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CHAPTER I

INTRODUCTION

Recently, differential equations with impulsive conditions have been studied

quite extensively, where the traditional initial value problems

x(0) = x0,

are replaced by the impulsive conditions

x(0) = x0, ∆x(τk) = Bkx(τk), k = 1, 2, . . .

where 0 < τ1 < τ2 < . . . , ∆x(τk) = x(τ+
k ) − x(τ−k ), k = 1, 2, . . . , and B,

ks

are some operators.

That is, the impulsive conditions are the combinations of traditional initial

value problems and short-term perturbations, the durations of which are negligible

in comparison with the duration of the whole process. The Impulsive differential

equations appear to represent a natural framework for mathematical modelings of

several real world phenomena. For instance, systems with impulses effects have ap-

plication in physics, in biotechnology, in industrial robotics, in pharmacokinetics,

in population dynamics, in optimal control and so on. The qualitative investigation

of impulsive differential equations began with the work of Mil’man and Myshkis

(1960). The possibility of broad practical applications of impulsive differential

equations in recent years and the publication of monographs about this subject

is explored in Samoilenko and Perestyuk (1987), Lakshmikantham, Bainove and

Simeonov (1989) and Bainove and Simeonove (1989). For the basic theory on

impulsive differential equations, the reader is referred to Lakshmikantham (1989).
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In the recent past, attention has been given to impulsive differential equa-

tions with results concerning the existence of periodic solutions for first-order

impulsive differential equations appearing. See, for instance, the papers by Hris-

tova and Bainov (1987), Nieto (1997) and Benchohra, Henderson and Ntouyas

(2001). The fundamental tools used in the existence proofs of all the above men-

tioned works are essentially fixed point arguments, nonlinear alternative, topolog-

ical transversality, degree theory or the monotone method combined with upper

and lower solutions.

On the other hand, another important and interesting problem concerns the

impulsive periodic systems arising naturally in the mathematical modeling of var-

ious physical processes. Since many processes are cyclic, for example, chemother-

apeutic treatments in Lakmeche and Arino (2000), vaccinations against disease in

Shulgin, Stone and Agur (1998) and inputs of substrates in Liu and Zhang (2005).

An important trend in the investigation of impulsive differential equation is related

to the periodic solution for the systems. Related basic theory on this aspect can

be found in Bainove and Simeonov (1993), Yang (2001) and the references cited

therein.

Although, there are some papers discussing the existence of periodic so-

lutions on finite dimensional space, linear and semilinear periodic systems with

impulses on infinite dimensional space have not been studied.

In this thesis, we systematically study the existence and uniqueness of peri-

odic mild solutions for linear and semilinear periodic systems with impulses on infi-

nite dimensional space, where the differential operator involved is the infinitesimal

generator of C0-semigroup by using semigroup theory and fixed point theorems.
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The thesis is organized as follows. Chapter II presents some basic concepts

and results from functional analysis, semigroup theory and evolution equations

that are necessary for the presentation of the theory in later chapters. Chapter

III deals with the existence of periodic mild solutions for linear periodic systems

with impulses. In chapter IV, we study the existence of periodic mild solutions for

semilinear periodic systems with impulses. In chapter V, we present two examples

to demonstrate the applicability of our abstract results.



CHAPTER II

MATHEMATICAL PRELIMINARIES

In this chapter, we review the theoretical background from functional anal-

ysis, real analysis and semigroup theory which will be used throughout this thesis.

Results are mostly without proof which can be found in standard textbooks (see

Ahmed (1991), Erwin Kreyszig (1978) and Pazy (1983) for example).

2.1 Elements of Functional Analysis

2.1.1 Normed Linear Spaces

Definition 2.1.1. Let X be a vector space over field F, (where F = R or C).

A function ‖ · ‖ : X → R is said to be a norm on X if it satisfies :

(N1) ‖x‖ ≥ 0,

(N2) ‖x‖ = 0 ⇔ x = 0,

(N3) ‖αx‖ = |α|‖x‖,

(N4) ‖x + y‖ ≤ ‖x‖+ ‖y‖,
for all x, y ∈ X and α ∈ F.

Definition 2.1.2. Let X be a vector space over field F, (where F = R or C).

A function 〈·, ·〉 : X ×X → F is said to be an inner product on X if it satisfies :

(IP1) 〈x, x〉 ≥ 0,

(IP2) 〈x, x〉 = 0 ⇔ x = 0,

(IP3) 〈x, y〉 = 〈y, x〉,
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(IP4) 〈αx + βy, z〉 = α〈x, z〉+ β〈y, z〉,
for all x, y, z ∈ X and α, β ∈ F. In (IP3), the bar denotes the complex conjugate.

Consequently, if X is a real vector space, we simply have 〈x, y〉 = 〈y, x〉.

Hereafter, we denote a norm on X by ‖ · ‖
X
. Similarly, we denote an

inner product on X by 〈·, ·〉
X
. If X has a norm, then the pair (X, ‖ · ‖

X
) is

called a normed linear space. The norm ‖ · ‖
X

induces a metric d on X by

d(x, y) = ‖x− y‖
X

and thus X become a topological space.

Definition 2.1.3. A sequence {xn} in a normed space (X, ‖ · ‖) is said to be a

Cauchy sequence if for every ε > 0 there exists N = N(ε) > 0 such that

‖xm − xn‖ < ε, for all m,n > N.

Definition 2.1.4. A normed linear space X is said to be complete if every Cauchy

sequence in X converges (that is, has a limit which is an element of X).

Definition 2.1.5. A normed linear space X is said to be a Banach space if it is

complete.

Definition 2.1.6. A Banach space X is uniformly convex, if whenever

{xn}, {yn} ∈ B1(0) and ‖xn + yn‖ → 2, as n →∞, then ‖xn − yn‖ → 0.

Definition 2.1.7. Let X be a linear space with inner product 〈·, ·〉
X
. The inner

product induces a norm on X by ‖ · ‖
X

=
√〈·, ·〉

X
. Then X is said to be a Hilbert

space if it is complete under the norm ‖ · ‖
X
.

2.1.2 Linear Operators

Definition 2.1.8. Let X and Y be vector spaces. A linear operator or a linear

map T from X into Y is a function T : X → Y such that
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(i) T (x + y) = T (x) + T (y) for all x, y ∈ X,

(ii) T (αx) = αT (x) for all x ∈ X and α ∈ F.

Definition 2.1.9. Let X and Y be normed linear spaces and T : X → Y a linear

operator. Then T is said to be bounded if there exists M > 0 such that

‖Tx‖Y ≤ M‖x‖X for all x ∈ X.

Theorem 2.1.1. Let X and Y be normed linear spaces and T : X → Y a linear

operator. Then the following statement are equivalent :

(i) T is continuous at 0, the zero vector in X,

(ii) T is continuous on X,

(iii) T is bounded on X.

Let X and Y be normed spaces. Consider the set L(X,Y ) consisting

of all bounded linear operator from X to Y. L(X,Y ) becomes a normed linear

space if we define vector operations in a natural way and define the operator norm

‖T‖L(X,Y )
= sup

‖x‖
X
≤1

‖Tx‖
Y
. If X = Y, we simply write L(X). Moreover, we have

the following theorem

Theorem 2.1.2. If X is a normed linear space and Y is a Banach space, then

L(X, Y ) is a Banach space.

Lemma 2.1.3. If T : X → Y and S : Y → Z are bounded linear operators, then

ST : X → Z is also a bounded linear operator. Moreover,

‖ST‖ ≤ ‖S‖‖T‖.

Theorem 2.1.4. (Uniform Boundedness Principle). Let X and Y be Banach

spaces and T ⊂ L(X,Y ). Then,

sup
T∈T

‖Tx‖
Y

< ∞, ∀x ∈ X implies that sup
T∈T

‖T‖L(X,Y )
< ∞.
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2.1.3 Linear Functionals and Dual Spaces

Definition 2.1.10. A linear functional on a normed linear space X is a linear

map from X into the scalar field F.

We write X∗ for the space of all bounded linear functionals on X and call

it the dual space of X and 〈x, y〉 to denote the pairing of an element x ∈ X∗

with an element y ∈ X.

Definition 2.1.11. A Banach space is reflexive if (X∗)∗ = X. More precisely,

this means that for each x∗∗ ∈ (X∗)∗, there exists x ∈ X such that

〈x∗∗, x∗〉 = 〈x∗, x〉 for all x∗ ∈ X∗.

2.1.4 Closed Operators

Definition 2.1.12. Let X and Y be normed linear spaces and T : X → Y

a function. The graph of T , denote by G(T ), is defined by

G(T ) = {(x, Tx) | x ∈ X} ⊂ X × Y.

If T is linear, it is easy to verify that G(T ) is a linear subspace of

X × Y . We say that the map T : X → Y has a closed graph or T is a closed

operator if G(T ) is a closed subspace of X × Y .

The following lemma gives a characterization of the closedness of a linear

operator in terms of sequences.

Lemma 2.1.5. Let X and Y be normed linear spaces and T : X → Y a linear

operator. Then T has a closed graph if and only if for every sequence {xn} in X,

if xn → x and Txn → y, then y = Tx.
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Theorem 2.1.6. (Closed Graph Theorem). Suppose that X and Y are Banach

spaces and T : X → Y a linear operator. Then T is bounded if and only if T

has a closed graph.

Definition 2.1.13. Let X be a Banach space, Y a subspace(not necessarily closed)

of X and let A : D(A) ⊂ X → X be a linear operator in X. The subspace Y

of X is an invariant subspace of A if A : D(A) ∩ Y → Y.

2.1.5 Compact Linear Operators

First, we recall the following facts from topology.

Definition 2.1.14. A subset M of a topological space X is compact if every open

cover of M contains a finite subcover.

Definition 2.1.15. Let X and Y be normed spaces. An operator A : X → Y is

called a compact linear operator ( or completely continuous linear operator) if A

is linear and if for every bounded subset M of X, the image A(M) is relatively

compact, that is, the closure A(M) is compact.

Definition 2.1.16. (ε-net, total boundedness). Let B be a subset of a metric

space X and ε > 0 be given. A set Mε ⊂ X is called an ε-net for B if for every

point z ∈ B there is a point of Mε at a distance from z less than ε. The set B

is said to be totally bounded if for every ε > 0 there is a finite ε−net Mε ⊂ X for

B, where “finite” means that Mε is a finite set (that is, consists of finitely many

points).

Lemma 2.1.7. Let B be a subset of a metric space X.

1. If B is relatively compact, then B is totally bounded.

2. If B is totally bounded and X is complete, then B is relatively compact.
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3. If B is totally bounded, then for every ε > 0 it has a finite ε−net Mε ⊂ B.

Theorem 2.1.8. Let T : X → X be a compact linear operator and S : X → X a

bounded linear operator on a normed space X. Then TS and ST are compact.

The following fixed point theorems are the main tools in the proof of the

existence of periodic mild solutions for linear and semilinear periodic systems with

impulses.

Definition 2.1.17. Let X be a Banach space and let A : X → X be an operator

(not necessarily linear). A fixed point of A is a point x ∈ X such that

Ax = x.

In other words, a fixed point of A is solution of the equation

Ax = x, x ∈ X.

Definition 2.1.18. Let X be a Banach space and let A : X → X be an operator.

The operator A is called Lipschitz continuous (or, briefly, A is Lipschitz) if

‖Ax− Ay‖ ≤ L‖x− y‖

for some constant L and all x, y ∈ X. If 0 ≤ L < 1 is called a contraction.

Theorem 2.1.9. (The Contraction Mapping Theorem). Let X be a Banach space

and let A : X → X be a contraction. Then the equation

Ax = x

has a unique solution in X, i.e., A has a unique fixed point x. Further, this fixed

point may be obtained by the method of successive approximations as follow:

x0 ∈ X arbitrary, xn = Axn−1(n ≥ 1) ; x = lim
n→∞

xn.
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Corollary 2.1.10. Let X0 be a closed subset of the Banach space X and assume

that A maps X0 into itself and is a contraction on X0. The equation Ax = x has

a unique solution x ∈ X0.

Theorem 2.1.11. (Schauder Fixed Point Theorem). Let G be a compact convex

set in a Banach space B and let T be a continuous mapping of G into itself. Then

T has a fixed point.

Corollary 2.1.12. Let G be a compact convex set in a Banach space B and let

T be a continuous mapping of G into itself such that the image TG is relatively

compact. Then T has a fixed point.

Theorem 2.1.13. (Leray-Schauder Fixed Point Theorem). Let G be a compact

mapping of a Banach space B into itself and suppose there exists a constant M

such that

‖x‖B < M

for all x ∈ B and λ ∈ [0, 1] satisfying x = λGx. Then G has a fixed point.

The proof can be found in Gilbarg and Trudinger (1977).

Theorem 2.1.14. (Arzela-Ascoli). Let X and Y be Banach spaces, G ⊂ X be

compact and F ⊂ C(G, Y ). Suppose that

1. for each x ∈ G, the set {F (x) | F ∈ F} is relatively compact in Y .

2. F is uniformly bounded, i.e.,

sup
F∈F , x∈G

‖F (x)‖
Y

< ∞.

3. F is equicontinuous, i.e., for any ε > 0, there exists δ = δ(ε) > 0 such that

‖F (x)− F (y)‖
Y

< ε, when ever ‖x− y‖
X

< δ, F ∈ F , x, y ∈ G.
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Then there exists a sequence {Fk} ⊆ F and F0 ∈ C(G, Y ) such that

lim
k→∞

‖Fk − F0‖C(G,Y )
= 0

where C(G, Y ) denotes the supremum norm

The proof can be found in Xunjing Li and Jiongmin Yong (1995).

2.1.6 Spectral Properties of Compact Linear Operators

In this section, we consider spectral properties of a compact linear operator

T : X → X on a normed space X. For this purpose we use the operator

Tλ = T − λI (λ ∈ C), (2.1)

where I is the identity operator on X.

Definition 2.1.19. Let X be a complex Banach space and let T : D(T ) ⊂ X → X

be a linear, not necessarily bounded operator. The resolvent set ρ(T ) of T is the

set of all complex numbers λ for which T − λI is invertible, i.e., (T − λI)−1 is a

bounded linear operator in X, that is, the resolvent set ρ(T ) of T is given by

ρ(T ) = { λ ∈ C : (T − λI)−1 ∈ L(X)},

I is the identity operator on X. When λ ∈ ρ(T ), R(λ, T ) = (T −λI)−1 is called

the resolvent operator of T at λ.

Definition 2.1.20. An eigenvalue of an operator T is a complex number λ such

that

Tx = λx

has a solution x 6= 0. This x is called an eigenvector of T corresponding to that

eigenvalue λ.
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Theorem 2.1.15. The set of eigenvalues of a compact linear operator T : X → X

on a normed space X is countable (perhaps finite or even empty) and the only

possible point of accumulation is λ = 0.

Theorem 2.1.16. Let T : X → X be a compact linear operator on a normed

space X. Then for every λ 6= 0 the null space N (Tλ) of Tλ = T − λI is finite

dimensional.

Theorem 2.1.17. Let T : X → X be a compact linear operator on a normed

space X. Then for every λ 6= 0 the range of Tλ = T − λI is closed.

2.1.7 Operator Equations Involving Compact Linear Op-

erators

I. Fredholm (1903) investigated linear integral equations and his famous

work suggested a theory of solvability of certain equations involving a compact

linear operator. We will consider a compact linear operator T : X → X on a

normed space X, the adjoint operator T ∗ : X∗ → X∗, the equation

Tx− λx = y (y ∈ X), (2.2)

the corresponding homogeneous equation

Tx− λx = 0, (2.3)

and two similar equations involving the adjoint operator, namely

T ∗f − λf = g (g ∈ X∗), (2.4)

the corresponding homogeneous equation

T ∗f − λf = 0, (2.5)

for all nonzero λ ∈ C. We will study the existence of solutions x and f , respectively.
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Theorem 2.1.18. Let T : X → X be a compact linear operator on a normed

space X and let λ 6= 0. Then (2.2) has a solution x if and only if y is such that

f(y) = 0 (2.6)

for all f ∈ X∗ satisfying (2.5).

Hence if (2.5) has only the trivial solution f = 0, then (2.2) with any y ∈ X

is solvable.

Theorem 2.1.19. Let T : X → X be a compact linear operator on a normed

space X and let λ 6= 0. Then (2.4) has a solution f if and only if g is such that

g(x) = 0 (2.7)

for all x ∈ X satisfying (A.2).

Hence if (A.2) has only the trivial solution x = 0, then (2.4) with any given

y ∈ X is solvable.

Theorem 2.1.20. Let T : X → X be a compact linear operator on a normed

space X and let λ 6= 0. Then :

(a) Equation (2.2) has a solution x for every y ∈ X if and only if the

homogeneous equation (A.2) has only the trivial solution x = 0. In this case the

solution of (2.2) is unique and Tλ has a bounded inverse.

(b) Equation (2.4) has a solution f for every g ∈ X∗ if and only if (2.5)

has only the trivial solution f = 0. In this case the solution of (2.4) is unique.

Theorem 2.1.21. Let T : X → X be a compact linear operator on a normed

space X and let λ 6= 0. Then (A.2) and (2.5) have the same number of linearly

independent solutions.
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2.1.8 Fredholm Alternative

Definition 2.1.21. A bounded linear operator A : X → X on a normed space X

is said to satisfy the Fredholm alternative if A is such either one of the following

holds :

(I) The nonhomogeneous equations

Ax = y, A∗f = g

(A∗ : X∗ → X∗ being the adjoint operator of A) have solutions x and f , re-

spectively, for every given y ∈ X and g ∈ X∗, the solutions being unique. The

corresponding homogeneous equations

Ax = 0, A∗f = 0

have only the trivial solution x = 0 and f = 0, respectively.

(II) The homogeneous equations

Ax = 0, A∗f = 0

have the same number of linearly independent solutions

x1, . . . , xn and f1, . . . , fn

respectively. The nonhomogeneous equations

Ax = y, A∗f = g

are not solvable for all y and g, respectively ; they have a solution if and only if y

and g are such that

fk(y) = 0, g(xk) = 0

(k = 1, . . . , n), respectively.

Theorem 2.1.22. Let T : X → X be a compact linear operator on a normed

space X and let λ 6= 0. Then Tλ = T − λI satisfies the Fredholm alternative.
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2.2 Integration Theory

In this section, we review some basic concept of measurable functions and

Bochner integral for Banach space valued functions. We then state some standard

convergence theorems for integrals and introduce the definition of Fréchet deriva-

tive. For details and proofs we refer to Zeidler (1990), unless we state otherwise.

2.2.1 Measurable Functions

Let M ⊂ Rn be a measurable set and X a Banach space.

Definition 2.2.1. 1. A function f : M → X is called a step function if there

exist finitely many pairwise disjoint measurable subsets Mi of M such that

|Mi| < ∞ for all i and element ai of X such that

f(x) =





ai, if x ∈ Mi,

0, otherwise.

That is, f is constant on each set Mi.

2. The integral of a step function is defined to be

∫

M

fdx =
∑

i

|Mi|ai.

3. A function f : M → X is called (strongly) measurable if there exists a

sequence {fn} of step functions fn : M → X such that

lim
n→∞

fn(x) = f(x) for almost all x ∈ M.

4. (Measurable functions via substitution). Let X, U be real and separable

Banach spaces, M ⊆ Rn be measurable, f : M × U → X and u : M → U .

Set

F (x) = f(x, u(x)).
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If the function u : M → U is measurable, then the function F : M → X is

also measurable provided that f satisfies the Caratheodory condition :

(i) x 7→ f(x, u) is measurable on M for all u ∈ U.

(ii) u 7→ f(x, u) is continuous on U for almost all x ∈ M.

2.2.2 Bochner Integral

Definition 2.2.2. A function f : Ω → X is called simple if there exist

x1, x2, . . . , xn ∈ X and E1, E2, . . . , En ∈M such that

f(x) =
n∑

i=1

xiχEi
(x),

where χ
Ei

is the characteristic function of a measurable set Ei and the set Ei are

pairwise disjoint with union Ω.

Definition 2.2.3. A function f : Ω → X is called Bochner integrable if Ω is

measurable and there exists a sequence {fn} of simple functions fn : Ω → X such

that

1. f(x) = lim
n→∞

fn(x) for almost all x ∈ Ω,

2. given ε > 0, there exists n0 = n0(ε) ∈ N such that

∫

Ω

‖fm(x)− fn(x)‖
X
dx < ε for all m,n ≥ n0(ε).

The second condition implies that the sequence
{ ∫

M
fn(x)dx

}
is Cauchy in X, so

that we can define the Lebesgue integral of f by

∫

M

f(x)dx = lim
n→∞

∫

M

fn(x)dx (2.8)

One can show that this integral is well defined, i.e., the limit in (2.8) does not

depend on the choice of the step functions fn. Furthermore if B ∈ L(X) and the
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integral of f exists, then the integral of Bf exists and

∫

M

Bf(x)dx = B

∫

M

f(x)dx.

Theorem 2.2.1. A strongly measurable function f : Ω → X is Bochner inte-

grable if and only if

∫

Ω

‖f(x)‖dx < ∞.

Theorem 2.2.2. (Majorant criterion). Let f : Ω → X be measurable. If

there exists g : Ω → R such that ‖f(x)‖
X
≤ g(x) for almost all x ∈ Ω

and

∫

Ω

g(x)dx exists, then f is integrable and

∥∥∥∥
∫

Ω

f(x)dx

∥∥∥∥
X

≤
∫

Ω

‖f(x)‖
X
dx ≤

∫

Ω

g(x)dx.

2.2.3 Fréchet Derivative

Definition 2.2.4. A function f defined on an open subset D of a normed space X

with values in a normed space Y is Fréchet differentiable at x ∈ D if there exists

a bounded linear operator ∂f(x) ∈ L(X,Y ) such that if

ρ(x, h) := f(x + h)− f(x)− ∂f(x)h, (x, x + h ∈ D),

then

lim
h→0

‖ρ(x, h)‖
X

‖h‖
Y

= 0.

The operator ∂f(x) is called the Fréchet differential or Fréchet derivative

of f at x. Obviously, Fréchet differentiability implies continuity. The mean value

theorem holds for Fréchet differentiable maps : we need it in the form

‖f(x)− f(y)‖ ≤ ‖x− y‖
X

sup
z∈I

‖∂f(z)‖
(X,Y )

(I the segment joining x and y) valid for D convex. The Fréchet differentiable is

of course the calculus differential if X = Rm.
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2.3 Theory of C0-semigroup

In this section, we recall some basic concepts and results on C0-semigroups.

For more details and proofs, we refer to Ahmed (1991) and Pazy (1983).

2.3.1 C0-semigroups

Definition 2.3.1. The family of operators {T (t), t ≥ 0} is said to be a semigroup

of bounded linear operators on X if

(i) T (0) = I, (I is the identity operator on X).

(ii) T (t + s) = T (t)T (s) = T (s)T (t) for all t, s ≥ 0.

The semigroup {T (t), t ≥ 0} is said to be uniformly continuous if t 7→ T (t) is

continuous on [0,∞) in the uniform operator topology, that is,

lim
t→0

‖T (t)− I‖L(X)
= 0.

Equivalently, from the definition it is clear that if {T (t), t ≥ 0} is a uniformly

continuous semigroup of bounded linear operators then

lim
t→t0

‖T (t)− T (t0)‖L(X)
= 0,

for all t0 ∈ [0,∞).

Definition 2.3.2. The operator A : D(A) ⊂ X → X defined by

D(A) =

{
x ∈ X : lim

t→0+
Atx exists in X

}

Ax = lim
t→0+

Atx for x ∈ D(A),

where for t > 0, Atx =
T (t)x− x

t
, x ∈ X, is called the infinitesimal generator

of the semigroup {T (t), t ≥ 0} on X.
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Theorem 2.3.1. A linear operator A : D(A) ⊂ X → X is the infinitesimal

generator of uniformly continuous semigroup of operator {T (t), t ≥ 0} in X if and

only if A is a bounded linear operator.

Definition 2.3.3. (C0-semigroup). The semigroup {T (t), t ≥ 0} is said to be

strongly continuous at the origin if for each x ∈ X,

lim
t→0+

‖T (t)x− x‖
X

= 0.

That is, t → T (t)x is continuous from the right at t = 0 for each x ∈ X.

A strongly continuous semigroup of bounded linear operator on X is called

a C0-semigroup.

It readily follows from the semigroup property that strong right continuity

at origin implies strong continuity for every t > 0, we only have to note that

T (t + h)x−T (t)x = T (t)(T (h)x− x) for h > 0. To obtain left continuity, we have

to invoke the uniform boundedness principle.

Theorem 2.3.2. (Properties of C0-semigroups). Let X be a Banach space and

{T (t), t ≥ 0} a C0-semigroup on X with A as its infinitesimal generator. Then,

(1) There exist constants M ≥ 1 and ω ≥ 0 such that

‖T (t)‖L(X)
≤ Meωt for all t ≥ 0.

(2) For each x ∈ X, t 7→ T (t)x is continuous X-valued function on [0,∞).

(3) For x ∈ X and t > 0,

lim
h→0

1

h

∫ t+h

t

T (τ)xdτ = T (t)x.

(4) For x ∈ X, t ∈ [0,∞),
∫ t

0
T (τ)xdτ ∈ D(A) and

A

(∫ t

0

T (τ)xdτ

)
= T (t)x− x.
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(5) For x ∈ D(A), T (t)x ∈ D(A) and
d

dt
T (t)x = AT (t)x = T (t)Ax.

(6) For x ∈ D(A), 0 ≤ s ≤ t,

∫ t

s

AT (τ)xdτ =

∫ t

s

T (τ)Axdτ = T (t)x− T (s)x.

(7) D(A) = X and A is closed operator or equivalently to its graph Γ(A) =

{(x, y) ∈ X ×X : y = Ax} is closed subset of X ×X.

(8) Let B be the infinitesimal generator of C0-semigroup {S(t), t ≥ 0}. If

A = B, then T (t) = S(t) for all t ≥ 0, that is, each C0-semigroup generator

generates a unique semigroup.

2.3.2 Semigroup of Compact Operators

Definition 2.3.4. A C0-semigroup {T (t), t ≥ 0} in a Banach space X is called a

compact semigroup for t > t0 if T (t) is a compact operator for every t > t0. It is

simply called compact if it is compact for all t > 0.

Note that if T (0) is compact, then X must be a finite dimensional Banach

space, since the identity operator is compact if and only if X is finite dimensional.

Hence for a general Banach space, one can expect T (t) to be compact only for

t > 0. Note also that if T (t0) is compact for some t0 > 0, then T (t) is compact

for all t > t0. This follows from the fact that T (t) = T (t − t0)T (t0), t0 > 0 and

that the composition of a compact operator with a bounded operator is always

compact.

Definition 2.3.5. Let {T (t), t ≥ 0} be a C0-semigroup. If T (t) is compact for

t > t0, then T (t) is continuous in the uniform operator topology for t > t0.
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2.3.3 Differentiable and Analytic Semigroups

Definition 2.3.6. A C0-semigroup {T (t), t ≥ 0} in a Banach space X is said to

be differentiable if, for each x ∈ X, T (t)x is differentiable for all t > 0.

