NON-LINEAR TRANSFORMATIONS OF THE TERRELL EFFECT: A COMPARATIVE STUDY

Mr. Seckson Sukkhasena

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Physics

Suranaree University of Technology
Academic Year 2000
ISBN 974-7359-55-3

การศึกษาชิงเปรียบเทียบ ผลการแปลงแบบไม่เชิงเส้นของเทอร์เรลล์

นายเสกสรร สุขะเสนา

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาฟิสิกส์ มหาวิทยาลัยเทคโนโลยีสุรนารี

ปีการศึกษา 2543
ISBN 974-7359-55-3

Thesis Title

Non-Linear Transformations of the Terrell Effect :

A Comparative Study

Suranaree University of Technology Council has approved this thesis submitted in partial fulfillment of the requirements for a Master's Degree

Thesis Examining Committee

(Assoc. Prof. Dr. Prasart Suebka) Chairman
(Prof. Dr. Edouard B. Manoukian) Thesis Advisor

(Col. Dr. Worasit Uchai)
 Member

(Dr. Yupeng Yan)
Member
(Dr. Prapun Manyum)
Member

(Assoc. Prof. Dr. Kasem Prabriputaloong)	(Assoc. Prof. Dr. Tassanee Sukosol)
Vice Rector for Academic Affairs	Dean / Institute of Science

นายเสกสรร สุขะเสนา: การศึกษาษิชิงปรียบเทียบผลการแบลงแบบไม่หิงเส้นของ เทอร์เรลล์ (NON-LINEAR TRANSFORMATIONS OF THE TERRELL EFFECT: A COMPARATIVE STUDY) อ.ที่ปรึกษา : ศ. ดร. เอ็ดเวิร์ด มาโนขียน, 115 หน้า. ISBN 974-7359-55-3

วิทยานิพนธ์ฉบับนี้เป็นการศึกษา 1). การสังกกตหลักพื้นฐานในการถ่ายภาพของวัตถุของ เทอร์เรลล์ ซึ่งแสงที่แผ่ออกมาจากจุดต่างๆ บนวัตถุจะต้องแผ่ออกมาที่เวลาต่างกันเป็นลำดับ เพื่อมา ถึงขังงุดสังเกตพร้อมกัน 2). การแปลงโลเร็นตซ์ของทฤษฐีสัมพัทธภาพ และ 3). การค้นพบ ความ สัมพันธ์ระหว่างระนาบ 2 มิติ ในกรอบสังกกต กับแสงที่แผ่ออกมาจากวัตถุ โดยได้มาจากความสอด คล้องกันของการส่งผ่านแสงที่แผ่ออกมาจากวัตถุไปยังระนาบ 2 มิติ ความสัมพันธ์นี้ สามารถ ประยุกต์ใช้กับวัตถุใดๆก็ได้ ไม่ว่าวัตถุนั้นจะมีรูปร่างซับซ้อนมากแค่ไหนก็ตามในลักษณะการ เคลื่อนที่แบบสัมพัทธ์กันเทียบกับกรอบสังเกตที่ความเร็วไม่เจาะจงจนถึงระดับความเร็วใกล้แสง ความสัมพันธ์ที่ได้มานั้นไม่เหมือนกับการแปลงโลเร็นตซ์ โดยมีลักษณะเป็นการแปลงแบบไม่เชิง เส้น ซึ่งได้มีการเปรียบเทียบกันระหว่างการแปลงโลเร็นตซ์กับการแปลงแบบกาลิลียนโดยพิจารณา รวมถึงการแผ่ของแสงมีความเร็วจำกัดด้วย จากการเพ่งเล็งที่ตำแหน่งจจาะงงนึ่งบนไม้บรรทัดที่ กำลังเคลื่อนที่ แสดงให้เห็นถึงการหดตัวโลเร็นตซ์อาจมองเห็นได้ที่ตำแหน่งดังกล่าว ภาพของวัตถุ ที่ปรากฏในลักษณะที่มีความซับซ้อนและแปลกประหลาดเป็นผลมาจากการเกิดปรากฎการณ์คล้าย ปรากฎการณ์โดปป์เลอร์สำหรับสเกลซึ่งทำให้เกิดการปิดบังการหดตัวโัเร็นตซ์ และสุดท้ายได้มี การแก้ปัญหหาของความขัดแย้งกันของปัญหารถไฟให้หมดไปได้เป็นครั้งแรก ซึ่งปัญหนานี้มีรากฐาน มาจากงานวิจัยของเทอร์เรลล์กับไวซ์สคอปฟ์และได้ถูกอ้ำถึงปัญหหานี้อีกครั้งจากงานวิจัยของ แมททิวส์กับลัคส์มานัน โดยส่วนใหญู่ได้มีการกล่าวถึงปัญหานี้เมื่อประมาณ 30 ปีมาแล้ว

สาขาวิชาฟิสิกส์

ปีการศึกษา 2543

ลายมือชื่อนักศึกษา
ลายมือชื่ออาจารย์ที่ปรึกษา.

SECKSON SUKKHASENA: NON-LINEAR TRANSFORMATIONS OF THE TERRELL EFFECT: A COMPARATIVE STUDY:
THESIS ADVISOR : PROF. EDOUARD B. MANOUKIAN, Ph.D. 115 PP.
ISBN 974-7359-55-3

Taking into account of (i) Terrell's basic observation that in photographing an object different points on the object must "emit" light at different times in order to reach the observation point simultaneously, (ii) the Lorentz transformations of relativity and (iii) the piercing of these light rays an appropriate 2D plane in the observation frame, a derivation of the corresponding mapping onto such a 2 D plane is derived. The latter may be applied to any object no matter how complicated in relative motion, to the observation frame, at arbitrary speeds including extreme relativistic ones. Unlike the Lorentz transformations, which are linear in character, the present ones are necessarily non-linear. For completeness these fully relativistic transformations are compared with the corresponding Galilean ones which, however, take into account the finiteness of the propagation speed of light. By concentrating over a specific point of a moving ruler, it is shown how the Lorentz contraction may be visible about such a point. The complexity and highly non-trivial aspect of the latter arises because a Doppler-like effect for scale is observed, which, in general, masks the Lorentz contraction. Finally a resolution of the long standing so-called "train" paradox, having its roots in the early work of Terrell and Weisskopf and emphasized by Mathews and Lakshmanan almost thirty years ago, is provided for the first time.

Adnnowledgrents

First I nould like to adnowledge with thanks to my thesis adviso, Poo. D. ElaurdB Mnakian who povided ne with helpfil sugeestions abat everyhing redaedtothe wakonthis thesis

I nould especially like to thro all the lectures who have taght ne the gradrte couses and Asoc. Prof. D. Pasat Sletka, D. Yupeng Yan, Cd. D. Wrasit Udni andD. PrapnMMrymforbeangonmythesiscormitte.

I amvery thankfil toM. Banyong Chat-Anom, Frar Peter Pameadipo and AjamBuinGumuppai for the finmaial spport tofoflowthis MSc. progam

InoidliketothaktoM. KemPRsxardandM:Kandnii Kosdthngk for helpingneinthelibraies

In adition, I waild like to thark M. Jessada Tarthond for his adviee in compter progaming and for lenfing ne his bicyde, whid took ne everyhare I mededtoga

Finally,I vaildiliketoadnowledge withthanks Khn Prapitson Yimyamfor her wamncral supat and my best fiend, Khu Ftettarapan Ffattarayano and KhnSiipanRingkul, uho talked tome whenever I got toosariasly iindved with this nak

Contents

Page
Abstrat (Thai). II
Abstract (Engish). II
Adnowledgnerts. III
Conterts. IV
List of Figres. V
Chapter
I. Introduction 1
II. TheGalieanandLarentzTransfarmations. 6
21Introdution 6
21.1Intevals. 10
21.2PoperTime. 18
22The CalileanTranfamaioss. 21
23TheLaent Transfamations. 26
III. Non-inear Terrell Transformations. 32
31 Introdution 32
32Reacivistic Transfamations, Pojection Plane. 41
33Gatilea, withmTineDday. 45
34Gailean, withTineDday. 45
35TheReativisticCaxe. 46

Cantents(Cantinued)

Page

IV. Applications andComparativeSudy-Seeingis Blieving 47
41AppicationI 48
41.1Galilean Treamert withTimeDday. 49
41.2Redavissic Treamert 55
42AppicationII. 61
421GalileanTreatmert withTime Dday. 6
422RAdivistic Treament 68
43ApplicationIII 74
431GalileanTreamert withTimeDday 75
432RAativistic Treamert 81
V. ResdutionoftheLongStanding "Train"ParadoxandSame Pertinet Analyical Propaties oftheNonLinear Terrell Transarmations 87
51Resdutionof theLangStanding "Train’Paadx 88
52ExponsionandCattaction of Appoochingand RecedingObieds- ADpple-LikeEffet for Scale. 93
53TheGrving-LpofLinesPapendioular toDiectionof Mtion. 100
54Gitical Speedsfor Expansiars Vessus Catradias 107
U. Condusions. 110
References 113
Biography 115

List fFgres

Fgre
Page
21 TheLight Cane. 16
31 Top Viewof the ObsavationFrane. 32
3.2 The U-FlareShownin2Dinersions(The TopVew). 33
33 Pojectionatothe U-Planeas Showninthe Actual 3DCanfigration. 37
34 Namal Vedatotte U-Hane 39
35 TheOigins of the PloperFrane of the Ojiect and ObsevationFrane are ShowntoCainid. 41
41 Set of Hoses (ObsevationFraneat Rest). 48
42 Setof Huses (Calilean, with TimeDtay), $\beta=0.3$ 49
43 Set of Huses (Calilean, withTimeDtay), $\beta=0.5$ 50
44 St of Huses (Calilen, withTime Dday), $\beta=0.8$ 51
45 St of Huses (Calilean, withTimeDtay), $\beta=0.9$ 52
46 Ste ofHuses (Calilean, withTimeDday), $\beta=0.99$ 53
47 St of Huses (Calilea, withTimeDlay), $\beta=0.999$ 54
48 St of Huses(TheRedaivisticCase), $\beta=0.3$ 55
49 Setof Huses(TheRedaivisticGae), $\beta=0.5$ 56
410 St of Huses(TheRedaivisticCase), $\beta=0.8$ 57
411 St of Huses (TheRekaivistic Care), $\beta=0.9$ 58
4.12 St of Huses (TheRedaivisic Caxe), $\beta=0.99$ 59
413 Stof Hoses(TheRelaivisticCre), $\beta=0.999$ 60
4.14 Pramid(ObservationFrameat Rest). 61

List ofFgres(Continued)

Fgre

Page
415 Pramid(Caliean, withTimeDday), $\beta=0.3$ 6
416 Pramid(Clilean, withTineDday), $\beta=0.5$ 6
417 Pramid(Calilen, withTimeDday), $\beta=0.8$ 64
418 Pramid(Calilen, withTimeDday), $\beta=0.9$ 65
4.19 Pramid(Calilen, withTimeDeday), $\beta=0.99$ 66
4.20 Pramid(Calilean, withTimeDday), $\beta=0.999$ 67
421 Pramid(TheRealivisitic Caee), $\beta=0.3$ 68
42 Pramid(TheRealivisic Care), $\beta=0.5$ 69
423 Pramid(TheReativistic (are), $\beta=0.8$ 70
424 Pramid(TheRealivisitic Cæe), $\beta=0.9$ 71
425 Pramid(TheRedaivistic(aæe), $\beta=0.99$ 72
426 Prand(TheRealaivistic Cæe), $\beta=0.999$ 73
427 Train(ObsevaionFrameat Rest). 74
428 Train(Gailiean, with TimeDday), $\beta=0.3$ 75
429 Train(Gdilean, withTimeDday), $\beta=0.5$ 76
430 Train(Calilean, with TimeDday), $\beta=0.8$ 7
431 Train(Calilean, withTimeDlay), $\beta=0.9$ 78
4.32 Train(Calilean, with Time Dday), $\beta=0.99$ 79
433 Train(Calilean, with TimeDelay), $\beta=0.999$ 80
434 Train(TheRdavivisic Care), $\beta=0.3$ 81
4.35 Train(TheRedaivistic Cæe), $\beta=0.5$ 82
436 Train(TheRelaivisticCae), $\beta=0.8$ 83

List ofFgres(Continued)

FgrePage4.37 Train(TheRedativsticGae), $\beta=0.9$ 84
438 Train(TheReatavisicic Cae), $\beta=0.99$ 85
4.39 Train(TheRedaivistic Cæe), $\beta=0.999$ 86
51 Agivenhaizonal line pralled tothe x^{\prime}-axis Thepoint $\left(a, y^{\prime}, z^{\prime}\right)$ onthe dject, for $\beta=0$, tardestheline \boldsymbol{A}. 87
52 Apporching andrecedingdjects. 93
53 Pations of aRiler Appradingtoand RecedingfiomanObsave: 94
54 LineMikinganAngle $\theta=\cos ^{-1}(\beta)$ withthe x^{\prime}-AxisinthePtoper Fane... 99
55 LinesPerpendialar totheDiectionof Mtion. 100
56 Gitical Speedat Paint (-100,150, $)$. 109

Chapter I

Introduction

Thae are many expainents which veify the time dilaion pedided by relaivityirmdving the decay of elenertay patides e.g, Bailey gal. (1977) and ina beautifil expainert byHfele and Keaing in 1972 using (casmic) dooks, which dealy showthe "slowing downof time" of movingobjects Nophsicias inhis nigt mind woulddait anoherimpotart consequeme of relaivity- that is of the socalled Laenz cortraction As the legendry physicist R P. Feyman puts it in his famus lectues onphysics (1965): "All the physicists whocaldnt accept relativity are now dead'. Unlike the time dilationeffect, the actual visibility of the Laentzoctraction itseff in expainerts remains undisputaly a geat dallenge. Even the theareical descaiptionof the simplest experinert of photographingtheLaetzocrtradiontumed at to be far from dovias. As ealy as 192, Laerz (1031) staed that this contraction could be photogaded Thae ae indicaions, as pointed at by Tenell (1959), tht evenEnstein left us with this impession In 1960, WEiskkof (1900, cf. 1961), in his ealy review in Phsics Today, on this states 'He all bedieved that, accouding to special relaivity, an dject in nution appeas to be cantraded in the drection of motion". The wad "appears" hes cased a lo of confision inthe phsics literaueover theyens

In a tuly remakable paper of Tenell in 1959, the latter hes investigted the visibility of the Laerz cartraction The main cartribution of Tenell to this fundanertal poblemwesthefoflowing inader toseeandject, unikeneasuing its lengh, all the light rass coningfiomthe dject tothe dbsavation point have toreach
this point simultaneasly. That is, in order that the light rays reach the doservation point simultaneously, they have to leave the different parts of the dbject at dfferent imes due to the finite speed c of the propagtion of ligtt itself. The latter fact is refered to as the timedday mednanism This looks so simple today that it is suprising that it took over a half of a certury sime Einstein's noak, before any statements were made about the visual appearame of the Laentz contraction. It is nothrecalling that in measuring the lengh of an ojject one detemines the positions of its extremities similtaneasly, unlike the seeing of andject]. Ever sime, the visual appearance of relativistically moving objects, with its associated time delay nechanism, has beenjusifiably refered to as the Terell Bffect. Sime the appearame of Tenell's paper (1959) and Wkisskqpi's review paper in 1960, mary papas (eg, Yngstrom, 1962; Soat and Viner, 1967, Soat and Diel, 1970, MGill, 1968; Metheus and Laksmana, 1972, Hollenbach, 197(9, Hdkey, 1979) have been published on the subject, and more papas will undoutedly contine to appear (eg, Buke and Strod, 1991; Hyard et al.,1995), on this dallenging and catainly very intriguing and fascinating problem The earlier studies (e.g, Terell, 1959, Weisskqff 1960, Perrose 1959) didnot pay detailedattentionto the nethod of doservation which was particulary illuminated later in (e.g, Soott and Viner, 1965, MGGll and Diel, 1968; Mthens and Laksmanan, 1972; Holerbach, 1976, Hckey, 1979, and generalized with a mare precise definition of the relaivistically noving object as projected on a tho-fimensional suface (the latter being partiadary emphasized in Hokey's peper in 1979) as onaphotograp.

For cientaion, we recall the strategy in the sudy of the Terell effect is to consider all the rays "energing" fromthe object to reachthe dbserver similtaneously. In this work, we consider the latter to be infinitesimal as a point. When all the light rays from the dject reach the observation point, this apature is instantanearly dosed. All the light rays are then collected on a sensitive detecting plate (plane)
papendicular to the qptic axis of observation. We consider the dject under sundy fixedinaframe F^{\prime} inrelativenotiontothe doservationframe F alongthe x axis.

As stated about the nord "appeas" α the statenert "appears as on a photograph' have caused some confision over the years. To be precise, the latter are neart inthefollowingnamer inthe presert investigationandare basedontaking into account these threpoints:
(1) Terell's observation that different paints on the dbject, in relative motion, must "emit" light at different times incoder toreachandbservation point simitaneously, (2) theLarenztransfomations,
(3) the piercing of these light rays anappopiate 2Dplane inthe doservationfrane.

Thenecessarily non-linear transfomations resulting fromthe application of the above thee points will berefenedtoas the non-linear Terell transfamations.

One of the most preding aspects about the eadier investigations, conceming this problem, is the socalled "train" paradox. This paradox has its roats in the eady nak of Terell (1959) and Weisskopf (1960,1961), and was emphasized by Mathens and Laksmanan (1972) almost thirty years aga In its simplest tems, the paradox arises in the following mamer. One often reads in the above quated papers that an object appears to be rutated uhen in motion relative to andoservationframe due to the fact that different points on the object mst "emit" light at different times in order to reach andbservation point simitaneasly. Such an infereme seens to indicate that a rectangular block, for example, slidingon(snooth) rails and the edges of its battomin contact with them appear off of them die to the relative mation with the rails stationary relative to the observer and heme the paradox - [as a train, for example, off of the rails]. The same reasoning may be applied, as shown in an illuminating applicationgiveninthis thesis(see, eg, Fig 41(b) also(a)), Fig 44.(b)), to andgject with a harizontal flat top touching a "smooth" flat harizontal stationary plane. Again this rutaional effect would seemto imply, in pariaular cases, as if one end of the
djiect hes miraulasly broken and gane through the flat plane de to the relaive motion Athoghthedenonstrationof theabserme of a parabx seensnontivial, a rigaous andocmpleeresdutionof thelongstanding "train" parabx will begiven

The pupose of this thesis is to give a acmplete daivation of the expliat (norlinear) transfomations aising from the application of the thee points nertioned ealier which may be applied to anty dject, in relative motion, mo matter how complicted the djiect is. As already nertioned above, these transfamations will be appopiately refered to as the non-linear Tenell transfamtions. The closest innestiggion to these transfamations was given by Hdey (1979) whid, hoverer, applies nethods of mapping at the tangats to points on the dject. The later also provids no room for resdving the "train" pradox. For completeness and for a compradive sudy with the fully relativistic case we also specialize these tranffamaions to the Calilean case by famally incoparaing into themthe finiteness of theprpagtionspeed c of light (he socalled tine dlay nedurism). The major applications of the drivedtranfamations are givencoresponding to a set of hases, to a pyrarid and toa train These applictions dearly and quite genrally explain the roles of the transfamations and the physical consequere of the Laentz cortraction whenthe Terell effed is takenintoconsidertion. These figres constitue anintegral pat of this innestigtion. Avery impatart contribution of this wak is to provide a resdution of the long standings "train" pradox. It is also explicitly shown how the Laerzoartracion may be viside by ocmentraing over a specific point of a rapidy novingnuler.

The plan of the thesis is as follons Cheper II deals with the intricacies of the Gililean and Laentz trasfamations stating firmthe very basios of relaivity. This dapter will be essertial in all of ar ssbsequert anlysis In Chpter III, we povide the complete non-linear Tenell transfamtions for bah the Galilen and relativistic caes spelling at all of the fine details. Chaper IV deals with the very impatat
appication of these tranfamations to the se of thre djects nertionedabove. This dapter is appopiately entitled "Applications and Comprative Sudy -Seeing is Believing", and is an integal pat of the thesis. The resdution of the long standing "train" paradx is povided in Chater V. This dapter also cortains some patinert anolytical popaties of the non-linear tranfamations uhichhelp us undestand nue deanly their apdications to the coresponding fignes given in Chapter IV. The firal dapter, Chpter И, deals withor condusionandsumaizes some of orresults.

