
CHAPTER IV

EXPLORING THE SPACE-TIME STRUCTURE OF THE

FIREBALL

As already emphasized in Ch. II, understanding the dynamical space-time pic-

ture of the heavy-ion collisions is important for interpreting the ųnal stage observables

from experimental data for EoS and the critical behavior studies.

We will begin this chapter by demonstrating the inŴuence on the cluster for-

mations, particularly the simplest cluster deuteron and antideuteron, from the freeze-

out geometry of the ųreball. We explore the ųreball geometry across beam energy

spectra to investigate the possible critical behavior on the source volume. Then UrQMD

transport model will be employed to validate our ųndings.

Later on, we further our ųreball volume investigation by studying the ųreball

space-time geometries from the effects of various phase transition scenarios, i.e., from

different EoS using the HBT radii. The HBT radii are equivalent to the interpretation of

the emission source for these clusters and they are related to the expansion time.

Overall, in this Ch. IV we present comprehensive studies on the space-time

structure of the ųreball from various beam energies and various EoS using the cluster

formations and HBT radii.

Clusters are ųnal stage observables and one of the most direct probes for such

studies. Clusters are composited particles of nucleons. Their formations are sensitive to

critical phenomena due to the fact that their constituents, nucleons, are subjected to

baryon conservation. At the critical point, it is well known that all conserved quantities

will diverge at chemical freeze-out. This leads to the divergence of the correlation

length, Ŵuctuation, and susceptibilities of the conserved quantities. The divergence of

correlation length and Ŵuctuation of the nucleons will inŴuence the formation of the

clusters at the kinetic freeze-out. These divergences are also related to the compression

and expansion of the source volume, ųreball.

However, these physical interpretations could only be manifested and in-

vestigated with the proper choice of formation mechanisms. The coalescence model

states that if two or more nucleons are close enough in phase-space, they will coa-

lesce and form a cluster at the very last stage of collisions, kinetic freeze-out (for more
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details, see Ch. V). This physical description, on the space-time localization of the coa-

lescence model, makes it suitable for our following studies. It allows us to investigate

their emission sources and constituent density proųles and the all inŴuences before

their emission at kinetic freeze-out.

Back in 1992, the deviations from the simple approach were reported with

the failure to predict antideuteron yield in Si+Au collisions at AGS (Aoki et al., 1992),

where the measured antideuteron invariant cross section is suppressed by 5-10 times

compared to the deuteron’s. Since the simple coalescence dictates the cluster for-

mation mainly by a single coalescence parameter B2, the formation of deuterons and

antideuterons are expected to yield similar amount. This inconsistency leads to the

development of the phase-space coalescence approach.

The failure to describe the suppression of antideuterons was attributed to

the dependency of deuteron (Sato and Yazaki, 1981; Remler, 1981; Mrowczynski,

1987; Lyuboshits, 1988; Danielewicz and Schuck, 1992; Mrowczynski, 1992) and an-

tideuteron (Mrowczynski, 1990; Dover et al., 1991; Leupold and Heinz, 1994) formation

rates to the emission-source geometries in nuclear collisions. Then S. Mrówcyńzski

proposed the geometrical space-time formation rate to address the phase-space coa-

lescence model (Mrowczynski, 1993).

His approach assumed that antinucleons are emitted from the outer shell of

the source due to a high probability of nucleon-antinucleon annihilation in the central

baryon-rich region, while nucleons are emitted from the entire volume. Despite as-

suming spherical symmetry, this model successfully described experimental data from

Si+Au collisions at Elab = 14.6A GeV (Aoki et al., 1992).

In the next section, we will apply the antideuteron and deuteron formation by

Mrówcynźski coalescence approach to reconstruct and explore the size of the emission

source, assuming spherically symmetric (anti)nucleon source functions and call this

approach “Mrówcyńzski coalescence model”.

4.1 (Anti)deuteron formation rate and source geometry

The original Mrówcyńzski coalescence model (Mrowczynski, 1993) purposed

that the shape of the antinucleons source has to be reconsidered as well as suggest-

ing an analytic formula to get rid of the un-measurable constant parameter p0. The

(anti)deuteron distributions and (anti)nucleon distributions can then be formulated ac-

cording to the tunable space-time parameter which can be related to the collision
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system’s initial conditions.

4.1.1 Mrówcyńzski Density Function

The main assumption of this approach is that the produced antinucleons

located close to the center of the collision have a substantial probability to experience

secondary interactions and annihilation in the baryonic rich environment. Antinucleons

produced on the closer to the surface, on the other hand, have a higher chance to

escape the ųreball and proceed to coalescence. Nucleons are emitted from the whole

source or ųreball volume. From the above picture, we can impose and modify different

geometries on the antinucleon and nucleon sources which can help us addressing the

difference formation rates.

ࡼۯ

ࢀۯ

࢖

࢔

ࢄ

ࢊ ࡼۯ

ࢀۯ

ഥ࢖

ഥ࢔

ࢄ

ഥࢊ

ഥ࢖

࢖

ࢽ

Figure 4.1 The schematic picture of the geometric coalescence model for (anti)deuteron

formation if the two (anti)nucleons are close enough in phase-space. Ap and AT are the

incoming projectile and target nucleons and X represents the particles that carry the

rest momenta of the system. (Left) The nucleon emission source is a whole spherical

with radius r0. (Right) the survived antinucleons are emitted only on a spherical shell

radius r0 as the NN annihilations destroy most of the antinucleon at the center radius

r∗.