We have seen in Theorem 2.3.2(5) that if T (t) is a C0-semigroup with

infinitesimal generator A and x ∈ D(A) then t 7→ T (t)x is differentiable for t > 0.

Theorem 2.3.3. If {T (t), t ≥ 0} is differentiable semigroup with A as its in-

finitesimal generator then it is differentiable infinitely many times and for each

n = 1, 2, 3, . . .

(i)
dn

dtn
T (t) = T (n)(t) = AnT (t) ∈ L(X) for all t > 0.

(ii) T (n)(t) =
(
AT ( t

n
)
)n

for all t > 0.

(iii) T (n)(t) is uniformly continuous for all t > 0.

Definition 2.3.7. Let 4 = {z ∈ C : θ1 < arg z < θ2; θ1 < 0 < θ2} and suppose

T (z) ∈ L(X) for all z ∈ 4. The family {T (z), z ∈ 4} is called an analytic

semigroup in 4 if it satisfies the following properties :

(i) z 7→ T (z) is analytic in 4, that is for each x∗ ∈ X∗ and x ∈ X, the

scalar valued function z 7→ x∗(T (z)x) is analytic in the usual sense uniformly with

respect to x∗ ∈ B1(X
∗) = {x∗ : ‖x∗‖

X∗ ≤ 1} and x ∈ B1(X) = {x : ‖x‖
X
≤ 1},

(ii) T (0) = I and lim
z→0, z∈4

T (z)x = x for each x ∈ X,

(iii) T (z1 + z2) = T (z1)T (z2) for z1, z2 ∈ 4.

A complete characterization of analytic semigroups is given in the following

theorem.

Theorem 2.3.4. Let A be the infinitesimal generator of a uniformly bounded C0-

semigroup {T (t), t ≥ 0} with 0 ∈ ρ(A). The following statements are equivalent:
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(i) T (t) can be extended to an analytic semigroup from [0,∞) to a sector

around it given by

4δ = {z : | arg z| < δ} for some δ > 0,

and ‖T (z)‖L(X)
is uniformly bounded in every closed subsector 4δ′ ⊂ 4δ, δ′ < δ.

(ii) There exists a constant C > 0 such that for every σ > 0 and τ 6= 0

‖R(σ + iτ, A)‖L(X)
≤ C

|τ | .

(iii) There exists 0 < δ <
π

2
and M ≥ 1 such that

ρ(A) ⊃ Σ =
{

λ ∈ C : | arg λ| < π

2
+ δ

}
∪ {0}

and

‖R(λ, A)‖L(X)
≤ M

|λ| for all λ ∈ Σ, λ 6= 0.

(iv) T (t) is differentiable for t > 0 and there exists a constant C > 0

such that

‖AT (t)‖
X
≤ C

t
for t > 0.

2.4 Differential Equations on Banach Spaces

In this section, we introduce the concept and results on semigroups of op-

erators via differential equations on Banach spaces which are abstract formulation

of initial value problem for partial differential equations. For more details and

proofs, we refer to Fattorini (1999).
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2.4.1 The Homogeneous Initial Value Problem

Let X be a Banach space and let A : D(A) ⊂ X → X be a given operator.

Consider the differential equation on X given by





ẋ(t) = Ax(t), t > 0

x(0) = x0.
(2.9)

Definition 2.4.1. The Cauchy problem (2.9) is said to have a classical solution

if for each given x0 ∈ D(A) there exists a function x ∈ C([0,∞), X) satisfying

the following properties :

(i) x ∈ C([0,∞), X) ∩ C1((0,∞), X),

(ii) x(t) ∈ D(A) for all t > 0,

(iii) (2.9) is satisfied, i.e.,





ẋ(t) = Ax(t), t > 0

x(0) = x0.

Theorem 2.4.1. Let D(A) = X, ρ(A) 6= ∅. Then (2.9) has a unique classi-

cal solution x(t) which is continuously differentiable on [0,∞), for every initial

value x0 ∈ D(A) if and only if A is the infinitesimal generator of a C0-semigroup

{T (t), t ≥ 0} in X.

Theorem 2.4.2.

(i) If A is the infinitesimal generator of a differentiable semigroup {T (t), t ≥ 0}
in X then for every x0 ∈ X, (2.9) has a unique (classical) solution x(t) =

T (t)x0, t > 0.

(ii) If A is the infinitesimal generator of an analytic semigroup {T (t), t ≥ 0}
then for every x0 ∈ X, (2.9) has a unique (classical) solution x(t) =

T (t)x0, t > 0.
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Proof. (i) Since {T (t), t ≥ 0} is a differentiable semigroup for t > 0, the X-valued

function t 7→ T (t)x0 is differentiable for every x0 ∈ X and

d

dt
T (t)x0 = AT (t)x0 for t > 0.

Further, by Theorem 2.3.3(iii), AT (t)x0 is Lipschitz continuous for t > 0 and hence

we conclude that x(t) = T (t)x0, t > 0, is the unique (classical) solution of (2.9).

(ii) This follows from the simple fact that for analytic semigroup, T (t)x ∈
D(A) for every x ∈ X and t > 0 and consequently every analytic semigroup is

also a differentiable semigroup.

If A is the infinitesimal generator of a C0-semigroup which is not differentiable

then, in general, if x 6∈ D(A), the initial value problem (2.9) dose not have a

solution. The function t 7→ T (t)x0 is then a generalized solution of (2.9) which we

will call a mild solution.

2.4.2 The Inhomogeneous Initial Value Problem

Consider the inhomogeneous initial value problem




u̇(t) = Au(t) + f(t), t > 0

u(0) = x0, x0 ∈ X
(2.10)

where A is the infinitesimal generator of C0-semigroup {T (t), t ≥ 0} in X and

f ∈ L1
loc([0,∞), X).

Definition 2.4.2. A function u : [0, T ) → X is a (classical) solution of (2.10) on

[0, T ) if u is continuous on [0, T ), continuously differentiable on (0, T ), u(t) ∈ D(A)

for 0 < t < T and (2.10) is satisfied on [0, T ).

Theorem 2.4.3 (Existence and Uniqueness). Let A be the infinitesimal generator

of a C0-semigroup {T (t), t ≥ 0}. If f ∈ L1([0, T ], X) then for every x ∈ X the
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initial value problem (2.10) has at most one solution. If it has a solution, this

solution is given by

u(t) = T (t)x +

∫ t

0

T (t− s)f(s)ds, 0 ≤ t ≤ T. (2.11)

Definition 2.4.3. A function u ∈ C([0, T ], X) is said to be a mild solution of

(2.10) corresponding to the initial state x0 ∈ X and the input f ∈ L1([0, T ], X)

if u is given by (2.11).

The definition of the mild solution of (2.10) coincides when f ≡ 0 with

the definition of T (t)x0 as the mild solution of the corresponding homogeneous

equation. It is therefore clear that not every mild solution of (2.10) is a (classical)

solution even in the case f ≡ 0.

Theorem 2.4.4. Let A be the infinitesimal generator of a C0-semigroup {T (t), t ≥
0}, let f ∈ L1([0, T ], X) be continuous on (0, T ) and let

v(t) =

∫ t

0

T (t− s)f(s)ds, 0 ≤ t ≤ T.

The initial value problem (2.10) has a solution u on [0, T ) for every x ∈ D(A) if

one of the following conditions is satisfied;

(i) v(t) is continuously differentiable on (0, T ).

(ii) v(t) ∈ D(A) for 0 < t < T and Av(t) is continuous on (0, T ).

Corollary 2.4.5. Let A be the infinitesimal generator of a C0-semigroup

{T (t), t ≥ 0}, f(s) is continuously differentiable on [0, T ] then the initial value

problem (2.10) has a solution u on [0, T ) for every x ∈ D(A).

Corollary 2.4.6. Let A be the infinitesimal generator of a C0-semigroup T (t) and

f ∈ L1([0, T ], X) be continuous on (0, T ). If f(s) ∈ D(A), then the initial value

problem (2.10) has a solution on [0, T ).
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2.4.3 Semilinear Initial Value Problem and Perturbations

Theory.

Consider the semilinear initial value problem

u̇(t) = Au(t) + f(t, u(t)), u(s) = ζ, (2.12)

where A is the infinitesimal generator of a C0-semigroup {T (t), t ≥ 0} in X and

f : [0,∞) × X → X. The assumption on A is that the initial value problem for

the linear equation

u̇(t) = Au(t) (2.13)

is well posed in 0 ≤ t ≤ T, as defined in Fattorini (1999), pp 207. Below, S(t, s)

denotes the solution operator of (2.13) is defined and strongly continuous in the

triangle 0 ≤ s ≤ t ≤ T.

Define a solution of (2.12) as a solution of the integral equation

u(t) = S(t, s)ζ(t) +

∫ t

s

S(t, τ)f(τ, u(τ))dτ. (2.14)

We summarize in this section the necessary existence-uniqueness theory

of (2.12). Result will be proved under two hypotheses on f(t, u). The second

hypothesis is stronger than the first.

Hypothesis I. f(t, u) is strongly measurable in t for fixed u. For every c > 0

there exists K(·, c) ∈ L1(0, T ) such that

‖f(t, u)‖ ≤ K(t, c) (0 ≤ t ≤ T, ‖u‖ ≤ c). (2.15)

Hypothesis II. f(t, u) is strongly measurable in t for fixed u. For every c > 0

there exists K(·, c), L(·, c) ∈ L1(0, T ) such that (2.17) holds and

‖f(t, u′)− f(t, u)‖ ≤ L(t, c)‖u′ − u‖ (0 ≤ t ≤ T, ‖u‖, ‖u′‖ ≤ c). (2.16)
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Theorem 2.4.7. Assume Hypothesis II holds in 0 ≤ t ≤ T . Then the integral

equation

u(t) = ζ(t) +

∫ t

s

S(t, τ)f(τ, u(τ))dτ (2.17)

has a unique solution in some interval s ≤ t ≤ T ′, where s ≤ T ′ ≤ T .

Theorem 2.4.8. Let u1(·) (respectively, u2(·)) be solution of (2.17) in s ≤ t ≤
T ′ with ζ(t) = ζ1(t). (respectively, with ζ(t) = ζ2(t)). Let c be a bound for

‖u1(t)‖, ‖u2(t)‖ in s ≤ t ≤ T ′. Then

‖u1(t)− u2(t)‖ ≤ sup
s≤t≤T ′

‖ζ1(t)− ζ2(t)‖ exp
(
M

∫ t

s

L(τ, c)dτ
)

(s ≤ t ≤ T ).(2.18)

In particular, if u1(·) (respectively, u2(·)) is solution of (2.14) with ζ = ζ1

(respectively, with ζ = ζ2), then

‖u1(t)− u2(t)‖ ≤ M‖ζ1 − ζ2‖ exp
(
M

∫ t

s

L(τ, c)dτ
)

(s ≤ t ≤ T ). (2.19)

Lemma 2.4.9. Let u(t) be a solution of (2.17) in an interval [s, T ′). Assume that

‖u(t)‖ ≤ c (s ≤ t ≤ T ′). (2.20)

Then u(·) can be extended to an interval [s, T ′′) with T ′′ > T ′ (that is, a solution

of (2.17) coinciding with u(·) in s ≤ t ≤ T ′ exists in [0, T ′′] ).

Corollary 2.4.10. The solution u(·) of (2.17) exists in s ≤ t ≤ T or in an interval

[s, Tm), Tm ≤ T and

sup
t→T−m

‖u(t)‖ ≤ ∞. (2.21)

Corollary 2.4.11. Assume that there exists K(·) ∈ L1(0, T ) such that

‖f(t, u)‖ ≤ K(t)(1 + ‖u‖) (0 ≤ t ≤ T, u ∈ X). (2.22)

Then (2.20) holds in every interval where the solution u(t) of (2.17) exists accord-

ingly, u(t) exists in s ≤ t ≤ T.
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The following theorem is one of the main tools in the proof of the existence

of periodic mild solutions for the semilinear impulsive peridic control systems with

parameter perturbations discussed in this thesis. Its proof can be found in Fattorini

(1999), pp.213.

Theorem 2.4.12. Let the Cauchy problem for (2.13) be well posed in s ≤ t ≤ T

and let {B(t), 0 ≤ t ≤ T} be a family of bounded linear operators in X such

that (a) for each u ∈ X, t → B(t)u is strongly measurable, (b) there exists α(·) ∈
L1(0, T ) such that

‖B(t)‖ ≤ α(t) (0 ≤ t ≤ T ). (2.23)

Then the Cauchy problem for

u̇(t) = (A(t) + B(t))u(t) (2.24)

is well posed in 0 ≤ t ≤ T , solution of (2.24) with u(s) = ζ understood as solutions

of the integral equation

u(t) = S(t, s)ζ +

∫ t

s

S(t, τ)B(τ)u(τ)dτ (2.25)

If U(t, s) be the solution operator of (2.24), solutions of the inhomogeneous equa-

tion

u̇(t) = (A(t) + B(t))u(t) + f(t), u(s) = ζ (2.26)

with f(·) ∈ L1(0, T ), understood as solutions of the integral equation

u(t) = S(t, s)ζ +

∫ t

s

S(t, τ)B(τ)(u(τ) + f(τ))dτ, (2.27)

can be expressed by the variation of constants formula

u(t) = U(t, s)ζ +

∫ t

s

U(t, τ)f(τ)dτ. (2.28)
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2.5 Gronwall’s Lemma

Theorem 2.5.1. For t > t0 let a nonnegative piecewise continuous function u(t)

satisfy

u(t) ≤ c +

∫ t

t0

v(s)u(s)ds +
∑

t0≤τn<t

bnu(τn)

where c ≥ 0, bn ≥ 0, v(s) > 0, u(t) has discontinuous points of the first kind at τn.

Then we have

u(t) ≤ c
∏

t0≤τn<t

(1 + bn)exp
( ∫ t

t0

v(s)ds
)
.



CHAPTER III

LINEAR PERIODIC SYSTEMS WITH

IMPULSES

In this chapter, we study the existence and uniqueness of periodic mild

solution for linear periodic systems with impulses. The first section contains some

notations and basic assumptions. In the second section, regularity of mild solution,

existence and uniqueness results of periodic mild solutions for homogenous linear

impulsive periodic systems will be presented. In the third section, we will discuss

the existence of periodic mild solutions for the nonhomogenous linear impulsive

periodic control systems. Finally, in Section 4, we will discuss the existence of

periodic mild solutions for the linear impulsive periodic systems with parameter

perturbations.

3.1 Notations

Let I := [0, T0] be a closed bounded interval of the real line and define the

sets D := {0 = τ0 < τ1 < τ2 < τ3 < . . .} ⊂ [0,∞).

Definition 3.1.1. A sequence (τk) is said to be an impulsive moment if 0 = τ0 <

τ1 < τ2 < τ3 < . . . and τk →∞ as k →∞.

We now introduce the piecewise continuous function spaces. Let X be a

Banach space and 0 < T0 < ∞.

(1) PC([0,∞), X) is the set of all functions x : [0,∞) → X which are

continuous at t 6= τk, x is left continuous at t = τk and x(τ+
k ) exists for all k ∈ N.
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(2) PCT0([0,∞), X) is the set of all functions x ∈ PC([0,∞), X) such that

x(t) = x(t + T0) for all t ≥ 0.

3.2 Homogenous Linear Impulsive Periodic Systems

We consider the following homogenous linear impulsive periodic systems





ẋ(t) = Ax(t), t 6= τk,

∆x(t) = Bkx(t), t = τk,
(3.1)

where ∆x(τk) = x(τ+
k )−x(τ−k ) for all k ∈ N. Suppose that system (A.5) satisfies

the following assumption (A1).

Assumption (A1) ;

(A1.1) 0 = τ0 < τ1 < τ2 < . . . < τk < . . . , τk →∞ as k →∞ and

there exists a positive integer σ such that τk+σ = τk + T0 for all k ∈ N.

(A1.2) A is the infinitesimal generator of a C0−semigroup {T (t), t ≥ 0} in X.

(A1.3) Bk ∈ L(X) such that Bk+σ = Bk.

3.2.1 Impulsive Evolution Operator

Definition 3.2.1. Let assumption (A1) hold. An operator value function U(t, s)

with values in L(X), defined on the triangle ∆ ≡ { 0 ≤ s ≤ t ≤ a } with

t, s ∈ (τk−1, τk] for all k ∈ N, given by

U(t, s) =





T (t− s), τk−1 ≤ s ≤ t ≤ τk,

T (t− τk)(I + Bk)T (τk − s), τk−1 < s ≤ τk < t ≤ τk+1,

T (t− τk)

[
k∏

j=i+1

(I + Bj)T (τj − τj−1)

]
(I + Bi)T (τi − s),

for i < k, τi−1 < s ≤ τi < . . . < τk < t ≤ τk+1

(3.2)

is called an impulsive evolution operator.
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Proposition 3.2.1. Let assumption (A1) hold and {U(t, s), 0 ≤ s ≤ t ≤ a} be

a family of impulsive evolution operators. For each fixed T0 = τσ > 0, then the

following conditions are satisfied :

(1) U(t, t) = I, ( I is the identity operator on X).

(2) U(t, s) = U(t, r)U(r, s) for all 0 ≤ s ≤ r ≤ t ≤ a.

(3) U(t + KT0, s + KT0) = U(t, s) for all K ∈ N and 0 ≤ s ≤ t ≤ T0 with

T0 ≤ a.

Proof. (1) Since T (0) = I, U(t, t) = T (0) = I. (2) By substitution in equation

(A.3) and using semigroup property that T (t + s) = T (t)T (s), the relation (2)

follows. By assumption (A1.1), it is easy to prove (3).

Proposition 3.2.2. Let assumption (A1) hold. If {U(t, s), 0 ≤ s ≤ t ≤ a} is a

family of impulsive evolution operators, then there exist M > 1 and ω > 0 such

that

‖U(t, s)‖ ≤ M exp
(
ω(t− s) +

∑
s<τn<t

ln (M‖I + Bn‖)
)
.

for all 0 ≤ s ≤ t ≤ a.

Proof. Suppose {U(t, s), 0 ≤ s ≤ t ≤ a} is a family of impulsive evolution

operators. Let t, s ∈ (τk−1, τk] for k ∈ N. By assumption (A1) and Theorem

2.3.2(1), there exist M > 1 and ω > 0 such that

‖U(t, s)‖ = ‖T (t− s)‖ ≤ Meω(t−s) for τk−1 ≤ s < t ≤ τk.

For τk−1 ≤ s ≤ τk < t ≤ τk+1, we have

‖U(t, s)‖ = ‖T (t− τk)(I + Bk)T (τk − s)‖

≤ ‖T (t− τk)‖‖I + Bk‖‖T (τk − s)‖

≤ Meω(t−τk)‖I + Bk‖Meω(τk−s)

= M exp
(
ω(t− s) + ln (M‖I + Bk‖)

)
.
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For τi−1 ≤ s ≤ τi < . . . < τk < t ≤ τk+1, we have

‖U(t, s)‖ = ‖T (t− τk)(I + Bk)T (τk − τk−1) . . . (I + Bi)T (τi − s)‖

≤ ‖T (t− τk)‖
( k∏

j=i+1

‖I + Bj‖‖T (τj − τj−1)‖
)
‖I + Bi‖‖T (τi − s)‖

≤ Meω(t−τk)
( k∏

j=i+1

M‖I + Bj‖eω(τj−τj−1)
)
‖I + Bi‖Meω(τi−s)

= M exp
(
ω(t− s) +

∑
s<τn<t

ln (M‖I + Bn‖)
)
.

This completes the proof.

Corollary 3.2.3. Let assumption (A1) hold and {U(t, s), 0 ≤ s ≤ t ≤ a} be a

family of impulsive evolution operators, then

sup
0≤s≤t≤a

‖U(t, s)‖ < ∞

for all a > 0.

Proof. Let a > 0 be fixed. By Proposition 3.2.2 , there exist constants M > 1

and ω > 0 such that

‖U(t, s)‖ ≤ M exp
(
ω(t− s) +

∑
s<τn<t

ln (M‖I + Bn‖)
)

for all 0 ≤ s ≤ t ≤ a. Since

ω(t− s) +
∑

s<τn<t

ln (M‖I + Bn‖) ≤ ωa +
∑

0<τn≤a

ln (M‖I + Bn‖)

for all 0 ≤ s ≤ t ≤ a, this implies that

sup
0≤s<t≤a

‖U(t, s)‖ ≤ M exp
(
ωa +

∑
0<τn≤a

ln (M‖I + Bn‖)
)
.

This completes the proof.
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Corollary 3.2.4. Let assumption (A1) hold and {U(t, s), 0 ≤ s ≤ t ≤ a} be a

family of impulsive evolution operators. For each a > 0 and ν ∈ R, there exists

K > 0 such that

‖U(t, s)‖ < Keν(t−s)

for all 0 ≤ s ≤ t ≤ a.

Proof. Let a > 0 and ν ∈ R be given. By Corollary A.2, there exists a constant

K1 > 0 such that

‖U(t, s)‖ ≤ K1 = K1e
−ν(t−s)eν(t−s) ≤ K1e

|ν|aeν(t−s)

for all 0 ≤ s ≤ t ≤ a. We let K := K1e
|ν|a, this implies that

‖U(t, s)‖ < Keν(t−s)

for all 0 ≤ s ≤ t ≤ a.

3.2.2 Definitions of Solutions

Definition 3.2.2. Let assumption (A1) hold. The impulsive system (A.5) is

said to have a classical solution if for every x0 ∈ D(A) there exists a function

x ∈ PC([0,∞), X) satisfies the following properties :

1. x ∈ PC([0,∞), X) ∩ C1((0,∞) \D,X),

2. For t > 0, x(t) ∈ D(A) and ẋ(t) = Ax(t) where t 6= τk,

3. x(0) = x0 and 4x(t) = Bkx(t) where t = τk.

Definition 3.2.3. A function x ∈ PC([0,∞), X) is said to be a mild solution

of system (A.5) with initial condition x(0) = x0 if x is given by

x(t) = U(t, 0)x0 (3.3)
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where

U(t, 0) =





T (t), 0 ≤ t ≤ τ1,

T (t− τk)

[
k∏

j=1

(I + Bj)T (τj − τj−1)

]
, τk < t ≤ τk+1,

(3.4)

for all k ∈ N.

Definition 3.2.4. A function x ∈ PC([0,∞) , X) is said to be a periodic mild

solution of system (A.5) if it is a mild solution and there exists T0 > 0 such that

x(t + T0) = x(t) for all t ≥ 0.

Proposition 3.2.5. Let assumption (A1) hold and {U(t, 0), 0 ≤ t ≤ a} be a family

of impulsive evolution operators. For each fixed T0 = τσ > 0, then the following

conditions are satisfied :

(1) U(0, 0) = I,

(2) U(t, 0) = U(t̄, 0)[U(T0, 0)]M where t = t̄ + MT0 for t̄ ∈ [0, T0] and M ∈
N ∪ {0}.

Proof. (1) Since T (0) = I with equation (A.6), U(0, 0) = I.

(2) We consider the following impulsive system for t ∈ [MT0, (M + 1)T0] ;




ẋ(t) = Ax(t), t 6= τMσ+m,

∆x(t) = BMσ+mx(t), t = τMσ+m, m = 1, 2, . . . , σ,

x(MT0) = [U(T0, 0)]Mx0, x(0) = x0,

(3.5)

where MT0 = τMσ < τMσ+1 < . . . < τ(M+1)σ = (M + 1)T0

and ∆x(τMσ+m) = x(τ+
Mσ+m)− x(τ−Mσ+m) for all M ∈ N ∪ {0}.

First, we consider the impulsive system for M = 0, that is for t ∈ [0, T0] ;




ẋ(t) = Ax(t), t 6= τm,

∆x(t) = Bmx(t), t = τm, m = 1, 2, . . . , σ,

x(0) = x0,

(3.6)
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where 0 < τ1 < τ2 < . . . < τσ = T0 and ∆x(τm) = x(τ+
m)− x(τ−m).

For t ∈ [0, τ1] ; 



ẋ(t) = Ax(t), t 6= 0,

x(0) = x0, t = 0.

The mild solution is x(t) = T (t)x0, 0 ≤ t ≤ τ1.

For t ∈ (τ1, τ2] ; 



ẋ(t) = Ax(t), t 6= τ1,

x(τ+
1 ) = (I + B1)x(τ1), t = τ1.

The mild solution is

x(t) = T (t− τ1)x(τ+
1 )

= T (t− τ1)(I + B1)x(τ1)

= T (t− τ1)(I + B1)T (τ1)x0,

for all τ1 < t ≤ τ2.

Proceeding in this way, we can be repeated on (τm, τm+1],m = 2, 3, . . . , σ−1

to get the solution of system (3.6) on [0, T0] with initial condition x(0) = x0

is given by

x(t) = U(t, 0)x0

where U(t, 0) is defined in (A.6).

Next, we consider the impulsive system for M = 1, that is for t ∈ [T0, 2T0];





ẋ(t) = Ax(t), t 6= τσ+m,

∆x(t) = Bσ+mx(t), t = τσ+m, m = 1, 2, . . . , σ,

x(T0) = U(T0, 0)x0, x(0) = x0,

(3.7)

where T0 = τσ < τσ+1 < . . . < τ2σ = 2T0 and ∆x(τσ+m) = x(τ+
σ+m)− x(τ−σ+m).

For t ∈ [τσ, τσ+1] ;



ẋ(t) = Ax(t), t 6= τσ,

x(T0) = U(T0, 0)x0, t = τσ.
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The mild solution is x(t) = T (t− τσ)U(T0, 0)x0 for all τσ ≤ t ≤ τσ+1.

For t ∈ (τσ+1, τσ+2] ;



ẋ(t) = Ax(t), t 6= τσ+1,

x(τ+
σ+1) = (I + Bσ+1)x(τσ+1), t = τσ+1.

The mild solution is

x(t) = T (t− τσ+1)x(τ+
σ+1)

= T (t− τσ+1)(I + Bσ+1)x(τσ+1)

= T (t− τσ+1)(I + Bσ+1)T (τσ+1 − τσ)U(T0, 0)x0,

(3.8)

for all τσ+1 < t ≤ τσ+2.

By similarity procedure, we can be repeated on (τσ+m, τσ+m+1 ], m =

2, 3, . . . , σ − 1 to get the mild solution of system (3.7) on [T0, 2T0] with initial

condition x(T0) = U(T0, 0)x0,

x(t) = T (t− τσ+m)

[
m∏

j=1

(I + Bσ+j)T (τσ+j − τσ+j−1)

]
U(T0, 0)x0 (3.9)

Since Bσ+m = Bm, τσ+m = τm + T0 and t = t̄ + T0 for all 0 ≤ t̄ ≤ T0

and m ∈ N, then the solution (3.9) can be rewritten in the form

x(t) = T (t− τσ+m)

[
m∏

j=1

(I + Bσ+j)T (τσ+j − τσ+j−1)

]
U(T0, 0)x0

= T (t̄ + T0 − (τm + T0))

[
m∏

j=1

(I + Bj)T (τj + T0 − (τj−1 + T0))

]
U(T0, 0)x0

= T (t̄− τm)

[
m∏

j=1

(I + Bj)T (τj − τj−1)

]
U(T0, 0)x0

Then by Definition 3.2.3, we have

x(t) = U(t, 0)x0 = U(t̄, 0)U(T0, 0)x0, for all 0 ≤ t̄ ≤ T0.

