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CHAPTER I 

INTRODUCTION 

 

1.1     Motivations of the study 

In the ever-evolving landscape of healthcare, where technological innovations 

are reshaping the way we approach medical challenges, the realm of musculoskeletal 

disorders stands as a significant focal point. These disorders, with their intricate 

nuances and often debilitating impacts, beckon for refined rehabilitation 

methodologies. As we navigate this era of transformative healthcare, the imperative 

to address musculoskeletal issues becomes increasingly pronounced (Ahmad et al., 

2022; Briggs et al., 2020). 

Recent strides in healthcare underscore the potential advantages of integrating 

cutting-edge technologies into rehabilitation practices. Among these, motion 

detection systems emerge as powerful tools, capable of unraveling the complexities 

of patient movements and expanding the horizons of remote healthcare delivery 

(Cooper & Cooper, 2019; Albahri et al., 2018). 

Amid this backdrop, frozen shoulder (Dias et al., 2005) takes center stage—an 

ailment characterized by pain and restricted joint mobility. Its intricacies demand a 

departure from conventional rehabilitation (Challoumas et al., 2020) approaches 

toward a more personalized paradigm (Choi et al., 2018).  

It is within this narrative that the proposed landmark-based comparative analysis 

within motion detection systems (Srikaewsiew et al., 2022) steps into focus, positioning 

itself not just as an innovation but as a catalyst for nuanced assessments and tailored 

therapeutic interventions.  

As the challenges posed by musculoskeletal disorders (Fernandes et al., 2018) 

persist, and the potential of technology continues to expand, this study seeks to 

contribute to the ongoing paradigm shift in musculoskeletal rehabilitation. 
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It aims to delve into the realm of personalized and technology-enhanced 

healthcare, where the scrutiny of patient movements against instructional videos, 

utilizing landmark-based analysis, becomes not just a method but a key to unlocking 

precision in treatment.  

This study, driven by the dynamic interplay of healthcare and technology, 

poaspires to integrate advanced systems into rehabilitation practices, offering a path 

toward precision and personalization in the treatment of musculoskeletal disorders—

particularly frozen shoulder. As we embark on this exploration, the synthesis of 

medical science and technological prowess becomes a symphony, promising to 

harmonize the complexities of musculoskeletal rehabilitation. 

 

1.2     Advancements in frozen shoulder rehabilitation 

Frozen shoulder (Dias et al., 2005), or adhesive capsulitis (Tasto & Elias, 2007), 

stands as a challenging musculoskeletal condition, causing pain, stiffness, and 

restricted motion in the shoulder joint. This condition profoundly affects daily life 

(Lyne et al., 2022), impeding routine activities and causing persistent discomfort. 

Traditional management involves a combination of physical therapy, exercises, and, 

in severe cases, surgical interventions, with physical therapy playing a key role in 

alleviating symptoms (Pandey & Madi, 2021). 

Despite established treatments, optimizing rehabilitation for frozen shoulder 

patients remains a challenge due to varying individual responses. This necessitates 

exploring innovative solutions, and recent technological advancements in motion 

detection systems (Roggio et al., 2021) show promise for enhancing precision in 

rehabilitation.  

The proposed thesis, " Development of a Landmark-Based Motion Detection 

System for Enhanced Frozen Shoulder Rehabilitation" seeks to contribute to the 

evolution of frozen shoulder rehabilitation. By developing a motion detection system 

grounded in landmark techniques, the research aims to address individual patient 

nuances, optimize interventions, and improve overall outcomes. 

Through a comparative analysis of patient and therapist movements, 

leveraging advanced technologies such as cosine similarity (Abdulghani et al., 2023; 

Srikaewsiew et al., 2022) and facial expression modeling (Revina & Emmanuel, 2018), 
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the thesis aims to establish a comprehensive understanding of the rehabilitation 

process. Integrating key frame analysis, angle degree measurements, and similarity 

scores offers a holistic approach to evaluating patient progress, allowing for a more 

nuanced and tailored therapeutic regimen. 

The exploration of landmark-based motion detection in frozen shoulder 

rehabilitation aligns with the trajectory of technological advancements in healthcare. 

The proposed research responds to the imperative of providing a personalized, 

effective, and data-driven approach to address the multifaceted challenges posed by 

frozen shoulder. This thesis endeavors to contribute to the evolution of rehabilitation 

strategies, fostering improved patient outcomes and enhancing the quality of life for 

individuals grappling with the constraints of frozen shoulder. 

 

1.3     Landmark-based motion detection 

Landmark-based motion detection represents a transformative approach in 

healthcare (Fried et al., 2023), particularly in the realm of rehabilitation (Latreche et 

al., 2023). This innovative methodology utilizes anatomical landmarks to precisely 

track and analyze movements, offering a nuanced understanding of the dynamics 

involved in therapeutic processes. 

In the context of frozen shoulder rehabilitation, a condition characterized by 

pain and restricted motion, traditional treatment approaches often face challenges in 

tailoring interventions to individual patient needs. Landmark-based motion detection 

systems present a potential solution by providing a more personalized and data-

driven approach to physical therapy. 

These systems, leveraging advanced technologies, enable a detailed 

examination of specific anatomical points during movement. By incorporating 

techniques such as cosine similarity and facial expression modeling, researchers can 

gain insights into patient progress with unprecedented precision. 

The proposed thesis, " Development of a Landmark-Based Motion Detection 

System for Enhanced Frozen Shoulder Rehabilitation" positions itself at the 

intersection of technology and rehabilitation. By focusing on landmark-based motion 

detection, the research aims to pioneer a more advanced and tailored approach to 

frozen shoulder therapy. 
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Through a comparative analysis of patient and therapist movements, the thesis 

intends to contribute to the evolution of rehabilitation strategies. Key frame analysis, 

angle degree measurements, and similarity scores form integral components of this 

holistic approach, promising to redefine the standards of precision in therapeutic 

regimens. 

The exploration of landmark-based motion detection not only aligns with the 

current trajectory of technological advancements in healthcare but also responds to 

the imperative of providing a personalized, effective, and data-driven approach to 

address the multifaceted challenges posed by conditions like frozen shoulder. This 

research endeavors to establish landmark-based motion detection as a cornerstone 

in enhancing precision and efficacy across various realms of physical therapy, fostering 

improved patient outcomes and quality of life. 

 

1.4     Purpose of the research 

The primary objective of this research was to pioneer advancements in frozen 

shoulder rehabilitation through the development and implementation of a Landmark-

Based Motion Detection System. The overarching goal was to address the limitations 

of traditional rehabilitation approaches by introducing a more precise, personalized, 

and data-driven methodology. Specifically, the research aimed to: 

          1.4.1    Develop a prototype system for frozen shoulder patients using motion 

detection techniques based on landmark analysis. This involved comparing user-

generated videos with original recordings conducted by physical therapy experts. 

          1.4.2   To evaluate the effectiveness of the prototype system in practical 

applications, specifically assessing its accuracy in motion detection, angle 

measurement, and comparison with instructor videos. 

          1.4.3   Explore the integration of computer technology into physical therapy 

practices, employing techniques such as face detection, motion capture, degree 

measurement via computer vision, and similarity comparisons. 

          1.4.4     Investigate and experiment with methods aimed at facilitating effective 

at-home physical therapy for frozen shoulder patients, with a focus on self-

administration. 
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1.5     Scope of the research 
1.5.1    Development of Landmark-Based Motion Detection System  

The research centered on designing and implementing a motion 

detection system based on landmark techniques specifically tailored for comparing 

physical poses captured in user videos with those demonstrated by experts and 

measure the angles of specific body parts in each physical pose. 