The simple coalescence model describes the formation of clusters assum-

ing that a pair of ųnal-state (anti-)nucleons carrying similar momenta can coalesce to

form a deuteron or an antideuteron with total momentum P. The invariant differen-

tial production cross sections for deuterons (d) and nucleons (p) and accordingly for
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antideuterons and antinucleons are related by

E
d3
σd

dP3
= B2

�
E

2

d3
σp

d(P/2)3

�2

, (4.1)

where (E,�P) and (E/2,�P/2) denote the deuteron and nucleon 4-momenta and σ inel is

the total inelastic cross section. The coalescence parameter B2 can be measured in ex-

periments and is usually used to infer the volume of the source size. Then, Mrówcyńzski

coalescence states that the formation rate is related to this coalescence parameter via

A = m
2
B2, with m denoting the nucleon mass. The formation rate A is calculated as

A =
3

4
(2π)3

� �
d3r1d

3r2D(�r1)D(�r2)|Ψd(�r1,�r2)|
2 , (4.2)

where the bulk nucleon source D(�ri) describes the probability of ųnding one nucleon

at a given point�ri in kinetic freeze-out ųreball (volume emission) and Ψd(�r1,�r2) denotes

the deuteron wavefunction. The emitted nucleons are assumed to be uncorrelated.

Figure 4.1 shows the emission regions for (anti)nucleons, the nucleon source

is distributed over the whole ųreball, while the antinucleons are suppressed near the

center of the whole volume. This leads to a surface-like to shell-like emission source

for antinucleon’s. The nucleon source function D(�r) is parametrized by a normalized

Gaussian (Mrowczynski, 1993),

D(�ri) =
exp (−�r2i /2r20)

(2π)3/2r30
, (4.3)

with r0 given by the mean radius squared "r2# = 3r20 . The normalized antinucleon

source function D(�r) contains a second Gaussian of width r∗ that effectively cuts out

the central region reads as

D(�ri) =
exp (−�r2i /2r20)− exp (−�r2i /2r2∗)

(2π)3/2(r30 − r3∗)
. (4.4)

It is useful to simplify our analysis into the center of mass frame coordinates,�P =
�p1 +�p2,�R = 1

2
(�r1 +�r2) with relative motions,�p = 1

2
(�p1 −�p2),�r =�r1 −�r2.
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The deuteron wavefunction then factorizes to

Ψd(�r1,�r2) = exp(i�P·�R)φd(�r) , (4.5)

The Hulthén wavefunction reads

φd(�r) =

�
αβ(α + β)

2π(α − β)2

�1/2
exp(−αr)− exp(−βr)

r
, (4.6)

with parameters α = 0.23 fm−1 and β = 1.61 fm−1 (Hodgson et al., 1997). The

formation rate A in relative coordinates then reads,

A ≡ 3

4
(2π)3

�
d3rDr(�r)|φd(�r)|

2 , (4.7)

where the nucleon source function is

Dr(�r) =
1

(4π)3/2r
3/2
0

exp(−�r2/4r20) , (4.8)

and the antinucleon source function is

Dr(�r) =
r30e

−�r2

4r2o + r3∗e
−�r2

4r2o − 2
5
2 r30r

3
∗

(r20+r2∗)
3/2 e

− �r2

2(r20+r2∗)

(4π)3/2(r30 + r3∗)
2

. (4.9)

The antideuteron formation rate A as function of r0 is depicted in Figure 4.2.

When the suppression region r∗ = 0 fm, the antideuteron formation rate is identical

to the deuteron formation rate. As the size of the suppression region r∗ increases at

the same source size r0, the antideuteron formation rate decreases. This decrease is

attributed to the thinning of the antideuteron emission shell as the suppression region

expands.

4.2 Energy Dependence of Formation Geometry

To extract the energy-dependent geometries of the antideuteron and

deuteron sources, we ųrst determine the deuteron emission source radius r0 by ųt-

ting the coalescence parameter B2 from various experiments, as it is proportional to
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Figure 4.2 The antideuteron formation according to the source bulk radius r0 with vary-

ing suppression radii r∗.

Figure 4.3 The energy dependence coalescence parameters B2 for deuterons (left) and

B2 antideuterons (right) from various experiments ranging from
√

sNN = 4.7−200 GeV.

The black lines show the B2 and B2 ųts using the extracted radii r0 and r∗ according to

the formation rate in Eq. (4.7)
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the deuteron formation rate A(�r, r0). The ųt results for experiments such as NA49 and

STAR are illustrated in Figure 4.3 (left) as black lines. Next, we extract the suppression

region of the antideuteron source r∗ by ųtting the antideuteron coalescence parame-

ters B2 ∝ A(�r, r0, r∗) to the experiments shown in Figure 4.3 (left). We assume that

both deuteron and antideuteron share the same emission source radius r0. This process

allows us to characterize both the emission source r0 and the suppression region r∗,

providing insights into the energy dependence of formation geometries.

Figure 4.4 The emission source radius r0 of deuteron (solid black lines) and the sup-

pression region of antideuteron source r∗ (dash-dotted line) as a function of energy

The energy dependence of the extracted source radii is presented in Fig-

ure 4.4. The deuteron emission source and also the antideuteron outer radius r0
(solid black lines) exhibit rapid growth with increasing center-of-mass energy below√

sNN = 20 GeV. The extracted radii r0 from NA49 and STAR experiments show

good agreement with a smooth connection with respect to the center-of-mass en-

ergy. However, the growth is suppressed and declines after reaching a maximum at√
sNN = 63 GeV. The Ŵattening and subsequent decrease in B2 and r0 for energies√
sNN ≥ 20 GeV contradict the assumption that a volume of the emission source, i.e.,
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a ųreball, increases with energy. This phenomenon may be attributed to Ŵow effects,

as reported in Ref. (Gaebel et al., 2021).

