gao, 1986; Gao, Garner, and Jorgensen, 1986; Luque,

Reuter, Cartier, and Ruiz-López, 2000) and −AcO - H2O 1 : 1 complexes (Gao, 1994).

The interaction energy of structure a was estimated by ab initio calculations at the

HF/6-31G(d,p) level, plus the counterpoise and dispersion corrections, to be –83.6

kJ/mol (Jorgensen and Gao, 1986), whereas the structures similar to structures b and c

were about –71.1 kJ/mol (Jorgensen and Gao, 1986). The C...Ow distances for these

structures are in good agreement with the T-model results, 3.23, 3.91 and 3.92 Å,

respectively (Lukovits et al., 1979). Ab initio calculations at the HF/6-31+G(d) level

(Gao et al., 1986) yielded the interaction energies of –76.1, -64.0 and –61.0 kJ/mol,

respectively.

3.1.3 The +Gdm - −FmO complex

Only two equilibrium geometries for the +Gdm - −FmO  1 : 1 complex

were generated from the T-model potential. The absolute minimum energy geometry

is represented by a coplanar cyclic arrangement of the N-H...O H-bonds, structure a in

Figure 3.3. The two N-H…O H-bonds are identical, with the N-H groups of the Gdm+

ion acting as proton donors toward the −COO group of −FmO . modelTE −∆  of structure

a is –480.8 kJ/mol, with the N-H…O H-bond distances of 2.74 Å. Starting from

structure a, MP2/6-311++G(d,p) geometry optimization yielded the same structure,

with the BSSE corrected interaction energy of –480.1 kJ/mol; the N-H...O H-bond

distances are slightly smaller than the T-model result. Structure a is similar to a

bidentate H-bonding structure reported by Shimoni, Glusker, and Bock (1996), in
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which ab initio calculations at MP2/6-31+G(d,p)//MP2/6-31+G(d,p) level predicted

the interaction energy to be –542.6 kJ/mol and the N-H...O H-bond distances of 2.6 Å.

Another type of cyclic-bifurcated N-H...O H-bonds was predicted by the T-model

potential, structure b in Figure 3.3. Structure b possesses the interaction energy and

the N-H...O H-bond distances of –431.4 kJ/mol and 2.62 Å, respectively.

Figure 3.3 Equilibrium structures and interaction energies of the +Gdm - −FmO

                    1 : 1 complex in the gas phase computed from the T-model potentials.

                    [….] the values obtained from MP2/6-311++G(d,p).
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In order to provide insight into the accuracy of the MP2 results

reported in this section, geometry optimizations on the ions and the 1 : 1 complexes

were performed at the HF level with the same basis sets. It was found that, at the HF

level, the covalent bond lengths were systematically shorter, 0.03 Å at most, whereas

the bond angles did not change significantly. For all the 1 : 1 complexes, the H-bond

distances obtained from ab initio calculations at the HF level were systematically

longer, 0.16 Å at most. The latter represents general trend when the effects of electron

correlation were neglected; additional attractive interaction is obtained when ab initio

calculations take into account the dispersion interaction properly. This also implies

that the basis sets employed in the present MP2 calculations are quite reasonable,

leading to correct effects of electron correlation. It should also be stressed that the

T-model employed in the present work takes into account the effects of electron

correlation in an approximate way, using the Slater-Kirkwood relation and the 6C

parameter. This considerably reduces computational efforts, especially for large

H-bond and aromatic systems, in which the effects of electron correlation cannot be

neglected (Sagarik and Asawakun, 1997; Sagarik and Rode, 2000; Sagarik et al.,

2004). The T-model has been proved to be an appropriate choice for the situations, in

which the numerical accuracy and the computational facility are to be balanced.
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3.2 MD simulations

< pot
aqE >, < solv-solu

aqE >, < solv-solv
aqE > and < solu-solu

aqE > are included in Table 3.1,

together with the conditions employed in MD simulations. Only some selected PDO,

AWPD and AW-WWPD maps, as well as the corresponding cross section plots, are

illustrated in this section. The rest are accumulated in Appendix C. Characteristic

high-density contour areas on the PDO, AWPD and AW-WWPD maps are labeled

with letters. To compare the transition energy barriers to water exchanges (< L
aqE > and

< T
aqE >) at various H-bond networks, the lowest energy minima on the AW-WWPD

cross section plots were set to 0 kJ/mol (Sagarik and Dokmaisrijan, 2005).

Since the ions and the ion-pair considered in the present work possess

symmetries, some H-bond networks are equivalent. To simplify the discussion,

equivalent H-bond networks were categorized and analyzed. τA-H…B, max obtained from

MD- aq][Gdm+ , MD- aq][FmO−  and MD- XR
frozen,aq]FmO[Gdm =−+ − are summarized in

Table 3.2, together with some characteristic < T
aqE >.



