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Chapter I

Introduction

1.1 Motivation

High temperature superconductivity was first discovered in ceramic

(LaBa)3CuO4 with the transition temperature (Tc) approximately 30 K by Bednorz

and Muller in 1986 (Bednorz, J. G., Müller, K. A. 1986), and right after this discovery

many other CuO2 based materials, such as YBa2Cu3O7 (Wu, M. K., et al., 1987) and

Bi2Sr2Ca2Cu3O10 (Maeda, H., et al., 1988) with their Tc’s higher than liquid nitrogen

(77 K) were also discovered. These cuprate superconductors do not behave like ordi-

nary Bardeen-Cooper-Schrieffer (BCS) superconductors. For instance, their Tc’s are

unusually high, their coherence lengths are extremely short (Burns, G. 1992; Parks,

R. D. 1996; Tinkham, M. 1996) and their isotope effects are smaller than those of

conventional superconductors (Bourne, L. C., et al., 1987; Batlogg, B., et al., 1987;

Pascal J. Y., et al., 1988; Mascarenhas, A., et al., 1998). Also, the superconduct-

ing gaps of these materials are much larger than those of BCS superconductors, i.e.,

2∆/kBTc > 3.54 (Wei, J. Y. T., et al., 1998). As it turns out, the symmetry of

the superconducting order parameter of these materials is not s-wave, like that of

the conventional superconductors. The phase-sensitive Superconducting QUuantum

Interference Devices (SQUID) experiment (Wollman, D. A., et al., 1993; Brawner,

D.A., and Ott, H. R. 1994) and the tricrystal magnetometry (Tsuei, C. C., et al.,

1994; Kirtley, J. R., et al., 1996) indicate that their gap symmetry is dx2−y2-wave,

i.e., it has nodes along the ±45◦ and ±135◦ directions in the momentum space. Many

tunneling experiments also show the linear dependence of the conductance curve at

low voltages and a zero bias conductance peak (ZBCP) (Alff, L., et al., 1997; Cov-
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ington, M., et al., 1997; Wei, J. Y. T. et al., 1998; Sinha, S., and Ng, K.-W. 1998).

These tunneling characteristics are also consistent with the dx2−y2-wave symmetry of

the energy gap. That is, the presence of the low energy excitations, which result in a

linear dependence of the density of states at low energies, are due to the existence of

the nodes. A ZBCP in the tunnelling conductance spectrum implies that there exist

a number of bound states at zero energy (relative to the Fermi level). These zero

energy bound states are linear combinations of two quasiparticle excitations with the

gaps of opposite signs, a consequence of the dx2−y2 gap symmetry.

The mechanism that causes superconductivity in high-temperature supercon-

ductors materials is still a mystery. There have been a lot of theoretical and exper-

imental work constantly done on these materials to gain more understanding about

their nature. This master thesis is one of the theoretical ones. In particular, this

thesis is the study of tunnelling spectroscopy of a normal metal - dx2−y2-wave super-

conductor junction.

The tunneling spectroscopy has been used to study the quasiparticle density

of states (DOS) in superconductors since 1960 (Giaever, I. 1960). It provides a direct

measurement of the superconducting gap (Duke, C. B. 1969; Wolf, E. L. 1985). In

the experiment, the tunneling conductance is measured as the applied voltage is

changed. The tunneling conductance, in the tunneling limit, is proportional to the

local density of states of superconductor (Tanaka, Y., and Kashiwaya, S. 1995). In

case of normal metal - isotropic s-wave superconductors interfaces, the tunneling

conductance spectra are independent of the crystal orientation, because the local

density of states is the same as the bulk density of states. On the contrary, the

tunneling conductance spectra of normal metal - anisotropic superconductors depend

strongly on the crystal orientation of the superconductor. In particular, for dx2−y2-

wave superconductors junctions with {100} surfaces, the curve of conductance vs

applied voltage is linear at low voltages and peaks at the maximum of the energy

gap. No ZBCP is found for these surfaces. For the junctions with surface orientations
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away from {100}, the conductance spectra contain ZBCPs, indicating as mentioned

earlier the formation of quasiparticle surface bound states at zero energy (Hu, C-R.

1994; Kashiwaya, S., et al., 1996).

Theoretically, a ZBCP should not show up in the tunneling spectra of a normal

metal - dx2−y2-wave superconductor junction with {100} surface orientation, because

the gap values of the two outgoing quasiparticles have the same sign. However, in

many tunneling experiments (Covington, M., et al., 1997; Wei, J. Y. T., et al.,

1998; Iguchi, I., et al., 2000) the conductance spectra of these junctions contain

ZBCPs. This unexpected show of ZBCP may be explained by the fact that the

real junctions are not smooth. The roughness of the surface of the superconductor

causes misorientations relative to the average interface normal and can lead to surface

induced Andreev scattering, which reveals as a ZBCP in the conductance spectra

even for {100} surface orientations (Fogelström, M., et al., 1997; Lück, T., et al.,

2001). In addition, the absence of ZBCP in the conductance spectra of some ab-plane

junctions with the orientations away from {100} is another unexpected experimental

results found in some high temperature superconductors (Cucolo, A. M., et al., 1994,

Wei, J. Y. T., et al., 1998). Also, the height of ZBCP in the tunneling conductance

spectra of the {110} junctions in many tunneling experiments (Alff, L., et al., 1998;

Aubin, H., et al., 2002) is not as high as it should be. The interpretation of this

unexpected absence and small ZBCP in the spectra of {110} junction has not been

clearly made.

