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CHAPTER I

INTRODUCTION

1.1 General Context

Fluid flows past a bluff body have long drawn great interest in the field of

fluid mechanics because of their academic and engineering importance. Flow over

a single circular cylinder has yet to be accepted as a building-block problem for

understanding the fluid dynamics in the bluff-body wake. Because of this, various

analytical, numerical and experimental investigations have been carried out and

flow results are now available in the literature providing information for various

Reynolds numbers. A detailed survey an nonrotating circular cylinder flows can

be found in a book by Zdravkovich (1997). However, most flows over bluff-bodies

of engineering interest involve geometries that are too complex to be reasonably

modeled by such a simple configuration as a single cylinder. Parametric studies

have been performed by several researchers to understand the dynamics of flow

over two nonrotating circular cylinders. Zdravkovich (1977, 1987) has reviewed

the problem of flow interference when two cylinders are placed in a steady current.

He observed that, “. . .when more than one bluff body are placed in a fluid flow,

the resulting forces and vortex shedding pattern may by completely different from

those formed on a single body at the same Reynolds number . . .”. A variety of

flow patterns may be discerned as the spacing between two circular cylinders

is changed. In many engineering applications, such as off-shore structures, heat

exchangers, power transmission lines and chimneys, multiple cylindrical structures

are often found.
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Results on the flow past rotating cylinders are scarce. A survey of work

on the flow past rotating cylinder has been provided by Stojkovic et al. (2002).

For such flows the results depend not only on the Reynolds number but also on a

parameter representing the rotational velocity of the cylinder wall. The rotation

of a cylinder in a viscous uniform flow is expected to modify the wake flow pattern

and may reduce drag and lift forces. The basic rationale behind the rotational

effect is that as a cylinder rotates, the flow is accelerated on one side of the

cylinder and decelerated on the other side. Hence, the pressure on the accelerated

side becomes smaller than that on the decelerated side, resulting in a lift force.

Such a phenomenon is referred to as the Magnus effect.

Owing to difficulties arising from the analytical treatment of viscous flows

around rotating cylinders, investigations are mainly restricted to experimental and

numerical studies in order to provide reliable information on this phenomenon.

As mentioned above, many experimental studies are available on the flow around

stationary cylinders (e.g. Zdravkovich (1997)). However, for a rotating cylinder

and especially for force measurements (lift and drag) in the lower Reynolds number

range, there is only a limited amount of reliable data exist. A few numerical

investigations have been devoted to the laminar flow around a rotating cylinder.

The problem of steady flow past two rotating circular cylinders in a viscous

fluid has long attracted mathematicians, because it is impossible, in general, to

obtain a solution of Stokes’ equations of slow viscous flow in which the fluid

velocity vanishes at infinity (Jeffery (1922)). This is Jeffery’s paradox. It has

been shown numerically that in the case of steady motion of two rotating cylinders

there is no overall force or torque acting upon them. It was ascertained that the

pair of rotating cylinders is a self-propelled body.

There are two different types of stationary motion of bodies in a fluid.
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The first type is a towed body. In the stationary motion regime external forces

must affect the body. The second type is a self-propelled body. Self-propelled

means that a body moves because of the interaction between its boundary and

the surrounding fluid and without the action of an external force. To realize such

a motion regime, the body must have its own source of energy, i.e., the energy

spent against the drag forces. In pure motion by self-propulsion the total net force

and torque, external to the system body-fluid, acting on the body are zero. The

forward force (thrust) that makes the body move is generated by the body itself

and the motion is due to the interaction of the body’s external surface and the

fluid in which it is immersed. The hydrodynamic mechanism of self-propulsion is

different. The problem of the flow past a self-propelled body has a natural origin

(self-propulsion is executed by marine animals, ships and airplanes). Though the

problem of fluid flow past a self propelled body has a natural origin and though

it is of practical importance, the number of works concerning it is very limited.

1.2 Governing Equations of Continuum Motion

We assume the fluid to be a continuum, a point of which is a very small

portion of the real fluid. The small volume, a point in our mathematical descrip-

tion, will be called a fluid particle or element of fluid.

Let Ω be a region in 2-D or 3-D space filled with a fluid. Let ~X =

(X1, X2, X3), ~X ∈ Ω be the coordinates of the fluid particle at time t = 0. Let

~x = (x1, x2, x3), ~x ∈ Ω be the coordinates of a given fluid particle at time t. Then

the fluid motion is, by definition, a function

~x = ϕ( ~X, t) (or xi = ϕi( ~X, t)) (1.1)

such that:

a) ϕ is invertible,
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b) ϕ and ϕ−1 are smooth enough so that the main operations of calculus may be

performed on them,

c) ~X = ϕ( ~X, 0), ϕ( ~X, t1 + t2) = ϕ(ϕ( ~X, t1), t2).

If ~X is fixed and t is changed, then equation (1.1) determines a trajectory of a

fluid particle which is initially placed at point ~X. On the other hand, if t is fixed,

then equation (1.1) determines the transformation of the fluid domain at time

t = 0 to the fluid domain at time t = t1.

Generally two descriptions are used for fluid flow analysis. They are the

Lagrangian and Eulerian descriptions. The Lagrangian method describes the

motion of each particle of the flow field in a separate discrete manner. For example,

the velocity of the nth particle of an aggregate of particles moving in space can

be specified by the scalar equations

(vx)n = fn(t)

(vy)n = gn(t)

(vz)n = hn(t)

where vx, vy, vz are the velocity components in the x, y and z directions, respec-

tively. They are independent of space coordinates, and are functions of time only.

Usually, the particles are denoted by the space point they occupy at some initial

time t0. Thus, ρ(x0, t) refers to the density at time t of a particle which was at

location x0 at time t0. This approach of identifying material points and follow-

ing them along is also called the particle or material description. It is usually

preferred in the description of low density fields, and for moving solids, such as

in describing the motion of a projectile and so on. However, in a deformable

system such as a fluid, there are an infinite number of elements whose motion is

to be described; in such a case, the Lagrangian approach becomes unmanageable.
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Instead, we can use spatial coordinates which help in identifying the particles in

a flow. The velocity of all particles in a flow can be expressed in the following

manner:

vx = f(x, y, z, t)

vy = g(x, y, z, t)

vz = h(x, y, z, t)

This is called the Eulerian or Field approach. If properties and flow characteristics

at each position in space remain invariant with time, the flow is called steady flow.

A time-dependent flow is called unsteady flow.

Fluids obey the general laws of continuum mechanics: conservation of mass,

linear momentum and energy. In the Eulerian representation of the flow, we

represent the density ρ(~x, t) as a function of the position ~x and time t. The

conservation of mass is expressed by the continuity equation

∂ρ

∂t
+ div(ρ~v) = 0. (1.2)

If we assume that the fluid is incompressible and homogeneous, then the density

is constant in space and time: ρ(~x, t) ≡ ρ0. Then the continuity equation (1.2)

becomes

div~v = 0. (1.3)

The momentum equation, which is based on Newton’s second law, represents the

balance between various forces acting on a fluid element. The forces are

a) The force due to rate of change of momentum, generally referred to as the

inertia force

b) Body forces such as buoyancy force, magnetic force, and electrostatic force

c) Pressure force
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d) Viscous forces (causing shear stress).

For a fluid element under equilibrium,

Inertia force + body force + pressure force + viscous force = 0.

or

ρ

(
∂~v

∂t
+ (~v · ∇)~v

)
+ f = −∇p + µ∆~v, (1.4)

where µ is called the coefficient of dynamic viscosity.

Equations (1.3) and (1.4) govern the motion of a viscous incompressible

fluid, they are called “the Navier-Stokes equations for viscous incompressible flow”

1.3 Previous Research

The problem of flow past two rotating circular cylinders in a viscous fluid

has long attracted mathematicians and engineers. This flow shows some analytical

peculiarities regarding the implementation of near-field and far-field boundary

conditions. It might be for this reason that the flow has attracted much interest

from theoretical fluid dynamicists. It is impossible, in general, to obtain solutions

of Stokes’ equations of slow viscous steady flow in which the fluid velocity vanishes

at infinity (Jeffery, 1922). If the cylinders are outside one another, Jeffery found

that it is impossible, in general, to make the fluid velocity vanish at infinity. He

illustrated this by a detailed treatment of the case of equal cylinders, rotating with

equal speeds in an opposite sense. This is the Jeffery paradox. To resolve this

paradox, Smith (1991) obtained an asymptotic solution of the Stokes equations

for the stream function which is valid at large distances from the cylinders. This

asymptotic expansion involved many unknown coefficients of the Fourier series

and there was no obvious way of obtaining these coefficients. Elliott et al. (1995)

established the boundary element method by using the asymptotic expansions
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given by Smith and showed numerically that the combined bodies have no overall

force or torque acting upon them. Watson (1995) pointed out that the pressure

field given by Smith’s asymptotic form is not single-valued and proposed that an

additional term to Jeffery’s Fourier series is necessary. However, he did not derive

the force, since the outer flow which is governed by the Navier-Stokes equations

was not obtained.

In 1973 the problem of flow past rotating cylinders was considered by Sen-

itskii (1973). The problem was studied using a boundary layer approach for the

case of large distance between the center of cylinders. In the work of Senitskii

(1975) the first terms of an asymptotic expansion by inverse degree of Reynolds

number were obtained. Using an asymptotic expansion by degree of a small para-

meter, which is the ratio of cylinder radius to distance between axes of cylinders,

the problem of stationary flow past rotating cylinders was solved approximately

by Senitskii (1975a, 1975b). It was ascertained that in the approximation con-

sidered the pair of rotating cylinders is a self-propelled body. In connection with

the problem of determining the energy required for a body to move in a liquid

the motion of a pair of rotating cylinders in a liquid has also been investigated

experimentally (Senitskii (1980, 1981)).

In pure motion by self-propulsion the total net force and torque, external

to the system body-fluid, acting on the body are zero. The forward force (thrust)

that makes the body move is generated by the body itself and the motion is

due to the interaction of the body’s external surface and the fluid in which it

is immersed. The hydrodynamic mechanism of self-propulsion is different for

macroscopic and microscopic bodies. Large objects which propel themselves make

use of inertia in the surrounding fluid. Their thrust can be produced by muscular

action and change of shape, as in animal locomotion, or can be provided by
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mechanical propulsion systems, as in an airplane, rocket or submarine (Milne-

Thomson (1952)).

Though the problem of a self-propelled body has a natural origin and

though it is of practical importance, the number of works concerning it is very

limited. Let us briefly refer to the literature on the mathematical analysis and

numerical simulation of motion by self-propulsion of a rigid body in an infinite

Navier-Stokes fluid. In (Finn (1965), Pukhnacev (1989, 1990)) the asymptotic

properties of steady flow past a self-propelled body moving with purely trans-

lational velocity are investigated. The existence of such solutions was first es-

tablished for very particular shapes, like balls and cylinders in (Sennitskii (1978,

1984, 1990)) and for a symmetric body around an axis in Galdi (1997). Con-

sidering the general form of rigid body motion, with the rotation of the body

taken into account, Galdi (1999) gave a detailed study which proved the exis-

tence of steady self-propelled solutions for a body with arbitrary geometry for

the cases of zero and nonzero Reynolds number. In (Silvestre (2002a, 2002b)) the

existence of a weak solution to the general unsteady nonlinear problem and the

attainability of steady purely translational self-propelled motion for a symmet-

ric body was proved. Using a method consistent with asymptotic decomposition

for a low Reynolds number, Sennitskii (1978, 1984, 1990) investigated the flow

past a circular cylinder with a moving boundary and of flow past a ball with

a liquid-permeable boundary and obtained asymptotic formulas for the velocity

at great distance from the body. It was noted that the velocity perturbation at

large distance from a self-moving body showed more rapid decay than that from

a towed one. In Lugovtsov (1971), examples of flat potential viscous flow past a

self-moving “body” whose boundary consisted of two symmetrical coupled com-

ponents were studied. On each boundary, the normal velocity components were



9

equal to zero and the tangential components were constant.

A numerical solution to the problem of momentumless flow past an ex-

tended ellipsoid of rotation was obtained by Izteleulov (1985). A propelling model

has a self-consistent distribution of volume force located in a small region behind

the body. Simulation of the problem of conductive incompressible viscous flow

past a body in an electromagnetic field was considered in Shatrov and Yakovlev

(1985), Kxonichev and Yakovlev (1985). In the work of Moshkin et al. (1989)

and Moshkin(1991), two particular cases of self-motion were studied by numerical

solution of the Navier-Stokes equations. In one case, there was a surface behind

(downstream of) the ball. The liquid flows through this surface and obtained

thereby an additional momentum. In the other case the ball surface was per-

meable. On one of its parts, between two cones with the divergence semi-angles

Θ1, Θ2 and a mutual axis Θ = π, the liquid is sucked in, and on the other part,

‘cut’ by a cone Θ3 ≤ Θ ≤ π, the same quantity of the liquid returned to the flow.

Nakanishi et al. (1999) applied the vortex method to a low Reynolds number un-

steady flow generated by two circular cylinders of equal radii set rotating abruptly

with equal angular velocities in a flow initially at rest. Elliot et al. (1995) de-

veloped the boundary element method by using the asymptotic expansions and

showed numerically that the combined bodies (two cylinders) have no overall force

or torque acting upon them.

1.4 Objectives and Overview of the Thesis

In this research, we interested in the self-propulsion of a rigid body. The

shape of the body is constant during the motion, and the thrust is produced

because the body boundary moves. The motion of the body is therefore completely

determined by its geometry and by the distribution of the velocity on its boundary.
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In fact, the combined body, which consists of two rotating circular cylinders,

is an example where self-propelled motion is due to a non-zero velocity of the

boundary. We study not only self-motion of rotating cylinders but also flow past

two towed rotating cylinders. Different rotation of cylinders can be considered as

a propulsion device for controlling the motion of the body.

The main objectives of the research work presented in the thesis are

1. to develop and validate a numerical algorithm to simulate viscous incom-

pressible fluid flow past two rotating and nonrotating circular cylinders,

2. to obtain a consistent set of data for the drag and lift forces for moderate

rate of cylinder rotation for which, to the author’s knowledge, no data are

available in the literature,

3. to highlight and discuss the difference between uniform flow past towed and

self-propelled bodies using the example of flow past two rotating circular

cylinders.

The mathematical formulation of the problem of rigid body motion in a

viscous liquid is described in Chapter II, which aims in defining the differences

between steady towed and self-propelled body motion. The problem of fluid flow

past two rotating circular cylinders is recast in terms of cylindrical bipolar coor-

dinate system. Chapter III presents a numerical algorithm based on a projection

method. In Chapter IV, we present the results of validation of our numerical

algorithm by a comparison with available numerical and experimental data. The

results of various numerical experiments are reported and discussed in Chapter

V. Finally some general comments, a summary of the achievements of this work

and some ideas on how this research could be continued are provided in Chapter

VI.



