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Chapter I

Introduction

1.1 Background and Objective

Pyrolysis is the thermal decomposition of organic material through the

application of heat in the absence of oxygen. When the organic material is exposed

to external heating in the absence of oxygen environment, a number of di�erent

processes proceed simultaneously in the reactor. Heat is �rst transferred to the

particle surface by means of convection from gas ow. The temperature reaches

the pyrolysis level, and thermal decomposition of the biomass occurs. Heat is

transferred inside the particle by conduction and through the pores by volatile

convection.

The mathematical model of the pyrolysis process within the particle is

presented by coupled equations for conservation of mass and energy (Josette and

Richard, 1998). For the gaseous chemical species, the equations for conservation

of mass include both ow divergence terms and source terms proportional to

the products of partial densities and reaction rate constant. For the solid and

liquid species, only the source terms are included. The reaction is assumed to be

irreversible and of �rst order. For modelling conservation of energy, all species

are assumed to be in local thermal equilibrium state in the particle. The partial

internal energy of each chemical species is assumed to be proportional to the

product of its partial density, its speci�c heat at constant volume, and the local

temperature. The rate of change of local internal energy present as the sum of
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1. Heat release rates proportional to the chemical reaction constant multiplied

by source terms.

2. Conduction proportional to the local gradient of temperature multiplied by

the e�ective thermal conductivity.

3. Convection of heat via the ow of gaseous species.

In the present research, the mathematical model of the pyrolysis process used is

simpli�ed by the following assumptions

1. The particle is solid and homogeneous.

2. The particle has spherical shape with the assumption of spherical symmetry.

The problem to be solved is one dimensional in case of these assumption.

There are many papers such as Wagenaar, Kuipers, Prin, and Van Swaaij

(1994), Buckmaster, Smooke and Giovangigli (1993), Weber, Mercer, and Sidhu

(2000) describing the mathematical model of the pyrolysis process under these

assumptions. The model of pyrolysis of biomass was applied in a parametric

study of the e�ect of initial reactor temperature, heating rate, initial particle size,

and conversion times in the pyrolysis of spherical biomass.

This thesis will o�er and study the numerical method to �nd the approx-

imate solution for the mathematical model of the pyrolysis process. The study

of the inuence of di�erent numerical boundary conditions on the approximate

solution are the main target of the present thesis. The data on the pyrolysis of

pine pinaster sawdust in the rotating cone reaction (Wagenaar, Kuipers, Prin,

and Van Swaaij, 1994) has been used to test the numerical algorithm used.
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1.2 Notations and Terminology

This section provides main notations and information to make the thesis

self-suÆcient.

1.2.1 The Reaction Order

The relationship between the reaction rate (velocity, V ) and the

concentration is called the rate law (Mathews, Van Holde, and Ahern, 1994). In

general terms the rate may be written

V = k[A]�[B]�;

where [A] is the concentration of product A, [B] is the concentration of product

B, � is the order with respect to [A] and � is the order with respect to [B]. The

reaction is �th order in A, �th order in B and � + �th order overall.

First order reaction. For an irreversible reaction, A ! B, the reaction rate

(velocity, V ) is given by

V =
d[B]

dt
:

For the rate of appearance of the substrate A; these equations are equally valid

for this reaction, so we can write

V =
d[B]

dt
= �

dA

at
= K1[A];

where K1 is called the reaction rate constant and for this reaction has the unit

of (second)�1. This type of a reaction is called a �rst order reaction, because its

rate depends on the �rst power of the reactant concentration.

Second order reaction. A reaction of this type typically occurs when two

molecules come together to form products. A simple example is

A+ A = P;
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with a the reaction rate constant given by K2. The rate of such a reaction is

proportional to the second power of the concentration of the reactant. Therefore,

V =
�d[A]

dt
= K2[A]

2
:

Here K2 is the second-order rate constant.

1.2.2 Mass Conservation for the Pyrolysis of Biomass Particles

The conservation of mass for the pyrolysis of solid species of biomass

particle under the assumption that the reaction is irreversible and of �rst order

(Josette and Richard, 1998) was interpreted in terms of a simple �rst order dif-

ferential equation

@C

@t
= �KC;

where C is the concentration, t is time, K is the reaction rate constant. In the

general case the reaction rate constant is given by the Arrhenius kinetic equation

K = Ae
�E
RT (see James Birk (1991)) where A is the rate frequency constant, E

is the activation energy, R is the universal gas constant, and T is the absolute

temperature. This equation describes the rate of mass loss.

1.2.3 The Spherical Coordinate System

The spherical coordinate system is the most important coordinate

systems besides the Cartesian coordinate system. Many physical problem possess

spherical symmetry. In such cases, the governing di�erential equations should be

solved in the spherical coordinate system.

DiÆculties arise when numerically solving boundary problems of heat

transfer in complex computational domains. We have thus far considered prob-

lems in a rectangular domain (a regular computational domain). The simple
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approach to the solution of problems in irregular domain is to use curvilinear

coordinates in which the computational domain becomes regular.

In the physics of heat, much attention is paid to spherical coordinates when

modelling thermal �elds in spherical domains.

The relation between cartesian and spherical coordinates is illustrated in

Figure 1.1 the inverse transformation is speci�ed by

x = r sin � cos�; y = r sin � sin�; and z = r cos �:

where r � 0, 0 � � � 2�, and 0 � � � �.

Figure 1.1: Spherical coordinate system

The gradient operator rf in spherical coordinate system is given by

rf = irfr + i�
1

r
f� + i�

1

r sin �
f�;

where ir; i�; and i� are unit vectors in the r; �; and � directions, respectively.

The Laplacian operator r2
f in spherical coordinate system is given by

r2
f = frr +

2

r
fr +

1

r2
f�� +

1

r2 tan �
f� +

1

r2 sin2 �
f��:
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1.2.4 Conservation of Energy for the Pyrolysis of a Biomass

Particle

The conservation of energy for the pyrolysis of solid species of

biomass particle (Josette and Richard, 1998) is presented by this form

cpC
@T

@t
= �r � q + f; (1.1)

where C is the concentration of biomass, cp is the speci�c heat capacity, t is time,

T is temperature, � is the thermal conductivity, q = ��rT is the heat conduction

ux, and f = KCHr represents the heat release rates, Hr is the term due to the

chemical reaction, K is the reaction rate constant. This equation allows us to

determine the temperature at di�erent points of a solid particle. Equation (1.1)

is known as heat equation. In the spherical coordinate system, equation (1.1) can

be written as

cpC
@T

@t
=

1

r2

@

@r

�
�r

2@T

@r

�
+

1

r sin �

@

@�

�
� sin �

1

r

@T

@�

�
+

1

r sin �

@

@�

�
�

1

sin �

@T

@�

�
+ f: (1.2)

In case of spherical symmetry equation (1.2) becomes

cpC
@T

@t
=

1

r2

@

@r

�
�r

2@T

@r

�
+ f: (1.3)

1.2.5 Finite Di�erence Methods

We use the �nite di�erence methods to solve the boundary value

problem by discretizing the continuous solution domain and approximating the

exact derivatives by �nite di�erence approximation and substitute into the bound-

ary value problem to obtain the �nite di�erence equation. Four basic properties

of the �nite di�erence equation for the boundary value problem were identi�ed as

consistency, order of approximation, stability, convergence.
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Consistency, Order of Approximation, Stability, and Convergence

Let us consider the boundary value problem

Lu = f: (1.4)

and a �nite di�erence scheme which corresponds to the boundary value problem

(1:4)

Lhu
(h) = f

(h)
: (1.5)

Here, L is a di�erential operator, L : C ! F , C and F are sets of suÆciently

smooth functions, Lh is a di�erence operator, Lh : Ch ! Fh, Ch and Fh are

sets of grid functions, u is a solution of boundary value problem (1.4), and uh is

a solution of the �nite di�erence scheme (1.5). Let us introduce the projection

operator Ph, Ph : C ! Ch.

L : C ! F

# Ph

Lh : Ch ! Fh

De�nition (convergence) We say that a solution u
(h) of the �nite di�erence

scheme (1:5) converges to the solution of boundary value problem (1:4) u if

Ph(u)� u
(h)

Ch

���!
h! 0

0:

where k�k
Ch

is norm on Ch.

De�nition (convergence with order m) We say that the �nite di�erence scheme

(1:5) converges with order m if

Ph(u)� u
(h)

Ch
� ch

m
;

where the constants c and m do not depend on h:
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The study of the convergence of the �nite di�erence scheme involves two

fundamental properties of the �nite di�erence scheme, consistency and stability.

To de�ne these properties we introduce a new grid function called residual

 
h = f

(h) � Lh (Ph(u)) :

Here we assume that u is a solution of boundary value problem (1.4).

De�nition (consistency) The �nite di�erence scheme de�ned by (1:5) is called

consistent with the boundary value problem (1:4) if

 h

Fh

=
f (h) � Lh (Ph(u))


Fh

���!
h! 0

0;

where u is a solution of boundary value problem and k�k
Fh

is norm on Fh.