That is for M = 1 with t = t̄ + T0, we obtain

U(t, 0) = U(t̄, 0)U(T0, 0), for all 0 ≤ t̄ ≤ T0.
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By mathematical induction, we proceeding in similar way. Then the mild

solution of system (3.5) on [MT0, (M + 1)T0] with initial condition x(MT0) =

[U(T0, 0)]Mx0 is given by

x(t) = T (t̄− τm)

[
m∏

j=1

(I + Bj)T (τj − τj−1)

]
[U(T0, 0)]Mx0.

Again by Definition 3.2.3, we have

x(t) = U(t, 0)x0 = U(t̄, 0)[U(T0, 0)]Mx0, for all 0 ≤ t̄ ≤ T0.

That is for M ∈ N ∪ {0} with t = t̄ + MT0, we obtain

U(t, 0) = U(t̄, 0)[U(T0, 0)]M , for all 0 ≤ t̄ ≤ T0.

This completes the proof.

Remark 3.1. If {T (t), t > 0} is a compact semigroup in X, then U(t, 0) is a

compact operator. Particularly, U(T0, 0) is also a compact operator.

Since {T (t), t > 0} is a compact semigroup, then T (τk−τk−1) is compact

for all τk > τk−1 and k ∈ N. From equation (A.6) and the fact that Bk ∈ L(x),

then U(t, 0) is a compact operator for t > 0. Particularly, U(T0, 0) is also a

compact operator.

Lemma 3.2.6. If {T (t), t ≥ 0} is a C0-semigroup, then for every x ∈ X, t 7→
T (t−m)x is a continuous X-valued function on [m,∞) and its right limit exists

at m for all m ≥ 0.

Proof. Suppose that {T (t), t ≥ 0} is a C0-semigroup generated by A. Let x ∈ X

and t−m ≥ h ≥ 0, then by the semigroup property

T (t−m + h)x− T (t−m)x = T (t−m) [T (h)x− x] .
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By Theorem 2.3.2(1), there exist constants M ≥ 1 and ω ≥ 0 such that

‖T (t)‖L(X)
≤ Meωt for all t ≥ 0. Then we have

‖T (t−m + h)x− T (t−m)x‖
X

≤ ‖T (t−m)‖L(X)
‖T (h)x− x‖

X

≤ Meω(t−m)‖T (h)x− x‖
X
,

and by the C0-property, we obtain

lim
h→0

‖T (t−m + h)x− T (t−m)x‖
X

= 0.

Similarly for t−m ≥ h ≥ 0, we have

‖T (t−m− h)x− T (t−m)x‖
X

≤ ‖T (t−m− h)‖L(X)
‖T (h)x− x‖

X

≤ Meω(t−m−h)‖T (h)x− x‖
X
.

Hence

lim
h→0

‖T (t−m− h)x− T (t−m)x‖
X

= 0

and

lim
t→m+

T (t−m)x = T (0)x = Ix = x.

This implies that t 7→ T (t−m)x is a continuous X-valued function on [m,∞) and

its right limit exists at m. This completes the proof.

Lemma 3.2.7. If A is an infinitesimal generator of C0-semigroup {T (t), t ≥ 0},
then for every x0 ∈ D(A), t 7→ T (t − m)x0 is differentiable for t > m with the

derivatives given by

d

dt
T (t−m)x0 = AT (t−m)x0 = T (t−m)Ax0, for all t > m. (3.10)

Proof. Suppose that {T (t), t ≥ 0} is a C0-semigroup generated by A. For t ≥ 0

and x0 ∈ D(A) we show that t 7→ T (t −m)x0 is differentiable for t > m, that is

we must show that the right and left derivatives of T (t−m)x0 exist and are equal



40

to equation (3.10). By definition of the right derivative is given by

d+

dt
T (t−m)x0 := lim

h→0

(
T (t−m + h)x0 − T (t−m)x0

h

)

= lim
h→0

(
T (h)− I

h

)
T (t−m)x0

= AT (t−m)x0

and

lim
h→0

(
T (t−m + h)x0 − T (t−m)x0

h

)
= lim

h→0
T (t−m)

(
T (h)− I

h

)
x0

= T (t−m)Ax0,

thus, we have

d+

dt
T (t−m)x0 = AT (t−m)x0 = T (t−m)Ax0.

This proves the existence of the right derivative and that T (t−m)x0 ∈ D(A). For

the left derivative it suffices to verify that for t−m ≥ h,

lim
h→0

∥∥∥∥
(

T (t−m)x0 − T (t−m− h)x0

h

)
− T (t−m)Ax0

∥∥∥∥
X

= 0.

By using the semigroup property and Theorem 2.3.2(1), there exist constants

M ≥ 1 and ω ≥ 0 such that
∥∥∥∥
(

T (t−m)x0 − T (t−m− h)x0

h

)
− T (t−m)Ax0

∥∥∥∥
X

=

∥∥∥∥T (t−m− h)

[(
T (h)x0 − x0

h

)
− T (h)Ax0

]∥∥∥∥
X

≤ ‖T (t−m− h)‖L(X)

∥∥∥∥
(

T (h)x0 − x0

h
− Ax0

)
+ (I − T (h))Ax0

∥∥∥∥
X

≤ M expω(t−m−h)

(∥∥∥∥
T (h)x0 − x0

h
− Ax0

∥∥∥∥
X

+ ‖(I − T (h))Ax0‖
X

)
.

Since A is the infinitesimal generator of the semigroup {T (t), t ≥ 0} and T (t−m)

is continuous, the expressions within the bracket converge to zero as h → 0. Thus

d−

dt
T (t−m)x0 = T (t−m)Ax0.
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Since T (t−m)Ax0 = AT (t−m)x0 and the continuity of T (t−m), then

d−

dt
T (t−m)x0 = AT (t−m)x0 = T (t−m)Ax0 for all t > m.

Thus for x0 ∈ D(A), both the right and left derivative exist and are identical.

Hence t 7→ T (t−m)x0 is differentiable for t > m.

Theorem 3.2.8. Let assumption (A1) hold and x0 ∈ X. Then a function

x : [0,∞) → X defined by

x(t) = U(t, 0)x0

or

x(t) =





T (t)x0, 0 ≤ t ≤ τ1,

T (t− τk)

[
k∏

j=1

(I + Bj)T (τj − τj−1)

]
x0, τk < t ≤ τk+1,

(3.11)

belongs to PC([0,∞), X) and 4x(τk) = Bkx(τk) for all k ∈ N.

Proof. Let x0 ∈ X. For t ∈ [0, τ1], we obtain

x(t) = U(t, 0)x0 = T (t)x0.

By Lemma 3.2.6, we have T (t)x0 is continuous on [0, τ1] and

x(0+) = lim
t→0+

T (t)x0 = x0.

For t ∈ (τk, τk+1], we obtain

x(t) = U(t, 0)x0 = T (t− τk)

[
k∏

j=1

(I + Bj)T (τj − τj−1)

]
x0,

for all k ∈ N.

Define xk :=

[
k∏

j=1

(I + Bj)T (τj − τj−1)

]
x0, then x(t) = T (t− τk)xk.

Again by Lemma 3.2.6, we have T (t− τk)xk is continuous on (τk, τk+1] and

x(τ+
k ) = lim

t→τ+
k

T (t− τk)xk = xk.
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That is, x ∈ PC([0,∞), X) and

4x(τk) = x(τ+
k )− x(τk) = (I + Bk)x(τk)− x(τk) = Bkx(τk),

for all k ∈ N. This completes the proof.

Corollary 3.2.9. Let assumption (A1) hold and {U(t, s), 0 ≤ s ≤ t < ∞} be a

family of impulsive evolution operators. For each s ≥ 0 and x ∈ X, a function

U(·, s)x : [s,∞) → X belongs to PC([s,∞), X).

Proof. Let xs ∈ X. For 0 ≤ s ≤ t ≤ τ1, we obtain

x(t) = U(t, s)xs = T (t− s)xs.

By Lemma 3.2.6, we have T (t− s)xs is continuous on [s, τ1] and

x(s+) = lim
t→s+

T (t− s)xs = xs.

For τk−1 ≤ s ≤ τk < t ≤ τk+1, we obtain

x(t) = U(t, s)xs = T (t− τk)(I + Bk)T (τk − s)xs for all k ∈ N.

Define xk = (I + Bk)T (τk − s)xs, then x(t) = T (t− τk)xk.

Again by Lemma 3.2.6, we have T (t− τk)xk is continuous on (τk, τk+1] and

x(s+) = lim
t→s+

T (t− τk)xk = xk.

For τi−1 < s ≤ τi < . . . < τk < t ≤ τk+1, we obtain

x(t) = U(t, s)xs

= T (t− τk)

[
k∏

j=i+1

(I + Bj)T (τj − τj−1)

]
(I + Bi)T (τi − s)xs,

for all k ∈ N.

Define xk :=

[
k∏

j=1

(I + Bj)T (τj − τj−1)

]
(I + Bi)T (τi − s)xs, then

x(t) = T (t− τk)xk.
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Also by Lemma 3.2.6, we have T (t− τk)xk is continuous on t ∈ (τk, τk+1] and

x(τ+
k ) = lim

t→τ+
k

T (t− τk)xk = xk.

That is, x ∈ PC([s,∞), X) and

4x(τk) = x(τ+
k )− x(τk) = (I + Bk)x(τk)− x(τk) = Bkx(τk),

for all k ∈ N. This completes the proof.

3.2.3 Regularity of Mild Solutions

Theorem 3.2.10. Let assumption (A1) hold. If D(A) is an invariant subspace

of T (t) and (I + Bk) for all k ∈ N and t ∈ [0,∞), then for every x0 ∈ D(A)

the mild solution of impulsive system (A.5) is a classical solution.

Proof. Assume that x is a mild solution of impulsive system (A.5) with initial

condition x0 ∈ D(A). Next, we want to show that the mild solution is differentiable

on (τk, τk+1) for all k ∈ N ∪ {0}. By Lemma 3.2.7, we have x is differentiable on

(0, τ1),

ẋ(t) =
d

dt
U(t, 0)x0 =

d

dt
T (t)x0 = AT (t)x0 = Ax(t)

and x(t) = T (t)x0 ∈ D(A). Since D(A) is an invariant subspace of T (t) and

(I + Bk),

xk :=

[
k∏

j=1

(I + Bj)T (τj − τj−1)

]
x0 ∈ D(A),

for all k ∈ N and t ∈ [0,∞). By Lemma 3.2.7, we have x is differentiable on

(τk, τk+1),

ẋ(t) =
d

dt
U(t, 0)x0 =

d

dt
T (t− τk)

[
k∏

j=1

(I + Bj)T (τj − τj−1)

]
x0

=
d

dt
T (t− τk)xk = AT (t− τk)xk = Ax(t)

and x(t) = T (t− τk)xk ∈ D(A).
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That is, x ∈ PC([0,∞), X) ∩ C1((0,∞) \D,X) and ẋ(t) = Ax(t), where t 6= τk.

Therefore it follows from Theorem 3.2.8 that x ∈ PC([0,∞), X) and 4x(τk) =

Bkx(τk) for all k ∈ N. Hence, x is a classical solution.

Corollary 3.2.11. Let assumption (A1) hold and {T (t), t ≥ 0} be a differential

semigroup generated by A. If D(A) is an invariant subspace of T (t) and (I +Bk)

for all k ∈ N, then for every x0 ∈ X the mild solution of impulsive system (A.5)

is a classical solution.

Proof. Since {T (t), t ≥ 0} is a differential semigroup, {T (t), t ≥ 0} is C0-

semigroup. From Theorem 3.2.10, the proof follows immediately.

Corollary 3.2.12. Let assumption (A1) hold and {T (t), t ≥ 0} be an analytic

semigroup generated by A. If D(A) is an invariant subspace of T (t) and (I+Bk)

for all k ∈ N, then for every x0 ∈ X the mild solution of impulsive system (A.5)

is a classical solution.

Proof. This follows from the simple fact that every analytic semigroup is also

a differentiable semigroup and C0−semigroup. From Theorem 3.2.10, the proof

follows immediately.

3.2.4 Existence and Uniqueness of periodic mild solutions

Theorem 3.2.13. Let assumption (A1) hold. System (A.5) has a periodic mild

solution if and only if the operator U(T0, 0) has a fixed point x0 ∈ X.

Proof. Let x(t) be a periodic mild solution of system (A.5). Suppose x(0) = x0

be the initial condition of system (A.5), then x(T0) = x(0) = x0. Since x(T0) =

U(T0, 0)x0, x0 = U(T0, 0)x0. That is, the operator U(T0, 0) has a fixed point

x0 ∈ X. Conversely, assume that x0 be a fixed point of U(T0, 0). Use x0 as
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the initial condition of system (A.5), then the solution is x(t) = U(t, 0)x0, where

t = t̄+MT0 for all t̄ ∈ [0, T0] and M ∈ N∪{0}. By assumption and Proposition

A.1 (2), we have x(t) = x(t̄ + MT0) = U(t̄, 0)[U(T0, 0)]Mx0 = U(t̄, 0)x0 = x(t̄).

Hence x is a periodic mild solution of system (A.5).

Theorem 3.2.14. Let assumption (A1) hold. Furthermore, assume that A is the

infinitesimal generator of a compact semigroup {T (t), t > 0} in X. Then system

(A.5) either has a unique trivial solution or have finitely many linearly independent

nontrivial periodic mild solutions in PC([0,∞) , X).

Proof. Since U(T0, 0) : X → X is a compact linear operator, applying Fredholm

alternative theorem, we obtain U(T0, 0) satisfy Fredholm alternative that either

(a) or (b) holds : (a) The homogenous equations [I−U(T0, 0)]x = 0 have only the

trivial solution x = 0. That is U(T0, 0) has only a unique fixed point x = 0

(i.e., by Theorem A.3, this means that system (A.5) has a unique trivial solution).

(b) The homogenous equations [I −U(T0, 0)]x = 0 have nontrivial solutions, then

all of linearly independent nontrivial solutions are finite. Suppose all of nontrivial

solutions x1
0, x2

0, . . . , xm
0 be such that [I − U(T0, 0)]xi

0 = 0, i = 1, 2, . . . , m.

So x1
0, x2

0, . . . , xm
0 are fixed points of U(T0, 0). Again by Theorem A.3,

this means that system (A.5) has periodic mild solutions, say x1, x2, . . . , xm

where xi are the solutions of system (A.5) corresponding to initial conditions

xi(0) = xi
0, i = 1, 2, . . . , m. Hence the number of linearly independent nontrivial

periodic mild solutions of system (A.5) are finite.
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3.3 Nonhomogeneous Linear Impulsive Periodic Control

Systems

We consider the following nonhomogeneous linear impulsive periodic control

systems





ẋ(t) = Ax(t) + u(t), t 6= τk,

∆x(t) = Bkx(t) + ck, t = τk,
(3.12)

where ∆x(τk) = x(τ+
k )−x(τ−k ) for all k ∈ N. Suppose that system (A.7) satisfies

assumption (A1). We impose the following assumption for the remaining.

Assumption (A2) ;

(A2.1) A is the infinitesimal generator of a compact semigroup {T (t), t > 0}
in X.

(A2.2) u ∈ PC([0,∞) , X) such that u(t + T0) = u(t).

(A2.3) ck ∈ X and ck+σ = ck for all k ∈ N.

3.3.1 Definitions of Solutions

Definition 3.3.1. A function x ∈ PC([0,∞) , X) is said to be a mild so-

lution of system (A.7) with initial condition x(0) = x0 ∈ X and the input

u ∈ L1
loc([0,∞), X) if x is given by

x(t) = U(t, 0)x0 +

∫ t

0

U(t, s)u(s)ds +
∑

0≤τk<t

U(t, τk)ck, (3.13)

for all k ∈ N.

Definition 3.3.2. A function x ∈ PC([0,∞) , X) is said to be a periodic mild

solution of system (A.7) if it is a mild solution and there exists T0 > 0 such that

x(t + T0) = x(t) for all t ≥ 0.
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Definition 3.3.3. A function x ∈ PC([0,∞), X) is said to be a T0-periodic

mild solution of system (A.7) if it is a mild solution and x(t + T0) = x(t) for all

t ≥ 0.

3.3.2 Existence and Uniqueness of Periodic Mild Solutions

Consider the nonhomogeneous system without impulses





ẋ(t) = Ax(t) + u(t), t > 0

x(0) = x0.
(3.14)

where A is the infinitesimal generator of C0-semigroup {T (t), t ≥ 0} in X.

Lemma 3.3.1. If u ∈ L1
loc([0,∞), X), then for every x0 ∈ X the initial value

problem (A.9) has a unique solution which satisfies

x(t) = T (t)x0 +

∫ t

0

T (t− s)u(s)ds, 0 ≤ t ≤ T0. (3.15)

Proof. See Pazy (1983), pp.106.

Theorem 3.3.2. Let assumptions (A1) and (A2) hold. If u ∈ L1
loc([0,∞), X),

then system (A.7) has a unique mild solution x ∈ PC([0, T0], X).

Proof. For t ∈ [0, τ1], Lemma A.5 implies that system

ẋ(t) = Ax(t) + u(t), 0 ≤ t ≤ τ1, x(0) = x0, (3.16)

has a unique mild solution on I1 = [0, τ1] which satisfies

x1(t) = T (t)x0 +

∫ t

0

T (t− s)u(s)ds, t ∈ [0, τ1]. (3.17)

Now, define

x1(τ1) = T (τ1)x0 +

∫ τ1

0

T (τ1 − s)u(s)ds, (3.18)
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so that x1(·) is left continuous at τ1.

Next, on I2 = (τ1, τ2], consider system

ẋ(t) = Ax(t) + u(t), τ1 < t ≤ τ2, x1(τ
+
1 ) = (I + B1)x1(τ1) + c1, (3.19)

Since x1 ∈ X, we can use Lemma A.5 again to get a unique mild solution on (τ1, τ2]

which satisfy

x2(t) = T (t− τ1) [(I + B1)x1(τ1) + c1] +

∫ t

τ1

T (t− s)u(s)ds. (3.20)

Now, define x2(τ2) accordingly so that x2(·) is left continuous at τ2.

It is easy to see that Lemma A.5 can be applied to interval (τ1, τ2] to verify

that x2(τ2) ∈ X. Proceeding in this way, we can be repeated on Ik = (τk−1, τk], k =

3, 4, . . . , σ (τσ = T0) to get a mild solution

xk(t) = T (t− τk−1) [(I + Bk−1)xk−1(τk−1) + ck−1] +

∫ t

τk−1

T (t− s)u(s)ds.

for t ∈ (τk−, τk] and define xk(τk) accordingly with xk(·) left continuous at τk

and xk(τk) ∈ X, k = 1, 2, . . . , σ.

Thus we obtain x ∈ PC([0, T0], X) is a unique mild solution of system

(A.7) and given by

x(t) =





x1(t), 0 ≤ t ≤ τ1,

xk(t), τk−1 < t ≤ τk, k = 2, 3, . . . , σ.

Next, we use mathematical induction to show that (A.8) is satisfied on

[0, T0]. First, (A.8) is satisfied on [0, τ1]. If (A.8) is satisfied on (τk−1, τk], then

for t ∈ (τk, τk+1],

x(t) = xk+1(t) = T (t− τk) [(I + Bk)xk(τk) + ck] +

∫ t

τk

T (t− s)u(s)ds

= T (t− τk)(I + Bk)x(τk) + T (t− τk)ck +

∫ t

τk

T (t− s)u(s)ds
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= T (t− τk)(I + Bk)
[
U(τk, 0)x0 +

∫ τk

0

U(τk, s)u(s)ds +
∑

0≤τi<τk

U(τk, τi)ci

]

+T (t− τk)ck +

∫ t

τk

T (t− s)u(s)ds

= U(t, 0)x0 +

∫ τk

0

U(t, s)u(s)ds +

∫ t

τk

U(t, s)u(s)ds +
∑

0≤τi<τk

U(t, τi)ci + U(t, τk)ck

= U(t, 0)x0 +

∫ t

0

U(t, s)u(s)ds +
∑

0≤τi<t

U(t, τi)ci.

Thus (A.8) is also true on (τk, τk+1]. Therefore (A.8) is true on [0, T0].

According to Definition 3.3.1, the mild solution of system (A.7) is given by

x(t) = U(t, 0)x0 +

∫ t

0

U(t, s)u(s)ds +
∑

0≤τk<t

U(t, τk)ck,

where x(0) = x0 for all k ∈ N.

If x(t) is T0-periodic mild solution of system (A.7), then we have x(T0) = x(0);

namely,

[I − U(T0, 0)]x(0) =

∫ T0

0

U(T0, s)u(s)ds +
∑

0≤τk<T0

U(T0, τk)ck. (3.21)

We consider in 2 cases.

Case 1 : [I − U(T0, 0)]−1 exists.

Theorem 3.3.3. If system (A.5) has only trivial solution , then system (A.7) has

a unique T0-periodic mild solution

x
T0

(t) = U(t, 0)[I − U(T0, 0)]−1

(∫ T0

0

U(T0, s)u(s) ds

+
∑

0≤τk<T0

U(T0, τk)ck

)
+

∫ t

0

U(t, s)u(s)ds

+
∑

0≤τk<t

U(t, τk)ck.

(3.22)

Proof. Suppose that system (A.5) has only trivial solution, then [I −U(T0, 0)]−1

exists. This implies that (A.16) gives

x(0) = [I − U(T0, 0)]−1

(∫ T0

0

U(T0, s)u(s)ds +
∑

0≤τk<T0

U(T0, τk)ck

)
.
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Substituting x(0) = x0 into equation (A.10), we get

x(t) = U(t, 0)[I − U(T0, 0)]−1

(∫ T0

0

U(T0, s)u(s) ds

+
∑

0≤τk<T0

U(T0, τk)ck

)
+

∫ t

0

U(t, s)u(s)ds

+
∑

0≤τk<t

U(t, τk)ck.

(3.23)

which is a mild solution of system (A.7).

Next, we want to show that a mild solution is unique and is T0-periodic.

Suppose that y(t) = x(t + T0) is a mild solution of system (A.7). By Proposition

(3.2.1), we have

y(t) = x(t + T0) = U(t + T0, 0)x0 +

∫ t+T0

0

U(t + T0, s)u(s)ds

+
∑

0≤τk<t+T0

U(t + T0, τk)ck

= U(t + T0, T0)U(T0, 0)x0 +

∫ T0

0

U(t + T0, s)u(s)ds +
∑

0≤τk<T0

U(t + T0, τk)ck

+

∫ t+T0

T0

U(t + T0, s)u(s)ds +
∑

T0≤τk<t+T0

U(t + T0, τk)ck

= U(t, 0)U(T0, 0)x0 +

∫ T0

0

U(t + T0, T0)U(T0, s)u(s)ds

+
∑

0≤τk<T0

U(t + T0, T0)U(T0, τk)ck +

∫ t

0

U(t, s)u(s)ds +
∑

0≤τk<t

U(t, τk)ck

= U(t, 0)U(T0, 0)x0 + U(t, 0)

∫ T0

0

U(T0, s)u(s)ds + U(t, 0)
∑

0≤τk<T0

U(T0, τk)ck

+

∫ t

0

U(t, s)u(s)ds +
∑

0≤τk<t

U(t, τk)ck

= U(t, 0)

[
U(T0, 0)x0 +

∫ T0

0

U(T0, s)u(s)ds +
∑

0≤τk<T0

U(T0, τk)ck

]

+

∫ t

0

U(t, s)u(s)ds +
∑

0≤τk<t

U(t, τk)ck
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= U(t, 0)x(T0) +

∫ t

0

U(t, s)u(s)ds +
∑

0≤τk<t

U(t, τk)ck

= U(t, 0)y(0) +

∫ t

0

U(t, s)u(s)ds +
∑

0≤τk<t

U(t, τk)ck

This implies that y(t) is also a solution. It follows from Lemma A.5 that

y(t) = x(t + T0) = x(t) for all t ≥ 0. So x(t) is a T0-periodic mild solution of

system (A.7), which is exactly (3.22). This completes the proof.

Case 2 : [I − U(T0, 0)]−1 does not exists.

In this case, system (A.5) has nontrivial periodic mild solutions. Let us

construct the following adjoint equation of system (A.5),





ẏ(t) = −A∗y, t 6= τk,

−∆y(t) = B∗
ky(t), t = τk,

(3.24)

where A∗ is the adjoint operator of A, 0 = τ0 < τ1 < . . . < τk < . . . < τσ = T0

and ∆y(τk) = y(τ+
k )− y(τ−k ) for all k = 1, 2, . . . , σ. Suppose that system (A.19)

satisfies the following assumption (A3).

Assumption (A3) ;

(A3.1) A∗ is the infinitesimal generator of the adjoint semigroup {T ∗(t), t ≥ 0}
in X∗.

(A3.2) B∗
k ∈ L(X∗) such that B∗

k+σ = B∗
k for all k ∈ N.

Definition 3.3.4. A function y ∈ PC([0, T0], X) is said to be a periodic mild

solution of system (A.19) with initial condition y(T0) = y(0) if y is given by

y(t) = U∗(T0, t)y(0), 0 ≤ t ≤ T0, (3.25)
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where

U∗(T0, t) =





T ∗(T0 − t), τσ−1 < t ≤ τσ = T0,

T ∗(τi − t)(I + B∗
i )

[
k∏

j=i+1

(I + Bj)T (τj − τj−1)

]∗
T ∗(T0 − τk),

0 ≤ τi−1 < t ≤ τi ≤ τσ = T0,

(3.26)

for all i = 1, 2, . . . , σ.

Theorem 3.3.4. Assume that (A1) and (A2) hold. Furthermore, assume that

X is a Hilbert space and u ∈ L1
loc([0,∞) , X). If system (A.5) have m linearly

independent periodic mild solutions x1, x2, . . . , xm with 1 ≤ m ≤ n where

xi are periodic mild solutions of system (A.5) corresponding to initial conditions

xi(0) = xi
0, i = 1, 2, . . . , m, then

1. the adjoint system (A.19) also have m linearly independent periodic mild

solutions y1, y2, . . . , ym.