CHAPTER II

MATHEMATICAL FORMULATION OF

PROBLEM

2.1 Motion of Rigid Body in a Viscous Incompressible

Fluid

To better explain our results, let us first give a mathematical formulation

of the problem in the general case. We represent a rigid body by a compact set B

that is moving in a viscous fluid L which occupies the region D = R3/B exterior

to the body. The motion of {B,L} is described by the following coupled system

of equations and boundary conditions

ρ
D~v

Dt
= div T (~v, p), in D × (0, T ), (2.1)

div ~v = 0, in D × (0, T ), (2.2)

~v = ~v∗ at Σ × (0, T ), (2.3)

lim
~x→∞

(~v(~x, t) + ~V (~x, t)) = 0, for t ∈ (0, T ), (2.4)

m
d~ς

dt
= −

∫

Σ

T (~v, p) · ~n dσ, in (0, T ), (2.5)

I
d~ω

dt
= −

∫

Σ

[~x × T (~v, p)] · ~n dσ, in (0, T ), (2.6)

~v(~x, 0) = v0(~x), ~x ∈ D, (2.7)

~ς(0) = ς0, ~ω(0) = ω0. (2.8)
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The quantities ~v = ~v(~x, t) and p = p(~x, t) represent the velocity and pressure

associated with each particle of L and T (~v, p) is the stress tensor, defined by

Tij(~v, p) = µ

{
∂vi

∂xj

+
∂vj

∂xi

}
− pδij , i, j = 1, 2, 3, (2.9)

where µ is the coefficient of dynamic viscosity. The field ~V (~x, t) = ~ς(t) + ~ω(t)× ~x

represents the velocity of B, ~ς(t) and ~ω(t) are velocity of center mass and vector

of angular velocity of the body, respectively. In equations (2.5) and (2.6) the

positive constant m is the mass of B and I is its inertia tensor. Recall that

Iij =

∫

B

ρB(~x)(|~x|2δij − xixj)dx,

and I is symmetric and positive definite (Danielson (1997)). Here ρB is the mass

density of the body B. The distribution of velocity ~v∗ on Σ represents the thrust,

responsible for the motion of the body. The two equations (2.5) and (2.6) are

consequences of Newton’s laws of conservation of linear and angular momentum,

respectively, for the body B. Let us consider three possible cases.

a) If {B,L} performs a steady motion then the left hand side of equations

(2.5) and (2.6) are equal to zero. This is the case of steady self-propelled motion.

One of the basic questions for this type of problem is the following one: in which

way can we choose the field ~v∗ in order that B moves with a (constant) rigid motion

velocity ~V = −~ς − ~ω×x, where ~ς 6= 0 (so that B does not move). Equations (2.5)

and (2.6) with zero left hand side express the fact that the total external force

and torque on B are identically zero, that is that B is a self-propelled body. In

this case a suitable distribution of velocity field ~v∗ at Σ are additional unknown

quantities.

b) In the case of a towed body the motion of B is due to external forces.

The field ~V (~x, t) = ~ς(t) + ~ω(t) × ~x is a known function of (~x, t) and the velocity

~v∗ on Σ is also a given function. In this case we use integrals in the right hand
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side of equations (2.5) and (2.6) to find the external drag force and torque on B.

In the simplest case, where ~V (~x, t) = ς − const and v∗ = 0 on Σ the problem is

fluid flow past the towed body. The direction of stream flow coincides with the

direction of the vector ~V

c) In the more general case, equations (2.1)−(2.9) represent the problem of

rigid body motion in a viscous incompressible fluid due to the distribution velocity

~v∗ on the boundary that furnishes the “thrust”.

When a body moves in a fluid it experiences forces from the relative fluid

flow which is taking place around it. If the body has arbitrary shape and orienta-

tion, the flow will exert forces and moments about all three coordinate axes. The

force on the body along the flow direction is called drag. The drag is essentially a

force opposing the motion of the body. Viscosity is responsible for the drag force,

and the shape of the body generally determines the overall drag. In the design

of transport vehicles, shapes experiencing minimum drag are considered, to keep

the power consumption at a minimum. Low drag shapes are called streamlined

bodies and high drag shapes are termed as bluff bodies.

Drag arises due to the difference in pressure between the front and back

regions, these force is called pressure or form drag and the friction between the

surface of body and the fluid causes viscous shear stress known as skin friction or

shear drag.

The net force and torque exerted by fluid on an immersed body with surface

Σ are

~F =

∫

Σ

~τ dS, ~M =

∫

Σ

[~r × ~τ ] dS, (2.10)

where ~τ = T · ~n is the stress vector, ~n is the unit vector normal to the

Σ that points outside the region occupied by the fluid. The force per unit area

exerted across a rigid boundary element with normal ~n in an incompressible fluid
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is defined by

~τ = −p~n − µ(~n × ~ω) (2.11)

where p is pressure and ~ω is vorticity defined as ~ω = curl~v (see Batchelor (2000)).

The problem of self-motion is to find solution of the Navier-Stokes equations

(2.1) − (2.2) with boundary conditions (2.3) − (2.4) and additional constraints

~F = ~M = 0. (2.12)

2.2 Viscous Incompressible Fluid Flow Past Two Circular

Cylinders.

It is natural to study the fluid flow in a boundary fitted curvilinear co-

ordinate system. In order to study fluid flow past two circular cylinders, the

reasonable coordinate system is the cylindrical bipolar coordinate system. The

cylindrical bipolar coordinate system can be defined by the following equations

x =
a sinh η

cosh η − cos ξ
, y =

a sin ξ

cosh η − cos ξ
, z = z, (2.13)

where ξ ∈ [0, 2π), η ∈ (−∞,∞), z ∈ (−∞,∞), a is a characteristic length in the

cylindrical bipolar coordinate system which is positive. The following identities

show that curves of constant ξ and η are circles in xy-space

x2 + (y − a cot ξ)2 = a2 csc2 ξ,

(x − a coth η)2 + y2 = a2csch2η.
(2.14)

The coordinate surface η = const corresponds to a family of nonintersecting

cylinders whose centers lie along the x-axis. The value η = 0 is a cylinder of

infinite radius and is equivalent to the entire plane x = 0. Figure 2.1 shows two

cylinders that are chosen to be η = η1 (with η1 > 0) and η = η2 (with η2 < 0).

The cylinders’ radii r1 and r2 and the distances of their centers from the origin
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d1 and d2 are given by

ri = a csch|ηi|, di = a coth |ηi|, i = 1, 2. (2.15)

The center to center distance between the cylinders equals d = d1 + d2. If r1, r2

and d are given, one can find a, η1 and η2 from relations (2.13)− (2.15) as follows

η1,2 = ln



(

d2 + r1
2 − r2

2

2dr1

)
±

√(
d2 + r1

2 − r2
2

2dr1

)2

− 1


 ,

a =

√
d4 − 2d2(r1

2 + r2
2) + (r1

2 − r2
2)2

4d2
.

(2.16)

The Navier-Stokes equations in the cylindrical bipolar coordinate system (ξ, η, z)

are

∂vξ

∂t
+

1

h

(
vξ

∂vξ

∂ξ
+ vη

∂vξ

∂η

)
+ vz

∂vξ

∂z

−
1

a

(
sinh η(vξvη) − sin ξ(vη)

2) = −
1

h

1

ρ

∂p

∂ξ
+ ν

∂2vξ

∂z2
(2.17)

+
ν

h

{
1

h

(
∂2vξ

∂ξ2
+

∂2vξ

∂η2

)
−

2

a

(
sinh η

∂vη

∂ξ
− sin ξ

∂vη

∂η

)
−

(
cosh η + cos ξ

a

)
vξ

}
,

∂vη

∂t
+

1

h

(
vξ

∂vη

∂ξ
+ vη

∂vη

∂η

)
+ vz

∂vη

∂z

+
1

a

(
sinh η(vξ)

2 − sin ξ(vξvη)
)

= −
1

h

1

ρ

∂p

∂η
+ ν

∂2vη

∂z2
(2.18)

+
ν

h

{
1

h

(
∂2vη

∂ξ2
+

∂2vη

∂η2

)
+

2

a

(
sinh η

∂vξ

∂ξ
− sin ξ

∂vξ

∂η

)
−

(
cosh η + cos ξ

a

)
vη

}
,

∂vz

∂t
+

1

h

(
vξ

∂vz

∂ξ
+ vη

∂vz

∂η

)
+ vz

∂vz

∂z
=

−
1

ρ

∂p

∂z
+ ν

{
1

h2

(
∂2vz

∂ξ2
+

∂2vz

∂η2

)
+

∂2vξ

∂z2

}
,

(2.19)

1

h2

[
∂(hvξ)

∂ξ
+

∂(hvη)

∂η

]
+

∂vz

∂z
= 0, (2.20)

where vξ, vη, and vz are the physical components of velocity vector v = (vξ, vη, vz),

p is the pressure, ν =
µ

ρ
is the coefficient of kinematic viscosity and

h =
a

(cosh η − cos ξ)
.
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Figure 2.1 Physical coordinates.

In the present situation the boundary conditions are no-slip requirement

on cylinders

vξ = ωiri, vη = 0, on η = ηi, ξ ∈ [0, 2π), i = 1, 2, (2.21)

where ωi, i = 1, 2 are rotational velocities of the cylinder walls. Positive values of

ωi, i = 1, 2 correspond to counterclockwise rotation. Upstream and downstream

boundary conditions at infinity are

vx = 0, vy = U∞, as r2 = x2 + y2 → ∞, (2.22)

where vx and vy are components of the velocity vector in x and y directions

respectively. Self motion requires that the resultant fluid force and torque on the

combined system of the two cylinders are zero.

The main definitions of tensor-vector calculus and transformation of the

Navier-Stokes equations into the cylindrical bipolar coordinate system are repre-

sented in Appendix A.

Equations (2.17)−(2.22) are dimensional. They can be made dimensionless

if we redefine the dependent and independent variables to be dimensionless, by

dividing them by constant reference properties appropriate to the flow. In this

case, we set diameter of cylinder,D, is reference length and velocity at infinite,
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U∞, is reference velocity. For such flows, the results depend not only on the

Reynolds number Re but also on the non-dimensional gap spacing between the

two cylinders, g , and on parameters, αi representing the ratios of the rotational

velocities of the cylinder walls to the oncoming flow velocity

Re = U∞ D/ν, αi = Dωi/2U∞, i = 1, 2, and g =
d − r1 − r2

D
, (2.23)

where ωi are constant angular velocities of the cylinders rotation and ν is the

kinematic viscosity of the fluid.

For a two-dimensional flow (see Figure 2.1) of an incompressible fluid with

constant properties, the nondimensional governing equations, in cylindrical bipo-

lar coordinates are equations (2.17), (2.18) and (2.20) in which ρ = 1 and instead

of ν, the term
1

Re
will appear. The nondimensional no-slip boundary conditions

on cylinders wall are

vξ = αi, vη = 0, at η = ηi, ξ ∈ [0, 2π), i = 1, 2, (2.24)

Nondimensional upstream and downstream boundary conditions at infinity

are

vx = 0, vy = 1, as r2 = x2 + y2 → ∞, (2.25)



CHAPTER III

NUMERICAL METHODS

3.1 Discretization of the Solution Domain

The first step in computing a numerical solution to the Navier-Stokes equa-

tions is the construction of a grid. A well-constructed grid generate improving the

accuracy and quality of the solution. In this chapter, techniques for generating

grid will be discussed. For the construction of a finite difference scheme the new

independent variables are introduced

ξ = χ1(ξ̂), η = χ2(η̂), (3.1)

or by implication

ξ̂ = ϕ1(ξ), η̂ = ϕ2(η),

J =
∂(ξ, η)

∂(ξ̂, η̂)
6= 0.

(3.2)

This mapping is used to transform the nonuniform mesh in physical space (ξ, η)

into uniform rectangular mesh in computational domain (ξ̂, η̂). The sketch of

meshes in physical and computational domain can be seen in Figure 3.1. The

functions ϕ1 and ϕ2 establish the one-to-one correspondence between nodes of

uniform mesh in the computational domain and nodes of nonuniform mesh in the

physical domain. The functions ϕ1 and ϕ2 are constructed by tabular assigning

points in the physical domain to the corresponding points in computational do-

main. The choice of mapping (3.1) and (3.2) enables as to condense the mesh node

near solid boundaries and in the neighborhood of lines η = 0 and ξ = 0 (ξ = 2π).

In the computational domain (ξ̂, η̂) the nodes of the mesh are distributed uni-

formly (see Figure 3.1).
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Figure 3.1 Sketch of the meshes in physical and computational domains.

It is not convenient to solve the governing equations over a nonuniform grid.

The governing equations (2.17) − (2.20) recast according mesh transformations

(3.1) and (3.2)

∂vξ

∂t
+

1

h

1

J

(
vξηη̂

∂vξ

∂ξ̂
+ vηξξ̂

∂vξ

∂η̂

)
−

1

a

(
sinh η(vξvη) − sin ξ(vη)

2) =

= −
1

h

1

J
ηη̂

∂p

∂ξ̂
+

1

Re

1

h2

1

J

[
∂

∂ξ̂

(
ηη̂

ξξ̂

∂vξ

∂ξ̂

)
+

∂

∂η̂

(
ξξ̂

ηη̂

∂vξ

∂η̂

)]
− (3.3)

−
1

Re

1

h

[
1

J

2

a

(
sinh η ηη̂

∂vη

∂ξ̂
− sin ξ ξξ̂

∂vη

∂η̂

)
+

(
cosh η + cos ξ

a

)
vξ

]
,

∂vη

∂t
+

1

h

1

J

(
vξηη̂

∂vη

∂ξ̂
+ vηξξ̂

∂vη

∂η̂

)
+

1

a

(
sinh η(vξ)

2 − sin ξ(vξvη)
)

=

= −
1

h

1

J
ξξ̂

∂p

∂η̂
+

1

Re

1

h2

1

J

[
∂

∂ξ̂

(
ηη̂

ξξ̂

∂vη

∂ξ̂

)
+

∂

∂η̂

(
ξξ̂

ηη̂

∂vη

∂η̂

)]
+ (3.4)

+
1

Re

1

h

[
1

J

2

a

(
sinh η ηη̂

∂vξ

∂ξ̂
− sin ξ ξξ̂

∂vξ

∂η̂

)
−

(
cosh η + cos ξ

a

)
vη

]
,

1

h2

1

J

[
ηη̂

∂(hvξ)

∂ξ̂
+ ξξ̂

∂(hvη)

∂η̂

]
= 0. (3.5)

3.2 Discretization of the Governing Equation

In this section, we give the time and space discretizations used in order to

solve the Navier-Stokes equations (3.3)− (3.5). In order to describe the numerical
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method it is convenient to represent the momentum and continuity equations in

vector form

∂~v

∂t
+ L~v = −∇p + ~f, (3.6)

div~v = 0. (3.7)

Here the operator L includes convective and diffusive terms

L~v = (~v · ∇)~v −
1

Re
△~v.

3.2.1 The Projection Method in Time

Most numerical methods for solving equations (3.6) and (3.7) in terms

of primitive variables use a projection method. We will describe here the pro-

jection method in the form is suggested by Tolstykh (1991). Introducing the

finite-difference analogues Lh, divh and ∇h of the operators L, div and ∇ on the

grid Ωh, the following approximations of equations (3.6) and (3.7) are considered

α
~̃v − ~vn

τ
+ θLh~̃v + (1 − θ)Lh~v

n = −∇hκpn + β1
~f, (3.8)

~vn+1 − ~vn

τ
+ θLh~̃v + (1 − θ)Lh~v

n = −
1

α
∇h(p

n+1 + (α − 1)κpn)β2
~f, (3.9)

divh~v
n+1 = 0. (3.10)

The scalar parameters α, θ, β1, β2 and κ allowed us to vary the property of ap-

proximation and convergence. In particular case here α = 1, θ = 0, κ = 0. We

have original projection method of Chorin (1968) and Temam (1991). Equations

(3.8) − (3.10) are not convenient for computation. These equations can be reor-

ganize by the following steps :

First, subtract equation (3.8) from equation (3.9) to eliminate convective and

diffusive terms

~vn+1 − ~vn

τ
− α

~̃v − ~vn

τ
= −

[
1

α
∇h

(
pn+1 + (α − 1)κpn

)
−∇hκpn

]
+ (β2 − β1)~f,
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or we can rewrite in this form

~vn+1 = α~̃v + (1 − α)~vn −
τ

α
∇hδp

n+1 + τ(β2 − β1)~f, (3.11)

where δpn+1 = pn+1 − κpn is called pressure-correction. Apply the divergence op-

erator to both side of the last equation we get

divh~v
n+1 = αdivh~̃v + (1 − α)divh~v

n −
τ

α
divh∇hδp

n+1 + τ(β2 − β1)divh
~f

Take into account (3.10), we have the following ”elliptic equation” for pressure-

correction

divh∇hδp
n+1 =

α2

τ
divh~̃v + α(β2 − β1)divh

~f. (3.12)

Approximate solution of the Navier-Stokes equations (3.6) and (3.7) can be

founded on three steps :

The first step consists on solving momentum equation (3.8) which yields an in-

termediate velocity field ~̃v, that do not satisfy the divergence constraint

α
~̃v − ~vn

τ
+ θLh~̃v + (1 − θ)Lh~v

n = −∇hκpn + β1
~f.