      Table 3.1 MD simulations parameters and the results for aq][Gdm+ , aq][FmO− and aq]FmO[Gdm −+ − .

MD L < pot
aqE > < solv-solu

aqE > < solv-solv
aqE > < solu-solu

aqE >

aq][Gdm+ 24.6865 -30.99 ± 0.16 -0.9 -29.6 -

aq][FmO− 24.6729 -31.35 ± 0.16 -1.1 -29.6 -
3.9R

frozen,aq]FmO[Gdm =−+ − 24.7273 -31.90 ± 0.17 -0.9 -29.4 -480.8*

3.9R
free,aq]FmO[Gdm =−+ − 24.7273 -31.94 ± 0.16 -1.0 -29.5     -457.0
6.3R

frozen,aq]FmO[Gdm =−+ − 24.7273 -31.98 ± 0.17 -1.5 -29.2 -256.5*

6.3R
free,aq]FmO[Gdm =−+ − 24.7273 -31.96 ± 0.17 -0.6 -29.1     -120.4

     L =  simulation box lengths.

< pot
aqE > =  average potential energy of aqueous solution.

< solv-solu
aqE > =  average solute-solvent interaction energy.

< solv-solv
aqE > =  average solvent-solvent interaction energy.

< solu-solu
aqE > =  average solute-solute interaction energy.

     * = modelTE −∆  for the +Gdm - −FmO  1 : 1 complex in the gas phase.

Energies in kJ/mol and distances in Å.



   Table 3.2 τtype X,  max and some >< T
aq∆E  obtained from MD simulations of aq][Gdm+ , aq][FmO−  and aq]FmO[Gdm −+ − .

        Energies in kJ/mol and time in ps.

MD- aq][Gdm+ MD- aq][FmO− MD- 3.9R
frozen,aq]FmO[Gdm =−+ − MD- 6.3R

frozen,aq]FmO[Gdm =−+ −

X >< T
aq∆E τtype X,  max >< T

aq∆E τtype X,  max >< T
aq∆E τtype X,  max >< T

aq∆E τtype X,  max

I 101.8   8.52 - - 86.3 6.92 101.5 10.04

II   76.8 11.11 - - 34.8 6.98   84.3 14.29

III - - 86.7 1.84 - - - -

IV - - 26.5 1.17 - - - -

V - - - - 24.3 1.41   23.7   8.96

VI - - - - - - 102.2-103.8 18.14

type I

type IItype VI

type V

type I

type II

type V

type III

type IV

type I

type II
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3.2.1 aq][Gdm+

Figure 3.4 shows g(R) and n(R) directly related to the H-bonds in

aq][Gdm+ , together with the PDO, AWPD and AW-WWPD maps and the cross

section plots. All the results on MD- aq][Gdm+ , are summarized in Appendix C. The

H-bond networks at A, B and C in Figures 3.4b and 3.4c are equivalent due to the

symmetry of the +Gdm  ion. Therefore, only two types of H-bond networks are to be

discussed in aq][Gdm+ . The representative examples are the H-bond networks in the

areas between H4 and H5 and between H1 and H2 in Figure 3.1. They are regarded as

the H-bond network types I and II, respectively.

The main peak of )g(R OwCL in Figure 3.4a is split into two peaks,

corresponding to the H-bond network types I and II, respectively. The peak height of

)g(R OwCL at Rmax = 3.43 Å is slightly lower than that at Rmax = 4.09 Å. The first peak

could be attributed to the H-bonding features in structures a and b, whereas the

second one accounts for structures c, d and e in Figure 3.1. The N-H...Ow H-bonds in

aq][Gdm+ seem to be quite strong, as seen from the structures of the main peaks of

)g(R OwNL and )g(R OwHL in Figure 3.4a. )g(R OwNL  indicates that, at Rmax = 2.90 Å,

there is about one (1.2) water molecule in close-contact or H-bonded to each N-H

group of +Gdm , and about eight (7.8) water molecules in the first hydration shell at

4.09 Å.
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Figure 3.4 Selected structure and energetic results obtained

     from MD- aq][Gdm+ .

     a)        g(R); characteristic distances are given,

                with n(R) in parentheses.

     b) – d) the PDO, AWPD and AW-WWPD maps.

     e) – h) cross section plots computed from longitudinal and

                 transverse profile lines.

         the AW-WWPD cross section plot.

     - - - - - - - -   the AWPD cross section plot.

     ……..…....   the WWPD cross section plot.