2. system (A.7) has a T0-periodic mild solution if and only if

〈 y , z 〉 = 0, (3.27)

where y ∈ X∗ satisfying

[I − U∗(T0, 0)]y = 0 (3.28)

and z :=

∫ T0

0

U(T0, s)u(s)ds +
∑

0≤τk<T0

U(T0, τk)ck,

or if and only if

∫ T0

0

〈 y(s), u(s) 〉ds +
∑

0≤τk<T0

〈 y(τk), ck 〉 = 0. (3.29)

Furthermore, let xa(t) be a particular T0-periodic mild solution of system (A.7),

each T0-periodic mild solution of system (A.7) has the form

x(t) = xa(t) +
m∑

i=1

αix
i(t),

where αi, i = 1, 2, . . . , m, are constants.
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Proof. 1. Suppose system (A.5) have m linearly independent periodic mild solu-

tions x1, x2, . . . , xm with 1 ≤ m ≤ n where xi are periodic mild solutions of

system (A.5) corresponding to initial conditions xi(0) = xi
0, i = 1, 2, . . . ,m.

By Theorem A.3, this means that the equations

[I − U(T0, 0)]xi
0 = 0 (3.30)

have fixed points x1
0, x

2
0, . . . , x

m
0 . Then from Theorem 2.1.21, we know that the

following adjoint equations of (A.25)

[I − U∗(T0, 0)]yi
0 = 0, where yi

0 = yi(0) (3.31)

also have m linearly independent solutions y1
0, y2

0, . . . , ym
0 . So y1

0, y
2
0, . . . , y

m
0

are fixed points of U∗(T0, 0) . Again by Theorem A.3, this means that system

(A.19) have periodic mild solutions, say y1, y2, . . . , ym where yi are periodic

mild solutions of system (A.5) corresponding to initial conditions yi(0) = yi
0, i =

1, 2, . . . ,m.

2. System (A.7) has a T0-periodic mild solution x(t) if and only if the equation

[I − U(T0, 0)]x(0) =

∫ T0

0

U(T0, s)u(s)ds +
∑

0≤τk<T0

U(T0, τk)ck := z (3.32)

has a solution x(0). It follows from Theorem 2.1.18 that the above condition is

equivalent to

〈 y , z 〉 = 0, (3.33)

for any y ∈ X∗ satisfying

[I − U∗(T0, 0)]y = 0 (3.34)
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From equation (A.28), we obtain

〈 y , z 〉 = 0 ⇔ 〈 y,

∫ T0

0

U(T0, s)u(s)ds +
∑

0≤τk<T0

U(T0, τk)ck 〉 = 0

⇔ 〈 y,

∫ T0

0

U(T0, s)u(s)ds 〉+ 〈 y,
∑

0≤τk<T0

U(T0, τk)ck 〉 = 0

⇔
∫ T0

0

〈 y, U(T0, s)u(s) 〉ds +
∑

0≤τk<T0

〈 y, U(T0, τk)ck 〉 = 0

⇔
∫ T0

0

〈 U∗(T0, s)y, u(s) 〉ds +
∑

0≤τk<T0

〈 U∗(T0, τk)y, ck 〉 = 0

⇔
∫ T0

0

〈 y(s), u(s) 〉ds +
∑

0≤τk<T0

〈 y(τk), ck 〉 = 0

from which we immediately get (A.24). This completes the proof.

The following theorem guarantee the existence of periodic mild solution.

The proof is based on boundedness property.

Theorem 3.3.5. If system (A.7) has a bounded mild solution, then it has at least

one T0-periodic mild solution.

Proof. Assume that x(t) is a bounded mild solution of system (A.7). For any

t ≥ 0, we have

x(t) = U(t, 0)x0 +

∫ t

0

U(t, s)u(s)ds +
∑

0≤τk<t

U(t, τk)ck,

where x(0) = x0 and

x(T0) = U(T0, 0)x0 +

∫ T0

0

U(T0, s)u(s)ds +
∑

0≤τk<T0

U(T0, τk)ck.

Define z :=

∫ T0

0

U(T0, s)u(s)ds +
∑

0≤τk<T0

U(T0, τk)ck, then

x(T0) = U(T0, 0)x0 + z.
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We know that the function x(t + T0) is also a solution of system (A.7) on

[T0, 2T0] for t ∈ [0, T0] and its value at t = 0 is x(T0). So

x(t + T0) = U(T0, 0)x(T0) +

∫ t

0

U(t, s)u(s)ds +
∑

0≤τk<t

U(t, τk)ck

and

x(2T0) = U(T0, 0)x(T0) + z = U2(T0, 0)x0 + [U(T0, 0) + I]z.

Proceeding in this way, we get

x(mT0) = Um(T0, 0)x0 +
m−1∑
i=0

U i(T0, 0)z for all m ∈ N. (3.35)

By contradiction, we assume that (A.7) has no T0-periodic mild solution. This

means that the periodicity condition

x(T0) = U(T0, 0)x0 + z = x0 (3.36)

has no solution, i.e., the equation

[I − U(T0, 0)]x0 = z (3.37)

has no solution. By Theorem 2.1.18, this implies that there exists y ∈ X∗

such that

[I − U∗(T0, 0)]y = 0 and 〈 y , z〉 6= 0. (3.38)

The first condition means that U∗(T0, 0)y = y, so

U∗m

(T0, 0)y = y for all m ∈ N. (3.39)

Assume that 〈 y , z〉 = γ 6= 0. Then from equation (A.30), we have

〈 y , x(mT0) 〉 = 〈 y , Um(T0, 0)x0 〉+
m−1∑
i=0

〈 y , U i(T0, 0)z〉

= 〈U∗m
(T0, 0)y , x0 〉+

m−1∑
i=0

〈U∗i

(T0, 0)y , z〉

= 〈 y , x0 〉+
m−1∑
i=0

〈 y , z〉

= 〈 y , x0 〉+ mγ.
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Letting m →∞, we obtain

lim
m→∞

〈 y , x(mT0) 〉 = ∞. (3.40)

Since x(t) is bounded mild solution and y ∈ X∗, then

|〈 y , x(mT0) 〉| ≤ ‖y‖
X∗‖x(mT0)‖X

≤ M‖y‖
X∗ < ∞.

But lim
m→∞

〈 y , x(mT0) 〉 < ∞. It contradicts (A.35) and the theorem is proved.

Corollary 3.3.6.

1. Assume that system (A.7) has no T0-periodic mild solution, then all of its

solutions are unbounded for t ≥ 0.

2. Assume that system (A.7) has a unique bounded mild solution for t ≥ 0,

then this solution is T0-periodic.

3.4 Linear Impulsive Periodic Control Systems with Pa-

rameter Perturbations

We consider the following linear impulsive periodic control systems with

parameter perturbations





ẋ(t) = Ax(t) + u(t) + p(t, x(t), ξ), t 6= τk,

∆x(t) = Bkx(t) + ck + qk(x(t), ξ), t = τk,
(3.41)

where ∆x(τk) = x(τ+
k )−x(τ−k ) for all k ∈ N. Suppose that system (3.41) satisfy

assumptions (A1) and (A2).

We impose the following assumption for the remaining.

Assumption (A4) ;

(A4.1) p(·, x, ξ) ∈ PC([0,∞) , X) such that p(t + T0, x, ξ) = p(t, x, ξ) for all
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(t, x, ξ) ∈ [0,∞)× Bρ × [0, ξ0].

(A4.2) qk ∈ C(Bρ × [0, ξ0] , X) such that qk+σ(x, ξ) = qk(x, ξ) for all k ∈ N
(A4.3) For each (t, x, ξ) ∈ [0,∞)× Bρ × [0, ξ0], there exists a nonnegative

function χ(ξ) such that

lim
ξ→0

χ(ξ) = χ(0) = 0

and ‖p(t, x, ξ)‖
X
≤ χ(ξ), ‖qk(x, ξ)‖

X
≤ χ(ξ) (3.42)

for all k ∈ N.

3.4.1 Definitions of Solutions

Definition 3.4.1. A function x ∈ PC([0,∞) , X) is said to be a mild solu-

tion of system (3.41) with initial condition x(0) = x0 ∈ X and the input

u ∈ L1
loc([0,∞), X) if x is given by

x(t) = U(t, 0)x0 +

∫ t

0

U(t, s)[u(s) + p(s, x(s), ξ)]ds

+
∑

0≤τk<t

U(t, τk)[ck + qk(x(τk), ξ)],
(3.43)

for all k ∈ N.

Definition 3.4.2. A function x ∈ PC([0,∞), X) is said to be a periodic mild

solution of system (3.41) if it is a mild solution and there exists T0 > 0 such that

x(t + T0) = x(t) for all t ≥ 0.

Definition 3.4.3. A function x ∈ PC([0,∞), X) is said to be a T0-periodic

mild solution of system (3.41) if it is a mild solution and x(t + T0) = x(t) for all

t ≥ 0.

From now on, we will find sufficient conditions for the existence of T0-

periodic mild solutions of system (3.41). We assume that system (A.5) has only
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trivial solution. Let ξ = 0, then system (3.41) has the same form as system (A.7)

because of the fact from (3.42) that p(t, x, 0) = 0 and qk(x, 0) = 0. It follows

from Theorem A.7 that system (3.41) has the following T0-periodic mild solution

x
T0

(t) = U(t, 0)[I − U(T0, 0)]−1

(∫ T0

0

U(T0, s)u(s) ds

+
∑

0≤τk<T0

U(T0, τk)ck

)
+

∫ t

0

U(t, s)u(s)ds

+
∑

0≤τk<t

U(t, τk)ck,

(3.44)

where U(t, s) is defined in (A.3). Then we have the following theorem to show

that for small ξ system (3.41) has a T0-periodic mild solution which is closed to

x
T0

(t).

3.4.2 Existence and Uniqueness of Periodic Mild Solutions

Theorem 3.4.1. Let assumptions (A1), (A2) and (A4) hold. Assume that

1. system (A.5) has only trivial solution,

2. the following inequality is valid

ρ0 = sup
t∈[0,T0]

‖x
T0

(t)‖
X

< ρ (3.45)

where ρ be any positive real number,

3. p(t, x, ξ) and qk(x, ξ) satisfy Lipschitz conditions, i.e. for any (t, x, ξ),

(t, y, ξ) ∈ [0,∞)× Bρ × [0, ξ0], there exists a constant N(ξ) > 0 such that

‖p(t, x, ξ)− p(t, y, ξ)‖
X
≤ N(ξ)‖x− y‖

X

and ‖qk(x, ξ)− qk(y, ξ)‖
X
≤ N(ξ)‖x− y‖

X
.

Then for any constant ρ > ρ0 > 0, there exists a sufficiently small ξ0 > 0

such that for every fixed ξ ∈ [0, ξ0] system (3.41) has a unique T0-periodic mild
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solution xξ
T0

(t) satisfying

‖xξ
T0

(t)− x
T0

(t)‖
X

< ρ− ρ0 (3.46)

and

lim
ξ→0

xξ
T0

(t) = x
T0

(t) (3.47)

uniformly on t.

Proof. Let PCT0([0,∞), X) := {x ∈ PC([0,∞), X) | x(t + T0) = x(t),∀t ≥ 0 }.
Moreover, PCT0([0, T0], X) is a Banach space with the norm

‖x‖
PCT0

= sup
t∈[0,T0]

‖x(t)‖X .

Let us define

B := B(x
T0

, ρ1) = {x ∈ PCT0([0, T0], X) | ‖x− x
T0
‖

PCT0
≤ ρ1 := ρ− ρ0}

L1 = sup
0≤s≤t≤T0

‖U(t, s)‖L(X)

L2 = ‖[I − U(T0, 0)]−1‖L(X)

(3.48)

and an operator Ω : B → PCT0([0, T0] , X) such that

Ω(x)(t) := U(t, 0)[I − U(T0, 0)]−1

(∫ T0

0

U(T0, s)[u(s) + p(s, x(s), ξ)] ds

+
∑

0≤τk<T0

U(T0, τk)[ck + qk(x(τk), ξ)]

)
+

∫ t

0

U(t, s)[u(s)

+p(s, x(s), ξ)]ds +
∑

0≤τk<t

U(t, τk)[ck + qk(x(τk), ξ)].

(3.49)

We note that Ω(x) ∈ PCT0([0,∞) , X). Since

Ω(x)(T0) = U(T0, 0)[I − U(T0, 0)]−1

(∫ T0

0

U(T0, s)[u(s) + p(s, x(s), ξ)] ds

+
∑

0≤τk<T0

U(T0, τk)[ck + qk(x(τk), ξ)]

)

+

∫ T0

0

U(T0, s)[u(s), p(s, x(s), ξ)]ds

+
∑

0≤τk<T0

U(T0, τk)[ck + qk(x(τk), ξ)]
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=
(
U(T0, 0)[I − U(T0, 0)]−1 − I

) (∫ T0

0

U(T0, s)[u(s) + p(s, x(s), ξ)] ds

+
∑

0≤τk<T0

U(T0, τk)[ck + qk(x(τk), ξ)]

)

= [I − U(T0, 0)]−1

(∫ T0

0

U(T0, s)[u(s) + p(s, x(s), ξ)] ds

+
∑

0≤τk<T0

U(T0, τk)[ck + qk(x(τk), ξ)]

)
= Ω(x)(0).

From (A.37) and (A.40), we know that if x ∈ B, then

‖x‖
PCT0

≤ ‖x− x
T0
‖

PCT0
+ ‖x

T0
‖

PCT0
= ρ1 + ρ0 = ρ. (3.50)

For any x, y ∈ B, we have

‖Ω(x)− Ω(y)‖
PCT0

= sup
t∈[0,T0]

‖U(t, 0)[I − U(T0, 0)]−1

(∫ T0

0

U(T0, s)[p(s, x(s), ξ)− p(s, y(s), ξ)] ds

+
∑

0≤τk<T0

U(T0, τk)[qk(x(τk), ξ)− qk(y(τk), ξ)]

)

+

∫ t

0

U(t, s)[p(s, x(s), ξ)− p(s, y(s), ξ)]ds

+
∑

0≤τk<t

U(t, τk)[qk(x(τk), ξ)− qk(y(τk), ξ)]

∥∥∥∥∥
X

≤ sup
t∈[0,T0]

(
‖U(t, 0)‖L(X)

‖[I − U(T0, 0)]−1‖L(X)

(∫ T0

0

‖U(T0, s)‖L(X)
‖p(s, x(s), ξ)− p(s, y(s), ξ)‖

X
ds

+
∑

0≤τk<T0

‖U(T0, τk)‖L(X)
‖qk(x(τk), ξ)− qk(y(τk), ξ)‖X

)

+

∫ t

0

‖U(t, s)‖L(X)
‖p(s, x(s), ξ)− p(s, y(s), ξ)‖

X
ds

+
∑

0≤τk<t

‖U(T0, τk)‖L(X)
‖qk(x(τk), ξ)− qk(y(τk), ξ)‖X

)
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≤ L1L2

(
L1T0N(ξ)‖x− y‖

PCT0
+ L1σN(ξ)‖x− y‖

PCT0

)

+L1T0N(ξ)‖x− y‖
PCT0

+ L1σN(ξ)‖x− y‖
PCT0

=
(
L2

1L2T0 + L2
1L2σ + L1T0 + L1σ

)
N(ξ)‖x− y‖

PCT0
.

So ‖Ω(x)− Ω(y)‖
PCT0

≤ LN(ξ)‖x− y‖
PCT0

, (3.51)

where L = L2
1L2T0 + L2

1L2σ + L1T0 + L1σ and

‖Ω(x
T0

)− x
T0
‖

PCT0
= sup

t∈[0,T0]

‖U(t, 0)[I − U(T0, 0)]−1

(∫ T0

0

U(T0, s)p(s, x
T0

(s), ξ) ds

+
∑

0≤τk<T0

U(T0, τk)qk(xT0
(τk), ξ)

)

+

∫ t

0

U(t, s)p(s, x
T0

(s), ξ)ds

+
∑

0≤τk<t

U(t, τk)qk(xT0
(τk), ξ)

∥∥∥∥∥
X

≤ sup
t∈[0,T0]

‖U(t, 0)‖L(X)
‖[I − U(T0, 0)]−1‖L(X)

(∫ T0

0

‖U(T0, s)‖L(X)
‖p(s, x

T0
(s), ξ)‖

X
ds

+
∑

0≤τk<T0

‖U(T0, τk)‖L(X)
‖qk(xT0

(τk), ξ)‖X

)

+

∫ t

0

‖U(t, s)‖L(X)
‖p(s, x

T0
(s), ξ)‖

X
ds

+
∑

0≤τk<t

‖U(t, τk)‖L(X)
‖qk(xT0

(τk), ξ)‖X

≤ L1L2

(
L1T0χ(ξ) + L1σχ(ξ)

)
+ L1T0χ(ξ) + L1σχ(ξ)

=
(
L2

1L2T0 + L2
1L2σ + L1T0 + L1σ

)
χ(ξ)

So ‖Ω(x
T0

)− x
T0
‖

PCT0
≤ Lχ(ξ), (3.52)

where L = L2
1L2T0 + L2

1L2σ + L1T0 + L1σ.
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Let us choose ξ0 > 0 such that

η = L sup
ξ∈[0, ξ0]

N(ξ) < 1,

L sup
ξ∈[0, ξ0]

χ(ξ) ≤ ρ1(1− η).

(3.53)

Assume that ξ ∈ [0, ξ0], then it follows from (A.43), (A.44) and (A.45) that

‖Ω(x)− Ω(y)‖
PCT0

≤ η‖x− y‖
PCT0

,

‖Ω(x
T0

)− x
T0
‖

PCT0
≤ ρ1(1− η).

(3.54)

This implies that Ω(xξ
T0

) ∈ B and Ω : B → B is a contraction mapping. So Ω

has a unique fixed point xξ
T0
∈ B and satisfy

xξ
T0

(t) = U(t, 0)[I − U(T0, 0)]−1

(∫ T0

0

U(T0, s)[u(s) + p(s, xξ
T0

(s), ξ)] ds

+
∑

0≤τk<T0

U(T0, τk)[ck + qk(x
ξ
T0

(τk), ξ)]

)

+

∫ t

0

U(t, s)[u(s), p(s, xξ
T0

(s), ξ)]ds

+
∑

0≤τk<T0

U(t, τk)[ck + qk(x
ξ
T0

(τk), ξ)].

(3.55)

Since

xξ
T0

(T0) = U(T0, 0)[I − U(T0, 0)]−1

(∫ T0

0

U(T0, s)[u(s) + p(s, xξ
T0

(s), ξ)] ds

+
∑

0≤τk<T0

U(T0, τk)[ck + qk(x
ξ
T0

(τk), ξ)]

)

+

∫ T0

0

U(T0, s)[u(s), p(s, xξ
T0

(s), ξ)]ds

+
∑

0≤τk<T0

U(T0, τk)[ck + qk(x
ξ
T0

(τk), ξ)]

=
(
U(T0, 0)[I − U(T0, 0)]−1 − I

) (∫ T0

0

U(T0, s)[u(s) + p(s, xξ
T0

(s), ξ)] ds

+
∑

0≤τk<T0

U(T0, τk)[ck + qk(x
ξ
T0

(τk), ξ)]

)
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= [I − U(T0, 0)]−1

(∫ T0

0

U(T0, s)[u(s) + p(s, xξ
T0

(s), ξ)] ds

+
∑

0≤τk<T0

U(T0, τk)[ck + qk(x
ξ
T0

(τk), ξ)]

)

= xξ
T0

(0),

xξ
T0

(t) is a T0-periodic mild solution of system (3.41) which satisfies the estimate

(A.38) because

xξ
T0
∈ B ⇒ ‖xξ

T0
− x

T0
‖

PCT0
≤ ρ1

⇒ sup
t∈[0,T0]

‖xξ
T0

(t)− x
T0

(t)‖
X
≤ ρ1

⇒ ‖xξ
T0

(t)− x
T0

(t)‖
X
≤ ρ1 = ρ− ρ0.

Because we know that Ω(xξ
T0

)(t) = xξ
T0

(t) for all t ∈ [0, T0].

Then ‖xξ
T0

(t)− x
T0

(t)‖
X

= ‖Ω(xξ
T0

)(t)− x
T0

(t)‖
X
≤ Lχ(ξ).

Letting ξ → 0, we obtain (A.39). This completes the proof.

The following definition and lemma will be used in the proof of Theorem A.13.

Definition 3.4.4. A set S ⊂ PC([0, T0], X) is quasiequicontinuous in [0, T0] if for

any δ > 0 there exists ε > 0 such that if x ∈ S, t1, t2 ∈ (τk−1, τk] ∩ [0, T0], k ∈ N
and |t1 − t2| < ε, then ‖x(t1)− x(t2)‖X

< δ.

Lemma 3.4.2. A set S ⊂ PC([0, T0], X) is relatively compact if and only if

1. S is bounded for each x ∈ S,

2. S is quasiequicontinuous in [0, T0].

Proof. The proof can be found in D.D. Bainov and P.S. Simeonov (1993).
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Theorem 3.4.3. Let assumptions (A1), (A2) and (A4) hold. Assume that

1. system (A.5) has only trivial solution,

2. the following inequality is valid

ρ0 = sup
t∈[0,∞]

‖x
T0

(t)‖
X

< ρ (3.56)

Then for any constant ρ > ρ0 > 0, there exists a sufficiently small ξ0 > 0

such that for every fixed ξ ∈ [0, ξ0] system (3.41) has a unique T0-periodic mild

solution xξ
T0

(t) satisfying

‖xξ
T0

(t)− x
T0

(t)‖
X
≤ ρ− ρ0. (3.57)

Proof. As in the proof of Theorem A.11, we determine the number ρ1 = ρ−ρ0,

the Banach space PCT0([0, T0], X), the set B := B(x
T0

; ρ1) and the operator

Ω : B → PCT0([0, T0], X) is defined in (A.41). Obviously, B is a non-empty

bounded closed and convex set. It follows from the condition in (A.42) that if

x ∈ B, then ‖x‖
PCT0

≤ ρ. For any x ∈ B, we have

‖Ω(x)− x
T0
‖PCT0

= sup
t∈[0,T0]

‖U(t, 0)[I − U(T0, 0)]−1

(∫ T0

0

U(T0, s)p(s, x(s), ξ) ds

+
∑

0≤τk<T0

U(T0, τk)qk(x(τk), ξ)

)

+

∫ t

0

U(t, s)p(s, x(s), ξ)ds

+
∑

0≤τk<T0

U(t, τk)qk(x(τk), ξ)

∥∥∥∥∥
X
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≤ sup
t∈[0,T0]

‖U(t, 0)‖L(X)
‖[I − U(T0, 0)]−1‖L(X)

(∫ T0

0

‖U(T0, s)‖L(X)
‖p(s, x(s), ξ)‖

X
ds

+
∑

0≤τk<T0

‖U(T0, τk)‖L(X)
‖qk(x(τk), ξ)‖X

)

+

∫ t

0

‖U(t, s)‖L(X)
‖p(s, x(s), ξ)‖

X
ds

+
∑

0≤τk<T0

‖U(t, τk)‖L(X)
‖qk(x(τk), ξ)‖X

≤
(
L2

1L2T0 + L2
1L2σ + L1T0 + L1σ

)
χ(ξ).

So ‖Ω(x)− x
T0
‖

PCT0
≤ Lχ(ξ). (3.58)

where L = L2
1L2T0 + L2

1L2σ + L1T0 + L1σ.

Let us choose ξ ∈ [0, ξ0] such that

L sup
ξ∈[0, ξ0]

χ(ξ) ≤ ρ1. (3.59)

Then for ξ ∈ [0, ξ0], we have

‖Ω(x)− x
T0
‖PCT0

≤ Lχ(ξ) ≤ ρ1, (3.60)

From which we know that Ω(x) ∈ B and therefore Ω : B → B.

Next, we want show that Ω satisfies the assumptions of Corollary 2.1.12.

1) The map Ω : B → B is a continuous.

Let {xn} be a sequence such that xn → x as n →∞ in B. Then we have

‖Ω(xn)− Ω(x)‖
PCT0

= sup
t∈[0,T0]

‖U(t, 0)[I − U(T0, 0)]−1

(∫ T0

0

U(T0, s)[p(s, xn(s), ξ)− p(s, x(s), ξ)] ds

+
∑

0≤τk<T0

U(T0, τk)[qk(xn(τk), ξ)− qk(x(τk), ξ)]

)
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+

∫ t

0

U(t, s)[p(s, xn(s), ξ)− p(s, x(s), ξ)]ds

+
∑

0≤τk<t

U(t, τk)[qk(xn(τk), ξ)− qk(x(τk), ξ)]

∥∥∥∥∥
X

≤ sup
t∈[0,T0]

‖U(t, 0)‖L(X)
‖[I − U(T0, 0)]−1‖L(X)

(∫ T0

0

‖U(T0, s)‖L(X)
‖p(s, x(s), ξ)‖

X
ds

+
∑

0≤τk<T0

‖U(T0, τk)‖L(X)
‖qk(x(τk), ξ)‖X

)

+

∫ t

0

‖U(t, s)‖L(X)
‖p(s, x(s), ξ)‖

X
ds

+
∑

0≤τk<T0

‖U(t, τk)‖L(X)
‖qk(x(τk), ξ)‖X

≤ sup
t∈[0,T0]

(
‖U(t, 0)‖L(X)

‖[I − U(T0, 0)]−1‖L(X)

(∫ T0

0

‖U(T0, s)‖L(X)
‖p(s, xn(s), ξ)− p(s, x(s), ξ)‖

X
ds

+
∑

0≤τk<T0

‖U(T0, τk)‖L(X)
‖qk(xn(τk), ξ)− qk(x(τk), ξ)‖X

)

+

∫ t

0

‖U(t, s)‖L(X)
‖p(s, xn(s), ξ)− p(s, x(s), ξ)‖

X
ds

+
∑

0≤τk<t

‖U(T0, τk)‖L(X)
‖qk(xn(τk), ξ)− qk(x(τk), ξ)‖X

)

≤ L1L2

(
L1T0N(ξ)‖xn − x‖

PCT0
+ L1σN(ξ)‖xn − x‖

PCT0

)

+L1T0N(ξ)‖xn − x‖
PCT0

+ L1σN(ξ)‖xn − x‖
PCT0

=
(
L2

1L2T0 + L2
1L2σ + L1T0 + L1σ

)
N(ξ)‖xn − x‖

PCT0
,

which tends to zero as n →∞.

2) Ω(B) is uniformly bounded

By assumption and equation (A.52),

‖Ω(x)‖PCT0
≤ ‖Ω(x)− x

T0
‖PCT0

+ ‖x
T0
‖PCT0

≤ ρ1 + ρ0 = ρ, (3.61)
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from which we know that Ω(B) is uniformly bounded.

3) Ω(B) is quasiequicontinuous in [0, T0].