This step is followed by the pressure correction step. Poisson equation for

pressure-correction (3.12) is solved during second step

divh∇hδp
n+1 =

α2

τ
divh~̃v + α(β2 − β1)divh

~f.

On the solid wall the Neumann boundary conditions derived from the normal

component of momentum equation or homogeneous Neumann boundary condi-

tions,
∂δpn+1

∂~n
= 0, is used. Note that the necessary compatibility condition is

satisfied. Once δpn+1 is known, the last, third step of the method is to update

the velocity field at the level (n + 1)△t by using equation (3.11).

~vn+1 = α~̃v + (1 − α)~vn −
τ

α
∇hδp

n+1 + τ(β2 − β1)~f,
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As example, for parameters α = 1, β1 = β2 = 0, θ = 0 and κ = 0 above algorithm

are the following : the intermediate velocity is computed in the first step

~̃v = ~vn − τLh~v
n, (3.13)

where Lh~v
n = (~vn · ∇)~vn −

1

Re
△~vn.

Next, pressure is computed from difference analog of the Poisson equation in

second step

divh∇h(p
n+1) =

1

τ
divh~̃v, (3.14)

Finally, the velocity at (n + 1) level is computed

~vn+1 = ~̃v − τ∇h(p
n+1) (3.15)

Figure 3.2 shows the flow chart of numerical algorithm.

3.2.2 Discretization in Space

In this section, we give the space discretization used in order to solve the

Navier-Steady equations. The staggered arrangement of unknown functions is

used:

• velocity components vξ and vη of velocity vector ~v = (vξ, vη) are located at

the centers of cell sides normal to them.

• pressure, p, is located at the cell center.

In Figure 3.3 the location of different functions is also shown.

Let us use the following notations: the upper index n denotes values of

variables at the time tn = n∗∆t, lower indices i, j denote the quantity at the center

of computational cell, ξj = (j − 1) ∗△ξ, ηi = η2 + (i− 0.5) ∗△η, and lover indices

i + 1/2, j + 1/2 correspond to the node ξj+1/2 = ξj +
△ξ

2
, ηi+1/2 = η2 + i ∗

△η

2
.
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Figure 3.2 The flow chart of the numerical algorithm.
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Figure 3.3 Staggered arrangement of vξ, vη and p

Boundary Condition at Infinity

The behavior of pressure and velocity field at large distances from a rigid body

placed in a uniform stream of velocity ~U∞ is analyze. From the analytical point

of view, it is known that (see Boundary condition (2.22))

lim
|~x|→∞

~v(~x, t) = ~U∞ (3.16)

In a numerical simulation it is impractical to use equation (3.16) for high Reynolds

number flow as it involves the placement of the outer boundary at vary large

distance from the body. In our research, we study only steady fluid flow past

rigid circular cylinders. The highest Reynolds number Recrit for which the flow

remain steady is about Recrit = 45. Therefore, in our research, a slightly lower

values of Reynolds number is used Re ≤ 40, guaranteeing steady-state flow. For

steady-state flow the boundary conditions at infinity shift on the boundary of

sufficiently large domain. In this thesis, it is assumed that at sufficiently far from

two-cylinders boundary, the uniform stream boundary conditions are utilized.

~U = ~U∞ and p = p∞.



25

To be more exact we choose far boundary as the following

S1
ε = {(ξ, η)|(η = ±εη and 0 ≤ ξ ≤ εξ) ∪ (ξ = εξ and − εη ≤ η ≤ εη)}

S2
ε = {(ξ, η)|(η = ±εη and 2π − εξ ≤ ξ ≤ 2π) ∪ (ξ = 2π − εξ and − εη ≤ η ≤ εη)}

where εξ, εη sufficiently small positive numbers.

In Figure 3.3 this far boundaries are shown by doubled lines. For sake of

simplicity of computational code boundaries S1
ε and S2

ε coincide with coordinate

lines ξ = const and η = const. So, in the shadowed domain (see Figure 3.3) we

do not compute velocity and pressure. At the nodes of mesh which located on S1
ε

and S2
ε we assumed that

vξ = v = (−
h

a
sinh η sin ξ)(vx)∞ + (

h

a
(cosh η cos ξ − 1))(vy)∞,

vη = u = (−
h

a
(cosh η cos ξ − 1))(vx)∞ + (−

h

a
sinh η sin ξ)(vy)∞.

p = p∞

(3.17)

Space Discretization

For the sake of simplicity we consider only explicit projection method without

pressure correction (α = 1, θ = k = 0, β1 = β2 = 0). In the projection method,

the first step consists on solving an analog to equation (3.8) which yields an

intermediate velocity field ~̃v = (ṽξ, ṽη) = (ṽ, ũ) that do not satisfy the divergence

constraint. We used the following finite difference approximation of equation (3.8)

in the component form
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ṽi,j+1/2 − vn
i,j+1/2

△t
+

+
1

hi,j+1/2

(
vn

i,j+1/2

(
∂v

∂ξ

)n

i,j+1/2

+ un
i,j+1/2

(
∂v

∂η

)n

i,j+1/2

)
−

−
1

a

(
sinh η(vn

i,j+1/2u
n
i,j+1/2) − sin ξ(un

i,j+1/2)
2) =

= −
1

hi,j+1/2

(
∂p

∂ξ

)n

i,j+1/2

+

+
1

Re

1

h2
i,j+1/2

[(
∂2v

∂ξ2

)n

i,j+1/2

+

(
∂2v

∂η2

)n

i,j+1/2

]
−

−
1

Re

1

hi,j+1/2

[
2

a

(
sinh η

(
∂u

∂ξ

)n

i,j+1/2

− sin ξ

(
∂u

∂η

)n

i,j+1/2

)]
−

−
1

Re

1

hi,j+1/2

[(
cosh η + cos ξ

a

)
vn

i,j+1/2

]
,

ũi+1/2,j − un
i+1/2,j

△t
+

+
1

hi+1/2,j

(
vn

i+1/2,j

(
∂u

∂ξ

)n

i+1/2,j

+ un
i+1/2,j

(
∂u

∂η

)n

i+1/2,j

)
+

+
1

a

(
sinh η(vn

i+1/2,j)
2 − sin ξ(vn

i+1/2,ju
n
i+1/2,j)

)
=

= −
1

hi+1/2,j

(
∂p

∂η

)n

i+1/2,j

+

+
1

Re

1

h2
i+1/2,j

[(
∂2u

∂ξ2

)n

i+1/2,j

+

(
∂2u

∂η2

)n

i+1/2,j

]
+

+
1

Re

1

hi+1/2,j

[
2

a

(
sinh η

(
∂v

∂ξ

)n

i+1/2,j

− sin ξ

(
∂v

∂η

)n

i+1/2,j

)]
+

+
1

Re

1

hi+1/2,j

[(
cosh η + cos ξ

a

)
un

i+1/2,j

]
,

(3.18)

where for the sake of simplicity we introduced the following notations

un
i,j+1/2 = 1

4

[
ui−1/2,j + ui+1/2,j + ui+1/2,j+1 + ui−1/2,j+1

]
(

∂v

∂ξ

)n

i,j+1/2

=
1

Ji,j+1/2

(
ηi+1/2 − ηi−1/2

△η

)[
vi,j+3/2 − vi,j−1/2

2△ξ

]
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(
∂v

∂η

)n

i,j+1/2

=
1

Ji,j+1/2

(
ξj+1 − ξj

△ξ

)[
vi+1,j+1/2 − vi−1,j+1/2

2△η

]

(
∂p

∂ξ

)n

i,j+1/2

=
1

Ji,j+1/2

(
ηi+1/2 − ηi−1/2

△η

)[
pi,j+1 − pij

△ξ

]

(
∂2v

∂ξ2

)n

i,j+1/2

=
1

Ji,j+1/2

[

(
ηi+1/2 − ηi−1/2

△η

△ξ

ξj+3/2 − ξj+1/2

)(
vi,j+3/2 − vi,j+1/2

)
−

−

(
ηi+1/2 − ηi−1/2

△η

△ξ

ξj+1/2 − ξj−1/2

)(
vi,j+1/2 − vi,j−1/2

)
]/(△ξ)2

(
∂2v

∂η2

)n

i,j+1/2

=
1

Ji,j+1/2

[

(
ξj+1 − ξj

△ξ

△η

ηi+1 − ηi

)(
vi+1,j+1/2 − vi,j+1/2

)
−

−

(
ξi − ξi−1

△ξ

△η

ηi − ηi−1

)(
vi,j+1/2 − vi−1,j+1/2

)
]/(△η)2

(
∂u

∂ξ

)n

i,j+1/2

=
1

Ji,j+1/2

(
ηi+1/2 − ηi−1/2

△η

)
[(ui+1/2,j+1 + ui−1/2,j+1)−

−(ui+1/2,j + ui−1/2,j)]/2△ξ(
∂u

∂η

)n

i,j+1/2

=
1

Ji,j+1/2

(
ξj+1 − ξj

△ξ

)
[(ui+1/2,j+1 + ui+1/2,j)−

−(ui−1/2,j+1 + ui−1/2,j)]/2△η

vn
i+1/2,j = 1

4

[
vi,j−1/2 + vi+1,j−1/2 + vi+1,j+1/2 + vi,j+1/2

]
(

∂u

∂ξ

)n

i+1/2,j

=
1

Ji+1/2,j

(
ηi+1 − ηi−1

2△η

)[
ui+1/2,j+1 − ui+1/2,j−1

2△ξ

]

(
∂u

∂η

)n

i+1/2,j

=
1

Ji+1/2,j

(
ξj+1 − ξj−1

2△ξ

)[
ui+3/2,j − ui−1/2,j

2△η

]

(
∂p

∂η

)n

i+1/2,j

=
1

Ji+1/2,j

(
ξj+1 − ξj−1

2△η

)[
pi+1,j − pij

△η

]

(
∂2u

∂ξ2

)n

i+1/2,j

=
1

Ji+1/2,j

[

(
ηi+1 − ηi

△η

△ξ

ξj+1 − ξj

)(
ui+1/2,j+1 − ui+1/2,j

)
−

−

(
ηi+1 − ηi

△η

△ξ

ξj − ξj−1

)(
ui+1/2,j − ui+1/2,j−1

)
]/(△ξ)2

(
∂2u

∂η2

)n

i+1/2,j

=
1

Ji+1/2,j

[

(
ξj+1/2 − ξj−1/2

△ξ

△η

ηi+3/2 − ηi+1/2

)(
ui+3/2,j − ui+1/2,j

)
−

−

(
ξj+1/2 − ξj−1/2

△ξ

△η

ηi+1/2 − ξi−1/2

)(
ui+1/2,j − ui−1/2,j

)
]/(△η)2

(
∂v

∂ξ

)n

i+1/2,j

=
1

Ji+1/2,j

(
ηi+1 − ηi

△η

)
[(vi+1,j+1/2 + vi,j+1/2)−

−(vi+1,j−1/2 + vi,j−1/2)]/2△ξ(
∂v

∂η

)n

i+1/2,j

=
1

Ji+1/2,j

(
ξj+1/2 − ξj−1/2

△ξ

)
[(vi+1,j+1/2 + vi+1,j−1/2)−

−(vi,j+1/2 + vi,j−1/2)]/2△η
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Since, un, vn are known in all nodes of the computational domain, including the

boundaries, the above explicit method allows to determine ũ, ṽ in all nodes of

computational domain, including the boundaries. (To approximate the derivative

near the boundary we use oneside second order finite differences on nonuniform

stencil). That is to say, in the present explicit scheme, no specific boundary

conditions are needed for the intermediate velocity field ~̃v = (ṽξ, ṽη) = (ṽ, ũ) at

each time step.

Finite difference approximation of the incompressibility condition (3.5) be-

comes, for each cells of computational domain,
(

1

hij

)2
1

Jij

{
(ηη̂)ij

[
(hvn+1)i,j+1/2 − (hvn+1)i,j−1/2

△ξ

]
+

+ (ξξ̂)ij

[
(hun+1)i+1/2,j − (hun+1)i−1/2,j

△η

]}
= 0

(3.19)

where

(ηη̂)ij =

(
∂η

∂η̂

)

ij

=
ηi+1 − ηi−1

2△η
, (ξξ̂)ij =

(
∂ξ

∂ξ̂

)

ij

=
ξj+1 − ξi−1

2△ξ

Now to obtain the finite difference equation for pressure, we take the discrete

divergence (defined as for equation (3.19)), of equation (3.15). First, inside the

domain (see Figure 3.4), we have

(vn+1)i,j+1/2 − (ṽ)i,j+1/2

△t
= −

(
1

hij

)2
(

pn+1
i,j+1 − pn+1

i,j

△ξ

)

(un+1)i+1/2,j − (ũ)i+1/2,j

△t
= −

(
1

hij

)2
(

pn+1
i+1,j − pn+1

i,j

△η

) (3.20)

Hence, using the incompressibility condition (3.19) :

1

Jij





1

(△ξ)2




(

ηη̂

ξξ̂

)

i,j+1/2

(pn+1
i,j+1 − pn+1

ij ) −

(
ηη̂

ξξ̂

)

i,j−1/2

(pn+1
i,j − pn+1

i,j−1)





+
1

(△η)2

[(
ξξ̂

ηη̂

)

i+1/2,j

(pn+1
i+1,j − pn+1

ij ) −

(
ξξ̂

ηη̂

)

i−1/2,j

(pn+1
i,j − pn+1

i−1,j)

]}

=
1

Jij

1

△t

{
(ηη̂)ij

[
(hṽ)i,j+1/2 − (hṽ)i,j−1/2

△ξ

]

+(ξξ̂)ij

[
(hũ)i+1/2,j − (hũ)i−1/2,j

△η

]}

(3.21)
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Then, near the boundary, for example when i = 2 (see Figure 3.4), equation

(3.19) becomes

(ηη̂)2j

[
(hvn+1)2,j+1/2 − (hvn+1)2,j−1/2

△ξ

]
+ (ξξ̂)ij

[
(hun+1)5/2,j − (hun+1)3/2,j

△η

]
= 0

So, when we apply this discrete divergency to equation (3.15), we find pressure

at (n + 1)△t for i = 2 and j = 2, . . . , N + 1

1

(△ξ)2



(

ηη̂

ξξ̂

)

2,j+1/2

(pn+1
2,j+1 − pn+1

2j ) −

(
ηη̂

ξξ̂

)

2,j−1/2

(pn+1
2,j − pn+1

2,j−1)




+
1

(△η)2

[(
ξξ̂

ηη̂

)

5/2,j

(pn+1
3,j − pn+1

2,j ) −

(
ξξ̂

ηη̂

)

3/2,j

(pn+1
2,j − pn+1

1,j )

]

= (ηη̂)2j

[
(hṽ)2,j+1/2 − (hṽ)2,j−1/2

△ξ

]
+ (ξξ̂)2j

[
(hũ)5/2,j − (hũ)3/2,j

△η

]

with the following definition for the pressure on the fiction mesh points

pn+1
1,j = pn+1

2,j .