De�nition (order of approximation l) The �nite di�erence scheme de�ned by

(1:5) is called a l � th order approximation of boundary value problem (1:4) if

 h

Fh

=
f (h) � Lh (Ph(u))


Fh
� ch

l
;

where u is a solution of boundary value problem and the constants c and l do

not depend on h and f (h):

De�nition (stability) The �nite di�erence scheme de�ned by (1:5) is called sta-

ble, if there exist Æ > 0 and h0 > 0 such that for arbitrary h < h0 and for

a discrete function '
(h) 2 Fh with property

'h
Fh

< Æ solution of the �nite

di�erence scheme

Lhz
h = f

(h) + '
(h)
;

exists, unique, and satis�es the inequality

z(h) � u
(h)

Ch
� c

'h
Fh
:

Theorem (Lax equivalence theorem) The �nite di�erence scheme is stable and

consistent i� it is convergent.

Technics to Estimate the Order of Convergence
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Let error1 and error2 be errors which correspond to grid systems with N1

nodes for mesh size h and N2 nodes for mesh size
h

2
, respectively. The de�nition

of convergence with order m yields

error1 =k Ph(u)� u
h kCh� ch

m
;

and

error2 =k Ph
2

(u)� u
h
2 kCh� c(

h

2
)m:

Dividing error1 by error2 we obtain

error1

error2
' 2m:

Taking the natural logarithm on both sides, we get an approximate value for the

rate of convergence

m '
ln( error1

error2
)

ln2
: (1.6)



Chapter II

Mathematical Model

2.1 Mathematical Model of Pyrolysis

The mathematical model of pyrolysis studied here consists of the coupled

equations for conservation of mass and energy (Josette and Richard, 1998). The

conservation of mass for the pyrolysis of a homogeneous solid of biomass particle

under the assumption that the reaction be irreversible and of �rst order is

@C

@t
= �KC; in 
; (2.1)

where C is the concentration of biomass, t is time, K = Ae
�E
RT is the pyrolysis

reaction rate constant, A is a rate frequency constant, E is the activation energy,

R is the universal gas constant, and T is the temperature. The conservation of

energy for the pyrolysis of a homogeneous solid particle of biomass is presented

by the following equation

cpC
@T

@t
= �r � q + f; in 
; (2.2)

where cp is the speci�c heat capacity, T is temperature, q = ��rT is the heat

conduction ux, � is the thermal conductivity, and f = KCHr represents the

heat release rates, Hr is term due to the chemical reaction, K is the reaction rate

constant. The �rst term on the right hand side is the thermal conductivity and

the �nal term represents the capacity of the internal heat sources, for example:

due to the chemical reaction.
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For the sake of simplicity, let us required that the particle has a spherical

shape with the assumption of spherical symmetry. Due to this assumption all

unknown functions depend on r and t only. The system of equations (2:1), (2:2)

can be rewritten in the spherical coordinate system as

@C

@t
= �KC; 0 � r � rp; 0 � t � t; (2.3)

cpC
@T

@t
=

1

r2

@

@r

�
�r

2@T

@r

�
+ f; 0 < r < rp; 0 � t � t; (2.4)

where r is the radial coordinate of the spherical coordinate system with origin at

the center of the particle, and rp is the radius of the particle. In these equations,

concentration, temperature, the reaction rate constant, and heat release rates

respectively are function of r and t. All other quantities are constants.

In order to specify a unique solution of the system of partial di�erential equations

(2:3), (2:4) it is necessary to formulate boundary and initial conditions. The

boundary condition at the particle center expresses a zero heat conduction ux

from the particle center

lim
r!0

�
��r2 �

@T

@r

�
= 0; 0 � t � t: (2.5)

Three kind of the boundary conditions at the particle surface can be considered

T jr=rp= Tf ; 0 � t � t; (2.6)

or

�r
2 �
@T

@r
jr=rp= Tf ; 0 � t � t; (2.7)

or

��r2 �
@T

@r
jr=rp= � �

�
T jr=rp �Tf

�
; 0 � t � t: (2.8)

Here � is the heat transfer coeÆcient. The boundary condition (2.8) simulates

convective heat transfer between the surface of the solid particle and the environ-

ment which has the temperature Tf . The temperature and density �elds have to
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be speci�ed at the initial moment of time

T (r; 0) = T0; 0 � r � rp; (2.9)

C (r; 0) = C0; 0 � r � rp; (2.10)

where T0 is the initial temperature and C0 is the initial concentration.

2.2 Dimensionless Problem

The method of dimensionless problem allows us to reduce the total num-

ber of parameters of the mathematical model, which is extremely important for

numerical modelling. We can investigate the inuence of a group of parameters

on the solution by studying the inuence of a smaller group of parameters on this

solution.

The problem (2.3), (2.4) with initial and boundary conditions is charac-

terized by the following set of parameters rp; T0; C0; cp; �; Tf ; Hr; �; E; A.

The solution of the pyrolysis problem depends on ten parame-

ters namely T = T (r; t; rp; T0; C0; cp; �; Tf ; Hr; �; E;A) and C =

C(r; t; rp; T0; C0; cp; �; Tf ; Hr; �; E;A).

We should �rst choose characteristic quantities for scaling in order to pass

to a dimensionless problem. This choice is not always obvious and depends

on the speci�c problem. It is reasonable to use common techniques of scaling

and call these methods as \making a problem dimensionless "(Samarskii and

Vabishchevich (1995)).

In the considered problem we can take the length of radius of the particle

rp for scaling the spatial variable r. We use the same letters for dimensionless

quantities but supply them with primes. Then r = rpr
0, where r0 is a dimen-

sionless variable. We can take the temperature of the medium Tf for scaling the
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temperature, i.e. T = TfT
0, where T 0 is dimensionless temperature. We can take

the concentration of the medium C0 for scaling concentration, i.e. C = C0C
0,

where C 0 is dimensionless. Similarly, let t = t0t
0, where a typical time interval t0

is not yet de�ned.

We substitute these formulae into PDE (2.3) - (2.5) with boundary condi-

tion (2.8) and formulate problem in dimensionless variables, For simplicity, We

will drop the apostophe in the non-dimensional variables.

@C

@t
= �1PC; 0 � r � 1; 0 6 t 6 �;

C
@T

@t
= 3

1

r2

@

@r

�
r
2@T

@r

�
� 4PC; 0 < r < 1; 0 6 t 6 �;

lim
r!0

r
2@T

@r
= 0; 0 � t � �; (2.11)

�
@T

@r
= 5(T � 1); r = 1; 0 � t � �;

C(r; 0) = 1;

T (r; 0) = 6;

where 1 = At0, P = e
2
T , 2 = �

E

RTf
, � =

�t

t0
, 3 =

�t0

(rp)2cpC0

, 4 =
At0Hr

cpTf
,

5 =
�rp

�s
, and 6 =

T0

Tf
.

The following set of deterministic parameters is used in [1]: the rate fre-

quency constant A is 1013 s�1, the speci�c heat capacity cp is 1335 J � kg
�1 �K�1,

the thermal conductivity � is 0:105 W � m�1 � K�1, the activation energy E is

183,300 J �mol�1 , the particle radius rp varies between 70 � 125 �m, the tem-

perature of gas the phase Tf is 873 K, the initial temperature T0 is 298 K, the

initial density �0 is 500 kg �m
�3, the heat of the pyrolysis reaction rate Hr is 500

kJ � kg�1.

The problem in dimensionless variables (2.11) is characterized by six di-

mensionless parameters, namely 1, 2, 3, 4, 5, and 6. Note that we have only

six rather than ten parameters for the problem, i.e. T = T (r; t; 1; 2; 3; 4; 5; 6)
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and C = C(r; t; 1; 2; 3; 4; 5; 6). We reduce the total number of parameters of

the mathematical model. Therefore we can investigate the inuence of the group

of parameters on the solution by studying the inuence of the smaller group of

the parameter on this solution. The dimensionless variables allow us to separate

small and large parameters of the problem. It is in dimensionless variables that

we can compare terms with one another. The small (large) parameters are used to

construct simpli�ed mathematical model and analyze the problem asymptotically

(i.e. �nd an approximate solution).



Chapter III

Discretization and Analysis of Numerical

Scheme

The basic diÆculty in solving the problem (2.11) for C and T is that this

system of equations is nonlinear. There are two di�erent ways to overcome this

diÆculty. The �rst one is to solve the system of coupled equations by means of

the iterative method. The second one is to uncouple the equations by "freezing"

the nonlinear terms in small time intervals. For example, we can assume that

the nonlinear terms do not change due to the time step. In this case, we do

not need to �nd simultaneous solutions. It is possible to split this problem into

two problems. In each time step from tp to tp+1, we can solve the following two

problems to �nd a solution.

The �rst one is the Cauchy problem

@C

@t
= �1P (T (r; tp))C; 0 � r � 1; tp � t � tp+1;

C(r; tp) is known; (3.1)

where p = 0; 1; :::; [W ]� 1, W =
�

�t
, and T (r; tp) is known.

The second is the initial boundary value problem

C(r; tp+1)
@T

@t
=
3

r2

@

@r

�
r
2@T

@r

�
+ 4P (T (r; tp))C(r; tp+1); 0 < r < 1; tp � t � tp+1;

lim
r!0

r
2@T

@r
= 0;

�
@T

@r
= 5(T � 1); r = 1;

T (r; tp) is known; (3.2)
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where p = 0; 1; :::; [W ]� 1, W =
�

�t
, and C(r; tp+1) is known.

3.1 Finite Di�erence Scheme for the Approximate Solu-

tion of the Continuity Equation

Let us consider a �nite di�erence scheme to obtain the numerical solution

of problem (3.1) on the grid !h = fxi=xi = i�x; i = 0; 1; :::; Ng where �x = 1=N .