Chapter II

TheGailieanandLcertzTransformtions

21Introduction

The pupose of this dhapter is to give a bief introduction to those appeds of special relativistic physics and closely related aspects alminaing into the fanous Leenz tranfomations and their dassical conterpats, the Cailieantransfomations. This is esertial inar sibsequer analysis andfor ar very basic undastanding of the subject.

For the desciption of pmeeses taking plaxe innatue, anemst have assstem of refermes. By a systemof referme we undestandasystemof coordimates serving to indicate the position of a paride in space, as well as dods fixed in this system serving toindicatethetime.

Thereexis systens of referemes invtich afiedynovingbody, i.e, a anoving body, which is not aced upon by extemel froes, proeed with constat velcoity. Sidhrefaemes system arescidtobeinatial.

If two refaeme sytens move unifomly relaive to each aher and if one of themis an inatial system then dealy the aher is also inatial (in this systemtoo every fiee modion will be linear and unifom). In this wey we can dtain abitraily many inatial ssterns of refereme, novingunifomly redaivetooneandhe:

Experinert shows thet the socalled pinciple of redaivity is valid Accoring tothis pinciple all the laws of ratue ae idertical in all inatial sytens of referme. Inother nark, the equtions expessing the lans of matue are invaiat nith resped to tansfamations of coardintes and time firmone inatial systemto andher. This
neass that the equaion describing ayy law of natue, when written in tems of coordintes and time in dfferert inatial refereme systens, has one and the sane fam

The interadion of material patides is described in adnary nedarics by nears of a pertial enegy of interation, which appeas as a function of the condintes of the interacing patides It is easy to see thet this namer of describing interadions contains the assumtion of instataneas propgation of interations. For the fares exated oneach of the partides by the othr patides at a partionlar instant of time depend, accading to this desciption, aly onthe positions of the patides at this one instart. Adrnge in the position of any of the interacing patides influmes theouherpatidesimediatly.

Hyever, expainert shows that instantaneas interacions do not exist in natue. Thes a nechnics based on the assumpion of instartaneas propagtion of interations contains withinitseff acetainimacaray. Inaduality, if any dragetakes plaee in one of the interacing bodes, it will influeme the ahne bodies only after the lapse of a catain interval of time. It is aly after this tine interval that poeesses cased by the intial dange begin to take plaxe in the second body. Dividing the dstame between the two bodes by this time interval, we dtain the velocity of prpagtionof theinteracion

We nde that this velocity should, strictly speaking be called the maximm velocity of propgation of interacion. It detemines aly thet inteval of time after which a dange coanning in ore body begins to maniest itseff in andha: It is dear thet the exiseme of a maximmvelocity of propgtionof interacios implies at the same time, thet notions of bodies with geater velocity than this are in general impossible inneture. For, if such andioncould ocar, thenbyneans of it, œecould realize an interacion with a velocity exceeding the naximm possible velocity of popggtionof interations.

Interations propegaing fiomone partide to andher ae fiequertly called "signels", sert at from the first paticle, and "infoming" the second patide of dhanges, whichthe first has expaiemed. The velocity of prpagaiionof interadion is thenreferedtoas the signal velocity.

The special theay of relaivity assats that the speedof ligt (invaaum) is the same in all inatial franes. The the velocity of propagtion of interation is a univesal constant. This constat velocityof light is usully designtedby the letter c, anditsexat nmmical value is

$$
c=2.99792458 \times 10^{8} \mathrm{~m} / \mathrm{s} .
$$

The lage value of this velocity explains the fat thet in pacice, dassical nedmics appeas tobes sfficienly acarate in most cres The velocities with, whid we have cccasiontodeal withinevery day life are usally sosmall compued with the velocity of ligh. The assumpiontht thelater is infinite dees not mateially affect the acaracy of theresits.

Theonninationof the pinciple of relativity withthe finteness of the velocity of prpagtion of interations is called the pinciple of relaivity of Eisten (it wes famulated by Einstein in 1005). In catrast to the pinciple of relativity of Galilea, which wes bexedonaninfinite velocity of poppggtion of interactions

The mednenics basedonthe Einsteinian pinciple of redaivity (we shall usxally refer toit simply a the pinciple of redrivity) is called redaivistic. Inthe limiting case whenthe velocities of the movingbodes aes snall compred with the velocity of ligt, we canneglet theeffect onthemdion of the finiteness of the velocity of prpagtion. Then relaivistic nedarics goes over into the usvel nomelaivistic nedarics, based anthe assumpion of instataneas propagtion of interations this medarics is called Nextonian σ dassical. The limiting transitionfiomrelativisic todassical nechanics
can be produced farmally by taking the limit $c \rightarrow \infty$ in the famula of redativistic nechanics.

In classical mechnnics distame is already relative, i.e., the spatial relations between different events depand on the system of refereme in which they are described. The statement that tyo nonsimultaneas events ocar at one and the same point inspaceor, ingeneral, at adefinite distamee fromeachother, aqquires a neaning allyuhenue indicate the systemof referme uhichis beingused.

Onthe other hand, time is absolute in dassical nechanics, in other nard, the propaties of tine are assumed to be independent of the systemof refereme, there is one time for all referme frames. This neans that if ary two phenonema ocar similtaneously for any one observer, then they ocar similtaneasly also for all athas. In geneal, the interval of time between tho given events is assumed to be identical for all systens of referemee indassical mechanics.

It is easy to show, however, that the idea of an absolute tine is in complete corrradictiontothe Einsteinprinciple of relativity. For this it is sufficient torecall that in dassical nechanics, based on the concept of an absolute time, a general law of conbination of velocities is valid, acocrding to which the velocity of a composite notion is simply equal to the (vector) sum of the velocities which constitute this motion. This law, being universal, should also be applicable to the propagation of interadions. Fromthis it wouldfollowthat the velocity of propagtion of light most be different in different inatial systens of refereme, in contradiction to the pinciple of relativity. In this natter expainent completly confims the principle of relativity. Measurenents first perfomed by Mdhelson (1887) shoved, in partiaulas complete ladk of dependeme of the velocity of light on its drection of propagations, whereas accarding todassical nedhanics the velocity of light shouldbesmaller in the drection of theeath's mationthanintheqpoosite direction.

This the pinciple of redaivity leas to the result that ine is not absolute. Time elapes differenly yindifferet systems of referenes. Consequerlythestatenert thet a definite time inteval has elapsed between two given everts acquires nearing only when the referme frame to which this staenert apdies is indicaed In patioula, everts, whid are simultaneas in ore refereme frame, will not in general be simitaneas inaher frames.

21.1Intervals

In whet follows we shall fiequerly we the comept of an ever. Anevert is described by the plaxe whae it coaned, andthe tine whenit couned This nevert coaning in a catain mateial patide is defined by the three coordmes of thet paride andthetine whentheevert ccous.

It is frequertly usefil for reasoss of pesertaion to use a ficitious fordinersionl space, on the axes of which naked thre spare coodintes and time. In this spaceeverts are repesentedby points are called wald points. In this ficitious for-dinersional spaxe there conesponds to each patide a catain anve, called a natd-line. The points of this line detemine the coordintes of the patide at all nonerts of time. It is exy to show that to a paticle in unfomnecilinear notion thereconesponds astraigt worldline.

He now expess the pinciple of the invaiame of the velocity of ligt in mathentical fom For this pupose we consider two referme systens K and K^{\prime} movingrelaivetoeahaher withocostart velocity. Wedhoose the cocrudnate axes so thet the axes x and x^{\prime} coincid, while ther and z axes aepralle to Y^{\prime} and z^{\prime}; nedesigntethetime inthesytens k and k^{\prime} by t and t^{\prime}.

Let the first evert consist of sending at a signel, propgating with light velocity, fromapoint hevingcoodindes $x_{1} y_{1} z_{1}$ inthe K systemat tine t_{1} inthis
system Wédservethe popagtionof this signal inthe K sstem Let the second evert cansist of the anival of the signal at point $x_{2} y_{2} z_{2}$ a the nomert of time t_{2}. Thesignal popagtes with veloity, the distamecovered byit is therfar $c\left(t_{1}-t_{2}\right)$. On the ahber hand, this same distane equals $\left[\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}\right]^{\frac{1}{2}}$. This we can wnite the following relation betweenthe coodrimes of the twoeverts in the K system

$$
\begin{equation*}
\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}-c^{2}\left(t_{2}-t_{1}\right)^{2}=0 . \tag{21}
\end{equation*}
$$

The same twoevents, i.e, the propagtion of the signal, can be dbsaved from the K^{\prime} system

Let the coordinates of the first event inthe K^{\prime} systembe $x_{1}^{\prime} y_{1}^{\prime} z_{1}^{\prime} t_{1}^{\prime}$, and of the seand $x_{2}^{\prime} y_{2}^{\prime} z_{2}^{\prime} t^{\prime} t_{2}^{\prime}$. Sime the velocity of light is the sane in the K and K^{\prime} systems, wehave, similadytoEq(21):

$$
\begin{equation*}
\left(x_{2}^{\prime}-x_{1}^{\prime}\right)^{2}+\left(y_{2}^{\prime}-y_{1}^{\prime}\right)^{2}+\left(z_{2}^{\prime}-z_{1}^{\prime}\right)^{2}-c^{2}\left(t_{2}^{\prime}-t_{1}^{\prime}\right)^{2}=0 . \tag{22}
\end{equation*}
$$

If $x_{1} y_{1} z_{1} t_{1}$ and $x_{2} y_{2} z_{2} t_{2}$ arethecoordintes of any tuoeverts, thenthe quantity

$$
\begin{equation*}
s_{12}=\left[c^{2}\left(t_{2}-t_{1}\right)^{2}-\left(x_{2}-x_{1}\right)^{2}-\left(y_{2}-y_{1}\right)^{2}-\left(z_{2}-z_{1}\right)^{2}\right]^{\frac{1}{2}}, \tag{23}
\end{equation*}
$$

is called the interval betweenthese twoeverts.
Thus it follous fromthe principle of invariance of the velocity of light that if the interval between tho events is zero in one cocronnte system, then it is equal to zeroinall ahersystems.

If tho events are infinitesimally dose to each other, then the interval $d s$ betweenthemis

$$
\begin{equation*}
d s^{2}=c^{2} d t^{2}-d x^{2}-d y^{2}-d z^{2} . \tag{24}
\end{equation*}
$$

Theformof expessians Eqs.(23) and (24) pamit us to regard the interval, fromthe fomal point of view, as the distane betweentwo points in a ficitious fardinensional space(whose axes are labededby x, y, z, andtheprodut $c t$). Bit there is a basic dffferme between the nule for forming this quantity and the rule in ordinary geonetry: in forming the square of the interval, the squares of the cocrumate differenes along the different axes are summed, not with the same sign, but rather with varying signs. (The far-dimensional geonetry described by the quadatic form Eq(24) was introdueed by H Mrkonski, incomection with the theary of relativity. This geanety is called pseuno-Eudidean, in contrast tocodmary Ficlideangeonetry)

As aready shown, if $d s=0$ in one inatial system, then $d s^{\prime}=0$ in any other system On the other hand, $d s$ and $d s^{\prime}$ are infinitesimals of the same ader. From these thoconditions it follons that $d s^{2}$ and $d s^{\prime 2}$ mst be propational toeadhother:

$$
\begin{equation*}
d s^{2}=a d s^{\prime 2}, \tag{25}
\end{equation*}
$$

whar the coefficient a candependonly on the absolute value of the relative velocity of the twoinatial systems. It canot depend anthe coordinates or the time, sime then different points in space and different nomerts in tine would not be equivalent, which nould be in contradiction to the hanogeneity of spexe and time. Similary, it canot depend on the direction of the relative velocity, sime that nould contradid the iscrupy of space.

Let us consider thee referme systens K, K_{1}, K_{2}, and let v_{1} and v_{2} be the velocities of systens K_{1} and K_{2} relative to K.

Wethenhave:

$$
\begin{equation*}
d s^{2}=a\left(v_{1}\right) d s_{1}^{2}, \quad d s^{2}=a\left(v_{2}\right) d s_{2}^{2} . \tag{26}
\end{equation*}
$$

Similarly we canwrite

$$
\begin{equation*}
d s_{1}^{2}=a\left(v_{12}\right) d s_{2}^{2}, \tag{27}
\end{equation*}
$$

where v_{12} is the absolute value of the velocity of K_{2} relaive to K_{1}. Compring these relations with ne another, ne findthat wemst have

$$
\begin{equation*}
\frac{a\left(v_{2}\right)}{a\left(v_{1}\right)}=a\left(v_{12}\right) . \tag{28}
\end{equation*}
$$

Bit v_{12} depends not onlyontheabsolute values of the vectors v_{1} and v_{2}, but alsoonthe angle between them Hyvever, this angle does not appear on the left side of fommia (28). It is therefore clear that this fomila can be carect only if the function $a(v)$ redues toaconstart, whichis equal tounity according to this same formula Thus,

$$
\begin{equation*}
d s^{2}=d s^{\prime 2}, \tag{29}
\end{equation*}
$$

and fromthe equality of the infinitesimal intervals there follons the equality of finite intervals; $s=s^{\prime}$.

Thu we amive at a very impatant result: the interval betweentwoevents is the sameinall inatial systens of refereme, i.e, it is invariant under transfomationfrom
œe inatial systemto ary ohra: This invaiame is the mathentical expression of the constancy of the velocity of light.

Aginlet $x_{1} y_{1} z_{1} t_{1}$ and $x_{2} y_{2} z_{2} t_{2}$ bethecoodindes of twoeverts inacertain refarmesystem K. Dees thereexist acoudinatesystem K^{\prime}, inwhidithesetwo everts carat oeandthesme point inspae? Weintrodreethendation

$$
\begin{equation*}
t_{2}-t_{1}=t_{12}, \quad\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}=l_{12}^{2} . \tag{210}
\end{equation*}
$$

Thentheinterval betweenevertsinthe K systemis

$$
s_{12}^{2}=c^{2} t_{12}^{2}-l_{12}^{2},
$$

andinthe κ^{\prime} sytem

$$
s_{12}^{\prime 2}=c^{2} t_{12}^{\prime 2}-l_{12}^{2},
$$

wherupn, because of theirvaiameof intevals,

$$
c^{2} t_{12}^{2}-l_{12}^{2}=c^{2} t_{12}^{\prime}-l_{12}^{\prime \prime},
$$

Iftwoevartscoar at the sane pairt inthe K^{\prime} system, that is, werequire $l_{12}=0$, then

$$
s_{12}^{2}=c^{2} t_{12}^{2}-l_{12}^{2}=c^{2} t_{12}^{2}>0 .
$$

Conequertly asstemof refaeme withtherequied prpaty exiss if $s_{12}^{2}>0$, thet is, if the interval batween the two everts is a real number. Real intevals ae sid to be tindike.

Thus, if the interval betweentwoevents is timelik, then there exists a system of refereme in which the thoevents coar at one and the sane plaxe. The time which elapses betweenthe twoevents inthis systemis

$$
\begin{equation*}
t_{12}^{\prime}=\frac{1}{c} \sqrt{c^{2} t_{12}^{2}-l_{12}^{2}}=\frac{s_{12}}{c} . \tag{211}
\end{equation*}
$$

If twoevents coar in oreandthe same body, thenthe interval betweenthemis alnays timelike, for the distame which the body noves between the twoevents camot be greater than c_{12}, sime the velocity of the body cannot exceed c. So we always have

$$
l_{12}<c t_{12} .
$$

Let us nowask whether or not we can find a systemof refereme in which the tho events coar at one and the sane time. As before, we have for the K and K^{\prime} systens $c^{2} t_{12}^{2}-l_{12}^{2}=c^{2} t_{12}^{\prime 2}-l_{12}^{\prime 2}$. We want tohave $t_{12}^{\prime}=0$, sothat

$$
s_{12}^{2}=-l_{12}^{2}<0 .
$$

Cansequertly the required systemcan be found only for the case when the interval s_{12} between the tho events is an imaginary number. Inaginary intervals are saidtobespacelike.

Thus if the interval between two events is spacelike, there exists a refereme systemin which the tyoevents coar similtaneasly. The distame betweenthe paints wheretheevents coar inthis systemis

$$
\begin{equation*}
l_{12}^{\prime}=\sqrt{l_{12}^{2}-c^{2} t_{12}^{2}}=i s_{12} . \tag{212}
\end{equation*}
$$

The division of intervals into spacelike and tinelike intervals is, because of their invariame, an absolute comept. This means that the timelike or spacelike dharacter of aninterval is independent of the referencesystem

Let us takesomeevert o as ar arigin of time and space coordinates. In other words, in the four-dmensional systemof coordinates, the axes of which are naked x, y, z, t, the narld paint of the event O is the arigin of coardintes. Let us now considar what relation other events bear to the given evert o. For visualization, we shall consider only one space dimension and the time, naking themontwo axes (Fig 21). Unifomly rectilinear motion of a partide, passing through $x=0$ at $t=0$, is repesented by a straight line going through o, and indined to the t axis at an angle whose tangent is the velocity of the particle. Sime the naximmpossible velocity is c, there is a maximmangle, whidh this line can sutend with the t axis. In Fig21, the twolines repesenting the propgation of tho signals areshown

Fig 21.Thelight cone
(with the velocity of light) in qposite drections passing through the evert O (i.e,, going through $x=0 \mathfrak{a t} t=0$). All lines represerting the nation of partides can lie only intheregions $a O c$ and $d O b$. Onthelines $a b$ and $c d, x= \pm c t$. First consider
everts whose world points lie withintheregion $a O c$. It iseary to showthet for all the paits of this region $c^{2} t^{2}-x^{2}>0$. In aher nard, the interval between any evert in this region, andtheevert o is timelike. Inthis region $t>0$, i.e, all the everts in this regioncar "afte""the evert o. Bt two everts which are separted by a tinelike inteval cand coar similtaneasly in ayy referme system Consequerly it is impossible to find a referene systemin whid any of the everts in region $a O c$ couned "befor"theevert o, i.e, at time $t<0$. This all the evers inregion $a O c$ arefitureeverts redaive to o in all referme systens. Therfare this region canbe calledtreabsdutefiturerdaiveto o.

Inexady the same way, all everts in the region bod are in the absolue past relative to o; i.e, everts in this region car befar the evert o in all systems of refarme.

Next consider regions $d O a$ and $c O b$. The interval between any evert in this region andtheerert o is spradike. These everts c car at differert points in spree in every reference system Therfar these regions canbe sid to be absduty rende redtriveto o. Heveve, the comepts"similtaneas", "eadia", and "tae"' arerdative for these regions. For any evert in these regias thre exist sytens of referme in which it cours after theevert o, sstens which ccars eadier than o, and finally arefereme ssteminwhichit cours simultaneasly with O.

Note that if we consider all thre spree cocrovimates insted of just one, then insted of the two intesecting lines of Fig 21, we waild have a "oone" repesented by the equaion $x^{2}+y^{2}+z^{2}-c^{2} t^{2}=0$ in the for-dinensional coordinate system x, y, z, t, with the axis of the cone coincidng with the t axis. (This cone is called the ligttane.) Theregion of absolute fiutur and absdute past are thenrepesented by the thointerior patians of this c ne.