The same technique is used near the boundary η = η1.

The discrete divergency is used to construct difference equation for pres-

sure near boundaries S1
ε and S2

ε . The pressure at the fictitious mesh points is

assumed to be equal p∞. As a result, owing to discrete incompressibility condi-

tion for each computational cells we have finite difference equation for pressure

with the Neuman type boundary conditions on rigid boundaries η = η1, η = η2,

periodic boundary condition on boundaries ξ = 0, ξ = 2π (p(0, η) = p(2π, η)) and

the Dirichlet type boundary condition on boundaries S1
ε and S2

ε . This system of

algebraic equations is solved by iterative method of stabilizing corrections (Ya-

nenko (1970)). Detailed description of the method of stabilizing corrections can

be found in the Appendix.
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Figure 3.4 Grid construction

Once p is known, the last step of the method is to update the velocity field

at the instant (n + 1)△t by using equation (3.15)

vn+1
i,j+1/2 = ṽi,j+1/2 −△t

(
1

hij

)2
(

pn+1
i,j+1 − pn+1

i,j

△ξ

)

un+1
i+1/2,j = ũi+1/2,j −△t

(
1

hij

)2
(

pn+1
i+1,j − pn+1

i,j

△η

)

i = 2, . . . , M + 1; j = 2, . . . , N + 1.

(3.22)

The steady state compute solution is defined by

‖θn+1 − θn‖

△t‖θn+1‖
< ε (3.23)

where θ = (vξ, vη, CD, CL); △t is the time step and θn refers to numerical approx-

imation at time n△t, ε is sufficiently small positive number (ε has been chosen

such that variation of CD and CL on the large time interval less than 0.1%).
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3.3 Force Computation

When a solid body is placed in a fluid flow the direction of the force on

the body does not coincide with the direction of the (undisturbed) flow. It is very

convenient to decompose the force into components FL and FD, perpendicular

and parallel to the flow direction, respectively. FL is the lift force. FD is the drag

force, the resistance. In self-propelled steady motion FD has to be balanced by

the thrust force generated by the engines. The lift and drag forces are usually

expressed as

FL = 0.5CLρAU2
∞,

FD = 0.5CDρAU2
∞,

where FL, FD are lift and drag force, respectively, CL and CD are called lift and

drag coefficient, ρ is fluid density, A is reference area (choice of reference area A

affects the value of CD and CL).

Let us turn back to the fluid flow past two cylinders. If Fxi
and Fyi

, i = 1, 2

are the lift and drag on the cylinders, the lift and drag coefficients are defined by

CLi
=

Fxi

ρU∞D
, CDi

=
Fyi

ρU∞D
, i = 1, 2, (3.24)

and each consists of components due to the friction forces and the pressure. Hence

CL = CLf
+ CLp

, CD = CDf
+ CDp

, (3.25)

where

CLp
= −

1

ρ U∞ D

∫

Σ

p~n ·~ix dS,

CLf
= −

1

ρ U∞ D

∫

Σ

µ(~n × ~ω) ·~ix dS,

CDp
= −

1

ρ U∞ D

∫

Σ

p~n ·~iy dS,

CDf
= −

1

ρ U∞ D

∫

Σ

µ(~n × ~ω) ·~iy dS,

Here ~ix, ~iy are unit vectors in x and y axes directions.
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This non-dimensional coefficients CL and CD are evaluated by an integra-

tion around cylinders walls. The formulas for coefficients in cylindrical bipolar

coordinates are the following

CLp
= −

∫ 2π

0

hp

[(
−

h

a
sinh η sin ξ

)
nξ +

(
−

h

a
(cosh η cos ξ − 1)

)
nη

]
dξ

CLf
= −

∫ 2π

0

hµω

[(
−

h

a
sinh η sin ξ

)
nη +

(
−

h

a
(cosh η cos ξ − 1)

)
nξ

]
dξ

CDp
= −

∫ 2π

0

hp

[(
h

a
(cosh η cos ξ − 1)

)
nξ +

(
−

h

a
sinh η sin ξ

)
nη

]
dξ

CDf
= −

∫ 2π

0

hµω

[(
h

a
(cosh η cos ξ − 1)

)
nη +

(
−

h

a
sinh η sin ξ

)
nξ

]
dξ

(3.26)

where nξ and nη are component of outward unit normal vector in ξ and η direction,

respectively and ω is component of vorticity in direction z

ω = −
1

h

[
∂vξ

∂η
−

∂vη

∂ξ
−

h

a
(sinh η vξ − sin ξ vη)

]

To evaluate integrals in equation (3.26), we used trapezoidal rule.



CHAPTER IV

VALIDATION OF NUMERICAL

ALGORITHM

It is well known that for large gap spacing between the two surfaces of

the cylinders the mutual influence between cylinders disappear, leading to sep-

arate flow over single cylinders. To validate the present numerical algorithm,

the uniform flow past fixed and rotating circular cylinders with 0 ≤ Re ≤ 40,

0 ≤ α1(= α2) ≤ 2.5 and with a large gap between cylinder surfaces, g = 14, have

been calculated and the results are compared with experimental and simulation

data for flow past a single cylinder. All the simulations have been performed in a

large domain so as to reduce the influence of the outer boundary. A sequence of

uniform grids is used. Because the cylinder wake is stable to perturbations in the

flow regime below Re ≤ 46 ± 1 the flow will reach a steady state for Re ≤ 40.

4.1 Flow Past Two Nonrotating Circular Cylinders (Large

Gap Spacing)

We begin code validation with flow that tests the spatial fidelity of algo-

rithm without the complication associated with nontrivial boundary condition on

cylinders surface. In this paragraph, we consider the two-dimensional flow over

two identical circular cylinders in a side by side arrangement at the low Reynolds

numbers (5 ≤ Re ≤ 40) and large gap spacing between cylinder centers, g = 14.

Figure 4.1 shows variations of the drag and lift coefficients (CD and CL) with
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the gap spacing at fixed Reynolds number Re = 20. Obviously the quantities

depend on gap spacing and for large gap spacing approach the value of drag

coefficient of single-cylinder. It is shown that the drag coefficient stay nearly

constant, with values slightly larger than the single-cylinder one, in the range of

g ≥ 8÷9D. In the same range of g the lift coefficient almost zero. In the range of

4÷5D ≤ g ≤ 8÷9D, CD is up to 10% larger than the CD of the single-cylinder.

Drag coefficient steeply increases with decreasing g in the range g ≤ 4÷ 5D. The

lift coefficient steeply increases with decreasing g in the range g ≤ 3D.
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Figure 4.1 Variations of the drag and lift coefficients with g at Re = 20

Figure 4.2 shows comparison of pressure distribution around the cylin-

der surface for the Reynolds number Re = 40 with experimental results from

Thom for Re = 36, 45 and numerical results from Apelt and Kawaguti for

Re = 40 (see in Batchelor (2000)). Our results are shown by solid line. The

wake of an isolated cylinder consist of a recirculation zone with steady closed

streamline for Reynolds number above Re ≈ 1 but less than Re ≈ 40. The length

of the region of closed streamlines behind circular cylinders are shown in Figure

4.3 which our results are shown by solid square sign and circle sign represent

length which are measured by Taneda (1956). The calculated nondimensional

steady-state wake length Lw (the distance from the cylinder trailing edge to the

reattachment point) and the drag coefficient CD = CDp
+ CDf

are compared with
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previously established results. The current results of wake length and drag coeffi-

cient are compared to the numerical simulations and experimental data in Tables

4.1 and 4.2. In Table 4.2, CDp
and CDf

denote the pressure and friction drag

coefficients, respectively. The spatial resolution of the mesh is shown in brackets
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Figure 4.2 Pressure distribution at the surface of a circular cylinder (right),

Re = 40, g = 14
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Figure 4.3 Observed lengths of the region of close streamlines behind a circular

cylinder

Figures 4.4, 4.5 and 4.6 show the steady-state streamlines, pressure and
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Figure 4.4 Streamline patterns of flow over two circular cylinders (near left

cylinder) at Re = 5, 10, 20 and 40 with g = 14D
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Figure 4.5 Pressure patterns of flow over two circular cylinders (near left cylin-

der) at Re = 5, 10, 20 and 40 with g = 14D
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Figure 4.6 Vorticity patterns of flow over two circular cylinders (near left cylin-

der) at Re = 5, 10, 20 and 40 with g = 14D
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Renolds number 10 20 30 40

Takanmi & Keller (1969) — 1.870 3.223 4.650

Dennis & Chang (1970) — 1.880 — 4.690

Nieuwstadt & Kalln (1973) — 1.786 3.086 4.357

Ta (1975) — 1.870 — 4.270

Present(80 × 80) 0.525 1.868 3.070 4.408

Table 4.1 Length of wake bubble

vorticity patterns corresponding to the case Re = 5; 10; 20 and 40, g = 14, re-

spectively. Due to the symmetry about y-axis we represent the all patterns only

around left cylinder. The present all patterns near left cylinder are very simi-

lar to those in case of flow past single cylinder at the same Reynolds number.

The accuracy of the numerical results is checked by computations on various

grids. We performed calculations on sequences of grids with number of nodes

40 × 40(△ξ = 0.16535,△η = 0.17436), 80 × 80(△ξ = 0.080554,△η = 0.086078)

and 160 × 160(△ξ = 0.039767,△η = 0.042759). Some data on comparison of the

calculation results are represented in Tables 4.2 and 4.3. The comparisons made

above show that the present results are in a good agreement with previous results.

4.2 Flow Past Two Rotating Circular Cylinders (Large

Gap Spacing)

In this paragraph we study the two-dimensional flow past two rotating cir-

cular cylinders of equal radii in side-by-side arrangement at low Reynolds number,

Re ≤ 40, large gap spacing, g = 14, and variable rate of rotation (0.1 ≤ α ≤ 2).

Both cylinders are placed in a stream (from down to up-positive direction at

y-axis) of uniform speed U∞ at infinite. Left cylinder rotating with constant
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Re Contribution CD CDp
CDf

LW /D

Present (20 × 20) 3.748 1.883 1.865 —

Present (40 × 40) 4.050 2.099 1.960 —

5 Ingham et al. (1990)(one cylinder) 3.997 2.104 1.843 —

Batchelor (2000)(one cylinder) 3.995 — — —

Present (20 × 20) 2.022 1.193 0.829 0.720

Present (40 × 40) 2.069 1.229 0.840 0.840

Present (80 × 80) 2.120 1.270 0.850 0.934

Relf (1913) (one cylinder) 2.160 — — —

20 Tritton (1959) (one cylinder) 2.080 — — —

Chung (2006) (one cylinder) 2.050 — — 0.960

Ingham et al. (1990) (one cylinder) 1.995 1.201 0.794 —

Batchelor (2000) (one cylinder) 2.001 — — 0.900

Present (40 × 40) 1.539 1.002 0.537 2.160

Relf (1913) (one cylinder) 1.620 — — —

40 Tritton (1959) (one cylinder) 1.590 — — —

Chung (2006) (one cylinder) 1.540 — — 2.300

Batchelor (2000) (one cylinder) 1.538 — — 2.150

Table 4.2 Validation of the numerical algorithm; comparison study for flow over

two side-by-side circular cylinders at g = 14 with flow over a single cylinder

grid CD CDp
CDf

CL CLp
CLf

40 × 40 2.069 1.229 0.840 0.020 0.010 0.010

80 × 80 2.120 1.270 0.850 0.019 0.010 0.009

160 × 160 2.124 1.274 0.850 0.019 0.010 0.009

Table 4.3 Sequence of grid; Drag and lift coefficient at Re = 20 and g = 14
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Figure 4.7 Variations of the drag and lift coefficients with g at Re = 20 and

α = 1.0

clockwise angular velocity. Right cylinder rotating with the same constant anti-

clockwise angular velocity.

To the author’s knowledge, there are very few published data of drag and

lift coefficients at Re ≤ 40 and angular speed even for flow past single cylinders.

Figure 4.7 shows variations of the drag and lift coefficient (CD and CL) with

the gap spacing at fixed Reynolds number Re = 20 and fixed angular velocity

ω = |ω1| = |ω2| = 1. For large gap spacing the values of drag coefficients approach

the values of drag and lift coefficients of single cylinder rotating in uniform stream.

Table 4.4 lists lift and drag coefficients from our calculation and makes a

comparison with Ingham et al. (1990), Badr et al. (1989) and Chung (2006).

It can be seen that the differences are acceptable for CD and CL. For Re =

20, the flow induced by several angular speeds in interval 0 ≤ αi ≤ 2.5 have

been computed. To check accuracy of our algorithm in case of rotation cylinder.

We make computation on sequence of grid. Table 4.5 shows the result of our

simulation on sequence of grid in case Re = 20 with g = 14 and α = 1.0. Figure

4.8 shows the predicted steady-state streamline patterns for α = 0.1; 0.5; 1.0; 2.0,

respectively. Due to symmetry we only present the streamline patterns around

the left cylinder in Figures 4.8−4.9. For the case of a large gap between cylinders
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Re Contribution CD CL

α = 0.1 α = 1.0 α = 2.0 α = 0.1 α = 1.0 α = 2.0

Present (80 × 80) 2.119 1.887 1.363 0.291 2.797 5.866

20 Badr et al. (1989) 1.990 2.000 — 0.276 2.740 —

Ingham et al. (1990) 1.995 1.925 1.627 0.254 2.617 5.719

Chung (2006) 2.043 1.888 1.361 0.258 2.629 5.507

Table 4.4 Hydrodynamic parameters of flow over a rotating circular cylinder at

Re = 20 with g = 14

grid CD CDp
CDf

CL CLp
CLf

40 × 40 1.858 1.033 0.825 2.740 2.393 0.347

80 × 80 1.887 1.061 0.826 2.797 2.437 0.360

160 × 160 1.901 1.074 0.827 2.802 2.440 0.362

Table 4.5 Sequence of grid; Drag and lift coefficient at Re = 20 and g = 14,

α = 1.0

the streamline patterns are similar to those in the flow behind a single cylinder,

M.H.Chung (2006) and Batchelor (2000).

4.3 Flow Past Two Nonrotating Circular Cylinders (Small

Gap Spacing, g = 1)

For the case of small gap between fixed cylinder there is a very few data.

In the case of Re = 40 and g = 1 wake streamline patterns are similar to those

in Kang (2003). The computed drag coefficients for both cylinders are nearly the

same. The lift coefficients are in the opposite directions. The lift force try to

move out cylinders from each other along y-axis. There is about 10% difference
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Figure 4.8 Streamline patterns of flow over two rotating circular cylinders at

Re = 20, g = 14, and α = 0.1, 0.5, 1.0, 2.0.
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Figure 4.9 Pressure patterns of flow over two rotating circular cylinders at Re =

20, g = 14, and α = 0.1, 0.5, 1.0, 2.0.
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in CD between the present calculation (CD = 1.514) and CD reported by Kang

(CDKang
= 1.70). The same difference is occurred for lift coefficient CLpresent

=

0.358 and CLKang
= 0.4, Relative difference is 10%.

4.4 Results of Validation

The comparison of the data between our computational results and the

experimental and numerical data available in the literature shown in Figures 4.1−

4.9 and Tables 4.1 − 4.4 indicates a satisfactory level of agreement within 10%.