We apply the Modi�ed Euler method (Ho�man (1992)) to problem (3.1) and we

get

C
n+1
i

� C
n

i

�t
= �1P (T

n

i
)

�
C
n+1
i

+ C
n

i

2

�
; i = 0; :::; N;

C(i; 0) = U; i = 0; :::; N; (3.3)

where n = 0; 1; :::; [W ]�1,W =
�

�t
, the value P (T n

i
) is known, and U is constant.

3.2 Finite Di�erence Scheme for the Approximate Solu-

tion of the Energy Equation

In this section, we introduce the important material to construct the for-

mulation of �nite di�erence scheme for problem (3.2).

3.2.1 Conservative Form

The terms conservative form, conservation law form, and divergence

form are all synonymous. The conservative form has the property that the coef-

�cients of the derivative terms are either constant or if variable, their derivative

appears nowhere in the equation. Normally for the PDEs that represent a physi-

cal conservation statement, this means that the divergence of a physical quantity

can be identi�ed in the equation. An example is the conservation form of steady
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state di�usion of u in a one dimensional case (John, Tannehill, Dale, Anderson,

Richard, Pletcher (1978))

d

dx

�
H(x)

du

dx

�
= 0; (3.4)

where H is the di�usion coeÆcient. A nonconservative form would be

H
d
2
u

dx2
+
dH

dx

dT

dx
= 0: (3.5)

As a second example, we consider the one-dimensional heat equation. The con-

servative form of this equation is

@T

@t
=

@

@x

�
G
@T

@x

�
+Q; (3.6)

where T = T (x; t) is temperature, G = G(x) is the conductivity coeÆcient, and

Q(x; t) is the volume heat source. The nonconservative form would be

@T

@t
= G

@
2
T

@x2
+
@G

@x

@T

@x
+Q: (3.7)

A �nite di�erence formulation based on a PDE in nonconservative form may lead

to numerical diÆculties in situations where the coeÆcients are discontinuous. It

was shown by John, Tannehill, Dale, Anderson, Richard, and Pletcher (1978)

that the �nite di�erence formulation of equation (3.5) diverges if the conductivity

coeÆcient H is discontinuous.

3.2.2 Conservative Discretization

Let us consider the one-dimensional heat equation (3.6) in the con-

servative form with a central di�erence applied to the stencil of Figure 3.1. The

following discretized equation is obtained at point i

�
@T

@t

�
i

=

�
G
@T

@x

�
i+ 1

2

�

�
G
@T

@x

�
i�

1

2

�x
+Qi: (3.8)
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Figure 3.1: Subdivision of the one dimensional space into mesh cell.

The same discretization applied to point (i + 1) will give

�
@T

@t

�
i+1

=

�
G
@T

@x

�
i+ 3

2

�

�
G
@T

@x

�
i+ 1

2

�x
+Qi+1; (3.9)

and for (i� 1) ,

�
@T

@t

�
i�1

=

�
G
@T

@x

�
i�

1

2

�

�
G
@T

@x

�
i�

3

2

�x
+Qi�1: (3.10)

The sum of these three equations is a consistent discretization of the conservation

law for the cell AB �
�
i� 3

2
; i+ 3

2

�
�
@T

@t

�
i+1

+

�
@T

@t

�
i

+

�
@T

@t

�
i�1

3
�
(Qi+1 +Qi +Qi�1)

3

=

�
G
@T

@x

�
i+ 3

2

�

�
G
@T

@x

�
i�

3

2

3�x
: (3.11)

On the left side, we have an approximation of
@T

@t
on the interval

�
i� 3

2
; i+ 3

2

�
.

Since the ux contributions at the internal points i� 1
2
and i + 1

2
have cancelled

out in the right hand side, this is sometimes called the \ telescoping property "for

the ux terms (Mikhail Shashkov (1996)).
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3.2.3 Construction of Conservative Finite Di�erence Scheme

Basic di�erential equations are derived by applying conservation

laws (in the integral form) to elementary volumes and then tending these volumes

to zero. This passage to the limit gives the di�erential form of the conservation

laws. The method of �nite di�erence is actually the inverse transition from the

di�erential model to the di�erence model. It is logical to require that the con-

servation laws be satis�ed after this transition. Di�erence scheme that express

the conservation laws on a grid are called conservative �nite di�erence scheme.

The conservation laws for the whole grid should be an algebraic conclusion of the

di�erence equation.

When constructing conservative �nite di�erence scheme, it is logical to

start with conservation (balance) laws for separate cell of di�erence grid. This

method of constructing conservative �nite di�erence scheme is called the integro

interpolation method.

Let us consider the one dimensional heat equation on a bounded interval

[0; 1] whose temperature T (x; t) depends on time and varies in only one direction,

say, along the x coordinate, thermal conductivity G(x) varies with position and

Q(x; t) represents the capacity of the internal heat sources. The conservation law

of energy has the following conservative form

@T

@t
=

@

@x

�
G(x)

@T

@x

�
+Q(x; t); 0 < x < 1; 0 < t < �: (3.12)

We impose the boundary conditions

lim
x!0

G(x)
@T

@x
= 0; (3.13)

T (1; t) =M; (3.14)
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where G(x) � 0 and G(x) = 0 if x = 0, and the initial condition

T (x; 0) = T0: (3.15)

Next we will show how the integro interpolation method is applied for

constructing a conservative �nite di�erence scheme for a conservative form of

one-dimensional heat equation (3.12). Let us denote the heat ux q = G(x)
@T

@x
.

We construct the di�erence scheme on the grid !h = fxi=xi = i�x; i = 0; 1; :::; Ng

where �x = 1=N . We integrate the one dimensional heat equation (3.12) over

the interval x
i�

1

2

� x � x
i+ 1

2

to getZ
x
i+1

2

x
i�1

2

@T

@t
dx =

Z
x
i+1

2

x
i� 1

2

@

@x

�
G
@T

@x

�
dx+

Z
x
i+1

2

x
i� 1

2

Qdx

= q
i+ 1

2

� q
i�

1

2

+

Z
x
i+1

2

x
i� 1

2

Qdx: (3.16)

The quantity q
i�

1

2

is the amount of heat coming through the cross section x
i�

1

2

and q
i+ 1

2

is the amount heat outgoing through the section x
i+ 1

2

. The unbalance

of this ux is due to the distributes sources (the right hand side).

Integration of the one-dimensional heat equation (3.12) over a �nite number

of control interval intervals x
i�

1

2

� x � x
i+ 1

2

; i = 1; 2; :::; N � 1 yields a set of

discretized conservation equation involving uxes of the transported T through

the boundary of control intervals. To ensure conservation of T for the whole

solution domain the ux of T leaving a control interval across a certain boundary

must be equal to the ux of T entering the adjacent control interval through

the same boundary. To achieve this, the ux through a common face must be

represented in a consistent manner (by one and the same expression) in adjacent

control intervals.

For the next level of integration, we take advantage of the mean-value

theorem to estimate integrals. The mean-value theorem assures us that for a
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continuous function f(y), Z
y+�y

y

f(y)dy = f(�y)�y; (3.17)

where �y is some value of y in the interval y � �y � y+�y. Any value of ŷ on this

interval will provide an approximation to the integral, and we can writeZ
y+�y

y

f(y)dy � f(ŷ)�y y � ŷ � y +�y: (3.18)

We use the mean-value theorem to further simpli�cation of equation (3.16). We

select xi on the left hand and right hand side as the location within the intervals

of integration at which to evaluate the integrand and multiply by �x, equation

(3.16) can be written as�
@T

@t

�
i

=
1

�x

�
q
i+ 1

2

� q
i+ 1

2

�
+Qi: (3.19)

Let us integrate the expression q = G(x)
@T

@x
over the interval xi�1 � x � xi and

get

Ti � Ti�1 =

Z
xi

xi�1

q

G(x)
dx � q

i�
1

2

Z
xi

xi�1

1

G(x)
dx:

Let us denote ai = 1=

Z
xi

xi�1

1

G(x)
dx. So we get q

i�
1

2

� ai(Ti � Ti�1); qi+ 1

2

�

ai+1(Ti+1 � Ti): After we substituting these equations into equation (3.19), this

equation becomes�
@T

@t

�
i

=
1

�x
(ai+1Ti+1 � (ai+1 + ai)Ti + aiTi�1)) +Qi: (3.20)

Let us introduce the following notations

T
�

i
= (1� �)T n

i
+ �T

n+1
i

; (3.21)

t
� = (1� �)tn + �t

n+1
; (3.22)
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Q
�

i
= Q(xi; t

�): (3.23)

Then using the integro interpolation method, we get the following conservative

�nite di�erence scheme for

T
n+1
i

� T
n

i

�t
=

1

�x

�
ai+1T

�

i+1 � (ai+1 + ai)T
�

i
+ aiT

�

i�1)
�

+Q
�

i
; i = 1; 2; :::; N � 1; (3.24)

or

T
n+1
i

� T
n

i

�t
= (1� �)

�
ai+1T

n

i+1 � (ai+1 + ai)T
n

i
+ aiT

n

i�1)
�

�x

+ �

�
ai+1T

n+1
i+1 � (ai+1 + ai)T

n+1
i

+ aiT
n+1
i�1 )

�
�x

+Q(xi; t
�); i = 1; 2; :::; N � 1: (3.25)

The Approximation of Boundary Condition

Let us now consider the case of the boundary condition (3.13). We use the

integro interpolation method to construct the �nite di�erence approximation of

this boundary condition. To ensure that conservation of T for the whole solution

domain is satis�ed, we have to require that the ux of T leaving a control interval

[�x

2
;
3�x

2
] across a boundary x = �x

2
must be equal to the ux of T entering the

control interval [0; �x

2
] through the same boundary. To achieve this we should

integrate equation (3.12) over the interval 0 � x � �x

2
( see Figure 3.2) to get.

