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CHAPTER 1

INTRODUCTION

Since its beginning nearly two hundred years ago, Fourier analysis has be-
come an important tool in various fields of science, engineering and mathematics,
for example, in signal processing, image processing and solutions of differential
equations. Its idea is to consider a given function as an infinite series or as on
integral of basic, periodic functions.

For example, let f(z) be a 2L-periodic, locally integrable function. The

Fourier coefficients of f(x) are given by

—iT

. 1 [F e
fo) =5 [ pa)e an

iTnT

If f is square integrable on [—L, L], then as {\/%e 2 }neZ is an orthonormal

basis of L2[—L, L], the Fourier coefficients f(n) are just constant multiples of the

coefficients of f in this basis,

< 1 ]. iTnT
n)= <, e L >,
f(n) 5T f 57

and we can reconstruct f from its Fourier coefficients,

fla) =" f(n)e (1.1)

nel

with convergence in L?[—L, L]. In applications of signal processing for example,
f (n) is interpreted as the contents of frequency 57 in the periodic signal f(z).

There are some drawbacks with the Fourier series approach:

1. A function f, which is neither periodic nor compactly supported, cannot be

expressed as an infinite series as in (1.1).



2. If we shift f by y and consider the function g,(x) = f(z—y), then the Fourier

—1

coefficients become §(n) = f(n)e T

. This means that the magnitude of
the Fourier coefficients does not change, but only their phase does. From the
magnitude of the Fourier coefficients we thus do not know where the support

of f is located.

3. In particular, if f(z) has steep gradients or is discontinuous at a point a,
then we cannot deduce from the Fourier coefficients f(n) where this point is

located.

These problems can be overcome by the wavelet series as introduced by
Daubechies, Grossmann and Meyer (1986), and Daubechies (1988).

Fix ¢ € L*(R), and consider the family of functions {¢jm)};mez, where
Yimy) () = V20(2x —m)

is obtained from v by dilations and translations. The wavelet coefficients of f €

L*(R) are defined by the inner product

Wy Gom) = 272 [ (a0 —m) da.
R
If {¢(j,m)}jmez is an orthonormal basis of L*(R), then by Parseval’s identity, f
can be reconstructed from its wavelet coefficients by

F=" Wy f(G,m)dgm,

JmEZL

with convergence in the mean square norm. The problem now is to find a function
1, called a mother wavelet, such that the family {t(jm)};mez is an orthonormal
basis of L*(R). For this, one usually uses the method of multiresolution analysis,
as first introduced by Mallat (1989).

A multiresolution of analysis on L?(R) is a sequence of subspaces {V,};cz

of L?(R) satisfying the following properties:



(M1) - V; TV for all j € Z,

(M2) : U V; is dense in L*(R),

JEZ
(M3) = (V5 = {0},

JEL '
(M4) - f(x) € Vp if and only if f(2'x) € V}, for all j,
(M5) : There exists a function ¢(z) € L*(R), called the scaling function, such
that the collection {¢(x —m)}.,ez of integer translates is an orthonormal basis of
Vo.

It turns out that given a multiresolution analysis, the function ¢ defined

by
w = Z (_1)mh1—m501,m7

meZ

where h,, =< ¢, p1, >, is a mother wavelet.
There is an efficient algorithm to compute the wavelet coefficients
Wy f(j,m), called the pyramidal algorithm. It makes use of the fact that, for

each dilation parameter j, we have a decomposition

Vi=Via® W,

where W;_y = span{¢(;_1,m)} Fix f € L*(R) and let f; denote the projection

meZ’

of f onto Vj. Since {@(jm)}mez is an orthonormal basis of V;, then

Fi = cim@Gm)

mMEZL

where ¢;,, =< f, p(;m) > are called the scaling coefficients of f at scale j. On the
other hand, since {©(j—1,m) }mez and {¥(j_1,m)}mez are orthonormal bases of V;_4
and W;_y, respectively, then

fi= D Cimtm®limtm + Y dictmtG-1m),

meEZ MEZ

where ¢;_1 ., =< f,0(-1,m) > and dj_1, = Wy f(j —1,m) =< f,-1,m) > are

the scaling coefficients, respective wavelet coefficients, of f at scale 7 — 1. The



pyramidal algorithm allows their computations from the scaling coefficients at

scale j by

Ci—1n = E hm—2n Cjm,

meZ

djfl,n = Z(—l)mhkmﬂncj,m-

meZ

In reverse, the scaling coefficients at scale j can be obtained from the scaling and
wavelet coefficients at scale j — 1 by

Cjn = Z (¢jmtmhn—2m + dj—1,m(=1)"h1_pmyan ) -

MEZ

Note that if the scaling function ¢ has compact support, then only finitely many
terms in these sums are nonzero.

A natural generalization of wavelets to R” is as follows. Fix an expanding
matrix A € G L, (R) with integer entries, and find ¢ € L*(R") such that {| det A|//2
V(A2 —m)}jezmezn is an orthonormal basis for L?(R™). The wavelet coefficients

of f € L?(R") are then defined by
Wyf(j,m) = [det AP [ f(2)(ATz —m) dr,
R
forx € R",j € Z,m € Z". Then,
f@)=" 3 WufGm)det AP2Y(Aw —m), (v €R)
JEL MEL™
with convergence in L?(R™). So the main problem is to find a function ¢ whose

dilates and translates form an orthonormal basis of L?(R").

The questions which naturally arise are:

1. Can one generalize the concept of multiresolution analysis to this multi-
dimensional setting, and obtain a function v so that {|det A|//?¢(Alz —

m)}jezmezn 1s an orthonormal basis of L*(R™)?



2. If yes, is there still a simple algorithm to compute the wavelet coefficients

generalizing the Pyramidal algorithm?

In this thesis, we extend the definition of multiresolution analysis to L?(R?).
It turns out that we will need a family {¢"},cxr of mother wavelets, where the set
R has cardinality |det A| — 1. Furthermore, we need to impose one additional
condition on the scaling coefficients {cy , }mez2 of the scaling function. We also
show that the pyramidal algorithm extends to L?(R?) in a natural way. For ease of

notation, we restrict our investigation to the space L?(IR?), however, all our results

should be easily extendable to L*(R™).

This thesis is organized as follows. In chapter II, we review the basic con-
cepts and theorems from real analysis and Fourier analysis which are required in
this thesis. In chapter III, we present the well-known construction of a wavelet
basis from a multiresolution analysis. In chapter IV, we then extend the definition
of multiresolution analysis to L?*(R?), and prove that one can obtain a wavelet
basis on L?*(R?) from such a multiresolution analysis. We present as an example

the construction of Haar wavelets on L?*(R?).



CHAPTER 11

BACKGROUND

In this chapter, we review the basic concepts from real analysis and Fourier
Analysis used in this thesis. Detailed proofs can be found in most standard text-

books, such as Folland (1999) or Cohn (1980), for example.

2.1 The Lebesgue Integral

In this section, we review concepts from measure theory and the
construction of the Lebesgue integral. We then introduce the function spaces

which we will be working with.

Definition 2.1. Let X be a set. A collection M of subsets of X is called a

o-algebra if the following hold:
1. 0eM,XeM,
2. § € M implies X\S € M,

3. 81.8s,... € M implies | | S, € M.

n=1

The elements of M are called measurable sets and the pair (X, M) is called a

measurable space.

Definition 2.2. Let F be a collection of subsets of X. There exists a smallest

o-algebra containing F, called the o-algebra generated by F.



Definition 2.3. Let X be a topological space. The o-algebra generated by the
family of open sets is called the Borel o-algebra on X, denoted Bx. Its elements

are called B-measurable sets or Borel sets.

Definition 2.4. Let M be a o-algebra of subsets of X. A measure on M is a

function p : M — [0, 00] having the following properties:
1. pu(0) =0,

2. if {E,}55, is sequence of disjoint measurable set, then

The triple (X, M, ) is called a measure space.

A measure space (X, M, u) is called complete if whenever E C A € M and
w(A) =0, then E € M (and therefore u(E) =0).

(X, M, n) is called a o-finite measure space if there erists a countable collection

{E,}50, C M such that (E,) < oo ¥n and X = U E,.
n=1

The measure which we will be working with is the Lebesgue measure on

R™.
Definition 2.5. An n-dimensional interval in R™ is defined by
I=1 xIx...xI,

where Iy, Is, ..., I, are intervals in R. I is called open (or closed) if each I; is open

(or closed) in R. If I is bounded, then its n-dimensional volume is defined by

vol(I) = H(bi — a;)

where a;, b; are the left and right end points of I;.



Definition 2.6. Let E C R" be an arbitrary set. Then

A (E) = inf {Z vol(1;) : I; is an open n-interval, E C UL}
i=1

i=1
is called the Lebesgue outer measure of E. A set A C R" is called Lebesgue-

measurable if for every E C R",
N(E)=X(ENA)+ \(ENA°.

Proposition 2.1. Let My, = {A C R" : A is Lebesgue-measurable} and set

AA) = N (A) VA € M. Then
1. M, is a o-algebra,
2. (R", My, A) is a complete o-finite measure space,
3. Brn C M.

We note that X is called the Lebesgue measure and My the o-algebra of
Lebesgue measurable subsets of R™. Next we define the notions of measurable
function and Lebesgue integral. Throughout, (X, M, u) will denote a measure

space.

Definition 2.7. Let S C X with S € M. Let R* = RU {—00,00}. We call a
function f : .S — R* extended real valued, and say that it is M-measurable if for
all c € R,

{res: f(x) <c}eM.

A complex-valued function f : S — C is called M-measurable if Re(f) and Im(f)

are M-measurable.

Definition 2.8 (Lebesgue Integral). Let (X, M, 1) be a measure space.



" 1 if ze A
. Let ¢, = Z arxr where x4, (z) = , A € M are disjoint,

k=1 0 if x¢ A

ar > 0. @ is called a non-negative measurable simple function. Its integral

is defined to be

/ o dpp =Y appi(Ay).
X k=1

This integral is independent of the choice of the sets Ayg.

. Let f: X — [0,00] be M-measurable. By the structure theorem for mea-
surable function, there exists an increasing sequence {,} of non-negative,
finite-valued measurable simple functions converging pointwise to f. We

define the integral of f by

n—oo

/ fdu = lim On dit.
X b's

This integral is independent of the choice of the functions ¢,,, and is either

a non-negative real number, or infinity.

. Let f : X — R* be Lebesgue measurable and set f* = max{0, f}, f~ =
—min{0, f}. Then f*, f~ are measurable and non-negative. The Lebesgue

integral of f is defined by

/deuz/xfwu—/xf—du

provided that [, f*dpu, [ f~ du are not both co. f is called integrable if

| « fdp is defined and is finite.

. A function f : X — C is called integrable if Re(f) and Im(f) are integrable.

In this case, the integral of f is defined by

/deuz/XRe(f)duﬂ/XJm(f)du.
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5. f E C X € M, then we set

/EfdMZ/XfxEdu-

When we are working with the measure space (R", My, \), we often use

the notation [, f(z)dx instead of [p, fdA.

Definition 2.9. A set F € M is called a set of measure zero, or null set if
u(E) = 0.
Let P be a statement about the elements of X, and let A € M. We say

that P holds p-almost everywhere (a.e.) on A if there exists E € M so that
1. {x € A: Pdoes not hold} C E.
2. w(E) =0.

Note that if (X, M, u) is complete, then this is equivalent to

u{x € A: P does not hold} = 0.

Next we define the spaces of functions used in this thesis. Let (X, M, u)
be a measure space. If f, g : X — C, define f ~ g if and only if f(z) = g(x) a.e.
on X. Then “~” defines an equivalence relation on the real, respectively complex

vector space of measurable functions.

Definition 2.10. Let (X, M, ;1) be a measure space and let 1 < p < co. Then
LP(X, M, ) is the set of equivalence class of M-measurable function f: X — C
such that |f|” is integrable. If f ~ g, then [, |f|Pdu = [ |9’ du. For ease of
notation, we usually confuse a function f with its equivalence class in L (X, M, ),

and simply write

Lp(X,/\/l,,u):{f:X—>(C:/X|f|pd,u<oo}.
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Theorem 2.2. For each p, 1 < p < oo, LP(X, M, ) is a complex vector space,

1/p
1l = ( /X P du)

is a norm on LP(X, M, ), and LP(X, M, u) is a Banach space in this norm.

the number

In this thesis, we will mainly deal with the following particular cases:
LPla,b] := LP([a,b], Mx,\) = {f : [a,b] — C| fis Lebesque measurable and
[ ira)rde < oo,
[a,b]
LP(R) := LP(X,M,pu) ={f : R — C| fis Lebesgue measurable and
/ |f(z)P dz < oo}
R
Similarly, we will consider

LPl0,1)" :={f :[0,1]" — C | fis Lebesgue measurable and / |f(2)|P do < oo},

(01"

LP(R™) :={f :R" — C| fis Lebesque measurable and |f(z)P dz < oo}.
R™

Here, [0, 1]™ denotes the unit cube in R”, [0,1]" = {z = (21,...,2,) : 0 < 2; <

1 for all ¢}. A special case of the change of variables rule is:

Theorem 2.3. Let A be an n X n invertible matriz. Then

/ flz)dx =|det A| | f(Azx)dz,

n R

for all f € LY(R").

