CONTENTS

				Page
ABSTR	ACT IN	ITHAI		I
ABSTR	ACT IN	I ENGLISH		II
ACKNO	DWLED	GEMENTS		III
CONT	ENTS			V
LIST C	F TABL	_ES		IX
LIST C	F FIGL	JRES		X
LIST C	F ABBI	REVIATION	IS	XXI
CHAP.	TER			
I	INTRO	DUCTION	١	1
II	RESEA	ARCH BAC	KGROUND	3
	2.1	Concept	and design of proton computed tomography	3
		2.1.1	Position-sensitive detector	4
		2.1.2	Residual energy detector	5
		2.1.3	Image reconstruction	6
		2.1.4	Progression of pCT	9
	2.2	Proton in	nteraction with matter	9
		2.2.1	Interaction mechanisms	9
		2.2.2	Energy loss	12
		2.2.3	Proton range	13
		2.2.4	Energy and range straggling of proton	15
		2.2.5	Multiple Coulomb scattering	15
		2.2.6	Nuclear interactions	17
	2.3	Track rec	onstruction	18
		2.3.1	Track finding	18
			Track following	19
		2.3.2	Track fitting	19
	2.4	Monolith	ic Active Pixel sensors	20
		2.4.1	Semiconductor physics	20
			Silicon electronics structure	20

CONTENTS (Continued)

		Depletion region
		Charge generation
	2.4.2	The ALICE detector
2.5	Cyclotr	on
	2.5.1	King Chulalongkorn Memorial Hospital Proton Center .
PRC	TON TRA	CK RECONSTRUCTION: MONTE CARLO SIMULATION AND
ANA	ALYTICAL	MODELS
3.1		uction
3.2	Materia	al and method
	3.2.1	Layer material properties
	3.2.2	Beam modelling
	3.2.3	Physics list
	3.2.4	Data collection and conversion
	3.2.5	Particle track reconstruction
		Track following algorithm
		Searching cone
		Scattering angle
		Radiation Length
		Linked list structure
		Track efficiency
3.3	Results	and discussion
	3.3.1	Beam profile
	3.3.2	Energy deposition
	3.3.3	Proton track
3.4	Summa	ary
PRE	LIMINARY	: THE FPGA TRIGGER CONTROL SYSTEM INTERFACING
THE	TELESCO	DPE WITH KCMH BEAM TEST
4.1	Introdu	uction
4.2		al and method
		Pixel sensor telescope

CONTENTS (Continued)

				Page
		4.2.2	ALPIDE Monolithic Active Pixel Sensor	54
		4.2.3	EUDAQ framework	55
		4.2.4	FPGA trigger system	57
		4.2.5	The first generation of trigger	59
		4.2.6	Basys3 FPGA	59
		4.2.7	Signal amplification	60
		4.2.8	Microcontroller	61
		4.2.9	GUI interface	62
		4.2.10	Signal operation	63
		4.2.11	Varian ProBeam proton PBS system	64
			Treatment room	65
			Control room	66
			Proton beam in QA mode	66
			PBS beam	68
		4.2.12	Experiment setup	68
	4.3	Results a	and Discussion	69
		4.3.1	Trigger signal	69
		4.3.2	Background measurement	71
		4.3.3	KCMH beam test	72
	4.4	Summary	,	73
V	DESIG	SN STUDY	OF PCT TELESCOPE WITH TRACK RECONSTRUCTION $% \left(1\right) =\left(1\right) \left($	76
	5.1	Experime	ental Setup	76
	5.2	Beam se	tup	77
	5.3		dout and conversion	78
	5.4	Data ana	lysis	79
		5.4.1	Noise and background	79
		5.4.2	Clusterization	79
		5.4.3	Track reconstruction	79
		5.4.4	Survival tracks	80

CONTENTS (Continued)

				Page
		5.4.5	Correlation	80
	5.5	Results .		81
		5.5.1	Noise and background	81
		5.5.2	Beam profile	82
		5.5.3	Cluster distribution	85
		5.5.4	Track reconstruction	85
	5.6	Summary	/	89
VI	SUMN	ARY AND	CONCLUSION	94
REFER	RENCES			96
CURRI	CULUN	Л VITAE .		105