1.5.2    Comparative Analysis of Movements 

The scope included a comparative analysis of movements between 

frozen shoulder patients and therapists, utilizing key frame analysis, angle degree 

measurements, and similarity scores to assess the precision and effectiveness of the 

motion detection system. 

1.5.3    Engage with Healthy Volunteers 

The research encompassed the recruitment of fourteen healthy 

volunteers, aged between 20 and 50 years, with careful consideration given to 

maintaining gender balance. Participants provided informed consent before engaging 

in the research procedures, thereby demonstrating their voluntary involvement. The 

study aimed to deliver detailed explanations regarding the experiment, including 

associated risks and terms, to ensure comprehensive understanding and ethical 

adherence throughout the research process. 

1.5.4   Technological Integration and Evaluation 

The research involved the integration of advanced technologies, such 

as cosine similarity and facial expression modeling, into the motion detection system. 

The focus was on evaluating the impact of technological integration on the accuracy 

and comprehensiveness of the analysis in the context of frozen shoulder 

rehabilitation. 

 

1.6     Research questions 

1.6.1 How does the Landmark-Based Motion Detection System contribute to 

precisely measuring and improving the frozen shoulder patient's adherence to 

therapeutic postures during rehabilitation interventions? 
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1.6.2    To what extent can the landmark-based comparative analysis identify 

and address specific movement deviations in frozen shoulder patients, leading to 

tailored and more effective rehabilitation strategies? 

1.6.3    What is the impact of incorporating cosine similarity and facial emotion 

modeling in the motion detection system on the accuracy and thoroughness of 

measuring patient progress and treatment efficacy in frozen shoulder rehabilitation? 

1.6.4 How does the developed motion detection system provide precise, 

quantifiable data for redefining frozen shoulder rehabilitation standards and advancing 

rehabilitation practices? 

 

1.7     Contributions of the research 

          1.7.1    Precision Enhancement in Rehabilitation Practices 

The research contributes by introducing a Landmark-Based Motion 

Detection System designed for frozen shoulder therapy. This technology enhances 

the precision of rehabilitation interventions, providing detailed and accurate analyses 

of patient movements during therapy sessions. 

1.7.2    Tailored and Effective Rehabilitation Strategies 

By leveraging landmark-based comparative analysis, the study pioneers 

personalized rehabilitation interventions. The system identifies individual patient 

responses and needs, allowing for tailored strategies that address specific movement 

deviations, thereby increasing the effectiveness of frozen shoulder therapy. 

1.7.3    Integration of Advanced Technologies 

The research integrates cosine similarity and facial expression modeling 

into the motion detection system, enhancing the accuracy and comprehensiveness of 

the analysis for patient progress and treatment efficacy in frozen shoulder 

rehabilitation. 

 



CHAPTER II 

LITERATURE REVIEW 

 

2.1     Frozen shoulder 

Frozen shoulder, medically known as adhesive capsulitis, represents a 

challenging musculoskeletal condition characterized by pain, stiffness, and restricted 

mobility within the shoulder joint. Epidemiological studies have indicated a 

prevalence ranging from 2% to 5% in the general population, with a notably higher 

occurrence among individuals aged 40 to 60 years. This condition is often associated 

with various risk factors, including diabetes mellitus, thyroid disorders, prior shoulder 

trauma or surgery, and a higher incidence in females (Dias et al., 2005; de la Serna et 

al., 2021). 

The pathophysiology of frozen shoulder involves a multifaceted interplay of 

inflammatory, fibrotic, and contractile processes within the glenohumeral joint 

capsule and surrounding soft tissues. The clinical course of frozen shoulder typically 

progresses through distinct phases, starting with a painful phase characterized by 

increasing pain and stiffness, followed by an adhesive phase marked by significant loss 

of shoulder mobility, and concluding with a recovery phase where mobility gradually 

improves (Dias et al., 2005). 
Diagnosis of frozen shoulder relies primarily on clinical evaluation, including 

history-taking and physical examination. However, imaging modalities such as X-rays, 

ultrasound, and magnetic resonance imaging (MRI) are often utilized to confirm the 

diagnosis and rule out other shoulder pathologies (Dias et al., 2005). 

           In terms of treatment modalities, a multimodal approach is usually adopted. 

Conservative treatments play a pivotal role and may include physical therapy 

interventions aimed at improving range of motion and reducing pain through specific 

exercises and manual techniques. Pharmacological interventions, such as 

corticosteroid injections, can provide symptomatic relief, particularly during the  

painful phase of the condition (Mertens et al., 2022).
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Surgical interventions, including manipulation under anesthesia and arthroscopic 

release, may be considered for refractory cases where conservative measures have 

failed to provide adequate relief (Dias et al., 2005). 

Psychological factors, including stress and anxiety, may also influence the 

onset and progression of frozen shoulder. Moreover, the prognosis of frozen shoulder 

varies among individuals, with some experiencing persistent limitations in shoulder 

mobility despite treatment efforts (Rizk & Pinals, 1982; Dias et al., 2005). 

Furthermore, the research has identified additional risk factors associated with 

the development of adhesive capsulitis, particularly in high-risk populations such as 

neurosurgical patients. Bruckner and Nye (1981) conducted a prospective study 

focusing on neurosurgical patients, revealing several significant risk factors, including 

impairment of consciousness, hemiparesis, duration of post-operative intravenous 

infusion, age, and depressive personality. Routine treatment with corticosteroids post-

operatively did not prevent capsulitis (Bruckner & Nye, 1981). 

In conclusion, frozen shoulder poses a multifaceted clinical challenge, 

underscoring the importance of a thorough comprehension of its epidemiology, 

pathophysiology, diagnostic criteria, and treatment modalities. As advancements in 

technology and rehabilitation continue to evolve, there is a growing need for 

innovative approaches to optimize therapeutic outcomes for individuals with frozen 

shoulder. The development of a landmark-based motion detection system, as 

proposed in this thesis, holds promise for enhancing precision in physical therapy 

interventions. By leveraging technological advancements to refine rehabilitation 

strategies, we can strive towards improving patient outcomes and quality of life in 

individuals affected by this debilitating condition.  

 

2.2     Landmark-based motion detection and pose estimation 

Landmark-based motion detection techniques, encompassing various 

technologies to track and analyze movement by identifying specific anatomical 

landmarks on the body, have emerged as crucial tools in rehabilitation practices. 

Traditionally, these methods relied on markers placed on the body, but recent 

advancements in computer vision have introduced markerless techniques (Desmarais 
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et al., 2021), such as Google's Mediapipe Blazepose (Bazarevsky et al., 2020), which 

employ machine learning algorithms to detect landmarks directly from video data. 

In their research, Tharatipyakul and Pongnumkul (2023) conducted a 

systematic review focusing on deep learning-based pose estimation as a means of 

providing feedback for physical movement. Their study encompassed an extensive 

examination of 20 articles, specifically addressing pose estimation, movement 

assessment, and augmented feedback utilizing deep learning techniques. The authors 

meticulously categorized and analyzed the methodologies and outcomes presented 

in the selected articles, employing a comprehensive approach to evaluate pose 

estimation methods, movement assessment techniques, and classifications of 

augmented feedback derived from existing literature in motor learning. Their 

investigation revealed a predominant reliance on deep learning methodologies, 

notably Convolutional Neural Networks (CNN), for pose estimation tasks. They 

identified diverse approaches for movement assessment, ranging from mathematical 

formulas and rule-based methods to machine learning algorithms. Augmented 

feedback mechanisms predominantly manifested in visual and verbal forms, 

encompassing various modalities such as numbers, words, phrases, videos, images, 

and animations. Through their rigorous review process, the authors shed light on the 

current state of research in this domain, pinpointing both strengths and limitations 

within the existing literature. Their comprehensive analysis offered valuable insights 

into the application of deep learning techniques for pose estimation and augmented 

feedback in physical movement contexts, while also identifying avenues for future 

research and development.  