Regarding the annihilation region, i.e., the inner radius r∗ (depicted as a dash-

dotted line), it similarly exhibits an increase at low energies followed by a drop after

reaching a maximum at
√

sNN = 27 GeV. This trend might suggest a nutcracker-like

shell structure in this energy regime, as speculated by Ref. (Shuryak, 1999). The decrease

in the inner radius implies that antideuterons have a higher probability of survival inside

the ųreball. This can be explained by the dominance of pions over nucleons in the

ųreball at this energy regime, signiųcantly reducing the annihilation cross section of NN.

4.3 Validation with UrQMD

For theoretical validation of the source geometries, we conducted simula-

tions using the Ultrarelativistic Quantum Molecular Dynamics (UrQMD) transport model.

Serving as a realistic microscopic simulation, UrQMD tracks the propagation of each

hadron’s 4-coordinates and 4-momenta from the initial collisions until the last colli-

sions at kinetic freeze-out, accounting for all re-scatterings, annihilations, and decays.

To conųrm our interpretations of the nucleon and antinucleon source geometries and

extract the corresponding parameters, we simulate 0 − 10% central Au+Au collisions

at various collision energies ranging from
√

sNN = 7.7 to 200 GeV. The nucleon and

antinucleon distributions are examined in the transverse plane rT given by 1
rT

dN
drT

, where

rT =
�

r2x + r2y, the normalization by 1/rT accounting for a cylindrical geometry at

mid-rapidity. The expression of the (anti)nucleon distribution is

We present examples of the normalized transverse distribution rT of

(anti)nucleons at
√

sNN = 11.5 and 200 GeV in Figure 4.5. In the case of
√

sNN =
11.5 (left panel), within the range rT ≤ 5 fm, nucleons experience a slight suppres-

sion around 5% below the maximum. Conversely, the suppression of antinucleons is

notably stronger, amounting to around 80%.

At the higher energy of
√

sNN = 200 GeV (the right panel), both nucleons

and antinucleons exhibit comparable suppression levels, approximately 60 − 70%

at the core of the sources. This indicates that, across different energy regimes, both

antinucleons and nucleons experience some kind of suppression at the core. For the

nucleons, this is due to the increased production of other particles at the core of the

ųreball, particularly pions, which become dominant at higher energies. However, the

degree of antinucleon suppression reŴects nucleon-antinucleon annihilation. At high
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Figure 4.5 The normalised (anti)nucleon distribution in transverse plane rT at
√

sNN =
11.5 GeV (left panel) and

√
sNN = 200 GeV (right panel). The black solid line repre-

sents the nucleon distribution and antinucleon distribution is depicted with the dotted

line.

energies, the annihilation probability is reduced because the nucleon distribution is

scarcer compared to lower energies reducing the suppression of antinucleons at the

core.

After analyzing the quantitative distributions of both nucleon and antinucleon

sources, we can extract the source geometries by ųtting the nucleon and antinucleon

distributions with Gaussian source functions D(r0) and D(r0, r∗), respectively. We

assume a simple non-suppressed source function for the nucleons. Additionally, the

outer source radii of nucleons and antinucleons are assumed to be independent and

ųtted separately.

The extracted freeze-out geometries of (anti)nucleons shown in Figure 4.6

support the idea that nucleon-antinucleon annihilation is suppressed due to the pion

enhancement at high energy, as evidenced by the drop in the inner radius r∗ (open blue

squares) with increasing energy. Furthermore, we observe that all the extracted radii

exhibit a monotonic behavior with energy. This is in contrast to the sources extracted

from the Mrówcyńzski coalescence model ųtted with experimental data, which exhibit

local maxima for both the shared r0 and r∗ of the antinucleon source. This might be at-

tributed to using the cascade mode in UrQMD which lacks critical behavior as the EoS is

turned off. The sizes of the nucleon source radius r0 (full black circles) are comparable

to the sizes of the antinucleon source’s outer radius r0 (full blue squares). This supports
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Figure 4.6 The energy dependence of the ųtted (anti)nucleon source radii is illustrated.

The solid circles represent the whole nucleon source radius r0. The extracted source

radii of antinucleons are depicted with square symbols. The outer source radius of

antinucleons r0 is represented by the full symbols, while the inner source radius of the

suppression region r∗ is indicated by the open symbols.

our previous assumption that the antinucleon source shares the same source as nucle-

ons, or at least, is very close around r0 � 5−12 fm. Although this value is twice that of

the Mrówcynźski nucleon source, it is understandable as in UrQMD, the (anti)nucleons

gradually freeze out, while the Mrówcyńzski model assumes instantaneous emission.

In light of these differences, the qualitative comparison of the antinucleon

source from two different approaches is undertaken by examining the r∗/r0 ratio in

Figure 4.7. It is expected that the r∗/r0 ratio will approach or reach unity at the lowest

energy, indicating complete suppression of antinucleon emission. While the results

from the Mr’owcy’nzski coalescence model (red star symbol) cannot fully support this

notion due to the lack of available experimental data at low energy
√

sNN < 10 GeV, the

ratio from UrQMD simulations (blue square symbol) does indeed converge to unity at√
sNN = 7.7 GeV. Furthermore, the overall trends from both approaches align well, as
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Figure 4.7 The energy dependence of the r∗/r0 ratio of antinucleon source from Mrów-

cyńzski coalescence model (red star symbol) and UrQMD simulation (blue square sym-

bol) at central 0 − 10% Au+Au collisions.

the ratios decrease with increasing energy, supporting the idea of reduced suppression

from nucleon-antinucleon annihilation due to the dominance of pion enhancement in

the ųreball at high energy.