CHAPTER V

SIMULATION RESULTS

After verifying the numerical method, we have conducted numerical sim-

ulations of flow past constantly rotating circular cylinders of equal radii in a

side-by-side arrangement at Reynolds number Re = 10, 20 and 40, rate of rota-

tion 0.5 ≤ α ≤ 2.5 and nondimensional gap spacing 0.5 ≤ g ≤ 1.5. Both cylinders

are placed in a stream (from down to up) of uniform speed U∞ at infinity. The left

cylinder is rotating with constant clockwise angular velocity. The right cylinder

is rotating with the same constant anti-clockwise angular velocity. The sketch of

the present problem is shown in Figure 2.1. One of the target of present research

is to find self-propelled regime of motion. In the case of two rotating cylinders,

drag and lift forces depend on Reynolds number, gap spacing and rate of rotation

are defined as follows:

CD = CD(Re, g, α), CL = CL(Re, g, α).

Self-propelled motion corresponds to CD = CD(Re, g, α) = 0, and CL =

CL(Re, g, α) = 0. Let us define αcrit as that produces zero drag on a combined

body, i.e. at α = αcrit, CD(Re, g, αcrit) = 0, and CL = CL(Re, g, αcrit) = 0. It is

clear that αcrit depends on Re and g, i.e. αcrit = αcrit(Re, g).

5.1 Wake Patterns Depending on the Reynolds Number

and Rate of Rotation

The influence of the rotation rate α = α1 = α2 = |ωi|D/2U∞ is demon-

strated in Table 5.1 and Figure 5.1. Table 5.1 and Figure 5.1 give the values of
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drag and lift coefficients in case Re = 10, 20, 40 and g = 1 for 0.5 ≤ α ≤ 2.5.

Indexes 1 and 2 correspond to the right and left cylinder, respectively. The fluid

forces are distributed over the two cylinders such that lift forces in x−direction

on the combined system are in equilibrium, CL1
+ CL2

≡ 0. However, the fluid

forces acting upon an individual cylinder demand that some additional external

forces are applied to it in order for its position to remain fixed. There is a repul-

sive force acting on the cylinders, CL1
> 0, CL2

< 0. The absolute values of lift

coefficients increase with increasing α, as shown in the sixth column of Table 5.1.

The lift forces acting on cylinders are mostly resulted from the pressure force,

as can be seen in two last columns of Table 5.1. The pressure contribution in

CL increases with increasing Re, which is the same behavior as observed in the

study of Stojkovic et al. (2002) for the case of a single rotating cylinder. The

drag coefficients decrease with increasing α, see third column of Table 5.1. For

αcrit ≈ 1.65 (Re = 10), αcrit ≈ 1.74 (Re = 20) and αcrit ≈ 1.755 (Re = 40) the

drag force becomes zero. This case corresponds to the self-propelled motion of

cylinders as a coupled body. It is interesting that both CDp
and CDf

decrease

with increasing α, see columns 4 and 5 in Table 5.1, resulting in negative values

of CDp
and CDf

for higher rotational velocities. This is opposite to the case of

flow past single rotating cylinder, where CDf
increases and CDp

decreases with in-

creasing α (Stojkovic et al. (2002)). Additionally, for α ≥ 2.0 the total drag force

is negative. In the case of flow around a single rotating cylinder the effect is quite

different. It has to be pointed out that the self-propelled regime happened due to

different reasons at Re = 10, at Re = 20 and at Re = 40. In case of Re = 10 the

drag CD ≃ 0 due to CDp
≈ −CDf

≈ 0.33. In the case of Re = 20 self-propelled

regime corresponds to CD ≃ 0 due to CDp
≈ −CDf

≈ 0. In case of Re = 40

self-propelled regime corresponds to CD ≃ 0 due to CDp
≈ −CDf

≈ −0.141. In
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α Re CD CDp
CDf

CL1,2
CLp1,2

CLf1,2

10 1.942 1.219 0.723 ±2.181 ±1.623 ±0.558

0.5 20 1.485 0.919 0.566 ±1.721 ±1.382 ±0.339

40 1.129 0.727 0.402 ±1.457 ±1.245 ±0.212

10 1.094 0.824 0.270 ±3.028 ±2.355 ±0.673

1.0 20 0.862 0.530 0.332 ±2.774 ±2.300 ±0.474

40 0.680 0.389 0.291 ±2.511 ±2.198 ±0.313

10 0.247 0.440 -0.193 ±3.544 ±2.811 ±0.733

1.5 20 0.260 0.151 0.109 ±3.645 ±3.065 ±0.580

40 0.222 0.035 0.187 ±3.482 ±3.078 ±0.404

1.65 10 0.004 0.335 -0.331 ±3.633 ±2.894 ±0.739

1.74 20 -0.001 -0.004 0.003 ±3.958 ±3.345 ±0.613

1.755 40 0.000 -0.141 0.141 ±3.971 ±3.520 ±0.451

10 -0.516 0.134 -0.650 ±3.713 ±2.983 ±0.730

2.0 20 -0.265 -0.152 -0.113 ±4.196 ±3.563 ±0.633

40 -0.205 -0.305 0.100 ±4.437 ±3.944 ±0.493

10 -1.199 -0.076 -1.123 ±3.415 ±2.767 ±0.648

2.5 20 -0.685 -0.330 -0.355 ±4.214 ±3.608 ±0.606

40 -0.502 -0.504 0.002 ±4.988 ±4.461 ±0.527

Table 5.1 Drag and lift coefficient of flow over two rotating circular cylinders at

Re = 10, 20 and 40 with g = 1



49

0.5 1 1.5 2 2.5
−1.5

−1

−0.5

0

0.5

1

1.5

2
(a) 

CD 

CDp 

CDf 

D
ra

g 
co

ef
fic

ie
nt

 

Rate of rotation 

1.65 0.5 1 1.5 2 2.5
−5

−4

−3

−2

−1

0

1

2

3

4

5

CL1 

CL2 

CLp1 

CLp2 

CLf1 

CLf2 

(b) 

Li
ft 

co
ef

fic
ie

nt
 

Rate of rotation 

1.65 

0.5 1 1.5 2 2.5
−1.5

−1

−0.5

0

0.5

1

1.5

2

Rate of rotation 

D
ra

g 
co

ef
fic

ie
nt

 

CD 

CDp 

CDf 

(c) 

1.74 0.5 1 1.5 2 2.5
−5

−4

−3

−2

−1

0

1

2

3

4

5

1.74 

Li
ft 

C
oe

ffi
ci

en
t 

Rate of rotation 

(d) 

CL1 

CL2 

CLp1 

CLp2 

CLf1 

CLf2 

0.5 1 1.5 2 2.5
−1.5

−1

−0.5

0

0.5

1

1.5

2

1.755 
Rate of rotation 

D
ra

g 
co

ef
fic

ie
nt

 

(e) 

CD 

CDp 

CDf 

0.5 1 1.5 2 2.5
−5

−4

−3

−2

−1

0

1

2

3

4

5

1.755 

Li
ft 

co
ef

fic
ie

nt
 

Rate of rotation 

(f) 

CL1 

CLp1 

CLf1 

CLf2 

CLp2 

CL2 

Figure 5.1 Drag and lift coefficients at Re = 10(a)− (b), 20(c)− (d), 40(e)− (f)

and g = 1, α ∈ [0.5, 2.5]
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Figures 5.2− 5.4 streamlines patterns are displayed for Re = 10, 20 and 40, g = 1

and different rate of rotation 0.5 ≤ α ≤ 2.5. All streamline patterns are symmet-

rical about the y−axis. There are regions of closed streamlines near cylinders for

all values of α. These streamlines only exist very close to the cylinders for small

values of α. However, as α increases they exist in larger and larger regions as

illustrated in Figures 5.2 − 5.4. For small α the space between regions of closed

streamlines is sufficiently large that fluid can go through gap between cylinders,

see Figures 5.2(a), 5.3(a) and 5.4(a)-(b). As α increases the stagnation points ro-

tate in the direction opposite to the direction of the cylinders rotation and depart

from the surfaces of the cylinders and approach the y−axis at the smallest spacing

between cylinders. Finally, the space between cylinders surfaces becomes narrow

for further increasing of the closed streamlines regions. At α between ∼ 1.0 and

∼ 1.5 these regions touch each other along y−axis. The stagnation points are now

located on the y−axis, both upstream and downstream, as illustrated in Figures

5.2(b)-(d) and 5.3(b)-(d). Further increases in angular velocity of cylinders is a

reason of increasing of closed contour regions around the cylinders, see Figures

5.2(c)-(d) and 5.3(c)-(d). The stagnation points on y−axis move upstream and

downstream of the cylinders. The stagnation point moves far away from the line

between the center of the cylinders. The streamline patterns of the self-propelled

regime are represented by Figures 5.2(c) and 5.3(c) for Re = 10 and Re = 20,

respectively. For Re = 40, the self-propelled regime CD ≃ 0 occurred before the

stagnation point located on y−axis, small amount of fluid can go through gap

between cylinders, at α = 1.755 (see Figure 5.4(c)).



51

−5 −4 −3 −2 −1 0 1 2 3 4 5
−3

−2

−1

0

1

2

3

4

5

0.417
0.22

0.122

0.0232

−0.0751

−0.272

−0.37

−0.567

−0.272

−0.34

−0.318

0.055

0.09

0.065

−0.3

α=0.5 α=0.5

(a) 

−5 −4 −3 −2 −1 0 1 2 3 4 5
−3

−2

−1

0

1

2

3

4

5

0.584

0.487

0.39 0.293

0.196

0.0995

0.39

0.584
0.0995

0.293
0.342

0.342

0.34

 α=1.0  α=1.0 

(b) 

−5 −4 −3 −2 −1 0 1 2 3 4 5
−3

−2

−1

0

1

2

3

4

5

1.03 0.919

0.6941.26

1.03

1.37

1.82
0.133

0.47
0.807

0.98

0.965
0.974

0.965

0.98

0.98

α=1.65 α=1.65

(c) 

−5 −4 −3 −2 −1 0 1 2 3 4 5
−3

−2

−1

0

1

2

3

4

5

1.82
1.53

1.39
1.25

1.11

0.821

1.39

1.82

2.39

0.392

0.678
1.25

1.3201

1.3201
1.32

1.32

α=2.0 α=2.0 

(d) 

Figure 5.2 Streamline patterns of flow over two circular cylinders at Re = 10,

g = 1, and α = 0.5, 1.0, 1.65, 2.0.
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Figure 5.3 Streamline patterns of flow over two circular cylinders at Re = 20,

g = 1, and α = 0.5, 1.5, 1.74, 2.0.
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Figure 5.4 Streamline patterns of flow over two circular cylinders at Re = 40,

g = 1, and α = 1.0, 1.5, 1.755, 2.0.
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5.2 Wake Pattern Depending on Gap Spacing and Rate

of Rotation

In this section, we show the results of our numerical simulations in case

of fixed Reynolds number, Re = 20, and gap spacing g = 0.5, 1.0, 1.5 for rate of

rotation 0.5 ≤ α ≤ 2.5. Table 5.2 gives the values of drag and lift coefficient in

case Re = 20, g = 0.5, 1.0, 1.5 for 0.5 ≤ α ≤ 2.5. We used the same notations as

in Table 5.2. The absolute values of lift coefficients increase with increasing g at

fixed α, as shown at the six column of Table 5.2. The lift force acting on cylinders

mostly result from the pressure force, as can be seen in two last column of Table

5.2. The pressure contribution in CL increases with increasing gap spacing, g, at

fixed rotation rate in case 1.0 ≤ α ≤ 2.5. In case α = 0.5, small rotation rate,

behavior of CL and CLp
is different. Lift force decreases with increasing g, at

the same time CLp
first decreases in case g increases from 0.5 to 1.0 and when g

increases from 1.0 to 1.5, CLp
increases slightly. This behavior has to be analyze

more carefully and it is a aim of future work.

The drag coefficient increases with increasing, g, at fixed α, see the third

column of Table 5.2. Both CDp
and CDf

increase with increasing gap spacing

at fixed rate of rotation. The self-propelled regime happen at different rate of

rotation when g increase. Rate of rotation corresponding to zero drag force in-

creases with g increase. In the last three rows of Table 5.2 the parameters of self-

propelled cylinders are demonstrated. It is interesting that, If g = 0.5, CD ≈ 0

due to −CDf
≈ CDp

= 0.146, if g = 1.0, CD ≈ 0 due to −CDf
≈ CDp

= 0,

if g = 1.5, CD ≈ 0 due to −CDf
≈ CDp

= −0.196. For all calculation with

Re = 20, (represented in Table 5.2) the results for corresponding drag and lift

coefficient are shown in Figure 5.5. In Figures 5.6 − 5.9 streamlines for three

different gap spacing g = 0.5, 1.0, 1.5 at Re = 20 and α = 0.5, 1.5, 2.0, 2.5 are
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α g CD CDp
CDf

CL1,2
CLp1,2

CLf1,2

0.5 1.039 0.707 0.332 ±1.984 ±1.541 ±0.443

0.5 1.0 1.485 0.919 0.566 ±1.721 ±1.382 ±0.339

1.5 1.909 1.176 0.733 ±1.684 ±1.392 ±0.292

0.5 0.311 0.305 0.006 ±2.511 ±2.030 ±0.481

1.0 1.0 0.862 0.530 0.332 ±2.774 ±2.300 ±0.474

1.5 1.427 0.859 0.568 ±2.954 ±2.506 ±0.448

0.5 -0.413 -0.053 -0.360 ±2.456 ±2.021 ±0.435

1.5 1.0 0.260 0.151 0.109 ±3.645 ±3.065 ±0.580

1.5 0.897 0.485 0.412 ±4.169 ±3.571 ±0.598

0.5 -0.974 -0.268 -0.706 ±2.056 ±1.706 ±0.350

2.0 1.0 -0.265 -0.152 -0.113 ±4.196 ±3.563 ±0.633

1.5 0.338 0.068 0.270 ±5.378 ±4.630 ±0.748

0.5 -1.424 -0.343 -1.081 ±0.971 ±0.792 ±0.179

2.5 1.0 -0.685 -0.330 -0.355 ±4.214 ±3.608 ±0.606

1.5 -0.190 -0.339 0.149 ±6.606 ±5.714 ±0.892

1.245 0.5 -0.002 0.146 -0.148 ±2.664 ±2.180 ±0.484

1.74 1.0 -0.001 -0.004 0.003 ±3.958 ±3.345 ±0.613

2.32 1.5 -0.005 -0.196 0.191 ±6.171 ±5.329 ±0.842

Table 5.2 Drag and lift coefficient of flow over two rotating circular cylinder at

Re = 20 with g = 0.5, 1, 1.5
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Figure 5.5 Comparison of drag and lift coefficients for different gap spacing

g = 0.5(a) − (b), 1.0(c) − (d), 1.5(e) − (f) and α ∈ [0.5, 2.5] at Re = 20
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Figure 5.6 Streamline patterns of flow over two circular cylinders at Re = 20,

α = 0.5 and g = 0.5; 1.0; 1.5
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Figure 5.7 Streamline patterns of flow over two circular cylinders at Re = 20,

α = 1.0 and g = 0.5; 1.0; 1.5
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Figure 5.8 Streamline patterns of flow over two circular cylinders at Re = 20,

α = 1.5 and g = 0.5; 1.0; 1.5
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Figure 5.9 Streamline patterns of flow over two circular cylinders at Re = 20,

α = 2.0 and g = 0.5; 1.0; 1.5



61

displayed. Figures 5.10 − 5.13 depicts the pressure distribution around cylinders

for the same cases. Figures 5.14 and 5.15 show the streamline patterns and

pressure field for Re = 20, α = αcrit(self-propelled regime) and g = 0.5, 1.0 and

1.5.
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Figure 5.10 Pressure patterns of flow over two circular cylinders at Re = 20,

α = 0.5 and g = 0.5; 1.0; 1.5



63

−5 −4 −3 −2 −1 0 1 2 3 4 5
−3

−2

−1

0

1

2

3

0.744
0.58

0.416

0.252

0.0883

0.744

0.58

0.416

0.252
−0.0757

−0.24

0.908

1.071.24

0.908

1.07

1.07

0.908

1.34

g=0.5 g=0.5

(a) 

−5 −4 −3 −2 −1 0 1 2 3 4 5
−3

−2

−1

0

1

2

3

1.06

0.724

0.893

1.06

0.556

0.387
0.218

0.0497

−0.119
−0.456

0.724

0.893

0.556
0.387

0.218

0.0497

−0.119

0.724

0.893

1.06

1.13

1.13

g=1.0g=1.0

(b) 

−5 −4 −3 −2 −1 0 1 2 3 4 5
−3

−2

−1

0

1

2

3

0.129

−0.0667

−0.262

−0.458

0.324

0.52
0.715

0.715

0.52

0.324

0.129 −0.0667

−0.262

−0.458

−0.653

−1.04

0.324

0.52

0.715

g=1.5g=1.5

(c) 

Figure 5.11 Pressure patterns of flow over two circular cylinders at Re = 20,

α = 1.0 and g = 0.5; 1.0; 1.5
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Figure 5.12 Pressure patterns of flow over two circular cylinders at Re = 20,

α = 1.5 and g = 0.5; 1.0; 1.5
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Figure 5.13 Pressure patterns of flow over two circular cylinders at Re = 20,

α = 2.0 and g = 0.5; 1.0; 1.5
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Figure 5.14 Streamline patterns of self-motion at Re = 20, α = αcrit and g =

0.5; 1.0; 1.5
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Figure 5.15 Pressure patterns of self-motion at Re = 20, α = αcrit and g =

0.5; 1.0; 1.5



CHAPTER VI

CONCLUSIONS

In the present study, we have numerically investigated steady viscous

incompressible fluid flow over two rotating circular cylinders in a side-by-side

arrangement at moderate Reynolds numbers, 5 ≤ Re ≤ 40, with gap spacing

and the rate of rotation in the range of 0.5 ≤ g ≤ 14 and 0 ≤ α ≤ 2.5, re-

spectively. Special emphasis was put on rotation rates for which the two rotating

cylinders perform self-propelled motion as a coupled body.