Pauzi et al. (2021) developed a system for estimating human movement using 

Mediapipe Blazepose. The system tracks body movements from video sources and 

superimposes labelled skeleton joints onto the individual's body. This technology has 

wide-ranging applications, particularly in physically demanding work environments and 

the sports industry, where precise movement tracking is essential. The authors 

employed deep learning techniques, specifically utilizing the Mediapipe Blazepose 

algorithm and the PoseNet dataset, tailored for detecting and estimating movements 

prone to causing bodily injury during heavy workloads. To evaluate the system's 

accuracy, the authors compared it with IMU-based motion capture, revealing 
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differences in accuracy within a 10% range. Despite this discrepancy, the proposed 

system aims to accurately identify and label skeleton joints on individuals' bodies. 

Additionally, it is designed to calculate movement velocity and joint angles, crucial 

factors in assessing the risk of both short- and long-term injuries. Through their 

research, Pauzi et al. contribute to the advancement of movement estimation 

technology, providing a foundation for enhanced injury prevention and movement 

analysis in various fields. 

Singh, Kumbhare, and Arthi (2021) explored real-time human pose detection 

and recognition using MediaPipe technology. They introduced a framework capable 

of detecting human actions in real-time, even under diverse conditions and viewing 

angles. This framework utilized MediaPipe Holistic, which integrated pose, face, and 

hand landmark detection models. By parsing real-time video feed frames, they 

extracted 501 landmarks, exporting them as coordinates to a CSV file. These 

coordinates were then used to train a custom multi-class classification model, 

employing machine learning algorithms such as random forest, linear regression, ridge 

classifier, and gradient boosting classifier. The aim was to understand the relationship 

between body language poses and corresponding classes. Through this research, Singh 

et al. aimed to advance human action recognition technology for more accurate and 

efficient real-time detection and recognition of human poses. 

The landmark detection for human pose estimation was conducted by 

Srikaewsiew et al (2022). The study utilized the MediaPipe framework with the 

BlazePose GHUM Heavy model to extract skeletal and joint data from each frame of 

the dance videos. Specifically, the upper portion of the body, including anatomical 

points such as the shoulders, elbows, and wrists, was the focus of landmark detection. 

By mapping these points and representing their significance as the names of body 

parts, the researchers were able to calculate the similarity between the vectors of 

each body part using the evaluation techniques of Cosine similarity, Euclidean 

distance, and Angular difference. This approach enabled the team to effectively 

analyze the similarity of posture in each frame between the instructor and the trainee, 

ultimately leading to the determination of the most effective method for evaluating 

human motion in the context of instructor-led dances. 
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However, applying landmark-based motion detection to frozen shoulder 

rehabilitation poses significant challenges. The complexity of the shoulder joint's 

motion and the variability of movement patterns across individuals with frozen 

shoulder present considerable hurdles. The intricate nature of shoulder biomechanics 

complicates the accurate detection and tracking of landmarks, particularly during 

dynamic movements.  

Moreover, factors such as clothing, body composition, and patient positioning 

can further hinder landmark detection, leading to potential inaccuracies in motion 

analysis. Despite these challenges, Mediapipe offers a promising solution. Leveraging 

convolutional neural networks (CNNs) and pose estimation algorithms, Mediapipe 

enables real-time detection and tracking of key landmarks on the human body in 

video streams. This capability facilitates objective and quantifiable assessments of 

shoulder mobility, allowing clinicians to monitor progress and tailor treatment plans 

accordingly. By providing immediate feedback during exercise sessions, Mediapipe 

promotes adherence to prescribed rehabilitation protocols and enhances patient 

engagement in the recovery process.  

Furthermore, its versatility extends to tele-rehabilitation (Gava et al., 2022) and 

remote monitoring (Erickson et al., 2023), enabling patients to participate in supervised 

rehabilitation sessions from home. This accessibility facilitates continuous monitoring 

of progress and adjustment of treatment plans as needed, ultimately improving 

patient outcomes and quality of care. Despite ongoing challenges, ongoing research 

and innovation in this field hold promise for optimizing the clinical utility of landmark-

based motion detection in frozen shoulder rehabilitation, leading to improved 

outcomes and enhanced patient care. 

 
2.3      Face expression recognition 

Research in the field of facial expression recognition has been ongoing for 

several years, with notable contributions from various disciplines such as computer 

science and computer engineering. A recent study by Di Luzio et al. (2023) introduced 

a randomized deep neural network for emotion recognition, incorporating landmark 

detection. Utilizing the Extended Cohn-Kanade dataset (CK+) and Mediapipe 

technology, the authors extracted 468 face landmarks and employed a combination 
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of randomized convolutional and Long Short-Term Memory (LSTM) layers to achieve 

over 90% accuracy in recognizing five emotions. Similarly, Hangaragi et al. (2023) 

proposed a face detection and recognition system using a face mesh and deep neural 

network, demonstrating superior accuracy compared to existing methods. Hamester 

et al. (2015) presented a 2-channel convolutional neural network for facial expression 

recognition, surpassing previous approaches in terms of accuracy on the JAFFE dataset.  

Assari and Rahmati (2011) focused on non-intrusive driver drowsiness detection 

using facial expression recognition, achieving remarkable accuracy rates. Additionally, 

Munasinghe (2018) developed a method for facial expression recognition using facial 

landmarks and a random forest classifier, demonstrating promising results on the 

Extended Cohn-Kanade (CK+) database. Overall, these studies underscore the 

potential of deep learning techniques and landmark detection in advancing facial 

expression recognition technology for various applications, from affective computing 

to human-machine interaction 

 

.  

 



CHAPTER III 

METHODOLOGY 

 

3.1   Overview of the development of the landmark-based motion 

detection for enhanced physical therapy precision system  

 

 
Figure 3.1 Segmented process chart of development of the Landmark-Based- 

               Motion Detection for Enhanced Physical Therapy Precision System. 
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 From the Figure 3.1, The methodology encompassed the gathering and 

analysis of theoretical academic literature on various topics, including Landmark-Based 

Motion Detection, Pose Similarity Comparison Algorithm, Postural physical therapy for 

Frozen Shoulder Rehabilitation, and Facial Recognition Technology. This phase 

involved scrutinizing past studies and scholarly works to establish a foundation for 

further research. 

Following this, an experimental research approach was adopted to develop 

an optimal system. This involved conducting research to identify the best methods 

for assessing movement similarity between teachers and students (Srikaewsiew et al., 

2022), as well as optimal techniques for facial emotion recognition (Srikaewsiew & 

Kanjanawattana, 2024). The aim was to refine existing methodologies and techniques 

based on empirical findings. 

Subsequently, the prototype system was developed, incorporating 

components such as landmark detection and analysis, a similarity scoring mechanism, 

angular measurement of specific body parts, and facial recognition technology. This 

phase involved the implementation of theoretical concepts into practical solutions. 