Let x ∈ Bρ and t1, t2 ∈ (τi−1, τi] ∩ [0, T0], i = 1, 2, . . . , σ, where τ0 = 0 and

τσ = T0. For 0 < ε < t1 < t2 ≤ T0, then we have

‖(Ωx)(t1)− (Ωx)(t2)‖X
≤ ‖U(t1, 0)− U(t2, 0)‖L(X)

‖[I − U(T0, 0)]−1‖L(X)

(∫ T0

0

‖U(T0, s)‖L(X)
‖u(s) + p(s, x(s), ξ)‖

X
ds

+
∑

0≤τk<T0

‖U(T0, τk)‖L(X)
‖ck + qk(x(τk), ξ)‖X

)

+

∫ t1−ε

0

‖U(t1, s)− U(t2, s)‖L(X)
‖u(s) + p(s, x(s), ξ)‖

X
ds

+

∫ t1

t1−ε

‖U(t1, s)− U(t2, s)‖L(X)
‖u(s) + p(s, x(s), ξ)‖

X
ds

+

∫ t2

t1

‖U(t2, s)‖L(X)
‖u(s) + p(s, x(s), ξ)‖

X
ds

+
∑

0≤τk<t

‖U(t1, τk)− U(t2, τk)‖L(X)
‖ck + qk(x(τk), ξ)‖X

,

from which we know that for any δ > 0, there exists ε > 0 such that if t1− t2 < ε,

then ‖(Ωx)(t1)− (Ωx)(t2)‖X
< δ. Thus Ω(B) is quasiequicontinuous.

From Lemma A.12, we know that the following set

S = {y ∈ B | y = Ω(x), x ∈ B}.

is relatively compact in PC
T0

([0, T0], X). Applying Corollary 2.1.12, it follows

that the operator Ω has a fixed point xξ
T0
∈ B and satisfy

xξ
T0

(t) = U(t, 0)[I − U(T0, 0)]−1

(∫ T0

0

U(T0, s)[u(s) + p(s, xξ
T0

(s), ξ)] ds

+
∑

0≤τk<T0

U(T0, τk)[ck + qk(x
ξ
T0

(τk), ξ)]

)

+

∫ t

0

U(t, s)[u(s), p(s, xξ
T0

(s), ξ)]ds

+
∑

0≤τk<T0

U(t, τk)[ck + qk(x
ξ
T0

(τk), ξ)].
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Since

xξ
T0

(T0) = U(T0, 0)[I − U(T0, 0)]−1

(∫ T0

0

U(T0, s)[u(s) + p(s, xξ
T0

(s), ξ)] ds

+
∑

0≤τk<T0

U(T0, τk)[ck + qk(x
ξ
T0

(τk), ξ)]

)

+

∫ T0

0

U(T0, s)[u(s), p(s, xξ
T0

(s), ξ)]ds

+
∑

0≤τk<T0

U(T0, τk)[ck + qk(x
ξ
T0

(τk), ξ)]

=
(
U(T0, 0)[I − U(T0, 0)]−1 − I

) (∫ T0

0

U(T0, s)[u(s) + p(s, xξ
T0

(s), ξ)] ds

+
∑

0≤τk<T0

U(T0, τk)[ck + qk(x
ξ
T0

(τk), ξ)]

)

= [I − U(T0, 0)]−1

(∫ T0

0

U(T0, s)[u(s) + p(s, xξ
T0

(s), ξ)] ds

+
∑

0≤τk<T0

U(T0, τk)[ck + qk(x
ξ
T0

(τk), ξ)]

)

= xξ
T0

(0),

xξ
T0

(t) is a T0-periodic mild solution of system (3.41). This completes the proof.



CHAPTER IV

SEMILINEAR PERIODIC SYSTEMS WITH

IMPULSES

In this chapter, we study the existence and uniqueness of periodic mild

solution of semilinear impulsive periodic systems, semilinear impulsive periodic

control systems and semilinear impulsive periodic control systems with parameter

perturbations.

4.1 Semiliner Impulsive Periodic Systems

We consider the following semilinear impulsive periodic systems




ẋ(t) = Ax(t) + f(t, x(t)), t 6= τk,

∆x(t) = Bkx(t), t = τk,
(4.1)

where ∆x(τk) = x(τ+
k ) − x(τ−k ) for all k ∈ N. Furthermore, we suppose that

A is infinitesimal generator of a compact semigroup {T (t), t > 0}.
In addition to assumption (A1), we introduce the following assumption.

Assumption (A5) ;

(A5) f : [0,∞)×X → X is an operator such that f(t + T0, x) = f(t, x) and

t 7→ f(t, x) is strongly measurable. For every ρ > 0, there exist constants

K1(ρ), K2(ρ) > 0 such that

‖f(t, x)‖
X
≤ K1(ρ)

and ‖f(t, x)− f(t, y)‖
X
≤ K2(ρ)‖x− y‖

X
,

for all t ≥ 0 and all x, y ∈ X such that ‖x‖
X
, ‖y‖

X
≤ ρ.
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4.1.1 Definitions of Solutions

Definition 4.1.1. A function x ∈ PC([0,∞), X) is said to be a mild solution of

system (4.1) with initial condition x(0) = x0 ∈ X if x is given by

x(t) = U(t, 0)x0 +

∫ t

0

U(t, s)f(s, x(s))ds (4.2)

Definition 4.1.2. A function x ∈ PC([0,∞) ; X) is said to be a periodic mild

solution of system (4.1) if it is a mild solution and there exists T0 > 0 such that

x(t + T0) = x(t) for all t ≥ 0.

Definition 4.1.3. A function x ∈ PC([0,∞) ; X) is said to be a T0-periodic

mild solution of system (4.1) if it is a mild solution and x(t + T0) = x(t) for all

t ≥ 0.

4.1.2 Existence and Uniqueness of Periodic Mild Solutions

At first, we consider the following semilinear system without impulses,





ẋ(t) = Ax(t) + f(t, x(t)),

x(0) = x0,
(4.3)

where A is the infinitesimal generator a compact semigroup {T (t), t > 0} in X

and f : [0,∞)×X → X.

Definition 4.1.4. A function x ∈ C([0, T0], X) is said to be a mild solution of

system (4.3) if x is given by

x(t) = T (t)x0 +

∫ t

0

T (t− s)f(s, x(s))ds.

Theorem 4.1.1. Suppose (a1) A be the infinitesimal generator of a compact

semigroup {T (t), t > 0}, (a2) f : [0,∞) × X → X is continuous and map a

bounded set of [0,∞)×X into a bounded set of X. Then for every x0 ∈ X system
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(4.3) has a mild solution x ∈ C([0, tmax), X), where [0, tmax) is a maximal

interval solution of existence. Further, if tmax < ∞, then lim
t→tmax

‖x(t)‖
X

= ∞.

Proof. Let T0 ∈ (0,∞). For any τ ′ > 0, ρ > 0 be such that

Bρ(x0) := {x ∈ X | ‖x− x0‖X
≤ ρ}.

Then there exists a constant N > 0 such that ‖f(t, x)‖
X
≤ N for 0 ≤ t ≤ τ ′

and x ∈ Bρ(x0). Clearly, due to the strong continuous of C0-semigroup of

{T (t), t ≥ 0}, there exists τ ′′ > 0 such that

‖T (t)x0 − x0‖X
<

ρ

2
, for t ∈ [0, τ ′′].

Let M = sup
0≤s≤t≤T0

‖T (t− s)‖L(X)
and define

Yρ := {x ∈ C([0, t1], X) | x(t) ∈ Bρ(x0), t ∈ [0, t1]},

where t1 = min
{

τ ′, τ ′′, T0,
ρ

2MN

}
. Then Yρ is a closed bounded convex

subset of Y = C([0, t1], X). We define a mapping F : Y → Yρ as follow,

(Fx)(t) = T (t)x0 +

∫ t

0

T (t− s)f(s, x(s))ds. (4.4)

Since

‖(Fx)(t)− x0‖X
≤ ‖T (t)x0 − x0‖X

+

∫ t

0

‖T (t− s)‖L(X)
‖f(s, x(s))‖

X
ds

≤ ρ

2
+ tMN ≤ ρ,

so FYρ ⊆ Yρ. Next, we want to show that F has a fixed point. According

to Schauder’s fixed point theorem, first we want to show that F : Yρ → Yρ is

continuous. Let {xn} be a sequence such that xn → x as n →∞ in Yρ. Then,

we have

‖(Fxn)(t)− (Fx)(t)‖
X
≤

∫ t

0

‖T (t− s)‖L(X)
‖f(s, xn(s))− f(s, x(s))‖

X
ds

≤ M

∫ t

0

‖f(s, xn(s))− f(s, x(s))‖
X
ds.

(4.5)
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By continuity of f, we obtain the right hand side of (4.5) tends to zero as n →∞.

Thus, F is continuous.

Moreover, FYρ is a relatively compact subset of Yρ. By Ascoli-Arzela

theorem states that a subset W ⊆ C(I, X) is relatively compact if and only if

(a) its t -section W (t) = {(Fx)(t) | x ∈ W} is relatively compact subset of X,

(b) the set W is equicontinuous.

Define W = FYρ and W (t) = {(Fx)(t) | x ∈ Yρ} for t ∈ [0, t1].

Clearly, W (0) = {x0} is compact. Let 0 < t ≤ t1 be fixed and let 0 < ε < t.

For x ∈ Yρ, we define

(Fεx)(t) = T (t)x0 +

∫ t−ε

0

T (t− s)f(s, x(s))ds

= T (t)x0 + T (ε)

∫ t−ε

0

T (t− s− ε)f(s, x(s))ds.

Since T (t) is a compact operator, the set Wε(t) = {(Fεx)(t) | x ∈ Yρ}
is relatively compact in X for every ε, 0 < ε < t. Furthermore, for x ∈ Yρ

we have

sup
x∈Yρ

‖(Fx)(t)− (Fεx)(t)‖
X
≤ sup

x∈Yρ

∥∥∥∥
∫ t

t−ε

T (t− s)f(s, x(s))ds

∥∥∥∥
X

≤ εMN.

This shows that the set W (t) can be approximated to an arbitrary degree of

accuracy by a relatively compact set. Hence W (t) itself is relatively compact. For

equicontinuity, we note that for 0 < z1 < z2 ≤ t and x ∈ Yρ,

‖(Fx)(z1)− (Fx)(z2)‖X
≤ ‖T (z1)− T (z2)‖L(X)

‖x0‖X

+

∫ z1

0

‖T (z1 − s)− T (z2 − s)‖L(X)
‖f(s, x(s))‖

X
ds

+

∫ z2

z1

‖T (z2 − s)‖L(X)
‖f(s, x(s))‖

X
ds

≤ ‖T (z1)− T (z2)‖L(X)
‖x0‖X

+N

∫ z1

0

‖T (z1 − s)− T (z2 − s)‖L(X)
ds

+MN(z2 − z1).
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from which we know that for any δ > 0, there exists ε > 0 such that if |z1−z2| < ε,

then ‖(Fx)(z1)− (Fx)(z2)‖X
< δ. Therefore, W is equicontinuous. This implies

that FYρ is a relatively compact subset of Yρ and hence F has a fixed point

in Yρ which is a mild solution of system (4.3) on [0, t1].

We note that a mild solution x of system (4.3) defined on a closed interval

[0, t1] can be extended to a larger interval [0, t1 + δ], δ > 0, by defining y(t) =

x(t1 + t) where y(t) is a mild solution of the following system





ẏ(t) = Ay(t) + f(t, y(t)),

y(0) = x(t1).
(4.6)

The existence of positive constant δ > 0 is guarantee by the above assertion. Re-

peating this procedure, one continues the solution till time tmax where [0, tmax)

is the maximal interval of existence of mild solution. Thus system (4.3) has a

unique solution x ∈ C([0, tmax), X). If tmax < ∞, then lim
t→tmax

‖x(t)‖
X

= ∞. If

not, there exists a sequence {tn} such that tn → tmax and ‖x(tn)‖
X
≤ β for all

n. Taking n sufficiently large, so that {tn} near enough to tmax, one can use the

previous arguments to extend the solution beyond tmax which is a contradiction

to the definition of tmax. This proves the theorem.

Remark 4.1. It is not difficult to see that Theorem 4.1.1 holds if T0 = ∞.

Corollary 4.1.2. Suppose assumptions of Theorem 4.1.1 hold. If there exists a

constant β > 0 such that ‖x(t)‖
X
≤ β hold for every mild solution x. Then

system (4.3) has a global mild solution x ∈ C([0, T0], X).

Theorem 4.1.3. Suppose A be the infinitesimal generator of a compact semi-

group {T (t), t > 0}. If assumptions (A1) and (A5) hold, then system (4.1) has a

unique mild solution x ∈ PC([0, T0], X).
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Proof. For t ∈ [0, τ1], Theorem 4.1.1 implies that system

ẋ(t) = Ax(t) + f(t, x(t)), 0 < t ≤ τ1, x(0) = x0, (4.7)

has a mild solution on I1 = [0, τ1] which satisfies

x1(t) = T (t)x0 +

∫ t

0

T (t− s)f(s, x1(s))ds, t ∈ [0, τ1]. (4.8)

Now, define

x1(τ1) = T (τ1)x0 +

∫ τ1

0

T (τ1 − s)f(s, x1(s))ds, (4.9)

so that x1(·) is left continuous at τ1.

Next, on I2 = (τ1, τ2], consider system

ẋ(t) = Ax(t) + f(t, x(t)), τ1 < t < τ2, x1(τ
+
1 ) = (I + B1)x1(τ1), (4.10)

Since x1 ∈ X, we can use Theorem 4.1.1 again to get a mild solution on (τ1, τ2]

which satisfying

x2(t) = T (t− τ1)x1(τ
+
1 ) +

∫ t

τ1

T (t− s)f(s, x2(s))ds. (4.11)

Now, define x2(τ2) accordingly so that x2(·) is left continuous at τ2. It is easy

to see that Theorem 4.1.1 can be applied to interval (τ1, τ2] to verify that x2(τ2) ∈
X. Repeat the procedure above, use step-by-step approach on intervals Ik =

(τk−1, τk], k = 3, 4, . . . , σ (τσ = T0) to get a mild solutions

xk(t) = T (t− τk−1)xk−1(τ
+
k−1) +

∫ t

τk−1

T (t− s)f(s, xk(s))ds.

for t ∈ (τk−, τk] and define xk(τk) accordingly with xk(·) left continuous at τk

and xk(τk) ∈ X, k = 1, 2, . . . , σ.

Thus we obtain x ∈ PC([0, T0], X) is a mild solution of system (4.1) and

given by

x(t) =





x1(t), 0 ≤ t ≤ τ1,

xk(t), τk−1 < t ≤ τk, k = 2, 3, . . . , σ.
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Next, by mathematical induction we can show that (4.2) is satisfied on [0, T0].

First, (4.2) is satisfied on [0, τ1]. If (4.2) is satisfied on (τk−1, τk], then for t ∈
(τk, τk+1],

x(t) = xk+1(t) = T (t− τk)xk(τ
+
k ) +

∫ t

τk

T (t− s)f(s, xk+1(s))ds

= T (t− τk)(I + Bk)x(τk) +

∫ t

τk

T (t− s)f(s, xk+1(s))ds

= T (t− τk)(I + Bk)
[
U(τk, 0)x0 +

∫ τk

0

U(τk, s)f(s, x(s))ds
]

+

∫ t

τk

T (t− s)f(s, xk+1(s))ds

= U(t, 0)x0 +

∫ τk

0

U(t, s)f(s, x(s))ds +

∫ t

τk

U(t, s)f(s, x(s))ds

= U(t, 0)x0 +

∫ t

0

U(t, s)f(s, x(s))ds.

Thus (4.2) is also true on (τk, τk+1]. Therefore (4.2) is true on [0, T0].

Next, we want to show that a mild solution is unique on PC([0, T0], X).

Suppose that x, y are mild solutions of system (4.1) on PC([0, T0], X). Then

by Corollary 3.2.4, we have

‖x(t)− y(t)‖
X
≤

∫ t

0

‖U(t, s)‖L(X)
‖f(s, x(s))− f(s, y(s))‖

X
ds

≤ Keνt

∫ t

0

e−νs‖x(s)− y(s)‖
X
ds.

It follows from Gronwall Lemma, we obtain ‖x(t)− y(t)‖ = 0 for all t ∈ [0, T0].

That is, x = y. Therefore, system (4.1) has a unique mild solution. This completes

the proof.

We consider the following system,





ẋ(t) = Ax(t) + f(t, x(t)), t ≥ 0

x(0) = x0,
(4.12)

and we suppose that it has a global mild solution x(t).



76

We also consider the following system,





ẏ(t) = Ay(t) + f(t, x(t)), t ≥ 0

y(0) = x(0).
(4.13)

By Lemma A.5, system (4.13) has a unique mild solution y(t).

Let P : C([0, T0], X) → X be the Poincar mapping, defined by

Px = y(T0) (4.14)

Finally, we consider the following system,





ẋ(t) = Ax(t) + f(t, x(t)), t ≥ 0

x(0) = Px,
(4.15)

which by Lemma A.5 also has a unique mild solution x(t).

Let Q : C([0, T0], X) → C([0, T0], X) be a mapping defined by

Qx = T (t)x0 +

∫ t

0

T (t− s)f(s, x(s))ds. (4.16)

We are now in a position to state and prove the basic tool for the proof

existence of periodic mild solution.

Theorem 4.1.4. System (4.12) has a T0-periodic mild solution if and only if the

mapping Q has a fixed point.

Proof. Let x be a T0-periodic mild solution of system (4.12). Then x is clearly

a T0-periodic mild solution of system (4.13). Since x is T0-periodic mild solution,

x(0) = x(T0). Therefore x(0) = x(T0) = Px, where x satisfy (4.15) and so Qx =

x. Conversely, let x be a fixed point of Q. By definition, x satisfies (4.13) and since

x(0) = y(0). By Lemma A.5 , show that x(t) ≡ y(t) and hence x(T0) = y(T0).

Since Qx = x, it follows from (4.15) that x(0) = Px = y(T0) = x(T0). That is,

x(0) = x(T0). The function ψ(t) := x(t + T0) is also a mild solution of (4.12).
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Since f is T0-periodic, ψ̇(t) = ẋ(t + T0) = Ax(t + T0) + f(t + T0, x(t + T0)) =

Aψ(t) + f(t, ψ(t)). Therefore x(t) = x(t + T0) for all t ≥ 0. i.e., system (4.12)

has a T0-periodic mild solution. This completes the proof.

Theorem 4.1.5. If assumptions (A1) and (A5) hold, then system (4.1) has a

unique T0-periodic mild solution x ∈ PC([0, T0], X) and there exists a constant

β > 0 such that

‖x‖
PC
≤ β.

Proof. Consider the following semilinear system without impulses,





ẋ(t) = Ax(t) + f(t, x(t)), t ∈ γ,

x(τ) = ϕ, ϕ ∈ X,
(4.17)

where γ is any subinterval of [0, T0] and τ is the left end point of γ.

Define B = {y | y ∈ C(γ, X), y(τ) = ϕ} and a mapping F : B → B by y = Fx,

where y is a mild solution of the following system,





ẏ(t) = Ay(t) + f(t, x(t)), t ∈ γ,

y(τ) = ϕ,
(4.18)

Similar to the proof Theorem 4.1.1, we can show that F is continuous and

compact on B. Next, we want to show that there is a constant β1 > 0 such that

‖x‖
C(γ,X)

≤ β1

for all x ∈ B and λ ∈ [0, 1] satisfying x = λFx.

Let x ∈ C(γ, X). We consider the operator equation

x = λFx, λ ∈ [0, 1]. (4.19)
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If x is a mild solution of equation (4.19), then we have

‖x(t)‖
X
≤ λ‖T (t)‖L(X)

‖x0‖X
+ λ

∫ t

0

‖T (t− s)‖L(X)
‖f(s, x(s))‖

X
ds

≤ λM1(‖x0‖X
+ K1T0)

≤ M1(‖x0‖X
+ K1T0) := β1, λ ∈ [0, 1],

where M1 = sup
0≤s≤t≤T0

‖T (t− s)‖L(X)
and ‖f(t, x)‖

X
≤ K1.

That is, there exists a constant β1 > 0 such that ‖x‖
C(γ,X)

≤ β1 for all x ∈ B

and x = λFx where λ ∈ [0, 1]. This shows that all mild solutions of (4.19) are

bounded independently of λ ∈ [0, 1]. By Leray-Schauder’s fixed point theorem,

F has a fixed point x ∈ C(γ, X) which is a mild solution of system (4.17).

Next, we must show that a mild solution is unique on C(γ, X). Suppose

that x, y are mild solutions of system (4.17) on C(γ, X). By Theorem 2.3.2(1),

there exist constants K ≥ 1 and ω ≥ 0 such that ‖T (t)‖L(X)
≤ Keωt. Then

we have

‖x(t)− y(t)‖
X
≤

∫ t

0

‖T (t− s)‖L(X)
‖f(s, x(s))− f(s, y(s))‖

X
ds

≤ Keωt

∫ t

0

e−ωs‖x(s)− y(s)‖
X
ds.

It follows from Gronwall Lemma, we obtain ‖x(t)− y(t)‖ = 0 for all t ∈ γ.

That is, x = y. Therefore, system (4.17) has a unique mild solution. Further by

Theorem 4.1.4 which implies that a mild solution is T0−periodic.

Now we consider the partition of interval I = [0, T0]. We define γk =

(τk−1, τk], k = 1, 2, . . . , σ, where τ0 = 0 and τσ = T0. Consider any arbitrary

interval, say, γk and x(τ+
k ) = (I + Bk)x(τk) ∈ X. By Theorem 4.1.1 and similar

procedure of Theorem A.6, we obtain x ∈ PC([0, T0], X) is a unique mild solution
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of system (4.1) and given by

x(t) =





x1(t), 0 ≤ t ≤ τ1,

xk(t), τk−1 < t ≤ τk, k = 2, 3, . . . , σ.

x is just T0−periodic mild solution of system (4.1). By assumption (A5), one

can verify the priori estimate of solution of system (4.1) that

‖x(t)‖
X
≤ ‖U(t, 0)‖L(X)

‖x0‖X
+

∫ t

0

‖U(t, s)‖L(X)
‖f(s, x(s))‖

X
ds

≤ M‖x0‖X
+ MK1T0 := β,

where M = sup
0≤s≤t≤T0

‖U(t, s)‖L(X)
and ‖f(t, x)‖

X
≤ K1.

That is, there exists a constant β > 0 such that ‖x‖
PC
≤ β.

4.2 Semilinear Impulsive Periodic Control Systems

We consider the following semilinear impulsive periodic control systems




ẋ(t) = Ax(t) + f(t, x(t)) + u(t), t 6= τk,

∆x(t) = Bkx(t) + ck, t = τk,
(4.20)

where ∆x(τk) = x(τ+
k ) − x(τ−k ) for all k ∈ N. Suppose that system (4.20)

satisfy the assumptions (A1), (A2) and (A5).

4.2.1 Definitions of Solutions

Definition 4.2.1. A function x ∈ PC([0,∞), X) is said to be a mild solution of

impulsive system (4.20) with initial condition x(0) = x0 ∈ X if x is given by

x(t) = U(t, 0)x0 +

∫ t

0

U(t, s)[f(s, x(s)) + u(s)]ds +
∑

0<τk<t

U(t, τk)ck. (4.21)

Definition 4.2.2. A function x ∈ PC([0,∞) ; X) is said to be a periodic mild

solution of system (4.20) if it is a mild solution and there exists T0 > 0 such that

x(t + T0) = x(t) for all t ≥ 0.
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Definition 4.2.3. A function x ∈ PC([0,∞) ; X) is said to be a T0-periodic

mild solution of system (4.20) if it is a mild solution and x(t + T0) = x(t) for all

t ≥ 0.

4.2.2 Existence and Uniqueness of Periodic Mild Solutions

At first, we consider the following semilinear systems without impulses




ẋ(t) = Ax(t) + f(t, x(t)) + u(t),

x(0) = x0,
(4.22)

where A is the infinitesimal generator a compact semigroup {T (t), t > 0} in X,

f : [0,∞)×X → X and u : [0,∞) → X.

Definition 4.2.4. A function x ∈ C([0, T0], X) is said to be a mild solution of

system (4.22) if x is given by

x(t) = T (t)x0 +

∫ t

0

T (t− s)[f(s, x(s)) + u(s)]ds.

Theorem 4.2.1. Suppose (a1) A be the infinitesimal generator of a compact

semigroup {T (t), t > 0}, (a2) f : [0,∞) × X → X is continuous and map a

bounded set of [0,∞) × X into a bounded set of X and (a3) u : [0,∞) → X

is continuous and map a bounded set of [0,∞) into a bounded set of X. Then

for every x0 ∈ X system (4.22) has a mild solution x ∈ C([0, tmax), X), where

[0, tmax) is a maximal interval solution of existence. Further, if tmax < ∞, then

lim
t→tmax

‖x(t)‖
X

= ∞.

Proof. Similar to the proof of Theorem 4.1.1.

Theorem 4.2.2. Suppose A be the infinitesimal generator of a compact semi-

group {T (t), t > 0}. If assumptions (A1), (A2) and (A5) hold, then system (4.20)

has a unique mild solution on x ∈ PC([0, T0], X).
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Proof. For t ∈ [0, τ1], Theorem 4.2.1 implies that system





ẋ(t) = Ax(t) + f(t, x(t)) + u(t), 0 < t ≤ τ1,

x(0) = x0,
(4.23)

has a mild solution on I1 = [0, τ1] which satisfies

x1(t) = T (t)x0 +

∫ t

0

T (t− s)[f(s, x1(s)) + u(s)]ds, t ∈ [0, τ1]. (4.24)

Now, define

x1(τ1) = T (τ1)x0 +

∫ τ1

0

T (τ1 − s)[f(s, x1(s)) + u(s)]ds, (4.25)

so that x1(·) is left continuous at τ1.

Next, on I2 = (τ1, τ2], consider system





ẋ(t) = Ax(t) + f(t, x(t)) + u(t), τ1 < t < τ2,

x1(τ
+
1 ) = (I + B1)x1(τ1) + c1.

(4.26)

Since x1 ∈ X, we can use Theorem 4.2.1 again to get a mild solution on (τ1, τ2]

which satisfying

x2(t) = T (t− τ1)x1(τ
+
1 ) +

∫ t

τ1

[T (t− s)f(s, x2(s)) + u(s)]ds. (4.27)

Now, define x2(τ2) accordingly so that x2(·) is left continuous at τ2. It is easy to

see that Theorem 4.2.1 can be applied to interval (τ1, τ2] to verify that x2(τ2) ∈
X. Repeat the procedure above, use step-by-step approach on intervals Ik =

(τk−1, τk], k = 3, 4, . . . , σ (τσ = T0) to get a mild solutions

xk(t) = T (t− τk−1)xk−1(τ
+
k−1) +

∫ t

τk−1

[T (t− s)f(s, xk(s)) + u(s)]ds.

for t ∈ (τk−, τk] and define xk(τk) accordingly with xk(·) left continuous at τk

and xk(τk) ∈ X, k = 1, 2, . . . , σ.
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Thus we obtain x ∈ PC([0, T0], X) is a mild solution of system (4.20) and

given by.

x(t) =





x1(t), 0 ≤ t ≤ τ1,

xk(t), τk−1 < t ≤ τk, k = 2, 3, . . . , σ.

Next, by mathematical induction to show that (4.33) is satisfied on [0, T0].