     X-, Y- and Z-axis in Å; energies in kJ/mol.
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Figure 3.4
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Figure 3.4 (continued)
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The preferential hydration sites and the three-dimensional structures of

the H-bond networks of water in aq][Gdm+  are visualized and analyzed using the

PDO, AWPD and AW-WWPD maps in Figures 3.4b to 3.4d. They are quite well-

defined which support the results of g(R) in general. The three most important H-bond

networks seem to be all connected and located on the +Gdm  molecular plane. The

H-bonding features at these H-bond networks seem to include all structures in

Figure 3.1. According to the contour densities on the PDO maps in Figures 3.4b and

3.4c, the H-bond network type I appeared with higher probability compared to the

H-bond network type II. In other words, the H-bonding features in structures a and b

were observed with higher frequencies in MD simulations, compared to structures c, d

and e. Figure 3.4d suggests the boundary of the first hydration shell of +Gdm  to be in

the layer with Z = 2 to 3 Å.

The structures of the average potential energy landscapes in Figures

3.4e to 3.4h show that the H-bond network types I and II are different in detail. The

longitudinal AW-WWPD cross section plot of the H-bond network type I in Figure

3.4e reveals slightly smaller transition energy barriers (< L
aqE >) at the basin, compared

to those of the H-bond network type II in Figure 3.4g. This suggests that water

molecules could move or exchange easier within the H-bond network type I. It was

also recognized in Figures 3.4e and 3.4f that, in the vicinity of the highest contour

density of the H-bond network type I, the AWPD cross section plots are lower than

the WWPD cross section plots and the structures of the AW-WWPD cross section

plots are determined by the shape of the AWPD cross section plots. This is opposite to

the situations in the H-bond network type II. These pieces of information will be used
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to characterize the energy contributions to the stability of the close-contact

+Gdm - −FmO complex in aqueous solutions. The transverse AW-WWPD cross

section plots in Figures 3.4f and 3.4h reveal that the motions of water molecules

inside the H-bond network types I and II are confined in narrow interaction energy

valleys of about 3 Å, with < T
aqE > for the water exchange between the H-bond

networks and the outsides of about 102 and 77 kJ/mol, respectively.

As mentioned earlier that the dynamic behavior of specific water

molecules at the H-bond networks could be inferred from the average potential energy

landscapes (Sagarik and Dokmaisrijan, 2005) and vice versa. Therefore, the detail

information on the structures of the average potential energy landscapes could be

useful to identify the paths taken by individual water molecules. It should also be

emphasized that, based on the criteria adopted in the present work, the minima on the

average potential energy landscapes, such as AW-WWPD maps, are associated with

the low-lying interaction energy states, which were occupied by water molecules in

the course of MD simulations. Furthermore, since the probability and the duration for

a water molecule to occupy an interaction energy state depend upon the hydration

dynamics of individual water molecule, as well as the transition energy barriers

interconnecting the interaction energy states, it is reasonable to assume that the

structures of the average potential energy landscapes define the H-bond lifetime.

Since, by definition, τA-H…B, max represents the longest H-bond lifetime, in which a

specific water molecule is trapped inside the H-bond network of interest, one could

identify the water molecule which takes the rate-determining water exchange path; by

assuming that the water molecule with the highest τA-H…B, max enters the H-bond
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network by taking the path with the highest transition energy barriers. With this

approach it is also possible to predict the rate-determining water exchange path at the

H-bond networks. The assumption could be applied in the study of the reaction path,

on which a reactive substrate is trapped long enough at functional group of receptor,

in order that a specific chemical reaction could take place.

According to the above discussions on the AW-WWPD cross section

plots, especially < T
aqE >, one could anticipate that τtype I, max is larger than τtype II, max. In

the present case, however, such a direct comparison is not appropriate. Since, based

on the criteria for the bifurcated H-bond formation, the area occupied by the H-bond

network type II is more than twice larger than that of the H-bond network type I.

Attention was, therefore, focused on the effects of the ion-pair formation on the

longest H-bond lifetimes at equivalent H-bond networks. In Table 3.2, τtype I, max and

τtype II, max are about 9 and 11 ps, respectively, comparable with the approximated

residence time of water at +Na  in aq[NaCl]  of 15 ps (Smith and Dang, 1994).

In order to obtain information on the accuracy of τA-H…B, max, additional

comparisons have to be made. In the present case, MD analyses on pure water were

performed and leading to some interesting results. It was noticed that, based on the

same approach, the longest H-bond lifetime at the H atom of water was 8.7 ps,

whereas the one at the O atom was 3.2 ps. These are compared well with the H-bond

residence times reported based on NMR experiment of about 8 ps (Hertz, 1973) and

MD simulations of 4.5 ps (Impey et al., 1983). The H-bond mean residence times of

water within the first hydration shell of a water molecule were reported to be ranging

from 2.5 to 10.0 ps (Brugè, Parisi, and Fornili, 1996). It should be added that, from



38

the literature survey (Impey et al.; Hertz, 1973; Brugè et al., 1996; Muegge and

Knapp, 1995), the values of the H-bond lifetime or the H-bond residence time are

sensitive to the definitions, as well as the methods employed in the investigations. It

is, therefore, more appropriate to discuss and compare the results using pure water as

a reference. In the present work, it is obvious that the reported values of τA-H…B, max,

are reasonable relative to the pure water, and the definition employed in the present

work has been proved to be applicable.

