CHAPTER III

MATERIALS AND METHODS

3.1 Experimental

3.1.1 Chemicals

All solvents used were of analytical reagent (AR) grade, and all reactions were carried out under ambient atmospheric conditions. The chemicals were purchased from Sigma-Aldrich or TCI Chemicals and were used without further purification.

3.1.2 Physical measurements

Infrared spectra were recorded using ATR on a Bruker Tensor 27 FT-IR spectrometer with OPUS software, covering the range of 400–4000 cm⁻¹. Electronic spectra were recorded in solution for all complexes in CHCl₃ (0.25 mM) at room temperature on PG Instruments T80+ UV/Vis Spectrometer in the range of 250-900 nm. Elemental analyses were performed using a Eurovector EA3000 analyzer, while electrospray ionization mass spectrometry (ESI-MS) was conducted on a Bruker AmaZon X LCMS mass spectrometer.

3.1.3 X-ray Crystallography

Crystallographic data for complexes 1, 4 and 5 were carried out with CuK α radiation using a Rigaku SuperNova (HyPix3000 detector) diffractometer. The data were scaled, integrated, and subjected to absorption correction using CrysAlisPro. The structures were determined using SHELXT and refined through full-matrix least-squares minimization on F^2 using SHELXL. Non-hydrogen atoms were refined anisotropically, whereas hydrogen atom positions were determined geometrically and refined using the riding model. All structural illustrations were created with OLEX2. Complexes 2 and 3 were collected using a Bruker D8 VENTURE diffractometer with MoK α radiation (λ = 0.71073 Å). Unit cell parameters were determined, and data collection was

performed using APEX4. The structures were solved by intrinsic phasing with SHELXT and refine.

Powder X-ray diffraction data for the precipitates were obtained using a PANalytical X'Pert PRO MPD diffractometer equipped with Bragg-Brentano geometry, Cu-K α 1,2 radiation (λ = 1.54184 Å), and a graphite backscattering monochromator. Standard Si sample holders were used, and the samples were finely ground before data collection over a 2 θ = 0-50°. Le Bail and Rietveld refinements were conducted using JANA2020 (Petříček et al., 2023).

3.1.4 Hirshfeld surface analysis

The Hirshfeld surface properties of complexes 1-5 were analyzed using Crystal Explorer 17. The crystal structures were imported from CIF files, and high-resolution Hirshfeld surfaces were generated, mapped with the d_{norm} and shape index functions. Additionally, 2D fingerprint plots were created using the same software (Spackman et al., 2021).

3.1.5 Magnetic susceptibility

Magnetic susceptibility measurements were performed using a Quantum Design MPMS 5 SQUID magnetometer under an applied field of 1–2 T over a temperature range of 10–300 K for samples 1, 2, and 5, and 10–380 K for samples 3 and 4. Powdered or polycrystalline samples were placed in gel capsules, ensuring sufficient thermal equilibration at each temperature. Samples 6–10 were analyzed using a Quantum Design MPMS 3 SQUID magnetometer, with measurements conducted between 1.8–300 K or 1.8–400 K under an applied field of 1000 Oe. These samples were loaded into plastic caps for measurement.

3.1.6 Electrochemical measurements

Electrochemical studies were carried out using a PalmSens4 in conjunction with a three-electrode cell consisting of a working electrode (2.0 mm diameter platinum disc), a counter electrode (platinum wire), and a reference electrode ([Ag/AgCl of LiCl 0.01 M in EtOH]). Solutions of the test compound (5 x 10^{-4} moldm⁻³) were prepared in CH₂Cl₂, which had been dried over CaH₂. A supporting electrolyte, [N-nBu₄][PF₆] (0.1 mol dm⁻³), was used. Under these conditions, the E°

value for the one-electron oxidation and reduction of $[Fe(\eta-C_5H_5)_2]$, which was added to the test solution for internal calibration, was measured at 0.52 V.

3.2 Synthesis of Fe(III) complexes

3.2.1 Synthesis of [Fe(salBzen-5-OMe)₂]A complexes

The synthesis of 1-5 is shown in Scheme 3.1.

Scheme 3.1 Synthesis of [Fe(salBzen-5-OMe)₂]A complexes.