The following conclusions can be drawn:

1. Numerical algorithms and computer codes have been developed and vali-

dated.

2. For moderate values of Re in the steady flow regime (e.g., 5 ≤ Re ≤ 40)),

and for a gap spacing, g = 1, the flow around the two cylinders shows similar

behavior to the flow around a single rotating cylinder: CL increases with

increasing α. The lift forces acting on the cylinders mostly result from the

pressure force. As α increases, both the pressure drag and friction drag

coefficients decrease, resulting in a net decrease of the total drag force. For

α > αcrit, CD becomes negative. (In the case of a single cylinder, as α

increases, the pressure drag decreases, with increasing friction drag).

3. In the case α = αcrit the self-propelled motion of two cylinders as a coupled

body occurs. In the self-propelled regime (Re = 10, 20) there is a region

which encloses both cylinders and which consists of two subregions of closed
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streamlines. These subregions are connected along the axis of symmetry.

4. The critical rotation speed αcrit depends on the Reynolds number and gap

spacing, for example, for gap spacing g = 1, αcrit ≃ 1.65, 1.74 and 1.755

for Re = 10, 20 and 40, respectively. For a fixed Reynolds number, the

value of αcrit depends on the gap spacing, for example, if Re = 20 αcrit =

1.245, 1.74 and 2.32 for g = 0.5, 1.0 and 1.5 respectively.

5. For Re = 10, g = 1 the self-propelled regime occurs for the drag coefficient

CD = 0 because CDp
= −CDf

≈ 0.33. For Re = 20, g = 1 the self-propelled

regime corresponds to CD = 0 due to CDp
≈ CDf

≈ 0. In the case of Re =

40, g = 1 the self-propelled regime corresponds to CDp
≈ −CDf

= 0.141.

The numerical investigations presented in this thesis suggest that it is possible

to study flow past two cylinders of different radii which rotate with different

angular velocities and to also study the case in which cylinders are in a tandem

arrangement. Future work should include simulations for the cases of higher

Reynolds number, Re > 45.



REFERENCES



REFERENCES

Badr, T., Dennis, S.C.R., Young, P.J.S., (1989). Steady and unsteady flow past

a rotating circular cylinder at low Reynolds numbers, Computers &

Fluids, 17(4):579-609.

Batchelor, G.K., (2000). Introduction to Fluid Dynamics, Cambridge Uni-

versity Press, Cambridge, UK, 615.

Chorin, A.J., (1968). Numerical solution of the Navier-Stokes equations, Math-

ematics of Computation, 22(104):745-762.

Chung, M-H., (2006). Cartesian cut cell approach for simulating incompress-

ible flows with rigid bodies of arbitrary shape, Computers & Fluids,

35(6):607-623.

Danielson, D.A, (1997). Vectors and Tensors in Engineering and Physics,

2nd ed. Perseus Books, Cambridge, MA, USA, 282

Douglas, J., Rachford, H.H., (1956). On the numerical solution of heat conduc-

tion problem in two and three space variables, Transactions of the

American Mathematical Society, 82(2):421-439.

Douglas, J., Gunn, J.E., (1964). A general formulation of alternating direc-

tion methods, Part I. Parabolic and hyperbolic problems. Numerische

Mathematik, 6:428-453.

Elliot, L., Ingham, D.B. and Bashir,T.B.A.El, (1995). Stokes flow past two circular

cylinders using a boundary element method, Computers & Fluids,

24(7):787-798.



72

Finn, R., (1965). On the exterior stationary problem for the Navier-Stokes equa-

tions and associated perturbation problems, Archive for Rational

Mechanics and Analysis, 19:363-406.

Galdi, G.P., (1997). On the steady, translational self-propelled motion of a sym-

metric body in a Navier- Stokes fluid, Quaderni di Matematica della

II Universita di Napoli, 1:97-169.

Galdi, G.P., (1999). On the steady self-propelled motion of a body in a viscous in-

compressible fluid, Archive for Rational Mechanics and Analysis,

148:53-88.

Ingham, D.B., (1983). Steady flow past a rotating cylinder, Computer and

Fluids, 11(4):351-366.

Ingham, D.B. and Tang, T., (1990). A numerical investigation into the steady

flow past a rotating circular cylinder at low and intermediate Reynolds

numbers, Journal of Computational Physics, 87:91-107.

Izteleulov, M.I., (1985). Calculation of Momentumless Flow Past an Ellipsoid,

Problemy Dinamiki Vyazkoi Zidkosti, Novosibirsk, Russian, 21-

32.

Jeffery, G.B., (1922). The Rotation of Two Circular Cylinders in a Viscous Fluid,

Proceedings of the Royal Society of London, Series A; May 1,

1922; London, UK, Containing Papers of a Mathematical and Physical

Character,101(709):169-174.

Kang, S., (2003). Characteristics of flow over two circular cylinders in a side-

by- side arrangement at low Reynolds numbers, Physics of Fluids,

15(9):2486-2498.



73

Khonichev, V.I. and Yakovlev, V.I., (1985). Ball moving into unbounded con-

ducting liquid, caused by alternating magnetic dipole lying into the ball,

Zurnal Pricladnoi Mexaniki Technicheskoi Physiki,1:22-28.

Lugovtsov, A.A. and Lugovtsov, B.A., (1971). The example of viscous incompress-

ible flow past a body with a moving boundary, Dinamika Sploshnoi

Sredy, Novosibirsk, Russia, 8.

Milne-Thomson, L.M., (1952). Theoretical Aerodynamics, Van Nostrandt Co.,

NY, USA.

Moshkin, N.P., (1991). On certain example of numerical modeling of a steady

flow past a self-propelled sphere, Russian Journal of Theoretical

and Applied Mechanics, 1(2):111-125.

Moshkin, N.P., Pukhnachov, V.V., Sennitskii, V.L., (1989). Numerical and analyt-

ical investigations of a stationary flow past a self-propelled body, Fifth

International Conference on Numerical Ship Hydrodynamics,

Part 1; 25-28 September 1989; Hiroshima, Japan, p.238-248.

Nakanishi, M. and Kida, K., (1999). Unsteady low Reynolds number flow past two

rotating circular cylinders by a vortex method, Proceeding of the 3rd

ASME/JSME Joint Fluid Engineering Conference; July 18-23,

1999; San Frantsisco, California, USA.

Pukhnacev, V.V., (1989). Asymptotics of a velocity field at considerable dis-

tances from a self-propelled body, Journal of Applied Mechanics

and Technical Physics, 30:52-60.

Pukhnacev, V.V., (1990). The Problem of Momentumless Flow for the



74

Navier-Stokes Equations, In: Lecture Notes in Mathematics, 1431,

Springer-Verlag, New York, p. 87-94.

Relf, E.F., (1913). Reports and Memoranda, Adv. Comm. for Aeronautics,

(ACA), London, UK, 102.

Samarskij and Aleksandr A., (1989). Numerical Methods for Grid Equa-

tions, Birkhauser Verlag Basel, 101.

Sennitskii, V.L., (1973). Viscous incompressible fluid flow past rotating cylinders,

Dinamika Sploshnoi Sredy, Novosibirsk, Russia, 14:71-88.

Sennitskii, V.L., (1975a). Rotating cylinders in a viscous liquid, Part 1., Di-

namika Sploshnoi Sredy, Novosibirsk, Russia, 21:70-83.

Sennitskii, V.L., (1975b). Rotating cylinders in a viscous liquid, Part 2., Di-

namika Sploshnoi sredy, Novosibirsk, Russia, 23: 169-181.

Sennitskii, V.L., (1978). Liquid flow around a self-propelled body, Journal of

Applied Mechanics and Technical Physics, 3:15-27.

Sennitskii, V.L., (1980). On the propelling of a pair of rotating circular cylinders in

a liquid, Dinamika Sploshnoi Sredy, Novosibirsk, Russia, 47:145-153.

Sennitskii, V.L., (1981). On the drag force acting on a pair of circular cylinders

streamed by water, Dinamika Sploshnoi Sredy, Novosibirsk, Russia,

52:178-182.

Sennitskii, V.L., (1984). An example of axisymmetric fluid flow around a self-

propelled body, Journal of Applied Mechanics and Technical

Physics, 4:31-36.



75

Sennitskii, V.L., (1990). Self-propulsion of a body in a fluid, Journal of Applied

Mechanics and Technical Physics, 31:266- 272.

Shatrov, V.I and Yakovlev V.I., (1985). Hydrodynamic drag of a ball containing a

conduction-type source of electromagnetic fields, Journal of Applied

Mechanics and Technical Physics, 26:19-24.

Silvestre, A.L., (2002a). On the self-propelled motion of a rigid body in a vis-

cous liquid and on the attainability of steady symmetric self-propelled

motions, Journal of Mathematical Fluid Mechanics, 4:285-326.

Silvestre, A.L., (2002b). On the slow motion of a self-propelled rigid body in a

viscous incompressible fluid, Journal of Mathematical Analysis and

Applications, 274:203-227.

Smith, S.H., (1991). The rotation of two circular cylinders in a viscous

fluid, Mathematika, 38(63).

Stojkovic, D., Breuer, M., and Durst, F., (2002). Effect of high rotation rates

on the laminar flow around a circular cylinder, Physics of Fluids,

4(9):3160-3178.

Sumner, D., Wong, S.S.T., Price, S.J. and Paidoussis, M.P., (1999). Fluid behavior

of side-by-side circular cylinders in steady cross-flow, Journal of Fluids

and Structures, 13:309-338.

Taneda, S. (1956). Experimental Investigation of the Wakes Behind Cylinders and

Plates at Low Reynolds Numbers, Journal of the Physical Society

of Japan, 11:302-307.

Temam, R., (1991). Remark on the pressure boundary condition for the projection

method, Theory Compute Fluid Dynamics 3:181-184.



76

Tolstykh, A.I., (1992). Algorithms for Calculating Incompressible Flows

with Compact Third Order Approximations, In : Modern prob-

lems in computational aerodynamics. CRC Press. Boca Raton, pp. 103-

129.

Tritton, DJ., (1959). Experiments on the flow past a circular cylinder at low

Reynolds number, Journal of Fluid Mechanics, 6:547.

Watson, E.J., (1995). The rotation of two circular cylinders in a viscous

fluid, Mathematika, 42(1):105.

Yanenko, N.N., (1971). Method of Fractional Steps, Gordan and Breach, NY,

USA.

Zdravkovich, M.M., (1997). Flow Around Circular cylinders, Fundamentals,

Oxford University Press, NY, 1.



APPENDICES



APPENDIX A

TRANSFORMATION OF GOVERNING

EQUATIONS TO CYLINDRICAL BIPOLAR

COORDINATES

In this Appendix, we review the main definitions of tensor-vector calculus

in curvilinear coordinate systems. We then derive a detailed transformation of

the Navier-Stokes equations into the cylindrical bipolar coordinate system.

A.1 Definitions of Main Tensor Operations in the Curvi-

linear Coordinate System

Let Ω ⊂ R
3(~x) be an open set. A one–to–one and reciprocal continuously

differentiable mapping from Ω to a subset of R
3 is called a coordinate system.

This mapping is defined by the formula

~x → K(~x) = (K1(~x), K2(~x), K3(~x)).

The values of the functions Ki(~x) are called the coordinates (curvilinear coor-

dinates) of the point ~x. Let a point ~x ∈ Ω be fixed. At this point there are

vectors

~ei =
∂~x

∂Ki
, ~e i =

∂Ki

∂~x
= ∇Ki, (i = 1, 2, 3), (A.1)

which form a basis, ~ei, and cobasis, ~e i, in R
3. These bases are called a coordinate

basis and cobasis of the coordinate system K at the point ~x. A vector ~v can be
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decomposed along either basis or cobasis vectors

~v = vi~e
i = vi~ei.

The components, vi, are called covariant components of the vector, ~v, and the vi,

are called contravariant components of the vector, ~v.

A coordinate system is called orthogonal (at a point or on a set) if its basis is

orthogonal (at the point or on the set).

~ei · ~ej = 0, ~e i · ~e j = 0, (i 6= j).

The fundamental tensor and its inverse are defined by

gij = ~ei · ~ej , gij = ~e i · ~e j . (A.2)

Coordinates of the fundamental tensor g with respect to an orthogonal coordinate

system are

(gij) =




g11 0 0

0 g22 0

0 0 g33




, (gij) =




g11 0 0

0 g22 0

0 0 g33




,

where

gii = |~ei|
2 =

∣∣∣∣
∂~x

∂Ki

∣∣∣∣
2

, gii =
∣∣~e i
∣∣2 =

∣∣∇Ki
∣∣2 , i = 1, 2, 3; |g| = [~e1 · (~e2 × ~e3)]

2 .

The derivatives of the basis and cobasis vectors with respect to curvilinear coordi-

nates can be represented in terms of the basis {~ei} and cobasis {~e i}, respectively

∂~ei

∂Kj
= Γs

ij~es,
∂~e i

∂Kj
= −Γi

js~e
s,

where the coefficients Γs
ij are called Christoffel symbols of second order. The

Christoffel symbols are related to the derivatives of the fundamental tensor

Γl
ij =

1

2

(
∂gis

∂Kj
+

∂gjs

∂Ki
−

∂gij

∂Ks

)
gls. (A.3)
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Covariant derivatives are expressed in terms of partial derivatives with respect to

corresponding coordinates, Christoffel symbols and components of a tensor. The

simplest are covariant derivatives of a scalar field, F , which coincide with the

usual partial derivatives

F,i =
∂F

∂Ki
.

The covariant derivatives of the covariant and contravariant components of a

second order tensor Φ are

Φij,l =
∂Φij

∂K l
− Γs

liΦsj − Γs
ljΦis, Φij

,l =
∂Φij

∂K l
+ Γi

lsΦ
sj + Γj

lsΦ
is, (A.4)

Similarly, the covariant derivatives of the mixed components are

Φ.j
i.,l =

∂Φ.j
i.