Figure 3.2: Subdivision over the interval 0 � x � �x

2
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Z �x
2

0

@T

@t
dx =

Z �x
2

0

@

@x

�
G
@T

@x

�
dx +

Z �x
2

0

Qdx

= q 1
2

� q0 +

Z �x
2

0

Qdx: (3.26)

As we use the mean value theorem to simplify equation (3.26), we select points

x = 0 on the left and right hand sides as the location within the intervals of

integration at which to evaluate the integrand and multiply by �x

2
, equation

(3.26) can be written as �
@T

@t

�
0

=
2

�x

�
q 1
2

� q0

�
+Q0: (3.27)

The ux q0 is equal to zero because of condition (3.13). Equation (3.27) becomes�
@T

@t

�
0

=
2

�x
q 1
2

+Q0;

and �
@T

@t

�
0

=
2

�x
a1(T1 � T0) +Q0: (3.28)

where a1 = 1=

Z �x

0

1

G(x)
dx.

By using the notation (3.21)-(3.23), equation (3.28) becomes

T
n+1
0 � T

n

0

�t
=

2

�x
a1(T

�

1 � T
�

0 ) +Q
�

0 :

or

T
n+1
0 � T

n

0

�t
=

2

�x
a1((1� �)(T n+1

1 � T
n+1
0 ) + �(T n

1 � T
n

0 )) +Q
�

0 : (3.29)

For the Dirichlet condition (3.14), we have

T
n+1
N

=M: (3.30)

Order of Approximation of the Finite Di�erence Scheme
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Now let us investigate the error which is a di�erence between the solution of

the discrete one dimensional heat equation and the projections of the solution of

the one dimensional heat equation by the discrete equation (3.25) on the solution

of the di�erential problem

Z
n

i
= T

n

i
� (Pn

h
T )n

i
= T

n

i
� T (xi; t

n):

To obtain the formula for the error, we express T n

i
from the previous equation as

follows:

T
n

i
= T (xi; t

n) + Z
n

i
; (3.31)

and substitute the formula (3.31) into equation (3.25) for the di�erence equation

Z
n+1
i

� Z
n

i

�t
= (1� �)

(ai+1Z
n

i+1 � (ai+1 + ai)Z
n

i
+ aiZ

n

i�1)

�x

�
(ai+1Z

n+1
i+1 � (ai+1 + ai)Z

n+1
i

+ aiZ
n+1
i�1 )

�x

+ '
n

i
; i = 1; :::; N � 1;

where 'n
i
is the residual:

'
n

i
= (1� �)

ai+1T (xi+1; t
n)� (ai+1 + ai)T (xi; t

n) + aiT (xi�1; t
n)

�x2

+ �
ai+1T (xi+1; t

n+1)� (ai+1 + ai)T (xi; t
n+1) + aiT (xi�1; t

n+1)

�x2

+Q(xi; t
�)�

T (xi; t
n+1)� T (xi; t

n)

�t
; i = 1; :::; N � 1:

That is, we can separate the truncation error related to the space and

time discretization, and the residual is the sum of the truncation error for the

conduction term and for the �rst time derivative and for the function Q. By

making the Taylor expansion to this formula, we can see that for (� 6= 0:5), the

truncation error is O(�x2;�t): For (� = 0:5), the truncation error is O(�x2;�t2)

(Mikhail Shashkov (1996)).

Order of Approximation of Boundary Condition
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Let us consider the order of approximation of the boundary condition. We

consider the order of approximation only on equation (3.29). We substitute the

formula (3.31) into equation (3.29) for the di�erence equation

Z
n+1
0 + Z

n

0

�t
=

2

�x
a1((1� �)(Zn+1

1 � Z
n+1
0 ) + �(Zn

1 � Z
n

0 )) + �;

where � is the residual:

� =
2

�x
a1((1� �)(T (�x; tn+1)� T (0; tn+1)) + �(T (�x; tn)� T (0; tn))

+Q(0; t�)�

�
T
n+1
0 + T

n+1
0

�t

�
:

We can separate the truncation error related to the space and time discretization.

Making the Taylor expansion to this formula we can see that for (� 6= 0:5), the

truncation error is O(�x;�t): For (� = 0:5), the truncation error is O(�x;�t2):

Stability of the Finite Di�erence Scheme

Let us consider the fully explicit �nite di�erence scheme for equation (3.12)

with variable coeÆcient G(x) � 0. Now to investigate stability, we use the method

of frozen coeÆcients. Let us take arbitrary an inner point ~x � [0; 1]. We will \

freeze "the coeÆcient G(x) = G(~x) in some neighborhood of point ~x. The method

of frozen coeÆcients together with the von Neumann method (Ho�man (1992))

gives us the following stability condition

�t � �x2=

�
2 max
0�x�1

G(x)

�
: (3.32)

It is well known that in the case of � � 1
2
the scheme is unconditionally stable

(Ho�man (1992)) and in case of � = 1
2
we have the Crank - Nicholson approxi-

mation.

3.2.4 Conservation Laws and the Iterative Process

Here we want to consider the important question relating to the

implementation of the �nite di�erence schemes. Suppose a conservative �nite
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di�erence scheme is constructed, and the system of linear equation is solved by

an iteration method. The result of the iteration process is some discrete function

which satis�es the equations related to the �nite di�erence scheme with some

accuracy. Consequently, even if the �nite di�erence scheme is conservative, the

solution obtained by the iterative method may not satisfy the conservation law.

Then the important question is how much the magnitude of the resulting energy

imbalances depends on the accuracy of the iteration process, and how much it

depends on the parameter of the �nite di�erence scheme itself (e.g., on the time

and space steps).

Let us consider the example of a nonconservative iteration process. For

the purpose of this demonstration, we consider the Neumann problem for the one

dimensional heat equation.

@T

@t
=
@
2
T

@x2
; 0 < x < 1;

@T

@x
jx=0= �1(t);

@T

@x
jx=1= �2(t);

T jt=0= T0(x);

where �1; �2 and T0 are given function.

The amount of heat Q contained in the system at the instant of time t is

given by

Q(t) =

Z 1

0

T (x; t)dt:

From the statement of this problem, we get

dQ

dt
= �2(t)� �1(t): (3.33)

This equation expresses the fact that the change in the amount of heat in the

entire system occurs because of the heat inow through the boundary of the

region.
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The conservative implicit-�nite di�erence scheme has truncation error

O(�t;�h2) as follows

T
n+1
1 � T

n+1
0

�h
�

�h

2

T
n+1
0 � T

n

0

�t
= �1(t

n+1);

T
n+1
i

� T
n

i

�t
=
T
n+1
i+1 � 2T n+1

i
+ T

n+1
i�1

�h2
; i = 1; 2; :::; N � 1;

T
n+1
N

� T
n+1
N�1

�h
+
�h

2

T
n+1
N

� T
n

N

�t
= �2(t

n+1);

which can be written in the matrix form Ax = b as follows2666666666664

� 1
�h
� �h

2�t

1
�h

0 : : : 0 0 0

� �t

�h2
2�t

�h2
1� �t

�h2
: : : 0 0 0

...
...

...
. . .

...
...

...

0 0 0 : : : � �t

�h2

2�t

�h2
1� �t

�h2

0 0 0 : : : 0 � 1
�h

1
�h

+ �h

2�t

3777777777775

2666666666664

T
n+1
0

T
n+1
1

...

T
n+1
N�1

T
n+1
N

3777777777775

=

2666666666664

1(t
n+1)� �h

2�t
T
n

0

T
n

1

...

T
n

N�1

2(t
n+1) + �h

2�t
T
n

N

3777777777775
:

The discrete analogue for the amount of heat Q has the following form

Q =

N�1X
i=0

�h
Ti+1 + Ti

2
=

�h

2
T0 +

N�1X
i=1

�hTi +
�h

2
TN :

Using the equation for the �nite di�erence scheme, we get

Q
n+1 �Q

n

�t
= �2(t

n+1)� �1(t
n+1):

This equation is the discrete analogue of (3.33) expressing the fact that the �nite

di�erence scheme is conservative and no additional discrete input or outows of

heat are present.
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Now let us consider what happens if we solve the system of di�erence

equations by the usual Gauss-Siedel method. The Gauss-Siedel algorithms for

matrix Ax = b is

T
s+1
i

=
1

aii

 
bi �

i�1X
j=1

aijT
s+1
j

�

nX
j=i+1

aijT
s

j

!
; i = 1; ::; n: (3.34)

By equation (3.34) the formulas for the Gauss-Siedel method are

T
s

1 � T
s+1
0

�h
�

�h

2

T
s+1
0 � T

n

0

�t
= �1(t

n+1);

T
s+1
i

� T
n

i

�t
=
T
s

i+1 � 2T s+1
i

+ T
s+1
i�1

�h2
; i = 1; 2; :::; N � 1;

T
s+1
N

� T
s+1
N�1

�h
+
�h

2

T
s+1
N

� T
n

N

�t
= �2(t

n+1);

where s is the iteration number.