3.2.1.1 Synthesis of [Fe(salBzen-5-OMe)₂]Cl 1

Firstly, HsalBzen-5-OMe was prepared by dissolving 2-hydroxy-5-methoxybenzaldehyde (0.8 mmol, 0.122 g) in ethanol (5 mL) in the round bottom flask then N-benzylethylenediamine (0.8 mmol, 120.2 μ L) was added causing the solution to become a pale yellow. Then triethylamine 111 μ L was added for deprotonation. In a separate vial, FeCl $_3$ (0.0648 g, 0.4 mmol) was dissolved in EtOH (3 mL). The bright orange solution was added dropwise into the HsalBzen-5-OMe ligand solution. The deep blue mixture was stirred for 3 hours. The crude was then reduced to approximately 2 mL *in vacuo* and precipitated with water (30 mL). The residue was filtered, washed with water, and dried in air. 1 was collected as black crystals after recrystallization by layering hexane on top of a CH $_2$ Cl $_2$ solution of the complex (4:1

ratio of CH_2Cl_2 :hexane) (0.124 g, 47%). Elemental analysis: cald (found) for $C_{34}H_{38}$ FeClN₄O₄: C, 62.06 (61.92); H, 5.82 (5.80); N, 8.51 (8.54).

3.2.1.2 Synthesis of [Fe(salBzen-5-OMe)₂]Br 2

2 was synthesized in a similar method to **1** using FeBr₃ (0.120 g, 0.4 mmol) instead of FeCl₃. Recrystallization by layering hexane on top of a CH_2Cl_2 solution of the complex (4:1 ratio of CH_2Cl_2 :hexane) yields black crystals of **2** (0.182 g, 64%). Elemental analysis: cald (found) for $C_{34}H_{38}$ FeBrN₄O₄: C, 58.14 (57.66); H, 5.45 (5.39); N, 7.98 (7.97).

3.2.1.3 Synthesis of [Fe(salBzen-5-OMe)₂]I 3

3 was synthesized via post-complexation anionic exchange from FeCl₃ (0.4 mmol, 0.0646 g) and was dissolved in EtOH (3 mL) to give a bright yellow solution to which the ligand solution was added. The solution immediately turned black and THF (4 mL) was added to improve solubility and a solution of KI (1.2 mmol, 0.1996 mg) in EtOH:H₂O (4 ml:1 ml) was added. The flask was heated at 60 °C overnight. After anionic exchange, the reaction mixture was allowed to cool to room temperature and reduced to approximately 2 mL *in vacuo*. Water (30 mL) was added to precipitate the product. The residue was filtered, washed with water, and dried in air. 3 was collected as black crystals after recrystallization by layering hexane on top of a CH₂Cl₂ solution of the complex (4:1 ratio of CH₂Cl₂:hexane) (0.177 g, 59%). Elemental analysis: cald (found) for C₃₄H₃₈FelN₄O₄: C, 54.49 (54.49); H, 5.11 (5.08); N, 7.48 (7.59).

3.2.1.4 Synthesis of [Fe(salBzen-5-OMe)₂]NO₃ 4

4 was synthesized in a similar method to **1** using Fe(NO₃)₃ (0.162 g, 0.4 mmol) instead of FeCl₃. Recrystallization by layering hexane on top of a CH₂Cl₂ solution of the complex (4:1 ratio of CH₂Cl₂:hexane) yields black crystals of **4** (0.155 g, 57%). Elemental analysis: cald (found) for C₃₄H₃₈FeN₅O₇: C, 59.66 (59.08); H, 5.60 (5.52); N, 10.23 (10.23).

3.2.1.5 Synthesis of [Fe(salBzen-5-OMe)₂]ClO₄ 5

5 was synthesized in a similar method to 1 using Fe(ClO₄)₃ (0.143 g, 0.4 mmol) instead of FeCl₃. Recrystallization by layering hexane on top of a CH₂Cl₂ solution of the complex (4:1 ratio of CH₂Cl₂:hexane) yields black crystals of 5

(0.119 g, 41%). Elemental analysis: cald (found) for $C_{34}H_{38}FeClN_4O_8$: C, 56.56 (56.48); H, 5.31 (5.26); N, 7.76 (7.81).

3.2.2 Synthesis of [Fe(salPren-5-OMe)₂]A complexes

The synthesis of 6-10 is shown in Scheme 3.2.

Scheme 3.2 Synthesis of [Fe(salPren-5-OMe)₂]A complexes.