The system underwent validation through volunteer testing, wherein the 

accuracy of posture angle measurement, video similarity comparison, and detection 

functionalities (movement, facial, and emotional) were evaluated. Volunteer feedback 

was collected to refine the system further, and comprehensive testing was conducted 

to ensure its effectiveness.  

Throughout the process, adherence to academic standards and rigorous 

methodology was paramount, ensuring the reliability and validity of the research 

outcomes. 

 

3.2   Landmark-based motion detection and posture similarity score 

computation 
In the Landmark-Based Motion Detection and Posture Similarity Score 

Computation methodology employed, the process commenced with data collection 

and pose estimation, wherein researchers gathered data by displaying a tutorial video 

while recording the user's motion through a smartphone. Human pose estimation was 

conducted on the recorded data utilizing MediaPipe, a machine learning framework 
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designed for media applications. This estimation facilitated the extraction of x and y 

coordinates of the trainee based on pose landmarks, Mediapipe provides landmarks 

as illustrated in Figure 3.2, facilitating subsequent analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

          Figure 3.2 Mediapipe pose landmarks index (Bazarevsky et al., 2020). 

 

Subsequently, attention was directed towards landmark detection, wherein 

researchers focused on identifying and comparing variations in landmark joints of the 

human body. Specific points situated in the upper body were targeted for analysis, 

encompassing joints such as the left shoulder, right shoulder, left elbow, right elbow, 

left wrist, and right wrist. These chosen landmark joints served as representative 

markers for significant body parts pertinent to motion analysis. 

           The methodology advanced to calculating posture similarity scores, aiming to 

discern the resemblance in motion between instructors and trainees based on their 

body joints in each frame. Utilizing the most effective technique identified through 

preliminary research (Srikaewsiew et al., 2022), which involved cosine similarity 

techniques, computed the posture similarity score, a numerical representation of the 

likeness in posture between individuals. This process involved calculating the posture 

similarity score for every frame based on the designated landmark joints, facilitating a 

comprehensive assessment of motion congruence. 
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           Through these meticulously executed steps, successfully detected landmark 

joints, and computed posture similarity scores, thereby advancing the understanding 

and application of motion analysis techniques within academic research. 

 

3.3     Measuring the angle of motion in a specific body region 

          The methodology employed in the study involved the utilization of joint angle 

rotations as a fundamental technique. This process entailed measuring the angles 

formed between adjacent body segments or joints, providing crucial insights into the 

orientation and movement of specific body parts. The shoulder was selected for 

analysis. Their initial positions in a reference frame were determined, and the 

movement of these joints over consecutive frames was tracked to capture motion 

sequences. Angles between adjacent joints at each time step were then calculated 

to represent joint angle rotations, utilizing arctangent functions, as illustrated in Figure 

3.3, the formula demonstrates how the vector is calculated.  

 

 

Figure 3.3 Determining the Angle Between Two 2D Vectors (Bruns, 2017). 
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3.4     Facial recognition 

This methodology outlines a comprehensive approach to facial expression 

recognition utilizing a combination of Convolutional Neural Networks (CNNs) and a 

landmark-based technique. The landmark-based method involves the transformation 

of image data into coordinate representations of landmark facial points, employing 

the MediaPipe library for facial landmark detection. Specifically, 468 facial coordinates 

are extracted along both the x and y axes from facial images, as depicted in Figure 

3.4. This approach leverages the capability of CNNs, a deep learning architecture 

renowned for its proficiency in learning intricate patterns and spatial dependencies 

from extensive datasets, to analyze and interpret facial data effectively. 

           Data preprocessing involved several steps. Facial landmark extraction utilized 

tools like the MediaPipe library to identify and extract key facial points such as the 

outer edges of the mouth, nose, and eyes. Subsequently, data normalization was 

performed to scale facial coordinate values appropriately, reducing variations in the 

data and facilitating effective pattern learning by the CNN model. Feature engineering 

enhanced the model's ability to recognize and classify emotions accurately by 

transforming raw facial coordinate data into more meaningful features capturing 

spatial relationships between facial landmarks.  

 
Figure 3.4 Mediapipe Face Landmark (Google Developers, 2020). 
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           Data augmentation techniques, such as rotation, flipping, or adding noise to 

the facial landmark data, were applied to increase the diversity and size of the training 

dataset, improving the generalization and robustness of the CNN model. The 

preprocessed facial landmark data was then split into training and testing sets, with 

the former used to train the CNN model on the facial expression recognition task and 

the latter to evaluate the model's performance on unseen data. Input preparation 

involved formatting and structuring the preprocessed facial landmark data for effective 

learning and feature extraction by the CNN architecture to make accurate predictions 

about the emotions expressed in images.  

           The combined CNN with landmark-based method was trained on large-scale 

datasets like The Delaware Pain Database (Mende-Siedlecki et al., 2020) and UTKFace, 

enabling it to capture both global and local facial data, thus enhancing its ability to 

recognize and identify various emotions. Performance evaluation revealed high 

accuracy, precision, recall, and F1 score values, demonstrating the effectiveness of 

the integrated approach in accurately identifying emotions from facial expressions 

(Srikaewsiew & Kanjanawattana, 2024). 

 

3.5     System validation through volunteer testing  

 
Figure 3.5 Participates testing diagram.  
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From Figure 3.5, the methodology adopted for participant involvement in the 

experiment commenced with the recruitment of fourteen healthy volunteers aged 

between 20 and 50 years, ensuring an equal gender distribution with seven males and 

seven females. Prior to participation, all individuals provided informed consent by 

signing a consent form, acknowledging their voluntary involvement in the 

experimental procedures. This study was conducted in accordance with the guidelines 

set forth by the Human Research Ethics Committee (EC-66-27). Following consent, 

participants received detailed explanations regarding the experiment, including 

associated risks and terms, delivered by the researchers. Adequate compensation was 

provided to participants as warranted. 

Subsequently, the experiments commenced with the utilization of the 

developed system, during which participants' physical activity videos were recorded 

for system integration. Participants were divided into gender-specific groups and 

guided through a series of physical therapy poses, including shoulder flexion (Figure 

3.6), abduction (Figure 3.7), shoulder external rotation (Figure 3.8), and shoulder 

internal rotation (Figure 3.9), under the supervision of researchers and medical 

professionals. Each pose was performed three times, with data collection facilitated 

by measuring the designated points using the system and expert physical therapists. 

One-minute breaks were implemented between each pose to ensure participant 

comfort and well-being. Upon completion of all poses, participants provided feedback 

on their experiences, including usability and suggestions for improvements. 

The shoulder angle evaluation phase of the experiment employed a 

comprehensive approach to assess the accuracy and reliability of the developed 

system. This phase incorporated three distinct measurement methodologies: 

1. General principles-based assessment: Shoulder angles were measured using 

standard angle measurement methods. This approach provided a baseline 

measurement following common practice. However, it is important to note that these 

principles do not conform to traditional medical measuring methods or rules.  

2. Expert medical evaluation: A qualified medical professional, specifically an 

experienced physical therapist or orthopedic specialist, conducted measurements 

based on clinical expertise and medical principles. This method offered a gold 
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standard for comparison, leveraging years of clinical experience and specialized 

knowledge. 

3. Assessment with Developed Program: The custom-designed program, 

central to this study, was utilized to measure shoulder angles. This novel approach 

aimed to validate the efficacy and accuracy of the developed system against 

established methods. 