We can write these equations in the form of analogue of the �nite di�erence

scheme

T
s+1
1 � T

s+1
0

�h
�
�h

2

T
s+1
0 � T

n

0

�t
= �1(t

n+1) +
T
s+1
1 � T

s

1

�h
; (3.35)

T
s+1
i

� T
n

i

�t
=
T
s

i+1 � 2T s+1
i

+ T
s+1
i�1

�h2
+
T
s

i+1 � T
s+1
i+1

�h2
; i = 1; 2; :::; N � 1;

(3.36)

T
s+1
N

� T
s+1
N�1

�h
+
�h

2

T
s+1
N

� T
n

N

�t
= �2(t

n+1); (3.37)

After carrying out a certain number of iterations necessary to satisfy the chosen

criterion of convergence, the process is terminated, and T
s+1
i

is taken as the

value of temperature on the next time tn+1. Thus T s+1
i

� T
n+1
i

, obtained by the

iteration process, satis�es equations (3.35)-(3.37) which are the same as original

conservative �nite di�erence scheme with the exception that the right hand side

contains terms that are in addition to the original equations and can also be

regarded as heat sources and heat sinks.

Let the condition of the termination of the iteration process have the form

max
i

j T s+1
i

� T
s

i
j < ";



29

where " is a given small number. Let us estimate the imbalance in the amount of

heat caused by using the Gauss-Siedel method with this termination condition.

From equations (3.35)-(3.37) and the de�nition of Q in discrete case, we get

Q
n+1 �Q

n

�t
= �

n+1
2 � �

n+1
1 +

NX
i=1

T
s

i
� T

s+1
i

�h2
�h:

Therefore, the imbalance in the amount of heat is

�Q = �t

NX
i=1

T
s

i
� T

s+1
i

�h2
�h:

Now using the termination condition, we can estimate this imbalance as follows

j�Qj �
"

�h2
N�h�t =

"�t

�h2
:

The expression on the right hand side gives the upper limit of the imbalance

occurring at the one time step.

This estimation must be taken into account when using the Gauss-Siedel

method for the solution of di�erence equation. For example, in order for the Law

of change in the amount of heat for the di�erence scheme for an instant of time

t
k to be satis�ed with accuracy h2, i.e., with the accuracy of the �nite di�erence

scheme, the quantity, ", should be chosen from the condition

kX
p=1

"�t

�h2
� �h2

or

" �
�h4

�t(k � 1)

3.3 Numerical Solution for Test Problem

In this section, we present the exact solution of the test problem and present

the results of the numerical solution to the test problem with di�erent boundary

conditions.
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3.3.1 Exact Solution for the Test Problem

Let us consider the test problem about heat propagation in the

bounded domain as

ut � a
2�u = f(x; t); in 
; t � 0;

u(x; 0) = '(x); x � 
; (3.38)

u j�= �0;

where a is constant, u = u(x; t) is solution, � is the boundary of 
. Let bu = u��0

where �0 is constant. Then problem (3.38) can be written as a problem with

homogeneous boundary condition

but � a
2�bu = f(x; t); in 
; t � 0;

bu(x; 0) = '(x)� �0 = b'(x); x � 
; (3.39)

bu j�= 0:

Now we can split problem (3.39) into two problems when

bu(x; t) = v(x; t) + w(x; t);

where v is a solution of homogeneous equation with inhomogeneous initial data

vt � a
2�v = 0; in 
; t � 0;

v(x; 0) = b'(x); (3.40)

v j�= 0;

and w is a solution of the inhomogeneous equation with homogeneous initial

condition

wt � a
2� bw = f(x; t); in 
; t � 0;

w(x; 0) = 0; (3.41)

w j�= 0:
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Solution of the Homogeneous Equation with Inhomogeneous Initial

Data

Let us solve problem (3.40). To �nd a solution, we can use the method of

separation of variables by assumeing that

v(x; t) = X(x)T (t); (3.42)

and substitute equation (3.42) into equation (3.40). We get the following problems

to determine function X(x) and T (t)

�X(x) + �X(x) = 0; in 
; X(x) 6= 0;

X(x) j�= 0; on �; (3.43)

and

Tt(t) + a
2
�T (t) = 0: (3.44)

Let �1; �2; :::; �n; ::: be the eigenvalues of problem (3.43) and X1; X2; :::; Xn; ::: be

the eigenfunctions of problem (3.43). The functions fXng
1

1 form an orthogonal

basis (system of functions). The corresponding solutions of equation (3.44) are

Tn(t) = cne
�a

2
�nt: (3.45)

There are nontrivial solutions of the problem

vt � a
2�v = 0;

v j�= 0:

These solutions are

vn(x; t) = cnXn(x)e
�a

2
�nt; n = 1; 2; ::: (3.46)
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The general solution of problem (3.40) can be represented in the form

v(x; t) =

1X
n=1

cne
�a

2
�ntXn(x): (3.47)

To satisfy the initial condition

v(x; 0) = b'(x) = 1X
n=1

cnXn(x); (3.48)

we have to choose

cn =

R


b'(x)Xn(x)dVx

kXn(x)k2
;

where Vx is the volume that contains x and

kXn(x)k
2 =

Z



(Xn(x))
2
dVx:

Under this choice function (3.47), the solution of the problem (3.40) is obtained.

Solution of the Inhomogeneous Equation with Homogeneous Initial

Data

The problem (3.41) can be solved by the separation of variables method.

As usual, we assume that

w(x; t) =

1X
n=1

Tn(t)Xn(x): (3.49)

Now expand the function f(x; t) with respect to eigenfunction Xn(x); n = 1; 2; :::,

we get

f(x; t) =

1X
n=1

fn(t)Xn(x)

where

fn(t) =

R


f(x; t)Xn(x)dVx

kXn(x)k2
: (3.50)

Equations (3.49) and (3.50) give the relationship for Tn(t)

Tn(t) + a
2
�Tn(t) = 0;

Tn(0) = 0: (3.51)
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The solution of problem (3.51) is

Tn(t) =

Z
t

0

e
�a

2
�n(t��)fn(�)d�: (3.52)

So we have

w(x; t) =

Z
t

0

Z



f

1X
n=1

e
�a

2
�n(t��)

(Xn(x))
2

kXn(x)k2
gf(x; t)d�dVx: (3.53)

The solution for problem (3.38) is u(x; t) = v(x; t) + w(x; t) + �0. So, we can see

that if we know the solution of eigenvalue-eigenvector problem (3.43) then we can

present solution of (3.38) in terms of in�nite series.

Example

Let us consider the problem

ut � a
2�u = f(r; t); in 0 < r < r0; t � 0;

j u(r; t) j<1; 0 � r � r0; t � 0;

u(r; 0) = u0; (3.54)

u(r0; t) = �0; t � 0;

where �u =
1

r2

@

@r

�
r
2@u

@r

�
.

Let bu = u� �0, we can write problem (3.54) as

but � a
2�bu = f(r; t); in 0 < r < r0; t � 0;

j bu(r; t) j<1; 0 � r � r0; t � 0;

bu(r; 0) = u0 � �0; (3.55)

bu(r0; t) = 0; t � 0;

So, now we can split problem (3.55) into two problems

bu(r; t) = v(r; t) + w(r; t);
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where v is a solution of the homogeneous equation with inhomogeneous initial

data

vt � a
2�v = 0; in 0 < r < r0; t � 0;

j v(r; t) j<1; 0 � r � r0; t � 0;

v(r; 0) = u0 � �0 = c0; (3.56)

v(r0; t) = 0; t � 0;

and w is a solution of the inhomogeneous equation with homogeneous initial

condition

wt � a
2�w = f(r; t); in 0 < r < r0; t � 0;

j w(r; t) j<1; 0 � r � r0; t � 0;

w(r; 0) = 0; (3.57)

w(r0; t) = 0; t � 0;

Solution of the Homogeneous Equation with Inhomogeneous Initial

Data

Let us solve problem (3.56). To �nd a solution we can use the method of

separation of variables by assuming that

v(r; t) = R(r)T (t); (3.58)

and substitute equation (3.58) into equation (3.56). We get the following problems

to determine function R(r) and T (t)

�R(r) + �R(r) = 0; in 0 < r < r0; R(r) 6= 0;

R(r0) = 0; j R(0) j<1; (3.59)
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and

Tt(t) + a
2
�T (t) = 0: (3.60)

In the particular case where the domain is a ball and R is a function only of r,

we have the problem

1

r2

d

dr

�
r
2dR

dr

�
+ �R(r) = 0; in 0 < r < r0; R(r) 6= 0;

R(r0) = 0; jR(0)j <1: (3.61)

By a change variables

x = �
1

2 r ; r = x=�
1

2 ;

y(x) = Rx
1

2 ; R = y(x)=x
1

2 ;

and using the chain rule we get

d

dx

dx

dr
= �

1

2

d

dx
;
d
2

dr2
= �

d
2

dx2
;

dR

dr
= �

�
y
0

x
1
2

�
1

2

y

x
3
2

�
;
d
2
R

dr2
= �

�
y
00

x
1
2

�
y
0

x
3
2

+
3

4

y
0

x
5
2

�
:

Problem (3.61) becomes

2

r

dR

dr
+
d
2
R

dr2
+ �R(r) = 0; in 0 < r < r0; R(r) 6= 0;

R(r0) = 0; jR(0)j <1 (3.62)

or

y
00 +

1

x
y
0 +

 
1�

�
1
2

�2
x2

!
y = 0;

y(�
1

2 r0) = 0: (3.63)

Equation (3.63) is Bessel's equation of half order and the general solution is in

the form [14]

y(x) = c1��(x) + c2���(x);
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where ��(x), ���(x) are Bessel function of order � = 1
2
:

Function ���(x) has a pole of order � at the point r = 0, must be excluded on

physical grounds. The desired solution of equation (3.60) has the form

y(x) = c1��(x):

Bessel's functions of half order are given by relations (Stanley (1994))

� 1
2

(x) =

�
2

�x

� 1

2
1X

m=0

(�1m)

(2m+ 1)!
x
2m+1 =

�
2

�x

� 1

2

sin x;

�
�
1

2

(x) =

�
2

�x

� 1

2
1X

m=0

(�1m)

(2m)!
x
2m =

�
2

�x

� 1

2

cos x:

So, we have

y(x) = c1

�
2

�x

� 1

2

sin x:

The boundary condition

y(x0) = y(�
1

2 r0);

implies that � must be one of the positive zeroes �n of � 1
2

(�
1

2 r0) = 0 or

sin(�
1

2
nr0) = 0;

�

1

2
nr0 = n�; n = 1; 2; ::: ;

�n =

�
n�

r0

�2

; n = 1; 2; ::: :

The acceptable solutions of problem (3.61)are

Rn(r) = c1

�
2�

�n

� 1

2 1

r
sin(�

1

2
nr):

The corresponding solution of equation (3.60) are

Tn(t) = cne
�a

2
�nt: (3.64)
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The general solution of problem (3.56) may be represented in the form

v(r; t) =

1X
n=1

cne
�a

2
�ntRn(r): (3.65)

To satisfy the initial condition

vn(r; 0) = c0 =

1X
n=1

cnRn(r): (3.66)

We have to choose

cn =

R
r0

0
c0Rn(r)dr

kRn(rk2
;

where

kRn(r)k
2 =

Z
r0

0

(Rn(r))
2
r
2
dr:

Under this choice function (3.65) gives a solution of the problem (3.56).

Solution of the Inhomogeneous Equation with Homogeneous Initial

Data

The problem (3.57) can be solved by the separation of variables method.

Assume, as usual

w(r; t) =

1X
n=1

Tn(t)Rn(r): (3.67)

Expanding function f(r; t) with respect to eigenfunctions Rn(r), and get

f(r; t) =

1X
n=1

fn(t)Rn(r)

then

fn(t) =

R
r0

0
f(r; t)Rn(r)r

2
dr

kRn(r)k2
: (3.68)

Equations (3.67) and (3.68) give a relationship to Tn(t)

Tn(t) + a
2
�T (t) = 0;

Tn(0) = 0: (3.69)
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The solution of problem (3.69) is

Tn(t) =

Z
t

0

e
�a

2
�n(t��)fn(�)d�:

So we have

w(r; t) =

Z
t

0

Z
r0

0

f

1X
n=1

e
�a

2
�n(t��)

(Rn(r))
2

kRn(r)k2
gf(r; �)r2drd�: (3.70)

The solution for problem (3.54) is u(r; t) = v(r; t) + w(r; t) + �0.

3.3.2 Numerical Solution for the Test Problem

Let us consider the numerical solution of the test problem on heat

propagation in the bounded domain

@T

@t
��T = 0; in 0 < r < 1; t � 0;

j T (r; t) j<1; in 0 � r � 1; t � 0;

T (r; 0) = 0; (3.71)

T (r; t) jr=1= 1; t � 0;

where �T =
1

r2

@

@r

�
r
2@T

@r

�
and the exact solution for these problem is obtained

by the separation of variables approach

T (r; t) = 1 + �1
n=1

2 � (�
1

2
n cos(�

1

2
n ))� sin(�

1

2
n)

�

1

2
n � (�

1

2
n �

1
2
sin(2�

1

2
n))

� e��nt �
sin(�

1

2
nr)

r
; 0 < r � 1;

or

T (r; t) =

8>>>>>><>>>>>>:

1 + �1
n=1

2�(�
1
2
n cos(�

1
2
n ))�sin(�

1
2
n )

�

1
2
n �(�

1
2
n �

1

2
sin(2�

1
2
n ))

� e��nt �
sin(�

1
2
n r)

r
if 0 < r � 1

1 + �1
n=1

2�(�
1
2
n cos(�

1
2
n ))�sin(�

1
2
n )

�

1
2
n�

1

2
sin(2�

1
2
n )

� e��nt if r = 0

(3.72)

where �n = (n�)2.
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It is natural to require a boundary condition at the point r = 0 when

we solve this problem by the �nite di�erence technique. In the numerical tech-

nique we assume that the ux of temperature is zero on physical grounds,

lim
r!0

r
2@T

@r
jr=0= 0; t > 0. In many research papers, scientist instead this bound-

ary condition by the stronger boundary condition
@T

@r
jr=0= 0; t > 0. We would

like to study the inuence of these two boundary conditions on the approximate

solution. We will consider two �nite di�erence schemes.

The �rst �nite di�erence scheme is

T
n+1
1 + T

n+1
0

�t
�
T
n

1 + T
n

0

�t
=

2

(�r)2
((T n+1

1 + T
n

1 ) + (T n+1
0 + T

n

0 ));

T
n+1
i

� T
n

i

�t
=

1

2r2
i

�
ai+1T

n

i+1 � (ai+1 + ai)T
n

i
+ aiT

n

i�1)
�

�r
(3.73)

+
1

2r2
i

�
ai+1T

n+1
i+1 � (ai+1 + ai)T

n+1
i

+ aiT
n+1
i�1 )

�
�r

; i = 1; 2; :::; N � 1;

TN = 1:

The second �nite di�erence scheme is

T
n+1
0 = T

n+1
1 ;

T
n+1
i

� T
n

i

�t
=

1

2r2
i

�
ai+1T

n

i+1 � (ai+1 + ai)T
n

i
+ aiT

n

i�1)
�

�r
(3.74)

+
1

2r2
i

�
ai+1T

n+1
i+1 � (ai+1 + ai)T

n+1
i

+ aiT
n+1
i�1 )

�
�r

; i = 1; 2; :::; N � 1;

TN = 1:

The �nite di�erence scheme (3.73) is a conservative approximation of

test problem (3.71) with conservative approximation of the boundary condition

lim
r!0

r
2@T

@r
jr=0= 0; t > 0. The �nite di�erence scheme (3.74) corresponds to the

boundary condition
@T

@r
jr=0= 0; t > 0.

The comparison of the exact and numerical solutions of the test problem

(3.71) are presented in Figures 3.3 and 3.4. Figure 3.3 shows the graph of the
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exact solution of problem (3.71) and the numerical solution of the �nite di�erence

scheme (3.73). Figure 3.4 shows the graph of the exact solution of problem (3.71)

and the numerical solution of the �nite di�erence scheme (3.74). In these �gures

the sign \ � "corresponds to the exact solution, \ o "corresponds to the

approximate solution with 11 nodes, \ / "corresponds to the approximate

solution with 21 nodes, \ � "corresponds to the approximate solution with 41

nodes. Figures 3.3 and 3.4 show that when the grid sizes decreases (the number

of points increases) the numerical solution tends to the exact solution.

Convergence analysis of the �nite di�erence scheme (3.73) and the �nite

di�erence scheme (3.74) are shown by the numerical results presented in Tables

3.1, 3.2 respectively. Table 3.1 shows the L2 norm of the di�erence between the

exact solution of problem (3.71) and the numerical solution of the �nite di�erence

scheme (3.73). That is,

kT � ~TkL2 =
1

N

 
NX
i=0

(T
j

i
� ~T

j

i
)2

! 1

2

where T is the exact solution and ~T is the numerical solution. Table 3.2 shows

the L2 norm of di�erence between the exact solution of problem (3.71) and the

numerical solution of the �nite di�erence scheme (3.74). To estimate the order of

convergence, we use the data from the second column of Tables 3.1, 3.2 and the

techniques to estimate the order of convergence presented in Section 1.2.5. We

can see that the �nite di�erence scheme (3.73) and �nite di�erence scheme (3.74)

converge with second order.

The behavior of the approximate solution of the �nite di�erence scheme

(3.73) and �nite di�erence scheme (3.74) at point zero is shown in Figure 3.5. In

these Figure the sign \ � "corresponds to the exact solution, \ � � "corresponds

to the approximate solution of �nite di�erence scheme (3.73), \ �� "corresponds

to the approximate solution of �nite di�erence scheme (3.74). We can see that
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the approximated solution of �nite di�erence scheme (3.73) is closer to the exact

solution than the solution of (3.74).

The relation between errors of the �nite di�erence scheme (3.73) and the

�nite di�erence scheme (3.74) on the test problem (3.71) are shown in Table 3.3.