In conclusion, we have presented the Mrówcynźski coalescence model

which assumes an annihilation region inside the antinucleon source and extracted the

(anti)nucleon source radii of r0 and r∗ by ųtting the (anti)deuteron formation rate with

available experimental data of B2 and B2 from NA49 to STAR. Comparison with UrQMD

supports the idea of suppression inside the core especially for the antinucleons at low

energy. For high energy, the nucleon-antinucleon annihilation is suppressed due to the

pions dominating the ųreball as seen by the transverse distribution and the drop of

r∗. Finally, the comparison of r∗/r0 shows that both models share the same trend as

UrQMD’s ratio starts at unity at low energy as expected and both ratios decrease with

energy. The disappearance of the local maximum of the ratio in UrQMD is attributed by

the fact that we employ the cascade mode in UrQMD, so there is no critical behavior
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from the change of the EoS. It would be interesting to test our model and the effects of

the EoS within UrQMD in the future when experimental data at lower energies becomes

available.

So far, we have demonstrated the interplay between the cluster formations

and source volume which is crucial for understanding the QCD matter revolving around

the critical point and ųrst-order phase transition. The result has hinted at the possibility

of critical behavior in the ųreball volume measured by the coalescence parameter

B2(B2), contrasting with results from the (cascade) UrQMD model.

To deepen our understanding on the effects on the source volume from a

phase transition, particularly at low energies, we turn to HBT interferometry (Lacey,

2015; Bluhm et al., 2020), speciųcally focusing on pion intensity (Pratt, 1986). HBT

offers various unique observables sensitive to the ųrst order phase transition, allowing

us to probe the critical behavior of the (emission) source volume via the space-time

structure and momentum correlations (Ackermann et al., 2003; Csorgo et al., 2006).

The investigations into the effects of the EoS on HBT interferometry within

different models are mostly limited to high energies (Pratt, 1986; Bertsch et al., 1988;

Ma et al., 2006). Moreover, at high beam energies, other observables like Ŵuctuations

haven’t exhibited the anticipated behavior indicative of a phase transition. These in-

tensify the debate surrounding the existence of the critical point.

The following section aims to study the interplay between phase transitions

and HBT source volumes, with different phase transition scenarios or EOS toward lower

energies.

4.4 HBT Correlation

The principle of HBT interferometry proposed by R. Hanbury-Brown and R. Q.

Twiss in 1954 (Brown and Twiss, 1956) has become a useful tool in the study of the

space-time geometry of the emission sources in astronomy (Hanbury Brown and Twiss,

1956), and nuclear and particle physics (Goldhaber et al., 1960; Csorgo, 2006).

The main difference between the HBT interference and the conventional

Michelson interferometry is that the latter one is based on the superposition of two

amplitudes. The interference pattern is predicted simply by the path difference be-

tween two sources as a function of relative angle. In contrast, the HBT interference

occurs by correlating two wave intensities which can also result in intensity distributions

as a function of the relative angle between the detectors. Thus, HBT interferometry
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can also be understood as intensity interferometry (Wiedemann and Heinz, 1999).

4.4.1 Two-Particle Correlations

The effect of HBT correlations is strongly related to the Ŵow (Dinh et al., 2000;

Retiere and Lisa, 2004; Lisa et al., 2005) which can be used to hint at a phase transi-

tion (Spieles and Bleicher, 2020). Various species of particle waves are emitted from

the created ųreball. Let us consider the particles emitted from the source according to

a density distribution ρ(r). The source is parametrized at the later stage of the collision

where the source distribution is at the kinetic freeze-out stage. The correlation function

C is deųned as a ratio of the correlation intensity IAB from detector A and detector B

divided by the individual intensity from detector A and B, IA and IB, i.e., C = IAB/(IA·IB).

Detector A

b

a

Detector B

Source

Figure 4.8 The diagram of particle detection. Particle 1 and particle 2 are emitted, with

a four-momentum p1 and p2, at points a and b respectively. Then they are detected

by detectors A and B. If the particles are identical, we also need to consider the cases

where the particles propagate indistinguishably into the detectors as illustrated with

the dashed lines.

According to Figure 4.8, we can measure the correlation function by the den-

sity ratio of two-particle coincident event divided by the single particle event in phase-
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space. The correlation function now reads,

C(�k,�q) =
(d6N/d�p1d�p2)

(dN3/d�p1)·(dN3/d�p2)
= N

P(p1, p2)

P(p1)·P(p2)
, (4.10)

where the relative and average momentum of the two particles are denoted by�q =
(�p1 − �p2) with q0 = E1 − E2 and�k = 1

2
(�p1 + �p2) with k0 = E0 =

√
m2 +�k2.

Here, P(pi) is the probability of a single particle carrying four-momentum pi, N is a

normalization factor between P(p1, p2), the probability of the coincident event with

particle 1 having four-momentum p1 and particle 2 having four-momentum p2, and the

product of two P(pi), the probability of an uncorrelated single particle event. We have

P(p1, p2) =

�

source

S(x1, p1)S(x2, p2)|φ(q, r)|2d4x1d
4x2, (4.11)

where φ(q, r) is the probability amplitude for detecting two particles described with

by relative four-momentum q = p1 − p2, k =
1
2
(p1 + p2) and space-time point

r = (x1 − x2) , R = 1
2
(x1 + x2), one from point a with p1 in detector A and one

from point b with p2 in detector B. However, since the particles of interest are identical,

we cannot determine which particle is registered by A or B. So, we need to consider

the exchange of two particles as a linear combination,

φ(p1, p2) =
1√
2
(φ12 ± φ21) . (4.12)

Here, φ12(φ21) represents the case where particle 1(2) from point a is detected in A(B)
and particle 2(1) from point b in B(A). For bosons, we have a symmetric conųguration

(plus-sign). For fermions, we have an anti-symmetric conųguration, thus a minus sign.