The triangulation of these measurement techniques allowed for a robust 

comparison between traditional methods and the innovative approach proposed in 

this study. Participants underwent evaluation using all three methods for each 

shoulder movement: flexion, abduction, external rotation, and internal rotation. This 

multi-faceted approach facilitated a comprehensive analysis of the developed 

system's performance in relation to established clinical and biomechanical standards. 

Data collected from these three measurement methods were systematically 

recorded for subsequent statistical analysis. The comparative evaluation aimed to 

assess the concordance between the developed program and expert measurements, 

as well as to identify any significant deviations from established norms. This rigorous 

methodology ensures a thorough validation process for the newly developed 

shoulder angle evaluation tool, potentially contributing to advancements in 

biomechanical assessment techniques within physical therapy and sports medicine 

domains. 

Upon conclusion, participants were allowed to depart at their convenience. 

Subsequently, video clips were imported into the system for comparative analysis, 

where measures such as the similarity between practitioners and instructors and facial 

expressions during physical therapy were assessed. The angles obtained were 

compared against traditional measurements recorded by medical professionals. 

Experimental results were meticulously documented, concluding the experimental 

phase. 
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Figure 3.6 Shoulder flexion. 

 

 
Figure 3.7 Abduction. 
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Figure 3.8 Shoulder external rotation 

 

 
 

Figure 3.9 Shoulder internal rotation. 
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3.6     System application 

Figure 3.10 System Application Diagram. 

Figure 3.10 shows an application for evaluating exercise performance through 

video analysis. Users follow an expert's video, record their performance, and the 

system processes the video by rotating it and extracting key posture images and facial 

features. These images are converted into landmarks to measure shoulder angles and 

detect expressions of pain. The system uses cosine similarity to compare the user's 

poses with the experts, providing detailed results on shoulder angle accuracy, pose 

similarity, and facial expressions. The results include feedback and recommendations, 

such as additional practice for low scores or consulting a healthcare professional if 

discomfort is detected. This feedback is documented for future clinical reference, 

enhancing the user's exercise performance and well-being. 

 



CHAPTER IV 

RESULTS AND DISCUSSIONS 

 

4.1     Experimental setting 

The experiment was conducted on June 14, 2024, at the SIRINDHORN 

WITSAWAPHAT building, 4th floor, involving 14 healthy volunteers aged between 20 

and 50 years, with an equal gender distribution of seven males and seven females. 

The setting utilized equipment such as an iPhone 12 Pro Max, MacBook Air 2019, a 

goniometer, a projector display, and a projector. Some environmental conditions were 

controlled in the experiment: the same room was used for all participants, white lights 

were turned on when daylight was insufficient and turned off when daylight was bright, 

and the distance between the cameraman and the dancer was controlled at 1.62 

meters. The experiment focused on exploring methods for at-home physical therapy 

for frozen shoulder patients. 

4.2     The experimental procedure 

The experiment involving volunteers was conducted in three stages. Initially, 

participants followed a video demonstrating exercises that included shoulder flexion, 

abduction, shoulder external rotation, and shoulder internal rotation. These exercises 

were supervised by researchers and medical professionals, with each participant 

completing three repetitions of each exercise followed by a one-minute rest period. 

The process continued until all volunteers had completed the exercises. Throughout 

these exercises, researchers utilized a Smartphone to record videos, which were 

subsequently analyzed using a developed program.  
In the second stage, researchers employed a goniometer (Figure 4.1) for 

assessing shoulder angles through expert medical evaluation and general principles-

based assessment, alongside evaluation facilitated by a developed program. Each 

exercise underwent evaluation at three distinct stages: initial posture, midpoint 

posture, and peak posture. The postures and stages of the poses are depicted in 

Figures 4.2 to 4.5. 
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During the final stage, researchers administered a survey to volunteers via a 

Google Form. The survey included questions asking participants to rate their 

discomfort level on a scale from 0 to 5, where 0 indicated no discomfort (normal) and 

5 indicated severe discomfort (very painful). 

Upon completion of the volunteer participation, the experiment concluded, 

and researchers proceeded to collate all gathered data for subsequent analysis to 

derive conclusions for their thesis.   

 

 
 

Figure 4.1 Goniometer and How to use a Goniometer to measure Range of  

                      Motion (The Goniometer, 2012). 
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   a)           b)                                    c) 

 

Figure 4.2 The postures and stages of the shoulder flexion: (a) initial posture, 

                     (b) midpoint posture, and (c) peak posture. 

 

   

             a)           b)                                      c) 

Figure 4.3 The postures and stages of the abduction: (a) initial posture, 

                         (b) midpoint posture, and (c) peak posture. 
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             a)           b)                                        c) 

Figure 4.4 The postures and stages of the shoulder external rotation:  

                   (a) initial posture, (b) midpoint posture, and (c) peak posture. 

  

   

             a)           b)                                        c) 

Figure 4.5 The postures and stages of the shoulder internal rotation:  

                   (a) initial posture, (b) midpoint posture, and (c) peak posture. 
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4.3  The results and discussion of participants following a 

demonstrated exercise video 

 The experiment involves the evaluation of 14 volunteer videos using frame-

by-frame analysis, as depicted in Figure 4.6. Initially, an Excel file was created by the 

researchers where the first column contained images of the teacher's exercise, 

comprising approximately 20 frames each. The subsequent columns contained frames 

extracted from volunteer videos, also approximately 20 frames per video. 

Subsequently, expert evaluators assessed the similarity between the frames 

by assigning scores, referred to as expert scores. The results of this similarity 

assessment were categorized into a rubric: scores of 0 to 49 indicated non-similarity, 

while scores of 50 to 100 indicated similarity. 

Following expert evaluation, the evaluators returned the results to the 

researchers, who then incorporated these alongside cosine similarity scores. This 

additional data was presented in two columns: the first column contained cosine 

similarity scores, and the second column contained cosine similarity evaluations. The 

cosine similarity evaluations were derived from the cosine similarity scores using a 

cutoff threshold of 97.5. 

Upon completion of the frame-by-frame evaluation by the experts and 

researchers, each video yielded a final evaluation result. These results were 

subsequently employed for comparison using a confusion matrix in the subsequent 

section of the study. 
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Figure 4.6 Illustrates an example of a complete Excel file used for evaluation. 

 

4.3.1    Shoulder flexion Result 

 

Table 4.1  Comparison between Expert Result and Cosine Similarity of  

                          Shoulder Flexion Result 

 
Table 4.2  Confusion Matrix between Expert Result and Cosine Similarity of  

                       Shoulder Flexion Result 
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The analysis of shoulder flexion data aimed to compare the similarity 

results obtained from expert evaluations with those derived from a cosine similarity 

algorithm. The data show as Table 4.1. It included 14 instances, with experts labeling 

13 as "Similar" and 1 as "Not Similar," while the cosine similarity algorithm labeled 10 

as "Similar" and 4 as "Not Similar." The performance metrics were calculated using a 

confusion matrix (Table 4.2), revealing a precision of 1.0, recall of approximately 0.769, 

accuracy of about 0.786, and an F1-score of 0.870. These results indicate that the 

cosine similarity algorithm is highly precise, correctly identifying similarities 100% of 

the time when it makes such predictions. However, its recall value suggests it misses 

some instances identified as similar by experts. The overall accuracy demonstrates a 

good agreement between the algorithm and expert judgments, while the F1-score 

reflects a balanced consideration of precision and recall. Although the cosine similarity 

algorithm shows promise with excellent precision and good accuracy, its lower recall 

suggests the need for further adjustments to enhance its sensitivity to expert-identified 

similarities. 