In Table 3.3, we demonstrate relative error =
(error2)� (error1)

(error2)
� 100 where

error1 is the maximum absolute error between the exact solution of test problem

(3.71) and the approximate solution of �nite di�erence scheme (3.73) at the point

zero and error2 is the maximum absolute error between the exact solution of test

problem (3.71) and the approximate solution of �nite di�erence scheme (3.74)

at the point zero. We can see that the approximate solution of �nite di�erence

scheme (3.74) at point zero is larger than the numerical solution for test problem

(3.71) with boundary condition (a) by about 15 percent.

We do not need any boundary condition at r = 0 for the exact solution

(3.72) of problem (3.71). To �nd the approximate solution, we have to specify

the boundary condition at point r = 0. On physical grounds, we have to require

that the solution of the problem (3.71) be bounded at r = 0 which corresponds to

the requirement lim
r!0

r
2@T

@r
jr=0= 0; t > 0 and corresponds to the absence of ther-

mal ux for r = 0. In many research papers, the scientists specify the boundary

condition at point r = 0 by the stronger boundary condition
@T

@r
jr=0= 0; t > 0

and overlook the correspondence of the exact solution. We can get some infor-

mation about the proper boundary condition using exact solution (3.72). Let us

consider equation (3.72) which is the solution for test problem (3.71). We can see

that T (r; t) includes the summation of
1

r
sin(�

1

2
nr) which depends on r and if we

di�erentiate only this term, we can see that

@T

@r
jr=0=

1

r2

�
r�

1

2
n cos(�

1

2
nr) + sin(�

1

2
nr)
�
; (3.75)

r
2@T

@r
jr=0= r�

1

2
n cos(�

1

2
nr) + sin(�

1

2
nr) = 0: (3.76)
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We can see that the right hand side of equation (3.75) is unbounded as r �! 0

and the homogeneous Neumann boundary condition
@T

@r
jr=0= 0; t > 0 does

not satisfy the exact solution.
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Figure 3.3: Graph of the exact solution of problem (3.71) and the nu-

merical solution of �nite di�erence scheme (3.73) where

� corresponds to the exact solution, o, /, � corresponds

to the approximate solution with 11; 21; and 41 nodes re-

spectively.
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Figure 3.4: Graph of the exact solution of problem (3.71) and the nu-

merical solution of �nite di�erence scheme (3.74) where

� corresponds to the exact solution, o, /, � corresponds

to the approximate solution with 11; 21; and 41 nodes re-

spectively.
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Figure 3.5: Exact solution of test problem (3.71), numerical solution

of the �nite di�erence scheme (3.73), and numerical so-

lution of the �nite di�erence scheme (3.74) where � cor-

responds to the exact solution of test problem (3.71), � �,

�� corresponds to the numerical solution of �nite di�er-

ence scheme (3.73) and (3.74) respectively.
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number of L2 order of

grid points norm convergence

11 .746790100E-02 -

21 .191575400E-02 1.962790484

41 .483829900E-03 1.985340484

Table 3.1: Convergence analysis of �nite di�erence scheme (3.73).

number of L2 order of

grid points norm convergence

11 .805333900E-02 -

21 .198843000E-02 2.017957289

41 .492770500E-03 2.012641979

Table 3.2: Convergence analysis of �nite di�erence scheme (3.74).

number error1 error2 relative

of point FDS (3.73) FDS (3.74) error

11 .235908300E-01 .280116700E-01 15.78213652

21 .679798100E-02 .794643500E-02 14.45244314

41 .177168800E-02 .206337100E-02 14.13623629

Table 3.3: Relative error at point zero of �nite di�erence scheme (3.73) and �nite

di�erence scheme (3.74) on the approximate solution.



Chapter IV

Numerical Solution for Pyrolysis of Sawdust

In this Chapter, the data on the pyrolysis of pine pinaster sawdust in a

rotating cone reactor (Wagenaar, Kuipers, Prin, and Van Swaaij (1994)) has been

used to test the numerical algorithm discussed.

The data from Wagenaar, Kuipers, Prin, and Van Swaaij (1994) is com-

pared with the approximate solution of the mathematical model of pyrolysis which

is described by the coupled equations for conservation of mass and energy

@C

@t
= �K(T )C; 0 � r � rp; 0 � t � t; (4.1)

(0:1C0 + 0:9C)cp
@T

@t
=

1

r2

@

@r
(�r2

@T

@r
)�K(T )CHr; 0 < r < rp; 0 � t � t;

(4.2)

where T is the temperature, C is the concentration of sawdust, K(T ) = Ae
�E
RT is

the pyrolysis reaction rate constant, A is the rate frequency constant, E is the

activation energy, R is the gas constant, cp is the speci�c heat capacity, � is the

thermal conductivity, r is the radius, t is the time, rp is the radius of particle, �t

is the residence time, and Hr is the heat of the pyrolysis reaction.

The initial temperature and concentration at the initial moment of time are

T (r; 0) = T0; (4.3)

C(r; 0) = C0: (4.4)

The boundary condition at the particle center expresses a zero heat conduction
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ux

lim
r!0

�
��4�r2 �

@T

@r

�
= 0; 0 � t � t: (4.5)

The boundary condition on the particle surface couples the heat transport con-

duction inside the particle with the external heat transfer

�� �
@T

@r
jr=rp= � �

�
T jr=rp �Tf

�
; 0 � t � t: (4.6)

Here � is the external heat transfer coeÆcient and Tf is the temperature of the gas

phase. This boundary condition simulates the convective heat transfer between

the surface of the solid particle and the environment which has the temperature

Tf . Rewriting problem (4.1) - (4.6) in dimensionless variables, we obtain

@C

@t
= �1PC; 0 < r < 1; 0 6 t 6 �; (4.7)

(0:1 + 0:9C)
@T

@t
= 3

1

r2

@

@r

�
r
2@T

@r

�
� 4PC; 0 < r < 1; 0 6 t 6 �; (4.8)

lim
r!0

r
2@T

@r
= 0; 0 � t � �; (4.9)

�
@T

@r
= 5(T � 1); r = 1; 0 � t � �; (4.10)

C(r; 0) = 1; (4.11)

T (r; 0) = 6; (4.12)

where 1 = At0, P = e
2
T , 2 = � E

RTf
, � =

�t

t0
, 3 =

�t0

(rp)2cpC0

, 4 =
At0Hr

cpTf
,

5 =
�rp

�s
, and 6 =

T0

Tf
. The value of the dimensionless parameters 1, 2, 3,

4, 5, and � are chosen according to the physical properties of pine waste from

[1]. For example, in case of t0 = 1 s, E = 1:83 � 105 J �mol�1, R = 8:3145 J �

mol
�1 �K�1, A = 1�1013 s�1, rp = 70 �m, T0 = 298 K, cp = 1335 J �kg�1 �K�1,

C0 = 500 kg �m�3, � = 0:105 W �m�1 �K�1, Tf = 873 K, Hr = 500 kJ � kg�1,

� = 1:65� 102 W �m�2
K
�1, and �t = 0:3553816 s, the dimensionless parameters

1 = 1 � 1013, 2 = 25:21313365 3 = 3:2103, 4 = 0:42902, 5 = 1:1, and

6 = 0:3413516609.
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To solve the problem (4.7) - (4.12), we assume that the nonlinear terms

do not change within one time step tn to tn+1, so we use the method of freezing

the nonlinear terms in small time interval that we presented in Chapter III. It is

possible to split the problem (4.7) - (4.12) into two problem. In each time step

from tn to tn+1, we can solve the following two problems to �nd a solution.

The �rst one is the Cauchy problem

@C

@t
= �1P (T (r; t

n))C; 0 � r � 1; tn < t < t
n+1

;

C(r; tn) is known; (4.13)

where n = 0; 1; :::; [W ]� 1, W =
�

�t
, and T (r; tp) is known.

The second one is the initial boundary value problem

(0:1 + 0:9C(r; tn+1))
@T

@t
= 3

1

r2

@

@r

�
r
2@T

@r

�
+ 4P (T (r; tn))C(r; tn+1); 0 < r < 1; tn < t < t

n+1
;

lim
r!0

r
2@T

@r
= 0;

�
@T

@r
= 5(T � 1); r = 1;

T (r; tn) is known; (4.14)

where n = 0; 1; :::; [W ]� 1, W =
�

�t
, and C(r; tn+1) is known.

We use the notations from Sections 3.1, 3.2 to construct the �nite di�erence

scheme for problem (4.13), (4.14). The two steps of following �nite di�erence

scheme are presented to �nd the approximate solution for problem (4.7) - (4.12).

The �rst step is

C
n+1
i

=
(1� 1P (T

n

i
))

(1 + 1P (T
n

i
))
C
n

i
; i = 0; 1; :::; N; (4.15)
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The second step is

(0:1 + 0:9Cn+1
0 )

�
T
n+1
1 + T

n+1
0

�t
�
T
n

1 + T
n

0

�t

�
=

23

�r2
((T n+1

1 + T
n

1 )

� (T n+1
0 + T

n

0 )) + 4K
n

0C
n+1
0 ;

AiT
n+1
i�1 �DiT

n+1
i

+BiT
n+1
i+1 = Fi; i = 1; 2; :::; N � 1; (4.16)

T
n+1
N

� T
n+1
N�1

�r
= �5(T

n+1
N

� 1);

where n = 0; 1; :::; [W ]� 1, C0
i
= 1, T 0

i
= 6, 1 = At0 3 =

�t0

r2
p
cpC0

, 4 =
At0Hr

cpTf
,

5 =
�rp

�
, 6 =

T0

Tf
, Ai =

3�tai

2
, Bi =

3�tai+1

2
, ai = 1=

Z
ri

ri�1

1

r2
dr, Di = Ai +

Bi+Ei, Ei = 0:1 + 0:9Cn+1
i

, Fi = �4�tK
n

i
C
n+1
i

�AiT
n

i�1�CiT
n

i
�BiT

n

i+1�EiT
n

i
.