If a single emitted particle is described by a plane wave as a free particle, we

have

φ12 = eip1·x1·eip2·x2 ,

φ21 = eip2·x1·eip1·x2 ,

where the space-time coordinates of positions a and b are denoted x1 and x2, respec-
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tively. Now Eq. (4.11) becomes,

P(q, r) =

�

source

S(r)S∗(r)d4rd4r

±
�

source

S(r)eiq·rd4rS(r)e−iq·rd4r

= |F[S(0)]|2 ± |F[S(q)]|2 , (4.13)

with a smoothness approximation coupled with the on-shell momentum, we can use

S(R− r
2
, k− q

2
)S(R+ r

2
, k+ q

2
) � S(r, k)S(r, k), and deųne S(r) ≡ S(r)eiq·r. For

the single-particle probability, we have P(pi) =
�

source S(xi)e
ipi·xid4x = F[R(0)].

Substituting into the correlation function (Eq. (4.10)), we ųnally end up with,

C(�k,�q) = 1 ± |F[S(q)]|2

|F[S(0)]|2
. (4.14)

Here, we can clearly see the relation between the correlation and the source density

distribution. The mass-shell constraint is k·q = 0 and it is convenient to consider the

system in the co-moving frame of the particle pair. Thus in this particle pair rest frame,

the time structure of the relative source and correlation function are integrated out,

i.e., S(�q,�r) and C(�k,�q). We assume a certain source function S(�q,�r) for the ųreball

and ųt the result with experimental data. In this way, we can get a general idea of the

size and the lifetime (Kopylov and Podgoretsky, 1972) of the emission source created

by the collisions (Shuryak, 1973).

A different choice of source distribution will give us a different interpretation

of the freeze-out formation. The most common parametrization for the source is the

Gaussian distributions, S(�r, t) ∝ exp (−�r2/2R2), resulting in a correlation function

C(�k,�q) given by,

C(�k,�q) = 1 ± λ·Rexp

�
−1

2
q2R2

�
. (4.15)

The factor λ is called “chaoticity” or “incoherent factor” and added as a free parameter

for a better ųtting to the data (Adams et al., 2005; Adhikary et al., 2023; Weiner, 2000;

Kincses et al., 2020). So far, we have discussed only the simplest example of the

two-particle correlations. The correlation functions can be parametrized by various



51

formulae depending on the origin of correlations between considered particles.

Ref. (Chapman et al., 1995a) has shown in detail that one can assume an

expanding source parametrized alternative to the Gaussian (Bertsch et al., 1988; Boal

et al., 1990; Sarabura et al., 1992; Abbott et al., 1992; Seyboth et al., 1992; Chapman

et al., 1995b; Roland, 1994; Heinz et al., 2002) by Yano-Koonin-Podgoretsky (Yano and

Koonin, 1978) and Heinz (Chapman et al., 1995a) which is appropriate to explicitly take

into account a collective cylindrical expansion, the correlation due to quantum statistics

can be parametrized in terms of the components of q:

C(qL, qO, qS) = 1 + exp (−R2
Lq

2
L − R2

Oq
2
O − R2

Sq
2
S − 2R2

OLq
2
OL) , (4.16)

where qi is the relative momentum of a particle pair in longitudinal qL, outward qO

and sideward qS directions, and Ri are the HBT radii in the same direction as deųned

for qi. An advantage of using this coordinate system is that the outward radius RO

reŴects the space-time structure of the source. The sideward radius RS is separated

from the temporal structure and measures a bare spatial extension. The observation

of a pronounced difference of these two radii on the transverse plane, i.e., R2
O − R2

S or

R0/RS, is expected to provide a hadronic signature for the realization of the new state of

matter* (Chapman et al., 1995a; Ackermann et al., 2003; Heinz and Kolb, 2002; Retiere

and Lisa, 2004; Kolb and Heinz, 2004; Lisa et al., 2005; Shen and Heinz, 2012). Once

the quark-gluon plasma is formed, one expects that the time evolution of the system

becomes slower in the phase transition (or possibly, a crossover) regime, which reŴects

in the long lifetime of the hadron source, and possibly a prolonged emission time.

In the above considerations, the electromagnetic interactions between

charged hadrons were neglected. Namely, the quantum-statistical correlation functions

discussed so far were obtained with the plane-wave assumption for the wavefunction.