Theorem 2.4 (Monotone Convergence Theorem). Let (X, M, ) be a measure

space, and {fn,}5°,, fn = 0, a monotone nondecreasing sequence of measurable

functions. Then {f,}5°, converges pointwise to an extended real valued function.

If f(z) = lim, o fu(x), then

[ f@ydu=tim [ @)

n—oo
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Theorem 2.5 (Lebesgue Dominated Convergence Theorem). Let (X, M, u) be a

measure space, and {f,}>2, a sequence of measurable functions. Suppose that

1. {fn(x)}5, converges a.e. on X.
2. There exists g € L*(X, M, j1) such that

|fu(2)] < g(x) a.e on X.

Set f(z) = lim, .o fn(x). Then f,, f € LY(X, M, ) and

[ f@ydu=tm [ @)

n—oo

We will make use of the Lebesgue Dominated Convergence Theorem in the

following way.

Corollary 2.6. Let f,,f € LP(X, M,u),1 < p < oo, with |f,(x)] < |f(z)| Vn

a.e., and suppose fn(x) — f(z) a.e. Then f, — f in| - ||,
Proof. By assumption, |f,(z) — f(x)|? — 0 a.e. Furthermore,
(o)~ S < [ 1@+ @] <21 e DO M),
Applying the Lebesgue Dominated Convergence Theorem, we obtain
tiw If, = £l = i [ 1£0) = f@)P = [ i |fule) = 7o) d
= /O dp = 0.
[

Theorem 2.7. Let f,,f € LP( X, M,u),1 < p < oo, such that f, — f in the

norm of LP(X). Then there exists a subsequence { fy, tren such that

fui (@) = f()

a.e. on X.
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Corollary 2.8 (Uniqueness of Limits). Let f,, f € LP(X, M, u),1 <p < oo, and
g : X — C be measurable. If f, — f in the norm of LP(X) and f,(x) — g(x)

a.e., then f =g a.e.

Definition 2.11. Let f : R" — C be continuous. The support of f is the set

supp(f) = {z € R": f(x) # 0}.

We say that f has compact support, if supp(f) is a compact set. We say that f

vanishes at infinity, if for each € > 0 there exists a compact set K such that
|f(z)] <e VzeR"K.
Definition 2.12. Let p € {0,1,2,...}. Set
1. CP(R") ={f:R" — C: fis p times continuously differentiable}.
2. CP(R") ={f € CP(R™) : f has compact support}.
3. C®°(R™) ={f:R" — C: fis infinitely differentiable}.
4. C*(R") ={f € C*(R") : f has compact support}.
5. Co(R™) = {f € C(R") : f is vanishes at infinity}.
We obviously have that
CZ(R") € CZ(R™) C Go(R™).
These three spaces are normed linear spaces under the supremum norm,

[flloe = sup [f(2)]

reR”™

Theorem 2.9. (Cy(R"), ||||) is a Banach space, and C°(R™) is dense in Co(R™).

Theorem 2.10. C°(R") is dense in LP(R™), for all 1 < p < oo, in the norm of

LP(RY).
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Definition 2.13 (Step Functions). Let I C R be an interval. A step function on

I is a function of the form
= o (2.1)
k=1

where ¢, € C, and {[;}}_, are pairwise disjoint bounded subintervals of I.
k=1 )

Here we allow the sets I to be empty, or singletons. Furthermore, if ¢, = 0
for some k = ko then we may drop the corresponding ko-th term in (2.1). Let us
set

St(I)={f:1— C| fis a step function}.
It is easy to see that St(I) is a vector space.

Theorem 2.11. Let I C R be an interval, 1 < p < oo. Then St(I) is dense in
LP(I). That is, each f € LP(I) can be approzimated arbitrarily by a step function

in the norm of LP(I).

The next theorem tells us when the order of integration in an iterated

integral can be exchanged. It will be used throughout this thesis.
Theorem 2.12 (Fubini’s Theorem). Let f : R* — C be measurable. Then

1. fy(x) = f(z,y) from R — C is measurable for each fized y € R and hence
x — |f(x,y)| is measurable Vy € R, g.(y) = f(z,y) from R — C is
measurable for each fited x € R and hence y — |f(x,y)| is measurable

Vz eR,

2. The functions h(y) = [ |fy(z)|de = [, |f(z,y)| dz and

k(x) = [pl9.(y)|dy = [ |f(z,y)|dy are measurable from R to C.

If one of

i) fR fR |f(z,y)| dz dy
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i) fp Jglf(z,y)ldyde
i) fro [f(2,9)]d(z,y)
is finite, then

a) fy(x) € L'(R) for almost all y

g:(y) € LY(R) for almost all z,

b) h(y) .= [ f(z,y)dz € L'(R)
k(y) == [; f(x,y)dy € L'(R)

flx,y) € L'(R?)

¢) Double and iterated integrals are equal

[ sewden) = [ [ repdedy= [ [ ey

2.2 Fourier Series in One Dimension

One recurrent theme in analysis is the decomposition of a given
function into an infinite linear combination of basic functions. For example, the
theory of analytic functions deals with functions which can be expressed by a

power series, that is, as an infinite linear combination of monomials x™.

In Fourier analysis, one decomposes functions into infinite linear combi-
nations of trigonometric monomials €*™*; the resulting series are called Fourier
series. Since these monomials are periodic, the functions under discussion must

also be periodic.

Definition 2.14. A function f : R — C is called periodic, if there exists p €
R, p # 0 such that f(z +p) = f(z) for all z € R. Any such p is called a period of

f. The smallest such p, if it exists, is called the basic period of f.
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While Fourier series can be defined for functions of any period, we will
only deal with functions of period 1, and thus restrict the definition below to such

functions. We set
LY(R) ={f:R — C| fis Lebesgue measurable, 1-periodic, f|jo1 € L*[0,1]}

with ||f]l, = ( fol |f(z)[P dz)'/P. Obviously, L¥(R) is isometrically isomorphic to
Lr[0,1].

Definition 2.15 (Fourier Series). Let f € L'[0,1] (or f € L}(R)). The function

N

f 7 — C given by

1
foo = [ syt 2:2)
0
is called the Fourier transform of f. The numbers ¢, = ¢,(f) := f(n) are called
the Fourier coefficients of f and the formal series

Z f(n)e2iﬂn:p

n=—oo

is called the Fourier series of f.

Let us set
co=cy(Z)={f:Z— C| ‘llim f(n) =0 with norm || f||oc = sup |f(n)|}
n|—oo nez

s 1/p
lp:lp(Z)Z{f:Z%@Hpr:[Z |f(n)|p] <oof (I<p<oo).

Note that I? = LP(Z,P(Z), ;) where P(Z) is the power set of Z, and pu is the
counting measure. In particular, [P is a Banach space. It is not difficult to prove

that ¢y is a Banach space as well.

Theorem 2.13 (Properties of the Fourier Transform). Let f € L'[0, 1] (or equiv-

alently, f € Li(R)). Then
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1. f € Cp,

2. | flloe < 2 M1£11,

3. The Fourier transform F : f — f from L'[0,1] to cg is linear and one-to-

one,

4. i:f(n) — e 2™ f(n) VyeR. (Here, T, denotes translation of an ele-

ment f of L}(R) by y, (T,f)(z) = f(z —y).)

Ideally, we would like the Fourier series of f to converge to f in some way.
The following theorems discuss pointwise convergence, uniform convergence, and

convergence in the square mean.

Definition 2.16 (Piecewise Continuous Function). Let f : [a,b] — C. We say
that f is piecewise continuous on [a,b] if there exist points a = 7o < ¥ < T3 <

. < x, = b such that
1. fis continuous on (xp_1,2x) Vk=1,....n,

2. right-hand and left-hand limits of f at the partition points xg, x1,..., 2,
exist, that is,
f(zf) =1limy, o+ f(zg + h) exists VE=0,...,n — 1,

f(xy) = limy_o+ f(xp — h) exists Vk=1,...,n.
Definition 2.17 (One-Sided Derivatives). Let f : [a,b] — C and zy € (a,b).
Assume that f(zd), f(xg) exist. The limits

lim flxo+h) = flag)

h—0+ h

= lim
h—0+

f(zo—h) — f(xg)
h

S (o) f1(0)

if they exist, are called the right-hand and left-hand derivatives of f at xq, respec-

tively.
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The next theorem shows that if f is differentiable on [0, 1], then its Fourier

series will converge to f pointwise.

Theorem 2.14 (Pointwise Convergence of the Fourier Series). Let f €

Li(R), zo € R and suppose
1. f(xq), f(xq) emist,
2. fr(xo), f1.(xg) ewist.

Then the Fourier series of f converges at xqy, and its limit is the average of the

left-hand and right-hand limits of f at xg,

Gy 2w _ J(20) + f(a5)
Z f(n)e = 5 .

n=—oo

In particular, if f is differentiable at xq, then

Y fn)em™ = fla).

Theorem 2.15 (Uniform Convergence of the Fourier Series). Let f € Li(R)
(or L'0,1)) be such that f € 1%, ie. S°°__|f(n)] < oco. Set Sy(z) =
SN f(n)e2™=  Then {Sy(2)}3_, converges uniformly on R to some (con-

tinuous) function g, and f(z) = g(x) a.e.

Theorem 2.16. Let ‘H be a Hilbert space, {e,}5°, be an orthonormal subset of
H.

o
1. If {an}nen € 1%, then Zanen converges in ‘H, and the limit is independent
n=1

of the order of summation.

2. (Bessel’s Inequality) Given x € H, set ¢, =< x,e, >. Then

STleal? < llzl?. (That is {cu}nen € 12)
n=1
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3. The following are equivalent

(a) spanfen}ii, =H,

(b) Every x € H is written uniquely as

o0

[e9)
Tr = E CpCyp = E < T, e, > €y
n=1

n=1 =

(i.e. {e,}5° is an orthonormal basis or 'H)

(c) (Parseval’s Identity)
S e’ = llzl*  forallz € H.
n=1

Since L?[0,1] < L'[0,1], the Fourier transform is also defined for f €
L?[0,1]. Tt is well known that the collection {e, }nez With e,(x) = €*™ forms an

orthonormal basis of the Hilbert space L?[0, 1], and hence of L3(R).

Theorem 2.17. Let f € L*[0,1] (or f € L3(R)). Then

fa) = S fmyerms

n=—oo

with convergence in the mean square norm.

Proof. Observe that the Fourier coefficients of f € L2[0,1] are of the form f(n) =
fol f(z)e 2™ dx =< f e, >. Since the collection {e, },cz given by e,(x) = e*™

form an orthonormal basis of L?[0, 1], then by part 3. of theorem 2.16

f _ Z ]E(n)e%wnz’
neZ
with convergence in the norm | - ||s. O

Note that by theorem 2.16,

Do) = 11115,

neL

that is, the Fourier transform f — f is an isometric isomorphism of L2 0, 1] onto

2(Z).
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2.3 Fourier Series in Several Dimensions

The concept of Fourier series has a natural extension to periodic functions

on R". Given vectors &,z in R”, £ - x will denote the usual inner product,

ox=<u>=) &
i=1

where & = (&1,&2,...,&,) and x = (z1, 29, ...,2,). If £ is written as a row vector,
and z as a column vector, then the inner product is simply multiplication of a 1 xn

matrix by a n X 1 matrix, and we can write -z = {z. We alsoset 1 = (1,1,...,1).

n— term

We call a function f : R” — C periodic, if there exists s € R™ such that

f(z+s) = f(x) for all z € R". The number s is called a period of f. We set
LYR™) = {f :R" — C| fis Lebesque measurable, 1-periodic, f|jo» € LF[0,1]"},

with [1fll, = ([ 1/ @) da).

Definition 2.18. Given f € L'[0,1]" (or L!(R™)), the function f : Z" — C given
by

f(k) = fla)e™m™ du,

[0,1]™

where k = (k1,...,k,) € Z", is called the Fourier transform of f, and the formal

series Z f(k) e¥™ is called the Fourier series of f.
kezn

Since L?[0,1]" C L'[0,1]", the Fourier transform is defined for every f €
L?[0,1]? (respectively L3(R™)). It is well known that the collection {e }rezn with
ex(r) = e*™* forms an orthonormal basis of the Hilbert space L?[0, 1]*. Theorem

2.16 again shows that f — f is an isometric isomorphism of L2[0,1]" (respectively

L3(R™)) onto [*(Z"), and

fl)=>_ fk)ye¥™ = v fel?0,1]",
kezZm

with convergence in the norm of L?[0,1]" (respectively L3(R")).
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2.4 The Fourier Transform

For functions which are not periodic, one needs to replace the Fourier series

by an integral.