In most theoretical studies of the normal metal - dx2−y2-wave superconductor

tunneling spectroscopy, it is assumed for simplicity that the gap function is zero on the

normal side and is finite and independent of the distance measured from the interface

on the superconducting side. That is, both proximity effect and the suppression of

the gap function near the interface, which occurs over a coherence length, are ignored.

This assumption is called the step function model, which is in fact is not quite true,

but at the same time is not far-fetched for cuprates, whose coherence lengths are about
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10-15 Å (Parks, R. D. 1996; Tinkham, M. 1996 ). Therefore, it is interesting to study

how the suppression of the gap near the normal metal and dx2−y2-wave superconductor

interface may affect the feature, like ZBCP, in the tunneling conductance spectra of

dx2−y2-wave superconductors.

This thesis contains the theoretical study of tunneling spectroscopy of dx2−y2-

wave superconductors. In particular, it focuses on the study of the effect of the

gap suppression near the interface on the tunneling spectroscopy of normal metal -

dx2−y2-wave superconductor junctions. This work may be able to help to clarify the

interpretation about the unexpected absence of ZBCP in the tunneling conductance

spectra of {110} junctions.

1.2 Methods and Assumptions

The method used to study the tunneling spectroscopy in this thesis is the so-

called Blonder-Tinkham-Klapwijk (BTK) formalism (Blonder, G. E., et al., 1982).

This formalism is basically a scattering method, which is used to find the reflection and

transmission probabilities of a junction. The basic idea of this method is as follows.

An incident electron comes from the normal side and is reflected and transmitted at

the interface. At the boundary of the normal metal and superconductor, there occur

two reflections and two transmissions processes (see Fig. 1.1). The two reflections

processes are the normal reflection, which reduces the number of electrons crossing

the boundary, and the Andreev reflection, which does the opposite (enhancing the

number of electrons across the junction) (Andreev, A. F. 1964). The two transmission

processes involve the transmission through the interface with a wave vector on the

same side of the Fermi surface and the transmission with a wave vector crossing

through the Fermi surface. The wave function of the normal metal can therefore

be written as the combination of the incoming electron and the two reflections, and

the wave function of the superconductor can be written as the combination of the
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two transmitted excitations. With appropriate matching conditions at the interface,

all the reflection and transmission probabilities can be obtained. The current and

tunneling conductance of the junction can then be calculated from these reflection

and transmission probabilities.

Figure 1.1: Schematic diagram of the directions of reflections and transmissions at

normal metal - superconductor interface (Mortensen, N. A. 1998)

In this thesis, the effect of the gap suppression near the surface on ZBCP

of a normal metal - dx2−y2-wave superconductor junction with {110} orientations

is investigated. Because the dx2−y2-wave superconductors of interest are quasi-two

dimensional, the Fermi surfaces of the superconductors are assumed to be cylindrical

and so are those of normal metals. The real Fermi surface affect other features in the

conductance spectrum but does not affect the ZBCP (Pairor, P., and Walker, M. B.

2002). The proximity effect is ignored in this study and all the calculations are done

at the energy much less than the maximum gap and at zero temperature.
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1.3 Outline of Thesis

This thesis contains the theoretical study of the effect of suppression of the

superconducting gap function at the interface of normal metal and dx2−y2-wave

superconductor. The organization of this thesis is as follows.

In the next chapter, the review of tunneling spectroscopy of normal metal -

dx2−y2-wave superconductor junction at zero temperatures in the step function model

is reviewed. In this model, the gap function is taken to be zero in the normal metal,

and finite and independent of position in the superconductor. The conductance spec-

tra of the junctions with {110} orientation are investigated using this model for later

comparison.

In chapter III, a brief review of the properties of a dx2−y2-wave superconductor

near a surface is given. Also, a formulation to calculate the current and the tunneling

conductance, which includes the effect of the suppression of superconducting gap, is

presented. All the results are obtained at the energy much less than the gap maximum

and at zero temperature. All the results of the calculations are also discussed in details

in this chapter.

The conclusions of this thesis are addressed in chapter IV.



Chapter II

Normal metal - dx2−y2-wave Superconductor

Junctions with {110} Interfaces in the Step

Function Model

2.1 Introduction

In this chapter, the ab-plane tunneling spectroscopy of a normal metal - dx2−y2-

wave superconductor junction with {110} surface orientation is investigated using the

step function model. In particular, the feature that is mainly focussed in the tunneling

spectrum is ZBCP. The factors, on which the width and height of ZBCP depend, will

be studied.

The junction is modelled as an infinite system with the insulating interface

plane being the xy plane at x = 0, as depicted in Fig. 2.1.

Figure 2.1: The sketch of the normal metal - dx2−y2-wave superconductor junction in

the step function model.