∂K l
− Γs

liΦ
.j
s. + Γj

lsΦ
.s
i. , Φj.

.i,l =
∂Φj.

.i

∂K l
− Γs

liΦ
j.
.s + Γj

lsΦ
s.
.i , (A.5)

In the above equations and everywhere below, a comma with an index in a sub-

script denotes covariant differentiation. A derivative of the vector field, ~v, is the

second order tensor which is denoted by the symbol,

(
∂~v

∂~x

)
. Covariant and mixed

coordinates of the

(
∂~v

∂~x

)
are

(
∂~v

∂~x

)

ij

=
∂vi

∂Kj
− Γs

ijvs = vi,j;

(
∂~v

∂~x

)i

,j =
∂vi

∂Kj
+ Γi

jsvs = vi
,j. (A.6)

The divergence of a vector field, ~v, is a scalar. Divergence can be expressed in

terms of the covariant derivatives of the contravariant components of vector field,

~v,

div ~v = vi
,i =

∂vi

∂Ki
+ Γi

isv
s =

∂vi

∂Ki
+

vi

√
|g|

∂
√

|g|

∂Ki
=

1√
|g|

∂

∂Ki

(√
|g|vi

)
. (A.7)

The vector

∇F =
∂F

∂~x
=

∂F

∂Ki
~e i,

is called a gradient of the scalar function F . Covariant components of the gradient

vector are

(∇F )i = F,i =
∂F

∂Ki
. (A.8)
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The scalar

△F = div (∇F ) = ((∇F )i),i = (gis(∇F )s),i = gis

[
∂2F

∂Ks∂Ki
− Γα

is

∂F

∂Kα

]
,

is called the Laplace operator of the scalar function F . We can rewrite this formula

in the following form

△F =
1√
|g|

∂

∂Ki

(√
|g|gis ∂F

∂Ks

)
. (A.9)

A curl of a vector field, ~v, is a vector field. In a right-handed basis, ε123 =

~e1 · (~e2 × ~e3) =
√
|g|, the contravariant components of curl ~v are

(curl ~v)1 =
1√
|g|

(
∂v3

∂K2
−

∂v2

∂K3

)
, (curl ~v)2 =

1√
|g|

(
∂v1

∂K3
−

∂v3

∂K1

)
,

(curl ~v)3 =
1√
|g|

(
∂v2

∂K1
−

∂v1

∂K2

)
.

(A.10)

The divergence of a tensor field is a vector. The s-th contravariant component of

this vector is

(div P )s = P sj,j = div (P
s
) + Γs

jαP jα, (A.11)

where P
s

= (P s1, P s2, P s3) is s-th row of a matrix which represents second order

tensor P and div (P
s
) =

∂P sj

∂Kj
+ Γj

jαP sα.

The Laplace operator of a vector field is a vector field and the contravariant

components of this vector are

(△~v)l = gij

((
∂~v

∂~x

)l.

.j

)

,i

= gij(vl
,i),j = gij

[
∂vl

,i

∂Kj
− Γs

jiv
l
,s + Γl

jsv
s
,i

]

= gij

[(
∂2vl

∂Kj∂Ki
+

∂Γl
is

∂Kj
vs + Γl

is

∂vs

∂Kj

)
− Γs

ji

(
∂vl

∂Ks
+ Γl

sαvα

)
+ Γl

js

(
∂vs

∂Ki
+ Γs

iαvα

)]
.

After regrouping one has

(△~v)l = (△vl) + 2gijΓl
is

∂vs

∂Kj
+ gij

(
∂Γl

is

∂Kj
− Γα

jiΓ
l
αs + Γl

jαΓα
is

)
vs, (A.12)

where (△vl) = gij

[
∂2vl

∂Kj∂Ki
− Γs

ji

∂vl

∂Ks

]
is the Laplace operator of scalar function

vl.



82

The covariant and contravariant components of the acceleration of a vector field,

~v, are (
d~v

dt

)

i

=
∂vi

∂t
+ vsvi,s =

∂vi

∂t
+ vs ∂vi

∂Ks
− Γj

isv
svj ,

(
d~v

dt

)i

=
∂vi

∂t
+ vsvi

.,s =
∂vi

∂t
+ vs ∂vi

∂Ks
+ Γi

jsv
jvs.

(A.13)

If vectors of coordinate bases and cobases are not normed, then components of

tensors have different numerical values in different bases even if directions of

basis vectors coincides. Numerical values of tensor components divided by the

length of corresponding basis or cobasis vectors, which define these components

are called physical components of the tensor. For example, if ai = ~a~ei are covariant

coordinates of a vector ~a, then the physical components are

ãi =
ai

|~ei|
, (A.14)

the covariant components of a tensor, Lij, related with the physical components

as

L̃ij =
Lij

(|~ei| |~ej |)
. (A.15)

A.2 The Cylindrical Bipolar Coordinate System

Let ~ei be a fixed right-handed orthonormal Cartesian basis in R
3. A vector

~x ∈ R
3 has components ~x = (x, y, z); (x = ~x~e1, y = ~x~e2, z = ~x~e3) in this basis.

Curvilinear coordinates are a transformation from R
3 to a subset of R

3

K(~x) = (K1(x, y, z), K2(x, y, z), K3(x, y, z)).

For the cylindrical bipolar coordinates we use the notation

ξ = K1(x, y, z), η = K2(x, y, z), z = K3(x, y, z).



83

The cylindrical bipolar coordinate system can be defined by the inverse transfor-

mation K−1

x =
a sinh η

cosh η − cos ξ
, y =

a sin ξ

cosh η − cos ξ
, z = z, (A.16)

where ξ ∈ [0, 2π), η ∈ (−∞,∞), z ∈ (−∞,∞), a is a characteristic length in the

cylindrical bipolar coordinate system which is positive. The following identities

show that curves of constant ξ and η are circles in xy-space

x2 + (y − a cot ξ)2 = a2 csc2 ξ,

(x − a coth η)2 + y2 = a2csch2η.
(A.17)

The coordinate surface η = const corresponds to a family of nonintersecting

cylinders whose centers lie along the x-axis. The value η = 0 is a cylinder of

infinite radius and equivalent to the entire plane x = 0. Figure A.1 shows the

sketch of the cylindrical bipolar coordinate system. If two cylinders are chosen to

be η = η1 (with η1 > 0) and η = η2 (with η2 < 0) then cylinders radii r1 and r2

as well as the distances of their centers from the origin d1 and d2 are given by

ri = a csch|ηi|, di = a coth |ηi|, i = 1, 2. (A.18)

The center to center distance between the cylinders equals d = d1 + d2. If r1, r2

and d are given, one can find a, η1 and η2 from the relations (A.16) − (A.18) to

be as follows

η1 = ln

(
cosh η1 +

√
cosh2 η1 − 1

)
(A.19)

η2 = ln

(
cosh η2 −

√
cosh2 η2 − 1

)
(A.20)

a =

√
d4 − 2d2(r1

2 + r2
2) + (r1

2 − r2
2)2

4d2
(A.21)

Using the main definitions of vector-tensor operations given above, we now

demonstrate the detailed transformation of the Navier-Stokes equations into cylin-

drical bipolar coordinates:
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Figure A.1 Geometrical sketch of the cylindrical bipolar coordinates.

The bases and cobases of the cylindrical bipolar coordinate system are orthogonal

and consist of the vectors

~e1 =
∂~x

∂K1
=

(
∂x

∂ξ
,
∂y

∂ξ
,
∂z

∂ξ

)
=

a

(cosh η − cos ξ)2 (− sinh η sin ξ, cos ξ cosh η − 1, 0),

~e2 =
∂~x

∂K2
=

(
∂x

∂η
,
∂y

∂η
,
∂z

∂η

)
=

a

(cosh η − cos ξ)2
(1 − cosh η cos ξ,− sin ξ sinh η, 0),

~e3 =
∂~x

∂K3
=

(
∂x

∂z
,
∂y

∂z
,
∂z

∂z

)
= (0, 0, 1),

~e 1 =

(
∂K1

∂x
,
∂K1

∂y
,
∂K1

∂z

)
=

1

a
(− sinh η sin ξ, cos ξ cosh η − 1, 0),

~e 2 =

(
∂K2

∂x
,
∂K2

∂y
,
∂K2

∂z

)
=

1

a
(1 − cosh η cos ξ,− sin ξ sinh η, 0),

~e 3 =

(
∂K3

∂x
,
∂K3

∂y
,
∂K3

∂z

)
= (0, 0, 1).

(A.22)

and |~e1| = |~e2| = h =
a

cosh η − cos ξ
, |~e 1| = |~e 2| =

1

h
, |~e3| = |~e 3| = 1.

The fundamental tensor can be written as follows

(gij) =




h2 0 0

0 h2 0

0 0 1




, (gij) =




1

h2
0 0

0
1

h2
0

0 0 1




, |g| = h4. (A.23)
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The Christoffel symbols (A.3) for the cylindrical bipolar coordinate system are

Γ1
11 = Γ2

12 = Γ2
21 = −h

sin ξ

a
, Γ2

11 = h
sinh η

a
,

Γ1
12 = Γ1

21 = −h
sinh η

a
, Γ1

22 = h
sin ξ

a
, Γ2

22 = −h
sinh η

a
,

(A.24)

with all other components being equal to zero.

Let (vξ, vη, vz) be the physical component of the velocity vector, ~v, in the cylin-

drical bipolar coordinate system. Then the tensor components of ~v are

(v1, v2, v3) = (
1

h
vξ,

1

h
vη, vz), (v1, v2, v3) = (hvξ, hvη, vz). (A.25)

If the physical components of a tensor T are

(T ) =




Tξξ Tξη Tξz

Tηξ Tηη Tηz

Tzξ Tzη Tzz




, (A.26)

then the contravariant and covariant components of the tensor T are

(T ij) =




1
h2 Tξξ

1
h2 Tξη

1
h
Tξz

1
h2 Tηξ

1
h2 Tηη

1
h
Tηz

1
h
Tzξ

1
h
Tzη Tzz




, (Tij) =




h2Tξξ h2Tξη hTξz

h2Tηξ h2Tηη hTηz

hTzξ hTzη Tzz




.

(A.27)

The covariant and contravariant coordinates of the gradient of a scalar function

p are

(∇p)1 =
∂p

∂ξ
, (∇p)2 =

∂p

∂η
, (∇p)3 =

∂p

∂z

(∇p)1 = g11(∇p)1 =
1

h2

∂p

∂ξ
, (∇p)2 = g22(∇p)2 =

1

h2

∂p

∂η
,

(∇p)3 = g33(∇p)3 =
∂p

∂z
.

(A.28)

A matrix of the covariant derivatives of a vector field can be written as follows

vi,j =
∂vi

∂Kj
+ Γi

jsv
s.



86

Thus we have a matrix of covariant derivatives in terms of physical components

of vector ~v

(vi,j ) =




1

h

∂vξ

∂ξ
−

sinh η

a
vη

1

h

∂vξ

∂η
+

sin ξ

a
vη

1

h

∂vξ

∂z
1

h

∂vη

∂ξ
+

sinh η

a
vξ

1

h

∂vη

∂η
−

sin ξ

a
vξ

1

h

∂vη

∂z
∂vz

∂ξ

∂vz

∂η

∂vz

∂z




. (A.29)

The divergence of a vector field, ~v, (A.7) can be expressed in terms of physical

components of the vector ~v as follows

div~v =
1

h2

[
∂(hvξ)

∂ξ
+

∂(hvη)

∂η

]
+

∂vz

∂z
. (A.30)

The i − th contravariant components of the convective derivative are defined by

[(~v · ∇)~v]i = vlvi,l ,

or in term of physical components as follows

[(~v · ∇)~v]1 =
1

h2

[
vξ

∂vξ

∂ξ
+ vη

∂vξ

∂η

]
+

1

h
vz

∂vξ

∂z
−

1

h

[
sinh η

a
vξvη −

sin ξ

a
(vη)

2

]
,

[(~v · ∇)~v]2 =
1

h2

[
vξ

∂vη

∂ξ
+ vη

∂vη

∂η

]
+

1

h
vz

∂vη

∂z
+

1

h

[
sinh η

a
(vξ)

2 −
sin ξ

a
vξvη

]
,

[(~v · ∇)~v]3 =
1

h

[
vξ

∂vz

∂ξ
+ vη

∂vz

∂η

]
+ vz

∂vz

∂z
.

(A.31)

The Laplace operator of a scalar function p, (see equation (A.9)) is

∆p =
1

h2

[
∂2p

∂ξ2
+

∂2p

∂η2

]
+

∂2p

∂z2
. (A.32)

The contravariant components of the vorticity vector, curl~v = ∇×~v, (see equation

(A.10)) are

ω1 =
1

h2

∂vz

∂η
−

1

h

∂vη

∂z
, ω2 =

1

h

∂vξ

∂z
−

1

h2

∂vz

∂ξ
,

ω3 =
1

h

(
∂vη

∂ξ
−

∂vξ

∂η

)
−

sin ξ

a
vη +

sinh η

a
vξ

(A.33)
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The divergence of a tensor T (see equation (A.11)) is a vector with the contravari-

ant components

(div T )1 = div(T
1
) +

1

h

(
sin ξ

a
(Tηη − Tξξ) −

sinh η

a
(Tξη + Tηξ)

)
,

(div T )2 = div(T
2
) +

1

h

(
sinh η

a
(Tξξ − Tηη) −

sin ξ

a
(Tξη + Tηξ)

)
,

(div T )3 = div(T
3
),

(A.34)

where

T
1

=

(
1

h2
Tξξ,

1

h2
Tξη,

1

h
Tξz

)
, T

2
=

(
1

h2
Tηξ,

1

h2
Tηη,

1

h
Tηz

)
,

T
3

=

(
1

h
Tzξ,

1

h
Tzη,

1

h
Tzz

)
.

The Laplace operator of a vector field, ~v, (see equation (A.12)) is the vector with

the contravariant components

(∆~v)1 =
1

h2

[
1

h

(
∂2vξ

∂ξ2
+

∂2vξ

∂η2

)
−

2

a

(
sinh η

∂vη

∂ξ
− sin ξ

∂vη

∂η

)]
−

−
1

h2

(
cosh η + cos ξ

a

)
vξ +

1

h

∂2vξ

∂z2
,

(∆~v)2 =
1

h2

[
1

h

(
∂2vη

∂ξ2
+

∂2vη

∂η2

)
+

2

a

(
sinh η

∂vξ

∂ξ
− sin ξ

∂vξ

∂η

)]
−

−
1

h2

(
cosh η + cos ξ

a

)
vη +

1

h

∂2vη

∂z2
,

(∆~v)3 =
1

h2

[
∂2vz

∂ξ2
+

∂2vz

∂η2

]
+

∂2vz

∂z2
.

(A.35)

The acceleration has the components
(

d~v

dt

)1

=
1

h

[
D(vξ) +

sin ξ

a
vηvη −

sinh η

a
vξvη

]
,

(
d~v

dt

)2

=
1

h

[
D(vη) −

sin ξ

a
vηvξ +

sinh η

a
vξvξ

]
,

(
d~v

dt

)3

= D(vz),

(A.36)
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where D(f) =
∂f

∂t
+

1

h
vξ

∂f

∂ξ
+

1

h
vη

∂f

∂η
+ vz

∂f

∂z
.