3.2.2.1 Synthesis of [Fe(salPren-5-OMe)₂]Cl 6

Firstly, HsalPren-5-OMe was prepared by dissolving 2-hydroxy-5-methoxybenzaldehyde (0.8 mmol, 0.122 g) in ethanol (5 mL) in the round bottom flask then N-propylethylenediamine (0.8 mmol, 98.6 μ L) was added causing the solution to become a pale orange. Then triethylamine 111 μ L was added for deprotonation. In a separate vial, FeCl₃ (0.0648 g, 0.4 mmol) was dissolved in EtOH (3 mL). The bright orange solution was added dropwise into the HsalPren-5-OMe ligand solution. The deep blue mixture was stirred for 3 hours. The crude was then reduced to approximately 2 mL *in vacuo* and precipitated with water (30 mL). The residue was filtered, washed with water, and dried in air. **6** was collected as black microcrystals after slowly reducing from 1:2 CH₂Cl₂:hexane (0.130 g, 58%). Elemental analysis: cald (found) for C₂₆H₃₈FeClN₄O₄: C, 55.58 (55.22); H, 6.82 (6.84); N, 9.97 (9.91).

3.2.2.2 Synthesis of [Fe(salPren-5-OMe)₂]Br 7

7 was synthesized in a similar method to 6 using FeBr $_3$ (0.120 g, 0.4 mmol) instead of FeCl $_3$. Recrystallization after slowly reducing from 1:2 CH $_2$ Cl $_2$:hexane yields black microcrystals of 7 (0.179 g, 73%). Elemental analysis: cald (found) for C $_{26}$ H $_{38}$ FeBrN $_4$ O $_4$: C, 51.50 (51.12); H, 6.32 (6.35); N, 9.24 (9.17).

3.2.2.3 Synthesis of [Fe(salPren-5-OMe)₂]I 8

8 was synthesized via post-complexation anionic exchange from FeCl₃ (0.4 mmol, 0.0649 g) and was dissolved in EtOH (3 mL) to give a bright yellow solution to which the ligand solution was added. The solution immediately turned black and THF (4 mL) was added to improve solubility and a solution of KI (1.2 mmol, 0.2012 mg) in EtOH:H₂O (4 ml:1 ml) was added. The flask was heated at 60 °C overnight. After anionic exchange, the reaction mixture was allowed to cool to room temperature and reduced to approximately 2 mL *in vacuo*. Water (30 mL) was added to precipitate the product. The residue was filtered, washed with water, and dried in air. 8 was collected as black microcrystals after slowly reducing from 1:2 CH₂Cl₂:hexane (0.193 g, 76%). Elemental analysis: cald (found) for C₂₆H₃₈FelN₄O₄: C, 47.80 (47.47); H, 5.86 (5.90); N, 8.58 (8.52).

3.2.2.4 Synthesis of [Fe(salPren-5-OMe)₂]NO₃ 9

9 was synthesized in a similar method to **6** using Fe(NO₃)₃ (0.162 g, 0.4 mmol) instead of FeCl₃. Recrystallization after slowly reducing from 1:2 CH₂Cl₂:hexane yields black microcrystals of **9** (0.161 g, 68%). Elemental analysis: cald (found) for C₂₆H₃₈FeN₅O₇: C, 53.07 (52.67); H, 6.51 (6.54); N, 11.90 (11.81).

3.2.2.5 Synthesis of [Fe(salPren-5-OMe)₂]ClO₄ 10

10 was synthesized in a similar method to 6 using Fe(ClO₄)₃ (0.143 g, 0.4 mmol) instead of FeCl₃. Recrystallization after slowly reducing from 1:2 CH₂Cl₂:hexane yields black microcrystals of 10 (0.182 g, 69%). Elemental analysis: cald (found) for C₂₆H₃₈FeN₅O₇: C, 49.89 (49.54); H, 6.12 (6.16); N, 8.95 (8.89).

3.3 References

- Petříček, V., Palatinus, L., Plášil, J., and Dušek, M. (2023). Jana2020 a new version of the crystallographic computing system Jana. *238*(7–8), 271–282. doi: doi:10.1515/zkri-2023-0005
- Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D., and Spackman, M. A. (2021). CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. *Journal of Applied Crystallography*, *54*(3), 1006–1011. doi: 10.1107/S1600576721002910