Tho everts conbe redaed casally to each oher only if the interval between them is tindike, this follows imedatly fiom the fat that no interation can
propgate with a velocity greater than the velocity of light. As we have just seen, it is pecisely for these events that the concepts "eadie"' and "late"' have an absolute significance, which is a mecessary condition for the coneepts of cause and effect to have meaning A renarkable prperty of the Mrkonski space-tine is that the triangular inequality, knowntoholdinEudidean space, is reversed (Mnakian, 1993) for threcusally relatedevents andlies inthehear of the twin "paradox" problem

21.2Proper Time

Suppose that inacertaininatial referme systemue observe clocks which are noving relative to us in an arbitray mamer. At ead different monet of time this notioncanbeconsideredas unifom Thus at eachmonent of time ve canintroduea coordinate system rigidy linked to the moving clocks, which with the dods constitutes aninatial referemesystem

Inthecouse of aninfinitesimal time interval dt (as read by a dock in ar rest frame) the moving dods go a distane $\sqrt{d x^{2}+d y^{2}+d z^{2}}$. Let us ask what time interval $d t^{\prime}$ is indicated for this priod by the moving docks. In a system of cocrdinates lirked to the noving docks, the cocrdintes are at rest, i.e, $d x^{\prime}=d y^{\prime}=d z^{\prime}=0$. Becanse of theinvariame of intervals

$$
d s^{2}=c^{2} d t^{2}-d x^{2}-d y^{2}-d z^{2}=c^{2} d t t^{\prime 2}
$$

fromuhich

$$
d t^{\prime}=d t \sqrt{1-\frac{d x^{2}+d y^{2}+d z^{2}}{c^{2} d t^{2}}} .
$$

Bit

$$
\frac{d x^{2}+d y^{2}+d z^{2}}{d t^{2}}=v^{2},
$$

where v is the velocity of the movingclock; therefore

$$
\begin{equation*}
d t^{\prime}=\frac{d s}{c}=d t \sqrt{1-v^{2} / c^{2}} . \tag{213}
\end{equation*}
$$

Integraing this expession, we can ottain the tine interval indicated by the novingclocks whenthe elapsedtime accordingtoadodkat rest is $t_{2}-t_{1}$:

$$
\begin{equation*}
t_{2}^{\prime}-t_{1}^{\prime}=\int_{t_{1}}^{t_{1}} d t \sqrt{1-v^{2} / c^{2}} . \tag{214}
\end{equation*}
$$

The time read by a clock noving with a given noject is called the proper time for this object. Fomulæ(213) and (214) expess the proper time intems of the time for asystemof refereneefromuhichthe motionis observed.

As we see from Fq (213) or (214), the proper time of a noving dject is aluays less than the comesponding interval in the rest system In oher word, noving docks goncreslouly thanthose at rest.

Suppose some dods are noving in unifom rectilinear motion relative to an inatial system K. Arefereme frame K^{\prime} linked to K is also inatial. Then fromthe poirt of viewof andbserver inthe K systemthe dodks inthe K^{\prime} systemfall behind And conversely, fromthe point of viewof the K^{\prime} system, the dooks in K lag To convime ouselves that there is nocortradiction, let us nate the following Inorder to estabishthat the cooks in the K^{\prime} systemlag behind those inthe K sytem, we most proeed in the following fashion. Suppose that at a cetain monert the dodk in K^{\prime} passes by the codkin K, and at that nonert the readings of the tho dodks coincide. Tocompretherates of the twodods in K and K^{\prime} we mst one nore compre the readings of the same movingdock in K^{\prime} withthe dods in K. Bit nowwe compare this dock withdfferent clocks in K. Then we find that the dook in K^{\prime} lags behind theclocks in K with which it is being compred. We see that tocompre the rates of dooks in tworefereme frames we require several clocks inone frame, and one in the
aher, and that, thaefar, this proess is not symetric with respect to the tho systens. The dock thet appeas tolog is always the ore, which is being om preed with dfferert dods inthe aher system

If we have two clooks are of which describes a closed path retuming to the stating point (the position of the dook, which remained at rest), then dealy the noving dock appears tolagreative totheoneat rest. Thereversereasoring in which the noving dok would beconsidredtobe at rest (and vice versa) is nowimposible, sime the dod describing a dosed trajectay does not cany at a unifomrectilinear notion, sothe acoodinte systemlinked toit will not beinatial.

Sime acouding to special relasivity, the lans of neture ae the same aly for inatial referme frames, the frames linked to the dock at rest (inatial frane), and to the moving dook (non-inatial) have dfferert prpaties and the agymert, which leads totheresit that the lock a rest mst lagisnot valid.

Thetime interval readby aclockisequal totheintegral

$$
\frac{1}{c} \int_{a}^{b} d s,
$$

taken along the wordd line of the dod If the dock is \mathbf{t} rest then its word line is dealy a line paralle tothe t axis, if the dook camies at a nomnifommotionina dosed path andreums toits stating point, thenits wordd line will be a arve passing through the two points, on the staight wordd line of a dock at rest, conesponding to the begiming andend of the motion Onthe oher hand, we sawthet the cook at rest always indictes a geater time inteval than the noving are. This we anive at the resit thet the integal

$$
\int_{a}^{b} d s,
$$

takenbetweena givenpair of world points, has its maximmvalueif it is takenalong the straigt wald line joining these two points (It is ascmed, of couse, thet the points a and b, and the anves joining themare such the all elenerts $d s$ along the anves are timelike. This popaty of the integal is comeded with the pardoEididencharder of the for-dmensional geancty. InFidideanspoce the integral nould af couse, be aminimmalongthe straight line.

22TheGalilean Transformations

Let us begin with notions heving constant velocities, as they are described by the Glilean relaivity. Sine ne deal with constart relaive velocity between the doserver and the dbserved system, the conections to the descaipion accoudng to Einsein will be thoseenagingfirmthe special theay of relaivity

Consider a bus porked at astaion Let us designte the pairt where the rear edge of the bus is as poirt o. Two dbserves ae spposed to repat on the notions which take plaxe in the ssstem dosever A sits in the has and doserver B stank pralleledtoAatside the bus. It is dea the a lagg as the bs is pated, the repats of bath dsservers will be iderical. Suppose nowthat the bus (noves with a constart velocity u, passing Bat time $t=0$). If the bus noves along a straigt line, ne can pafomall arnessuenents alongthe line of the ndionof the bus. Let is designate this line as the x-axis with coordnate points labdedby x. Until the tine $t=0$, the poirt narkedby o was the same point for the two doservers it was the point where the rear edge of the bs was. Onthe ather handif the bas is noving dosever A will assignit totherear edge of the bus (which mowes together with him) while dserver B will asignit tothe poirt on the grand whae the rear edge of the bis was while the bs panked Toavidconfision, let us nak therearedgeof the busby O and o will designte the poirt naked by doserver B The pairt o ' will be the aigin for the
measurenents of doserver A and all his neasuenents will be related to this point. (The same will be true for all the observers who stay with himin the noving system, the bus). The point o will be the aiginfor the neasuenents of observer B and for the reasuenents of all the observers whostay with himintherest system, theearth Fromnowon, we shall treat theearthandall theobjects attachedtoit as therest systemand the bus, and all the objects staying in it as the moving system All the entities detemined by the dbservers staying in the noving systemwill be designated byapine(').

At the monert $t=0$ both points O and O^{\prime} coincide $\left(O=O^{\prime}\right)$. If we ask doserver A to designate his position, he vill repart that, according to his measuenets, he is located at same distame frompoint O^{\prime}. Let us designate this distanceby x^{\prime}. Onthe other hand, whendsserver Bnaks the position of doserver A, he will repart the distame of observer Afromthe pain o. Let us call this distance x. Hwdo the distances x and x^{\prime} related toeach othe? The distance x includes the distame x^{\prime}, andinadditionit indudes the distance of the rear edge of the bus firmthe stating point. This addtional distance is the distame between O and O^{\prime}, and it is equal to the speed of the bus times the duration of the motion(the velocity is constan, andthenotionbegnat $t=0$), whichis $u \cdot t$:
Therefore

$$
\begin{equation*}
x^{\prime}=x-u t . \tag{215}
\end{equation*}
$$

The interelationbetween x and x^{\prime} is symetric, andhene:

$$
\begin{equation*}
x=x^{\prime}+u t, \tag{216}
\end{equation*}
$$

and

$$
\begin{align*}
& y=y^{\prime}, \tag{217}\\
& z=z^{\prime} \tag{218}\\
& t=t^{\prime} . \tag{219}
\end{align*}
$$

Howsill the twoobsevers repat onvelocities? Suppose aball is rollinginthe bus nithlinear velocity v^{\prime} (relative to the bus), and in the same direction of the bus notion. It is dear that observer A will repart that the ball noves (relative tohim) with velocity v^{\prime}. The velocity of the ball as neasured by observer B , however, consists of thesumof the velocity of the bus, andthe velocity of the ball relative tothe bus:

$$
\begin{equation*}
v=v^{\prime}+u, \tag{220}
\end{equation*}
$$

andofcouse:

$$
\begin{equation*}
v^{\prime}=v-u . \tag{221}
\end{equation*}
$$

Eqs.(215) to (221) are called the Galilean transfomations for the position and velocity or the transfomations which comed one inatial frame with anoher. Eas. (220) and (221) give "the lawof addition of velocities" They can be dtained from equations (215) and (216) by dfferentiating themwith respect to time which neas, by calculating the rate of change of the position on the condition that the time in the noving bus and on the earth, are the sane. Staing that the time is an absolute entity (the time is the same in both systens and is independent of the neasuing system) is actually a hiddenassumption, whichlies at the basis of Nextoniannechanics. Dring the hundeds of yeas sime Nentonian mechanics was fomulated, and unil the beginning of the twertiethcertury, this assumption was considaed a selfevidant one, and even today it is commonly accepted intuitively. Actually, one of the biggest difficulties instudying theSTR(special theory of relativity) is toaccept the condusion that time is not an absolute entity, and that the results of time neasuenents depend uponthe motion of the observer. Researchontheevolution of the coneept of time, and its neasuring was conducted by Pofessor G Szanosi fromthe Uiversity of Windsor, Otario, Canad, andpublishedinhis book"The TwinDinensions"(1986).

Uvil the end of the nineterthcertury, there seened to be modfficilty with Galilean tranfomationequtions and they suited the doservaions well. As was later dsconered the resson for this fat wes that all the phenomen innestigited vere comemed with low velocities, except for the ligt notion. As for neasuenents comemed with light velocity, the degree of acaracy was so low the the contradictions batween these equations, and the dssavations were not doserved The podens aose when equaions (220) and (221) were used in acarate expainerts comenningthemoionof ligt.

When ore wants to redae these equaions to light notion, ore has first to detemne whet light is is it a wave phememon acopsalar one? If the light is a capsallar pheronemon, then its velocity (like the velocity of all aher patides) depens upon the velocity of the ligt sarce. In such a case, by using the adritional lawfor velocities one find the the velocity of light relative tothe dserver equls the velocity of the ligt redaive tothe saree, plus the velocity of the sarerelaive tothe dserver.

If light is a wave phemonero, thenits additional lawfor vedocities shouldbe thet of waves. When a wave noves in a nedium its velocity is defined redaive to the nedum and is detemined by the propaties of the nedum The wave velocity as neasued by an doserver is equal to the sum of the wave velocity reative to the nedumand the velocity of the doserver relative to the nedum At the begiming of the nindeerth centuy, it wes established experinertally that light is a nave pheronem, andhene people expected that the Calileanadditionl lawof velocities for waves nould be the conect law to use for light notion The aceptame of the assumpiontht light is a wave permeronimplied alsothe assumpionthat there is a nediuminutichtheligt noves as a wave. This nediumwes temed'theEher," and it wes assured that it fills the whole spree, andtht it canbeconsideredas anabsolute rest sstemto whid the motions of all djects conberdated. Towards the end of the
ninteerthcertuy, scierists believed thet light is a weve noving in the ether, and it wes condurded thet its motion could be treated according to the addtion law of velocities for wenes.

In 1887 the fancus expainert of Mdelsonand Mreley wes paformed In this experinert the scierists tried to neasur the velocity of the earth redaive to the ether, where the tedriqe of the experinert was besed on the addition law of velocities for light. The degre of the pecision of the expainert was vay high and sigificart resits war expeded. Yet the resilts of the expainert were null: no velocity of the earh relaive to the ether was doserved Sine then, the sane experinert was repeated agin and agin with higher and higher pecision, but alvays the sme null results were dtained the ethr, to which the motion of the eath was spposed tober related, was not found Theresits of this expainert nere considred amstery, theoretht batheredEisteingreally a hetokkhis first stepsinscieme.

The answer to the msster wes given by Einstein in 1005 in the formof the STR This theay wes besedontwoassumpions:

1. The validity of the pincipe of relaivity that all inatial frames ae equivaler.
2 The speed of ligt in vaaumis constat, and is the same in all systens novinguithocostant velocities
The acoeptame of the seoond assumtion implies the the addtion law for velocities shaild be comected in such a way that the velocity of ligt will remin the sane antransfamingfirmanesystemtoander. For this pupose, the transfamtion Esp (220) and (221) were also conected. Fomthis nodfication it followed that time caild not be an absodue ervity, and that the time duation, neesued for sane givenerert, depens uponthe siturion of notion of the doserver: (Actually, Einstein anived first at the condusion that the solution of the cortradicionnigt be dtained anly after abolishing the hidden assumpion the time is an absdute erity. The
conection of the equaions was already dore by himn the besis of the redaivistic derader of time.)

23TheLorentzTransformations

Orpupose is nowtodtainthe famiæo f transfamations firmoneinatial referene system to anoher, thet is, a famla by neans of whid, knowing the condintes x, y, z, t, of acetainevert inthe K system, we confind the coordindes $x^{\prime}, y^{\prime}, z^{\prime}, t$ ' of the sameever inanotherinatial sytem K^{\prime}.

In classical nedraics this question is resdved very simply as shown in the peviaus section It is eesy to veify the this tranfomations, as wes to be expeded, does not staisfy the requirenerts of the theay of relaivity, vidates the constancy of the speedof light, adit does not leave theinterval betweenevertsirvaiant.
hes shall dxain the relaivistic transfomations pecisely as a consequeme of therequirenert the they leave theiriteval hetweeneverts invaiat.

The inteval between everts canbe loded ypon as the distane between the conesponding pair of wordd points inafor-dnensional systemof coordinates Coneequerly we may say that the required tranfomation mst leave undnged all dstames in the for-dimensional $x, y, z, c t$, spare. Bt such transfamaions consist aly of paralle displaenerts, and iotaiions of the coadinte system Of these, the dsplaenert of the coordinate sytemparalle to isedf is of minterst, sime it leads only toashift inthe oigind the sprecocodinates, andadangeinthetime refarme point. Thes the required transfamation mst be expessible mathenatically as a rutaionof the for-dimensional $x, y, z, c t$, condinatesytem

Erey rutaion is the for-dnewsionl spare canberesdved into six rdations, in the planes $x y, z y, x z, t x, t y$, tz (jist as every rotation in adimay space can be resdved into three rataions in the planes $(x y, z y$ and $x z$). The first three of these
rotations transfomonly the spare coardimates; they canespond to the usual spare rutaions.

Let usconsider arotaioninthe $t x$ plane, under this, the y and z coordinates donot dange. In particila, this transfomation mist leave unchanged the differene $(c t)^{2}-x^{2}$, the square of the "distame" of the point $(c t, x)$ from the aigin. The relationbetweenthe old, and the newcocordinates is givenin most general formby the fomular

$$
\begin{equation*}
x=x^{\prime} \cosh \psi+c t^{\prime} \sinh \psi, \quad c t=x^{\prime} \sinh \psi+c t^{\prime} \cosh \psi, \tag{222}
\end{equation*}
$$

where ψ is the "angle of rotation'; a simple dred shows that in fact $c^{2} t^{2}-x^{2}=c^{2} t^{2}-x^{12}$. Fomila (222) differs from the usual formula for transfamationunder rotation of the coordmate axes inhaving hypabdic functions in plaee of trigomnetric ones. This is the differeme between pseudo-Eididean and Exdideangeanetry.

We try to find the formia of transfomations fromaninatial refereme frame K toasystem K^{\prime} movingredativeto K withvelocity v alongthe x axis Inthis case dealy only the coordinate x and the time t are subject to change. Therfore this transfamationmst have the formof Eq.(22). Nowit remains only to detemine the angle ψ, whichcandependanlyontherelative velocity v.

Let us consider themaioninthe k systemof the arigin of the K^{\prime} system For $x^{\prime}=0$, formulx (22) take the form

$$
\begin{equation*}
x=c t^{\prime} \sinh \psi, \quad c t=c t^{\prime} \cosh \psi, \tag{223}
\end{equation*}
$$

ardividing onebythe other,

$$
\begin{equation*}
\frac{x}{c t}=\tanh \psi \tag{224}
\end{equation*}
$$

Bit x / t is dearly the velocity v of the K^{\prime} systemrelativeto K. So

$$
\begin{equation*}
\tanh \psi=\frac{v}{c} \tag{225}
\end{equation*}
$$

Fromthis

$$
\begin{equation*}
\sinh \psi=\frac{v / c}{\sqrt{1-v^{2} / c^{2}}}, \quad \cosh \psi=\frac{1}{\sqrt{1-v^{2} / c^{2}}} . \tag{226}
\end{equation*}
$$

Substituting thelater in Fq.(22), we find:

$$
\begin{equation*}
x=\gamma\left(x^{\prime}+v t^{\prime}\right), \quad y=y^{\prime}, \quad z=z^{\prime}, \quad t=\gamma\left(t^{\prime}+\frac{v}{c^{2}} x^{\prime}\right), \quad \gamma=\frac{1}{\sqrt{1-v^{2} / c^{2}}} . \tag{227}
\end{equation*}
$$

These are the required transfomation fommax. They are called the Laertz tranfomations, andae of fundanertal inpotamefor whet follows.

The innerse famiax, expessing $x^{\prime}, y^{\prime}, z^{\prime}, t^{\prime}$ in temof x, y, z, t, ae nost exily duainedbydnanging v to $-v$ (sime the K systemnoves with velocity ϑv relaive tothe K^{\prime} system). The sane famile con be dtained diredly by sodving eqution (227) $\mathrm{for} x^{\prime}, y^{\prime}, z^{\prime}, t^{\prime}$.

It is easy to see from Eq(227) that a making the trasition to the limit $c \rightarrow \infty$, the fomile for the Laent tranffamations acually goover to the Calilean transfomations

Fro $v>c$ thecocrdndes x, t in $\mathrm{Eq}(227)$ are imginary, this comesponds to the fadt the motion with a velocity geater than the velocity of ligt is imposible. Mreover, one cand we areferene systemtht is noving withthe velocity of light a intht crethedenominatas inEq(227) waildgotozan

Forvelocities v snall compred with the velocity of light, we canuse inplaxe of Fq (227) the appoximatefamlax:

$$
\begin{equation*}
x=x^{\prime}+v t^{\prime}, \quad y=y^{\prime}, \quad z=z^{\prime}, \quad t=t^{\prime}+\frac{v}{c^{2}} x^{\prime} \tag{228}
\end{equation*}
$$

Suppose thare is arod at rest in the K system, pralled to the x-axis Let its lengh, neasuedinthis sstem, be $\Delta x=x_{2}-x_{1}\left(x_{2} \operatorname{and} x_{1}\right.$ ae the cocrinates of thetwoends of the rodinthe K sytem). We nowdemine the lengh of this rod as neasuedin the K^{\prime} system Todothis we mst findthecocrinates of thetwoend of therod $\left(x_{2}^{\prime}\right.$ and x_{1}^{\prime}) inthis systemat on, and the sane tine t^{\prime}, i.e, simultaneasly. FomFq (227) wefind

$$
\begin{equation*}
x_{1}=\gamma\left(x_{1}^{\prime}+v t^{\prime}\right), \quad x_{2}=\gamma\left(x_{2}^{\prime}+v t^{\prime}\right) . \tag{229}
\end{equation*}
$$

Thelenghof therodinthe K^{\prime} systemis $\Delta x^{\prime}=x_{2}^{\prime}-x_{1}^{\prime}$;sitracing x_{1} fiom x_{2} wefind

$$
\Delta x=\gamma\left(\Delta x^{\prime}\right) .
$$

The proper lengh of a a od is its lengh in a refereme systemin which it is at rest. Let us dendeit by $l_{0}=\Delta x$, andthelenghof the rodinany ather refereme frane K^{\prime} by I. Then

$$
\begin{equation*}
l=\frac{l_{0}}{\gamma} . \tag{230}
\end{equation*}
$$

Ths arodhes its geetest lengh in the refereme systemin whichit is a rest. Its lenghina systemin which it nowes with velocity v is decresed by the factor $\frac{1}{\gamma}$. This resalt of the theay of realivity is calledtheLoerzocortracion

Sime the transverse dimensions do not change because of its notion, the volume v of abodydeareses accordingtothesimilar formula

$$
\begin{equation*}
v=\frac{v_{0}}{\gamma}, \tag{231}
\end{equation*}
$$

where v_{0} is the poper volume of the body.
FromtheLaretztransfomation we can dtain anewthe results aready known tous comeming the proper time. Very briefly, suppose a dodk tobe at rest inthe K^{\prime} system We take thoevents coaming at one, and the same point $x^{\prime}, y^{\prime}, z^{\prime}$ in the K^{\prime} system The time betweenthese events in the K^{\prime} systemis $\Delta t^{\prime}=t_{2}^{\prime}-t_{1}^{\prime}$. Nowne find thetine Δt whichelapse betweenthese twoevents in the κ system FromEq(227), wehave

$$
\begin{equation*}
t_{1}=\gamma\left(t_{1}^{\prime}+\frac{v}{c^{2}} x^{\prime}\right), t_{2}=\gamma\left(t_{2}^{\prime}+\frac{v}{c^{2}} x^{\prime}\right), \tag{232}
\end{equation*}
$$

a, subtracting onefromtheather,

$$
\begin{equation*}
t_{2}-t_{1}=\Delta t=\gamma \Delta t^{\prime}, \tag{233}
\end{equation*}
$$

incompleteagreenert with Fq (213).
Finally we nertion anather general puperty of the Laenz transfomations which distinguishes them from the Calilean transfomations. The latter have the general propaty of commtativity, i.e, the conbined result of tyo suceessive Galilean transfomations (with different velocities v_{1} and v_{2}) does not depend on the order in which the transfomations are pafamed. On the ather hand, the resit of two sucessive Larentz transfomations do depen, in genera, on their ader. This is already apparent purly mathenatically from ar fomal description of these
transfomations as rotations of the for-dimensional coordinate system we knowthat the result of twordations (about different axes) depends onthe order in uhichthey are camied at. The sole exception is the case of transformations with parallel vectors v_{1} and v_{2} (which are equivalent to tho rutaions of the for-dimensional coordinate systemabout the sane axis).