8

The x > 0 region is the superconductor, whereas the x < 0 region is the normal

metal. The potential barrier located at the interface is described by a delta function,

U(~r) = Hδ(x), (2.1)

where H represents the strength of barrier. In the step function model, the gap

function is taken to be zero on the normal side and to be finite and independent of

the position on the superconducting side, i.e.,

∆(~k) = ∆d(~k)Θ(x), (2.2)

where Θ(x) is the Heaviside step function. 4d(
~k) = ∆d(θ) = ∆max cos[2(θ − α)],

where θ is the angle between the wave vector on the Fermi surface and the interface

normal vector, and α is the angle between the a-axis of the superconductor and the

Figure 2.2: The sketch of dx2−y2-wave superconductor gap function in the case where

a-axis is tilted with an angle α = π/4. (α is defined in the text.)

interface normal vector.

The orientation of interest is {110}, which corresponds to α = π/4 (see Fig.

2.2), so the gap function of dx2−y2-wave superconductor for this orientation is

4d(θ) = ∆max sin(2θ). (2.3)
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In order to obtain the current and the tunneling conductance, the scattering

probabilities at interface are calculated by using the scattering method known as the

Blonder-Tinkham-Klapwijk (BTK) formalism (Blonder, G. E., et al., 1982). This

method makes use of the following Bogoluibov-de Gennes equations, which are two

coupled Schrödinger equations:

(

− ~
2

2m
∇2 + Hδ(x) − EF

)

u(−→r ) + 4d(θ)Θ(x)v(−→r ) = Eu(−→r ),

4d(θ)Θ(x)u(−→r ) +

(

~
2

2m
∇2 − Hδ(x) − EF

)

v(−→r ) = Ev(−→r ), (2.4)

where EF is the Fermi energy, m is the electron mass, the energy of the quasiparticle

E is measured from the Fermi level, and u(~r), v(~r) are the electron-like and hole-

like components of the wave function respectively. Since the system is translational

invariant along the y direction, the momentum parallel to the interface, ky = kF sinθ,

is conserved.

Assume an electron with the x-component of momentum, q+, is incident on the

interface from the normal side with energy E and it has the direction that makes an

angle θ with the interface normal (see Fig. 2.3 (c)). For each energy E, there are four

possible other states, i.e., the states with the x-component of the momentum equal to

q−,−q+, k+ and −k− respectively, as shown in Fig. 2.3. The states with q− and −q+

are Andreev reflected hole and normal reflected electron respectively. The states with

k+ and −k− are electron-like and hole-like transmitted excitations respectively. So,

the wave function of normal metal side is the combination of the wave functions of

the incident electron, the Andreev reflected hole and normal reflected electron. The

normal metal wave function thus is written as

ΨN(x < 0, y) =













1

0






eiq+x + a







0

1






eiq−x + b







1

0






e−iq+x






eikyy. (2.5)

where a and b are the amplitudes of Andreev and normal reflections, respectively.
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Figure 2.3: Schematic diagrams of (a) excitation energy E vs the x-component, qx,

of the wave vector of the normal metal and (b) the quasiparticle energies with the x-

component, kx, of the wave vector of the superconductor. The full dots (•) represent

electron-like quasiparticles and open dots (◦) represent hole-like quasiparticles. The

associated arrows in (a), (b) and (c) point in the direction of group velocity and a, b,

c, and d are the amplitudes representing the Andreev reflection, the normal reflection,

the same branch transmission and the cross-branch transmission respectively.

The wave function of the superconductor side is the combination of the two trans-

mitted excitations. That is,

ΨS(x > 0, y) =






c







uk+

vk+






eik+x + d







u−k−

v−k−






e−ik−x






eikyy. (2.6)

where c and d are the amplitudes of two transmissions. uk and vk are the electron-like

and hole-like quasiparticle excitation amplitudes and are defined as

uk =
E + ξk

√

|E + ξk|2 + |∆d(θ)|2
, (2.7)

vk =
∆d(θ)

√

|E + ξk|2 + |∆d(θ)|2
, (2.8)
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so that |uk|2 + |vk|2 = 1. E is the quasiparticle energy in the bulk of superconductor

and ξk is the one-electron energy of the state k relative to the fermi level in the normal

state. The relation between E, ξk and ∆d(θ) is

E2 = ξ2
k + ∆2

d(θ), (2.9)

In the case where α = π/4, ∆−k+ = −∆k+ for all wave vector k. Also, ξ−k = ξk and

ξk± = ±ξk. Thus, define

uk+ ≡ uk, vk+ ≡ vk, (2.10)

and as a consequence,

u−k− = vk, v−k− = −uk, (2.11)

Then the wave function of the superconductor becomes

ΨS(x > 0, y) =






c







uk

vk






eik+x + d







vk

−uk






e−ik−x






eikyy. (2.12)

Since the energy range of interest is of order meV, which is the order of energy

gap and is usually much smaller than the Fermi energy, so approximately q+ = q− =

qx and k+ = k− = kx, where qx = qF cos θ and kx = kF cos θ, respectively. The

amplitudes a, b, c and d are found by using the matching condition of the two wave

functions and the slopes of the wave functions at the interface. These matching

conditions are as follows:

(i) Continuity of wave function at interface

ΨS(x = 0) = ΨN(x = 0) ≡ Ψ(0), (2.13)