Definition 2.19. Given f € L!(R"), define a function f by

f© = [ f@e? ™ de (€€ RY). (2:3)

A~

f is called the (continuous) Fourier transform of f. Similarly, the function
f&) = [ fla)e?™de (€€R")
R
is called the inverse (continuous) Fourier transform of f.

Example 2.1 (The Fourier Transform of a Characteristic Function).

Let f() = X[ («) be the characteristic function of the interval [a, b].

If £ # 0, then
. yine b yine p—2iméx |
— “ —2m€x 1. — —2im€T 1. —
fO = [ en@etrerdr = [Teran = o)
— _L[G—Qiﬂfl) o e—?iﬂfa]
i€
— _22-7.‘-5e—zﬂ'{be—méa[e—zﬂ'fbezﬂ'fa o e—m{aewrfb]
—in&(b+a) in€(b—a) _ ,—in&(b—a) 1 ]
= ¢ p {6 2: } = W—ée*”f(b“‘) sin (7€(b — a)),

while

. b

£(0) :/ ldx =b—a.
Combining both cases, we obtain

fA(f) = (b — a)sinc (Wf(b — a))e—z‘wﬁ(bJra)

where
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Note that L*(R™) ¢ L'(R"), hence the Fourier transform (2.3) need not be
defined for a function f € L?(R"). However, the next theorem says that the Fourier
transform can be defined indirectly for such f. The inverse Fourier transform now
takes the place of the Fourier series for reconstructing a function from its Fourier

transform.

Theorem 2.18 (Plancherel’s Theorem). The restriction of the Fourier transform

f — [ and of the inverse Fourier transform f — f to LY(R™) N L*(R") are

1sometries
F : LYR")NL*R") — L*(R"),
F : LYR")NL*R") — L*(R"),
with respect to || - ||2, and extend uniquely to surjective linear isometries

Foo PRY - PR,

F oo PR - LA(RY),
satisfying F(F(f)) = F(F(f)) = f. Vf € LAR").

We usually use the same symbols F, respectively F to denote these exten-
sions, and call them the Fourier transform, respectively inverse Fourier transform,

on L*(R™).



CHAPTER III

WAVELETS IN L(R)

In this chapter, we review the classic construction of wavelet bases in
L*(R) by means of a multiresolution analysis. The reader may find further details
and proofs in Mallat (1989), Daubechies (1992), Hernandes and Weiss (1996), and
Walnut (2002). In chapter IV, these concepts will be extended to L?(R?). Thus
some of the theorems in this section will be stated without proof, as their proofs

will be given in the next chapter.

3.1 Multiresolution Analysis in L?(R)

In wavelet analysis, one wants to find a function ¢ € L?(R) called a mother

wavelet, such that the family of translates and dilates of 1,

{Gn) tinez With () = 2j/2¢(2jx —n)

forms an orthonormal basis of L?*(R). Such a basis is called a wavelet basis. This
is usually achieved through a multiresolution analysis, as will be explained below.

First we need to discuss some preliminary concepts.

The dilation, translation and modulation operators on L?(R) are defined

(Daf)(z) = Vaf(az) (a €RT),
(Tof)(x) = f(x —b) (b eR),
(Eef)(z) = €™ f(x) (c € R).
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One easily verifies that these are isometries on L?(R). Also, D,, = D,D, while

Tc+d =T, T, and ECer = FE.Fy, for a, be R+, C, d € R.

Definition 3.1. A multiresolution analysis (MRA) on L?*(R) is a sequence of
closed subspaces {V;},cz of L*(R) satisfying the following properties:
(M1) = V; C Vi for all j € Z,

(M2) : [ JV; s dense in L*(R),
jez
(M3) : ﬂ Vi ={0},
jET
(M4) : the isometry Dy; maps Vj onto Vj, for each j € Z,
(M5) : there exists a function ¢(z) € L*(R), called the scaling function, such that

the collection {7}, }mez of integer translates of ¢ is an orthonormal basis of Vj.

Observe that (M4) is equivalent to D,V; = Vi for all j, this is easily

proved by induction.

For each m € Z, set ¢ ,m) = DoT5,0. Then by (M4) an (M5), the family
{©@1,m) }mez, is an orthonormal basis of V;. Now, by (M1), ¢ € Vi as well, so that

we can express @ in term of this basis of V] by

Y= Z P o(1,m), where  h,, =< @, Q1,m) > . (3.1)

meZ
The sequence {h, }mez € 1?(Z) is called the scaling filter. In fact by Parseval’s

identity,

> Il =llellz = 1. (3:2)

meZ?

Many of the properties of functions discussed in wavelet analysis have ele-
gant characterizations on the Fourier transform side. The next two theorems are
examples of this correspondence. The first theorem characterizes those functions
g(x) for which the collection {g(x — m)},uez forms an orthonormal set. The sec-
ond theorem characterizes those functions f which lie in the subspace of L*(R)

spanned by such an orthonormal set.
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Theorem 3.1. Let g € L*(R). Then the system of translates {T,,g}tmez s an

orthonormal set if and only if Z |9(€ +m)|* = 1 for almost all £ € R.
meZ

Theorem 3.2. Let g € L*(R) be such that the system of translates {T,q}mez

is an orthonormal set, and let V' = span{T,,g}mez. Let f € L*(R) be arbitrary.

Then f € V if and only if there exists h € L3(R) such that f(&') = g(§)h(&) a.e.

Definition 3.2 (Mother Wavelet). Let {V;};cz be a multiresolution analysis for
L?(R) with scaling function ¢, and let {h,,}mez be the scaling filter. For each
m € Z, set ¢, = (—1)™hy_,,, (m € Z). Then

Z |gml? = Z M |® = Z || < 00,

meZ meZL meZ

so that {gm tmez € [*(Z). In particular, {g,,} defines an element 1) of V; by

U= Gmpim)- (3.3)

meZ

The sequence {gytmez € 12(Z) is called the wavelet filter and 1) is called the

mother wavelet.

3.2 The Haar Wavelet

The simplest wavelet arising from a multiresolution analysis is the
Haar wavelet. It was used by Haar in 1910 to obtain a basis for L?(R) directly,

without the machinery of multiresolution analysis.

Example 3.1 (The Haar Wavelet). For each n € Z, let V,, denote the
set of functions in L?(IR) which are constant on intervals of length 2% with dyadic

end points, that is,

i1
V, = {f € L*(R) : f is constant a.e. on each interval {;—n, ‘%] 1] € Z} )
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As scaling function ¢ we choose the characteristic function xjo ;) of the unit interval
[0,1). Let us verify that the collection {V},},cz is a multiresolution analysis.

First we verify that each V;, is a linear subspace of L*(R). Let f,g € V,,, o, 3

be scalars. Consider an arbitrary interval I; := [, ZE], so that f(z) and g(x)

are constant a.e. on [;, say
f(z) =a; ae. onlj,

g(x) =b; a.e.onlj.

Then, (af + Bg)(x) = af(x) + Bg(z) = aa; + Bb; a.e. on I;. This shows that
af + (g is constant a.e. on I;, V7, that is, af + Bg € V,,. We have shown that V,

is a linear subspace of L*(R).

Next we show that V;, is closed in L*(R). Let {f} be a sequence in V,,
converging to some f € L?*(R). We need to show that f € V,, that is, f is
constant a.e. an each interval /;. Fix such on interval. Now each fj is constant
a.e. on I;, say fp(x) = ¢ a.e. on I;. We claim that {c;}72, converges in C. Note
that flj \fio — fI? < [o |f = fI? — 0 by assumption, that is fr, — f in L*(1;). In

particular, {fi} is Cauchy. That is, given € > 0 there exists N € N such that
1 fi = fill ey < - AINY? Yk, 1> N.
But

1/2
| fie = fill 2 = [/I \fk—flP] - [

which shows that

1/2
/ ek — 01\2] = |ex — Cl|>‘(1j)l/2
I.

J

lek — ol <e VE, >N

and proves the claim. As the sequence {c;} is Cauchy, it converges to some ¢ € C.
That is,

fr(z) =cr — ¢ ae. onl;as k — oo.
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On the other hand,
fu(z) — f(x) in L*(I;) as k — oo.

By uniqueness of limits, f(z) = ¢ = constant a.e. on I;. We have shown that f is

constant on each interval I;, that is, f € V,, as well, and hence V,, is closed.

Next we verify that the requirements of a multiresolution analysis are sat-
isfied.

(M1). Let f € V,, for some n. Then f(z) is constant a.e. on each interval [;—n, 32%1]

We split this interval into two equal halves, namely

] Ly 2] 2j+1
- 2‘2‘*2}—{2—2—

and

5 [ 4 I oj+1] [25+1 2j+2
: 2_n+2n+1’ on T | ont1 0 9nt1

Obviously, f(z) is constant a.e. on both halves. Since every interval

[Qn’il,%} is of either form 1. or 2. for some j, depending on whether k is

even or odd, it follows that f(z) is constant a.e. on every interval [zn’jl, 2’%11]
That is, f € V41, so that (M1) holds.
(M2). Let f € L*(R) and £ > 0 be given. We must find n € Z and ¢ € V,, such

that ||f — g|l2 < e. By theorem 2.11, there exists a step function

N
h = Z CEXI,, (I}, disjoint intervals)
k=1

such that [[f — hll; < 5. Without loss of generality, we may assume that the

intervals I are half-open, i.e.

N
h = Z CkX[akybk) where Ik = [ak, bk)
k=1

We now modify the endpoints az,b, to suitable dyadic endpoints.  Set

M = max |ck|, and pick n sufficiently large such that
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E

DN ™

M

L~

2
2. bk>ak+2—nforalll{::1...N.

Next pick i, ji € Z such that ”“ L < g < ;’;, g’; < b < ]’“;1. Note that by

2., 0, < jr. Set g = Zk:l CRX[ it ) € V,. Then g(z) and h(z) only differ on
the intervals [ak, ;—’;) and [;’;,b ) of length less than 2%, and on these intervals,

h(z) = ¢, while g(x) = 0. Thus,

Ih=gls — '|mm—guw¢4

N ;ilrcl by
- >/ Wm—mmWM+ﬁkwm—w@FMH

N

277,
ik

N 2k b %
= Z / e, — 0 da:+/ ]ck—0|2d:z:>]
k=

an

/ M? dx + Mzda;)]
1

1
2

IA IN
ERAE
Y
S
1= [\ng
+
S
M
SN—
I — |

By the triangle inequality,

3 9
I =gl < If = Al +h—glle < 5+ 5 ==

Thus, (M2) holds.

(M3). Suppose to the contrary that there exists f € ﬂ Vo, [ #0. Then in

nez
particular f € V,, for all n. Since f # 0, we can pick a measurable subset E of R,

such that A\(E) > 0 and f(x) #0,Vx € E. Foreach i € Z, set E; = [i,i+ 1) N E.
Since U E; = E, and the collection {E;} is disjoint, then 0 < A\(F Z AE,

1€Z 1€EZ
That is, there exists iy € 7Z such that A(E;,) > 0. Since f € Vj then f(z) is
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constant a.e. on [ig, o + 1], say f(z) = a for almost all x € [ig,ip + 1]. Now
E;, is a subset of nonzero measure of [ig,io + 1], and f(z) # 0, Vo € E;,, hence
a # 0. So we have shown that f(z) = a # 0 a.e. on [ig,io + 1]. In the following
we assume that ig > 0, if ig < 0 we proceed similarly. Now as f € V,, Vn < 0, it
follows that f(z) is constant a.e. on each interval [0, 5%) = [0,27") (n < 0). For
sufficiently large negative n, [ig,ip + 1) C [0,27"). Since f € V,,, f(z) is constant
a.e. on [0,27"). But f(z) = a a.e. on [ig,ig + 1), hence f(z) = a a.e. on [0,27").
Replacing n by —n, we have shown f(x) = a # 0 on [0,2") for sufficiently large

n > 0. Then

on on
12 = / f@)Pde > / @) i = / af? da

= |a|*2" - ccasn — oo (a#0),

contradicting the fact that f € L?(R). Thus, (M3) holds.

(M4). Note that for each n

: 11
f(z) €V, <= f(x)= constant =a; for almost allx,;—ngxg% v 7,
: 11
<= f(2z) =a; for almost all?x,;—n§2$§‘% V7,
J - <]—|—1

< f(2z) =a,; for almost all z, gt =TS T

v,
— f(2x) € Vi,

= V2f(22) = (D2f ) (2) € Vi

This shows that DyV,, =V}, 41 Vn, hence (M4) holds.

(M5). First we show that Vo = span{T,,p : m € Z}. To see this, let f € Vj.
Obviously,
f(x) = A}im X-n,n)(z) f(x) pointwise a.e.