Chapter III

NonLinear Terrell Transformations

31Introduction

The pupose of this chaper is to provide a complete derivation of the tranfomations resiling fiomtheapplications of thefollowingthrep pints
(1) Tenell's dssevation thet dfferent paints on the object, in relaive notion to the doservaion frame, most "emit" ligt at dffferert poirts in ader to read an doservaion pait similtaneasly. Thet is, distart points, tothe dsservaion point, mst "eni"" light pior tothose doser points.
(2) The Lerenz transfamations (and then of the coresponing Calilean transfamations).
(3) Thepieraing of these ligt rays an appopiate 2Dplane in the doservaion frame. This is illustratedinFg 3.1bedow. Thequic axis is perpendialar tothis planeand is takenpralle tothe $x y$ - lane. \bar{o} dendes the b savationpoint.

Fg 31Topview: \bar{o} dentes the dsarvaionpoin at a vertical distame habove the aigin of the dxervaion frame. The plane is fixed in the doservaion frane and is paperifaular to the qticaxis

Fig 3.2 The U-planeshownin 2dimersions (thetopview).

As nertioned above, the qutic axis is taken to be paralled to the $x y$-plane. We dendeby (x, y, z) : thecocodinates paint ontheodject as given in the observationframe. The axes of the projectionplane are dencedby U and V. The U axis is parallel to the $x y$-plane, and the V-axis, is parallel to the z-axis, is papendicular to it. We denote by $\left(x_{0}, y_{0}, h\right)$: the cocorimate point specifying the tip of the qptic axis inthe observation frane. Fromthe figur we get

$$
\begin{equation*}
\tan \boldsymbol{\theta}_{0}=\frac{y_{0}}{x_{0}}=\frac{y_{1}}{x_{1}}, \tag{31}
\end{equation*}
$$

or

$$
\begin{equation*}
y_{1}^{2}=\frac{y_{0}^{2}}{x_{0}^{2}} x_{1}^{2}, \tag{32}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{1}^{2}+y_{1}^{2}=d^{2} . \tag{3.3}
\end{equation*}
$$

Where d is the distance fromthe dbservationpoint tothe oigin of the L-planealong theqpicaxis.

SolvingEx. (31) to(33) for y_{1} and x_{1}, wegt

$$
\begin{equation*}
y_{1}=\frac{y_{0}}{\sqrt{x_{0}^{2}+y_{0}^{2}}} d \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{1}=\frac{x_{0}}{\sqrt{x_{0}^{2}+y_{0}^{2}}} d . \tag{3.5}
\end{equation*}
$$

According to Fg 32 , we may use the Pythgaras thecrem to drain the followingequaioninthexy plane:

$$
\begin{equation*}
d^{2}+\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}=x_{2}^{2}+y_{2}^{2} . \tag{3.6}
\end{equation*}
$$

LponexpandingEq(36), wegt

$$
\begin{equation*}
d^{2}+x_{2}^{2}-2 x_{2} x_{1}+x_{1}^{2}+y_{2}^{2}-2 y_{2} y_{1}+y_{1}^{2}-x_{2}^{2}-y_{2}^{2}=0, \tag{37}
\end{equation*}
$$

$$
\begin{equation*}
d^{2}-2 x_{2} x_{1}-2 y_{2} y_{1}+x_{1}^{2}+y_{1}^{2}=0 \tag{3.8}
\end{equation*}
$$

LponsubstituingEs(33), (34) and(35) intoEq(38) we daain

$$
\begin{align*}
& d^{2}-\frac{2 x_{2} x_{0} d}{\sqrt{x_{0}^{2}+y_{0}^{2}}}-\frac{2 y_{2} y_{0} d}{\sqrt{x_{0}^{2}+y_{0}^{2}}}+d^{2}=0, \\
& 2 d^{2}-\frac{2 x_{2} x_{0} d}{\sqrt{x_{0}^{2}+y_{0}^{2}}}-\frac{2 y_{2} y_{0} d}{\sqrt{x_{0}^{2}+y_{0}^{2}}}=0, \tag{39}
\end{align*}
$$

uhichleads to

$$
\begin{equation*}
d^{2}-\frac{x_{2} x_{0} d}{\sqrt{x_{0}^{2}+y_{0}^{2}}}-\frac{y_{2} y_{0} d}{\sqrt{x_{0}^{2}+y_{0}^{2}}}=0 \tag{3.10}
\end{equation*}
$$

AgainaccordingtoFg3.2,

$$
\begin{equation*}
\tan \theta=\frac{y}{x}=\frac{y_{2}}{x_{2}} \tag{3.11}
\end{equation*}
$$

or

$$
\begin{equation*}
x_{2}=y_{2} \frac{x}{y} . \tag{3.12}
\end{equation*}
$$

SimplifyingEq(310) gives

$$
\begin{align*}
& d^{2}-\frac{d\left(x_{2} x_{0}+y_{2} y_{0}\right)}{\sqrt{x_{0}^{2}+y_{0}^{2}}}=0, \\
& d^{2}=\frac{d\left(x_{2} x_{0}+y_{2} y_{0}\right)}{\sqrt{x_{0}^{2}+y_{0}^{2}}}, \tag{3.13}
\end{align*}
$$

or

$$
\begin{equation*}
y_{2}=\frac{d \sqrt{x_{0}^{2}+y_{0}^{2}}-x_{2} x_{0}}{y_{0}} . \tag{3.14}
\end{equation*}
$$

Insat x_{2}, as giveninFq(3.12), todtrain

$$
\begin{equation*}
y_{2}=\frac{d \sqrt{x_{0}^{2}+y_{0}^{2}}}{y_{0}}-\frac{x_{0}}{y_{0}} \frac{x}{y} y_{2}, \tag{3.15}
\end{equation*}
$$

withthe solution

$$
\begin{equation*}
y_{2}=\frac{y d \sqrt{x_{0}^{2}+y_{0}^{2}}}{x x_{0}+y y_{0}} . \tag{3.16}
\end{equation*}
$$

Next solvefor x_{2} byinserting $y_{2}=x_{2} \frac{y}{x}$ intoEq(314). This gives

$$
\begin{equation*}
x_{2}=\frac{x d \sqrt{x_{0}^{2}+y_{0}^{2}}}{x x_{0}+y y_{0}} . \tag{3.17}
\end{equation*}
$$

FromFig3.2 wecan write the following expessionfor U :

$$
\begin{equation*}
U^{2}=\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2} . \tag{3.18}
\end{equation*}
$$

Expanding $\mathrm{Fq}(3.18)$, gives

$$
\begin{equation*}
U^{2}=x_{2}^{2}-2 x_{2} x_{1}+x_{1}^{2}+y_{2}^{2}-2 y_{2} y_{1}+y_{1}^{2} . \tag{3.19}
\end{equation*}
$$

Inset Eas.(34), (3.5), (3.16) and (3.17) into Eq(3.19) to dtain the following drainofequalities:

$$
\begin{align*}
U^{2}= & \frac{x^{2}\left(x_{0}^{2}+y_{0}^{2}\right) d^{2}}{\left(x x_{0}+y y_{0}\right)^{2}}-\frac{2 x \sqrt{x_{0}^{2}+y_{0}^{2}} d}{x x_{0}+y y_{0}} \cdot \frac{x_{0} d}{\sqrt{x_{0}^{2}+y_{0}^{2}}}+\frac{x_{0}^{2}}{x_{0}^{2}+y_{0}^{2}} d^{2} \\
& +\frac{y^{2}\left(x_{0}^{2}+y_{0}^{2}\right) d^{2}}{\left(x x_{0}+y y_{0}\right)^{2}}-\frac{2 y \sqrt{x_{0}^{2}+y_{0}^{2}} d}{x x_{0}+y y_{0}} \cdot \frac{y_{0} d}{\sqrt{x_{0}^{2}+y_{0}^{2}}}+\frac{y_{0}^{2}}{x_{0}^{2}+y_{0}^{2}} d^{2}, \tag{3.20}
\end{align*}
$$

$$
\begin{aligned}
& =\frac{\left(x_{0}^{2} x^{2}+x_{0}^{2} y^{2}+y_{0}^{2} x^{2}+y_{0}^{2} y^{2}\right) d^{2}}{\left(x x_{0}+y y_{0}\right)^{2}}-d^{2} \\
& =\frac{\left(x_{0}^{2} x^{2}+x_{0}^{2} y^{2}+y_{0}^{2} x^{2}+y_{0}^{2} y^{2}\right) d^{2}-\left(x_{0}^{2} x^{2}+2 x x_{0} y y_{0}+y^{2} y_{0}^{2}\right) d^{2}}{\left(x x_{0}+y y_{0}\right)^{2}} \\
& =\frac{\left(x_{0}^{2} y^{2}+y_{0}^{2} x^{2}-2 x x_{0} y y_{0}\right) d^{2}}{\left(x x_{0}+y y_{0}\right)^{2}},
\end{aligned}
$$

or

$$
\begin{equation*}
U=\frac{\left(x y_{0}-y x_{0}\right) d}{x x_{0}+y y_{0}} \tag{3.21}
\end{equation*}
$$

Gienthe U Cocodinte value conesponding to a point on the dject. To find the V-coordinate value conesponding to a poirt on the djiect we refer to the figue (Fg33) below

Fig 33 Projectionatothe L-planeas shownintheactual 3Donfiguration.

Fromthe above figur wecanwrite

$$
\begin{align*}
& (\bar{O} B)^{2}=x^{2}+y^{2} \tag{3.22}\\
& (\bar{O} A)^{2}=d^{2}+U^{2} \tag{3.23}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{V}{z-h}=\frac{\bar{o} A}{\bar{O} B}, \tag{3.24}
\end{equation*}
$$

InsatingEas.(322) and(323) into(324), gives

$$
\begin{equation*}
V=\frac{\sqrt{d^{2}+U^{2}}}{\sqrt{x^{2}+y^{2}}}(z-h) \tag{3.25}
\end{equation*}
$$

InsertEq(3.21) into(3.25) todtain

$$
\begin{align*}
& V=\frac{\sqrt{d^{2}+\left(\frac{x y_{0}-y x_{0}}{x x_{0}+y y_{0}}\right)^{2} d^{2}}}{\sqrt{x^{2}+y^{2}}}(z-h), \tag{3.26}\\
& \\
& =\frac{\sqrt{d^{2}\left(x x_{0}+y y_{0}\right)^{2}+\left(x y_{0}-y x_{0}\right)^{2} d^{2}}}{\sqrt{\left(x x_{0}+y y_{0}\right)^{2}} \sqrt{x^{2}+y^{2}}}(z-h) \\
& =\frac{\sqrt{d^{2}\left(x^{2} x_{0}^{2}+2 x x_{0} y y_{0}+y^{2} y_{0}^{2}\right)+\left(x^{2} y_{0}^{2}-2 x y_{0} y x_{0}+y^{2} x_{0}^{2}\right) d^{2}}}{\sqrt{\left(x x_{0}+y y_{0}\right)^{2}} \sqrt{x^{2}+y^{2}}}(z-h) \\
& =\frac{\sqrt{d^{2}\left(x^{2} x_{0}^{2}+y^{2} y_{0}^{2}+x^{2} y_{0}^{2}+y^{2} x_{0}^{2}\right)}}{\sqrt{\left(x x_{0}+y y_{0}\right)^{2}} \sqrt{x^{2}+y^{2}}}(z-h)
\end{align*}
$$

$$
=\frac{\sqrt{d^{2}\left(x^{2}+y^{2}\right)\left(x_{0}^{2}+y_{0}^{2}\right)}}{\sqrt{\left(x x_{0}+y y_{0}\right)^{2}} \sqrt{x^{2}+y^{2}}}(z-h) .
$$

Finally neget the projectiononthe V-axis tobe

$$
\begin{equation*}
V=\frac{d \sqrt{\left(x_{0}^{2}+y_{0}^{2}\right)}}{x x_{0}+y y_{0}}(z-h) . \tag{3.27}
\end{equation*}
$$

Net: h is the height where the "doservation poin'" is located along the z-axis.

Wenowoonsider the unit vectorn, perpendialar tothe U-plane, specifying thedirectionof theqpicaxis:

Fig 3.4Namal vector tothe L-plane.

Wecanexpessthefomulaof Uintems of the unit vectorn bydividing Eq(321) by $\sqrt{x_{0}^{2}+y_{0}^{2}}$,toget

$$
\begin{equation*}
U=\binom{x \frac{y_{0}}{\sqrt{x_{0}^{2}+y_{0}^{2}}}-y \frac{x_{0}}{\sqrt{x_{0}^{2}+y_{0}^{2}}}}{x \frac{x_{0}}{\sqrt{x_{0}^{2}+y_{0}^{2}}}+y \frac{y_{0}}{\sqrt{x_{0}^{2}+y_{0}^{2}}}} d \tag{3.28}
\end{equation*}
$$

AccordingtoFig32, mayexpess the unit vectorn tothe projection planeas

$$
\begin{equation*}
\mathbf{n}=\left(\frac{x_{0}}{\sqrt{x_{0}^{2}+y_{0}^{2}}}, \frac{y_{0}}{\sqrt{x_{0}^{2}+y_{0}^{2}}}, 0\right)=\left(n_{1}, n_{2}, 0\right)=(\cos \alpha, \sin \alpha, 0), \tag{3.29}
\end{equation*}
$$

or

$$
\begin{equation*}
n_{1}=\frac{x_{0}}{\sqrt{x_{0}^{2}+y_{0}^{2}}}=\cos \alpha \quad \text { and } \quad n_{2}=\frac{y_{0}}{\sqrt{x_{0}^{2}+y_{0}^{2}}}=\sin \alpha \text {. } \tag{3.30}
\end{equation*}
$$

Where α dentes the anglebetweentheunit vectorn andthe x-axis SubstitutingEq(3.30) intoEq(3.28) weobtain

$$
\begin{equation*}
U=\left(\frac{x n_{2}-y n_{1}}{x n_{1}+y n_{2}}\right) d . \tag{3.31}
\end{equation*}
$$

Similaryfor the V formula ne get

$$
\begin{align*}
V & =\frac{d \frac{\sqrt{x_{0}^{2}+y_{0}^{2}}}{\sqrt{x_{0}^{2}+y_{0}^{2}}}}{x \frac{x_{0}}{\sqrt{x_{0}^{2}+y_{0}^{2}}}+y \frac{y_{0}}{\sqrt{x_{0}^{2}+y_{0}^{2}}}}(z-h) \tag{3.32}\\
V & =\frac{d(z-h)}{x n_{1}+y n_{2}} \tag{3.33}
\end{align*}
$$

Different values for n_{1} and n_{2}, such that $\left(n_{1}\right)^{2}+\left(n_{2}\right)^{2}=1$, specify different arentations of the projection (dbservation) W-plane

Now we have to expess the (x, y, z) values in tems of the $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ values with the latter coresponding to the pairt on the dject in its proper, i.e., rest frame. The relative notion is taken equivalently as follows. Fther the dject is noving
relaive to the doservation frame, along the x-xxis to the right with speed v or the frane is moving redaive tothedject, totheleft withthe sane speed

3.2Reativistic Transformations ontheProjectionPlane

Consider the poperinatial frame F^{\prime} of andject andandservational inatial frane F withrelativespeed v, theprperfane F^{\prime} of the dject is noving to the ingt of the x-axis Let $\left(x^{\prime}, y^{\prime}, z^{\prime}\right),(x, y, z)$ dende, respectively, the conesponding labdings of anabitrary point on the djiect. The dservation point \bar{o} is a aheigt h, along the z axis (see Fg.35), above the oigin O of the F frame. Whenthe coigins O, O^{\prime}, at $t=0, t^{\prime}=0$, dfthe $_{F, F} F^{\prime}$ franescoincide, thedbserverat \bar{o} sees these cigigns coincide he takes a sap shot of the dject. Sime the dssever at \bar{o} sees the aigins coincide orly atalaer tine equal to h / c, the time that light were enitted fiom (x, y, z) toread \bar{o} is givenby

$$
t=-\frac{\sqrt{x^{2}+y^{2}+(z-h)^{2}}}{c}+\frac{h}{c},
$$

Fig 3.5 The aigins of the proper frame of the dject and doservation frame are shown to coincide. Oject at rest inthe F^{\prime} frame. Whenthedbserverseestheaigins O and O^{\prime} coincide (at time $t=t$ ' $=0$), hetakesa "smapsho"" of the dject.
wenowrecall theinvese of the Laetztansfomaions (seEq(227))

$$
\begin{align*}
& x^{\prime}=\gamma(x-v t), \tag{3.35}\\
& y^{\prime}=y \tag{3.36}\\
& z^{\prime}=z \tag{3.37}
\end{align*}
$$

Tosolvefor x intems of $x^{\prime}, y^{\prime}, z^{\prime}$ पeinsert Eas.(334), (336) and(337) into(335), toget

$$
\begin{equation*}
x^{\prime}=\gamma\left\{x-v\left(\frac{h}{c}-\frac{\sqrt{x^{2}+y^{\prime 2}+\left(z^{\prime}-h\right)^{2}}}{c}\right)\right\}, \tag{3.38}
\end{equation*}
$$

expanding andsimplifyingEq(338), weget

$$
\begin{equation*}
\gamma x-\left(x^{\prime}+\gamma \beta h\right)=-\gamma \beta \sqrt{x^{2}+y^{\prime 2}+\left(z^{\prime}-h\right)^{2}} . \tag{3.39}
\end{equation*}
$$

SquangbahsideofEq(339), weget

$\gamma^{2} x^{2}-2 \chi\left(x^{\prime}+\gamma \beta h\right)+\left(x^{\prime}+\gamma \beta h\right)^{2}-\gamma^{2} \beta^{2}\left(x^{2}+y^{\prime 2}+\left(z^{\prime}-h\right)^{2}\right)=0$.