(ii) The discontinuity of the slopes of the junction at the interface

∂ΨS

∂x

∣

∣

∣

∣

x=0+

− ∂ΨN

∂x

∣

∣

∣

∣

x=0−
= 2Z kF Ψ(0), (2.14)

where Z = mH
~2 kF

is the unitless parameter that characterizes the barrier strength of

the junction.
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For simplicity, the magnitudes of the Fermi wave vectors of both normal metal

and superconductor are taken to be the same, i.e., qF = kF . The unequal Fermi wave

vectors leads to the same consequence as the increase in Z. Therefore, the amplitudes

of two reflections and two transmissions are

a(E, θ) =
−4ukvk cos2 θ

−u2
k(4 cos2 θ + 4Z2) − 4Z2v2

k

,

b(E, θ) =
(u2

k + v2
k)(−4iZcosθ − 4Z2)

−u2
k(4 cos2 θ + 4Z2) − 4Z2v2

k

,

c(E, θ) =
−2uk cos θ(2 cos θ − 2iZ)

−u2
k(4 cos2 θ + 4Z2) − 4Z2v2

k

,

d(E, θ) =
−4iZvk cos θ

−u2
k(4 cos2 θ + 4Z2) − 4Z2v2

k

. (2.15)

The magnitude of the current density of electron defined as

|J | = |Ψ†Ψvk|, (2.16)

where vk = 1
~

dE
dkx

is the group velocity in the x direction and Ψ† is the adjoint of the

wave function Ψ. The Andreev and normal reflection probabilities are defined as

A(E, θ) =

∣

∣

∣

∣

JRefl(a)

JInc

∣

∣

∣

∣

= |a(E, θ)|2
∣

∣

∣

∣

q−

q+

∣

∣

∣

∣

= |a(E, θ)|2,

B(E, θ) =

∣

∣

∣

∣

JRefl(b)

JInc

∣

∣

∣

∣

= |b(E, θ)|2
∣

∣

∣

∣

−q+

q+

∣

∣

∣

∣

= |b(E, θ)|2. (2.17)

The two transmission probabilities are equal to

C(E, θ) =

∣

∣

∣

∣

JTran(c)

JInc

∣

∣

∣

∣

= |c(E, θ)|2(|uk|2 − |vk|2)
∣

∣

∣

∣

k+

q+

∣

∣

∣

∣

= |c(E, θ)|2(|uk|2 − |vk|2),

D(E, θ) =

∣

∣

∣

∣

JTran(d)

JInc

∣

∣

∣

∣

= |d(E, θ)|2(|uk|2 − |vk|2)
∣

∣

∣

∣

−k−

q+

∣

∣

∣

∣

= |d(E, θ)|2(|uk|2 − |vk|2).

(2.18)

The conservation of probability current density requires

A(E, θ) + B(E, θ) + C(E, θ) + D(E, θ) = 1, (2.19)

In the case where the quasiparticle energy is much less than the maximum gap (E �

∆max), C(E, θ) = D(E, θ) = 0 and therefore

A(E, θ) + B(E, θ) = 1, (2.20)
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Thus, for E � ∆max, the number of electrons tunneling across the junction per one

incident electron in the tunneling limit is

1 + A(E, θ) − B(E, θ) = 2A(E, θ) =
2(Pk∆d(θ)

2
)2

E2 + (Pk∆d(θ)
2

)2
, (2.21)

This yields a Lorentzian-shaped peak at zero energy with the width equal to Pk∆d(θ)
2

,

where Pk is the probability of tunneling across the junction

Pk =
cos2(θ)

Z2 + cos2(θ)
. (2.22)

Figure 2.4 (a) shows the plots of 1 + A(E) − B(E) at different incident angle

θ. The peak of 1 + A(E) − B(E) = 2 appears at zero energy for all value of θ. It

is not surprising that at E = 0 the number of the electrons crossing the junction is

2, because at this energy the Andreev reflection process, in which 2e is transferred

into the superconductor (forming a cooper pair) is the only possible process. For the

same junction transparency, the width of 1 + A(E) − B(E) depends on the value

of the gap at each incident angle, ∆d(θ). At the same incident angle, the width of

1+A(E)−B(E) is proportional to Pk, which is inversely proportional to Z2 (see Fig.

2.5)
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Figure 2.4: (a) The plots of 1 + A(E) − B(E) at different incident angles θ =

π/3, π/4, π/6, π/8 for Z = 2. (b) The angle θ dependence of dx2−y2-wave super-

conducting gap. (c) The angle θ dependence of the probability of tunneling across

the junction.

.
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Figure 2.5: The plots of 1 + A(E) − B(E) for different Z = 1.5, 2, 3 at θ = π/3.