4.3.2    Abduction Result 

  
Table 4.3  Comparison between Expert Result and Cosine Similarity of  

                          Abduction Result 

 
Table 4.4  Confusion Matrix between Expert Result and Cosine Similarity of  

                       Abduction Result 
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The analysis of abduction data aimed to compare similarity results 

obtained from expert evaluations with those derived from a cosine similarity 

algorithm. In this data (Table 4.3), experts labeled all 14 instances as "Similar," while 

the cosine similarity algorithm labeled 13 instances as "Similar" and 1 instance as "Not 

Similar." The performance metrics were calculated using a confusion matrix (Table 

4.4), which revealed a precision of 1.0, recall (sensitivity) of approximately 0.929, 

accuracy of about 0.929, and an F1-score of approximately 0.963. 

These results indicate that the cosine similarity algorithm is highly 

precise, correctly identifying similarities 100 percentage when it makes such 

predictions. The recall value shows that the algorithm missed only one instance 

identified as similar by experts, indicating a high level of sensitivity. The overall 

accuracy demonstrates strong agreement between the algorithm and expert 

judgments, while the F1-score reflects a balanced consideration of precision and 

recall. 

4.3.3    Shoulder external rotation 

 
Table 4.5  Comparison between Expert Result and Cosine Similarity of  

                          Shoulder external rotation Result 

 
Table 4.6  Confusion Matrix between Expert Result and Cosine Similarity of  

                       Shoulder external rotation Result 
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The analysis of shoulder external rotation data compared expert 

evaluations with results from a cosine similarity algorithm (Table 4.5). Experts labeled 

all 14 instances as "Similar," while the algorithm labeled 11 as "Similar" and 3 as "Not 

Similar." The performance metrics (Table 4.6) show a precision of 1.0, a recall of 0.786, 

an accuracy of 0.786, and an F1-score of 0.88. These results indicate that the cosine 

similarity algorithm is highly precise but has room for improvement in recall. While 

the algorithm reliably identifies similarities, it missed a few instances recognized by 

experts. 

4.3.4    Shoulder internal rotation 

 
Table 4.7  Comparison between Expert Result and Cosine Similarity of  

                          Shoulder internal rotation Result 

 
Table 4.8  Confusion Matrix between Expert Result and Cosine Similarity of  

                       Shoulder internal rotation Result 

The analysis of shoulder internal rotation data (Table 4.7) compared 

expert evaluations with results from a cosine similarity algorithm. In this dataset, both 

experts and the cosine similarity algorithm labeled all 14 instances as "Similar." The 

cofussion metrics (Table 4.8) derived from this perfect agreement are as follows: a 

precision of 1.0, a recall (sensitivity) of 1.0, an accuracy of 1.0, and an F1-score of 1.0. 

These results indicate that the cosine similarity algorithm perfectly matches the expert 

evaluations, identifying all instances accurately without any errors. 
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4.3.5    Example of an individual experiment with interesting results 

 
Table 4.9  Comparison between Expert Result and Cosine Similarity of  

                          M005‘s Shoulder flexion 

 
Table 4.10  Confusion Matrix between Expert Result and Cosine Similarity of  

                        M005‘s Shoulder flexion 

The results presented in Table 4.9 indicate two discrepancies between 

the predictions made by the system and those made by the experts. The researcher 

observed that the participant did not adjust their posture promptly, leading to a slight 

delay between posture changes. This delay caused the system to judge the posture 

as incorrect, despite the posture beginning to resemble the subsequent correct pose. 

In contrast, experts awarded partial points if certain aspects of the posture were 

similar, resulting in discrepancies in some frames. Analyzing these discrepancies using 

the confusion matrix (Table 4.10) reveals slight inconsistencies in the judgment of 

shoulder flexion for participant M005. 
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Table 4.11  Comparison between Expert Result and Cosine Similarity of  

                           M005‘s Abduction 

 
Table 4.12  Confusion Matrix between Expert Result and Cosine Similarity of  

                        M005‘s Abduction 

 

Table 4.11 shows that M005's poses were generally well executed, with 

only one error observed in a single frame. The researcher noted that the participant 

was unable to lift their arms to the appropriate height. Except for the arm-lifting 

aspect, the participant's postures matched those of the experts in every other respect. 

This discrepancy led the system to judge the pose differently for that particular frame, 

whereas the experts awarded a low similarity score despite recognizing the similarity. 

The conflicting results are illustrated in Table 4.12, which compares the expert 

judgments with the system's assessments using a confusion matrix. 
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Table 4.13  Comparison between Expert Result and Cosine Similarity of 

                           M003‘s Shoulder external rotation 

 
Table 4.14  Confusion Matrix between Expert Result and Cosine Similarity of  

                        M003‘s Shoulder external rotation 

Table 4.13 shows that the results of M003's poses across various frames 

were largely incorrect. The researcher observed that this participant frequently 

performed the poses incorrectly and more slowly than the instructor. Notably, this 

movement occurred in a system blind spot, which may have contributed to the 

system's incorrect predictions, making errors more likely compared to the first two 

movements. However, experts also determined that this participant made numerous 

mistakes, aligning with the system's overall judgment. Despite this, the system's 

judgments did not fully match those of the experts. The results are detailed in Table 

4.14, which compares the expert judgments with the system's assessments using a 

confusion matrix. 
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Table 4.15  Comparison between Expert Result and Cosine Similarity of  

                           M006‘s Shoulder internal rotation 

 
Table 4.16  Confusion Matrix between Expert Result and Cosine Similarity of  

                         M006‘s Shoulder internal rotation 

Table 4.15 shows that the judgment results for this specific pose differ 

from the overall video judgment results, where the system and experts had 100% 

agreement. The researcher believes that one reason for the high accuracy in this pose 

is its similarity to a previous pose, which provided the volunteers with a better 

understanding. Additionally, this pose is easy to follow because it goes against the 

principles of body movement, resulting in slower and more controlled motions, 

making it easier for participants to mimic. In Table 4.16, which presents the confusion 

matrix comparing the judgments of experts and the system, there is only one 

discrepancy in the decision. 
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4.3.6    Discussion 

The study aimed to develop and evaluate a prototype system for 

frozen shoulder patients, leveraging motion detection techniques based on landmark 

analysis to compare user-generated videos with original recordings by physical therapy 

experts. The analysis of different shoulder postures—flexion, abduction, external 

rotation, and internal rotation—provided valuable insights into the system’s 

effectiveness and areas for improvement. For shoulder flexion, the cosine similarity 

algorithm labeled 10 out of 14 instances as “Similar” and 4 as “Not Similar,” 

compared to the expert evaluations which labeled 13 as “Similar” and 1 as “Not 

Similar.” The performance metrics, including a precision of 1.0, recall of 0.769, 

accuracy of 0.786, and an F1-score of 0.870, demonstrate high precision but lower 

recall, indicating that while the algorithm is excellent at correctly identifying 

similarities, it misses some instances identified by the expert. In shoulder abduction, 

the algorithm labeled 13 out of 14 instances as “Similar” and 1 as “Not Similar,” while 

experts labeled all instances as “Similar.” The resulting metrics—precision of 1.0, 

recall of 0.929, accuracy of 0.929, and an F1-score of 0.963—show strong algorithm 

reliability, though it missed one instance. For shoulder external rotation, the algorithm 

labeled 11 instances as “Similar” and 3 as “Not Similar,” compared to all “Similar” 

labels by experts. The metrics, with a precision of 1.0, recall of 0.786, accuracy of 

0.786, and an F1-score of 0.88, indicate high precision but the need for better 

sensitivity to match expert-identified similarities. In shoulder internal rotation, both 

the algorithm and experts labeled all 14 instances as “Similar,” achieving perfect 

metrics—precision, recall, accuracy, and F1-score of 1.0—demonstrating exceptional 

algorithm performance in this posture. 