3.2.2 aq][FmO −

All the results on MD- aq][FmO−  are displayed in Appendix C. Only

important results on MD- aq][FmO−  are summarized in Figure 3.5 for discussion.

)g(R OwCL  in Figure 3.5a shows the main peak at Rmax = 3.55 Å, with )n(R max  = 4.15.

The latter suggests about four water molecules in close-contact with −FmO . The

position of the main peak of )g(R OwCL is slightly too long to assign to structure a and

slightly too short to be structure b in Figure 3.2. This makes believe that the average

H-bonding feature in aq][FmO− lies between structures a and b. )g(R OwOL in Figure

3.5a reveals about two (1.82) water molecules H-bonding directly to each oxygen

atom of −FmO , with the Ow-Hw...O H-bond distance of 2.96 Å. The H-bond

networks of water at the C-H group of −FmO  are less well-defined compared to the

−COO group, as seen from the size and shape of the main peak of )g(R OwHL in

Figure 3.5a.
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Figure 3.5 Selected structure and energetic results obtained

     from MD- aq][FmO− .

     a)        g(R); characteristic distances are given,

                with n(R) in parentheses.

     b) – d) the PDO, AWPD and AW-WWPD maps.

     e) – h) cross section plots computed from longitudinal and

                 transverse profile lines.

         the AW-WWPD cross section plot.

     - - - - - - - -   the AWPD cross section plot.

     ……..…....   the WWPD cross section plot.

     X-, Y- and Z-axis in Å; energies in kJ/mol.
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Figure 3.5
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Figure 3.5 (continued)
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For aq][FmO− , three well-defined H-bond networks are seen on the

PDO maps. They are labeled with D, E and F in Figures 3.5b and 3.5c. The H-bond

network at E is located slightly above the −FmO molecular plane, and is regarded as

the H-bond network type III in the present study. The H-bond networks at D and F

are equivalent. Both of them are seen on the −FmO molecular plane, and are

categorized as the H-bond network type IV. The H-bond network at E spans from the

O1 to O2 atoms, with the contour density slightly higher than that at D and F. Figure

3.5d shows the boundary of the first hydration shell of −FmO , in the layer with Z = 2

to 3 Å.

The longitudinal AW-WWPD cross section plots in Figures. 3.5e and

3.5g reveal that the H-bond networks at D, E and F are quite well-connected. Their

structures suggest that, on average, water molecule in the H-bond network type III

could move or exchange within a wider range, compared to the H-bond network type

IV; < L
aqE > inside the H-bond network type III in Figure 3.5e are on average smaller

than those inside the H-bond network type IV in Figure 3.5g. However, the transverse

AW-WWPD cross section plots in Figures 3.5f and 3.5h suggest faster water

exchange between the H-bond network type IV and the outsides, compared to that

between the H-bond network type III and the outsides. This is in line with the values

of τtype IV, max and τtype III, max of about 1 and 2 ps, respectively. Figures 3.5e to 3.5h

show that, in the vicinities of the highest contour densities of the H-bond network

types III and IV, the AWPD cross section plots are lower than the WWPD cross

section plots. They seem to define the shapes of the AW-WWPD cross section plots.
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3.2.3 aq]FmO[Gdm −+ −

All the structural and energetic results on MD- XR
frozen,aq]FmO[Gdm =−+ −

and MD- XR
free,aq]FmO[Gdm =−+ −  are summarized in Appendix C. Some characteristic

results on MD- 3.9R
frozen,aq]FmO[Gdm =−+ −  and MD- 3.9R

free,aq]FmO[Gdm =−+ −  are displayed in

Figure 3.6, whereas those of MD- 6.3R
frozen,aq]FmO[Gdm =−+ −  are illustrated in Figure 3.7.

The MD results showed that the close-contact +Gdm - −FmO  complex is associated in

aqueous solutions at 298 K, and g(R) related to the hydration of the ion-pair complex,

obtained from MD- 3.9R
free,aq]FmO[Gdm =−+ −  and MD- 3.9R

frozen,aq]FmO[Gdm =−+ − , are

virtually the same. Therefore, only selected g(R) deduced from

MD- 3.9R
free,aq]FmO[Gdm =−+ −  are displayed and discussed in details. This suggests

further that the hydration structures obtained from these two MD conditions are

similar and one could ascribe the three-dimensional structures of the H-bond

networks of water for the freed close-contact ion-pair complex from

MD- 3.9R
frozen,aq]FmO[Gdm =−+ − .
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Figure 3.6 Selected structure and energetic results obtained

     from MD- 3.9R
frozen,aq]FmO[Gdm =−+ −  and MD- 3.9R

free,aq]FmO[Gdm =−+ − .

     a) – b) g(R); obtained from MD- 3.9R
free,aq]FmO[Gdm =−+ − ;

                characteristic distances are given, with n(R) in parentheses.

     c) – e) the PDO, AWPD and AW-WWPD maps

                computed from MD- 3.9R
frozen,aq]FmO[Gdm =−+ − .

     f) – k) cross section plots computed

                from MD- 3.9R
frozen,aq]FmO[Gdm =−+ − .

         the AW-WWPD cross section plot.