First, (4.33) is satisfied on [0, τ1]. If (4.33) is satisfied on (τk−1, τk], then for

t ∈ (τk, τk+1],

x(t) = xk+1(t) = T (t− τk)xk(τ
+
k ) +

∫ t

τk

T (t− s)[f(s, xk+1(s)) + u(s)]ds

= T (t− τk)[(I + Bk)x(τk) + ck] +

∫ t

τk

T (t− s)[f(s, xk+1(s)) + u(s)]ds

= T (t− τk)(I + Bk)
[
U(τk, 0)x0 +

∫ τk

0

U(τk, s)[f(s, x(s)) + u(s)]ds

+
∑

0<τi<τk

T (τk − τi)ci

]
+ T (t− τk)ck +

∫ t

τk

T (t− s)[f(s, xk+1(s)) + u(s)]ds

= U(t, 0)x0 +

∫ τk

0

U(t, s)[f(s, x(s)) + u(s)]ds +
∑

0<τi<τk

U(t, τi)ci

U(t, τk)ck +

∫ t

τk

U(t, s)[f(s, x(s)) + u(s)]ds

= U(t, 0)x0 +

∫ t

0

U(t, s)f(s, x(s))ds +
∑

0<τi<t

U(t, τi)ci.

Thus (4.33) is also true on (τk, τk+1]. Therefore (4.33) is true on [0, T0].

Next, we want to show that a mild solution is unique on PC([0, T0], X).

Suppose that x, y are mild solutions of system (4.20) on PC([0, T0], X). Then

by Corollary 3.2.4, we have

‖x(t)− y(t)‖
X
≤

∫ t

0

‖U(t, s)‖L(X)
‖f(s, x(s))− f(s, y(s))‖

X
ds

≤ Keνt

∫ t

0

e−νs‖x(s)− y(s)‖
X
ds.

It follows from Gronwall Lemma, we obtain ‖x(t)− y(t)‖ = 0 for all t ∈ [0, T0].

That is, x = y. Therefore, system (4.20) has a unique mild solution. This com-

pletes the proof.
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To study the semilinear impulsive periodic control systems (4.20), define

the operator Ω : C([0, T0], X) → C([0, T0], X) by

Ωx = T (t)x0 +

∫ t

0

T (t− s)[f(s, x(s)) + u(s)]ds. (4.28)

Analogous to Theorem 4.1.4 , system (4.22) has a T0-periodic mild solution if and

only if the following operator equation has a fixed points

x = Ωx.

Theorem 4.2.3. If assumptions (A1), (A2) and (A5) hold, then system (4.20)

has a unique T0-periodic mild solution x ∈ PC([0, T0], X) and there exists a

constant β > 0 such that

‖x‖
PC
≤ β.

Proof. Consider the following semilinear control system without impulses,





ẋ(t) = Ax(t) + f(t, x(t)) + u(t), t ∈ γ,

x(τ) = ϕ, ϕ ∈ X,
(4.29)

where γ is any subinterval of [0, T0] and τ is the left end point of γ.

Define B = {y | y ∈ C(γ, X), y(τ) = ϕ} and a mapping F : B → B by y = Fx,

where y is a solution of the following system,





ẏ(t) = Ay(t) + f(t, x(t)) + u(t), t ∈ γ,

y(τ) = ϕ,
(4.30)

Similar to the proof of Theorem 4.1.1, we can show that F is continuous and

compact on B. Next, we want to show that there is a constant β1 > 0 such that

‖x‖
C(γ,X)

≤ β1

for all x ∈ B and λ ∈ [0, 1] satisfying x = λFx.
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Let x ∈ C(γ, X). We consider the operator equation

x = λFx, λ ∈ [0, 1]. (4.31)

If x is a mild solution of equation (4.31), then we have

‖x(t)‖
X
≤ λ‖T (t)‖L(X)

‖x0‖X
+ λ

∫ t

0

‖T (t− s)‖L(X)

[
‖f(s, x(s))‖

X
+ ‖u(s)‖

X

]
ds

≤ λM1

(
‖x0‖X

+ (K1 + K3)T0

)

≤ M1

(
‖x0‖X

+ (K1 + K3)T0

)
:= β1, λ ∈ [0, 1],

where M1 = sup
0≤s≤t≤T0

‖T (t− s)‖L(X)
and K3 = sup

s∈[0,T0]

‖u(s)‖
X
.

That is, there exists a constant β1 > 0 such that ‖x‖
C(γ,X)

≤ β1 for all x ∈ B

and x = λFx where λ ∈ [0, 1]. This shows that all mild solution of (4.31) are

bounded independently of λ ∈ [0, 1]. By Leray-Schauder’s fixed point theorem,

F has a fixed point x ∈ C(γ,X) which is a mild solution of system (4.29). Next,

we want to show that a mild solution is unique on C(γ, X). Suppose that x, y

are mild solutions of system (4.29) on C(γ,X). By Theorem 2.3.2(1), there exist

constants K ≥ 1 and ω ≥ 0 such that ‖T (t)‖L(X)
≤ Keωt. Then we have

‖x(t)− y(t)‖
X
≤

∫ t

0

‖T (t− s)‖L(X)
‖f(s, x(s))− f(s, y(s))‖

X
ds

≤ Keωt

∫ t

0

e−ωs‖x(s)− y(s)‖
X
ds.

It follows from Gronwall Lemma, we obtain ‖x(t)− y(t)‖ = 0 for all t ∈ γ.

That is, x = y. Therefore, system (4.29) has a unique mild solution. Furthermore,

a mild solution is a T0−periodic mild solution.

Now we consider the partition of interval I = [0, T0]. We define γk =

(τk−1, τk], k = 1, 2, . . . , σ, where τ0 = 0 and τσ = T0. Consider any arbitrary

interval, say, γk and x(τ+
k ) = (I + Bk)x(τk) + ck ∈ X. By Theorem 4.2.1 and

similar procedure of Theorem 4.2.2, we obtain x ∈ PC([0, T0], X) is a unique
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mild solution of system (4.20) and given by

x(t) =





x1(t), 0 ≤ t ≤ τ1,

xk(t), τk−1 < t ≤ τk, k = 2, 3, . . . , σ.

x is just T0−periodic mild solution of system (4.20). By assumption (A2) and

(A5), one can verify the priori estimate of solution of system (4.20) that

‖x(t)‖
X
≤ ‖U(t, 0)‖L(X)

‖x0‖X
+

∫ t

0

‖U(t, s)‖L(X)

[
‖f(s, x(s))‖

X
+ ‖u(s)‖

X

]
ds

≤ M
(
‖x0‖X

+ (K1 + K3)T0

)
:= β,

where M = sup
0≤s≤t≤T0

‖U(t, s)‖L(X)
and K3 = sup

s∈[0,T0]

‖u(s)‖
X
.

That is, there exists a constant β > 0 such that ‖x‖
PC
≤ β.

4.3 Semilinear Impulsive Periodic Control Systems With

Parameter Perturbations

We consider the semilinear impulsive periodic control system with param-

eter perturbations as the following




ẋ(t) = Ax(t) + f(t, x(t)) + u(t) + p(t, x(t), ξ), t 6= τk,

∆x(t) = Bkx(t) + ck + qk(x(t), ξ), t = τk,
(4.32)

where ∆x(τk) = x(τ+
k )− x(τ−k ) for all k ∈ N. In addition to assumptions (A1),

(A2), (A4) and (A5), we introduce the following assumption

Assumption (A6) ;

(A6.1) The Fréchet derivative
∂

∂x
f(t, x) exists in [0,∞)×X. For each

y ∈ X, t 7→ ∂

∂x
f(t, x)y is strongly measurable, x 7→ ∂

∂x
f(t, x)y is

continuous. For every ρ > 0, there exists a constant K3(ρ) > 0 such that

∥∥∥∥
∂

∂x
f(t, x)

∥∥∥∥
L(X)

≤ K3(ρ)
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for all t ≥ 0 and all x ∈ X such that ‖x‖
X
≤ ρ.

(A6.2) p(t, x, ξ) and qk(x, ξ) satisfy Lipschitz conditions, i.e. for any (t, x, ξ),

(t, y, ξ) ∈ [0,∞)× Bρ × [0, ξ0], there exists a constant N(ξ) > 0 such that

‖p(t, x, ξ)− p(t, y, ξ)‖
X
≤ N(ξ)‖x− y‖

X

and ‖qk(x, ξ)− qk(y, ξ)‖
X
≤ N(ξ)‖x− y‖

X
.

(A6.3) Bk ∈ L(X) and there exists constant hk(ρ) > 0 such that

‖Bk(x)−Bk(y)‖X ≤ hk(ρ)‖x− y‖X ,

for all k ∈ N and all x, y ∈ X such that ‖x‖
X
, ‖y‖

X
≤ ρ.

(A6.4) The Fréchet derivative
∂

∂x
Bk(x) exists in X. For every ρ > 0,

there exists a constant h̄k(ρ) > 0 such that
∥∥∥∥

∂

∂x
Bk(x)

∥∥∥∥
L(X)

≤ h̄k(ρ)

for all t ≥ 0, k ∈ N and all x ∈ X such that ‖x‖
X
≤ ρ.

4.3.1 Definitions of Solutions

Definition 4.3.1. A function x ∈ PC([0,∞), X) is said to be a mild solution of

impulsive system (4.32) with initial condition x(0) = x0 ∈ X if x is given by

x(t) = U(t, 0)x0 +

∫ t

0

U(t, s)[f(s, x(s)) + u(s) + p(s, x(s), ξ)]ds

+
∑

0<τk<t

U(t, τk)[ck + qk(x(τk), ξ)].
(4.33)

Definition 4.3.2. A function x ∈ PC([0,∞), X) is said to be a periodic mild

solution of system (4.32) if it is a mild solution and there exists T0 > 0 such that

x(t + T0) = x(t) for all t ≥ 0.

Definition 4.3.3. A function x ∈ PC([0,∞), X) is said to be a T0-periodic

mild solution of system (4.32) if it is a mild solution and x(t + T0) = x(t) for all

t ≥ 0.
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4.3.2 Existence and Uniqueness of Periodic Mild Solutions

First, we consider the following reference system




ẋ(t) = Ax(t) + f(t, x(t)), t 6= τk,

∆x(t) = Bkx(t), t = τk,
(4.34)

and assume that x
T0

(t) is a T0− periodic mild solution of the reference system

(4.34) which satisfies

x
T0

(t) = U(t, 0)x0 +

∫ t

0

U(t, s)f(s, x(s))ds. (4.35)

Next, we consider the following variation system




ẋ(t) = Ax(t) +
∂

∂x
f(t, x

T0
(t))x(t), t 6= τk,

∆x(t) =
∂

∂x
Bk(xT0

(t))x(t), t = τk,

(4.36)

and assume that the variation system (4.36) has only trivial solution.

Theorem 4.3.1. Let assumption (A1), (A2), and (A4)-(A6) holds. Suppose

xT0(t) be a T0-periodic mild solution of the reference system (4.34) satisfies

ρ0 = sup
t∈[0,T0]

‖x
T0

(t)‖
X
.

Assume that

1. system (4.36) has only trivial solution,

2. let ξ0 > 0 and εo ∈ (0, ρ− ρ0) such that η < 1 with

η := M
(
[K2(ε0) + K3(ε0)]T0 + [hk(ε0) + h̄k(ε0)]σ + [T0 + σ] sup

ξ∈[0,ξ0]

N(ξ)
)

where

M = sup
0≤s≤t≤T0

‖U(t, s)‖L(X)
,

h̄k(ε0) = sup
k∈N, ‖y‖≤ε0

∥∥∥∥
∂

∂x
Bk(xT0

(τk) + y(τk))

∥∥∥∥
X

,
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3. the following inequality is valid

sup
t∈[0,T0], |ξ|≤ξ0

∥∥∥∥U(t, 0)x0 +

∫ t

0

U(t, s)[u(s) + p(s, x
T0

(s), ξ)]ds

+
∑

0≤τk<T0

U(t, τk)[ck + qk(xT0
(τk), ξ)]

∥∥∥∥∥
X

≤ ε0(1− η).

Then for any constant ρ > ρ0 > 0, there exists a sufficiently small ξ0 > 0

such that for every fixed ξ ∈ [0, ξ0] system (4.32) has a unique T0-periodic mild

solution xξ
T0

(t) satisfying

‖xξ
T0

(t)− x
T0

(t)‖ < ε0 for all t ≥ 0 (4.37)

and lim
ξ→0

xξ
T0

(t) = x
T0

(t) uniformly on t.

Proof. Let x(t) = x
T0

(t) + y(t), then we can change system (4.32) into

ẏ(t)=Ay(t)+
∂

∂x
f(t, x

T0
(t))y(t)+ o(t, y(t))+u(t)+p(s, x

T0
(t) + y(t), ξ), t 6= τk,

∆y(t)=
∂

∂x
Bk(xT0

(t))y(t) + ok(y(t)) + ck + qk(xT0
(t) + y(t), ξ), t = τk,

(4.38)

where

o(t, y(t)) = f(t, x
T0

(t) + y(t))− f(t, x
T0

(t))− ∂

∂x
f(t, x

T0
(t))y(t)

ok(y(t)) = Bk(xT0
(t) + y(t))−Bk(xT0

(t))− ∂

∂x
Bk(xT0

(t))y(t)
(4.39)

Let PC
T0

([0, T0]; X) := {x ∈ PC([0, T0]; X) | x(0) = x(T0) }
with norm

‖x‖
PCT0

= sup
t∈[0,T0]

‖x(t)‖X .

Let us define

B := B(ε0) = {y ∈ PC
T0

([0, T0]; X) | ‖y‖
PCT0

≤ ε0 } (4.40)
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and an operator Ω : B → PC
T0

([0, T0] ; X) such that

Ω(x)(t) := U(t, 0)x0 +

∫ t

0

U(t, s)
[
o(s, y(s)) + u(s) + p(s, x

T0
(s) + y(s), ξ)

]
ds

+
∑

0≤τk<t

U(t, τk)[ok(y(τk)) + ck + qk(xT0
(τk) + y(τk), ξ)].

(4.41)

If y ∈ B, then

‖x‖
PC

T0

= ‖x
T0

+ y‖
PC

T0

≤ ‖x
T0
‖

PC
T0

+ ‖y‖
PC

T0

≤ ρ0 + ε0

≤ ρ0 + (ρ− ρ0) = ρ.

From equation (4.41), we have

Ω(x
T0

)(t) = U(t, 0)x0 +

∫ t

0

U(t, s)
[
u(s) + p(s, x

T0
(s), ξ)

]
ds

+
∑

0≤τk<t

U(t, τk)[ck + qk(xT0
(τk), ξ)].

(4.42)

For any x, x
T0
∈ B, then we have

‖Ω(x)− Ω(x
T0

)‖PCT0

≤
∫ t

0

‖U(t, s)‖L(X)
‖o(s, y(s)) + p(s, x

T0
(s) + y(s), ξ)− p(s, x

T0
(s), ξ)‖

X
ds

+
∑

0≤τk<t

‖U(t, τk)‖L(X)
‖ok(y(τk)) + qk(xT0

(τk) + y(τk), ξ)− qk(xT0
(τk), ξ)‖X

≤
∫ t

0

‖U(t, s)‖L(X)

(∥∥∥∥f(t, x
T0

(s) + y)− f(t, x
T0

(s))− ∂

∂x
f(t, x

T0
(s))y

∥∥∥∥
X

+‖p(s, x
T0

(s) + y(s), ξ)− p(s, x
T0

(s), ξ)‖
X

)
ds

+
∑

0≤τk<t

‖U(t, τk)‖L(X)

(∥∥∥∥Bk(xT0
(τk) + y)−Bk(xT0

(τk))− ∂

∂x
Bk(xT0

(τk))y

∥∥∥∥
X

+‖qk(xT0
(τk) + y(τk), ξ)− qk(xT0

(τk), ξ)‖X

)
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≤
∫ t

0

‖U(t, s)‖L(X)

(
‖f(t, x

T0
(s) + y)− f(t, x

T0
(s))‖+

∥∥∥∥
∂

∂x
f(t, x

T0
(s))y

∥∥∥∥
X

+‖p(s, x
T0

(s) + y(s), ξ)− p(s, x
T0

(s), ξ)‖
X

)
ds

+
∑

0≤τk<t

‖U(t, τk)‖L(X)

(‖Bk(xT0
(τk) + y)−Bk(xT0

(τk))‖

+

∥∥∥∥
∂

∂x
Bk(xT0

(τk))y

∥∥∥∥
X

+ ‖qk(xT0
(τk) + y(τk), ξ)− qk(xT0

(τk), ξ)‖X

)

≤ M
(
[K2(ε0) + K3(ε0) + N(ξ)]T0 + [hk(ε0) + h̄k(ε0) + N(ξ)]σ

)
‖x− x

T0
‖PCT0

.

Let us choose ξ0 > 0 and ε0 ∈ (0, ρ− ρ0) such that η < 1 with

η := M
(
[K2(ε0) + K3(ε0)]T0 + [hk(ε0) + h̄k(ε0)]σ + [T0 + σ] sup

ξ∈[0,ξ0]

N(ξ)
)
. (4.43)

So ‖Ω(x)− Ω(x
T0

)‖PCT0
≤ η‖x− x

T0
‖PCT0

(4.44)

It follows from (4.42), (4.44,) and assumption (3) that

‖Ω(x)‖PCT0
≤ ‖Ω(x)− Ω(x

T0
)‖PCT0

+ ‖Ω(x
T0

)‖PCT0

≤ η‖x− x
T0
‖PCT0

+ ε0(1− η)

≤ ηε0 + ε0(1− η) = ε0

from which we know that Ω(x) ∈ B, then Ω : B → B is a contraction mapping.

Therefore, there exists a unique fixed point y1(t) ∈ B. From the fact that y1(t)

is a solution of system (4.38), we know xξ
T0

(t) = x
T0

(t) + y1(t) is a T0- periodic

mild solution of (4.32) and satisfies

‖xξ
T0

(t)− x
T0

(t)‖ = ‖y1(t)‖ < ε0.

So we have lim
ξ→0

xξ
T0

= x
T0

(t) uniformly on t.

This completes the proof.



CHAPTER V

APPLICATIONS

In this chapter, to illustrate the application of our work, we apply Theo-

rem 4.1.5 to prove the existence of periodic mild solution of systems governed by

semilinear partial differential equations of parabolic types with impulses.

The first part of this chapter is about basic concepts of Sobolev spaces

and related results. The second part consists of our example that we introduce

constructively to show how our abstract results can be applied.

5.1 Terminology

In the following we use y = (y1, y2, . . . , yn) to be a variable point in the

n-dimensional Euclidean space Rn. For any two such points y = (y1, y2, . . . , yn)

and z = (z1, z2, . . . , zn) we set y · z =
n∑

i=1

yizi and |y|2 = y · y.

An n-tuple of nonnegative integers α = (α1, α2, . . . , αn) is called a multi-

index and we define

|α| =
n∑

i=1

αi

and

yα = yα1
1 yα2

2 · · · yαn
n for y = (y1, y2, . . . , yn).

Denoting Dk =
∂

∂yk

and D = (D1, D2, . . . , Dn) we have

Dα = Dα1
1 Dα2

2 · · ·Dαn
n =

∂α1

∂yα1
1

∂α2

∂yα2
2

· · · ∂αn

∂yαn
n

.

Let Ω be a fixed domain in Rn with boundary and closure Ω̄. Assume that

∂Ω is sufficiently smooth, e.g., ∂Ω is of the class Ck for some suitable k ≥ 0,
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this means that for each point y ∈ ∂Ω there is a ball B with center at y such

that ∂Ω ∩ B can be represent in the form yi = ϕ(y1, . . . , yi−1, yi+1, . . . , yn) for

some i, and ϕ is a k−times continuously differentiable function.

For a nonnegative integer m, we denote by Cm(Ω)(resp. Cm(Ω̄)) the set

of all m−times continuously differentiable real-valued or complex-valued functions

in Ω(resp. Ω̄, by Cm
0 (Ω) the subspace of Cm(Ω) consisting of those functions

which have compact support in Ω.

For x ∈ Cm(Ω) and 1 ≤ p < ∞, we define

‖x‖m,p =




∫

Ω

∑

|α|≤m

|Dαx|pdy




1
p

. (5.1)

Also for p = 2 and u, v ∈ Cm(Ω), we define

〈u, v〉m =

∫

Ω

∑

|α|≤m

Dαu ¯Dαudy. (5.2)

Let Ĉm
p (Ω) be the subset of Cm(Ω) consisting of those function x for which

‖x‖m,p < ∞. We define Wm,p(Ω) and Wm,p
0 (Ω) to be the completions in the

norm ‖·‖m,p of Ĉm
p (Ω) and Cm

0 (Ω), respectively. The space Wm,p(Ω) consists

of function x ∈ Lp(Ω) whose derivatives Dαx in the sense of distribution,

of order |α| ≤ m are in Lp(Ω) and Wm,p
0 (Ω) is the closure of Cm

0 (Ω), in

Wm,p(Ω).

It is well known that Wm,p(Ω) and Wm,p
0 (Ω) are Banach spaces with the

usual norm ‖ · ‖m,p. Then Wm,p(Ω) is separable, uniformly convex and hence

reflexive. Let

Hm(Ω) = Wm,2(Ω) and Hm
0 (Ω) = Wm,2

0 (Ω).

The spaces Hm(Ω) and Hm
0 (Ω) are Hilbert spaces with the scalar product 〈·, ·〉

is given by (5.2). The following embedding theorem describes various relations

among the above spaces.
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Theorem 5.1.1. (Sobolev) The following relations among Wm,p(Ω), Cm(Ω) and

Lp(Ω) hold ;

1. Wm,p(Ω) ⊂ Wm,r(Ω) if 1 ≤ r ≤ p and the embedding is continuous.

2. Wm,r(Ω) ⊂ W j,p(Ω) if 1 ≤ r, p < ∞, j and m are integers such that

0 ≤ j ≤ m and
1

p
>

1

r
+

j

n
− m

n
and the embedding is compact.

3. Wm,p(Ω) ⊂ L
np

n−mp (Ω) if mp ≤ n and there exists a constant c1 such that

‖x‖0, np
n−mp

≤ c1‖x‖m,p for x ∈ Wm,p(Ω).

4. Wm,p(Ω) ⊂ Ck(Ω̄) if 0 ≤ k ≤ m− n

p
and there exists a constant c2 such that

sup{|Dαx(y)| ; |α| ≤ k, y ∈ Ω̄} ≤ c2‖x‖m,p for x ∈ Wm,p(Ω).

5. (Poincaré Inequality) There exists a constant c = c(Ω) such that

inf
k∈R

‖x + k‖0,2 ≤ c(Ω)‖∇x‖0,2 for x ∈ H1
0 (Ω).

Since ∂Ω is smooth, C∞(Ω) is dense in Wm,p
0 (Ω) and L2(Ω), Wm,p

0 (Ω)

is dense in L2(Ω). From Sobolev’s embedding theorem, we have that the

embeddings

C∞(Ω) ↪→ Wm,p
0 (Ω) ↪→ L2(Ω).

For any σ = k + η > 0, where k is a nonnegative integer and η ∈
(0, 1), Cσ(Ω̄) denotes the Banach space consisting of those functions belonging

to Ck(Ω̄) whose derivatives Dαx of order |α| = k satisfy a uniform Hölder

condition with exponent η. The norm in this space is defined as

‖x‖Cσ(Ω̄) = ‖x‖Ck(Ω̄) +
∑

|α|=k

[Dαx]η ,

with

[υ]η = sup
y, z∈Ω, y 6=z

|υ(y)− υ(z)|
|y − z|η .
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5.2 Example

In the following, we give some examples of the existence of periodic mild

solution of semilinear impulsive periodic systems.

Example 5.2.1. Consider

∂x(t, y)

∂t
=

∂2x(t, y)

∂y2
+ f1(t, x(t, y)), y ∈ Ω, t 6= τk, t ∈ [0, T0],

∆x(tk, y) = Bkx(tk, y), t = τk, k = 0, 1, 2, . . . , σ,

x(0, y) = x(T0, y), on Ω,

x(t, y)|∂Ω = 0, t ∈ [0, T0],

(5.3)

where ∆x(τk) = x(τ+
k ) − x(τ−k ) and Ω ⊂ Rn is a bounded open domain with

C2−boundary. Take X = L2(Ω), A :=
∂2

∂y2
with domain D(A) = {H2(Ω) ∩

H1
0 (Ω)}. We suppose that f1 satisfies the following assumption :

(F) f1 : [0,∞) × R → R is an operator such that f1(t + T0, x) = f1(t, x)

and t 7→ f1(t, x) is strongly measurable. For every ρ > 0 there exist constants

M1, M2 > 0 such that

|f1(t, x)| ≤ M1

and |f1(t, x)− f1(t, y)| ≤ M2|x− y|,
for all t ≥ 0 and all x, y ∈ R.

Define x(t)(y) = x(t, y) and Bkx(tk) = fk(tk)x(tk) where fk ∈ L∞(Ω).

Then it is clearly that Bk satisfies assumption (A1.3). Given z ∈ X, define

mappings f : [0, T0]×X → X by

f(t, z)(y) = f1(t, z(y)).

In order to apply Theorem 4.1.5 we have to show that f take value in X

and satisfies assumption (A5).
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Lemma 5.2.2. f(t, z) satisfies assumption (A5) in Section 4.1.

Proof. Since f(t + T0, z)(y) = f1(t + T0, z(y)) = f1(t, z(y)) = f(t, z)(y), so that

f(t + T0, z) = f(t, z). Next, we show that f takes value in X. Since f(t, z)(y) =

f1(t, z(y)), we obtain for almost all t that

∫

Ω

|f(t, z)(y)|2dy =

∫

Ω

|f1(t, z(y))|2dy

≤
∫

Ω

M2
1 dy < ∞,

since Ω is bounded. This show that f(t, z) ∈ L2(Ω) for almost all t and all

z ∈ X, so that f is well defined on [0, T0] × X. Next, we show that f(t, ·)
satisfies a Lipschitz condition. For any z1, z2 ∈ L2(Ω), we have

‖f(t, z1)− f(t, z2)‖2
L2(Ω) =

∫

Ω

|f(t, z1)(y)− f(t, z2)(y)|2dy

=

∫

Ω

|f1(t, z1(y))− f1(t, z2(y))|2dx

≤ M2
2

∫

Ω

|z1(y)− z2(y)|2dy = M2
2‖z1 − z2‖2

L2(Ω)

for almost all t. Hence f(t, ·) satisfies a Lipschitz condition for almost all t.

This shows that f satisfies assumption (A5).

Thus system (5.3) can be written as





ẋ(t) = Ax(t) + f(t, x(t)), t 6= τk,

∆x(tk) = Bkx(tk), t = τk, k = 0, 1, 2, . . . , σ,

x(0) = x(T0).