Fromthedefinition $\quad \gamma=\frac{1}{\sqrt{1-v^{2} / c^{2}}}=\frac{1}{\sqrt{1-\beta^{2}}}$,
and

$$
\gamma^{2}=\frac{1}{1-\beta^{2}},
$$

hedtain

$$
\begin{equation*}
1-\beta^{2}=\frac{1}{\gamma^{2}} . \tag{3.41}
\end{equation*}
$$

UpanusingEas.(340) and (341) we nay write

$$
\begin{equation*}
x^{2}-2 \boldsymbol{\gamma}\left(x^{\prime}+\gamma \beta h\right) x+\left(x^{\prime}+\gamma \beta h\right)^{2}-\gamma^{2} \beta^{2}\left\lfloor y^{\prime 2}+\left(z^{\prime}-h\right)^{2}\right\rfloor=0, \tag{3.42}
\end{equation*}
$$

todtain

$$
\begin{align*}
& x=\gamma\left(x^{\prime}+\gamma \beta h\right) \pm \sqrt{\gamma^{2}\left(x^{\prime}+\gamma \beta h\right)^{2}-\left(x^{\prime}+\gamma \beta h\right)^{2}+\gamma^{2} \beta^{2}\left[y^{\prime 2}+\left(z^{\prime}-h\right)^{2}\right]}, \tag{3.43}\\
& x=\gamma\left(x^{\prime}+\gamma \beta h\right) \pm \sqrt{\left(\gamma^{2}-1\right)\left(x^{\prime}+\gamma \beta h\right)^{2}+\gamma^{2} \beta^{2}\left[y^{\prime 2}+\left(z^{\prime}-h\right)^{2}\right.}, \tag{3.44}
\end{align*}
$$

Fromtheidentity $\gamma^{2}-1=\beta^{2} \gamma^{2}, \operatorname{Eq}(3.44)$ canbereunittenas

$$
\begin{align*}
& x=\gamma\left(x^{\prime}+\gamma \beta h\right) \pm \gamma \beta \sqrt{\left(x^{\prime}+\gamma \beta h\right)^{2}+y^{\prime 2}+\left(z^{\prime}-h\right)^{2}}, \tag{3.45}\\
& x=\gamma\left(\left(x^{\prime}+\gamma \beta h\right) \pm \beta \sqrt{\left(x^{\prime}+\gamma \beta h\right)^{2}+y^{\prime 2}+\left(z^{\prime}-h\right)^{2}}\right] . \tag{3.46}
\end{align*}
$$

Sime the motion of the object, relative tothedbservationframe is to the right we have

$$
\begin{equation*}
x=\gamma\left[\left(x^{\prime}+\gamma \beta h\right)-\beta \sqrt{\left(x^{\prime}+\gamma \beta h\right)^{2}+y^{\prime 2}+\left(z^{\prime}-h\right)^{2}}\right] . \tag{3.47}
\end{equation*}
$$

Incondusion, theLaentztransfomations, redure to

$$
\left.\begin{array}{l}
x=\gamma\left[\left(x^{\prime}+\gamma \beta h\right)-\beta \sqrt{\left(x^{\prime}+\gamma \beta h\right)^{2}+y^{\prime 2}+\left(z^{\prime}-h\right)^{2}}\right] \\
y=y^{\prime} \\
y_{0}=y_{0}^{\prime} \tag{3.48}\\
z=z^{\prime} \\
z_{0}=z_{0}^{\prime}=h
\end{array}\right\}
$$

UponsubstituingEq(3.48) intoFqs.(3.31) and(3.33) weget

$$
\begin{align*}
& V=\frac{d\left(z^{\prime}-h\right)}{\gamma\left[\left(x^{\prime}+\gamma \beta h\right)-\beta \sqrt{\left(x^{\prime}+\gamma(\beta)^{2}+y^{\prime 2}+\left(z^{\prime}-h\right)^{2}\right.}\right] n_{1}+y^{\prime} n_{2}} . \tag{3.50}
\end{align*}
$$

The expessions for Uand V in Eas.(3.49), (3.50) provide the mapping of a paint ($x^{\prime}, y^{\prime}, z^{\prime}$) on the object ato the W-plane in the observation frame. We specialize belowtheabove general formiat toparticilar cases of interes.

33 Galilean Transformations, with no TmeDday

In this case we have simply to take the limit $c \rightarrow \infty$. That is we have the formix

$$
\begin{equation*}
U=\left(\frac{x^{\prime} n_{2}-y^{\prime} n_{1}}{x^{\prime} n_{1}+y^{\prime} n_{2}}\right) d, \tag{3.51}
\end{equation*}
$$

and

$$
\begin{equation*}
V=\frac{\left(z^{\prime}-h\right) d}{x^{\prime} n_{1}+y^{\prime} n_{2}} . \tag{3.52}
\end{equation*}
$$

Where the pined variables denote points on the object in its proper frame uhere the object in question is fixed. The above comesponds simply and fomally to no relative motion of the observationframe relative to the dject inquestion.

34Galilean Transformations, withTimeDday

For the Calilean transfomations, whichinvolve the timedday mechanism (c isfinite but large), nehave toset the Lantzfactorequal toone $(\gamma=1)$.

Thusinthe U-plane, according toFqs. (349) and(3.50), we may write
and

$$
\begin{equation*}
V=\frac{d\left(z^{\prime}-h\right)}{\left[\left(x^{\prime}+\beta h\right)-\beta \sqrt{\left(x^{\prime}+\beta h\right)^{2}+y^{\prime 2}+\left(z^{\prime}-h\right)^{2}}\right] n_{1}+y^{\prime} n_{2}} . \tag{3.54}
\end{equation*}
$$

35TheRelativisticCase

For the fuilly relarivistic theay inndving the Laenz tranfomations andtine dday, the Uand V vaiables areas alreadyderived,
and

$$
\begin{equation*}
V=\frac{d\left(z^{\prime}-h\right)}{\gamma\left[\left(x^{\prime}+\gamma \beta h\right)-\beta \sqrt{\left(x^{\prime}+\gamma \beta h\right)^{2}+y^{\prime 2}+\left(z^{\prime}-h\right)^{2}}\right] n_{1}+y^{\prime} n_{2}} . \tag{3.56}
\end{equation*}
$$

UhiketheLaenztransformations $\left(t^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}\right) \rightarrow(t, x, y, z)$, the

 transfamations $\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \rightarrow(U, V)$, giveninEqs.(3.55) and(3.56), aredbviouslynon -linear.In the next chapter we will use all of the aboue fomix to cany ot a detailed comparaivestudy.

Chapter IV

ApplictionsandComparativeStudy-Seeingis Btiering

In this chapter, we make a sstemtic we of the projection of the 3Ddjects atothe U-plan, in redaive notion as descibed in the pevias chaper. The L plane is fixedinthedsavationframe. Thedject is assuredtonovetotherigt with speed βx crequivalerly that the dservaionframe is moving totheleft withthe same spedas the physical situtionmay didate. Wes sudy djects, whicharenidenoughin stuctue for adezailed conclusive amalsis. Wéconsider speed giventhrough $\beta=0$, $03,05,08,09,099,0999$, respectively. The unit vedar specifing the drection of the qric axis is dented by n whaen $=\left(n_{1}, n_{2}, 0\right), n_{1}$ and $n_{2}(\operatorname{seFq}(330))$ and α dendes the angle of the quic axis to the x-axis Throghat this chaper, the distame d firmithe projeciionplanetothedssaver ischosenequal to07units

We poride thre applications For geater gereality, we cansider the quic axis, specified by the unit vedor n , pralled to the x yplane to take three different drections conesponing to the angles $90^{\circ}, 86^{\circ}$ and 94°. Petinert remaks comeaning these fignes will be made in Chapter V when some impatat analyical prpaties of the nonlinear Tenell transfamaions will be extabished as well \mathfrak{a} estabissing of the longstandngresolutionof the "train" paradox.

In the fignes we nde that the aossed snall cirde dandes the aign of the W-plan. Onthe oher hand the small coosed lines dende some point, suchas a aid point on the dject. When these two location-pints djects are at different positions for $\beta=0$ vesss $\beta \neq 0$, this is simply a confimation of the famos "buration of ligh".

41ApplicationI

$\beta=0.0000$
Observation frame at rest
$\alpha=94^{\circ}$
$h=50$

Fig 4.Set of housesfor: (a) $\alpha=90^{\circ}$. (b) $\alpha=86^{\circ}$.(c) $\alpha=94^{\circ}$, wheren $=(\cos \alpha, \sin \alpha, 0)$.

41.1Galilean Treatment with Time Dalay

```
\(\mathrm{F}=0.3000\)
\(\alpha=90^{\circ}\)
\(h=50\)
```

Observation frame in motion (Galilean, with time delay)

(a)
$\boldsymbol{\beta}=0.3000$
$\boldsymbol{x}=86^{\circ}$
$\mathbf{h}=50$

Observation frame in motion

(b)
$\mathrm{p}=0.3000$
$\mathbf{\alpha}=94^{\circ}$
$\mathbf{h}=50$

Observation frame in motion (Galilean, with time delay)

Fig 42 Galilean, withtimedelay: $\beta=0.3$. Set of housesfo: (a) $\alpha=90^{\circ}$.(b) $\alpha=86^{\circ}$.
(c) $\alpha=94^{\circ}$, wheren $=(\cos \alpha, \sin \alpha, 0)$.
$\mathrm{F}=0.5000$
Dbservation frame in motion
$\boldsymbol{x}=90^{\circ}$ (Galilean, with time delay)
$h=50$

(a)

$$
\begin{aligned}
\beta=0.5000 & \text { Observation frame in motion } \\
\alpha=86^{\circ} & \text { (Galilean, with time delay) } \\
h=50 &
\end{aligned}
$$

(b)
$p=0.5000$
$x=94^{\circ}$
Observation frame in motion
$h=50$
(Galilean, with time delay)

(c)

Fig 43.Galilean, withtimedday: $\beta=0.5$. Set of howsesfor: (a) $\alpha=90^{\circ}$.(b) $\alpha=86^{\circ}$.
(c) $\alpha=94^{\circ}$, wheren $=(\cos \alpha, \sin \alpha, 0)$.

$\mathrm{p}=0.8000$
$\alpha=94^{\circ}$
$\mathrm{h}=50$

Observation frame in motion (Galilean, with time delay)

(c)

Fig 44. Calilean, withtimedlay: $\beta=0.8$. Set of hosesfa: (a) $\alpha=90^{\circ}$. (b) $\alpha=86^{\circ}$. (c) $\alpha=94^{\circ}$, wheren $=(\cos \alpha, \sin \alpha, 0)$.
$\rho=0.9000$
Observation frame in motion
$\alpha=90^{\circ}$
$h=50$
(Galilean, with time delay)

$\beta=0.9000$
Observation frame in motion
$\alpha=86^{\circ}$
(Galilean, with time delay)
$h=50$
(b)
$\mathbf{\beta}=0.9000$
$\boldsymbol{\alpha}=94^{\circ}$
$\mathbf{h}=50$

Fig 4.5. Calilean, withtimedlay: $\beta=0.9$. Set of housesfor: (a) $\alpha=90^{\circ}$. (b) $\alpha=86^{\circ}$.
(c) $\alpha=94^{\circ}$, wheren $=(\cos \alpha, \sin \alpha, 0)$.
$\rho=0.9900$
Observation frame in motion
$\alpha=90^{\circ}$
$h=50$

$$
\begin{aligned}
& \mathrm{p}=0.9900 \\
& \boldsymbol{\alpha}=94^{\circ} \\
& \mathbf{h}=50
\end{aligned}
$$

Observation frame in motion (Galilean, with time delay)

(c)

Fig 46 Galilean, withtimedday: $\beta=0.99$. Set of hasesfor: (a) $\alpha=90^{\circ}$.(b) $\alpha=86^{\circ}$.
(c) $\alpha=94^{\circ}$, wheren $=(\cos \alpha, \sin \alpha, 0)$.

$$
\begin{aligned}
& \mathbf{p}=0.9990 \\
& \mathbf{\alpha}=90^{\circ} \\
& \mathbf{h}=50
\end{aligned}
$$

Observation frame in motion
(Galilean, with time delay)

$$
\begin{aligned}
\mathbf{\beta} & =0.9990 \\
\alpha & =94^{\circ} \\
\mathbf{h} & =50
\end{aligned}
$$

Observation frame in motion
(Galilean, with time delay)

Fig 47.Calilean, withtimedday: $\beta=0.999$. Set of houses for: (a) $\alpha=90^{\circ}$.(b) $\alpha=86^{\circ}$. (c) $\alpha=94^{\circ}$, wheren $=(\cos \alpha, \sin \alpha, 0)$.

41.2Relativistic Treatment

 $\mathrm{c}=86^{\circ}$ (The relativistic case) $h=50$

(b)
$\beta=0.3000, \gamma=1.0483$
$\alpha=94^{\circ}$
$h=50$

Fig 48 Therelativistic case: $\beta=0.3$. Set of hasesfa: (a) $\alpha=90^{\circ}$.(b) $\alpha=86^{\circ}$.
(c) $\alpha=94^{\circ}$, wheren $=(\cos \alpha, \sin \alpha, 0)$.

```
\(\beta=0.5000, \gamma=1.1547\)
\(\alpha=90^{\circ}\)
\(h=50\)
```


$\rho=0.5000, \quad \gamma=1.1547$
Observation frame in motion (The relativistic case)
$\alpha=94^{\circ}$
$h=50$

Fig 4. Therelativistic case: $\beta=0.5$. Set of hasesfor: (a) $\alpha=90^{\circ}$.(b) $\alpha=86^{\circ}$.
(c) $\alpha=94^{\circ}$, wheren $=(\cos \alpha, \sin \alpha, 0)$.

Fig 4.10. Therelativistic case: $\beta=0.8$. Set of housesfor: (a) $\alpha=90^{\circ}$.(b) $\alpha=86^{\circ}$.
(c) $\alpha=94^{\circ}$, wheren $=(\cos \alpha, \sin \alpha, 0)$.
$\beta=0.9000, \gamma=2.2942$
Observation frame in motion
$\alpha=90^{\circ}$
$h=50$

(a)

$$
\begin{aligned}
& \mathrm{p}=0.9000, \quad \mathbf{r}=2.2942 \\
& \boldsymbol{\alpha}=94^{\circ} \\
& \mathrm{h}=50
\end{aligned}
$$

Observation frame in motion (The relativistic case)

(c)

Fig 4.11. Therelativistic caser $\beta=0.9$. Set of hasesfor: (a) $\alpha=90^{\circ}$. (b) $\alpha=86^{\circ}$.
(c) $\alpha=94^{\circ}$, wheren $=(\cos \alpha, \sin \alpha, 0)$.

```
\beta}=0.9900, \gamma=7.0888
\alpha}=9\mp@subsup{0}{}{\circ
h}=5
\(h=50\)
```

Observation frame in motion (The relativistic case)
$\beta=0.9900, r=7.0888$
$\alpha=86^{\circ}$
$h=50$

(a)
(b)

$\beta=0.9900, \gamma=7.0888$
 $\alpha=94^{\circ}$
 $h=50$

Observation frame in motion (The relativistic case)
(c)

Fig 4.12 Therelativisticcase: $\beta=0.99$. Set of hasesfor: (a) $\alpha=90^{\circ}$.(b) $\alpha=86^{\circ}$.
(c) $\alpha=94^{\circ}$, wheren $=(\cos \alpha, \sin \alpha, 0)$.

Fig 4.13. Therelativisticcase: $\beta=0.999$. Set of housesfor: (a) $\alpha=90^{\circ}$.(b) $\alpha=86^{\circ}$. (c) $\alpha=94^{\circ}$, wheren $=(\cos \alpha, \sin \alpha, 0)$.

42ApplicationII

Fig 414 Pyramidfor: (a) $\alpha=90^{\circ}$. (b) $\alpha=80^{\circ}$. (c) $\alpha=100^{\circ}$, wheren $=(\cos \alpha, \sin \alpha, 0)$.

421Galilean Treatment with TimeDilay

$$
\begin{aligned}
& \mathbf{p}=0.3000 \\
& \boldsymbol{\alpha}=100^{\circ} \\
& \mathbf{h}=20
\end{aligned}
$$

Fig 4.15.Galilean, withtimedlay: $\beta=0.3$. Pyramidfa: (a) $\alpha=90^{\circ}$.(b) $\alpha=80^{\circ}$.
(c) $\alpha=100^{\circ}$, wheren $=(\cos \alpha, \sin \alpha, 0)$.

Fig 416Calilean, withtimedday: $\beta=0.5$. Pyamidfo: (a) $\alpha=90^{\circ}$.(b) $\alpha=80^{\circ}$.
(c) $\alpha=100^{\circ}$, wheren $=(\cos \alpha, \sin \alpha, 0)$.

Fig 417.Calilean, withtimedlay: $\beta=0.8$. Pyamidfo: (a) $\alpha=90^{\circ}$.(b) $\alpha=80^{\circ}$. (c) $\alpha=100^{\circ}$, wheren $=(\cos \alpha, \sin \alpha, 0)$.

Fig418 Galilean, withtimedlay: $\beta=0.9$. Pyramidfo: (a) $\alpha=90^{\circ}$.(b) $\alpha=80^{\circ}$.
(c) $\alpha=100^{\circ}$, wheren $=(\cos \alpha, \sin \alpha, 0)$.

Fig 419Calilean, withtimedelay: $\beta=0.99$. Pramidfo: (a) $\alpha=90^{\circ}$. (b) $\alpha=80^{\circ}$. (c) $\alpha=100^{\circ}$, wheren $=(\cos \alpha, \sin \alpha, 0)$.

$$
\begin{aligned}
& \mathbf{\beta}=0.9990 \\
& \boldsymbol{\alpha}=90^{\circ}
\end{aligned}
$$

Observation frame in motion (Galilean, with time delay)

(a)

$\mathrm{\beta}=0.9990$
$\boldsymbol{\alpha}=100^{\circ}$
$\mathrm{h}=20$
Observation frame in motion (Galilean, with time delay)

(c)

Fig 4.20Calilean, withtimedlay: $\beta=0.999$. Pyranidfa: (a) $\alpha=90^{\circ}$. (b) $\alpha=80^{\circ}$.
(c) $\alpha=100^{\circ}$, wheren $=(\cos \alpha, \sin \alpha, 0)$.

422Reativistic Treatment

$$
\begin{aligned}
\beta=0.3000, \gamma=1.0483 & \text { Observation frame in motion } \\
\alpha=80^{\circ} & \text { (The relativistic case) }
\end{aligned}
$$ -

$h=20$

Fg 4.21.Theredativistic case: $\beta=0.3$. Pyramidfo: (a) $\alpha=90^{\circ}$.(b) $\alpha=80^{\circ}$.
(c) $\alpha=100^{\circ}$, wheren $=(\cos \alpha, \sin \alpha, 0)$.

Fig 4.22Theredativisticcase: $\beta=0.5$. Pramidfor: (a) $\alpha=90^{\circ}$. (b) $\alpha=80^{\circ}$.
(c) $\alpha=100^{\circ}$, wheren $=(\cos \alpha, \sin \alpha, 0)$.

```
\beta}=0.8000,\gamma=1.666
```

Observation frame in motion $\alpha=90^{\circ}$
$h=20$

$$
\begin{aligned}
& \mathrm{F}=0.8000, \boldsymbol{\gamma}=1.6667 \\
& \boldsymbol{\alpha}=80^{\circ} \\
& \mathrm{h}=20
\end{aligned}
$$

Observation frame in motion (The relativistic case)
(b)

$$
\begin{aligned}
& \rho=0.8000, r=1.6667 \\
& \alpha=100^{\circ} \\
& h=20
\end{aligned}
$$

Observation frame in motion
(The relativistic case)

(c)

Fig423. Therelaivistic case: $\beta=0.8$. Pyramidfor: (a) $\alpha=90^{\circ}$.(b) $\alpha=80^{\circ}$.
(c) $\alpha=100^{\circ}$, wheren $=(\cos \alpha, \sin \alpha, 0)$.

```
\beta=0.9000, r = 2.2942
Observation frame in motion \(\alpha=90^{\circ}\) (The relativistic case)
```

$h=20$

$$
\begin{aligned}
& \rho=0.9000, \gamma=2.2942 \\
& \alpha=100^{\circ} \\
& h=20
\end{aligned}
$$

Observation frame in motion (The relativistic case)

(c)

Fig 4.24. Therelaivisticcaser $\beta=0.9$. Pyramidfor: (a) $\alpha=90^{\circ}$.(b) $\alpha=80^{\circ}$.
(c) $\alpha=100^{\circ}$, wheren $=(\cos \alpha, \sin \alpha, 0)$.

Fig 425.Therelativistic case: $\beta=0.99$. Pyramidfo: (a) $\alpha=90^{\circ}$.(b) $\alpha=80^{\circ}$. (c) $\alpha=100^{\circ}$, wheren $=(\cos \alpha, \sin \alpha, 0)$.