     - - - - - - - -   the AWPD cross section plot.

     ……..…....   the WWPD cross section plot.

     X-, Y- and Z-axis in Å; energies in kJ/mol.

     (see Figure 2.1 for atom numbering)
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Figure 3.6 (continued)
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Figure 3.6 (continued)
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Figure 3.6 (continued)
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Due to the symmetry of the close-contact +Gdm - −FmO  complex, the

N2 and N3 atoms of +Gdm , as well as the O1 and O2 atoms of −FmO , are

equivalent. g(R) illustrated in Figure 3.6a are related to the association of the

close-contact +Gdm - −FmO  complex, whereas those in Figure 3.6b to its hydration.

The primary evidence for the association of the close-contact +Gdm - −FmO  complex

in aqueous solutions obtained from )g(R CCL and )g(R ONL  in Figure 3.6a; all of

which show single sharp peaks at the positions corresponding to the close-contact

+Gdm - −FmO  complex in the gas phase. The main peak of )g(R CCL  at Rmax = 3.97 Å

and those of )g(R ONL  at Rmax between 2.78 and 2.84 Å agree well with structure a in

Figure 3.3. The N-H...O H-bond distances are in line with the results obtained from

high-resolution protein structural analyses of the Arg- −COO  complexes; the majority

is within 2.6 and 3.0 Å (Singh et al., 1987). The existence of )g(R O1N2L , )g(R O2N2L ,

)g(R O1N3L  and )g(R O2N3L  reflects the possibility for the H-bond donor-acceptor

interchange between N2-H4...O1 and N3-H5...O2 H-bonds, by rotation of +Gdm  and

−FmO  about the C-N1 and C-H axes, respectively.

The formation of the close-contact +Gdm and −FmO  complex seems

to block large part of the H-bond donor and acceptor functional groups, leading to

remarkable changes in g(R). As a consequence of the reduction of the H-bond

network type I, the small peak of )g(R OwCL at Rmax = 3.43 Å in aq][Gdm+  becomes a

shoulder in Figure 3.6b. For MD- 3.9R
free,aq]FmO[Gdm =−+ − , the main peaks of

)g(R OwN2L , )g(R OwHL  and )g(R OwO1L  in Figure 3.6b are smaller and broader,

compared to those in aq][Gdm+ and aq][FmO− , respectively. Since the N1-H1 and
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N1-H2 groups are not directly involved in the ion-pair formation, )g(R OwN1L is not

substantially changed. In comparison with aq][Gdm+ , the position of the main peak of

)g(R OwN1L  shifts slightly to longer distance, with a slight increase in the number of

water molecules in close-contact with the N1-H1 and N1-H2 groups. The

close-contact +Gdm - −FmO  complex formation also reduces the possibility to form

the H-bond network type III. In comparison to aq][FmO− , the size of main peak of

)g(R OwOL is considerably reduced, accompanied by a reduction of the number of

water molecules in close-contact with the −COO  group, from about two (1.8) to about

one (1.3).

The three-dimensional structures of the H-bond networks of water in

the first hydration shell of the close-contact +Gdm - −FmO  complex, derived from

MD- 3.9R
frozen,aq]FmO[Gdm =−+ − , are displayed in Figures 3.6c to 3.6e. It appears that the

H-bond networks at A and D, as well as B and F, are quite associated and well-

connected. Both of them seem to help stabilize of the close-contact +Gdm - −FmO

complex in aqueous solutions. The H-bond networks linking between the +Gdm  and

−FmO  ions will be regarded as the H-bond network type V, see Figures 3.6j and 3.6k.

It seems that, within the H-bond network type V, water molecules could move or

exchange in a wide range. τtype V,  max is only about 1 ps.

Figures 3.6f to 3.6k show in general that the WWPD cross section

plots are lower than the AWPD cross section plots, and the structures of the

AW-WWPD cross section plots are determined by the structures of the WWPD cross

section plots. This suggests that the net stabilization effect of the close-contact
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ion-pair complex arises partly from the H-bond networks caging around it. Similar

conclusion was made based on calorimetric investigations on the binding affinities of

the +Gdm  derivatives and tetrabutylammonium acetate (TBA . −AcO ) in DMSO

(Linton and Hamilton, 1999; Fan, Van Arman, Kincaid, and Hamilton, 1993). Under

the experimental conditions (Linton and Hamilton, 1999), it was concluded that the

H-bonds between the +Gdm  and −COO  ions seems not enough to direct ion-pair

formation, and the affinities between the substrates and receptors are facilitated by

solvent reorganization. The same explanation was put forward by Laria and

Fernández-Prini (1995), in which the solvent reactive field was pointed out to be the

main reason for the association of pairs of monovalent ions over a wide range of

interionic distances.