By the corollary to the Lebesgue Dominated Convergence Theorem,

f=lim xnmf i (34)
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Since f € Vo, x[-n~,n)f is constant a.e. on all intervals [m, m + 1), hence x[_n ) f
is a step function, x—n n(z)f(z) = SN CmX[m,m+1)() Where ¢, is the value

a.e. of f on [m,m+ 1). Thus, (3.4) becomes

= lim Z CmX[merl ): Z CmX[m,m+1)($) (35)

N—oo —
with convergence in L*(R). On the other hand,
Tnp(x) = X0 (& = m) = Xfm.m+1)(2)- (3:6)

Thus (3.5) becomes.

This shows that f € span{T,,p}mez, that is, Vi C span{T,,p}mez. To show the

reverse inclusion note that by (3.6), T, € Vo ¥m. But 1} is a closed subspace of

L*(R), hence span{T,,}mez C Vo.

It is left to show that {7}, }mez is an orthonormal set. By (3.6) we have

< T, T >=< Xjmm+1) (%), X[p ot 1) () >= / Xim,m+1) () X[k ke+1) () AT = Oy -
R
Thus (M5) holds.

This shows that the collection {V},}2° with scaling function ¢ = x(0,1) is

n=—oo

indeed a multiresolution analysis.

Next we need to compute the scaling filter. Since

P1.m) (@) = DaTp(z) = V2 (22 —m)

then

hp =< ¢, P,m) >= / X[o,1)($) : \/§X[O,1)(2x — m) dx
R

1
= / \/§X[071)<2Z’ — m) dx
0
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so that the scaling filter {h,, }mez has exactly two nonzero terns. The wavelet filter

is then given by

L if m=0,

V2
Im = <_1)mh1—m = _\/LQ if m= 1,
0 else,

so that {gm }mez also has only two nonzero terms. The Haar wavelet is thus defined

by

1 1
Y= ngSO (1,m) = \/590 (1,0) — E‘P(l 1) = 7(90(10 90(1,1))-

meZ
That is,

viw) = —= (Vae(2n) ~ Vap(2r - 1))

o
>

1S P L LY

o fm o momomom

05 15 2 E) 15 1 05 ] 05 1 15 2

Figure 3.1 The Haar scaling function and the Haar wavelet
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3.3 Wavelet Decomposition of L?(R)

We now show how to construct an orthonormal wavelet basis of L?(R) from
a multiresolution analysis.
First we show that any sequence {V;};cz of subspaces of L?(R) satisfying

(M1)-(M3) gives rise to a decomposition

L*(R) =P w;

JET

of L*(R) into orthogonal subspaces. Then we show that for each j, the family

where t(; ,) = 29/%)(2/z — n) forms an orthonormal basis of W;.

While we are only interested in the space L?(R), we will separate out those

parts of the construction which apply to a general Hilbert space.

So let H be a Hilbert space, and {V;};ez be a collection of closed subspaces
satisfying (M1)-(M3). For each n, let W,, denote the orthogonal complement of

V., in V.1, so that

Vi = Vo @ W (3.7)

Start with some space Vj. Then
L*(R) = V; & V-
Applying (3.7) to n = k — 1, we obtain Vi, = V1 @ Wj_1, and hence
L*(R) = Vi @ Wiy @ V-
Applying (3.7) again to n = k — 2, we obtain

L*R) =V, 0 @ W, o @ W, @ Vi
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Continuing inductively, we obtain

LPR) =V, i @W i W1 @ ... 0 W1 @V,
for each © > 1. Replace k —i by m and k£ — 1 by n,

DXR) =V ®Wp, @ W1 & ... @ W1 @ W, ® V5,
for each m < n, m,n € Z. That is,

LR) =V, o P W eV}, (3.8)

j=m
As m — —oo and n — oo, we expect that the spaces V,,, and an+1 shrink to zero.
To prove this fact, we introduce the following operators. For each n € Z, let P,
denote the orthogonal projection of L?(R) onto V. That is,
Pof = [ YfeV,
Pg = 0 VgeV

The projections P, are called approzimation operators. Also, let @,, denote the

orthogonal projection of L*(R) onto W,. That is,
an = [ VfeW,
The projections @, are called the detail operators. Observe that by (3.7)

Pn+1 = Pn -+ Qn or Qn = Ip+1 — Pn (39)

The following lemma says that every f € H can be arbitrarily approximated
by an element of V,,, by choosing n sufficiently large. Also, when n is large negative,

then the part of f “living” in V,, is small.

Lemma 3.3. For all f € 'H,
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1. lim P,f = f,

2. lim P,f=0.

Proof. 1. Let ¢ > 0 be given. By (M2), U V,, is dense in ‘H. So there exists

n=—oo

g € U V., such that || f — g|| < 5. Pick N such that g € Vy. By (M1)

then g € V,, Vn > N, so that P,g = Pnvg = g.

If = Pafllz < [If —glla+llg = Pufllz = [If — gll2 + [Pag — B fll2

If =gl +1Ba(g = Nll2 < [If = glla+llg = fll2 (1Pl =1)
£
2

+-o=c¢

<
2

for all n > N. Since € was arbitrary, it follows that
i [1f = Pflla = 0.

2. We claim that {||P,f]|},2°, is monotone decreasing. Recall that P,,; =

P, + Q,, so that P, f = P,f +Q,f. Since V,, L W, we have by the
—~— —~~

Vi Wy
Pythagorean equality,

1Paer fI* = 1P 17+ 1Quf 1 2 1P f P
which proves the claim.

By the claim, and since ||P,(f)|ls > 0 Vn, it follows that {||P,f|},>°,

converges. That is, there exists L > 0 such that
L= lim [|P,f].

Next we claim that {P, f},2°, is Cauchy. Let ¢ > 0 be given. Pick N <0

such that

L* < ||Pafllz < L* + € (3.10)
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for allm < N. Now let m <n < N. Since V,,, C V,,, Pof € Vi, P.f € V,,,

there exists gum € Vi, gnm L P, f such that

By (3.10) L? < ||Pof + guml|* < L* + €%, or by the Pythagorean identity,
L? < |Pufll? + llgnmll? < L* + €% Since || P, f]|> > L? then ||gun||* < &
That is, || Pof — P fll2 = [|gnmll2 <€ Vm < n < N. This proves the claim.

Thus fy:= lim P, f exists in H. It is left to show that fy = 0.

Let m be arbitrary. If n < m, then V,, C V,, so that P,f € V,, C V,,, i.e.
P,f € V,, Vn < m. Since V,, is a closed subspace, then fy = lim, . _ P,f €
V.. As m was arbitrary, thus, f, € ﬂ Vi = {0}. Hence, fy = 0.

m=—00

]

Theorem 3.4. Let {V;};cz be a family of closed subspaces of a Hilbert space 'H

satisfying (M1) — (M3). Then H = @ W; where W; is defined by (5.7).

j=—o00

Proof. Let f € H be given. Given € > 0, by Lemma 3.3 we can pick N € N such

that
L ||f = Puflla< 5 VYn>N,
2. [[Pnfllz< 5. Vm< —N.
Note that Vm,n € N, m < n, we have by (3.9),
i@]f = i[Png—ny] =Py f —Pnf
j=m j=m

and hence Vn > N, and m < —N,

Hf_ZQJfH2 = Hf_ [PnJrlf_me]H2
j=m

3

225.

g
S Hf_Pn-ﬁ—lfH2+ HmeHQ < 5"’
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As ¢ is arbitrary, it follows that

f=> Qi

j=—o0

Since ();f € W and the spaces {W,},ez are mutually orthogonal, it follows that

fe @ W;. But f € H was arbitrary, hence

j=—o00

j=—o0

]

Theorem 3.5. Let H be a Hilbert space, and {V;}jcz be a sequence of closed

subspaces satisfying (M1)-(M3). Let W; be defined as in (3.7). Suppose that

1. there exists a linear isometry D on 'H mapping V; to Viyq for all j,

2. {2, is an orthonormal basis of Wy.

Then

{D,, : j € Z, n € N}
s an orthonormal basis of H.

Proof. By the previous theorem, H = @ W,. We thus must show that { D7, :
j=—00
m € N} is an orthonormal basis of W}, for all j. By induction, one easily verifies

that D’ maps V; isometrically onto Vj, for all j € Z. Then
Vit = DL (Vo) = DI(Vh) = DI (V & Wo) = DY (Vo) & D¥ (W)
=V, ® D'(W)) for all 7,
which shows that D7 (W) is the orthogonal complement of V; in V4, that is,
DI (Wy) = W.

Since {1, }°_, is an orthonormal basis of Wy, it follows that {D71,,}°°_; is an

orthonormal basis of W;. This proves the theorem. Il
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Let us return to the multiresolution analysis of L?(R), with scaling function
¢ € Vj and wavelet ¢ € W,. In order to show that the collection {1, : j,n € Z}
is a basis of L?(R), by theorem 3.5, we only need to show that the collection
{tn }nez, where ¢, (z) = T,00(x) = 1p(x — n) is an orthonormal basis of W,. This
follows from the particular interplay between dilation and translation. For the

proof, we need to work with Fourier transforms.

Let us first describe the Fourier transform of the functions ¢ and ¢. Sup-
pose, f € V;. Since {DyT,,}mez is an orthonormal basis of V;, then by theorem

2.16,

f=> cmDiTrp

mEZ

where
Crm =< f, DQTm(P >,
and {¢;, }mez is a square integrable sequence. Since the Fourier transform F is a

linear isometry on L*(R), and lsa\g = D,-17, fm\g = E_,,g for all g € L*(R), then

f= ]:(Z cmDoT ) = Z cmF (DoTp) = Z CmDo1E_,p.

meZ meZ meZ

That is,
FO =S ense (§) e

with convergence in L?(R). So if we set

1 29m€m
my(§) = 7 Z Cme” 2 (3.11)

meZ

Fo=m(5)e(5): (3.12)

Note that since {e=2"™}, 7 is an orthonormal basis of L?(R), the series (3.11)

then

defining m(€) converges in L?(R). If f = ¢, respectively f = 1, then we denote



my by my, repectively, m;. That is, by (3.1) and (3.3),

where

and

where

w0 =m (50 (5)

mi(€) = 5 3 g

mEZ
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(3.13)

(3.14)

There is a relation between m; and mq as follows. By definition of the

wavelet filter,

my(§) = 7 D (1) e

Replacing m by 1 —m,

my(§)

1
\/§ meZ

1 I
_ _(_1)mhm672m§me*2m§
5

meZ

- Z (_1>17mmef%7r§(lfm)

. 1 1 . 1
e~ 2m(e+3) [— Z hmezm(fﬂ)m]
\/5 meZ

4 1
6—22#(54‘%) mo (5 + 5) .

(3.15)

Theorem 3.6. Let {V;};cz be a multiresolution analysis with scaling function ¢

and mother wavelet 1 defined by (3.3). Then {1, }mez is an orthonormal basis

Wh.

Proof. We need to show that

1. {T,,¥}mez is orthonormal,
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2. T € Wy for all m € Z,

3. WO = Span {me}mez-

Since {T;,¢}mez is an orthonormal basis of Vj, we have by theorem 3.1 that

S lpE+mPP =1 ae. (3.16)

MmEZ

Note that, by (3.13),

dolpE+m)PP=)

meZ meZ

2

- (§+m) A(f—l—m)
AL

Now each m € Z can be written uniquely as m =2n+s (n € Z,s € {0,1}). So

we have

dlpE+mP = > >

meZ s=0 neZ

2

E+2n+5s\ . [(E+2n+s
mo 5 ¥ 9
2
m0<§;s+n)¢(€—gs+n>‘.

Since my is 1-periodic, we have my(§ +n) = mo(§) for all n € Z and almost all &,

&+ s
P(555 )

=1 a.e. by theorem 3.1

and hence

2

M-

S leE+m)? =

meZ

()

nel

©
Il
o

J/

1 2
= X ()
2
+‘mo(g+%)

(9

Using the same computations as above, but, with 1[1 instead of ¢, we obtain ap-

2

a.e. (3.17)
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plying (3.14) and (3.15)

]~
E
VR

N
ro |+
V)
N——

Yo lE+mPP =

mEZ s

Il
=)

I
]~
Cb‘
N
3
—~
7223
v+
w
+
NI
S~—
E
Y
7%
|+
VN
DN | —
N~

@
I
o

I
MH

m0<§—58+%)

- <<£+;)+s)

©
Il
o

2

(3.18)

Il
MH

Il
=)

S

Combining (3.16) , (3.17) and (3.18

~—

, we have

DTE+mP =12+ +m)P=1 ae. (3.19)

MmEZ meZ

We remark that (3.18) and (3.19) imply that |mo(€)] < 1 and |m;(§)] < 1 a.e.,
and hence mg, m; € L>*(R) as well.