Fig 4.26 Therelativisticcase: $\beta=0.999$. Pyranidfa: (a) $\alpha=90^{\circ}$.(b) $\alpha=80^{\circ}$.
(c) $\alpha=100^{\circ}$, uheren $=(\cos \alpha, \sin \alpha, 0)$.

43ApplicationIII

Fig 4.27.Trainfor: (a) $\alpha=90^{\circ}$. (b) $\alpha=87^{\circ}$. (c) $\alpha=93^{\circ}$, wheren $=(\cos \alpha, \sin \alpha, 0)$.

431Galilean Treatment vith TimeDalay

Fig 428 Galilean, withtimedelay: $\beta=0.3$. Trainfa: (a) $\alpha=90^{\circ}$.(b) $\alpha=87^{\circ}$.
(c) $\alpha=93^{\circ}$, wheren $=(\cos \alpha, \sin \alpha, 0)$.

Fig 429. Galilea, withtimedalay: $\beta=0.5$. Trainfo: (a) $\alpha=90^{\circ}$. (b) $\alpha=87^{\circ}$.
(c) $\alpha=93^{\circ}$, wheren $=(\cos \alpha, \sin \alpha, 0)$.

$$
\begin{aligned}
& \mathrm{F}=0.8000 \\
& \alpha=90^{\circ} \\
& \mathrm{h}=100.00
\end{aligned}
$$

Observation frame in motion

4

$\mathrm{F}=0.8000$
$\alpha=87^{\circ}$
$\mathrm{h}=100.00$

Fig 430Galilea, withtimedalay: $\beta=0.8$. Trainfo: (a) $\alpha=90^{\circ}$.(b) $\alpha=87^{\circ}$.
(c) $\alpha=93^{\circ}$, wheren $=(\cos \alpha, \sin \alpha, 0)$.
$\mathrm{p}=0.9000$
$\mathbf{\alpha}=90^{\circ}$
$\mathrm{h}=100.00$
Observation frame in motion (Galilean,with time delay)

$\beta=0.9000$
$\alpha=87^{\circ}$
$h=100.00$

p	$=0.9000$
α	$=93^{\circ}$
\mathbf{h}	$=100.00$

Fig 431. Galilean, withtimedday: $\beta=0.9$. Trainfo: (a) $\alpha=90^{\circ}$. (b) $\alpha=87^{\circ}$.
(c) $\alpha=93^{\circ}$, wheren $=(\cos \alpha, \sin \alpha, 0)$.
$\mathbf{p}=0.9900$
$\boldsymbol{\alpha}=90^{\circ}$
$\mathbf{h}=100.00$

$$
h=100.00
$$

(a)

$\mathbf{p}=0.9900$
$\boldsymbol{\alpha}=93^{\circ}$
$\mathbf{h}=100.00$
Observation frame in motion (Galilean, with time delay)

(c)

Fig 432 Galilean, withtime delay: $\beta=0.99$. Trainfo: (a) $\alpha=90^{\circ}$.(b) $\alpha=87^{\circ}$.
(c) $\alpha=93^{\circ}$, wheren $=(\cos \alpha, \sin \alpha, 0)$.

$$
\begin{aligned}
& \mathbf{p}=0.9990 \\
& \mathbf{\alpha}=90^{\circ} \\
& \mathbf{h}=100.00
\end{aligned}
$$

Observation frame in motion (Galilean, with time delay)
(a)

$\boldsymbol{\beta}=0.9990$
$\boldsymbol{\alpha}=93^{\circ}$
$\mathbf{h}=100.00$
Observation frame in motion (Galilean, with time delay)

(c)

Fig 433. Galilean, withtime delay: $\beta=0.999$. Trainfo: (a) $\alpha=90^{\circ}$.(b) $\alpha=87^{\circ}$.
(c) $\alpha=93^{\circ}$, wheren $=(\cos \alpha, \sin \alpha, 0)$.

43.2Relativistic Treatment

Fig 4.34. Therelativistic case: $\beta=0.3$. Trainfor: (a) $\alpha=90^{\circ}$.(b) $\alpha=87^{\circ}$.
(c) $\alpha=93^{\circ}$, wheren $=(\cos \alpha, \sin \alpha, 0)$.

Fig 4.35.Therelativistic case: $\beta=0.5$. Trainfo: (a) $\alpha=90^{\circ}$.(b) $\alpha=87^{\circ}$.
(c) $\alpha=93^{\circ}$, wheren $=(\cos \alpha, \sin \alpha, 0)$.

Fig 436.7herelativisticcase: $\beta=0.8$. Trainfo: (a) $\alpha=90^{\circ}$.(b) $\alpha=87^{\circ}$.
(c) $\alpha=93^{\circ}$, wheren $=(\cos \alpha, \sin \alpha, 0)$.

$$
\begin{aligned}
& \mathrm{F}=0.9000, \quad \mathrm{r}=2.2942 \\
& \boldsymbol{\alpha}=90^{\circ} \\
& \mathrm{h}=100.00
\end{aligned}
$$

Observation frame in motion (The relativistic case)

(c)

Fig 4.37.Therelativisticcase: $\beta=0.9$. Trainfo: (a) $\alpha=90^{\circ}$.(b) $\alpha=87^{\circ}$.
(c) $\alpha=93^{\circ}$, wheren $=(\cos \alpha, \sin \alpha, 0)$.

Fg 438.Therelativistic case: $\beta=0.99$. Trainfo: (a) $\alpha=90^{\circ}$. (b) $\alpha=87^{\circ}$.
(c) $\alpha=93^{\circ}$, wheren $=(\cos \alpha, \sin \alpha, 0)$.

Fig 439.Therelativistic case: $\beta=0.999$. Trainfor: (a) $\alpha=90^{\circ}$.(b) $\alpha=87^{\circ}$.
(c) $\alpha=93^{\circ}$, wheren $=(\cos \alpha, \sin \alpha, 0)$.

Chapter V

ResdutionoftheLongStanding "Train"Paradoxand SamePerinert Analytical Propertiesof the Nn-Hinear Terrell Transformations

This drapter invdves in the resdution of the long standing "train" paradox already nertioned in ar introduction. This paradox hes its roas inthe ealy wak of Tenell (1959) and Wésskpf (1960, 1961), and wes emphesized almost thity years agoby Mthens andLaksmann(1972). The "train"paradox is resdved by poving that any point onthe djiect at rest ($\beta=0$), uhidhtandes any hoizatal line paralle tothe x-axis (drection of notion) remains incortad withthis same line when also the dject is in motion $(\beta \neq 0)$. This dhapter is also involved with sane patinert anelytical propaties of the non-linear Tenell transfamations, which give futher insigt into the applications canied ot in Chapter IV and showwhy some lines ae defomedand wherethesocalledLartzontrationis hidnginthese figues

Fg 51.Agivenhaizatal line paralled tothe x^{\prime}-xxis The pait $\left(a, y^{\prime}, z^{\prime}\right)$ on the dject, for $\beta=0$,tadhestelineaP.

51Resdution of theLongStanding "Train"Paradox

To bing at the physics of the resolution of the "train" pradox we consider first the sitution of mordative motion of the dbect and the dbservaionframe $\beta=0$. Thesiturion with $\beta \neq 0$ is consideredaftervark.

Acooring to $\mathrm{Fg} 51 \mathrm{andEq}(349$, we con wite the equation of U at points $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ and $\left(a, y^{\prime}, z^{\prime}\right)$, respeccively, \boldsymbol{a}

$$
\begin{align*}
& U\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=d \cdot \frac{x^{\prime} n_{2}-y^{\prime} n_{1}}{x^{\prime} n_{1}+y^{\prime} n_{2}} \equiv U, \tag{5.1}\\
& U\left(a, y^{\prime}, z^{\prime}\right)=d \cdot \frac{a n_{2}-y^{\prime} n_{1}}{a n_{1}+y^{\prime} n_{2}} \equiv U_{a}, \tag{52}
\end{align*}
$$

$\boldsymbol{\alpha}$

$$
\begin{align*}
U-U_{a} & =d\left[\frac{x^{\prime} n_{2}-y^{\prime} n_{1}}{x^{\prime} n_{1}+y^{\prime} n_{2}}-\frac{a n_{2}-y^{\prime} n_{1}}{a n_{1}+y^{\prime} n_{2}}\right] \\
& =d\left[\frac{\left(x^{\prime} n_{2}-y^{\prime} n_{1}\right)\left(a n_{1}+y^{\prime} n_{2}\right)-\left(x^{\prime} n_{1}+y^{\prime} n_{2}\right)\left(a n_{2}-y^{\prime} n_{1)}\right.}{\left(x^{\prime} n_{1}+y^{\prime} n_{2}\right)\left(a n_{1}+y^{\prime} n_{2}\right)}\right] \\
& =d\left[\frac{x^{\prime} y^{\prime} n_{2}^{2}-y^{\prime} a n_{1}^{2}+x^{\prime} y^{\prime} n_{1}^{2}-y^{\prime} a n_{2}^{2}}{\left(x^{\prime} n_{1}+y^{\prime} n_{2}\right)\left(a n_{1}+y^{\prime} n_{2}\right)}\right] \\
& =d\left[\frac{x^{\prime} y^{\prime}-y^{\prime} a}{\left(x^{\prime} n_{1}+y^{\prime} n_{2}\right)\left(a n_{1}+y^{\prime} n_{2}\right)}\right] \\
& =\frac{d y^{\prime}\left(x^{\prime}-a\right)}{\left(x^{\prime} n_{1}+y^{\prime} n_{2}\right)\left(a n_{1}+y^{\prime} n_{2}\right)} . \tag{53}
\end{align*}
$$

Accoring to $\mathrm{Eq}(3.50)$, we can also write the equation for V at points ($x^{\prime}, y^{\prime}, z^{\prime}$) and $\left(a, y^{\prime}, z^{\prime}\right)$, respectively, as

$$
\begin{equation*}
V\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\frac{d\left(z^{\prime}-h\right)}{x^{\prime} n_{1}+y^{\prime} n_{2}} \equiv V, \tag{5.4}
\end{equation*}
$$

and

$$
\begin{equation*}
V\left(a, y^{\prime}, z^{\prime}\right)=\frac{d\left(z^{\prime}-h\right)}{a n_{1}+y^{\prime} n_{2}} \equiv V_{a}, \tag{5.5}
\end{equation*}
$$

thes

$$
\begin{align*}
V-V_{a} & =d\left(z^{\prime}-h\right)\left[\frac{1}{x^{\prime} n_{1}+y^{\prime} n_{2}}-\frac{1}{a n_{1}+y^{\prime} n_{2}}\right], \tag{5.6}\\
& =d\left(z^{\prime}-h\right)\left[\frac{a n_{1}+y^{\prime} n_{2}-x^{\prime} n_{1}-y^{\prime} n_{2}}{\left(x^{\prime} n_{1}+y^{\prime} n_{2}\right)\left(a n_{1}+y^{\prime} n_{2}\right)}\right] \\
& =d\left(z^{\prime}-h\right)\left[\frac{n_{1}\left(a-x^{\prime}\right)}{\left(x^{\prime} n_{1}+y^{\prime} n_{2}\right)\left(a n_{1}+y^{\prime} n_{2}\right)}\right] \\
& =\frac{-d\left(z^{\prime}-h\right) n_{1}\left(x^{\prime}-a\right)}{\left(x^{\prime} n_{1}+y^{\prime} n_{2}\right)\left(a n_{1}+y^{\prime} n_{2}\right)} . \tag{5.7}
\end{align*}
$$

UponcompaisonofEq(5.3) andEq(5.7) we seethat

$$
\begin{equation*}
V-V_{a}=-\frac{\left(z^{\prime}-h\right) n_{1}}{y^{\prime}}\left(U-U_{a}\right), \tag{5.}
\end{equation*}
$$

or

$$
\begin{equation*}
V=-\frac{\left(z^{\prime}-h\right) n_{1}}{y^{\prime}} U+V_{a}+\frac{\left(z^{\prime}-h\right) n_{1}}{y^{\prime}} U_{a} . \tag{5.9}
\end{equation*}
$$

Consider theterm $V_{a}+\frac{\left(z^{\prime}-h\right) n_{1}}{y^{\prime}} U_{a}$.FromFas.(52) and(5.5) weget

$$
\begin{aligned}
V_{a}+\frac{\left(z^{\prime}-h\right) n_{1}}{y^{\prime}} & U_{a}
\end{aligned}=\frac{\left(z^{\prime}-h\right) d}{a n_{1}+y^{\prime} n_{2}}+\frac{\left(z^{\prime}-h\right) n_{1}}{y^{\prime}}\left(\frac{a n_{2}-y^{\prime} n_{1}}{a n_{1}+y^{\prime} n_{2}}\right) d .
$$

Thiswegt

$$
\begin{equation*}
V_{a}+\frac{\left(z^{\prime}-h\right)}{y^{\prime}} U_{a}=\frac{n_{2}\left(z^{\prime}-h\right) d}{y^{\prime}} \tag{5.10}
\end{equation*}
$$

InsetEq(5.10) intoEq(59), todtain

$$
\begin{equation*}
V=-\frac{n_{1}\left(z^{\prime}-h\right)}{y^{\prime}} U+\frac{n_{2}\left(z^{\prime}-h\right) d}{y^{\prime}} \tag{5.11}
\end{equation*}
$$

whichistheequaionof astraight line intre U-plane withslope $-\frac{n_{1}\left(z^{\prime}-h\right)}{y^{\prime}}$.

Now we considar the cases with $\beta \neq 0$. To this end we evaluate the expressiors

$$
\begin{equation*}
-\frac{n_{1}\left(z^{\prime}-h\right)}{y^{\prime}} U+\frac{n_{2}\left(z^{\prime}-h\right) d}{y^{\prime}}, \tag{5.11a}
\end{equation*}
$$

couming on the righthand side of $\mathrm{Eq}(511)$, with U as given in $\mathrm{Eq}(349)$ with $\beta \neq 0$. According toFas.(3.49) and(3.50) we nay wite U_{a} and v_{a} as

$$
\begin{equation*}
U_{a}=\left(\frac{\gamma\left[(a+\gamma \beta h)-\beta \sqrt{(a+\gamma \beta h)^{2}+y^{\prime 2}+\left(z^{\prime}-h\right)^{2}}\right.}{\gamma\left[(a+\gamma \beta h)-\beta \sqrt{(a+\gamma \beta h)^{2}+y^{\prime 2}+\left(z^{\prime}-h\right)^{2}}\right.} \cdot \frac{n_{2}-y^{\prime} n_{1}}{n_{1}+y^{\prime} n_{2}}\right) d, \tag{5.12}
\end{equation*}
$$

and
set

$$
X_{a}=\gamma\left[(a+\gamma \beta h)-\beta \sqrt{(a+\gamma \beta h)^{2}+y^{\prime 2}+\left(z^{\prime}-h\right)^{2}}\right] .
$$

Wenaywnite inshat U_{a} and V_{a} as:

$$
\begin{equation*}
U_{a}=\frac{X_{a} n_{2}-y^{\prime} n_{1}}{X_{a} n_{1}+y^{\prime} n_{2}} d, \tag{5.14}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{a}=\frac{d\left(z^{\prime}-h\right)}{X_{a} n_{1}+y^{\prime} n_{2}} . \tag{5.15}
\end{equation*}
$$

Uponsubstituing U_{a} intotheexpression(5.11a) we get

$$
\begin{align*}
& =-\frac{\left(z^{\prime}-h\right) n_{1}}{y^{\prime}} U_{a}+\frac{n_{2} d\left(z^{\prime}-h\right)}{y^{\prime}} \\
& =-\frac{\left(z^{\prime}-h\right) n_{1}}{y^{\prime}} \frac{X_{a} n_{2}-y^{\prime} n_{1}}{X_{a} n_{1}+y^{\prime} n_{2}} d+\frac{n_{2} d\left(z^{\prime}-h\right)}{y^{\prime}} \\
& =\frac{d\left(z^{\prime}-h\right)}{y^{\prime}}\left[\frac{-X_{a} n_{1} n_{2}+y^{\prime} n_{1}^{2}}{X_{a} n_{1}+y^{\prime} n_{2}}+n_{2}\right] \\
& =\frac{d\left(z^{\prime}-h\right)}{y^{\prime}}\left[\frac{-X_{a} n_{1} n_{2}+y^{\prime} n_{1}^{2}+X_{a} n_{1} n_{2}+y^{\prime} n_{2}^{2}}{X_{a} n_{1}+y^{\prime} n_{2}}\right] \\
& =\frac{d\left(z^{\prime}-h\right) y^{\prime}}{y^{\prime}\left[X_{a} n_{1}+y^{\prime} n_{2}\right]} \\
& =\frac{d\left(z^{\prime}-h\right)}{X_{a} n_{1}+y^{\prime} n_{2}} \\
& =\frac{d\left(z^{\prime}-h\right)}{\gamma\left[(a+\gamma \beta h)-\beta \sqrt{(a+\gamma \beta h)^{2}+y^{\prime 2}+\left(z^{\prime}-h\right)^{2}}\right.} n_{1}+y^{\prime} n_{2} \tag{5.16}
\end{align*}
$$

UponcompaingEq(516) nith $\mathrm{Eq}(5.55)$ andusing the definition of X_{a} below Eq.(5.13), we condude that the point $\left(U_{\omega} V_{a}\right)$ lies on the same line in Eq.(5.11) for $\beta \neq 0$ as well.

For example, refer to Fg4.1(b) (also Fg441(a)), and considar an imaginary straight line joining the tips of the thee roofs as drawninthe dbservation frame. Now consider the conesponding case for $\beta=0.8$ inFig44(b). Hreonehas theimpression that the tip of the roof of the first house onthe left has at throughand passedthrough this line. The proof povided above shons that the tips of the roofs of all the thre hases remain always in contact, $\operatorname{for} \beta \neq 0$, as well, with the straight line bit at different pointsfor $\beta=0$ and $\beta \neq 0$ detotherelativenation.

52Expansionand Cantracion of ApproachingandReeeding Objects-ADppler-LikeEffed for Scale

Fig 5.2 Approaching andreceedingdbieds.

Consider tho rulers of equal proper lengths, each moving to the right with speed v, with ore approaching and ne receding fromandbserver. The end points of the ruler on the left are labeded by 1,2 and the end points of the one ontheright are labeled by 3, 4 De to the time delay mechnismlight mist be "enitted" fromend paint 1 first thenfrompoint 2 whichinthe meantime has noved to point 2 , in order
to read similtaneasly the observer. That is, the ruler on the left appears to comespond totheextendedogject $(1,2)$ rather than the object $(1,2)$. This phenonenon noaks against the socalled Larentz contraction due to relativity. On the other hand, the object on the right appears toconespond to the contracted object $(3,4)$ rather than totheobject $(3,4)$. This naks together withtheLarnzcontraction. Toget the full net corribution, in general, one, hovever, has to use the exat transformation in Eq (3.47).

To get futher insight into the above Doppler-like effect for scale it is wath reconsidaring the transfomation rule in Eq(3.47). Consider an infinitesimal partitioning of a very long nuler of parts equal each in length to Δx^{\prime} in the rule's prper frame. Cansider parts of the moving ruler to the left of and pats to the right of the obsaver

doserver

Fig 5.3.Pations of a aulerapproachingtoandreceedingfirmandoserver.