2.2 The Tunneling Current and Tunneling Conductance

In a two dimensional system, the general relation for current density in the

x-direction across the junction is given by

J =
∑

kx,ky

nkvke, (2.23)

where vk is the group velocities, e is the electron charge and nk=(1+A(E)−B(E)f(E),

and f(E) is the Fermi Dirac distribution function. The current flowing across junction

from normal metal to dx2−y2-wave superconductor with applied voltage V is therefore

IN→S =
L2e

4π2~

∫ +∞

−∞

∫ +∞

−∞

dkydE(1 + A(E, θ) − B(E, θ))f(E − eV ). (2.24)

and similarly the current flowing across junction from dx2−y2-wave superconductor to

normal metal is

IS→N =
L2e

4π2~

∫ +∞

−∞

∫ +∞

−∞

dkydE(1 + A(E, θ) − B(E, θ))f(E). (2.25)
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Thus, the net current crossing the junction is

I(eV, θ) = IN→S − IS→N

=
L2e

4π2~

∫ +∞

−∞

∫ +∞

−∞

dkydE(1 + A(E, θ) − B(E, θ))(f(E − eV ) − f(E)),

(2.26)

Since ky = kF sin θ and then dky = kF cos θdθ. So,

INS(eV, θ) =
L2ekF

4π2~

∫ +π/2

−π/2

dθ cos θ

∫ +∞

−∞

dE(1+A(E, θ)−B(E, θ))(f(E−eV )−f(E)).

(2.27)

By the same token, the total current flowing across the normal metal - normal metal

jucntion is

INN(eV, θ) =
L2ekF

4π2~

∫ +π/2

−π/2

dθ cos θ

∫ +∞

−∞

dE(1 − B(θ)(f(E − eV ) − f(E)), (2.28)

where B(θ) is the reflection probability of the normal metal - normal metal junction.

Note that at zero temperature f(E − eV ) become a step function, i.e.,

f(E − eV ) − f(E) =

{

1 E > eV,

0 E < eV,
(2.29)

The normalized tunneling current with applied voltage is defined as

I(eV, θ) =
INS(eV, θ)

INN(eV, θ)
, (2.30)

At zero temperature, the normalized tunneling current is

I(eV, θ) =

∫ +π/2

−π/2
dθ cos θ

∫ +∞

−∞
dE(1 + A(E, θ) − B(E, θ))

∫ +π/2

−π/2
dθ cos θ

∫ +∞

−∞
dE(1 − B(θ))

. (2.31)

The tunneling conductance of the normal metal - dx2−y2-wave superconductor junction

is the derivative of the current tunnel across junction with respect to the applied

voltage

GNS(eV, θ) =
dINS(eV, θ)

dV
, (2.32)

The tunneling conductanc of normal metal - normal metal junction is

GNN(eV, θ) =
dINN(eV, θ)

dV
, (2.33)
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So, the normalized conductance of the junction is defined as the ratio of the tunneling

conductance of normal metal - dx2−y2-wave superconductor junction to the tunneling

conductance of normal metal - normal metal junction:

G(eV, θ) =
GNS(eV, θ)

GNN(eV, θ)
, (2.34)

At zero temperature, the normalized tunneling conductance is becomes

G(eV, θ) =
GNS

GNN

=

∫ +π/2

−π/2
dθ cos θ(1 + A(E, θ) − B(E, θ))
∫ +π/2

−π/2
dθ cos θ(1 − B(θ))

. (2.35)

Figure 2.6 shows the plots of the normalized tunneling conductance vs

quasiparticle energy E for different value of Z. All the spectra contain peaks at zero

energy with different widths and heights. When the strength of barrier increases the

width of ZBCP decreases, whereas its height is enhanced.
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Figure 2.6: (a) The plots of the normalized conductance as a function quasiparticle

energy E for different barrier strengths Z= 1.5, 2, 3 at T = 0. (b) The plots of the Z

dependence of the height of ZBCP. (c) The plots of the Z dependence of the width

of ZBCP.
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2.3 Conclusions

In this chapter, the ab-plane tunneling spectroscopy of a normal metal - dx2−y2-

wave superconductor junction with {110} surface orientation is investigated using

the step function model and the BTK formalism. According to this model, the

conductance spectrum of {110} junction should always contain a ZBCP. This peak

is due to the Andreev bound states. Its height and width depend strongly on the

transparency of the junction, as show in the plots in Fig. 2.6 (b) and (c). The ZBCP

of the junctions with lower transmission has higher height but narrower peak.



Chapter III

The Effect of the Gap Suppression on ZBCP of

{110} Junctions

3.1 Introduction

The suppression of energy gap of anisotropic superconductors at most surfaces

are due to pair breaking. In particular for dx2−y2-wave superconductors, because the

quasiparticles are scattered to branches with different gap values, the pairing can be

suppressed and if the different gap values are opposite in sign, zero-energy surface

bound states can be formed.

For smooth surfaces, the suppression of dx2−y2-wave superconducting gap

depends on the orientation angle of interface α, which is the angle between the a-axis

and the surface normal. Because the α = 0 case is analogous to the isotropic s-wave

case and corresponds to {100} surface, the gap amplitude is not suppressed at surface

(see Fig. 3.1).

Figure 3.1: The plot of energy gap as a function of x/ξ0 for a smooth α = 0 surface

(Lück, T., et al., 2001).
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For {110} surfaces (α = π/4) the gap amplitude is completely suppressed at

interface as shown in Fig. 3.2 (Buchholtz, L. J., et al., 1995; Lück, T., et al., 2001).

Figure 3.2: The plot of energy gaps as function of x/ξ0 for a smooth α = π/4 surface

(Lück, T., et al., 2001).