It follows from theorem 3.1 that the collection {7}, } ez is an orthonormal
set. Next we need to show that T,,20 € Wy for all m. Since V; = Vy & Wy, and
{Tn¢}mez is an orthonormal basis of Vj, it is enough to show that Ty L T, for

all m, k € Z. Now observe that
< Tpp, Tth >=< @, Ty 100 > (3.20)
for all k,m € Z. So it is enough to show that
<, Tpp >=10
for all k € Z. Now by Plancherel’s Theorem and (3.15),

<p, T > =
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Next replace £ by 2¢,

o T > — 2 / 22 (€) g (5 T 1) 16(6) 2 de
R 2
I+1 ) L 1
) A e (R [GIRS
17 V!

Replace & by £ + [ inside the integral, and obtain

1
<p.Tp>=2 / PR S g (€ 4 1) mo (s T+ %) 96+ de.

lez
Now as my is 1-periodic, and since €™ = 1 for all m € Z, then

1
<pBw> = 2 [ @il @m (4 7)) Slee+0P de

0 ez

J/

=1 a.e. by theorem 3.1

. [/02 €2iﬂ[2§k+§+%]mo (5) mo (£ T %) d€
N [1 ezm[%k‘%%]mo (&) mo (§ T %) dﬁ]

Replace £ by & + % in the 2nd integral, and obtain

o T > = 2 [/2 eziﬂ[2£k+£+%]m0 (&) mg <§ + %) dé
0

fun

n / " e8] 1) (6) mo (f + %) df]

=0 (3.21)

This shows that Tp L T,,¢ for all m, k € Z. That is, span{T,,¥ },nez C Wo.

It is left to show that Wy C span{7T,,¥)}mez. Since V; = Vi & Wy, and

{Tn¢}mez is an orthonormal basis of Vj, it is enough to show that

‘/1 C Span{Tm§07 Tm¢}m€Z-

For this, we will use theorem 3.2. Let f € V; be arbitrary. Recall from (3.12) that

f(&) = my (g) @ (g)v where my (§) = \/% > ez Cme ™ 2mEm,
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We claim that there exist functions hg, by € L(R?) such that

my (g) = ho(§)my (g) + 7 (&)my @) (3.22)

with convergence in L#(R). If (3.22) holds, then

19 = ()05 -wom (5] i ()59

= ho(E)@ (&) + h(E)Y (€) ae.

so that f = fo + f1, with fo = ho(£)@(€) and fi = hy(€)¥(€). By theorem 3.2,

fo € span{T,,} and f; € span{T,,1}, so we will have shown that

‘/1 C SpaD{Tm% me}m627

and the proof will be complete. To prove the claim, change € to £ + 1 in (3.22),

my (g—i-%) = ho(§+1)mg (g—i-%) +hi(E+1)m (g—l—%)

— ho(€) mo (g + %) T ha(€)my (g + %) ae. (3.23)

by periodicity of the required hy and hy. Equations (3.22) and (3.25) can be

written as a matrix equation,

m@ | [ om@ om@ || e 5o
my (5 +3) mo (5+3) mi(5+3) | | M)
T
We now show that 7" is unitary. Note that,
| wme [ ® wEED | [ e
mo(5+3) mi(G+3) | | m(5) m(G+3) ag a
By (3.15) and (3.17),
2 2 2 2
e A o () -
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and similarly,
D 62
Again, by (3.15), and periodicity of my,
- e o (]
= my 6) @jt e—%w(%%)@mmo (g N 1)

= myg (g) mo (g + %) +€e™myg (g) mg (g + %) =0 a.e.

Finally, a3 = @3 = 0 as well. This shows that TT* = [ a.e., that is, T" is unitary

2
e S)

a.e., so that T is invertible and T~1(£) = T*(§) a.e.. Hence, system (3.24) has a

solution, namely

me (&
ho(¢) =T f(Q) a.e. &.

hi(€) my (5+3)

To see that hg, hy € L3(R), note that

ho(§) = my (g)@erf(
hi(§) = my (g)@erf(

Now be periodicity of m; and my,
- §+1 §+1 E+1 1 E+1 1
h1(§+1)—mf(T mq T TTLf T+§ mq T+§

4
— my (g)@—kmf <g+%) my <§+%) = h1(§)

and similarly,

ho(€ + 1) = ho ().
As remarked earlier, |m;(§)| < 1 a.e. Since m; € L}(R), it follows from (3.25)
that hy(¢) € L3(R). By a similar argument, ho(¢) € L3(R). This proves the claim

and the theorem. OJ
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Combining theorems 3.3, 3.4 and 3.5 we have shown:

Corollorary 3.7. Let {V;}cz be a multiresolution analysis with scaling function
@, and let ¢ be the mother wavelet defined by (3.3). Then {¢(jm)}jmez, where

VYiim) = Dai Ty, is an orthonormal basis of L*(R).

Example 3.2 (The Haar Wavelet, Continued). Let us compute the wavelet

basis in case of the Haar wavelet

of example 3.1. By theorem 3.6, the functions {1, } ez, with
() = (L)) = bz —n) = xpy
= X[n,n—l—%) (z) — X[n+%7n+1> (x)

form an orthonormal basis of Wy. Applying the map (D,)? = Dy;, we see that the

functions {t(jn) }nez given by
Vi) = (Dasthn) (@) = 29/ (2 ) = 29/29(Px — )

form an orthonormal basis of W}, and in fact

w(j,n) (x) = 2j/2x[n,n+%)(2jx) B 2j/2x[n+%,n+1> (QJJ:)

= 2j/2X[ 2n 2n+1)($) - 2j/2X[2n+1 2n+2)(l‘). (326)

2i+10 5541 EYESREYEST
Thus, the collection {1, : j,n € Z} with 1;,, given as in (3.26) is an orthonormal

basis of L*(R), called the Haar basis or the Haar system.

Let us study the spaces W in detail. Since {%(o)}rez is an orthonormal
basis of Wy, every f € W, is the limit in the norm of L?(R) of a sequence f, of
finite linear combinations of the form

i Ck (X[k,k+%) - X[H%,kﬂ)) (3.27)

k=m
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and arguing as example 3.1, a pointwise limit as well. Now by (3.27), each f,
is constant on intervals [k, k+ %) and [k + %, k + 1) and on the second interval,
takes on the negative of its value on the first interval. This property carries over

to the pointwise limit. Hence

i1
Wy = {f:R— C| fis constant on all intervals B, %) (1€7),

2% 2k+1\  [2k+1 2k+2
2' o ) 2 ' 2

and the values of f on {

have same absolute values, but opposite signs}

Applying the map Dy, as in (3.26), then

a1
W; = {f:R— C| fis constant on all intervals {#, ZQJ%) (i € Z)

2k 2k:+1> [2k+1 2k+2)
an

i1’ 9j+1 2i+1 7 9j+1

and the values of f on [

have equal absolute values, but opposite signs}.



CHAPTER IV

MULTIRESOLUTION ANALYSIS IN L*(R?)

In this chapter, we extend the definition of multiresolution analysis to
L*(R?). From such a multiresolution analysis, a wavelet decomposition of L?(IR?)
can be constructed as outlined in the previous chapter. We then give an example

which extends the Haar wavelets of example 3.1 to L*(R?).

4.1 Definition of Multiresolution Analysis in L*(R?)

The dilation, translation and modulation operators on L?(R) introduced in
section 3.2 can be generalized to LP(R"™) in a natural way. In fact, let A be an

n X n invertible matrix. We define operators on LP(R"™) by

(Daf)(z) = | det A|Y? f(Ax), (dilation)
(Tyf) (@) = flz —y), (translation)
(B, f)(x) = 7 (), modulation)

where x,y,v € R" f € LP(R"). One easily checks that these operators are all
isometries on LP(R™). For example, for all f,g € LP(R"), scalars «, 3, and x € R",

we have
Da(af +Bg)(x) = [det A|'""(af + Bg)(Aw) = |det A|'?(af(Ax) + Bg(Ax))
= a|det A|VPf(Az) + §| det A|YPg(Ax)

= aDaf(z) + BDag(x).
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That is, Da(af + 8g) = aDaf + BDag, so that D, is linear. Next notice that
p
IDasly = [ [1decapriscan)|” o= decar [ jreanpas
Rn R"

Next replace z by A=z,

IDafly = [ 1@ de = 171
which shows that D, is an isometry. Observe that

(DaDpf)(z) = |det A|[V?(Dpf)(Az) = | det B|V?|det A|'/? f(ABx)

= |det BA|"?f(BAzx) = (Dpaf)(z)
that is, DyDp = Dpa. In particular, for each f € LP(R"),
Da(Dp-1f) = Da-1af =D1f = f,

which shows that D, is surjective.
It is easy to see that T, T, = T,,, and E,E; = E, ¢ for all z,y,7,§{ € R™.
Furthermore,
<T:f,g>=<fTo9>
<Eyf,9g>=<[fE_,g>
for all f,g € L*(R").
Observe that EH = DAflf, 7/};7“ = E_xf and Ei;f = va, for all f €
L?*(R™). For example, consider the dilation D 4. If f € L*(R™) N L?(R"), then

DAf(E) = / (Daf)(x)e 27 da

= / | det A|Y2 f(Ax)e” 2" d,
R
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since the scalar product £ -  is multiplication of the row vector £ by the column

vector x. Next replace by A~ 1z,

@(f) = | det A|1/2| det A]*lf(@efzmg,q—lx A

Rn
= |det A|7V2f(€A7Y) = Da-1 f(6).

where dilation is now defined by (D4f)(¢) = | det A|*/2f(£A). Since the Fourier

transform is continuous, and L'(R™) N L?(R") is dense in L?(R"), it follows that

Daf = Darf for all f € L2(R™).

In order to clearly distinguish between vectors and scalars, in the following
we will denote elements of R? written as column vectors by z or y. Elements of
R* written as row vectors will be denoted by . Similarly, elements of Z* written
as column vectors will be denoted by a, k,m or n, while elements of Z? written
as row vectors will be denoted by ¢,j,r or s. For example, x = (11, 22)7, § =
(£1,&), m = (my,mo)T, r = (ry,72). Furthermore, 0 will denote the zero vector,

and 1 the vector (1,1).

Definition 4.1. Fix a matrix

A:

0 a9

where ay,as € {2,3,4,...}. A multiresolution analysis on L*(R?) is a sequence of
subspaces {V;},ecz of L*(R?) satisfying the following properties:
(M1) = V; C Vi for all j € Z,

(M2) : U V; is dense in L*(R?),
jEz
(o13) = (V5 = {0},
jez
(M4) : Dy, is an isometry of V; onto Vj 44, for all j,
(M5) : There exists ¢ € Vj such that the family of translates of ¢, {1, }mezz, is

an orthonormal basis of Vj. Such a ¢ is called a scaling function.
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Note that by (M4) and (M5), the collection { DT, ¢} meze is an orthonor-
mal basis of Vi. By (M1), ¢ € V; as well. Let h,, denote the coefficients of ¢ in
this basis of V4, that is,

hm =<, DAngo > .

Then {h }meze € 1%(Z?), and in fact by Parseval’s identity,
Y Nhal® = el = 1. (4.1)
meZ?

This sequence is called the scaling filter.

In case of higher dimensional wavelets, we need to impose an additional
condition on the scaling function.
(M6) : >, ez P i a4 = 0

for all k£,r unless k =r =0, and

hm = hgfm

for all m, where k,m € Z?, r = (r1,7m2), 11 € {0,...,a1 — 1}, 7, € {0,..., a5 — 1}.

4.2 Wavelets from a Multiresolution Analysis

Given a multiresolution analysis, we now construct a family of wavelet
functions as follows. Set R = {r = (r1,m9) € Z> : 0 <1 < a;, 0 <my <
as, r # 0}. Then R has cardinality ajas — 1. Furthermore, set Ry = R U {0} and

a=(a; —1,a3 — 1). For each r € R, set

2imrA—1 ‘mp

L= a—m mGZQ
Im a (

and

Y= gt DaT . (4.2)

meZ?2
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For each 1 € R, the sequence { gy, }mez> is called the wavelet filter corresponding to
Y. Observe that since {hy, }mez2 is square integrable, the sequences {gy, }mez2 are
square integrable as well. It follows that the sequence (4.2) defining ¥" converges in
L?(R?), and in fact, that ¢ € V;, Yr € R. For ease of notation, set {g%} = {hy}

and 9% = .

Let us find the Fourier transform of the function ¢*. Suppose, f € V.