If Δx_{L} and Δx_{R} ae theinfintesimal pationsonthe left handside and the right handside, respectively, tothe dbserver, then according to Eq (3.47) we can write for
aninfintesimal pation Δx inthe observationframe by differentiating that equationto dtain

$$
\begin{equation*}
\Delta x=\gamma \Delta x^{\prime}-\frac{\gamma \beta \cdot \Delta x^{\prime}\left(x^{\prime}+\gamma \beta h\right)}{\sqrt{\left(x^{\prime}+\gamma \beta h\right)^{2}+y^{\prime 2}+\left(z^{\prime}-h\right)^{2}}} . \tag{5.17}
\end{equation*}
$$

Thelaternayberewrittenas

$$
\begin{equation*}
\Delta x=\frac{\Delta x^{\prime}}{\gamma}+\left(\gamma-\frac{1}{\gamma}\right) \Delta x^{\prime}-\frac{\gamma \beta \cdot \Delta x^{\prime}\left(x^{\prime}+\gamma \beta h\right)}{\sqrt{\left(x^{\prime}+\gamma \beta h\right)^{2}+y^{\prime 2}+\left(z^{\prime}-h\right)^{2}}} . \tag{5.18}
\end{equation*}
$$

Using the idantity $\gamma-\frac{1}{\gamma}=\gamma \beta^{2}$, Eq(5.18) canberewnittenas

$$
\begin{align*}
& \Delta x=\frac{\Delta x^{\prime}}{\gamma}+\gamma \beta^{2} \Delta x^{\prime}-\frac{\gamma \beta \cdot \Delta x^{\prime}\left(x^{\prime}+\gamma \beta h\right)}{\sqrt{\left(x^{\prime}+\gamma \beta h\right)^{2}+y^{\prime 2}+\left(z^{\prime}-h\right)^{2}}}, \tag{5.19}\\
& \Delta x=\frac{\Delta x^{\prime}}{\gamma}+\gamma \beta \Delta x^{\prime}\left(\beta-\frac{\Delta x^{\prime}\left(x^{\prime}+\gamma \beta h\right)}{\sqrt{\left(x^{\prime}+\gamma \beta h\right)^{2}+y^{\prime 2}+\left(z^{\prime}-h\right)^{2}}}\right), \tag{5.20}\\
& \Delta x=\Delta x^{\prime}\left\{\frac{1}{\gamma}+\gamma \beta\left(\beta-\frac{x^{\prime}+\gamma \beta h}{\sqrt{\left(x^{\prime}+\gamma \beta h\right)^{2}+y^{\prime 2}+\left(z^{\prime}-h\right)^{2}}}\right)\right\} \cdot \tag{5.21}
\end{align*}
$$

We see in Eq (5.20) that the first termis the Laentz contracion and the last temis a temwhich imoaporates time delay. Next we can write the expessions for Δx_{L} and Δx_{R} which doviasly depend on the sign of the x^{\prime} whare the sign will be negaive for x^{\prime} on the left-hand side and positive for x^{\prime} the right-hand side of the dosenver:

$$
\begin{equation*}
\Delta x_{L}=\frac{\Delta x^{\prime}}{\gamma}+\gamma \beta\left(\frac{\left(\left|x^{\prime}\right|-\gamma \beta h\right)}{\sqrt{\left(\left|x^{\prime}\right|-\gamma \beta h\right)^{2}+y^{\prime 2}+\left(z^{\prime}-h\right)^{2}}}+\beta\right) \Delta x^{\prime}, \tag{5.22}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta x_{R}=\frac{\Delta x^{\prime}}{\gamma}-\gamma \beta\left(\frac{\left(\left|x^{\prime}\right|+\gamma \beta h\right)}{\sqrt{\left(\left|x^{\prime}\right|+\gamma \beta h\right)^{2}+y^{\prime 2}+\left(z^{\prime}-h\right)^{2}}}-\beta\right) \Delta x^{\prime} . \tag{5.23}
\end{equation*}
$$

Me nowconsider tho extreme points of the very long nule, that is, for which $\left|x^{\prime}\right|$ is very lage. In this case Eas.(5.2) and (5.23) may be, respectively, rexnitten appoximatelyas

$$
\begin{align*}
& \Delta x_{L} \doteq \frac{\Delta x^{\prime}}{\gamma}+\Delta x^{\prime} \beta \sqrt{\frac{1+\beta}{1-\beta}} \tag{5.24}\\
& \Delta x_{R} \doteq \frac{\Delta x^{\prime}}{\gamma}-\Delta x^{\prime} \beta \sqrt{\frac{1-\beta}{1+\beta}} \tag{5.25}
\end{align*}
$$

Eq(5.24) cleady shous howan additional expansion cocus to the left which waks against theLorentzcontraction. Similaty, Eq(5.25) dearly shows howan aditional cortradioncoars that waks withthe Larntzontraction. Inthe later case it is worth naing that we may rewnite

$$
\begin{equation*}
\Delta x_{R}=\frac{\Delta x^{\prime}}{\gamma}[1-\beta(1-\beta)]>0, \tag{5.26}
\end{equation*}
$$

for $\beta<1$. Wealsonde, in patialar, that for the extrene points

$$
\begin{equation*}
\Delta x_{L}-\Delta x_{R}=2 \Delta x^{\prime} \beta \gamma>0 . \tag{5.27}
\end{equation*}
$$

Forotherpointsof $\left|x^{\prime}\right|$ mehas torely onthe exat expressions Eqs.(5.22) and(523).
Abeautiful denmstration of this Doppler-like effect for scale is given in the applicationtothe traincompartments(c.f., Fg.4.38).

The old fundanertal and citical question now comes to haut us: Can we phoograph the Laentz contraction? To ansuer this question explicitly we set the doserver at the arigin O of his cocrinate frame, i.e, set $h=0$, and consider a nuler
moving totheright of the x-axis nith speed such that at its bottomedge $z^{\prime}=0$ and y^{\prime} is abbitraybt fixed. Tothisend, Eq(3.55) gives tothe conesponding Uvalues of its battomedge:

$$
\begin{equation*}
\frac{U}{d}=\frac{\gamma \mid x^{\prime}-\beta \sqrt{x^{\prime 2}+y^{\prime 2}}}{\gamma\left[n_{2}^{\prime}-\beta \sqrt{x^{\prime 2}+y^{\prime 2}} y_{n_{1}}+y^{\prime} n_{1} n_{2}\right.} . \tag{5.28}
\end{equation*}
$$

(Aso $V=0$). Acocodingly,

$$
\begin{align*}
\frac{\Delta U}{d}= & \frac{\gamma\left[\Delta x^{\prime}-\beta \frac{x^{\prime} \Delta x^{\prime}}{\sqrt{x^{\prime 2}+y^{\prime 2}}}\right] n_{2}}{\gamma\left[x^{\prime}-\beta \sqrt{x^{\prime 2}+y^{\prime 2}}\right] n_{1}+y^{\prime} n_{2}} \\
& -\frac{\gamma\left[x^{\prime}-\beta \sqrt{x^{\prime 2}+y^{\prime 2}}\right] n_{2}-y^{\prime} n_{1}}{\left.\left(\gamma x x^{\prime}-\beta \sqrt{x^{\prime 2}+y^{\prime 2}}\right] n_{1}+y^{\prime} n_{2}\right)^{2}} \gamma\left(\Delta x^{\prime}-\beta \frac{x^{\prime} \Delta x^{\prime}}{\sqrt{x^{\prime 2}+y^{\prime 2}}}\right) n_{1}, \tag{5.29}
\end{align*}
$$

$$
\begin{gather*}
\frac{\Delta U}{d}=\frac{\gamma\left[\Delta x^{\prime}-\beta \frac{x^{\prime} \Delta x^{\prime}}{\sqrt{x^{\prime 2}+y^{\prime 2}}}\right]}{\left(\gamma\left[x^{\prime}-\beta \sqrt{x^{\prime 2}+y^{\prime 2}}\right] n_{1}+y^{\prime} n_{2}\right)^{2}}\left[n_{2}\left[\gamma\left(x^{\prime}-\beta \sqrt{x^{\prime 2}+y^{\prime 2}}\right) n_{1}+y^{\prime} n_{2}\right]\right. \\
\left.-n_{1} \downarrow\left(x^{\prime}-\beta \sqrt{x^{\prime 2}+y^{\prime 2}}\right) n_{2}-y^{\prime} n_{1}\right], \tag{.30}\\
\frac{\Delta U}{d}=\frac{y^{\prime} \gamma\left[1-\beta \frac{x^{\prime}}{\sqrt{x^{\prime 2}+y^{\prime 2}}}\right] \Delta x^{\prime}}{\left(\gamma\left[x^{\prime}-\beta \sqrt{x^{\prime 2}+y^{\prime 2}}\right] n_{1}+y^{\prime} n_{2}\right)^{2}}, \tag{531}
\end{gather*}
$$

For $n_{1}=0, \quad n_{2}=1$

$$
\begin{align*}
& \frac{\Delta U}{d}=\frac{\gamma}{y^{\prime}}\left[1-\beta \frac{x^{\prime}}{\sqrt{x^{\prime 2}+y^{\prime 2}}}\right] \Delta x^{\prime}, \tag{5.32}\\
& \frac{\Delta U}{d}=\frac{1}{y^{\prime}}\left\{\left[\gamma-\frac{1}{\gamma}+\frac{1}{\gamma}\right] \Delta x^{\prime}-\frac{\Delta x^{\prime} \gamma \beta x^{\prime}}{\sqrt{x^{\prime 2}+y^{\prime 2}}}\right\}, \tag{533}\\
& \frac{\Delta U}{d}=\frac{1}{y^{\prime}}\left\{\left[\frac{\gamma^{2}-1}{\gamma}+\frac{1}{\gamma}\right] \Delta x^{\prime}-\frac{\Delta x^{\prime} \gamma \beta x^{\prime}}{\sqrt{x^{\prime 2}+y^{\prime 2}}}\right\}, \tag{5.34}\\
& \frac{\Delta U}{d}=\frac{1}{y^{\prime}}\left\{\left[\frac{\gamma^{2} \beta^{2}}{\gamma}+\frac{1}{\gamma}\right] \Delta x^{\prime}-\frac{\Delta x^{\prime} \gamma \beta r^{\prime}}{\sqrt{x^{\prime 2}+y^{\prime 2}}}\right\}, \tag{535}\\
& \frac{\Delta U}{d}=\frac{1}{y^{\prime}}\left[\frac{\Delta x^{\prime}}{\gamma}+\Delta x^{\prime} \gamma \beta^{2}-\frac{\Delta x^{\prime} \gamma \beta x^{\prime}}{\sqrt{x^{\prime 2}+y^{\prime 2}}}\right], \tag{5.36}
\end{align*}
$$

or

$$
\begin{equation*}
y^{\prime} \frac{\Delta U}{d}=\frac{\Delta x^{\prime}}{\gamma}+\gamma \beta\left(\beta-\frac{x^{\prime}}{\sqrt{x^{\prime 2}+y^{\prime 2}}}\right)\left\langle x^{\prime} .\right. \tag{5.37}
\end{equation*}
$$

$\operatorname{Sime}\left|\frac{x^{\prime}}{\sqrt{x^{\prime 2}+y^{\prime 2}}}\right|<1$, weinfer that abat the point $\frac{x^{\prime}}{\sqrt{x^{\prime 2}+y^{\prime 2}}}=\beta$, foragiven β,

$$
\begin{equation*}
\Delta U=\frac{d}{y^{\prime}} \frac{\Delta x^{\prime}}{\gamma}, \tag{5.38}
\end{equation*}
$$

which, apart fromthe trivial scaling factor d / y^{\prime}, is the famous Laentz contraction. That is, about acetain point of the object the Laentzontraction is visibleonor $L V$ pane.

Fig 5.4. Linemaking anangle $\theta=\cos ^{-1}(\beta)$ withthe x^{\prime}-axis inthe properframe.

Tofind this critical point onthe ulee, at which point the Laentzontractionis visible, we drawa line making an angle $\theta=\cos ^{-1}(\beta)$ withthe x^{\prime}-axis before setting the nuler tomove with a givenspeed β (see Fig5.4). This line vill cooss a point on the lower side of the nuler and defines this critical poin. By partitioning the ruler with small intervals of lengths Δx^{\prime}, Eq(538) shous that the Laentz contraction is visible about the critical point uponcomparison with the stationary case

$$
\begin{equation*}
\Delta U=\frac{d}{y^{\prime}} \Delta x^{\prime}, \text { for } \beta=0 . \tag{5.39}
\end{equation*}
$$

This also provides a test for the comparison of the Galilean case to the relativistic. TheGalileancaseccincides withthat of Eq(5.39) evenfor $\beta \neq 0$ sime γ is effectively set equal toonein Eq (5.38).

53TheGrving-ゆofLinesPerpendialar totheDrectionof Mtion

Fig 5.5. Linesperpendialartothedrection of motion.

As a consequeme of timedday resulting fromthe fact that light has to be 'enitted" fromend point 1 before the endpoint 2 , a line papendiaular to the direction of motionnecessarily appears anved withend paints 1, 2' rather than 1,2 The same analysis applies to the lime with end points 3,4 an the right of the dbserver. This arving up of lines perpendialar to the direction of notion is well illustrated in ar applications camied at in Chapter IV. Compre, for example, the illustrations in Fg.410 withthe conesponding ones inFg4.1. It is precisely because point 1 appears aheadof point 2for anytwolines perpendicular tothe x^{\prime} axis along the y^{\prime} and z^{\prime} axes, that an object, due to its relative notion and tine delay, appeas to be rotated (nith deformaions) about the later two axes andhemethe "train'"paradox.

Nowne disass in detail the arving up of these lines analytically. According toEss.(349) and (3.50), with $n_{1}=0, n_{2}=1$, wemay write

$$
\begin{equation*}
\frac{U}{d}=\frac{\gamma\left(\left(x^{\prime}+\gamma \beta h\right)-\beta \sqrt{\left(x^{\prime}+\gamma \beta h\right)^{2}+y^{\prime 2}+\left(z^{\prime}-h\right)^{2}}\right\rfloor}{y^{\prime}}, \tag{5.40}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{V}{d}=\frac{\left[z^{\prime}-h\right]}{y^{\prime}} . \tag{5.41}
\end{equation*}
$$

Foraline paralle tothe z^{\prime}-axis andhene, in particular, perpendicular tothe x^{\prime}-axis (drection of motion) wehavethat x^{\prime} and y^{\prime} aresoneconstarts, and z^{\prime} is a variable. ThusfromEq(540) we have

$$
\begin{equation*}
\left(\frac{U}{d}-\frac{\gamma\left(x^{\prime}+\gamma \beta h\right)}{y^{\prime}}\right)^{2}=\frac{\gamma^{2} \beta^{2}}{y^{\prime 2}}\left[\left(x^{\prime}+\gamma \beta h\right)^{2}+y^{\prime 2}+\left(z^{\prime}-h\right)^{2}\right] . \tag{5.42}
\end{equation*}
$$

UponinsatingEq(5.41) intoEq(5.42) weget

$$
\begin{equation*}
\left(\frac{U}{d}-\frac{\gamma\left(x^{\prime}+\gamma \beta h\right)}{y^{\prime}}\right)^{2}=\frac{\gamma^{2} \beta^{2}\left[\left(x^{\prime}+\gamma \beta h\right)^{2}+y^{\prime 2}\right]}{y^{\prime 2}}+\frac{\gamma^{2} \beta^{2} V^{2}}{d^{2}} . \tag{5.43}
\end{equation*}
$$

WerewniteEq(543) as

$$
\begin{aligned}
& \frac{\left(\frac{U}{d}-\frac{\gamma\left(x^{\prime}+\gamma \beta h\right)}{y^{\prime}}\right)^{2}}{\frac{\gamma^{2} \beta^{2}\left[\left(x^{\prime}+\gamma \beta h\right)^{2}+y^{\prime 2}\right]}{y^{\prime 2}}}-\frac{V^{2}}{d^{2}}\left[\frac{\left.\left(x^{\prime}+\gamma \beta h\right)^{2}+y^{\prime 2}\right]}{y^{\prime 2}}\right] \\
& \frac{\left(U-\frac{d \gamma\left(x^{\prime}+\gamma \beta h\right)}{y^{\prime}}\right)^{2}}{\frac{d^{2} \gamma^{2} \beta^{2}\left[\left(x^{\prime}+\gamma(\beta h)^{2}+y^{\prime 2}\right]\right.}{y^{\prime 2}}}-\frac{V^{2}}{d^{2}\left[\frac{\left[\left(x^{\prime}+\gamma \beta h\right)^{2}+y^{\prime 2}\right]}{y^{\prime 2}}\right]}=1,
\end{aligned}
$$

α

$$
\begin{equation*}
\frac{\left(U-U_{0}\right)^{2}}{a^{2}}-\frac{V^{2}}{b^{2}}=1, \tag{5.44}
\end{equation*}
$$

where

$$
U_{0}=\frac{d \gamma\left(x^{\prime}+\gamma \beta h\right)}{y^{\prime}}, a^{2}=\frac{d^{2} \gamma^{2} \beta^{2}\left[\left(x^{\prime}+\gamma \beta h\right)^{2}+y^{\prime 2}\right]}{y^{\prime 2}}, b^{2}=d^{2}\left[\frac{\left[\left(x^{\prime}+\gamma \beta h\right)^{2}+y^{\prime 2}\right]}{y^{\prime 2}}\right] .
$$

Eq(54) is the equation of a hyperbla with the focal points lying on the haizontal Uaxis. Thus we condude that a line paralle to the z^{\prime}-axis and hence perpendicular tothe drection of notionbecones a pation of a hyperbolainthe $U V$ planeas shomninEq(5.44)

Now we consider the other case of a line perpendicular paralle to the z^{\prime}-axis and heme, as before, perpendialar to the direction of notion (the x^{\prime}-axis). In this case x^{\prime} and z^{\prime} are some constants and y^{\prime} is a variable. FromEq(541) we nay solve for y^{\prime} asfollons:

$$
\begin{equation*}
y^{\prime}=\frac{\left[z^{\prime}-h\right]}{V} d . \tag{5.45}
\end{equation*}
$$

UponimsatingEq(5.45) intoEq(5.40) todtain

$$
\begin{align*}
& U=\frac{V}{\left(z^{\prime}-h\right)}\left[\gamma\left(x^{\prime}+\gamma \beta h\right)-\gamma \beta \sqrt{\left(x^{\prime}+\gamma \beta h\right)^{2}+\frac{\left(z^{\prime}-h\right)^{2} d^{2}}{V^{2}}+\left(z^{\prime}-h\right)^{2}}\right], \tag{5.46}\\
& U=\frac{\gamma\left(x^{\prime}+\gamma \beta h\right) V}{\left(z^{\prime}-h\right)}-\frac{\gamma \beta}{\left(z^{\prime}-h\right)} \sqrt{V^{2}\left(x^{\prime}+\gamma \beta h\right)^{2}+\left(z^{\prime}-h\right)^{2} d^{2}+V^{2}\left(z^{\prime}-h\right)^{2}}, \tag{5.47}\\
& U=\frac{\gamma\left(x^{\prime}+\gamma \beta h\right) V}{\left(z^{\prime}-h\right)}-\frac{\gamma \beta}{\left(z^{\prime}-h\right)} \sqrt{V^{2}\left[\left(x^{\prime}+\gamma \beta h\right)^{2}+\left(z^{\prime}-h\right)^{2}\right]+\left(z^{\prime}-h\right)^{2} d^{2}}, \tag{5.48}
\end{align*}
$$

α

$$
\begin{equation*}
U=A V-\sqrt{C^{2} V^{2}+D^{2}}, \tag{5.49}
\end{equation*}
$$

where $A=\frac{\gamma\left(x^{\prime}+\gamma \beta h\right)}{\left(z^{\prime}-h\right)}, C^{2}=\frac{\gamma^{2} \beta^{2}}{\left(z^{\prime}-h\right)^{2}}\left[\left(x^{\prime}+\gamma \beta h\right)^{2}-\left(z^{\prime}-h\right)^{2}\right], \quad D^{2}=\gamma^{2} \beta^{2} d^{2}$.