For rough surfaces, the gap function of {100} surface can be suppressed (see

Fig. 3.3). The rougher the surface is, the more suppressed the gap can be (Buchholtz,

L. J., et al., 1995; Barash, Yu. S., et al., 1997; Lück, T., et al., 2001). For rough

{110} surfaces, the gap suppression is no longer complete as shown in Fig. 3.4 (Lück,

T., et al., 2001).

Figure 3.3: The plots of energy gaps for a α = 0 surface as a function of x/ξ0 for

several values of surface roughness (τ) (Lück, T., et al., 2001).
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Figure 3.4: The plots of energy gaps for a α = π/4 surface as a function of x/ξ0 for

several values of the surface roughness (τ) (Lück, T., et al., 2001).

This chapter contains study of the ab-plane tunnelling spectroscopy of a

normal metal - dx2−y2-wave superconductor junction with {110} surface orientation

using a model that includes the suppression of superconducting gap near interface.

The effect of the different degrees of suppression on ZBCP is investigated using the

BTK formalism. In the next section, the model used to describe the gap near the

surface is explained. This section also includes the calculation of all the reflection

and transmission coefficients in the framework of the BTK formalism, as well as the

calculation of the conductance. Section 3.3 contains the discussion of the effect of the

gap suppression on the ZBCP. In section 3.4, the concluding remarks is given.

3.2 The BTK Formalism with the Gap Suppression

The model used to represent a normal metal - dx2−y2-wave superconductor

junction in this chapter is similar to that in the previous chapter. The only difference

is that the gap is no longer a step function. It is taken to be dependent on x as

4(~k, x) = ∆d(θ, x) = 4d0(θ, x) +

(

∆d(θ, x) − ∆d0(θ, x)

)

tanh(
x√
2ξl

), (3.1)

where ∆d0(θ, x) = ∆0
max sin(2θ) is the dx2−y2-wave superconducting gap at interface,

4d0(θ, x) = 4max sin(2θ) is the gap in the bulk, and ξl = ~vF /∆max is the coherence
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length.

Figure 3.5: The sketch of the normal metal - dx2−y2-wave superconductor junction

with the gap suppression.

In order to obtain the tunnelling conductance spectra of junction, the

scattering probabilities are calculated by using the Boliubov-de Gennes equation,

where 4(~k, x) is defined in Eq. 3.1. There are 3 regions in this model, as shown in

Fig. 3.5.

Region I, x < 0, the wave function in this region is

ΨN(x < 0, y) =













1

0






eiq+x + a







0

1






e−iq−x + b







1

0






e−iq+x






eikyy. (3.2)

where a, b are the amplitudes of Andreev and normal reflections, respectively.

Region II, 0 < x < x0, where x0 =
√

2Eξl/∆max, the wave function is

ΨS1(x > 0, y) =





c1







uk

vk






eik+x + d1







−vk

uk






e−ik−x + c2







uk

−vk






e−ik+x + d2







vk

uk






eik−x






eikyy.

(3.3)

where c1, d1 are the amplitudes of the two transmitted excitations, and c2, d2 are the

amplitudes of the two reflected excitations respectively.
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Region III, x > x0, the wave function is

ΨS2 =






c







uk

vk






eik+x + d







−vk

uk






e−ik−x






eikyy. (3.4)

where c, d are the amplitudes of the two transmitted excitations.

The amplitudes a, b, c1, d1, c2, d2, c, d are obtained by using the matching

conditions of the wave functions and of the slopes of the wave function at x = 0 and

x = x0. These matching conditions are as follows:

ΨN(x = 0) = ΨS1(x = 0) ≡ Ψ(0),

∂ΨS1

∂x

∣

∣

∣

∣

x=0+

− ∂ΨN

∂x

∣

∣

∣

∣

x=0−
=

2mH

~2
Ψ0,

ΨS1(x = x0) = ΨS2(x = x0),

∂ΨS1

∂x

∣

∣

∣

∣

x=x0

=
∂ΨS2

∂x

∣

∣

∣

∣

x=x0

. (3.5)

With these boundary conditions, the approximation ∆d(θ, x) � EF and kF = qF , the

reflection and transmission amplitudes can be obtained as follows:

a(E, θ) =
(2i cos θ

kF
)(ukv

′
k − v′

kuk) − 4ukvk cos2 θ

−(
v′2

k
+u′2

k

k2
F

) − 4v2
kZ

2 − 4u2
k(cos

2 θ + Z2) + 4Z
kF

(vkv′
k − uku′

k)
,

b(E, θ) =
4iZ(v2

k − u2
k) + 2i cos θ+4Z

kF
(vkv

′
k + uku

′
k) − (

v′2
k

+u′2
k

k2
F

) − 4Z2(u2
k + v2

k)

(
v′2

k
+u′2

k

k2
F

) + 4v2
kZ

2 + 4u2
k(cos

2 θ + Z2) − 4Z
kF

(vkv′
k − uku′

k)
,

c1(E, θ) =

−2iu′
k

cos θ

kF
− 4uk cos θ(cos θ − iZ)