Since {DaT,,p}mezz is an orthonormal basis of V4, then by Parseval’s theorem,

= cmDaTwe

meZ2

where

cm =< f, DaTnp >,

and {cm, meze 18 a square integrable sequence. Since the Fourier transform F is a

linear isometry on L?(R?), then

=F(> enDaTne) = > cuF(DaTyp) = Y cmDa1E_pp.
me7Z? me7Z? me7Z?
That is,
1

¢ _ s -1\ ,—2iméA" m
(&) mZm Traea e e

with convergence in L*(R?). So if we set

—2z7r§m
mg(§) = \/W % e (4.3)
then
F(&) = ms(EAT)R(EA™). (4.4)

Note that since {e"2™™} 7. is an orthonormal basis of L?(IR?), the series (4.3)
defining m(§) converges in L3(R?). If f = 4", we denote my- simply by m,., that
is,

=m,(§AT)P(EAT)

Yz (€)
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where
m?" = :ne s m T E R
r(§) P mEGZQ g ( )

where

1 —2im€&m
mg(§) = \/m Z hme 2 éf

There is a relation between m, and mg as follows. By definition of the wavelet

filter,

217rrA Lom 72m£ m
E =h
mg(é) a1ds = a—m€

Replacing m by a — m

_ 217r7"A L(a—m) h —2i7r§~(g—m)
my (§ ) \/m ZEZ:Z

1 1 1
E 217r7"A @ 2im§- ahme 2itrA~ " m 217r§ m

A/ a109 mez?

_ 672i7r(§ rA=1)- Z h —2z7r (E—rA-1)m
v @142 meZ?
= et (¢ —rATY). (zE€R) (4.6)
Similarly, by (M6),
1 N
m — hm6—2z7r§ m
1
— ha_me—2z7r$ m
v/ a1a9 mEZZZ -
Replacing m by a —
mg(g) _ Z hm6—2z7r§ (a—m)

v @102 meZ?

— 67217@@ E hm672z7r£ m
\/ CL a
172 meZ?

— 672iﬂ§-g@'
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Next let W,, denote the orthogonal complement of V,, in V,,,;, that is,

If n = 0, this becomes V; = Vi @ Wy. Recall that {T,,¢}mez2 is an orthonormal
basis of Vi by (M5). To generalize the usual wavelet construction, we need to

show that {T,,¥"},,ez2 rer is an orthonormal basis of W

For this, we will need the following two theorems, generalizing theorems 3.1
and 3.2. In the following, given N € N we set Iy = {m = (my,my) € Z? : —N <

mq, Mo S N}

Theorem 4.1. Let g € L*(R?). Then the system of translates {T,,9}mezz is an

orthonormal set if and only if Z 19(£+m)|* =1 for almost all £ € R2.

mez?
Proof. Set h(§) := Y, cz2 [G(§ +m)[>. We claim that g(§) € L'[0,1]*. In fact, for
all £ € R?,
_ T - 2
hE) = lim > 3¢ +m)f.
meln
By the Monotone Convergence Theorem,

h d = li 0 2d
/[0,1}2 &) /[071]2 N-ioo > la(g +m)l* dg

meln
_ 1 R 2
—tm [l mP g

Replace by £ — m inside the integral, and obtain

_ o
[ rede= i S ) eras

meln

~ 2d
O CCIR

meZ?

— / G(&)” d€ < 00 as g € L*(R?).
R2
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This proves the claim. Observe that if fi, fo € L*(R?), then

< TEfl,TLfQ >=< fl,T_EﬂfQ >=< fl,TL_Efg > . (48)
Hence {Tyg}reze is orthonormal, if and only if < ¢, Tyg >= 0. Now

<9, Thg > =< §,Tg >=< §, E_13 >

:/R2 9(5) 2imE-k (§) d§ |§(§)|262m§'5d§

_ Z/ ’g(ﬁ)‘2e—2iﬂ§kd§
5 J m+[0,1]2

meZ

= / 9(&)PemEk de.
N—*OOZ m+[0,12 -

meln ¥ =

Replace § by £ + m inside the integral, and obtain

<g,Tyg > = lim Z / |g(§+m)|2e—2iﬁ§é dé
[0,1]

N—o0
meln

= lim (€ +m)|*e 2k g
[ S b+ m) :

mely

By the Lebesgue Dominated Convergence Theorem,

<g,Thg > = / lim 9(E+m)[Pe >k dg
B Ol]zNﬁooZ‘ =

mely

=[S late+mpe et dg
[0,1]?

meZ?

= [ hlge g = hp).
012 -

Recall that the Fourier transform is 1-1, and it is easy to check that if f = 1, then
f(k) = 60. Hence {Tig}geze is orthonormal if and only if h(k) = 0 if and only
if h(§) = 1 a.e. We thus have shown that {T3g}rez> is an orthonormal system if

and only if Z 9 +m)PP =1 ae. O

meZ2

Theorem 4.2. Let g € L*(R?) be such that the system of translates {T,n,g}mezz

is an orthonormal set, and let V = span{T,,g}mezz. Let f € L*(R?) be arbitrary.

Then f € V if and only if there exists h € L3(R?) such that f(£) = §(§)h(E) a.e.
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Proof. (=) Suppose, f € V. Since {T,,9}mez2 is an orthonormal basis of V|

[ = Z cmTmg,

meZ2
where ¢, =< f,T,yg > and by theorem 2.16 Y s lew|* = [[f[3 < oo. In
particular, {¢,,}neze € [*(Z?). Apply the Fourier transform,
f=F Z cmImg | =F | lim Z cmImg

N—oo
me7Z? meln

= Jim F{ D enTug | = lim D enTog
meln mely

= B ng.
meZ>2
Thus,
FEO = cu(BEmd) (€)= cme ™Emh(8) (4.9)
meZ? meZ?

Let h(§) = > cpe ™™ € L}(R?). Then

meZ?

hn(§) = Z Cme 2T 5 R(E) in || - [|z2p2 as N — oc.

meln

By theorem 2.7, there exists a subsequence {hny, }ren such that
hy, (§) — h(€) a.e. on R

Then

while by (4.9)

= cme 2 ERG(E) = f(€) |-l ask — oo,
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By uniqueness of limits,

f(&) = g(En() ae.

(¢<=) Suppose, there exists h € L?(R?) such that f(£) = §(£)h(€) ae. Since
h € L*0,1]%, and {e 2"™} 2 is a basis for L?[0,1]%, there exists a unique
sequence {Cy, }mezz € 12(Z?) such that
O = 5 cae e
meZ?

where ¢,, =< h, e~ HimEm >r2(0,1]2- Set

N = Z cmImg €V

meln
and
fo=Y_ ewTng €V (4.10)
mez?
Claim f = fo.
In fact, ]/C]\\[(g) = Z cm (B-mg) (§) = Z cme 2T G(£). Note that by theorem
mely meln

4.1, |g(¢)] <1 a.e. Let hn, h be as in the first part of the proof. Then

0= iwl2 = If - be—/|f ©)F de
— § § Z cm€—2zrr§mA )’2d§
meln

- /\gguh ha(€)Pde
< /. |1(&) — hn(§)1Pd €
= ||h—hy|3 — 0as N — oo.

This proves the claim. and that by (4.10), f =>_ s cnTng € V. O

Theorem 4.3. Let {Y }.cr be defined as in (4.2), and Wy as in (4.7). Then

{TY"} mezz rer is an orthonormal basis of Wy.



56

Proof. We need to show that
1. {T "} mez2 rer is an orthonormal collection,

2. T Wt e W for allm € Z2,r € R,

3. Wy = span{T V" } ez rer-

For 1. and 2., we will in fact show that {T,,¥"},,cz2 rer, is orthonormal by using
theorem 4.1. Since {7}, }meze is an orthonormal basis of V;, we have, by theorem
4.1, that
D lp+m)PP =1 ae (4.11)
meZ2
However note that by (4.5),
D IBEFm)F = fmo ((€+m)A™) @ ((€+m)A™) %
meZ? meZ?
Now each m € Z? can be written uniquely as m = nA+s (n € Z?,s € Ry). So
we have

S lpE+m)l = DD Imo((E+nA+s)A)G((E +nA+5)ATH)

meZ? S€Ro neZ?

= 3N Imo((€+ AT +n)@((E+ ) AT + )

s€Ro neZ?

Since my is 1-periodic, we have mq(§ + n) = my(§) for all n € Z?, and hence

Do leE+m)P = Y Imo((€+ AP Y A€+ AT +n)f

meZ? s€ERo nez?
- ~~ >y
=1 a.e. by theorem 4.1
= ) Imo((E+5) AT ae (4.12)
s€Ro

Using the same computations as above, but with @Z instead of ¢ we obtain applying
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(4.6),

ST +m)P = Y Im((€+5)ATHP

mez? sERo
= D e e g (€ + 5) AT = r AT
3€Ro
= D Imo((¢—r+s5)A (4.13)
s€R0
Hence by (4.11) and (4.12), we have
Do lrgrmP =3 o —r+m)f =1ac (4.14)

meZ? meZ?2
We remark that (4.13) and (4.14) imply that [m,(§)| <1 a.e. for all r € Ry, and

hence m, € L>(R?) as well. Now observe that
< Tb= Tip® >=< Y= T pp* > (4.15)

for all k,l € Z?, r,s € Ro. So in order to show that {T}¥"}reze rer, is orthonor-

mal, it is enough to show that

777777

Now by (4.6),

< YE Tpp? >=< w/\ﬁ, E_w/\é >

—

= [ Pr(©)ys(€)emEr dg

= [ e o e e @ R AT

— / 672i7r(§A_1f[A_l)-g€2iﬂ(§A_l7§A_1)-g622'7r§-5m9 (éA_l . [A_l)
- >

m (AT = sAT) o (477) [P dg

= 62”(7”_5)’41'“/ etk mgo (§A_l - ZA—1> mg (§A_1 - §A_1) [% (§A_1) |2 dé'
R2

Next replace £ by {4,
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< wza TE¢§ >

— A e ot A / AN g (€ — 1A= )mg (€ — sATY) |2 (§) [P d€
R2 B -

= Hm9A g 0, N / eHEMEmy (€ = rA™ ) mg (€ = sA7") ¢ (€) [*d€.
+[0,1] - - N N

L€Z2 L

Replace £ by £ + [ inside the integral, and obtain

< T > = GQiW(ﬁ—é)A*@alaZ Z/ 62iﬂ(§+l)A~Em0 ((5 +1) — TAfl)

£6Z2 [0’1}2

mo ((§ +

1) = sA™) @ (§+1) |7 dE.

Now as my is 1-periodic, since e*™A% =1 for all k,[ € Z?, and since A has integer
entries, then

< wﬂv Tﬁ/fi >

= 621”(’"_5)‘4_1'&@1@2/[0 12 2”5‘4]“ 0(5 KA_I)mQ (§_§A_1)
1

Sole(e+0) P de

lez?
N J/
wV

=1 a.e. by theorem 4.1

= 62”(“5”_1'6‘@1@2/[01]2 XM mg (€ —r A" )mg (£ —sA™") d€

o NA-1 ) '
_ e217r([ s)A ga1a2 / e2z7r§A -k § : hm62z7r —rA Y)m
[0,1]2 Vaia

1 1
h 67217r —sA™Y)n d
\/a109 rgZ:Q §

— QQiW(T—S)AI'a/ p2imEAk Z Z @hﬂe%ng(m—ﬂ)e%n(yflﬂ—ﬁA*Lm) d¢
[0,1]2 -

mEZ2 neZ?
. . _ . 71. _ 71.
_ 62171'(7“ s) E E h h / 27,7r§ (m—n+Ak) df 62171'(§A n—rA~tm)
meZ? ne’? [0,1]2
(Sn m—+Ak
1,
— e217r(r s) 2 : h hm+A €2W[SA ‘(m+Ak)—rA—+-m]

meZ?
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_ 6227r(r s) § : 7 hm+Ak62z7r[(s VA=t mA+s-k] (6217@@ _ 1)
meZ?
1,
_ e2z7r(7“ S) 2 h herAkeQzﬂ'(s r)A"tm
m622
unless k= Q§ T by (M6)
2
= OpoOps Y \h!—w(S,
meZ?
=[lell2=1

where we have used (M6) and (4.1).

This shows that {1, }mez2rer, i an orthogonal family. In particular,
Tt L Tyt = Ty for all m k € Z*,r € R. Since Vi = Vo & Wy and {Tye}

is an orthonormal basis of Vj, it follows that 7" € W, for all r € R. That is,

span{ TVt mez2 rer C Wo.