The close-contact +Gdm - −FmO  complex formation leads to

considerable changes in the structures of the longitudinal AW-WWPD cross section

plot of the H-bond network type I, see Figure 3.6f. The transition energy barriers to

water exchange within the H-bond network type I (< L
aqE >) are increased, compared to

aq][Gdm+ ; whereas the transition energy barrier to water exchange between the

H-bond network type I and the outsides(< T
aqE >) is decreased to about 86 kJ/mol, see

Figure 3.6g. As a consequence, τtype I, max is reduced to 6.9 ps, see Table 3.2 for

comparison. The transverse AW-WWPD cross section plot in Figure 3.6i also shows a

decrease in the transition energy barrier to the water exchange between the H-bond

network type II and the outsides; while the longitudinal AW-WWPD cross section

plot is not much different. This leads to a decrease of τtype II, max to about 7 ps.
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The formation of the interstitial H-bond network of water between the

+Gdm  and −FmO  ions brings about changes in the structures and energetic of the

H-bond network types I, II and V. The results from MD- 6.3R
frozen,aq]FmO[Gdm =−+ − in

Figures 3.7a and 3.7b illustrated that water molecules in the interstitial H-bond

network, regarded as the H-bond network type VI, are very localized, especially in the

layer with Z = 1 – 2 Å. The longitudinal and transverse WWPD cross section plots in

Figures 3.7h and 3.7i clearly show that the H-bonds between water molecules in the

H-bond network type VI are very weak, as a consequence of strong H-bond

interactions between the water molecules and the solute ions. The difference between

the solute-solvent and solvent-solvent interaction energies amounts approximately to

100 kJ/mol, see Figure 3.7h. In the interstitial H-bond network, the mobility of water

molecules is rather restricted, only within a small and narrow energy valley of about

2 Å width, see Figures 3.7h and 3.7i. This is in accordance with τtype VI, max of about

18 ps. The shapes of the transverse and longitudinal AW-WWPD cross section plots

of the H-bond network types I and II, obtained from MD- 6.3R
frozen,aq]FmO[Gdm =−+ − , are

resemble those from MD- aq][Gdm+ ; whereas the H-bond network type V seems to be

less connected compared to MD- 3.9R
frozen,aq]FmO[Gdm =−+ − .
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Figure 3.7 Selected structure and energetic results obtained

     from MD- 6.3R
frozen,aq]FmO[Gdm =−+ − .

     a) – c) the PDO, AWPD and AW-WWPD maps.

     d) – k) cross section plots.

         the AW-WWPD cross section plot.

     - - - - - - - -   the AWPD cross section plot.

     ……..…....   the WWPD cross section plot.

     X-, Y- and Z-axis in Å; energies in kJ/mol.
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Figure 3.7
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Figure 3.7 (continued)
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Figure 3.7 (continued)
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Figure 3.7 (continued)
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Under the present MD simulations conditions, the solvent-separated

+Gdm - −FmO  complex seems not favorable in aqueous solutions. When all

molecules were allowed to move in MD- 6.3R
free,aq]FmO[Gdm =−+ − , )g(R CCL and

)g(R ONL , (see in Appendix C), revealed that the solvent-separated +Gdm - −FmO

complex was disrupted, due mainly to strong solute-solvent and weak solvent-solvent

H-bond interactions within the interstitial H-bond network. This is different from the

results of the PMF calculations (Saigal and Pranata, 1997; Rozanska and Chipot,

2000; Sagarik and Chaiyapongs, 2004), in which the second minimum, corresponding

to the solvent-separated ion-pairs, was observed on the free energy profiles at the

interionic distances approximately between 6 and 7 Å. A plausible explanation for the

discrepancy was given in details by Chipot, Maigret, Pearlman, and Kollman (1996);

Saigal and Pranata (1997), in which an artifact of the relative orientation constraint

imposed in the PMF calculations was pointed out to be one of the main reasons. The

applicability and shortcomings of theoretical methods for free energy calculations

have been addressed in details (Kollman, 1993; Leach, 1996) and will not be repeated

here.