−(
v′2

k
+u′2

k

k2
F

) − 4v2
kZ

2 − 4u2
k(cos

2 θ + Z2) + 4Z
kF

(vkv′
k − uku′

k)
,

d1(E, θ) =
(

2iv′
k

cos θ

kF
) − 4ivkZ cos θ

(
v′2

k
+u′2

k

k2
F

) + 4v2
kZ

2 + 4u2
k(cos

2 θ + Z2) − 4Z
kF

(vkv′
k − uku′

k)
,

c2(E, θ) = 0,

d2(E, θ) = 0,

c(E, θ) =

−2iu′
k

cos θ

kF
− 4uk cos θ(cos θ − iZ)

−(
v′2

k
+u′2

k

k2
F

) − 4v2
kZ

2 − 4u2
k(cos

2 θ + Z2) + 4Z
kF

(vkv′
k − uku′

k)
,

d(E, θ) =
(

2iv′
k

cos θ

kF
) − 4ivkZ cos θ

(
v′2

k
+u′2

k

k2
F

) + 4v2
kZ

2 + 4u2
k(cos

2 θ + Z2) − 4Z
kF

(vkv′
k − uku′

k)
, (3.6)
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where u′
k = ∂uk

∂x

∣

∣

∣

∣

x=0

and v′
k = ∂vk

∂x

∣

∣

∣

∣

x=0

.

The probabilities A(E), B(E), C1(E), D1(E), C2(E), D2(E), C(E), D(E) are thus

A(E, θ) = |a(E, θ)|2|q
−

q+
| = |a(E, θ)|2,

B(E, θ) = |b(E, θ)|2|−q+

q+
| = |b(E, θ)|2,

C1(E, θ) = |c1(E, θ)|2(|uk|2 − |vk|2)|
k+

q+
| = |c1(E, θ)|2(|uk|2 − |vk|2)|,

D1(E, θ) = |d1(E, θ)|2(|uk|2 − |vk|2)|
−k−

q+
| = |d1(E, θ)|2(|uk|2 − |vk|2)|,

C2(E, θ) = 0,

D2(E, θ) = 0,

C(E, θ) = |c(E, θ)|2(|uk|2 − |vk|2)|
k+

q+
| = |c(E, θ)|2(|uk|2 − |vk|2)|,

D(E, θ) = |d(E, θ)|2(|uk|2 − |vk|2)|
−k−

q+
= |d(E, θ)|2(|uk|2 − |vk|2)|. (3.7)

The current and tunnelling conductance of the junction can then be calculated

from these probabilities. The conservation of probabilities current density requires

A(E, θ) + B(E, θ) + C1(E, θ) + D1(E, θ) + C2(E, θ)

+ D2(E, θ) + C(E, θ) + D(E, θ) = 1, (3.8)

In the case where the quasiparticle energy is much less than the maximum gap,

C1(E, θ) = D1(E, θ) = C(E, θ) = D(E, θ) = 0. Thus the relation in Eq. 3.8 becomes

A(E, θ) + B(E, θ) = 1. (3.9)

Then the normalized tunnelling conductance of the normal metal - dx2−y2-wave

superconductor junction at zero temperature can be written as

G(eV, θ) =
GNS

GNN

=

∫ +π/2

−π/2
dθ cos θ(1 + A(E, θ) − B(E, θ))
∫ +π/2

−π/2
dθ cos θ(1 − B(θ))

. (3.10)
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Figure 3.6: The plots of the two reflection coefficients for Z = 2 and θ = π/3 : (a)

∆0
max = 1.0∆0

max, (b) ∆0
max = 0.5∆max, and (c) ∆0

max = 0.
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Fig. 3.6 shows the plots of the Andreev and normal reflection coefficients as

a function of energy for Z = 2, θ = π/3, and different values of the energy gap

at the interface, ∆0
max. In the case where ∆0

max = ∆max (no gap suppression) and

∆0
max = 0.5∆max (some suppression) as shown in Fig. 3.6 (a) and (b) respectively, it

is found that the Andreev reflection peaks at zero energy. The width of the Andreev

reflection coefficient depends on the degree of the suppression, i.e., the more the

suppression the narrower the peak. As for the case where the suppression is complete,

∆0
max = 0, as shown in Fig. 3.6 (c), the Andreev reflection is zero at zero energy. The

absence of the Andreev reflection at zero energy indicates that there is no ZBCP in

the tunnelling spectrum in the total suppression case, as will be seen shortly.

Z = 2

∆
0
max = 0

∆
0
max = 0.2∆max

∆
0
max = 0.6∆max

∆
0
max = ∆max

E/∆max

Normalized conductance

N
or

m
al

iz
ed

co
nd

uc
ta

nc
e

-0.2 -0.1 0.0 0.1 0.2

5

10

15

20

Figure 3.7: The normalized conductance spectra for Z = 2 and different values of

maximum gap at interface, ∆0
max.
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Fig. 3.7 shows the plots of zero-temperature normalized conductance spectra

as a function of applied voltage for Z=2 and different values of the energy gap at the

interface, ∆0
max. In all cases except one, the ZBCP is present. Different degrees of

the gap suppression at the interface lead to different widths of the ZBCP. That is, the

smaller ∆0
max, the narrower the ZBCP. The ZBCP does not exist in the case where

the gap is totally suppressed at the interface. The reason for the absence ZBCP in

this case will be discussed more details in the next section.