If is left to show that Wy C span{7,,,¢"} mez2 rer. Since Vi = V; @ Wy, and

{T:,°} eze is an orthonormal basis of Vp, it is enough to show that

Vi C Span{Tm¢£}m622,£€R0'

Let f € Vi be arbitrary. Recall from (4.4) that f(g) =my (A7) 4 (EA™Y), where

—2in€-m

my (§) = —\/alsz > mez? Cm®
We claim that there exist functions h, € L?(R?) such that
=Y h(Ym, (EAT), (4.16)
T€Ro
with convergence in L}(R?). If (4.16) holds, then

f&) =my (g47) = > hu(©m, (€A™ = 3 h(©

'I‘ERO TERO

so that by theorem 4.2, f =" fr, with f* € span{T,,"},,ez2 for each r, that

r€Ro

is, f € span{T, V" }imeze rer,- We thus will have shown that

‘/1 C Span{meﬂ}meZQ JTERY>
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and the proof will be complete. To prove the claim, change § to £ + s in (4.16),

mp (A7 +5A7) = D h(E+s)m, (E+5)A7) (s €Ro)

r€Ro

= Z he(§) my (€ + s)A™) a.e. (4.17)

r€Ro
by expected periodicity of h,. Equations (4.17) can be written as a matrix equa-

tion,

mpy (§A_1) ho(§)

—T| (4.18)

my ((€+a)A™") ha(€)

i € Ry, and T is the ajas X aja, matrix,

mo (§A7) o ma (§47Y)
T =(ty) =
mo ((+a)A™) - mg ((§+a)A™)
Then
mo (€471) - mo ((€+@)A7)
T = (tj;) =

ma (€471) o ma (€ +a)A7)

a0 - X0
We now show that 7T is unitary. Let TT* = : ..t |. Then

a0 -+ Xaa)

by (4.6),
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auy = Y my ((E+DA) me (E+ A

= Y el A e 2in(@pAT AT e (€3 ) AT — pA)

r€R0

§ hm6227r(§ r+i)A"l.m
\/a1a
reRo 1 2

5 hne —2im(§—rt ol ge
\/ a1G2

nez?

1 —2z7r((z J)A~ 1 -1 iq-1 a1
_ e h h 2im(§—r «(m—n) 217r1A -m€72mlA ‘n
>l Y Y

r€Ro meZ2 neZ?

_ 1 6—27j7r((1—l‘)A71)'2 E E hmhn€2i7r§A_1-(m7@) eZiﬂg‘A_l-m(afZiﬂiA_l@
a1a2 o

meZ2 nez?
imr A= (n—
E 621 rA~ ' (n—m) )

TE€Ro

Note that for [ € 72,

a1—1as—1 a;—1 az—1
2 :621'7@14_1-; — E : E eQiﬂrlll/a1€2i7rr2l2/ag — E :€2i7rr1l1/a1 E :622'7rr2l2/a2

[ERO r1=0 ro=0 r1=0 ro=0

- al(sll,klal . a25l2,k2a2 - a’la25£,AE7 (E - (kla kQ) S ZQ) (419)

so that with [ = n — m,

apg) = e—217r Z Z h hm+Ak€2z7r£A (m—m—Ak)

k€EZ2 meZ?2
621‘7@‘,4—1 -m e—2i7rl'A_1~(m+AE)

_ €—2i7r<(1—l')A*1).g Z o= 2imEk Z @hm+AE62i“(1*Z)A_1'm (6—2171'(1&) =1)

kez? mGZQ

= b Z |hm|? = 6.

meZ>2

=0 unless k=0,i=j by (M6)

=llell2=1
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This shows that TT™* = I a.e., that is, T' is unitary a.e., so that 7" is invertible and

T71&) = T*(£) ae.. Hence, system (4.18) has a solution, namely

ho(€) my (§A7Y)
: =T : a.e.
he(§) my ((€+a)A™")
Computing this product we obtain
ho(§) = > my ((E+1)A)my (€+1)A7") ae, (4.20)
r€Ro

for all s € Ry. Next we must show that the functions i are periodic.

ho(€+1) = Y mg ((€+1+1)A)my (E+1+1)A7)

r€Ro
121221 <€1+1+n €2+1+r2>
r1=0 ro=0 a2

(§1+1+7‘1 §2+1+r2>
mf .

a1 ’ a2

Set T =r+ 1, so that 7 = (r1,73) with 11 =7 + 1, r3 = ro + 1. Then

ZZ (514—7“1 52+7"2)mf(51+771’§2+772).

a a a
ri=1ra=1 2 1 2

Observe that if ;1 = a1, we obtain

Mg (M).)mf (51 +a17.) = my (é _|_17.)mf (é+ 17.)
ay aq ay aq

as my and my are l-periodic. Similarly,

( §2+a2> ( §2+a2> B ( 52) ( 52)
mg |\ -, mf ’ = Mg\ -, — mf .
a9 a9 a9 a9

alz:lazzjl (51-1-7”1 §2+T2)mf<fl+ﬂ’§2+772>:hs(é)ae

Thus

a a a
r1=0 ro=0 2 1 2
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As remarked earlier, m, € L*(R?) for all s € Ry, and in fact |m, ()] < 1 ae.
Since m; € L¥(R?) it follows from (4.20) that hy(€) € L3(R?) for all s € Ry. This

proves the claim and the theorem. O]

4.3 The Haar Wavelet in L?(R?)

In this section, we explain how Haar wavelets can be defined on
L?(R?) by using theorem 4.3. As usual when constructing a multiresolution anal-

ysis, we will introduce the scaling function first.

Fix a matrix A = [‘61 0} with a1,a2 € {2,3,...} and let ¢ be the char-

az

acteristic function of the unit square, ¢ = xjo,1)2. Since the space V; should be

spanned by the translates of ¢, we set
Vo = {f € L*(R?) : fis constant on each square m + [0,1)* m € Z*}.

Let us first check that the translates {7}, }.nez2 form an orthonormal basis of V.

Arguing as in (4.15), we first need to show that

< @, T >= Omp-

Note that
(Tme)(x) = 0(x — m) = X[0,1)2(Z — M) = Xm+(0,1)2(7), (4.21)
so that
1 ifgém—i—[O,l)Q,
(Tmp)(x) =
0 otherwise.
Thus,

<o Tup> = [ DT @ dz = [ Xosp(@ msionr(a)
ﬁ01)21d£ lfm:Q

I
57
=)

= /[0 . Xm+(0,1)2(Z) dz =
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Next we need to show that Vy = span{7T,,¢}nez2. Arguing exactly as in example
3.1, part (M1), one shows that Vj is a closed linear subspace of L?(R?), and

obviously, T, = Xm+[o1)2 € Vo for all m. Now let f € V5. As

IX=nNyx[-Nn)(x) = f(x)  pointwise a.e.,

as N — oo, then by the corollary to the Lebesgue Dominated Convergence theo-

rem,
N-1 N-1

f= Jm fxpnnx(-nwy = lim Z D FXbaruxis

—N k=—N

in the norm of L?(R?). As f is constant on each interval [j,7 + 1) x [k, k + 1), say

f has value ¢;;, on this interval, then

N-1 N-1
f=dm, D D CRXpx e
j=—N k=—N
N-1 N-1
:J\}l—rgo Z Z Cj kX (5,k)+[0,1)2
—Nk=—N
- Z CmXm+[0,1)2 = Z CmTm@
mEZ2 meZQ

where we have set m = (j, k)”. This shows that {T},¢}necz2 spans V. Thus, (M5)

holds.

It is now natural to define the subspaces V;, of L*(R™) by
V, = DV (4.22)

Then obviously V,, = Da(Dan-1Vy) = D4V,,_1, so that, (M4) holds.

Let us now show that (M 1) holds. Note that

= {f € L*(R?) : fis constant on each rectangle A~"m + A™"[0,1)?, m € Z*}.
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To see this, note that

fE€Vh <= DanfeW,
— f(AT) eW,
< f(A"z) = f(A™"y) wheneverz,y € m + [0,1)*for somem,
<= f(Z)=f(§) wheneverZ, §€ A™"(m + [0,1)*)for somem,

where we have set 7 = A "z, = A "y. If n > 0, then each of these rectangles

A7"m + A7"[0,1)? is of the form

< ,— < a9 <
a1 a™ o ag"” as™

m m;+1 m mo + 1
Rlz{ﬁz(ﬂf17$2)Ti—;<$1§ . = <=2

}

and is thus contained in a rectangle whose vertices have integer coordinates,
Ry ={z = (z1,22)" :my <oy <+ 1,mp < @y < + 1}

for some my, mo € Z. Thus, if f is constant on each rectangle of form R,, then it

will be constant on each rectangle of form R;. Choosing n = 1, it follows that
Vo C V4.

Using (4.22) and induction, one now obtains that V,, C V,,4; for all n. Thus, (M1)

holds.

Next we show that U V,, is dense in L*(R?). Let f € L*(R?), and ¢ > 0

be given. Since C.(R?) is dense in L*(R?), we can pick g € C.(R?) such that

1f = gll2 < % (4.23)

Since supp(g) is compact, there exists a finite subset M of Z? such that supp(g) C

K = U m +[0,1)%, and g is uniformly continuous. Thus, there exists § > 0

meM
such that

|z = ylls <0 =|9(z) — g(y)| < NS
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Let n be sufficiently large, n > 0, such that
|z =yl <0 Vaz,ye AT0,1)> =1[0,a17"] x [0,a27"].
Then also
|z =yl <6 Vz,yc A "m+ AT"0,1)% Vm e Z°.

Let M; = {m € Z* : (A™"m + A™[0,1)?) C K}. Then K = | ) A™m +
meM;
A7"[0,1)%, so if = € supp(g), then z € A™"m + A™"[0,1)? for some m € M,. For

each m € My, pick a point x,, € A™"m + A7"[0,1)?, and set
h= Y 9(@w)Xan@+on2 € Va

meM;

so that

hz) = g(rm) Yz €A™ (m+[0,1)%).

If z € A7"(m + [0,1)?), for some m € M, then by choice of n, ||z — Tyl < 6,

and hence

while if x € K then h(z) = g(z) = 0. Thus,
2 2 52
— = h(z) — dr < | ———de=— - "2 ==
=gl = [ o) —g@Pdr< [ o= 30 =
so that
(4.24)
By (4.23) and (4.24),

If =Rl = 1If = glla+lg = hll2 <,

where h € V,, for some n > 0. As € was arbitrary, (M2) follows.
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Now we prove that (M3) holds. Suppose to the contrary, that there exists

fe ﬂ Vi, [ #0. Then [, [f|*dz > 0, so there exist a set E of nonzero measure,

nez
and a constant ¢ > 0 such that f(z) > cforallz € E. Now for each m € Z* n € Z,

set

EM™ = FEnA™(m+[0,1)%).

As R? is the disjoint union of {A™"(m + [0,1)?)},,ez2 we have

for each n, and

Since f(x) > ¢ on E(m”z, and f is constant a.e. on A™"(m,, + [0,1)?), then
f(z)>c ae on A"(m, +1[0,1)%).

Then

[ rwpa = [ f@Pdz> [ &
R2 A= (m,+[0,1)%) A= (m, +[0,1)?)
= - MNA"(m, +1[0,1)?) =c*|det A|”" — 0o as n — —o0,

contradicting the assumption that f € L?(R?). Hence, (M3) holds.

Finally, we verify that (A 6) holds. Note that

hiw =< @, DaT 0 >= / o(z)| det A|*2p(Ax — m) dx
R2

:/ X[0,1)2(£)\/G1G2X[0,1)2(Al—m) dx

RQ

= \/alag/ Xm+[0,1)2 (Az) dz. (4.25)
[0,1)2
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a1 — 1 —=L— ... 1
1 Vaias Vaiay
ma :
0 L ... 1
araz Vaiaz
0 - Ay — 1
ma2

Table 4.1 The scaling filter {h,}.

Now if m = (my, my)T then

Az €m+10,1)* < (a171,a222) € [my,my + 1) X [my, mg + 1)

my < ajxy <mp+1 T—;§$1<mé—jl
<~ <~
Mo < Ay < Mo + 1 %§x2<mz—j1

Since 0 < x1,25 < 1 on the set of integration, the integral will be nonzero only if

0<my <ay, 0<my < as, that is, for m € Ry. For m € Ry we have

mq+1 mo+1
a a 1 1 1
hm = / ' / ’ v/ 109 d?L‘QdIl = /109 (—) (—) = .
™ m ay) \as Vaia
Hence,
1
- Jaias m € RO
B 0 m Q/ Ro

e 2imjA~ 1 -m 7 2imjA~m 1 2imjA~ -m
Z hohm g ape™ ™" = Z PP are™ ™" = Z — e T

o a1Gz
meZ meRo meRg
1 N 1
2imjAT ' m
= ——0ko § e” A T = —— g0 - 0 0a102 = g0 - dj0
a1az meRo a1az - -

for j € Ry arguing as in (4.19). Observe that a —m € Ry if and only if m € Ry,

hence
1 1
. Jaiaz a—me RO o Jaiaz me RO . e
hag—m = = = Ny, = Iy
0 otherwise 0 otherwise
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a 1 e2imry(a;—1)/ag e2imry(ay—1)/ay g2inry/ag e2imry(a;—1)/ay g2inrg(ag—1)/ag
1 \/aiag \/ai1az \/aiaz
mq

1 e2imry/ay e2imry/ay g2inry/ag . e2inry/ay g2inrg(ag—1)/ag

Jvaiaz Jvaiaz : vaiaz

O 1 e2imrg/ag . e2imra(ag—1)/ag
aias Jaias Jaias
1 o ay — 1
mo

Table 4.2 The wavelet filter {g;, }.

Thus, (M6) holds.