Tostudy the amalytical stuxure of Eq(549), we consider ardation of the U, V axesbysomeangle α. Thet is, we wite

$$
\begin{align*}
& U=U^{\prime} \cos \alpha+V^{\prime} \sin \alpha \tag{5.50}\\
& V=-U^{\prime} \sin \alpha+V^{\prime} \cos \alpha \tag{5.51}
\end{align*}
$$

Inseat Eas.(5.50) and(5.51) intoEq(5.49) andsolvefor α self consistertly todtain

$$
U^{\prime} \cos \alpha+V^{\prime} \sin \alpha=A\left[-U^{\prime} \sin \alpha+V^{\prime} \cos \alpha\right]
$$

$$
\begin{equation*}
-\sqrt{C^{2}\left(U^{\prime 2} \sin ^{2} \alpha+V^{\prime 2} \cos ^{2} \alpha-2 U^{\prime} V^{\prime} \sin \alpha \cos \alpha\right)+D^{2}} \tag{5.52}
\end{equation*}
$$

$U^{\prime}[\cos \alpha+A \sin \alpha]+V^{\prime}[\sin \alpha-A \cos \alpha]=$

$$
\begin{equation*}
-\sqrt{C^{2}\left(U^{\prime 2} \sin ^{2} \alpha+V^{\prime 2} \cos ^{2} \alpha-2 U^{\prime} V^{\prime} \sin \alpha \cos \alpha\right)+D^{2}}, \tag{5.53}
\end{equation*}
$$

Uponsquaringtheaboveequaionuehave

$$
\begin{align*}
& U^{\prime 2}[\cos \alpha+A \sin \alpha]^{2}+V^{\prime 2}[\sin \alpha-A \cos \alpha]^{2}+2 U^{\prime} V^{\prime}[\cos \alpha+A \sin \alpha][\sin \alpha-A \cos \alpha] \\
& =C^{2}\left(U^{\prime 2} \sin ^{2} \alpha+V^{\prime 2} \cos ^{2} \alpha-2 U^{\prime} V^{\prime} \sin \alpha \cos \alpha\right)+D^{2} \tag{5.54}\\
& U^{\prime 2}\left[(\cos \alpha+A \sin \alpha)^{2}-C^{2} \sin ^{2} \alpha\right]+V^{\prime 2}\left[(\sin \alpha-A \cos \alpha)^{2}-C^{2} \cos ^{2} \alpha\right] \\
& \quad+2 U^{\prime} V^{\prime}\left[(\cos \alpha+A \sin \alpha)(\sin \alpha-A \cos \alpha)+C^{2} \sin \alpha \cos \alpha\right]=D^{2} \tag{5.55}
\end{align*}
$$

Tosolvefor α, we set the coefficient of the $U^{\prime} v$ 'temequal tozroanddtain

 aocricsediors$$
\begin{equation*}
U^{\prime 2} S_{1}+V^{\prime 2} S_{2}=D^{2}, \tag{5.56}
\end{equation*}
$$

where

$$
S_{1}=(\cos \alpha+A \sin \alpha)^{2}-C^{2} \sin ^{2} \alpha \text { and } S_{2}=(\sin \alpha-A \cos \alpha)^{2}-C^{2} \cos ^{2} \alpha,
$$

andfor thecoefficient of the $U^{\prime} V^{\prime}$ temuehave

$$
\begin{equation*}
(\cos \alpha+A \sin \alpha)(\sin \alpha-A \cos \alpha)+C^{2} \sin \alpha \cos \alpha=0 \tag{5.57}
\end{equation*}
$$

Solvingfortheangle α wegt

$$
\begin{aligned}
& \cos \alpha \sin \alpha-A \cos ^{2} \alpha+A \sin ^{2} \alpha-A^{2} \sin \alpha \cos \alpha+C^{2} \sin \alpha \cos \alpha=0 \\
& \cos \alpha \sin \alpha\left(1-A^{2}+C^{2}\right)-A\left(\cos ^{2} \alpha-\sin ^{2} \alpha\right)=0 \\
& \frac{\sin 2 \alpha}{2}\left(1-A^{2}+C^{2}\right)-A \cos 2 \alpha=0 \\
& \frac{\sin 2 \alpha}{2}\left(1-A^{2}+C^{2}\right)=A \cos 2 \alpha \\
& \frac{\sin 2 \alpha}{\cos 2 \alpha}=\frac{2 A}{1-A^{2}+C^{2}},
\end{aligned}
$$

or

$$
\begin{equation*}
\tan 2 \alpha=\frac{2 A}{1-A^{2}+C^{2}} . \tag{5.58}
\end{equation*}
$$

Nowwe useEq(5.58) to simplify the expressions for S_{I} and S_{2} inEq(5.56). To thisend

$$
\begin{equation*}
S_{1}=\cos ^{2} \alpha+A^{2} \sin ^{2} \alpha+2 A \sin \alpha \cos \alpha-C^{2} \sin ^{2} \alpha \tag{5.59}
\end{equation*}
$$

α

$$
\begin{equation*}
S_{1}=\cos ^{2} \alpha+\left(A^{2}-C^{2}\right) \sin ^{2} \alpha+2 A \sin \alpha \cos \alpha . \tag{5.60}
\end{equation*}
$$

Onthe aherhand, fromFq(5.58) we datain $A^{2}-C^{2}=1-\frac{2 A}{\tan 2 \alpha}$.

ThusEq(558) canberewittenas

$$
\begin{aligned}
S_{1} & =\cos ^{2} \alpha+\left[1-\frac{2 A}{\tan 2 \alpha}\right] \sin ^{2} \alpha+2 A \sin \alpha \cos \alpha \\
& =1-2 A\left[\frac{\sin ^{2} \alpha}{\tan 2 \alpha}-\sin \alpha \cos \alpha\right] \\
& =1-2 A \sin \alpha\left[\frac{\sin \alpha \cos 2 \alpha}{\sin 2 \alpha}-\cos \alpha\right] \\
& =1-2 A \sin \alpha\left[\frac{\sin \alpha\left(\cos ^{2} \alpha-\sin ^{2} \alpha\right)}{2 \sin \alpha \cos \alpha}-\cos \alpha\right] \\
& =1-2 A \sin \alpha\left[\frac{\cos ^{2} \alpha-\sin ^{2} \alpha-2 \cos ^{2} \alpha}{2 \cos \alpha}\right] \\
& =1-2 A \sin \alpha\left[\frac{-\cos ^{2} \alpha-\sin ^{2} \alpha}{2 \cos \alpha}\right] \\
& =1+\frac{A \sin \alpha}{\cos \alpha} .
\end{aligned}
$$

Нпе

$$
\begin{equation*}
S_{1}=1+A \tan \alpha \tag{5.61}
\end{equation*}
$$

Aso

$$
\begin{aligned}
S_{2} & =\sin ^{2} \alpha+A^{2} \cos ^{2} \alpha-2 A \sin \alpha \cos \alpha-C^{2} \cos ^{2} \alpha \\
& =\sin ^{2} \alpha+\left(A^{2}-C^{2}\right) \cos ^{2} \alpha-2 A \sin \alpha \cos \alpha \\
& =\sin ^{2} \alpha+\left[1-\frac{2 A}{\tan 2 \alpha}\right] \cos ^{2} \alpha-2 A \sin \alpha \cos \alpha \\
& =1-2 A\left[\frac{\cos ^{2} \alpha}{\tan 2 \alpha}+\sin \alpha \cos \alpha\right] \\
& =1-2 A \cos \alpha\left[\frac{\cos \alpha\left(\cos ^{2} \alpha-\sin ^{2} \alpha\right)}{2 \sin \alpha \cos \alpha}+\sin \alpha\right] \\
& =1-2 A \cos \alpha\left[\frac{\cos ^{2} \alpha-\sin ^{2} \alpha}{2 \sin \alpha}+\sin \alpha\right] \\
& =1-2 A \cos \alpha\left[\frac{\cos ^{2} \alpha-\sin ^{2} \alpha+2 \sin ^{2} \alpha}{2 \sin \alpha}\right] \\
& =1-\frac{2 A \cos \alpha}{2 \sin \alpha},
\end{aligned}
$$

$$
\begin{equation*}
S_{2}=1-A \cot \alpha \tag{5.6}
\end{equation*}
$$

FinallyEq(5.56) canbe writtenas

$$
\begin{equation*}
U^{\prime 2}(1+A \tan \alpha)+V^{\prime 2}(1-A \cot \alpha)=D^{2} . \tag{5.63}
\end{equation*}
$$

If

$$
1+A \tan \alpha<0,
$$

that is,

$$
\begin{aligned}
& A \tan \alpha<-1, \\
& -A \tan \alpha>1,
\end{aligned}
$$

then

$$
-A \cot \alpha>0
$$

anduehave

$$
1-A \cot \alpha>0
$$

andEq(5.63) specifies theequation of ahyperbola. Ontheother handif

$$
1+A \tan \alpha>0
$$

$$
A \tan \alpha>-1
$$

$$
-A \tan \alpha>1
$$

then

$$
\begin{array}{r}
A \cot \alpha>\frac{1}{\tan ^{2} \alpha}, \\
-A \cot \alpha<\frac{1}{\tan ^{2} \alpha},
\end{array}
$$

$$
1-A \cot \alpha<1+\frac{1}{\tan ^{2} \alpha}
$$

and uedtainquitegenerally

$$
1-A \cot \alpha<\frac{1}{\sin ^{2} \alpha}
$$

Accaringly, Eq(5.63) will specify pations of a rotated hypabola or a ratedellipse as thecase maybe.

54Gitical Speedsfor Expansions VersusContractions

By comparing Figs.48-4.13 we infer that some critical speed cocurs below which expansion ccaus in the drection of motion and above which the situation is reversed andocrtractionocars. These figues seemalsotoindicate that such a citical speedccars as a commoncritical speed, simultaneasly, forboth Uand V. That is

$$
\begin{equation*}
\left.\frac{d U}{d \boldsymbol{\beta}}\right|_{\beta=\beta \text { romisal }}=0, \tag{5.64}
\end{equation*}
$$

impliesthat

$$
\begin{equation*}
\left.\frac{d V}{d \beta}\right|_{\beta=\beta_{\text {criveal }}}=0, \tag{565}
\end{equation*}
$$

for the same critical value of $\beta=\beta$ To prove this ne cary at the derivatives $d U / d \beta, d V / d \beta$ explicitly.

$$
\begin{equation*}
U=\left(\frac{\gamma\left(\left(x^{\prime}+\gamma \beta h\right)-\beta \sqrt{\left(x^{\prime}+\gamma \beta h\right)^{2}+y^{\prime 2}+\left(z^{\prime}-h\right)^{2}}\right.}{\gamma\left(x^{\prime}+\gamma \beta h\right)-\beta \sqrt{\left(x^{\prime}+\gamma \beta h\right)^{2}+y^{\prime 2}+\left(z^{\prime}-h\right)^{2}}} \cdot \frac{n_{2}-y^{\prime} n_{1}}{n_{1}+y^{\prime} n_{2}}\right) d . \tag{5.66}
\end{equation*}
$$

$\operatorname{Set} F=\gamma\left[\left(x^{\prime}+\gamma \beta h\right)-\beta \sqrt{\left(x^{\prime}+\gamma \beta h\right)^{2}+y^{\prime 2}+\left(z^{\prime}-h\right)^{2}}\right]$.

ThenwemayrewniteEq(560) as

$$
\begin{gather*}
U=\frac{F n_{2}-y^{\prime} n_{1}}{F n_{1}+y^{\prime} n_{2}} d, \tag{5.67}\\
\frac{d U}{d \beta}=d \frac{\left(F n_{1}+y^{\prime} n_{2}\right) n_{2} \frac{d F}{d \beta}-\left(F n_{2}-y^{\prime} n_{1}\right) n_{1} \frac{d F}{d \boldsymbol{\beta}}}{\left(F n_{1}+y^{\prime} n_{2}\right)^{2}}, \tag{5.68}\\
\frac{d U}{d \boldsymbol{\beta}}=\frac{y^{\prime} d}{\left(F n_{1}+y^{\prime} n_{2}\right)^{2}} \frac{d F}{d \beta} \tag{5.69}
\end{gather*}
$$

Similarly, wemay rexnite

$$
\begin{gather*}
\left.V=\frac{d\left(z^{\prime}-h\right)}{\gamma\left[\left(x^{\prime}+\gamma \beta h\right)-\beta \sqrt{\left(x^{\prime}+\gamma \beta h\right)^{2}+y^{\prime 2}+\left(z^{\prime}-h\right)^{2}}\right]}\right] n_{1}+y^{\prime} n_{2} \tag{5.70}
\end{gather*},
$$

Then

$$
\begin{equation*}
\frac{d V}{d \beta}=\frac{-d\left(z^{\prime}-h\right) n_{1}}{\left(F n_{1}+y^{\prime} n_{2}\right)^{2}} \frac{d F}{d \beta}, \tag{5.72}
\end{equation*}
$$

whichestablishes the statements giventhrough Eas (5.64) and (5.65).

Frexample consider the lowest poirt (-150,50,0) onthe lefthand side of the haseontheleft inFig41(b). Aplo of $U d$ dand V / d vessus β aegiven, respectively, inFg55(a) andFg55(b).

Fig 5.6 Gitical speedat poirt (-150,50,0) isequal to0.857493 (a) Graphof Udversus β. (b) Graphof V / d versus β.

Chapter V

Condusions

Bytakingintoaccart thefoflowingthrepoints:
(i) Tenell's basic dbservation that dfferert points an an oject mst "emit" ligh at differert tines inader toreachandsservationpoint similtaneosly,
(ii) the Laentransfamations of relaivity, and
(iii) the piercing of these ligt rays an appopiate 2Dplane (the W-pane) in the dosevationframe,
themaping atosuch a 2 Dplane wes darived, whichmay beappliedtoany oject no natter how complicated, which is in relaive ndion to the dbsevation frame at abitray speeds (β c) induding extrene redaivistic ones These tranfamations ae givenexplicitlyby

$$
\begin{align*}
& \left.U=\left(\frac{\left.\gamma\left(x^{\prime}+\gamma \beta h\right)-\beta \sqrt{\left(x^{\prime}+\gamma \beta h\right)^{2}+y^{\prime}+\left(z^{\prime}-h\right)^{2}}\right]_{n}-y^{\prime} n_{1}}{\left.\gamma\left(x^{\prime}+\gamma \beta h\right)-\beta \sqrt{\left(x^{\prime}+\gamma \beta h\right)^{2}+y^{\prime}+\left(z^{\prime}-h\right)^{2}}\right]}\right]_{n_{1}+y^{\prime} n_{2}}\right) d, \tag{349}\\
& V=\frac{d\left(z^{\prime}-h\right)}{\left.\gamma\left(x^{\prime}+\gamma \beta h\right)-\beta \sqrt{\left(x^{\prime}+\gamma \beta\right)^{2}+y^{2}+\left(z^{\prime}-h\right)^{2}}\right] n_{1}+y^{\prime} n_{2}} . \tag{350}
\end{align*}
$$

Her $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ dendes any pairt on the dject in its proper frame. The motion is alongthepositive x-axis for the dject redaive to the dssavationframe. The Uand V axes specify the axes of the 2Dplane at rest inthe dservationfrane. The cientaion of this plane, at a distame d fiomthe dservaion point, is specified by a unit vedorn $=\left(n_{1}, n_{2}, 0\right)$, pependiaiar to the U-plane, and gives the drection of the socalled
quic axis. Theqpic axis is takentolie prallel tothe $x y$ plam. h dendes the position, alongthe z-axis, of the dsarvaion poirt above the aigin (se Fg33). Unike the Laentz transfomations $\left(t^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}\right) \rightarrow(t, x, y, z)$, the peseat transfamtions $\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \rightarrow(U, V)$ are necessaily non-linea. We appopiadly refer to these tranfamations as nonlinear Terell tranfamations Several applicaions of these tranfamations were povided in Chater IV. By fammlly setting $\gamma \rightarrow 1$ in these transfamations we odtain the conespondng Calilean ones whid, howeer, take iito acount the finte propagtion speed of light. In patialla, it wes shown in Chapter V the ayy strigigt line paralle tothe x axis (specifying the direction of notion) remains necessaily a straigt line inthe U-plane. This pupaty was used to resdve the socalled "train" pradox, emphasized in the literatue almost thity years ago By ngarosly estabishing the fat that any point of the dject in cortact with ary given line paralle to the x axis for $\beta=0$ meessaily stays in cortad with this line for $\beta \neq 0$ as well in the U-plame. This poirt is nontrivial de to the fat thet lines papendialar to the x^{\prime}-axis neessaily anveup de to the tine-dlay mednaism (the Tenell effect), and the give the impession of an djied to be rotaded (with defomation), and of of a track stationry relative to the observaion frame. The arving up of straight lines papendalar to the drection of notion was first estabished intuitively, by using the tine-dlay nedarism and then amalytically providngrigarusly coric-sectios (Eep(544), (563)). De to the timedday mednt nism a Dppple-like effect wesestabishedfor scale showingthe the patitionings of a nule, for example, becone, in gereal, exponded (!) when appording the dosaver and cortracing (!), in general, when receding fiom the doserver. The famer case woks against the Laertz cortradion, and the later one waks together with the Laerz contraction This Dopple-like effect thes maks in general, the visibility of the Laertz cortraction he were able to show, in a rather drect nay, thet upon makingaspecific citical poirt nanowingnuer, depening simply onits speed βc,
the Laerztransfomations may be actully yisilde about a small interval around this citical point which would povide a discimination between the Calilean and the relaivistic tranfomations at high speed for which $\gamma \gg 1$ as dbsaved on ar pojectionplane.

References

References

Biiley, J., Brer, K, Condley, F, DummH, Kienen, F., Lange, F., Pcasso, E, vonRuden, W, Farey, FJ.M, Fild, J.H, Feged, W, andHitersey, P.M (197). Mexsuenerts of relativistic time dilataionfor positive andnegative mansinaciralarobit. Nature 268(2): 301.
Buke J. R andStuo, F. J. (1991). Cassoomexarises withthe Tenell effect. AmJ.Fhys 5910):912
Enstein, A (1945). HwIGeatedthe Theay of Reacivity. Phys Today. 358 Feyman R P.,Leighton, R B, andSandM (1965). The Feymmnletureson physiss(Vd. 1). Massadusets: Adison-Wesley.
Hifle, J. C and Kering RE (1972). Aroundthe-wordatonicdocks Pedided redaivistictine gains Science. 17: 166
Hdey, F.R (1979). Tvodinensioml apperame of ardativisticabe. Am J. Phys 47(8): 711.
Hilerbah D (1976). Appearame of arapidy moving shere: Apoblemfor undagadtates AmJ. Fhys 4(1):91.
Hyard, A, Kitden, L, andDane, S (1995). Computerbasedsearching Reativistic ray-traing Simlaingthe visul apearameof rapilly nowing djects Univesity of Molbame (Unidishedmenscipt).
Landu, LDandLifsits, EM(1975). Thedassical theoryoffidds ($4^{\mathrm{h}} \mathrm{ed}$). Ofard Pexgmon.
Lartz, HA (1931).Lecturesonthearetical physics, Londar Marillan

Mnokin, ER (1993). Thereversal of thetrianglar inequality inMrkonsk spre inrelaivity.Europ. J.Ftys 14: 43.
Mithens, P. MandLaksmame, M (1972). Ohtheapprert visul foms of relaivisticallymowingdjects Il NowoGmenta 12B 168-181.
MGIll, NC. (1968). Theapprert shepof radidymovingdjects inspecial relaivity. Canterp. Phys 9.33.
Mdeson, AA andMrley, EW (1887). Reprintedin: Reativitytheary. its arign and impact an moden thaugt, edtedby L Perch Williams (1968). NewYok:JdnWlleyandSans
Perose, R (1959). Theapparet shape of ardativisticallynowingshar. Proc Canb. Phil. Soc 55137.
Seat, GD andVina, MR (1965). Thegeonetrical appearace of lagedgieds noving at reativisic speed AmJ.Phys 33 534
Soat, GD andDiel, HJ. van (1970). Comertrical appearanes at redaivisic speed Am J. Fhys 38(8): 971.
Szanosi, G (1986). ThetwinDimensiass NewYok MGaw-Hill.
Tenell, J. (1959). Invisibility of the Lartzontracion. Phys. Rev. 4(166): 1041.
Weinstèn, R (1960). Observaionof lenghby asingle doserver. Am J. Phys. 28(7): 67.
Weiskopf, V.F.(1960). The visull apearameof rapillynowingdjects.
Phys. Today. 9(13): 24
Weiskopf, V.F. (1961). Selectedttpicsinthecretical physics Lectures givenat the
Universityof Cdorado, Summer 1900 New Yok CardonandBeach
YngtuönS.S (1922). Obsevaionof moving ligt-sarces andojeats.
Akivfờ Fysk. 2(33): 367.

Biography

Biography

M. Sedson Sikhnesena wers bamon Decentrer c', 1975 in Strabuee. H wert to study in the Depatmert of Phssics, Facalty of Scieme, at Nresun Univesity, where he graduted with a BSc. dggee of Physics in 1998 Immediatly after his gradutionhe joined the Schol of Phsics, Institue of Scieme, Surmee University of Tedmologyfor aMiste's'sgege.