It should be mentioned that the theoretical results reported in the

present work are based on a pair-wise additive scheme, in which the many-body or

polarization effects are not included in the model calculations. Based on MD

simulations on [NaCl]aq, with polarizable and nonpolarizable water models, the

dependence of some ionic-solution properties on the polarizability was found to be

moderate (Smith and Dang, 1994), with slightly larger effects at the highly polarizable

−Cl  ion. Since the ions and the ion-pair considered in the present work are
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considerably larger than monovalent ions, the polarization effects could be expected

to be smaller; due to lower charge densities on atoms. Additionally, it was reported by

Laria and Fernández-Prini (1995) that, when polarization effects were introduced to a

model calculation, the ion clusters exhibited less structure, with lower degree of ionic

hydrations; due to the destabilization of the solute-solvent interactions in the first

hydration shell. Since a destabilization of the solute-solvent interactions is usually

accompanied by a stabilization of the solvent-solvent interactions (Clementi, 1980),

and the MD results in this present study suggested that the associations of water

molecules in the first hydration shell are partly responsible for the net stabilization of

the close-contact ion-pair, one could anticipate that the close-contact ion-pair will

become more associated if polarization effects are included in this model calculation.

The results on the solvent-separated ion-pair are also expected to remain the same;

due to the fact that the solute-solvent interactions in the interstitial H-bond network

are considerably stronger than the solvent-solvent interactions.



CHAPTER IV

CONCLUSION

Structures and stability of salt-bridge in aqueous solution were studied using a

complex formed from the +Gdm  and −FmO  ions as a model system. The theoretical

investigations were started with construction of intermolecular potentials to describe

the interactions in aq][Gdm+ , aq][FmO−  and aq]FmO[Gdm −+ − , using the T-model.

The T-model potentials were tested in the calculations of equilibrium structures and

interaction energies of the +Gdm -H2O, −FmO -H2O and +Gdm - −FmO  1 : 1

complexes in the gas phase. The lowest-lying minimum energy geometries of these

1 : 1 complexes were examined using ab initio calculations at MP2 levels of theory. It

appeared that, cyclic–bifurcated H-bond complexes represent the most stable

structures in the gas phase. The structural and energetic results obtained from the

T-model potentials agreed well with ab initio calculations at the MP2 levels.

Based on the computed T-model potentials, the three-dimensional structures

and energetic of the H-bond networks of water in the first hydration shell of the

+Gdm and −FmO  ions, as well as the +Gdm - −FmO  complex, were investigated, by

conducting series of MD simulations. The PDO maps obtained from the analyses of

MD results suggested two types of the H-bond networks in the first hydration shell of

aq][Gdm+ , regarded as the H-bond network types I and II in the present study. Both

of them are located on the +Gdm molecular plane and seem to be quite well-
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connected. The analyses of the cross section plots revealed that the solute-solvent

interactions dominate the solvent-solvent interactions for the H-bond network type I,

whereas the situation is opposite for the H-bond network type II. The structures of the

average potential energy landscapes in aq][Gdm+  suggested further that water

molecules inside the H-bond network type I should have higher mobility compare to

the H-bond network type II.

Due to the fact that the −FmO  ion is a strong proton acceptor, the three-

dimensional structures and energetic of the H-bond networks in the first hydration in

aq][FmO− are different from aq][Gdm+ . The PDO maps showed that the H-bond

network at the −COO  group is located slightly above the −FmO  plane; the

longitudinal cross section plots revealed that water molecules could move or

exchange in a wider range, especially in the H-bond network type III. The detail

structures of the longitudinal and transverse cross section plots suggested that, near

the energy minima in the H-bond network types III and IV, the solute-solvent

interactions dominate the solvent-solvent interactions.

The MD results on aq]FmO[Gdm −+ −  revealed that the close-contact ion-pair

formation leads to considerable changes in the hydration structures and energetic of

the aqueous solutions. In the first hydration shell, the longitudinal and transverse cross

section plots indicated stronger solvent-solvent H-bond interactions compared to the

solute-solvent H-bond interactions. This suggested that water molecules in the first

hydration shell form solvent cages around the ion-pair complex, leading to a net

stabilization effect to the close-contact ion-pair complex. Similar conclusions were

put forward in the cases of [ +Gdm _ TBA. −AcO ]DMSO and the aqueous solutions of
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ion-pairs formed from monovalent ions. The solvent reorganization and solvent

reactive field were pointed out to be responsible for the ion-pair associations in the

solutions, respectively. Due to strong solute-solvent and weak solvent-solvent H-bond

interactions in the interstitial H-bond network, the present MD simulations predicted

that the solvent-separated +Gdm - −FmO  complex are disrupted in aqueous solutions.

Attempt has been made in the present work to account for the dynamic

behavior of water molecules in the first hydration shell of solutes, using the structures

of the average potential energy landscapes and the longest H-bond lifetime defined in

the previous investigation. Although the average potential energy landscapes in

aq][Gdm+ , aq][FmO− and aq]FmO[Gdm −+ − are rather complicated and irregular, the

computed longest H-bond lifetimes are reasonable, compared with the residence times

obtained from other MD simulations and NMR experiments. The longest H-bond

lifetime could be associated with the water molecule which takes the rate-determining

water exchange path; by assuming that the water molecule with the longest H-bond

lifetime enters the first hydration shell by taking the path with the highest transition

energy barriers. The longest H-bond lifetime, therefore, represents a simple and

reasonable alternative to introduce the dynamic behavior of water molecules in

definition of the first hydration shell; a specific water molecule is considered to reside

in the first hydration shell of solute only when it is trapped long enough in it.