In the following, these will be denoted by C0(�q,�k).
If the ųnal-state electromagnetic interactions are also taken into account,

the correlation function has to be calculated not via the interference of plane waves,

but via the interference of solutions of the two-particle Schrödinger equation with a

Coulomb-potential, describing the ųnal state electromagnetic interactions. The ratio of

these two correlation functions is called the Coulomb correction (Csorgo et al., 2004):

*Note that it has been shown in Ref. (Chapman et al., 1995a) that the interpretation for R2
O −

R2
S ∝ ∆temission is highly model dependent. However, only within the ųxed frame, such an assumption is

justiųed.
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In order to extract the quantum-statistical effects, the counter-acting inŴu-

ence of the Coulomb repulsion as well as the dilution by misidentiųed pairs must be

taken into account, while the effect of the strong interaction can be neglected (Csorgo

et al., 2004; Kincses et al., 2020). This leads to the ansatz:

C = N [(1 − λ) + λKC(qinv, Rinv)·C2(�q,�k)] (4.17)

where λ denotes the purity of the pairs, KC represents the Coulomb repulsion factor,

and C(q) is the correlation from quantum statistics parameterized by the source func-

tion. For pions, the Coulomb correction can be approximately determined from the

experimental correlation function for unlike-sign pairs (Boal et al., 1990; Bowler, 1991;

Baym and Braun-Munzinger, 1996), which is dominated by the Coulomb interaction and

receives no contribution from Bose-Einstein correlation.

The factor KC(qinv, Rinv) describes the Coulomb interaction. It is determined

as (Sinyukov et al., 1998; Csorgo, 2008; Rogochaya, 2017),

K =
C(QS + Coulomb)

C(QS)
(4.18)

4.5 Simulation set-ups and EoS

We use the latest version of the UrQMD transport model (UrQMD v3.5) to

generate the freeze-out scenarios within heavy-ion collisions operated in various EoS

modes and use the “correlation after-burner” (CRAB v3.0β) program (Pratt, 2000) to

explore the results via pion intensity interferometry.

The study will ųrst employ three default modes within UrQMD as baseline for

comparing the results from different equations of state with different types of phase

transitions: I) The cascade mode is primarily used for simulating high-energy collisions

where the interactions between hadrons are predominantly binary scattering and the ef-

fects of nuclear potentials become less signiųcant compared to lower energies. Thus, in

cascade mode, nuclear potentials are turned off, and interactions occur solely through

binary scattering based on available cross-sections. II) The soft EoS mode is used to

refer to the system with more substantial compression and less stiffening of the matter

created in heavy-ion collisions. Soft EoS modes are often employed to study collisions

at lower energies, where the system may spend more time in a dense, hot state before
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Figure 4.9 The comparison of the density dependent potential V (a) and the pressure

p (b) from different the CMF EoS scenarios. CMF_PT2 EoS and CMF_PT3 EoS both

are incorporated with a phase transition as well as instability region indicated by local

maximum and minimum. The simple CMF EoS corresponds to a smooth crossover

transition (Li et al., 2023).
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expanding and cooling. The softer interactions can lead to more substantial collective

Ŵow patterns, allowing researchers to investigate the transition from the initial dense

phase to the ųnal state hadrons. At the phase transition, the system is expected to

be at the softest point. III) The hard Skyrme EoS represents a scenario with less com-

pression and more rapid expansion of the matter created in heavy-ion collisions and is

often used for simulating collisions at higher energies. While this may initially suppress

collective Ŵow, the higher temperatures and densities reached in collisions at higher

energies can still induce signiųcant Ŵow effects.

Then, we extend our investigation by adopting EoS based on chiral mean ųeld

(CMF) models (Machleidt and Entem, 2011; Omana Kuttan et al., 2022) with different

phase transition scenarios to demonstrate how distinct EoS and phase transitions man-

ifest in pion interferometry. The successful integration of CMF in the UrQMD model is

done by calculating the density-dependence mean ųeld potential energy V from the

CMF model’s energy per baryon as demonstrated in Figure 4.9 and also in detail in

Ref. (Motornenko et al., 2020; Omana Kuttan et al., 2022).

To explore the effects of various EoS with and without different phase tran-

sition scenarios, we feed the obtained pion freeze-out phase-space coordinates at the

last interactions (either collisions and decay) from UrQMD calculations to the “correla-

tion after-burner” (CRAB v3.0β) program (Pratt, 2000), provided by S. Pratt.

4.6 Two-Pion HBT Analysis

To begin our analysis, we want to rule out other inŴuences or effects that

could affect the ųnal results. The Coulomb interaction could microscopically alter

hadron trajectories and inŴuences the spatial and momentum correlations at freeze-

out, ultimately impacting the collective behavior of the system on the macroscopic

level. Consequently, the inclusion or neglect of Coulomb interactions in HBT calcula-

tions can lead to differences in the extracted HBT radii and, thus, affect interpretations

of the system size and dynamics.

Figure 4.10 compares the transverse momentum dependence (kT) of HBT

radii in central 0 − 10% Au+Au collisions at
√

sNN = 2.4 GeV for different Coulomb

interaction scenarios with the hard EoS. The analysis focuses on negative pion pairs with

a pair-rapidity cut at |yππ| < 0.35, deųned as yππ = 1
2
ln
(E1+E2+p1,L+p2,L)

(E1+E2−p1,L−p2,L)
, where Ei

and pi,L represent the energies and longitudinal momenta of each pion, respectively.

This conųguration aligns with the experimental data.
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Figure 4.10 Comparison of kT dependence of pion HBT radii showing the effect of

Coulomb interactions. Panels (a), (b), and (c) display the R0, RS, and RL radii, respec-

tively, and panel (d) shows the ratio RO/RS of the π-source from central (0 − 10%)

Au+Au collisions at
√

sNN = 2.4 GeV. Red star symbols depict the results from the

HADES experiments (Adamczewski-Musch et al., 2019). Black dotted lines indicate the

UrQMD simulation results without Coulomb potential (w.o. Coul.), blue dashed lines

show the UrQMD simulation results with Coulomb potential for baryons only (with Coul.

(B)), and pink solid lines depict the UrQMD simulation with the full Coulomb potential

for all hadrons (with Coul. (B+M)).