(5.4)

Obviously, it satisfies all the assumptions given in our former Theorem 4.1.5,

our result can be applied to system (5.3).
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Example 5.2.3. Consider

∂x(t, y)

∂t
=

∂2x(t, y)

∂y2
+ sin t, y ∈ Ω, t 6= τk, t ∈ [0, T0],

∆x(tk, y) = −x(tk, y), t = τk, k = 0, 1, 2, . . . , σ,

x(0, y) = x(T0, y), on Ω,

x(t, y)|∂Ω = 0, t ∈ [0, T0],

(5.5)

where ∆x(τk) = x(τ+
k ) − x(τ−k ) and Ω ⊂ Rn is a bounded open domain with

C2−boundary. Take X = L2(Ω), A :=
∂2

∂y2
with domain D(A) = {H2(Ω) ∩

H1
0 (Ω)}. Define x(t)(y) = x(t, y), f(t, x) = sin t and Bkx(tk) = −x(tk). Then it

is clearly that Bk and f satisfy assumption (A1.3) and (A5), respectively. Thus

system (5.5) can be written as (5.4). Since it satisfies all the assumptions given in

our former Theorem 4.1.5, our result can be applied to system (5.5).



CHAPTER VI

CONCLUSIONS

6.1 Thesis Summary

In this thesis, we have studied the existence of periodic mild solutions for

linear and semilinear impulsive periodic systems with impulses, in these case where

the operator involved is the infinitesimal generator of C0-semigroup.

6.1.1 Problems

This thesis has considered the following problems :

1. Linear periodic systems with impulses :

1.1 Existence of periodic mild solutions for the homogenous linear impulsive

periodic systems.





ẋ(t) = Ax(t), t 6= τk,

∆x(t) = Bkx(t), t = τk,
(6.1)

where ∆x(τk) = x(τ+
k )− x(τ−k ) for all k ∈ N.

1.2 Existence of periodic mild solutions for the nonhomogenous linear im-

pulsive periodic control systems.





ẋ(t) = Ax(t) + u(t), t 6= τk,

∆x(t) = Bkx(t) + ck, t = τk,
(6.2)

where ∆x(τk) = x(τ+
k )− x(τ−k ) for all k ∈ N.
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1.3 Existence of periodic mild solutions for the linear impulsive control

systems with parameter perturbations.





ẋ(t) = Ax(t) + u(t) + p(t, x(t), ξ), t 6= τk,

∆x(t) = Bkx(t) + ck + qk(x(t), ξ), t = τk,
(6.3)

where ∆x(τk) = x(τ+
k )− x(τ−k ) for all k ∈ N.

2. Semilinear periodic systems with impulses :

2.1 Existence of periodic mild solutions for the semilinear impulsive systems





ẋ(t) = Ax(t) + f(t, x), t 6= τk,

∆x(t) = Bkx(t), t = τk,
(6.4)

where ∆x(τk) = x(τ+
k )− x(τ−k ) for all k ∈ N.

2.2 Existence of periodic mild solutions for the semilinear impulsive control

systems.





ẋ(t) = Ax(t) + f(t, x) + u(t), t 6= τk,

∆x(t) = Bkx(t) + ck, t = τk,
(6.5)

where ∆x(τk) = x(τ+
k )− x(τ−k ) for all k ∈ N.

2.3 Existence of periodic mild solutions for the semilinear impulsive control

systems with parameter perturbations.





ẋ(t) = Ax(t) + f(t, x(t)) + u(t) + p(t, x(t), ξ), t 6= τk,

∆x(t) = Bkx(t) + ck + qk(x(t), ξ), t = τk,
(6.6)

where ∆x(τk) = x(τ+
k )− x(τ−k ) for all k ∈ N.
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6.1.2 Assumptions

Assumption (A1) ;

(A1.1) 0 = τ0 < τ1 < τ2 < . . . < τk < . . . , τk →∞ as k →∞ and

there exists a positive integer σ such that τk+σ = τk + T0 for all k ∈ N.

(A1.2) A is the infinitesimal generator of a C0−semigroup {T (t), t ≥ 0} in X.

(A1.3) Bk ∈ L(X) such that Bk+σ = Bk.

Assumption (A2) ;

(A2.1) A is the infinitesimal generator of a compact semigroup {T (t), t > 0}
in X.

(A2.2) u ∈ PC([0,∞) , X) such that u(t + T0) = u(t).

(A2.3) ck ∈ X and ck+σ = ck for all k ∈ N.

Assumption (A3) ;

(A3.1) A∗ is the infinitesimal generator of the adjoint semigroup {T ∗(t), t ≥ 0}
in X∗.

(A3.2) B∗
k ∈ L(X∗) such that B∗

k+σ = B∗
k for all k ∈ N.

Assumption (A4) ;

(A4.1) p(·, x, ξ) ∈ PC([0,∞) , X) such that p(t + T0, x, ξ) = p(t, x, ξ) for all

(t, x, ξ) ∈ [0,∞)× Bρ × [0, ξ0].

(A4.2) qk ∈ C(Bρ × [0, ξ0] , X) such that qk+σ(x, ξ) = qk(x, ξ) for all k ∈ N
(A4.3) For each (t, x, ξ) ∈ [0,∞)× Bρ × [0, ξ0], there exists a nonnegative

function χ(ξ) such that

lim
ξ→0

χ(ξ) = χ(0) = 0

and ‖p(t, x, ξ)‖
X
≤ χ(ξ), ‖qk(x, ξ)‖

X
≤ χ(ξ) (6.7)

for all k ∈ N.
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Assumption (A5) ;

(A5) f : [0,∞)×X → X is an operator such that f(t + T0, x) = f(t, x) and

t 7→ f(t, x) is strongly measurable. For every ρ > 0, there exist constants

K1(ρ), K2(ρ) > 0 such that

‖f(t, x)‖
X
≤ K1(ρ)

and ‖f(t, x)− f(t, y)‖
X
≤ K2(ρ)‖x− y‖

X
,

for all t ≥ 0 and all x, y ∈ X such that ‖x‖
X
, ‖y‖

X
≤ ρ.

Assumption (A6) ;

(A6.1) The Fréchet derivative
∂

∂x
f(t, x) exists in [0,∞)×X. For each

y ∈ X, t 7→ ∂

∂x
f(t, x)y is strongly measurable, x 7→ ∂

∂x
f(t, x)y is

continuous. For every ρ > 0, there exists a constant K3(ρ) > 0 such that
∥∥∥∥

∂

∂x
f(t, x)

∥∥∥∥
L(X)

≤ K3(ρ)

for all t ≥ 0 and all x ∈ X such that ‖x‖
X
≤ ρ.

(A6.2) p(t, x, ξ) and qk(x, ξ) satisfy Lipschitz conditions,i.e. for any (t, x, ξ),

(t, y, ξ) ∈ [0,∞)× Bρ × [0, ξ0], there exists a constant N(ξ) > 0 such that

‖p(t, x, ξ)− p(t, y, ξ)‖
X
≤ N(ξ)‖x− y‖

X

and ‖qk(x, ξ)− qk(y, ξ)‖
X
≤ N(ξ)‖x− y‖

X
.

(A6.3) Bk ∈ L(X) and there exists constant hk(ρ) > 0 such that

‖Bk(x)−Bk(y)‖X ≤ hk(ρ)‖x− y‖X ,

for all k ∈ N and all x, y ∈ X such that ‖x‖
X
, ‖y‖

X
≤ ρ.

(A6.4) The Fréchet derivative
∂

∂x
Bk(x) exists in X. For every ρ > 0,

there exists a constant h̄k(ρ) > 0 such that
∥∥∥∥

∂

∂x
Bk(x)

∥∥∥∥
L(X)

≤ h̄k(ρ)

for all t ≥ 0, k ∈ N and all x ∈ X such that ‖x‖
X
≤ ρ.
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6.1.3 Results

The main results of this thesis are summarized as follows :

Theorem 6.1.1. Let assumption (A1) hold. The system (6.1) has a periodic mild

solution if and only if the operator U(T0, 0) has a fixed point x0 ∈ X.

Theorem 6.1.2. Let assumption (A1) hold. Furthermore, assume that A is the

infinitesimal generator of a compact semigroup {T (t), t > 0} in X. Then system

(6.1) either has a unique trivial solution or have finitely many linearly independent

nontrivial periodic mild solutions in PC([0,∞) , X).

Theorem 6.1.3. If system (6.1) has only trivial solution , then system (6.2) has

a unique T0-periodic mild solution

x
T0

(t) = U(t, 0)[I − U(T0, 0)]−1

(∫ T0

0

U(T0, s)u(s) ds

+
∑

0≤τk<T0

U(T0, τk)ck

)
+

∫ t

0

U(t, s)u(s)ds

+
∑

0≤τk<t

U(t, τk)ck.

(6.8)

Theorem 6.1.4. Assume that (A1) and (A2) hold. Furthermore, assume that

X is a Hilbert space and u ∈ L1
loc([0,∞) , X). If the system (6.1) have m lin-

early independent periodic mild solutions x1, x2, . . . , xm with 1 ≤ m ≤ n

where xi are periodic mild solutions of the system (6.1) corresponding to initial

conditions xi(0) = xi
0, i = 1, 2, . . . , m, then

1. the adjoint system (A.19) also have m linearly independent periodic mild

solutions y1, y2, . . . , ym.

2. system (6.2) has a T0-periodic mild solution if and only if

〈 y , z 〉 = 0, (6.9)
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where y ∈ X∗ satisfying

[I − U∗(T0, 0)]y = 0 (6.10)

and z :=

∫ T0

0

U(T0, s)u(s)ds +
∑

0≤τk<T0

U(T0, τk)ck,

or if and only if

∫ T0

0

〈 y(s), u(s) 〉ds +
∑

0≤τk<T0

〈 y(τk), ck 〉 = 0. (6.11)

Furthermore, let xa(t) be a particular T0-periodic mild solution of system (6.2),

each T0-periodic mild solution of system (6.2) has the the form

x(t) = xa(t) +
m∑

i=1

αix
i(t),

where αi, i = 1, 2, . . . , m, are constants.

Theorem 6.1.5. If system (6.2) has a bounded mild solution, then it has at least

one T0-periodic mild solution.

Corollary 6.1.6.

1. Assume that system (6.2) has no T0-periodic mild solution, then all of its

solutions are unbounded for t ≥ 0.

2. Assume that system (6.2) has a unique bounded mild solution for t ≥ 0,

then this solution is T0-periodic.

Theorem 6.1.7. Let assumptions (A1), (A2) and (A4) hold. Assume that

1. system (6.1) has only trivial solution,

2. the following inequality is valid

ρ0 = sup
t∈[0,T0]

‖x
T0

(t)‖
X

< ρ (6.12)

where ρ be any positive real number,
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3. p(t, x, ξ) and qk(x, ξ) satisfy Lipschitz conditions, i.e. for any (t, x, ξ),

(t, y, ξ) ∈ [0,∞)× Bρ × [0, ξ0], there exists a constant N(ξ) > 0 such that

‖p(t, x, ξ)− p(t, y, ξ)‖
X
≤ N(ξ)‖x− y‖

X

and ‖qk(x, ξ)− qk(y, ξ)‖
X
≤ N(ξ)‖x− y‖

X
.

Then for any constant ρ > ρ0 > 0, there exists a sufficiently small ξ0 > 0 such

that for every fixed ξ ∈ [0, ξ0] system (6.3) has a unique T0-periodic mild solution

xξ
T0

(t) satisfying

‖xξ
T0

(t)− x
T0

(t)‖
X

< ρ− ρ0 (6.13)

and

lim
ξ→0

xξ
T0

(t) = x
T0

(t) (6.14)

uniformly on t.

Theorem 6.1.8. Let assumptions (A1), (A2) and (A4) hold. Assume that

1. system (6.1) has only trivial solution,

2. the following inequality is valid

ρ0 = sup
t∈[0,∞]

‖x
T0

(t)‖
X

< ρ (6.15)

Then for any constant ρ > ρ0 > 0, there exists a sufficiently small ξ0 > 0 such

that for every fixed ξ ∈ [0, ξ0] system (6.3) has a unique T0-periodic mild solution

xξ
T0

(t) satisfying

‖xξ
T0

(t)− x
T0

(t)‖
X
≤ ρ− ρ0. (6.16)
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Theorem 6.1.9. If assumptions (A1) and (A5) hold, then system (6.4) has a

unique T0-periodic mild solution x ∈ PC([0, T0], X) and there exists a constant

β > 0 such that

‖x‖
PC
≤ β.

Theorem 6.1.10. If assumptions (A1), (A2) and (A5) hold, then system (6.5)

has a unique T0-periodic mild solution x ∈ PC([0, T0], X) and there exists a

constant β > 0 such that

‖x‖
PC
≤ β.

Theorem 6.1.11. Let assumption (A1), (A2) and (A4)-(A6) holds. Suppose

xT0(t) be a T0-periodic mild solution of the reference system (4.34) satisfies

ρ0 = sup
t∈[0,T0]

‖x
T0

(t)‖
X
.

Assume that

1. system (4.36) has only trivial solution,

2. let ξ0 > 0 and εo ∈ (0, ρ− ρ0) such that η < 1 with

η := M
(
[K2(ε0) + K3(ε0)]T0 + [hk(ε0) + h̄k(ε0)]σ + [T0 + σ] sup

ξ∈[0,ξ0]

N(ξ)
)

where

M = sup
0≤s≤t≤T0

‖U(t, s)‖L(X)
,

h̄k(ε0) = sup
k∈N, ‖y‖≤ε0

∥∥∥∥
∂

∂x
Bk(xT0

(τk) + y(τk))

∥∥∥∥
X

,

3. the following inequality is valid

sup
t∈[0,T0], |ξ|≤ξ0

∥∥∥∥U(t, 0)x0 +

∫ t

0

U(t, s)[u(s) + p(s, x
T0

(s), ξ)]ds

+
∑

0≤τk<T0

U(t, τk)[ck + qk(xT0
(τk), ξ)]

∥∥∥∥∥
X

≤ ε0(1− η).
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Then for any constant ρ > ρ0 > 0, there exists a sufficiently small ξ0 > 0 such

that for every fixed ξ ∈ [0, ξ0] system (6.6) has a unique T0-periodic mild solution

xξ
T0

(t) satisfying

‖xξ
T0

(t)− x
T0

(t)‖ < ε0 for all t ≥ 0 (6.17)

and lim
ξ→0

xξ
T0

(t) = x
T0

(t) uniformly on t.

6.1.4 Applications

All results of the abstract framework in this thesis can be applied to semi-

linear partial differential equations of parabolic types with impulses. The example

concerning second order semilinear parabolic impulsive differential equation was

given. We prove the existence of periodic mild solutions.

6.1.5 Suggestion for Further Work

We should observe that further problems can be considered. For instance,

how to deal with the relaxation and optimal control for impulsive periodic control

problem. Discuss existence of almost periodic solution for linear and semilinear

impulsive control of almost periodic systems. Furthermore, we can consider other

application problems and computation algorithm. We will continue to study in

this field.
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PUBLICATION

IMPULSIVE PERIODIC CONTROL SYSTEM WITH

PARAMETER PERTURBATIONS∗

S. Hinpang, X. Xiang and P. Sattayatham

Abstract : In this paper, we study the existence of periodic solution for impulsive

periodic control system with parameter perturbations on infinite dimensional space, in

these cases where the differential operator involved is the infinitesimal generator of C0-

semigroup.

Keywords : Impulsive differential equation, semigroup, periodic solution, Banach

space.

2000 Mathematics Subject Classification : 34A37, 34G10, 34K13.

A.1 Introduction

The impulsive differential equations appear to a natural framework for mathe-

matical modelings of several real world phenomena. For instance, systems with impulse

effects have applications in physics, in biotechnology, in population dynamics, in optimal

control and so on. For an introduction to the theory of impulsive systems, we refer the

reader to see in [4]. In the framework of impulsive differential equations, some exis-

∗S. Hinpang, X. Xiang and P. Sattayatham (2006), Thai Journal of Mathematics, Volume

4 Number 1 : pp107–125
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tence result of periodic solutions for impulsive periodic control systems with parameter

perturbations on finite dimensional space has been studied by many authors in [2] and

[6].

However, the investigation of the existence of periodic solutions for impulsive

periodic control systems with parameter perturbations on infinite dimensional space

have not been study. We apply the semigroup theory (see [1] and [5]) and fixed point

theorems (see [3] and [7]) for impulsive systems, we establish conditions for ensuring

that the system has a unique periodic solution.

The organization of this paper is as follows. Firstly, in Section 2, we introduce

some definition of impulsive evolution operator and prove the existence of periodic solu-

tion for homogeneous linear impulsive periodic system by using fixed point theorem and

Fredholm alternative theorem. In Section 3, nonhomogeneous linear impulsive periodic

control system is investigated, we prove the existence of periodic solution by using prop-

erties of compact operators and boundedness of solution. Finally, in Section 4, we prove

the existence of periodic solution for impulsive periodic control system with parameter

perturbations by using fixed point theorems.

A.2 Impulsive Evolution Operator and Homogeneous Lin-

ear Impulsive Periodic System

Throughout this paper X will denote a Banach space with norm ‖ · ‖X and

L(X) denote the space of all bounded linear operators on X. Let PC([0, T0] ; X) be the

space of all functions x : [0, T0] → X, x(t) is continuous at t 6= τk, left continuous at

t = τk and the right limit x(τ+
k ) exists for k = 1, 2, . . . , σ, where 0 = τ0 < τ1 < τ2 <

. . . < τσ−1 < τσ = T0 < ∞, which is a Banach space with the norm

‖x‖PC = sup
t∈[0,T0]

‖x(t)‖X .

In this paper, we study the existence of periodic solutions for impulsive periodic



113

control systems with parameter perturbations on infinite dimensional space,




ẋ(t) = Ax(t) + u(t) + p(t, x, ξ), t 6= τk,

∆x(t) = Bkx(t) + ck + qk(x, ξ), t = τk, k ∈ N
(A.1)

where ∆x(τk) = x(τ+
k ) − x(τ−k ). Suppose that the system (A.1) satisfy the following

assumptions (A1), (A2), and (A3).

(A1.1) 0 = τ0 < τ1 < τ2 < . . . < τk < . . . , τk → ∞ as k → ∞ and there exists a

positive integer σ such that τk+σ = τk + T0 for all k ∈ N.

(A1.2) A is the infinitesimal generator of a C0-semigroup {T (t), t ≥ 0} in X.

(A1.3) Bk ∈ L(X) such that Bk+σ = Bk for all k ∈ N.

(A2.1) u ∈ PC([0,∞) , X) such that u(t + T0) = u(t) for all t ≥ 0.

(A2.2) ck ∈ X such that ck+σ = ck for all k ∈ N.

(A3.1) For each ρ > 0 and x ∈ Bρ := {x ∈ X | ‖x‖X ≤ ρ}. p(·, x, ξ) ∈ PC([0,∞), X) such

that p(t + T0, x, ξ) = p(t, x, ξ) for all (t, x, ξ) ∈ [0,∞)× Bρ × [0, ξ0].

(A3.2) qk ∈ C(Bρ × [0, ξ0], X) such that qk+σ(x, ξ) = qk(x, ξ) for all k ∈ N and

(x, ξ) ∈ Bρ × [0, ξ0].

(A3.3) there exists a nonnegative function χ(ξ) such that

‖p(t, x, ξ)‖X ≤ χ(ξ), ‖qk(x, ξ)‖X ≤ χ(ξ) and lim
ξ→0

χ(ξ) = χ(0) = 0 (A.2)

for all k ∈ N and (t, x, ξ) ∈ [0,∞)× Bρ × [0, ξ0].

For the system (A.1), we give the following definition.

Definition A.1. Let Assumption (A1) hold. An operator value function U(t, s) with

values in L(X), defined on the triangle ∆ ≡ { 0 ≤ s ≤ t ≤ a } with t, s ∈ (τk−1, τk]
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for all k ∈ N, given by

U(t, s) =





T (t− s), τk−1 ≤ s ≤ t ≤ τk,

T (t− τk)(I + Bk)T (τk − s), τk−1 < s ≤ τk < t ≤ τk+1,

T (t− τk)




k∏

j=i+1

(I + Bj)T (τj − τj−1)


 (I + Bi)T (τi − s),

for i < k, τi−1 < s ≤ τi < . . . < τk < t ≤ τk+1.

(A.3)

is called an impulsive evolution operator.

Proposition A.1. Let assumption (A1) hold and {U(t, s), 0 ≤ s ≤ t ≤ a} be a family

of impulsive evolution operators. For each fixed T0 = τσ > 0, then the following are

satisfied :

(i) U(t, t) = I, the identity operator on X ;

(ii) U(t, s) = U(t, r)U(r, s) for all 0 ≤ s ≤ r ≤ t ≤ a ;

(iii) U(t + KT0, s + KT0) = U(t, s) for all K ∈ N and 0 ≤ s ≤ t ≤ T0 with T0 ≤ a.

(iv) U(t, 0) = U(t̄, 0)[U(T0, 0)]M where t = t̄ + MT0 for all t̄ ∈ [0, T0] and M ∈

N ∪ {0}.

Corollary A.2. Let assumption (A1) hold and {U(t, s) : 0 ≤ s ≤ t ≤ a} be a family of

impulsive evolution operators, then

sup
0≤s≤t≤a

‖U(t, s)‖L(X)
< ∞ for all a > 0.

Definition A.2. A function x ∈ PC([0,∞) ;X) is said to be a mild solution of the

system (A.1) with initial condition x(0) = x0 if x is given by

x(t) = U(t, 0)x0 +
∫ t

0
U(t, s)[u(s) + p(s, x, ξ)]ds +

∑

0≤τk<t

U(t, τk)[ck + qk(x, ξ)]. (A.4)

Definition A.3. A function x ∈ PC([0,∞) ;X) is said to be a periodic solution of the

system (A.1) if there exists T0 > 0 such that x(t + T0) = x(t) for all t ≥ 0.
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Definition A.4. Function x ∈ PC([0,∞) ; X) is said to be a T0-periodic solution of

the system (A.1) if x(t + T0) = x(t) for all t ≥ 0.

First, we consider the homogeneous linear impulsive periodic system,




ẋ(t) = Ax(t), t 6= τk,

∆x(t) = Bkx(t), t = τk, k ∈ N.

(A.5)

where ∆x(τk) = x(τ+
k )− x(τ−k ) and satisfies the assumption (A1).

For the system (A.5), we give the following definition.

Definition A.5. A function x ∈ PC([0,∞) ;X) is said to be a mild solution of the

system (A.5) with initial condition x(0) = x0 if x is given by

x(t) = U(t, 0)x0

where

U(t, 0) =





T (t), 0 ≤ t ≤ τ1,

T (t− τk)




k∏

j=1

(I + Bj)T (τj − τj−1)


 , τk < t ≤ τk+1,

(A.6)

for all k ∈ N.

Remark A.1. If {T (t), t > 0} is a compact semigroup in X, then U(t, 0) is a compact

operator. Particularly, U(T0, 0) is also a compact operator.

Theorem A.3. Let assumption (A1) hold. The system (A.5) has a periodic solution if

and only if the operator U(T0, 0) has a fixed point x0 ∈ X.

Proof. Let x(t) be a periodic solution of system (A.5). Suppose x(0) = x0 be the initial

condition of system (A.5), then x(T0) = x(0) = x0. Since x(T0) = U(T0, 0)x0, then

x0 = U(T0, 0)x0. That is, the operator U(T0, 0) has a fixed point x0 ∈ X. Conversely,

assume that x0 be a fixed point of U(T0, 0). Use x0 as the initial condition of system

(A.5), then the solution is x(t) = U(t, 0)x0 where t = t̄ + MT0 for all t̄ ∈ [0, T0] and
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M ∈ N ∪ {0}. By assumption and Proposition A.1 (4), we have x(t) = x(t̄ + MT0) =

U(t̄, 0)[U(T0, 0)]Mx0 = U(t̄, 0)x0 = x(t̄). Hence x is a periodic solution of system

(A.5).

Theorem A.4. Let assumption (A1) hold. Furthermore, assume that A is the infinites-

imal generator of a compact semigroup {T (t), t > 0} in X. Then system (A.5) either has

a unique trivial solution or have finitely many linearly independent nontrivial periodic

solutions in PC([0,∞) , X).

Proof. Since U(T0, 0) : X → X is a compact linear operator, then by applying Fred-

holm alternative theorem (see[3]), we obtain U(T0, 0) satisfy Fredholm alternative that

either (a) or (b) holds: (a)The homogenous equations [I − U(T0, 0)]x = 0 have only

the trivial solution x = 0. That is, U(T0, 0) has only a unique fixed point x = 0

( i.e., by theorem A.3, this means that system (A.5) has a unique trivial solution).

(b)The homogenous equations [I − U(T0, 0)]x = 0 have nontrivial solutions, then all of

linearly independent nontrivial solutions are finite. Suppose all of nontrivial solutions

x1
0
, x2

0
, . . . , xm

0
be such that [I − U(T0, 0)]xi

0
= 0, i = 1, 2, . . . , m. So x1

0
, x2

0
, . . . , xm

0

are fixed points of U(T0, 0) . Again by Theorem A.3, this means that system (A.5)

have periodic solutions, say x1, x2, . . . , xm where xi are the solutions of system (A.5)

corresponding to initial conditions xi(0) = xi
0
, i = 1, 2, . . . , m. Hence the number of

linearly independent nontrivial periodic solutions of system (A.5) are finite.

A.3 Nonhomogeneous Linear Impulsive Periodic Control

System

We consider the following nonhomogeneous linear impulsive periodic control sys-

tem,




ẋ(t) = Ax(t) + u(t), t 6= τk,

∆x(t) = Bkx(t) + ck, t = τk, k ∈ N
(A.7)
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where ∆x(τk) = x(τ+
k ) − x(τ−k ) and A is the infinitesimal generator of a compact

semigroup {T (t), t > 0} in X. Suppose that system (A.7) satisfy the assumptions (A1)

and (A2).

For system (A.7), we give the following definition.

Definition A.6. A function x ∈ PC([0,∞) , X) is said to be a mild solution of system

(A.7) with initial condition x(0) = x0 and the input u ∈ L1
loc([0,∞), X) if x is given by

x(t) = U(t, 0)x0 +
∫ t

0
U(t, s)u(s)ds +

∑

0≤τk<t

U(t, τk)ck, (A.8)

for all k ∈ N.

To be able to apply the method in Pazy [5], we also need the following lemma.

Lemma A.5. ([5]) Consider the nonhomogeneous initial value problem




ẋ(t) = Ax(t) + u(t), t > 0;

x(0) = x0.

(A.9)

If u ∈ L1
loc([0,∞), X), then for every x0 ∈ X the initial value problem (A.9) has

a unique solution which satisfies

x(t) = T (t)x0 +
∫ t

0
T (t− s)u(s)ds, 0 ≤ t ≤ T0. (A.10)

Theorem A.6. If assumptions (A1) and (A2) hold, then system (A.7) has a unique

mild solution x ∈ PC([0, T0], X).