Finally, it should be mentioned that the present theoretical results were based

on a pair-wise additive scheme, in which the many-body or polarization effects were

not included in the model calculations. However, based on the MD simulations on

ion-pairs of monovalent ions in aqueous solutions, and the fact that the ions and

ion-pairs considered here possess lower charge densities on atoms, compared to the
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monovalent ions, it is reasonable to believe that the present results will not be

substantially changed if cooperative effects are included in the model calculations.
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APPENDIX A

TWENTY COMMON AMINO ACIDS

Figure A.1 Twenty common amino acids (Moran and Scrimgeour, 1994).
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Figure B.2 Schematic diagram for MD simulations of N-particle system.

Molecular dynamic (MD) simulations

for  N – particle system

Starting configuration for N particles

Calculations of force from intermolecular potentials

Integration of the equation of motion for

t  +  ∆t ,  ∆t  ≅ 0.0005 ps

New coordinates, velocities, and forces written out

MD trajectories

Calculations of thermodynamic, structural

and time dependent properties

About 50,000 steps
 for equilibration
and 100,000 steps

for properties calculations



APPENDIX C

SUPPLEMENTARY RESULTS

 Table C.1 Optimized geometries of the +Gdm , and −FmO  ions.

Ion Bond length (Å) Bond angle (degree)

  +Gdm C-N = 1.334 N-C-N = 120.00
N-H = 1.009 C-N-H = 121.05

H-N-H = 117.90

  −FmO C-O = 1.254 O-C-O = 130.32
C-H = 1.127 H-C-O = 114.84
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 Table C.2 The T-model parameters for +Gdm , −FmO  and water. All parameters are

      in atomic unit.

Atom iσ iρ iq

+Gdm C   0.041671 0.507268   1.306000
N   1.294571 0.241744 -1.100000
H -0.080972 0.245387   0.499000

−FmO C   0.829235 0.328076   0.977705
O   1.160264 0.239856 -0.889574
H   0.165060 0.289490 -0.198557

H2O(1) O   1.284091 0.200370 -0.451660
H -0.318644 0.331849   0.514110

   D(2)   - - -0.576560

 (1) Data taken from Sagarik et al. (1991).

 (2) Dummy center for electrostatic point charge.



Figure C.1 g(R) obtained from MD- aq][Gdm+ ; characteristic distances are given, with n(R) in parentheses.



Figure C.2 The PDO, PDH, AWPD, WWPD and AW-WWPD maps obtained from MD- aq][Gdm+ .
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Figure C.2 (continued)
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Figure C.3 g(R) obtained from MD- aq][FmO− ; characteristic distances are given, with n(R) in parentheses.



Figure C.4 The PDO, PDH, AWPD, WWPD and AW-WWPD maps obtained from MD- aq][FmO− .
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Figure C.4 (continued)
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Figure C.5 g(R) obtained from MD- 3.9R
frozen,aq]FmO[Gdm =−+ − ;

      characteristic distances are given, with n(R) in parentheses.

      (see Figure 2.1 for atom numbering)



Figure C.5



Figure C.6 The PDO, PDH, AWPD, WWPD and AW-WWPD maps obtained from MD- 3.9R
frozen,aq]FmO[Gdm =−+ − .
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Figure C.6 (continued)
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Figure C.7 g(R) obtained from MD- 3.9R
free,aq]FmO[Gdm =−+ − ; characteristic distances are given, with n(R) in parentheses.

      (see Figure 2.1 for atom numbering)



Figure C.7 (continued)



Figure C.7 (continued)



Figure C.8 g(R) obtained from MD- 6.3R
frozen,aq]FmO[Gdm =−+ − ;

      characteristic distances are given, with n(R) in parentheses.

      (see Figure 2.1 for atom numbering)



Figure C.8



Figure C.9 The PDO, PDH, AWPD, WWPD and AW-WWPD maps obtained from MD- 6.3R
frozen,aq]FmO[Gdm =−+ − .
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Figure C.9 (continued)
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Figure C.10 g(R) obtained from MD- 6.3R
free,aq]FmO[Gdm =−+ − ; characteristic distances are given, with n(R) in parentheses.

        (see Figure 2.1 for atom numbering)



Figure C.10 (continued)



APPENDIX D

ARTICLE IN PROCEEDING OF ANSCSE-8

Additional results presented in the 8th Annual National Symposium on

Computational Science and Engineering (ANSCSE-8), 21-23 July 2004, Suranaree

University of Technology (SUT), Nakhon Ratchasima, Thailand.
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