This analysis maps directly to the study’s objectives. The prototype 

system effectively utilized motion detection techniques, comparing user-generated 

videos with expert recordings, fulfilling objective 1.4.1. The evaluation of the system's 

effectiveness in practical applications, specifically in motion detection and angle 

measurement, showed high precision and accuracy, though with varying degrees of 

success across different postures, addressing objective 1.4.2. The study also explored 
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the integration of computer technology into physical therapy practices, using motion 

capture and similarity comparisons, validating the feasibility of these technologies in 

aiding physical therapy, thus achieving objective 1.4.3. Lastly, the findings indicate that 

the prototype system can facilitate effective at-home physical therapy for frozen 

shoulder patients, enabling reliable feedback on posture correctness, aligning with 

objective 1.4.4. However, it is vital to note that expert evaluations can be subjective 

and may introduce biases, especially when relying on a single expert. Future research 

should involve multiple experts to reduce bias and increase the robustness of 

comparison analysis. This would ensure a more accurate and reliable system for at-

home therapy for frozen shoulder patients. 

4.4  Evaluation of face detection model results and discussion 
This experiment investigates a group of 14 healthy volunteers aged between 

20 and 50 years, comprising an equal distribution of seven males and seven females. 

The study involves capturing video footage of participants prior to the experimental 

intervention, specifically while they follow a demonstrated exercise video. Using face 

detection techniques, the research team extracts facial images from the video. These 

images are then processed to identify facial landmarks using the Mediapipe framework. 

The landmark data is subsequently fed into a developed classification model to 

determine whether the participants exhibit a "hurt" or "normal" facial expression. The 

model used for face classification is derived from the work of Srikaewsiew and 

Kanjanawattana (2024), which has demonstrated outstanding accuracy with a score of 

0.95. Consequently, the results obtained are highly accurate. Additionally, the 

classification results from the face detection model are consistent with the feedback 

collected from the participants via a Google Form, further validating the model's 

accuracy and reliability in this context. 

 

 
Table 4.17  Confusion Matrix between Feedback Result (Actual) and  

                             Developed Model Result (Predict) 
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4.4.1    Results explanation 

From Table 4.17, the confusion matrix reveals that the classification 

model has achieved perfect performance on the Normal class but has no performance 

metrics for the Hurt class due to the absence of actual  Hurt instances in the dataset. 

Specifically, the model correctly predicted all 1120 Normal instances, resulting in an 

accuracy of 100%. Both the precision and recall for the Normal class are 100%, 

indicating flawless classification for this category. However, the metrics for the Hurt 

class, including precision, recall, and F1 score, are undefined because the dataset 

contains no actual Hurt instances.  

4.4.2    Discussion 

The fundamental purpose of this experiment was to examine the 

integration of computer technology into physical therapy processes, primarily focused 

on the development of a prototype system for frozen shoulder patients utilizing 

motion detection techniques based on landmark analysis. By capturing and analyzing 

videos of participants following a demonstrated exercise video, the study tried to test 

the performance of face detection and classification systems. The experiment 

effectively showed the possibility of employing these methods in a real environment. 

The classification techniques, based on the work of Srikaewsiew and Kanjanawattana 

(2024), demonstrated well exact results, matching with participant feedback obtained 

via Google Forms. This alignment highlights the potential of computer-assisted 

physical therapy to enhance the accuracy and efficacy of home-based rehabilitation 

exercises. 

The findings of this experiment indicated that the face detection and 

classification model could accurately identify "normal" and "hurt" expressions in the 

participants, obtaining a perfect classification rate for the normal class. This accuracy 

illustrates the model's robustness and the dependability of the landmark extraction 

technique utilizing Mediapipe. The full agreement between the model's results and 

participant comments further verifies the model's performance. However, the 

confusion matrix revealed that there were no actual instances of the "hurt" class in 

the dataset, which limits the evaluation of the model's efficacy in distinguishing this 
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specific condition. This was due to the fact that the participants reported no hurt 

feelings in any posture, as reflected in their feedback on Google Forms. Consequently, 

the metrics for the hurt class, including precision, recall, and F1 score, are undefined 

because the dataset contains no actual hurt instances. Despite this, the good accuracy 

for the typical class indicates the system's potential effectiveness in actual 

applications. 

One important problem noted during the experiment was the model's 

reduced confidence when identifying images of people wearing glasses. This illustrates 

that the presence of spectacles might interfere with the landmark detection process, 

resulting in lower classification accuracy. This issue highlights a need for extra 

development of the model to handle such changes in facial expression effectively. 

Moreover, the absence of hurt incidents in the dataset underlines the requirement for 

a more balanced dataset to thoroughly assess the model's effectiveness across diverse 

situations. Future study should focus on addressing these difficulties to enhance the 

model's generalizability and provide dependable performance across different 

participant characteristics. 

4.5  Evaluation of shoulder angle results and discussion 
This experiment investigates shoulder angles in a cohort of 14 healthy 

volunteers aged between 20 and 50 years, with an equal distribution of seven males 

and seven females. The study examines four specific shoulder poses: Shoulder 

Flexion, Abduction, Shoulder External Rotation, and Shoulder Internal Rotation, 

evaluated at three stages—initial posture, midpoint posture, and peak posture. 

The shoulder angles were measured across these poses using both general 

actual angles and clinical actual angles, evaluated by experts. Additionally, predictive 

angles were generated using a concurrently developed program. The aggregated 

results from these measurements are presented and compared in Table 4.18. 

4.5.1    Results explanation 

From the Table 4.18, it reveals notable patterns when comparing 

general actual angles, clinical actual angles, and predicted angles across both genders. 

For shoulder flexion, females exhibit a range from an initial angle of 16.43° (SD 3.92°) 
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to a finishing angle of 172.57° (SD 5.94°), while males demonstrate a similar trend from 

17.00° (SD 1.83°) to 170.00° (SD 5.23°). Predicted angles consistently underestimate 

these positions, with females starting at 9.57° (SD 1.27°) and males at 8.29° (SD 1.38°), 

suggesting potential limitations in the predictive model's accuracy for initial joint 

positions. Clinical actual angles closely align with general actual angles, indicating 

robust consistency across measurement methodologies. 

In abduction movements, females display angles ranging from 16.29° 

(SD 2.27°) to 174.14° (SD 4.34°), and males from 17.71° (SD 0.95°) to 174.00° (SD 4.28°). 

Predicted angles once again indicate lower starting positions (9.14° for females, 8.16° 

for males) but comparable finishing angles. Notably, shoulder external rotation 

exhibits more pronounced variability, with females ranging from 90.14° (SD 2.23°) to 

175.00° (SD 3.64°) and males from 92.43° (SD 2.37°) to 174.71° (SD 3.82°). Predicted 

angles diverge notably, particularly at the start (84.57° for females, 89.43° for males) 

and mid-range, reflecting challenges in accurately predicting these movements. 

Internal rotation angles demonstrate a narrower range and higher 

variability, with females ranging from 91.14° (SD 2.23°) to 26.86° (SD 9.29°) and males 

from 91.14° (SD 2.19°) to 32.57° (SD 16.89°). Predicted angles reveal significant 

disparities, especially at the finishing position (10.86° for females, 16.86° for males), 

highlighting the complexity of accurately predicting these intricate movements. 