At high transverse momenta (kT > 100 MeV/c), all simulation scenarios can

reproduce the data reasonably well, except for a slight underestimation of RS. This

underestimation leads to a higher RO/RS ratio compared to the measured values. Fur-

thermore, it is clear that the impact of the Coulomb potential from both scenarios (blue

dashed lines and pink solid lines) is negligible when compared to the Coulomb-free in-

teraction (black dotted line).

Therefore, the subsequent discussion will omit the Coulomb effect on the
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HBT radii. The following results will more or less come from purely nuclear potential,

i.e., the choice of EoS and the phase transition.

Figure 4.11 The transverse momentum (kT) dependence of the HBT radii, RO (left pan-

els), RS (middle panels), and RL (right panels), for 0 − 10% central Au+Au collisions

at
√

sNN ranging from 2.4 GeV (top panels) to 7.7 GeV (bottom panels). Experimental

data are denoted by star symbols from HADES, E895, E866, and STAR collaborations (Lisa

et al., 2000; Lisa et al., 2005; Adamczyk et al., 2015; Adamczewski-Musch et al., 2019;

Adamczewski-Musch et al., 2020; Adam et al., 2021). The UrQMD simulations are rep-

resented by lines: the cascade mode (black line with square), hard EoS (blue line with

circle), and soft EoS (pink line).

The inŴuence of the density dependence of the nuclear potential on HBT radii

is explored in Figure 4.11. The UrQMD model simulations are depicted for three scenar-

ios: cascade mode (black line with square), hard EoS (blue line with circle), and soft EoS

(solid pink line) are compared with experimental data (star symbols) (Lisa et al., 2000;

Lisa et al., 2005; Adamczyk et al., 2015; Adamczewski-Musch et al., 2019; Adamczewski-
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Musch et al., 2020; Adam et al., 2021) as a function of transverse momentum (kT) within

the same collision system and rapidity conųguration mentioned above.

A clear impact of the nuclear potential is evident when comparing the colored

lines (with nuclear potential) to the black line with squares (without nuclear potential)

across the entire kT range. This effect is particularly pronounced at lower center-of-

mass energies. The hard EoS (blue line with circle) generally leads to a decrease in R0

values and an increase in RS compared to the cascade mode (black line with squares).

This behavior results in a better description of the experimental data (star symbols)

observed for most collision energies. The soft EoS (solid pink line) exhibits qualitatively

similar trends to the hard EoS, hence we present the results only for
√

sNN = 2.4 GeV

for the sake of brevity.

An interesting observation is seen at
√

sNN = 4.5 GeV, where the hard

EoS predicts a higher R0 than the cascade mode, unlike at other energies. This ųnding

suggests a potential non-monotonic behavior in the difference between RO and RS,

which may not necessarily be indicative of a critical point associated with a phase

transition. To gain a deeper understanding of these observations, the next section will

focus on a detailed analysis of the RO and RS difference across various nuclear potential

scenarios, including those incorporating and excluding a phase transition.

4.7 Effect of the EoS with Phase Transition

As discussed earlier, the expected non-monotonic behavior in the RO and

RS difference remains ambiguous (Pratt, 2009). It’s unclear whether this arises from

critical behavior near the phase transition or solely from the effects of a strong repulsive

potential (hard EoS). This ambiguity is further ampliųed by the large error bars associated

with the experimental data at the relevant energy (
√

sNN = 4.5 GeV) where the actual

trend might even be a smooth increase rather than a peak (Lacey, 2015; Adamczyk et al.,

2015; Adamczewski-Musch et al., 2019).

Therefore, to gain deeper insights, we explore the difference between RO and

RS, quantiųed by RO/RS and R2
O − R2

S, as a function of center-of-mass energy (
√

sNN)

for various nuclear potential scenarios. These results are then compared with available

experimental data, as illustrated in Figure 4.12. The RO and RS values are chosen at

kT = 275 ± 25 MeV/c in central (0 − 10%) Au+Au collisions with a pair-rapidity cut

of |yππ| < 0.35.
Based on our previous observations, nuclear potentials without a phase tran-
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sition tend to decrease RO and increase RS. This explains the behavior of the hard

EoS (blue line with circle) and the nuclear density dependent CMF EoS (green line),

where both result in suppression of RO/RS and R2
O − R2

S compared to the cascade

mode (black squares). At these energies, the hard EoS and CMF EoS potentials exhibit

similar strength as the nuclear density reaches around ρb/ρ0 ≤ 5. This similarity in

terms of repulsive strength results in the earlier pion emission, as aligned with the rela-

tion ∆τ
2∝1/(R2

O− R2
S). Consequently, the non-monotonic behavior observed around√

sNN ≈ 4.5 GeV in Figure 4.11 is not attributable solely to a rise in RO from the hard

EoS.

We can now shift our focus to the effects of a phase transition in the results

from the CMF EoS with critical behavior representing the phase transition at ρb/ρ0 ≈ 4

and ρb/ρ0 ≈ 5 (CMF_PT2 EoS with orange dotted line and CMF_PT3 EOS with pink

dashed line). At the lowest energy (
√

sNN = 2.4GeV), the results from all CMF EoS

scenarios are similar to the ones from the hard EoS. However, as the energy increases,

CMF_PT2 EoS (orange dotted line) gradually approaches the cascade scenario, reaching

a maximum around
√

sNN≈4 GeV. This reŴects the softening of the nuclear potential

due to the critical behavior from the phase transition. In contrast, CMF_PT3 EoS (pink

dashed line) remains consistent with the default CMF EoS (green line) across all energies.