With the use of above formulae, one can transform the Navier-Stokes equa-

tions into the cylindrical bipolar coordinates (ξ, η, z) and obtain

∂vξ

∂t
+

1

h

(
vξ

∂vξ

∂ξ
+ vη

∂vξ

∂η

)
+ vz

∂vξ

∂z
−

1

a

(
sinh η(vξvη) − sin ξ(vη)

2)

= −
1

h

1

ρ

∂p

∂ξ
+ ν

∂2vξ

∂z2
+

ν

h

{
1

h

(
∂2vξ

∂ξ2
+

∂2vξ

∂η2

)

−
2

a

(
sinh η

∂vη

∂ξ
− sin ξ

∂vη

∂η

)
−

(
cosh η + cos ξ

a

)
vξ

}
,

(A.37)

∂vη

∂t
+

1

h

(
vξ

∂vη

∂ξ
+ vη

∂vη

∂η

)
+ vz

∂vη

∂z
+

1

a

(
sinh η(vξ)

2 − sin ξ(vξvη)
)

= −
1

h

1

ρ

∂p

∂η
+ ν

∂2vη

∂z2
+

ν

h

{
1

h

(
∂2vη

∂ξ2
+

∂2vη

∂η2

)

+
2

a

(
sinh η

∂vξ

∂ξ
− sin ξ

∂vξ

∂η

)
−

(
cosh η + cos ξ

a

)
vη

}
,

(A.38)

∂vz

∂t
+

1

h

(
vξ

∂vz

∂ξ
+ vη

∂vz

∂η

)
+ vz

∂vz

∂z

= −
1

ρ

∂p

∂z
+ ν

{
1

h2

(
∂2vz

∂ξ2
+

∂2vz

∂η2

)
+

∂2vξ

∂z2

}
,

(A.39)

1

h2

[
∂(hvξ)

∂ξ
+

∂(hvη)

∂η

]
+

∂vz

∂z
= 0, (A.40)

where vξ, vη, and vz are the physical components of velocity vector v = (vξ, vη, vz),

p is the pressure, ν =
µ

ρ
is the coefficient of kinematic viscosity.



APPENDIX B

THE METHOD OF STABILIZING

CORRECTIONS

In this research we use the iterative method of stabilizing corrections (Ya-

nenko (1971)) for computing the finite difference equation (3.21) for pressure. The

method of stabilizing corrections, which was introduced by Douglas and Rachford

(1956) and formulated in its general form by Douglas and Gunn (1964), is a very

general and effective method for the construction of schemes with fractional steps.

We present here the general iterative scheme of stabilizing corrections for elliptic

equations. In our explanation, we follow Yanenko (1970).

For the elliptic equation

Lu + f =

m∑

i,j=1

aij
∂2u

∂xi∂xj
+ f = 0. (B.1)

the parallel between the iterative schemes and integration schemes of the corre-

sponding parabolic equation

∂u

∂t
=

m∑

i,j=1

aij
∂2u

∂xi∂xj

+ f. (B.2)

is always valid, i.e., the solution of the unsteady problem (B.2) approaches the

solution of the steady problem with the same boundary conditions, regardless of

the choice of initial data. The scheme of stabilizing corrections is
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un+1/m − un

τ
= Λ11u

n+1/m + (Ω − Λ11)u
n,

un+2/m − un+1/m

τ
= Λ22(u

n+2/m − un),

· · · = · · · ,

un+1 − un+(m−1)/m

τ
= Λmm(un+1 − un),

(B.3)

where Ω =

n∑

i,j=1

Λij. After eliminating fractional steps, the equivalent scheme in

whole steps is

un+1 − un

τ
= Λun+1 + (Ω − Λ)un − τ

∑

i<j

ΛiiΛjj(u
n+1 − un)+

+τ 2
∑

i<j<k

ΛiiΛjjΛkk(u
n+1 − un) + · · ·

+(−1)m−1Λ11 . . .Λmmτm−1(un+1 − un),

Λ =
m∑

i=1

Λii, i, j, k = 1, . . . , m.

(B.4)

From (B.4) complete consistency follows at any m. Scheme (B.3) is strongly

stable. The main idea of the scheme of stabilizing correction is to solve at each

fractional step the system of algebraic equations only with tridiagonal matrix.

Next we give a short description of the “sweep” method of solution of three-

point equations and the cyclic elimination method for three-point equations. The

three-point equations arise from three-point difference schemes designed to find

periodic solutions of second-order ordinary differential equation and also when

approximating the solutions of equations with partial derivatives in cylindrical

bipolar coordinates.
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B.1 The Elimination Method for Three-Point Equations

(Samarskij (1989))

Suppose we must solve the following system of three-point equations

c0y0 − b0y1 = f0, i = 0,

−aiyi−1 + ciyi − biyi+1 = fi, 1 ≤ i ≤ N − 1,

−aNyN−1 + cNyN = fN , i = N,

(B.5)

or, in vector form,

AY = F (B.6)

where Y = (y0, y1, . . . , yN)T is the vector of unknowns, F = (f0, f1, . . . , fN)T is

the right hand side vector, and A is the square (N + 1) × (N + 1) matrix with

real or complex coefficients.

A =




c0 −b0 0 0 · · · 0 0 0 0

−a1 c1 −b1 0 · · · 0 0 0 0

0 −a2 c2 −b2 · · · 0 0 0 0

· · · · · · · · · · ·

0 0 0 0 · · · −aN−2 cN−2 −bN − 2 0

0 0 0 0 · · · 0 −aN−1 cN−1 −bN−1

0 0 0 0 · · · 0 0 −aN cN




Systems of the form (B.5) arise from a three-point approximation to a

boundary-value problem for second-order ordinary differential equations with con-

stant and variable coefficients, and also when realizing difference schemes for

equations with partial derivatives.

Following the idea of Gauss’ method, we carry out the elimination of the

unknown in (B.5). We introduce the notation α1 = b0/c0, β1 = f0/c0 and write
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(B.5) in the following form

y0 − α1y1 = β1, i = 0,

−aiyi−1 + ciyi − biyi+1 = fi, 1 ≤ i ≤ N − 1,

−aNyN−1 + cNyN = fN , i = N,

(B.7)

Take the first two equations of the system (B.7)

y0 − α1y1 = β1, −a1y0 + c1y1 − b1y2 = f1.

Multiply the first equation by a1 and add it to the second equation. We get

(c1 − a1α1)y1 − b1y2 = f1 + α1β1 or, after dividing by c1 − a1α1

y1 − α2y2 = β2, α2 =
b1

c1 − α1a1
, β2 =

f1 + a1β1

1 − α1a1
.

All the remaining equations of the system (B.7) do not contain y0, therefore

this stage of the elimination process is completed. As a result we obtain a new

“reduced” system

y1 − α2y2 = β2, i = 1,

−aiyi−1 + ciyi − biyi+1 = fi, 2 ≤ i ≤ N − 1,

−aNyN−1 + cNyN = fN , i = N,

(B.8)

which does not contain the unknown y0 and which has a structure analogous to

(B.7). When this system has been solved, the unknown y0 is found from the

formula y0 = α1y1 + β1. We can apply the above described elimination procedure

to system (B.8). At the second stage, the unknown y1 is eliminated, at the third

y2, and so forth. At the end of the lth stage we obtain a system for the unknowns

yl, yl + 1, · · · , yN

yl − αl+1yl+1 = βl+1, i = 1,

−aiyi−1 + ciyi − biyi+1 = fi, l + 1 ≤ i ≤ N − 1,

−aNyN−1 + cNyN = fN , i = N,

(B.9)
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and formulas for finding yi for i ≤ l − 1

yi = αi+1yi+1 + βi+1, i = l − 1, l − 2, . . . , 0. (B.10)

The coefficients αi and βi, clearly, are found from the formulas

αi+1 =
bi

ci − αiai

; βi+1 =
fi + aiβi

ci − αiai

; i = 1, 2, . . . , ; α1 =
b0

c0

, β1 =
f0

c0

.

Substituting l = N − 1 in (B.9), we obtain a system for yN and yN−1

yN−1 − αNyN = βN ,−aNyN−1 + cNyN = fN (B.11)

from which we find yN = βN+1, yN−1 = αNyN + βN .

Combining these equations with (B.10) (l = N − 1), we obtain the final

formulas for finding the unknowns

yi = αi+1yi+1 + βi+1, i = N − 1, N − 2, . . . , 0,

yN = βN + 1,
(B.12)

where αi and βi are found from the recurrence formulas

αi+1 =
bi

ci − aiαi
, i = 1, 2, . . . , N − 1, αi =

b0

c0
,

βi+1 =
fi + aiβi

ci − aiαi
, i = 1, 2, . . . , N, βi =

f0

c0
.

(B.13)

Thus, the formulas (B.12) and (B.13) describe Gauss’method which, when ap-

plied to the system (B.5), is given a special name - the elimination method. The

coefficients αi and βi are called the elimination coefficients, formulas (B.13) de-

scribe the forward elimination pate, and (B.12) the backward path. Since the

values yi are found sequentially in reverse order, the formulas (B.12) and (B.13)

are sometimes called the right-elimination formulas.

An elementary count of the arithmetic operations in (B.12) and (B.13)

shows that realizing the elimination method using these formulas requires 3N

multiplications, 2N +1 divisions and 3N additions and subtractions. If there is no
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difference between arithmetic operations, the total number of operations required

for the elimination method is Q = 8N + 1. Of this total, 3N − 2 operations are

used for computing αi, and 5N + 3 operations for computing βi and yi.

Notice that the coefficients αi do not depend on the right-hand side of

the system (B.5), but are determined solely by the coefficients ai, bi, ci of the

difference equations. Therefore, if we must solve a series of problems (B.5) with

different right-hand sides, but with the same matrix A, then the elimination

coefficients αi are only computed for the first problem of the series. Thus solving

the first problem in the series costs Q = 8N + 1 operations, but solving each of

the remaining problems only costs 5N + 3 operations.

In conclusion we indicate the order of the computations for the formulas

of the elimination method. Beginning with α1 and β1, we calculate and store αi

and βi using (B.13). Then the solutions yi are found using (B.12).

B.2 The Cyclic Elimination Method (Samarskij (1989))

Let us consider the following system

−aiyi−1 + ciyi − biyi+1 = fi, i = 0,±1,±2, . . . , (B.14)

the coefficients and right-hand side of which are periodic with period N :

ai = ai+N , bi = bi+N , ci = ci+N , fi = fi+N . (B.15)

Systems of the type (B.14) and (B.15) arise, for example, from three-point dif-

ference schemes designed to find periodic solutions of second-order ordinary dif-

ferential equations, and also when approximating the solutions of equations with

partial derivatives in Cylindrical bipolar coordinate,

A solution of system (B.14) satisfying the conditions (B.15) will, if it exists,
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also be periodic with period N , i.e.,

yi = yi+N . (B.16)

Therefore it is sufficient to find the solution at, for example, i = 0, 1, . . . , N − 1.

In this case, the problem (B.14) − (B.16) can be written as:

−a0yN−1 + c0y0 − b0y1 = f0, i = 0

−aiyi−1 + ciyi − biyi+1 = fi, 1 ≤ i ≤ N − 1,
(B.17)

yN = y0. (B.18)

We appended the condition (B.18) to the system (B.17) so that the equations for

i = N − 1 would not include yN , it having been replaced by y0. This allows us to

retain a unique form for the equations (B.17) for i = 1, 2, . . . , N − 1.

If we introduce the vector of unknowns Y = (y0, y1, . . . , yN − 1)T and the

right-hand side F = (f0, f1, . . . , fN − 1)T ,then (B.17) and (B.18) can be written

in the vector form AY = F where

A =




c0 −b0 0 0 · · · 0 0 −a0

−a1 c1 −b1 0 · · · 0 0 0

0 −a2 c2 −b2 · · · 0 0 0

· · · · · · · · · ·

0 0 0 0 · · · cN−3 −bN−3 0

0 0 0 0 · · · −aN−2 cN−2 −bN−2

−bN−1 0 0 0 · · · 0 −aN−1 cN−1




is the matrix of the system (B.17) and (B.18). The presence of non-zero coef-

ficients a0 and bN−1 in (B.17) does not allow us to solve this system using the

elimination method described in the previous section. To find the solution of the

system (B.17) and (B.18) we construct a variant of the elimination method called

the the cyclic elimination method
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The solution of the problem (B.17) and (B.18) will be found in the form

of a linear combination of the grid functions ui and vi

yi = ui + y0vi, 0 ≤ i ≤ N, (B.19)

where ui is the solution of the non-homogeneous three-point boundary-value prob-

lem

−aiui−1 + ciui − biui+1 = fi, 1 ≤ i ≤ N − 1,

u0 = 0, uN = 0
(B.20)

with homogeneous boundary conditions, and vi is the solution of the homogeneous

three-point boundary-value problem

−aivi−1 + civi − bivi+1 = fi, 1 ≤ i ≤ N − 1,

v0 = 1, vN = 1
(B.21)

with non-homogeneous boundary conditions.

We now find under what conditions yi from (B.19) is the desired solution.

Multiplying (B.21) by y0, adding it to (B.20), and taking into account (B.19), we

find that the equations in (B.17) can be satisfied for i = 1, 2, . . . , N −1. From the

boundary conditions for ui and vi it follows that (B.18) will be satisfied. Thus, if

yi satisfied the remaining unused equation at i = 0 in (B.17), the problem would

be solved. Substituting (B.19) in this equation, we obtain

−a0uN−1 − a0y0vN−1 + c0y0 − b0u1 − b0y0v1 = f0. (B.22)

Thus, if we choose y0 from the formula

y0 =
f0 − a0uN−1 + b0u1

c0 − a0vN−1 − b0v1
, (B.23)

then (B.22) will be satisfied, and consequently the solution of the problem

(B.17), (B.18) can be found from (B.19).
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We are left with solving (B.20) and (B.21). They are particular cases

of the three-point systems of equations solved in the previous section using the

elimination method. For (B.20) and (B.21), the elimination formulas have the

following form:

ui = αi+1ui+1 + βi+1, i = N − 1, N − 2, . . . , 1, uN = 0,

vi = αi+1vi+1 + γi+1, i = N − 1, N − 2, . . . , 1, vN = 1,
(B.24)

where the elimination coefficients αi, βi and γi are found from the following for-

mulas

αi+1 =
bi

ci − aiαi
, i = 1, 2, . . . , N, α1 = 0, (B.25)

βi+1 =
fi + aiβi

ci − aiαi

, i = 1, 2, . . . , N, β1 = 0, (B.26)

γi+1 =
aiγi

ci − aiαi
, i = 1, 2, . . . , N, γ1 = 1, (B.27)

Let us transform (B.23). From (B.24) we obtain uN−1 = αNuN + βN =

βN , vN−1 = γN + αN . We substitute these expressions in (B.23) and take into

account (B.15), (B.25) − (B.27) :

y0 =
fN + aNβN + βNu1

cN − aNαN − aNγN − bNv1
=

βN+1 + αN+1u1

1 − γN+1 − αN+1v1
.

We have constructed an algorithm for solving problem (B.17) and (B.18) called

the method of cyclic elimination:

α2 = b1/c1, β2 = f1/c1, γ2 = a1/c1,

αi+1 =
bi

ci − aiαi
, βi+1 =

fi + aiβi

ci − aiαi
, γi+1 =

aiγi

ci − aiαi
, i = 2, 3, . . . , N ;

uN−1 = βN , vN−1 = γN + αN ,

ui = αi+1ui+1 + βi+1, vi = αi+1vi+1 + γi+1, i = N − 2, N − 3, . . . , 1;

y0 =
βN+1 + αN+1u1

1 − γN+1 − αN+1v1

, yi = ui + y0vi, i = 1, 2, . . . , N − 1.

(B.28)

An elementary computation indicates that the algorithm requires 6(N − 1) mul-

tiplications, 5N − 3 additions and subtractions, and 3N + 1 divisions. If no dis-
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tinction is made among arithmetic operations, the total number is Q = 14N − 8.
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