Proof. For t ∈ [0, τ1], Lemma A.5 implies that system

ẋ(t) = Ax(t) + u(t), 0 ≤ t ≤ τ1, x(0) = x0, (A.11)

has a unique mild solution on I1 = [0, τ1] which satisfies

x1(t) = T (t)x0 +
∫ t

0
T (t− s)u(s)ds, t ∈ [0, τ1]. (A.12)

Now, define

x1(τ1) = T (τ1)x0 +
∫ τ1

0
T (τ1 − s)u(s)ds, (A.13)
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so that x1(·) is left continuous at τ1.

Next, on I2 = (τ1, τ2], consider system

ẋ(t) = Ax(t) + u(t), τ1 < t ≤ τ2, x1(τ+
1 ) = (I + B1)x1(τ1) + c1, (A.14)

Since x1 ∈ X, we can use Lemma A.5 again to get a unique mild solution on (τ1, τ2]

which satisfying

x2(t) = T (t− τ1) [(I + B1)x1(τ1) + c1] +
∫ t

τ1

T (t− s)u(s)ds. (A.15)

Now, define x2(τ2) accordingly so that x2(·) is left continuous at τ2.

It is easily seen that Lemma A.5 can be applied to interval (τ1, τ2] to verify

that x2(τ2) ∈ X. It is also easily seen that this procedure can be repeated on Ik =

(τk−1, τk], k = 3, 4, . . . , σ (τσ = T0) to get a mild solutions

xk(t) = T (t− τk−1) [(I + Bk−1)xk−1(τk−1) + ck−1] +
∫ t

τk−1

T (t− s)u(s)ds.

for t ∈ (τk−, τk] and define xk(τk) accordingly with xk(·) left continuous at τk and

xk(τk) ∈ X, k = 1, 2, . . . , σ.

Thus we obtain x ∈ PC([0, T0], X) is a unique mild solution of system (A.7) and

given by.

x(t) =





x1(t), 0 ≤ t ≤ τ1,

xk(t), τk−1 < t ≤ τk, k = 2, 3, . . . , σ.

Next, by mathematical induction to show that (A.8) is satisfied on [0, T0]. First,

(A.8) is satisfied on [0, τ1]. If (A.8) is satisfied on (τk−1, τk], then for t ∈ (τk, τk+1],

x(t) = xk+1(t) = T (t− τk) [(I + Bk)xk(τk) + ck] +
∫ t

τk

T (t− s)u(s)ds

= T (t− τk)(I + Bk)x(τk) + T (t− τk)ck +
∫ t

τk

T (t− s)u(s)ds

= T (t− τk)(I + Bk)
[
U(τk, 0)x0 +

∫ τk

0
U(τk, s)u(s)ds +

∑

0≤τi<τk

U(τk, τi)ci

]

+T (t− τk)ck +
∫ t

τk

T (t− s)u(s)ds
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= U(t, 0)x0 +
∫ τk

0
U(t, s)u(s)ds +

∫ t

τk

U(t, s)u(s)ds

+
∑

0≤τi<τk
U(t, τi)ci + U(t, τk)ck

= U(t, 0)x0 +
∫ t

0
U(t, s)u(s)ds +

∑

0≤τi<t

U(t, τi)ci.

Thus (A.8) is also true on (τk, τk+1]. Therefore (A.8) is true on [0, T0].

If x(t) is T0-periodic solution of system (A.7), then we have x(T0) = x(0) ; namely,

[I − U(T0, 0)]x(0) =
∫ T0

0
U(T0, s)u(s)ds +

∑

0≤τk<T0

U(T0, τk)ck. (A.16)

We consider into 2 cases.

Case 1 : [I − U(T0, 0)]−1exists

Theorem A.7. Let assumptions (A1) and (A2) hold. Assume that [I − U(T0, 0)]−1

exists and system (A.5) has no nontrivial periodic solution , then system (A.7) has a

unique T0-periodic solution

xT0
(t) = U(t, 0)[I − U(T0, 0)]−1

(∫ T0

0
U(T0, s)u(s) ds

+
∑

0≤τk<T0

U(T0, τk)ck


 +

∫ t

0
U(t, s)u(s)ds

+
∑

0≤τk<t

U(t, τk)ck. (A.17)

Proof. Suppose that [I −U(T0, 0)]−1 exists and system (A.5) has only trivial solution.

Then (A.16) gives

x(0) = [I − U(T0, 0)]−1




∫ T0

0
U(T0, s)u(s)ds +

∑

0≤τk<T0

U(T0, τk)ck


 := x0.

Substitute x(0) = x0 into equation (A.8), we get

x(t) = U(t, 0)[I − U(T0, 0)]−1

(∫ T0

0
U(T0, s)u(s) ds

+
∑

0≤τk<T0

U(T0, τk)ck


 +

∫ t

0
U(t, s)u(s)ds

+
∑

0≤τk<t

U(t, τk)ck. (A.18)
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which is a mild solution of system (A.7).

Next, we want to show that a mild solution is unique and is T0-periodic. Suppose

that y(t) = x(t + T0) is a mild solution of system (A.7).

By Proposition A.1(3), we obtain

y(t) = x(t + T0) = U(t + T0, 0)x0 +
∫ t+T0

0
U(t + T0, s)u(s)ds

+
∑

0≤τk<t+T0

U(t + T0, τk)ck

= U(t + T0, T0)U(T0, 0)x0 +
∫ T0

0
U(t + T0, s)u(s)ds +

∑

0≤τk<T0

U(t + T0, τk)ck

+
∫ t+T0

T0

U(t + T0, s)u(s)ds +
∑

T0≤τk<t+T0

U(t + T0, τk)ck

= U(t, 0)U(T0, 0)x0 +
∫ T0

0
U(t + T0, T0)U(T0, s)u(s)ds

+
∑

0≤τk<T0

U(t + T0, T0)U(T0, τk)ck +
∫ t

0
U(t, s)u(s)ds +

∑

0≤τk<t

U(t, τk)ck

= U(t, 0)U(T0, 0)x0 + U(t, 0)
∫ T0

0
U(T0, s)u(s)ds + U(t, 0)

∑

0≤τk<T0

U(T0, τk)ck

+
∫ t

0
U(t, s)u(s)ds +

∑

0≤τk<t

U(t, τk)ck

= U(t, 0)


U(T0, 0)x0 +

∫ T0

0
U(T0, s)u(s)ds +

∑

0≤τk<T0

U(T0, τk)ck




+
∫ t

0
U(t, s)u(s)ds +

∑

0≤τk<t

U(t, τk)ck

= U(t, 0)x(T0) +
∫ t

0
U(t, s)u(s)ds +

∑

0≤τk<t

U(t, τk)ck

= U(t, 0)y(0) +
∫ t

0
U(t, s)u(s)ds +

∑

0≤τk<t

U(t, τk)ck.

This implies that y(t) is also a solution. By Corollary A.5 implies that y(t) =

x(t + T0) = x(t) for all t ≥ 0. So x(t) is a T0-periodic solution of system (A.7), which

is exactly (A.17). This completes the proof.

Case 2 : [I − U(T0, 0)]−1 does not exists

In this case, system (A.5) has nontrivial T0-periodic solutions. Let us construct
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the following adjoint equation of system (A.5),




ẏ(t) = −A∗y, t 6= τk,

−∆y(t) = B∗
ky(t), t = τk, k = 1, 2, . . . , σ

(A.19)

where A∗ is the adjoint operator of A, 0 < τ1 < τ2 < . . . < τσ−1 < τσ = T0

and ∆y(τk) = y(τ+
k ) − y(τ−k ). Suppose that system (A.19) satisfies the following

assumption (A4).

(A4.1) A∗ is the infinitesimal generator of the adjoint semigroup {T ∗(t), t ≥ 0} in

X∗;

(A4.2) B∗
k ∈ L(X∗) such that B∗

k+σ = B∗
k for all k ∈ N.

Definition A.7. A function y ∈ PC([0, T0], X) is said to be a periodic solution

of system (A.19) with initial condition y(T0) = y(0) if y is given by

y(t) = U∗(T0, t)y(0), 0 ≤ t ≤ T0, (A.20)

where

U∗(T0, t) =





T ∗(T0 − t), τσ−1 < t ≤ τσ = T0,

T ∗(τi − t)(I + B∗
i )

[
k∏

j=i+1

(I + Bj)T (τj − τj−1)

]∗
T ∗(T0 − τk),

0 ≤ τi−1 < t ≤ τi ≤ τσ = T0,

(A.21)

for all i = 1, 2, . . . , σ − 1.

Theorem A.8. Let assumptions (A1) and (A2) hold. Furthermore, assume that

X is a Hilbert space and u ∈ L1
loc([0,∞) , X). If system (A.5) have m linearly

independent periodic solutions x1, x2, . . . , xm with 1 ≤ m ≤ n where xi are periodic

solutions of system (A.5) corresponding to initial conditions xi(0) = xi
0 for all

i = 1, 2, . . . , m, then

(i) the adjoint system (A.19) also have m linearly independent periodic solutions

y1, y2, . . . , ym;
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(ii) system (A.7) has a T0-periodic solution if and only if

〈 y , z 〉 = 0, (A.22)

where 〈 y , z 〉 the pairing of an element y ∈ X∗ with an element z ∈ X such

that

[I − U∗(T0, 0)]y = 0 (A.23)

and z :=

∫ T0

0

U(T0, s)u(s)ds +
∑

0≤τk<T0

U(T0, τk)ck, or if and only if

∫ T0

0

〈 y(s), u(s) 〉ds +
∑

0≤τk<T0

〈 y(τk), ck 〉 = 0. (A.24)

Furthermore, let xa(t) be a particular T0-periodic solution of system (A.7), then

each T0-periodic solution of system (A.7) has the form

x(t) = xa(t) +
m∑

i=1

αix
i(t),

where αi, i = 1, 2, . . . , m are constants.

Proof. (i) Suppose system (A.5) have m linearly independent periodic solutions

x1, x2, . . . , xm with 1 ≤ m ≤ n where xi are periodic solutions of system (A.5)

corresponding to initial conditions xi(0) = xi
0
, for all i = 1, 2, . . . ,m. By Theorem

A.3, this means that the equations

[I − U(T0, 0)]xi
0

= 0 (A.25)

have fixed points x1
0
, x2

0
, . . . , xm

0
. Then from Theorem 8.6-3 [3], we know that the

following adjoint equations of (A.25)

[I − U∗(T0, 0)]yi
0

= 0, where yi
0

= yi(0) (A.26)

also have m linearly independent solutions y1
0
, y2

0
, . . . , ym

0
. So y1

0
, y2

0
, . . . , ym

0
are

fixed points of U∗(T0, 0) . Again by Theorem A.3, this means that system (A.19)
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have periodic solutions, say y1, y2, . . . , ym where yi are periodic solutions of sys-

tem (A.19) corresponding to initial conditions yi(0) = yi
0
, for all i = 1, 2, . . . , m.

(ii) System (A.7) has a T0-periodic solution x(t) if and only if the equation

[I − U(T0, 0)]x(0) =

∫ T0

0

U(T0, s)u(s)ds +
∑

0≤τk<T0

U(T0, τk)ck := z (A.27)

has a solution x(0). It follows from Theorem 8.5-1 [3], that the above condition is

equivalent to

〈 y , z 〉 = 0, (A.28)

for all y ∈ X∗ satisfying

[I − U∗(T0, 0)]y = 0 (A.29)

From equation (A.28), we obtain

〈 y , z 〉 = 0 ⇔ 〈 y,

∫ T0

0

U(T0, s)u(s)ds +
∑

0≤τk<T0

U(T0, τk)ck 〉 = 0

⇔
∫ T0

0

〈 y, U(T0, s)u(s) 〉ds +
∑

0≤τk<T0

〈 y, U(T0, τk)ck 〉 = 0

⇔
∫ T0

0

〈 U∗(T0, s)y, u(s) 〉ds +
∑

0≤τk<T0

〈 U∗(T0, τk)y, ck 〉 = 0

⇔
∫ T0

0

〈 y(s), u(s) 〉ds +
∑

0≤τk<T0

〈 y(τk), ck 〉 = 0,

from which we immediately have (A.24). This completes the proof.

The following theorem guarantee the existence of periodic solution. The

proof is based on boundedness property.

Theorem A.9. If system (A.7) has a bounded solution, then it has at least one

T0-periodic solution.
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Proof. Assume that x(t) is a bounded solution of system (A.7). Then for any

t ≥ 0, we have

x(t) = U(t, 0)x0 +

∫ t

0

U(t, s)u(s)ds +
∑

0≤τk<t

U(t, τk)ck,

where x(0) = x0 and

x(T0) = U(T0, 0)x0 +

∫ T0

0

U(T0, s)u(s)ds +
∑

0≤τk<T0

U(T0, τk)ck.

Define z :=

∫ T0

0

U(T0, s)u(s)ds +
∑

0≤τk<T0

U(T0, τk)ck, then

x(T0) = U(T0, 0)x0 + z.

We know that the function x(t + T0) is also a solution of system (A.7) for

t ∈ [0, T0] and its value at t = 0 is x(T0). So

x(t + T0) = U(t, 0)x(T0) +

∫ t

0

U(t, s)u(s)ds +
∑

0≤τk<t

U(t, τk)ck

and

x(2T0) = U(T0, 0)x(T0) + z = U2(T0, 0)x0 + [U(T0, 0) + I]z.

Proceeding by this way, we get

x(mT0) = Um(T0, 0)x0 +
m−1∑
i=0

U i(T0, 0)z for all m ∈ N. (A.30)

By contradiction, we assume that (A.7) has no T0-periodic solution. This means

that the periodicity condition

x(T0) = U(T0, 0)x0 + z = x0 (A.31)

has no solution, i.e., the equation

[I − U(T0, 0)]x0 = z (A.32)
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has no solution. Then from Theorem 8.5-1 [3], we know that there is y ∈ X∗ such

that

[I − U∗(T0, 0)]y = 0 and 〈 y , z〉 6= 0. (A.33)

The first condition means that U∗(T0, 0)y = y, hence

U∗m

(T0, 0)y = y, for all m ∈ N. (A.34)

Assume that 〈 y , z〉 = γ 6= 0. Then from equation (A.30), we have

〈 y , x(mT0) 〉 = 〈 y , Um(T0, 0)x0 〉+
m−1∑
i=0

〈 y , U i(T0, 0)z〉

= 〈U∗m
(T0, 0)y , x0 〉+

m−1∑
i=0

〈U∗i

(T0, 0)y , z〉

= 〈 y , x0 〉+
m−1∑
i=0

〈 y , z〉

= 〈 y , x0 〉+ mγ.

Letting m →∞, then

lim
m→∞

〈 y , x(mT0) 〉 = ∞. (A.35)

Since x(t) is bounded solution and y ∈ X∗, then

|〈 y , x(mT0) 〉| ≤ ‖y‖
X∗‖x(mT0)‖X

≤ M‖y‖
X∗ < ∞.

It’s contradiction to (A.35). Consequently, the assumption is not true and system

(A.7) has at least one T0-periodic solution.

Corollary A.10.

(i) Assume that system (A.7) has no T0-periodic solution, then all of its solutions

are unbounded for t ≥ 0.

(ii) Assume that system (A.7) has a unique bounded solution for t ≥ 0, then this

solution is T0-periodic.
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A.4 Impulsive Periodic Control System with Parameter

Perturbations

In this section, we will find sufficient conditions for the existence of T0-

periodic solutions of system (A.1), by using the fixed point theorems of an operator

acting in a Banach space (see [7]). We assume that system (A.5) has only trivial

solution. Let ξ = 0, then system (A.1) has the same form as system (A.7) because

it follows from (A.2) that p(t, x, 0) = 0 and qk(x, 0) = 0. It follows from Theorem

A.7, that system (A.1) has a T0-periodic solution ;

x
T0

(t) = U(t, 0)[I − U(T0, 0)]−1

(∫ T0

0

U(T0, s)u(s) ds

+
∑

0≤τk<T0

U(T0, τk)ck

)
+

∫ t

0

U(t, s)u(s)ds

+
∑

0≤τk<t

U(t, τk)ck,

(A.36)

where U(t, s) is defined in (A.3). Then we have the following theorem to show

that for small ξ system (A.1) has a T0-periodic solution which is closed to x
T0

(t).

Theorem A.11. Under assumption (A1)-(A3). Let A be the infinitesimal gener-

ator of a compact semigroup {T (t), t > 0} in X. Assume that

(i) system (A.5) has only trivial solution ;

(ii) the following inequality is valid

ρ0 = sup
t∈[0,T0]

‖x
T0

(t)‖
X

< ρ (A.37)

where ρ be any positive real number ;

(iii) p(t, x, ξ) and qk(x, ξ) satisfy Lipschitz conditions, i.e. for any (t, x, ξ),

(t, y, ξ) ∈ [0,∞)× Bρ × [0, ξ0], there exists a constant N(ξ) > 0 such that

‖p(t, x, ξ)− p(t, y, ξ)‖
X
≤ N(ξ)‖x− y‖

X
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and ‖qk(x, ξ)− qk(y, ξ)‖
X
≤ N(ξ)‖x− y‖

X
.

Then for any constant ρ > ρ0 > 0, there exists a sufficiently small ξ0 > 0 such

that for every fixed ξ ∈ [0, ξ0] system (A.1) has a unique T0-periodic mild solution

xξ
T0

(t) satisfying

‖xξ
T0

(t)− x
T0

(t)‖
X

< ρ− ρ0 (A.38)

and

lim
ξ→0

xξ
T0

(t) = x
T0

(t) (A.39)

uniformly on t.

Proof. Let PCT0([0,∞), X) :=
{
x ∈ PC([0,∞), X) | x(t + T0) = x(t),∀t ≥ 0

}
.

Moreover, PCT0([0, T0], X) is a Banach space with the norm

‖x‖
PCT0

= sup
t∈[0,T0]

‖x(t)‖X .

Let us define

B := B(x
T0

, ρ1) = {x ∈ PCT0([0, T0], X) | ‖x− x
T0
‖

PCT0
≤ ρ1 := ρ− ρ0}

L1 = sup
0≤s≤t≤T0

‖U(t, s)‖L(X)

L2 = ‖[I − U(T0, 0)]−1‖L(X)

(A.40)

and an operator Ω : B → PCT0([0, T0] , X) such that

Ω(x)(t) := U(t, 0)[I − U(T0, 0)]−1

(∫ T0

0

U(T0, s)[u(s) + p(s, x(s), ξ)] ds

+
∑

0≤τk<T0

U(T0, τk)[ck + qk(x(τk), ξ)]

)
+

∫ t

0

U(t, s)[u(s)

+ p(s, x(s), ξ)]ds +
∑

0≤τk<t

U(t, τk)[ck + qk(x(τk), ξ)].

(A.41)

From (A.37) and (A.40), we know that if x ∈ B, then

‖x‖
PCT0

≤ ‖x− x
T0
‖

PCT0
+ ‖x

T0
‖

PCT0
≤ ρ1 + ρ0 = ρ. (A.42)
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For any x, y ∈ B, we have

‖Ω(x)− Ω(y)‖
PCT0

= sup
t∈[0,T0]

‖U(t, 0)[I − U(T0, 0)]−1

(∫ T0

0

U(T0, s)[p(s, x(s), ξ)− p(s, y(s), ξ)] ds

+
∑

0≤τk<T0

U(T0, τk)[qk(x(τk), ξ)− qk(y(τk), ξ)]

)

+

∫ t

0

U(t, s)[p(s, x(s), ξ)− p(s, y(s), ξ)]ds

+
∑

0≤τk<t

U(t, τk)[qk(x(τk), ξ)− qk(y(τk), ξ)]‖X

≤ LN(ξ)‖x− y‖
PCT0

,

(A.43)

where L = L2
1L2T0 + L2

1L2σ + L1T0 + L1σ and

‖Ω(x
T0

)− x
T0
‖

PCT0
= sup

t∈[0,T0]

‖U(t, 0)[I − U(T0, 0)]−1

(∫ T0

0

U(T0, s)p(s, x
T0

(s), ξ) ds

+
∑

0≤τk<T0

U(T0, τk)qk(xT0
(τk), ξ)

)

+

∫ t

0

U(t, s)p(s, x
T0

(s), ξ)ds

+
∑

0≤τk<t

U(t, τk)qk(xT0
(τk), ξ)‖X

≤ Lχ(ξ).

(A.44)

Let us choose ξ0 > 0 such that

η = L sup
|ξ|≤ξ0

N(ξ) < 1, L sup
|ξ|≤ξ0

χ(ξ) ≤ ρ1(1− η). (A.45)

Assume that ξ ∈ [0, ξ0], then it follows from (A.43), (A.44) and (A.45) that

‖Ω(x)− Ω(y)‖
PCT0

≤ η‖x− y‖
PCT0

,

‖Ω(x
T0

)− x
T0
‖

PCT0
≤ ρ1(1− η).

(A.46)
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This means that Ω : B → B is a contraction mapping, so Ω has a unique fixed

point xξ
T0
∈ B satisfy

xξ
T0

(t) = U(t, 0)[I − U(T0, 0)]−1

(∫ T0

0

U(T0, s)[u(s) + p(s, xξ
T0

(s), ξ)] ds

+
∑

0≤τk<T0

U(T0, τk)[ck + qk(x
ξ
T0

(τk), ξ)]

)

+

∫ t

0

U(t, s)[u(s), p(s, xξ
T0

(s), ξ)]ds

+
∑

0≤τk<t

U(t, τk)[ck + qk(x
ξ
T0

(τk), ξ)].

(A.47)

It is clear that xξ
T0

(t) is a T0-periodic solution of system (A.1) and satisfies

estimate (A.38). Since we know that Ω(xξ
T0

)(t) = xξ
T0

(t) for all t ∈ [0, T0].

Then ‖xξ
T0

(t)− x
T0

(t)‖
X

= ‖Ω(xξ
T0

)(t)− x
T0

(t)‖
X
≤ Lχ(ξ).

Letting ξ → 0, we obtain (A.39). This completes the proof.

The following definition and lemma will be used in the proof of Theorem

A.13.

Definition A.8. A set S ⊂ PC([0, T0], X) is quasiequicontinuous in [0, T0] if for

any δ > 0 there exists ε > 0 such that if x ∈ S, t1, t2 ∈ (τk−1, τk]∩ [0, T0], k ∈ N
and |t1 − t2| < ε, then ‖x(t1)− x(t2)‖X

< δ.

Lemma A.12. A set S ⊂ PC([0, T0], X) is relatively compact if and only if

(i) S is bounded for each x ∈ S,

(ii) S is quasiequicontinuous in [0, T0].

Theorem A.13. Under assumption (A1)-(A3). Let A be the infinitesimal gener-

ator of a compact semigroup {T (t), t > 0} in X. Assume that

(ii) system (A.5) has only trivial solution;
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(i) the following inequality is valid

ρ0 = sup
t∈[0,∞]

‖x
T0

(t)‖
X

< ρ. (A.48)

Then for any constant ρ > ρ0 > 0, there exists a sufficiently small ξ0 > 0 such

that for every fixed ξ ∈ [0, ξ0] system (A.1) has a unique T0-periodic mild solution

xξ
T0

(t) satisfying

‖xξ
T0

(t)− x
T0

(t)‖
X
≤ ρ− ρ0. (A.49)

Proof. As in the proof of Theorem A.11, we determine successively the number

ρ1 = ρ − ρ0, the Banach space PCT0([0, T0], X), the set B := B(x
T0

; ρ1) and the

operator Ω : B → PCT0([0, T0], X) is defined in (A.41). Obviously, B is a non-

empty bounded closed and convex set. It follows from equation (A.42) that if

x ∈ B, then ‖x‖
PCT0

≤ ρ. For any x ∈ B, we have

‖Ω(x
T0

)− x
T0
‖PCT0

= sup
t∈[0,T0]

‖U(t, 0)[I − U(T0, 0)]−1

(∫ T0

0

U(T0, s)p(s, x
T0

(s), ξ) ds

+
∑

0≤τk<T0

U(T0, τk)qk(xT0
(τk), ξ)

)

+

∫ t

0

U(t, s)p(s, x
T0

(s), ξ)ds

+
∑

0≤τk<T0

U(t, τk)qk(xT0
(τk), ξ)‖X

≤
(
L2

1L2T0 + L2
1L2σ + L1T0 + L1σ

)
χ(ξ).

So

‖Ω(x
T0

)− x
T0
‖

PCT0
≤ Lχ(ξ). (A.50)

where L = L2
1L2T0 + L2

1L2σ + L1T0 + L1σ.

Let us choose ξ ∈ [0, ξ0] such that

L sup
ξ∈[0, ξ0]

χ(ξ) ≤ ρ1. (A.51)
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Then for ξ ∈ [0, ξ0], we have

‖Ω(x
T0

)− x
T0
‖PCT0

≤ Lχ(ξ) ≤ ρ1, (A.52)

From which we know that Ω(x) ∈ B and therefore Ω : B → B.

It follows from (A.36), (A.48) and (A.52) that

‖Ω(x
T0

)‖PCT0
≤ ‖Ω(x

T0
)− x

T0
‖PCT0

+ ‖x
T0
‖PCT0

≤ ρ1 + ρ0 = ρ. (A.53)

That is, the set B is uniformly bounded.

Let x ∈ Bρ and t1, t2 ∈ (τi−1, τi]∩ [0, T0], i = 1, 2, . . . , σ, where τ0 = 0 and τσ = T0.

For 0 < ε < t1 < t2 ≤ T0, then we have

‖(Ωx)(t1)− (Ωx)(t2)‖X
≤ ‖U(t1, 0)− U(t2, 0)‖L(X)

‖[I − U(T0, 0)]−1‖L(X)

(∫ T0

0

‖U(T0, s)‖L(X)
‖u(s) + p(s, x(s), ξ)‖

X
ds

+
∑

0≤τk<T0

‖U(T0, τk)‖L(X)
‖ck + qk(x(τk), ξ)‖X

)

+

∫ t1−ε

0

‖U(t1, s)− U(t2, s)‖L(X)
‖u(s) + p(s, x(s), ξ)‖

X
ds

+

∫ t1

t1−ε

‖U(t1, s)− U(t2, s)‖L(X)
‖u(s) + p(s, x(s), ξ)‖

X
ds

+

∫ t2

t1

‖U(t2, s)‖L(X)
‖u(s) + p(s, x(s), ξ)‖

X
ds

+
∑

0≤τk<t

‖U(t1, τk)− U(t2, τk)‖L(X)
‖ck + qk(x(τk), ξ)‖X

.

from which we know that for any δ > 0, there exists ε > 0 such that if t1− t2 < ε,

then ‖Ω(x)(t1)−Ω(x)(t2)‖X
< δ. Thus B is quasiequicontinuous and by Lemma

A.12, we know that the following set is relatively compact in B;

S = {y ∈ B | y = Ω(x), x ∈ B}. (A.54)

Applying Schuader’s fixed point theorem, it follows that the operator Ω has

a fixed point xξ
T0
∈ B and satisfies equation (A.47). It is clear that xξ

T0
(t) is a

T0-periodic solution of system (A.1).
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