The wavelet filter is now given by

1 2imrA=1-m
e/ A T re Rom e R
27L7r£A*1~mh o Vaiaz re ym € Ko
a—m

ro__
gy =€

O r € R7m ¢ RO
Note that hy, = 0, g5, = 0 for all m ¢ Ry, and thus the wavelets (as well as the

scaling function) are finite sums,

r r 1 itrA"l-m
vr= ) gaDaTup =) \/ﬁez XA et 0.1)2)-
meZ? meRo

4.4 The Pyramidal Algorithm

Let A = [“01 aOQ} with ay,a9 € {2,3,...} and let ¢ be a scaling function
for a multiresolution analysis {V;};ez of L*(R?). Let W, denote the orthogonal

complement of V; in V4, so that Vj; = V; @ W; for all j.

In section 4.2, we have shown that the functions {T;9"}iez2 rer Where ¢F
are defined by (4.2) form an orthonormal basis of Wj. It now follows from theorems
3.4 and 3.5 that we have a decomposition

@) = Pw,

JEZL
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where W1 = D4W; for all j, and
{4 p tueznrer  with () = DaTpg"
form an orthonormal basis of W}, so that
{Uip r€ERJELKEL} (4.26)

is a wavelet basis of L?(R?). By theorem 2.16, each f € L?(R?) can be written

uniquely as

f= Z Z Z d;TW(tj,@

r€ER jEL k€72

where the wavelet coefficients d;j & are given by
T __ r
diy =< F:¥Gr > -

In practical applications, one can compute only finitely many wavelet coef-
ficients. Recall by (3.8) that for any m < n,
AR =V, e Vi=V, e PW, eV}
j=m
One usually fixes some choice of m and n, and computes the wavelet coefficients
for m < j < n only. Let f € L?(R?) be given. Fix ¢ > 0. By lemma 3.3, we can

choose n and m such that

€
L f =Pl <

£

2. |Pnfll2 < 5

where P, denotes the orthogonal projection of L*(R?) onto V,,. Set f,, = P, f € V..
Since W; C V,, for all j < n then w(xj@ € V, for all j < n, and the wavelet

coefficients of f are given by

djy =< [ ¥ >=< [, Pt >=< Pufi ¥ >=< fa, Vi > -
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Similarly, for each j < n, let ¢;; denote the scaling coefficients of f,, in the basis

{go(j@}kezz of V;, where ;1) = D4iTj¢p, so that

Cik =< frs (k) >=< [ Patin) >=< Pufs ¢k >=< fn: 0Gr >

since V; C V,, for 7 < n. That is, the scaling coefficients and wavelet coefficients

of f and f, are identical for 7 < n.

The pyramidal algorithm now allows to compute the scaling and wavelet
coefficients of f at level 7 — 1 from the scaling coefficients at level ;7 as follows.

The important ingredient is the observation that for all g € L?(R?),

(TeDag)(z) = (Dag)(z — k) = |det A|'?g(A(z — k)) = | det A|"*g(Az — Ak)

= | det A|"*(Targ)(Az) = (DaTarg)(z),

that is, T D4 = D4Ts;. Hence,

o1 = DaiTep = Dasa T | Y hipm) | = DaaTe | D hnDaTogp

meZ? meZ?
= b Dair TiDaTpp = > by Das T i
me7Z? meZ?
Next replace m by m — Ak,
0610 = Y hn-aeDaTnp = Y b akp(gm)- (4.27)
meZ2 meZ2?

Next, " = Z Im¥(1,m) gives in the same way

me7Z?

Uiorg = Dari Ted™ = Dain Ti | Y ghim) | = D O asGom)

meZ>2 meZ?

imrA—L (m— T inrA"vmT
= A A, PGm = D T iy AP im)-

meZ? meEZ?

(4.28)
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Suppose, we have computed the scaling coefficients of f, {¢;}rezz for some j.

Then

Gk =< [ 0G-10) >=<f, > hm-arPm) >= Y Pn—ak < f,0(Gm) >

meZ?2 meZ?
= § o — Ak Cjom-

meZ>2

Similarly, (4.28) gives

r r L S N
d}‘—LE =</, 7/’(}—1,@) >=<f, Z e *hg—(m—AE%p(j’m) >

meZ2
o —2imrA—t.m o —2irrA—t-m
= E , e " By (m-ak) < [, 0jm >= E e - *hg—(m—AE)cz,m
meZ? meZ>2
_ r
= Im—AgCjm:
meZ2

Conversely, we can reconstruct c; ,, from ¢; 1, and {dj_, ; },er as follows.
Since ‘/J = ‘/;,1 @D Wj,1 then Pj = Pj,1 + ijl so that P]f = IDj,1f -+ ijlf'
Thus, by (4.27) and (4.28),

Y < fiGm) > Pm

meZ?

=Y <[ > e T Y Y < Wy > Y

kez? r€R ke7?
= ¢ h ; + d’ - ;
= -1,k m—Ak¥(j,m) -1k Im— AP (G.m)
kez? meZ?2 TrER k€Z?2 meZ?
r r
= E : E | Gorkhmea + E d; 1 km—ak | PlGm)-
meZ? keZ? TER

Since {@(jm) }mez2 is an orthonormal set, the coefficients on both sides must be

identical

< [f,04m >= Z Cj—1kPm—ak + Z d§—1,ggﬂm—,45

kez? reRr
that is,

T r
Cjm = E Cj—1,6Nm— Ak + E G a

kez2 reR
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4.5 Practical Computations

We now present two examples illustrating the technique of wavelet analysis
by means of the Haar wavelet. The first example shows the wavelet coefficients of
a function f at various scales, while the second example illustrates how wavelets
can be used in data compression.

For the first example, let f be a function whose support is contained in the
unit square [0, 1] x [0,1]. We choose the dilation matrix A = [39]. Because of
space limitations, we only compute and display the wavelet coefficients at scales
j=0and j =1. As outlined in the previous section, we must begin by computing
the scaling coefficients ¢y, at scale j = 2. Since the functions ¢(s ) are constant
on the squares I, = [, ] x [%2 m2E] it js convenient to sample the values
of f on these squares, and store the sampled values in a 9 x 9 matrix. The integral

can then be approximated as sums over each of the squares I,,,. In this example,

we use a function f whose sampled matrix is tridiagonal,

1100 ... ... 00O

1110 ... ... 000

011 1. 0 00
fsamp =

0000 ... ...1T11

0000 ... ... 011

The scaling coefficients ¢y, are listed in table 4.3. Since f is supported on the
unit square, the scaling coefficients for the non-listed values of m = (m;, my) are
zero. Some of the scaling and wavelet coefficients at levels j = 1 and j = 0 are

listed in tables 4.4 to 4.13, those which are not listed are zero.

Next we show how to apply wavelet analysis to data compression. It is well

known that the Haar wavelet is not particularly suitable to this task as it is has



0 0.1111 | 0.1111 0 0 0 0
1 0.1111 { 0.1111 | 0.1111 0 0 0
2 0 0.1111 | 0.1111 | 0.1111 0 0
7 0 0 0 0 0.1111 | 0.1111
8 0 0 0 0 0.1111 | 0.1111
Table 4.3 The scaling coefficients ¢ ,.
ml\mg 0 1 2
0 0.2593 | 0.0370 0
1 0.0370 | 0.2593 | 0.0370
2 0 0.0370 | 0.2593
Table 4.4 The scaling coefficients c; .
ml\mg 0 1 2
0 —0.0185 — 0.0321¢ 0.0370 0
1 —0.0185 + 0.0321% | —0.0185 — 0.03214% 0.0370

2 0 —0.0185 4 0.0321: | —0.0185 — 0.0321:
Table 4.5 The wavelet coefficients dg?’é).
my\my 0 1 2
0 —0.0185 + 0.0321¢ 0.0370 0
1 —0.0185 — 0.03217 | —0.0185 + 0.03217 0.0370
2 0 —0.0185 — 0.03217 | —0.0185 + 0.0321:

Table 4.6 The wavelet coefficients d

(0,2)
1m -
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mi\me 0 1 2
0 —0.0185 — 0.0321z | —0.0185 + 0.0321: 0
1 0.0370 —0.0185 — 0.03217 | —0.0185 + 0.03217%
2 0 0.0370 —0.0185 — 0.03214
Table 4.7 The wavelet coefficients d%’mo).
mi\me 0 1 2
0 0.0370 — 0.06427 | —0.0185 + 0.03211% 0
1 —0.0185 4 0.0321z | 0.0370 — 0.06427 | —0.0185 + 0.03214
2 0 —0.0185 4 0.0321z | 0.0370 — 0.06421
Table 4.8 The wavelet coefficients dglml)
my\ms 0 1 2
0 0.0370 —0.0185 + 0.03214 0
1 —0.0185 — 0.0321: 0.0370 —0.0185 + 0.0321¢
2 0 —0.0185 — 0.0321: 0.0370
Table 4.9 The wavelet coefficients dglé)
my\my 0 1 2
0 —0.0185 4 0.0321¢ | —0.0185 — 0.0321: 0
1 0.0370 —0.0185 4+ 0.03217 | —0.0185 — 0.0321%
2 0 0.0370 —0.0185 + 0.0321:

Table 4.10 The wavelet coefficients d(f’ﬁob).
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my\ g 0 1 2
0 0.0370 —0.0185 — 0.0321i 0
1 || —0.0185 + 0.0321i 0.0370 —0.0185 — 0.0321i
2 0 —0.0185 + 0.0321 0.0370
Table 4.11 The wavelet coefficients d§2m1)
my\ma 0 1 2
0 0.0370 + 0.0642i | —0.0185 — 0.0321 0
1| —0.0185 — 0.0321i | 0.0370 + 0.0642i | —0.0185 — 0.0321
2 0 —0.0185 — 0.0321i | 0.0370 + 0.0642i
Table 4.12 The wavelet coefficients d§2m2)
Y | —0.0062 — 0.0107i dg? 0.2346
d2 | —0.0062 + 0.0107i Y || —0.0062 + 0.0107i
Com || 0.3086 ~ >
d9) || —0.0062 — 0.0107i dy 0.2346
it | 0.0123 — 0.0214i 2 || 0.0123 + 0.0214i

Table 4.13 The scaling coefficients and wavelet coefficients ¢y and d(()%.
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jumps, so that we cannot achieve outstanding compression ratios. Nevertheless, it
is an easy example which can illustrate this technique.

We consider the black-and-white picture of figure 4.1, downloaded from
http://horum.homeunix.net/~carl/wavelet. This picture is commonly used in
papers on image processing. The picture used is in bitmap format, as a 512 x 512
array, each of whose entries represents a pixel whose gray-level is given by a 8-bit
unsigned integer. We consider this picture as a function supported on the unit
square, and choose the dilation matrix A = [29]. We begin with computing the
scaling coefficients at scale 7 = 9, and then compute the wavelet coefficients at
scales 7 = 8,...,0 using the pyramidal algorithm. All wavelets coefficients whose
absolute values are below a threshold ¢ are set to zero, and then the image is
reconstructed from the modified wavelet coefficients.

The resulting bitmap file is then compressed using the 'bzip2’ utility. Table
4.14 shows the compressed file size at various threshold levels, and figures 4.1 show

the reconstructed images. Note that € = 0 corresponds to the original image.

threshold e file size compressed file size | compression ratio
0 263,222 203,299 22.8%
0.02 263,222 135.220 48.6%
0.05 263,222 87,458 66.8%
0.1 263,222 43,279 83.6%
0.2 263,222 18,471 93.0%
0.5 263,222 14,931 94.3%

Table 4.14 Compressed file sizes.



Figure 4.1 Reconstructed images at thresholds ¢

0.1, =0.2 and € = 0.5.
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CHAPTER V

CONCLUSION

The objective of this thesis was to investigate whether the concept of mul-
tiresolution analysis can be extended from L?(R) to L?*(R?), to construct wavelets
from the scaling function, and to find an efficient algorithm for computing the

wavelet coefficients. We have obtained the following results :

1. We have given a definition of multiresolution analysis for L*(R?). For this,

we needed to impose the additional condition (M6) on the scaling filter.

2. Starting from a multiresolution analysis, we have defined a family of mother

wavelets {1}, er in (4.2).

3. By proving and using theorem 4.3, we have shown that this family of mother

wavelets gives rise to an orthonormal wavelet basis of L*(R?), of the form

{YGm 1T €R, J €L, m € Z*}, where ¢, is as defined in (4.26) .

4. In section 4.3 we have constructed Haar wavelets on L?(R?) as an application

of theorem 4.3.

5. In section 4.4 we have extended the pyramidal algorithm to the wavelet basis
of L?(R?) discussed in this thesis. This algorithm helps to quickly compute

the wavelet and scaling coefficients of a function f.

For simplicity, in chapter IV we have only worked in L?*(R?). However, all
definitions, constructions and proofs carry over to L?(R™) in an obvious way. The

notation used in this thesis should allow the reader to easily do so.
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The condition (M6) imposed on the scaling function of the multiresolu-
tion analysis appears restrictive. Thus, further study to find additional concrete

examples of scaling functions satisfying this condition is warranted.
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