The �nite di�erence scheme (4.16) can be written in matrix form with a

tri-diagonal matrix and we can �nd the approximate solution by using the sweep

method (Ho�man (1992)).

The cone rotational frequency is used to control the residence time of the

particle when we feed the particle into the rotating cone reactor (Wagenaar,

Kuipers, Prin, and Van Swaaij (1994)) which is a novel reactor type for ash

pyrolysis of biomass, in which rapid heating and short residence time of the par-

ticle can be realized. As expected, the particle residence time decreases rapidly

with an increasing cone rotational frequency because of increased velocities of the

particles.

The conversion of mass �(�) due to pyrolysis of the particle can be de�ned

in terms of mass of wood evaporated relative to the initial wood mass as follows

Wagenaar, Kuipers, Prin, and Van Swaaij (1994)

�(�) = 1� 3

Z 1

0

r
2
C(r;�)dr: (4.17)

We can approximate equation (4.17) by using the trapezoid rule and

�
� = 1�

3

2

k�1X
i=0

�
r
2
i
C

�
i
+ r

2
i+1C

�
i+1

�
: (4.18)
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The conversion of mass versus the cone rotational frequency for di�erent particle

Figure 4.1: The particle residence time versus the cone rotational

frequency (reproduce from the article of Wagenaar,

Kuipers, Prin, and Van Swaaij (1994))

diameter is shown by graph in Figures 4.2 and 4.3. The relation between the

residence time and cone rotation frequency for di�erent particle diameters are

shown in Figure 4.1. This Figure is reproduced from the article of Wagenaar,

Kuipers, Prin, and Van Swaaij (1994). The numerical solution from the article of

Wagenaar, Kuipers, Prin, and Van Swaaij (1994) and the numerical solution of

this thesis for di�erent external heat transfer coeÆcient � for particle diameter 140

�m and 250 �m are shown in Figures 4.2 and 4.3. In the Figure 4.2 the particle

diameter is equal to 140 �m. The data from the article of Wagenaar, Kuipers,

Prin, and Van Swaaij (1994) are presented by the cross sign \ � ", the sign \ C

"corresponds to the numerical solution with � = 4�102, the sign \ o "corresponds
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to the numerical solution with � = 8 � 102, the sign \ 4 "corresponds to the

numerical solution with � = 1:65�103, the sign \r "corresponds to the numerical

solution with � = 3 � 103, the sign \ B "corresponds to the numerical solution

with � = 5 � 103. In the Figure 4.3 the particle diameter is equal to 250 �m.

The data from the article of Wagenaar, Kuipers, Prin, and Van Swaaij (1994)

are presented by cross sign \� ", the sign \ C "corresponds to the numerical

solution with � = 1� 102, the sign \ � "corresponds to the numerical solution

with � = 1:65� 102, the sign \ o "corresponds to the numerical solution with

� = 3�103, the sign \ B "corresponds to the numerical solution with � = 5�103.

We can see that our numerical solution is close to the numerical solution from the

article of Wagenaar, Kuipers, Prin, and Van Swaaij (1994) when � = 1:65� 103.

Let us consider the boundary condition (4.12) when � tend to zero and �

tend to1. In case where � tends to zero, the Neumann boundary condition will

be received

@T

@r
= 0: (4.19)

The two steps of the following �nite di�erence scheme are presented to �nd the

approximate solution for problem (4.7) - (4.11) and (4.19).

The �rst step is

C
n+1
i

=
(1� 1P (T

n

i
))

(1 + 1P (T
n

i
))
C
n

i
; i = 0; 1; :::; N: (4.20)

The second step is

(0:1 + 0:9Cn+1
0 )

�
T
n+1
1 + T

n+1
0

�t
�
T
n

1 + T
n

0

�t

�
=

23

�r2
((T n+1

1 + T
n

1 )

� (T n+1
0 + T

n

0 )) + 4K
n

0C
n+1
0 ;

AiT
n+1
i�1 �DiT

n+1
i

+BiT
n+1
i+1 = Fi; i = 1; 2; :::; N � 1; (4.21)

T
n+1
N�1 = T

n+1
N

;
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where n = 0; 1; :::; [W ]� 1, C0
i
= 1, T 0

i
= 6.

In case where � tend to 1, the Dirichlet boundary condition will be re-

ceived

T (1; t) = 1: (4.22)

The two steps of the following �nite di�erence scheme are presented to �nd the

approximate solution for problem (4.7) - (4.11) and (4.22).

The �rst step is

C
n+1
i

=
(1� 1P (T

n

i
))

(1 + 1P (T
n

i
))
C
n

i
; i = 0; 1; :::; N: (4.23)

The second step is

(0:1 + 0:9Cn+1
0 )

�
T
n+1
1 + T

n+1
0

�t
�
T
n

1 + T
n

0

�t

�
=

23

�r2
((T n+1

1 + T
n

1 )

� (T n+1
0 + T

n

0 )) + 4K
n

0C
n+1
0 ;

AiT
n+1
i�1 �DiT

n+1
i

+BiT
n+1
i+1 = Fi; i = 1; 2; :::; N � 1; (4.24)

T
n+1
N

= 1;

where n = 0; 1; :::; [W ]� 1, C0
i
= 1, T 0

i
= 6.

Next, we will show that the numerical solution of problem (4.7) - (4.12) cor-

responds to the numerical solution of problem (4.7) - (4.11) with Neumann bound-

ary condition (4.19) when � tends to zero and the numerical solution of problem

(4.7) - (4.12) corresponds to the numerical solution of problem (4.7) - (4.11) with

Dirichlet boundary condition (4.22) when � tends to 1. We presented the data

for the particle diameter rp = 140 �m and cone rotational frequency 20:0414 s�1

in Table 4.1. The conversion of mass which corresponds to the problem (4.20)

- (4.21) (Neumann boundary condition (4.19)) is equal 0:312596600E � 03 and

the conversion of mass which correspond to the problem (4.23) - (4.24) (Dirichlet
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boundary condition (4.22)) is equal 0:999958400. Table 4.1 shows that the nu-

merical solution of problem (4.7) - (4.12) corresponds to the numerical solution

of problem (4.7) - (4.11) with Neumann boundary condition (4.19) when � tend

to zero and the numerical solution of problem (4.7) - (4.12) corresponds to the

numerical solution of problem (4.7) - (4.11) with Dirichlet boundary condition

(4.22) when � tend to 1.

� conversion

� = 0

�
@T

@r
= 0

�
.312596600E-03

1� 10�1 .312596600E-03

1 .312596600E-03

1� 101 .312596600E-03

1� 102 .296682100E-03

1� 103 .780116300E+00

1� 104 .999837500E+00

1� 105 .999952300E+00

1� 106 .999957800E+00

1� 107 .999958300E+00

1� 108 .999958400E+00

� =1 (T = 1) .999958400E+00

Table 4.1: The calculation of conversion of mass with the inuence of �
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Figure 4.2: The calculated conversion versus the cone rotational

speed for particle diameters 140 �m and � corresponding

to the numerical solution from the article of Wagenaar,

Kuipers, Prin, and Van Swaaij (1994), C, o, 4, r, B

corresponding to the numerical solution of FDS (4.15),

(4.16) with � = 4 � 102; 8 � 102; 1:65 � 103; 3 � 103; 5 � 103

respectively.
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Figure 4.3: The calculated conversion versus the cone rotational

speed for particle diameters 250 �m and � corresponding

to the numerical solution from the article of Wagenaar,

Kuipers, Prin, and Van Swaaij (1994), C, �, o, B corre-

sponding to the numerical solution of FDS (4.15), (4.16)

with � = 1� 102; 1:65� 102; 3� 103; 5� 103 respectively.



Chapter V

Conclusion

The main goal of this research is to suggest a �nite di�erence method to

�nd the approximate solution for the mathematical model of single particle pyrol-

ysis and to study the inuence of di�erent approximations of boundary conditions.

The knowledge on conservation law, the method of dimensionless problem, the

modi�ed Euler method, conservative discretization, conservative �nite di�erence

scheme, and the integro interpolation method are utilized to construct the �nite

di�erence scheme to �nd the approximate solution for the mathematical model

of a single particle pyrolysis model. We use the data for the pyrolysis of pine

pinaster sawdust (Wagenaar, Kuipers, Prin, and Van Swaaij (1994)) to test the

suggested �nite di�erence scheme. The resulting is the numerical solution pre-

sented in this thesis which agrees with the numerical solution for pyrolysis of

pine pinaster sawdust (Wagenaar, Kuipers, Prin, and Van Swaaij (1994)). Two

kinds of boundary conditions at the particle center due to the transformation

to spherical coordinates are studied. The di�erence between conservative and

nonconservative boundary condition is 15 percent. The result of this research is

intended to be used as a tool for constructing the numerical method for solving

the mathematical models for the pyrolysis process.
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