4.5.2    General Actual Angle vs. Predicted Angle 

In shoulder flexion, both genders consistently exhibit general actual 

angles lower than predicted. Notably, females' initial actual angle (16.43°) contrasts 

markedly with their predicted angle (9.57°), while males show a higher initial actual 

angle (17.00°) compared to their predicted angle (8.29°). 

For abduction, a significant disparity exists at the initial posture, with 

general actual angles (16.29° for females, 17.71° for males) exceeding predicted angles 

(9.14° and 8.16° respectively). 

External rotation generally shows lower general actual angles than 

predicted, particularly evident at the midpoint (e.g., females: actual 131.71° vs. 

predicted 133.00°). 
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Internal rotation displays varied results, with instances of both higher 

and lower general actual angles compared to predicted angles across different 

postures. 

4.5.3    Clinical Actual Angle vs. Predicted Angle 

Clinical actual angles in shoulder flexion tend to closely align with 

predicted angles compared to general actual angles. For example, females' clinical 

peak angle (171.29°) approaches the predicted angle (173.71°), contrasting with their 

general actual angle (172.57°). 

In abduction, clinical measurements closely approximate predicted 

angles, notably in midpoint and peak postures. For instance, males' clinical peak 

abduction (172.86°) closely matches the predicted angle (174.86°). 

External rotation clinical angles exhibit smaller variations from 

predicted angles compared to general actual angles. 

Clinical angles in internal rotation generally align closer to predicted 

angles than general actual angles, particularly in midpoint and peak postures. 
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4.5.5    Discussion  

The study successfully developed and evaluated an initial system for 

patients with frozen shoulder, using motion detection techniques based on landmark 

analysis. This method aimed to enhance the accuracy of motion identification and 

angle measurement by comparing user-generated videos with recordings by physical 

therapy experts. The integration of computer technologies, such as facial detection 

and motion capture using computer vision, enabled precise degree measurements 

and facilitated comparisons with expert videos. This methodology represents 

significant progress in leveraging technology to improve physical therapy procedures, 

particularly for aiding patients with frozen shoulder in performing exercises at home. 

The experiment focused on analyzing shoulder angles across various 

postures among a group of 14 healthy volunteers. The results revealed considerable 

discrepancies among the measured angles in shoulder flexion, abduction, external 

rotation, and internal rotation motions, notably between general actual, clinical 

actual, and predicted angles. While clinical actual angles closely agreed with 

predicted angles, general actual angles typically revealed initial variations that 

resolved towards similar peak angles. This gap was notably obvious in external and 

internal rotation movements, showing difficulty in specifically measuring these 

complex motions using current computer models. 

Despite the favorable outcomes, the study revealed several 

challenges and recommendations. One notable issue was the impact of clothing 

edges on MediaPipe recognition accuracy, leading to erroneous angle estimates. 

Participants wearing loose clothing obscured body parts crucial for measurement, 

highlighting the importance of form-fitting attire in future studies to avoid detection 

errors. Additionally, the study noted the limitations of having only two researchers 

oversee measurements, which was insufficient for ensuring consistent accuracy and 

rapid troubleshooting. Future research could benefit from deploying additional 

personnel to enhance oversight and maintain measurement precision throughout 

the evaluation process. 

 

 



CHAPTER V 

CONCLUSIONS 

 

5.1     Conclusion 

This study represents a significant advancement in the development and 

evaluation of a landmark-based motion detection system tailored for improving frozen 

shoulder rehabilitation. Integrating motion analysis, facial expression recognition, and 

shoulder angle measurement, our multi-faceted approach underscores the potential 

of advanced technologies in physical therapy. 

The comparative analysis between user-generated videos and expert 

recordings yielded promising outcomes, demonstrating high precision in identifying 

similarities across shoulder postures. Particularly, the cosine similarity algorithm 

achieved notable accuracy in abduction and internal rotation exercises, aligning 

closely with expert evaluations. However, variability in recall rates across different 

movements suggests areas for refinement to enhance sensitivity to expert-identified 

similarities. 

Facial expression recognition, leveraging the MediaPipe framework and a 

custom classification model, exhibited impressive accuracy in detecting normal 

expressions, which corroborates participant feedback on its potential for real-time 

assessment of patient comfort during exercises. Challenges such as the absence of 

"hurt" expressions in the dataset and issues with glasses wearers underscore the 

necessity for more diverse training data and robust feature extraction methods. 

Analysis of shoulder angle measurements revealed nuanced patterns across 

general actual, clinical actual, and predicted angles. While the system demonstrated 

promise in approximating clinical measurements, particularly in flexion and abduction 

movements, discrepancies in external and internal rotation angles underscore the 

challenges in accurately modeling these motions. In summary, this research 

successfully developed a prototype system integrating motion detection, facial 

recognition, and angle measurement technologies to enhance frozen shoulder 
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rehabilitation. These findings provide valuable insights into technology-assisted 

physical therapy, paving the way for personalized and effective at-home rehabilitation 

programs. 

5.2     Limitations 

           Several limitations of the present study must be acknowledged: 

5.2.1 Sample Size and Diversity: The study was conducted with a limited 

number of participants, potentially limiting the generalizability of the findings. 

5.2.2 Environmental Factors: The impact of various environmental 

conditions, such as lighting and background, on the system's performance was not 

comprehensively explored. 

5.2.3 Clothing Interference: Loose clothing was found to interfere with 

accurate landmark detection, potentially skewing results. 

          5.2.4 Limited Personnel: Having only two researchers during the assessment 

phase limited the ability to provide comprehensive supervision and immediate 

troubleshooting. 

          5.2.5 Single Expert Evaluation: Relying on a single expert for clinical 

measurements may have introduced potential bias or limited the robustness of the 

comparison. 

          5.2.6 Focus on Static Postures: While the study examined three stages 

of movement, it may not fully capture the dynamics of continuous motion. 

5.3     Suggestions for future research 

Based on the findings and limitations of this study, the following suggestions 

are proposed for future research: 

5.3.1 Expanded Participant Pool: Future studies should include a larger, 

more diverse group of participants to enhance the generalizability of findings. 

5.3.2  Dynamic Movement Analysis: Develop methods to assess continuous 

shoulder movements rather than focusing solely on static postures. 

5.3.3  Multi-Expert Validation: Incorporate assessments from multiple clinical 

experts to establish a more robust ground truth for comparisons. 
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5.3.4  Environmental Testing: Evaluate the system's performance under 

various lighting conditions and backgrounds to assess its reliability in different settings. 

5.3.5 Clothing Standardization: Develop and test standardized clothing 

protocols to minimize interference with landmark detection. 

5.3.6 Enhanced Personnel Training: Increase the number of trained 

personnel involved in data collection and assessment to improve accuracy and 

troubleshooting capabilities. 

5.3.7 Integration of Additional Metrics: Explore incorporating other relevant 

measurements (e.g., range of motion, movement speed) to provide a more 

comprehensive analysis of shoulder function. 

5.3.8 Long-term Reliability Testing: Conduct longitudinal studies to assess 

the system's consistency and reliability over time. 

5.3.9 Application-Specific Refinement: Tailor the system for specific 

applications (e.g., post-operative rehabilitation, sports-specific movements) and 

evaluate its effectiveness in these contexts. 

5.3.10 Machine Learning Enhancements: Explore the use of advanced 

machine learning techniques to improve the system's accuracy, particularly for 

challenging initial and transitional movements. 
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