This suggests that the nuclear density in this energy range never reaches the critical

regime implied by CMF_PT3 EoS, i.e., ρb/ρ0 ≈ 4 − 5.

In conclusion, our ųndings indicate that HBT radii are sensitive to the EoS.

CMF_PT2 suggests that critical behavior is expected around a nuclear density of

ρb ≈ 4 − 5ρ0, as it best describes the experimental data at
√

sNN ≈ 4 GeV.

4.8 Space-time Structure from HBT radii

Now we continue with the discussion of the negative pion π
− emission time.

The critical behavior at the phase transition may result in a softening of the EoS, leading

to longer emission times. This can be interpreted in terms of the HBT radii, where

R2
O− R2

S∝∆τ
2
emission (for non-Ŵow volume). To assess how different assumptions about

the EoS affect the freeze-out time distribution, we present this comparison for various

collision energies ranging from
√

sNN = 2.4 − 7.7 GeV in Figure 4.13.

At
√

sNN = 2.4 GeV, all the freeze-out time distributions with different

EoS (colored lines) are nearly identical, except for the cascade mode (solid black line),

where most pions freeze out around t ≈ 15 fm/c. This uniformity occurs because, at
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this energy, the density-dependent nuclear potentials are nearly the same.

As we move towards higher energies, the freeze-out distribution for the

CMF_PT2 EoS (solid orange line) approaches that of the cascade mode, while the distri-

butions for the other EoS remain almost identical for the rest of the energy range, with

slight deviations at
√

sNN = 7.7 GeV. Here, the freeze-out times for CMF EoS (green

dashed line) and CMF_PT3 are extended similarly, while the hard EoS (solid blue line)

exhibits the shortest emission times.

The corresponding mean freeze-out times "t# and transverse radii rT =�
r2x + r2y

�
of π− are then illustrated in Figure 4.14 as functions of collision energy√

sNN. In panel (a), the mean freeze-out time "t# exhibits a minimum at
√

sNN ≈ 4 GeV

for all calculations. The similar behaviors of increasing freeze-out time "t# at higher en-

ergies of all EoS scenarios may be attributed to resonance decay, with string excitation

overcoming fragmentation. The emission time from a hard EoS (coloured line) is pro-

longed over the entire energy range.

Furthermore, we observe a consistent increase in transverse radii rT in panel

(b), in line with the assumption of an expanding charged volume. The transverse radii rT
from the EoS scenarios with strong repulsive potentials (colored lines) result in consis-

tently larger rT compared to the cascade mode (solid black line), suggesting a stronger

system expansion due to higher pressure. We observe an interesting behavior of the

transverse radii from the CMF_PT2 EoS (orange dotted line), where it remains relatively

constant and approaches the cascade mode (solid black line).

In summary, we investigate the sensitivity of HBT radii to different Equations of

State (EoS) using UrQMD simulations of central (0− 10%) Au+Au collisions at collision

energies ranging from
√

sNN = 2.4 − 7.7 GeV. We explicitly demonstrated that

the inclusion of nuclear potential, independent of Coulomb interactions, signiųcantly

impacts HBT radii (contrast to (Li et al., 2006)). We found that incorporating a hard

EoS, either with or without a phase transition, leads to a better description of the

experimental data for the RO and RS differences of the HBT radii (RO/RS and R2
O − R2

S).

The results obtained with the CMF_PT2 EoS exhibit a softening of the nuclear potential

around
√

sNN ≈ 4 GeV due to the critical behavior, providing an even better agreement

with the data compared to other EoS scenarios. This suggests that the nuclear density

in this energy range falls within the region of ρB 4 − 5ρ0 and likely doesn’t exceed

these values, as the CMF_PT3 EoS doesn’t exhibit any critical behavior.

Finally, we investigated the emission time, represented by the freeze-out
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time distribution of negative pions π
−. Interestingly, all EoS scenarios, including the

cascade mode (without any EoS), display a minimum emission time at
√

sNN ≈ 4 GeV.

As expected, the freeze-out time distribution from the CMF_PT2 EoS shows a distinct

behavior, with a prolonged freeze-out time approaching the cascade mode. This ųnding,

coupled with the observation of nearly constant transverse radii until
√

sNN ≈ 4 GeV,

strongly suggests a critical behavior involving a longer relaxation time associated with

the softening of the nuclear EoS during the phase transition.

These results demonstrate the potential of using HBT radii as a direct probe

to investigate the EoS in this density and energy regime of interest. Future studies can

beneųt from additional experimental data with smaller error bars to further validate

and reųne our understanding of the EoS in this domain.
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Figure 4.12 Comparison of the collision energy dependence of the (top panel) R0/RS

ratio and (bottom panel) R2
O−R2

S for cascade (black line with squares) and various EoS

models (hard EoS: blue line with circles, CMF EoS: green line, CMF_PT2 EoS: orange

dotted line, CMF_PT3 EoS: pink dashed line) with available experimental data (Lisa

et al., 2000; Lisa et al., 2005; Adamczyk et al., 2015; Adamczewski-Musch et al., 2019;

Adamczewski-Musch et al., 2020; Adam et al., 2021).
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Figure 4.13 The freeze-out time distribution of π− from 0 − 10% Au+Au collisions

with the different EoS; Cascade mode (solid black line), Hard EoS (solid blue line), CMF

EoS (green dashed line), CMF_PT2 EoS (solid orange line), and CMF_PT3 EoS (pink dash-

dotted line)
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Figure 4.14 (a) The corresponding mean π
− emission time "t# and (b) transverse radii

rT at freeze-out as a function of collision energies calculated from different EoS.