3.3 Discussions

As can be seen in the previous section, the characteristics of the ZBCP in

the conductance spectrum of {110} junctions depend strongly on the degree of the

gap suppression at the interface. ZBCP is absent unless the gap is not completely

suppressed. The existence of the ZBCP in {110} junctions of a dx2−y2-wave supercon-

ductor is due to the formation of zero-energy surface bound states (Hu, C-R. 1994;

Kashiwaya, S., et al., 1996). These surface bound states are a linear combination of

two scattered quasiparticles that have the gap values of opposite sign. The absence

of the ZBCP implies that these bound state are not formed and this seems impossible

because for {110} junctions the gaps of the two quasiparticles always have opposite

signs (see Fig. 3.8). So, the condition for the formation of the zero-energy surface

bound states should be looked at more closely.
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Figure 3.8: The energy gaps of both transmitted excitations for α = π/4 for every

quasiparticle trajectory, −π/2 < θ < π/2.

Consider a dx2−y2-wave superconductor-vacuum interface. The wave function

of a bound state can be written as a combination of two quasiparticle excitations, as

follows:

ΨS(x > 0, y) =













uκ+

vκ+






e−κ+x + R







u−κ−

v−κ−






e−κ−x






eiκy,

uκ+ = E − i
√

∆2
κ+ − E2,

vκ+ = ∆κ+ ,

u−κ− = E + i
√

∆2
−κ− − E2,

v−κ− = ∆−κ− ,

κ± =

√
2m

~

√

EF ±
√

∆2
κ± − E2, (3.11)

where R is reflection amplitude. The surface bound state has the energy less than

the smaller of the two gaps: ∆κ+ and ∆−κ− . At the interface, the condition is that

Ψs(x = 0) = 0. Thus, the energy satisfies one of the following equation,

E = ±|∆±κ± |, ∆κ+(x = 0)

|∆κ+(x = 0)| =
∆−κ−(x = 0)

|∆−κ−(x = 0)| , (3.12)

or

E = 0,
∆κ+(x = 0)

|∆κ+(x = 0)| =
−∆−κ−(x = 0)

|∆−κ−(x = 0)| . (3.13)
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The former equation is not acceptable, since it does not lead to a bound state. The

latter is the solution for a bound state with zero energy, and the condition for this

bound state to exist is that the gaps of the two quasiparticles must have the opposite

sign at x = 0. When the gaps of the two quasiparticles are zero at x = 0, the wave

function vanishes and consequently there are no zero-energy bound states.

3.4 Conclusions

In this chapter, the effect of the gap suppression on the tunneling conductance

spectra of normal metal - dx2−y2-wave superconductor {110} junctions is investigated

using the BTK formalism. It is found that the degree of the gap suppression at the

interface strongly affects the characteristics of ZBCP. The more suppressed the gap

is, the narrower the ZBCP. If the gap is totally suppressed the conductance spectrum

does not contain ZBCP. This finding may be used to explain the absence of ZBCP

in many tunneling experiments done in high temperature cuprate superconductors

(Cucolo, A. M., et al., 1993; Kane, J., and et al., 1994; Kane, J., and Ng, K.-W.

1996; Wei, J. Y. T., et al., 1998). The degree of the gap suppression depends on

many factors, such as the junction orientation (Buchholtz, L. J., et al., 1995; Alber,

M., et al., 1996) and surface roughness (Alber, M., et al., 1996; Lück, T., et al.,

2001).



Chapter IV

Conclusions

This thesis contains the study of the tunnelling spectroscopy of a normal metal

- dx2−y2-wave superconductor {110} junction. In this thesis, the current and the

tunneling conductance of the junctions are obtained using the scattering method

called the BTK formalism. All the calculations are carried out in the tunneling limit

at zero temperature and over the energy rang that is much smaller than the gap

maximum of the bulk. The main feature of interest is ZBCP. The results of this

study may help explain the absence of ZBCP in some ab-plane tunneling spectra of

high temperature cuprate superconductors.

In the model without the gap suppression, it is found that the height of ZBCP

is proportional to the square of the barrier strength, whereas the width is inversely

proportional to the square of the barrier strength. Once the gap suppression is in-

cluded into the calculations, it is found that, in addition to the dependence on the

barrier strength, the height and width of ZBCP depend on the magnitude of the gap

at the interface as well. It is also found that ZBCP can be absent if the value of the

gap at the interface is zero (total suppression). This finding can be used to explained

the absence of ZBCP in many tunneling experiments done on the ab-plane tunneling

junctions of many high temperature superconductor (Cucolo, A. M., et al., 1994,

Wei, J. Y. T., et al., 1998).

The degree of the gap suppression depends on many factors, for example, the

interface orientation (Buchholtz, L. J., et al., 1995) and the roughness of the surface

(Alber, M., et al., 1996; Lück, T., et al., 2001). In the future work, it is interesting

to study the effect of the orientation as well as the roughness on the ZBCP. Other
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methods of calculations may be needed to do this study. It is also interesting to study

the proximity effect on the tunneling spectra of dx2−y2-wave superconductor, because

there are many tunneling experiments done with thin layers of normal metals. These

future studies may make the interpretation of the tunneling conductance spectra of

high temperature superconductors better.
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