LIST OF TABLES

Table	F	Page
2.1	A brief overview of recent and present prototypes for proton CT	
	(pCT)	10
3.1	The radiation length of material layers of ALPIDE sensor	41
3.2	The simulated beam characteristics of 70 MeV pencil proton beam.	44
3.3	The simulated beam characteristics of 200 MeV pencil proton beam.	45
3.4	The mean and standard deviation (sigma) of proton particles de-	
	posit energy in epitaxial layer of ALPIDE sensor.	47
4.1	Basys 3 labeled components and descriptions	60
4.2	Arduino Pro Mini 3.3V (3.3V/8MHz) pins connecting to Basys3 FPGA	
	and the usages	62
4.3	Proton beam parameters in Quality Assurance (QA)	67
4.4	Lynx PT measured the proton spot size (sigma, mm) of the KCMH	
	proton center from IBA dosimetry	68
5.1	Proton beam parameters in Quality Assurance (QA)	77
5.2	The pixel numbers that are activated with 50% of the dark test	
	entries	83

LIST OF FIGURES

Figure		Page
1.1	The number of clinical proton therapy centers in Europe 2009–	
	2020. Source: www.ptcog.ch	1
2.1	Depth-dose profiles of radiotherapy beams like photons, protons,	
	and carbon ions (Weber et al., 2009).	3
2.2	The design of the proton computed tomography system is shown	
	in a conceptual manner. The system includes two 2D sensitive	
	proton tracking modules placed before and after the patient, and	
	a segmented crystal calorimeter that records residual energy	4
2.3	The Digital Tracking Calorimeter (DTC) device which is designed	
	by Bergen pCT collaboration. The 50 μ m ALPIDEs are mounted	
	as tracking layers and 100 μ m ALPIDEs combined with absorbing	
	material act as calorimeter (Alme et al., 2020)	6
2.4	The trajectory of protons as they traverse an object is influenced	
	by multiple scattering events, causing their path to zigzag (de-	
	picted in red). The entry and exit positions and directions of the	
	protons are recorded. With knowledge of the object's boundary,	
	the points where the proton intersects with the object (points A	
	and B) can be determined. Although these intersection points	
	are sufficient for estimating the straight-line path (shown in black)	
	of the proton, additional information regarding the entry and exit	
	directions enables the estimation of the most probable path (rep-	
	resented by the blue line) (Li et al., 2006)	7

Figure		Page
2.5	The figure displays the primary methods in which protons interact	
	with matter. First, as illustrated in (a), they lose energy through	
	Coulombic interactions. Second, as shown in (b), when protons	
	pass near an atomic nucleus, repulsive Coulombic scattering pro-	
	duces a modification in their initial track. Finally, in (c), the ini-	
	tial proton is eliminated, and non-elastic nuclear interactions pro-	
	duce secondary particles such as neutrons, electrons, helium, and	
	gamma rays (Newhauser and Zhang, 2015).	11
2.6	This graph illustrates the relationship between protons' mass	
	stopping power (S) and energy (E) in liquid water. The graph also	
	shows the range (R), which is produced by taking the S values	
	and applying the continuous slowing down approximation (CSDA)	
	(Newhauser and Zhang, 2015)	13
2.7	This graph demonstrates the proportion of fluence Φ in a broad	
	beam of protons that persists at various depths z in water. Be-	
	cause of nuclear processes, the quantity of protons in the water	
	reduces progressively as they enter. Protons rapidly lose energy	
	and are absorbed by the medium near the end of their range,	
	resulting in a fast decrease in their number. The sigmoid shape of	
	the curve towards the range's end is caused by range straggling	
	or random fluctuations in the energy loss of individual protons	
	(Newhauser and Zhang, 2015).	14

Figure		Page
2.8	Energy loss probability density functions (PDFs) for water ab-	
	sorbers of various thicknesses. The absorber thickness is indicated	
	in mean free path (mfp) units, and the PDFs have been scaled on	
	both the x- and y-axes for clarity. The PDFs represent the energy	
	lost by a single event as a proportion of the total energy lost $(\Delta, \Delta, \Delta$	
	across the absorber's thickness, or $(\Delta - \Delta$ av $)/\Delta$ av. Each	
	PDF was normalized so that the integral over all energy losses	
	was the same. The PDFs for thin absorbers (curves a-e) are asym-	
	metric and wider, and are modeled using the Vavilov (Vavilov,	
	1957) or Landau (Landau, 1944) theories. The PDF for thick ab-	
	sorbers (curve f) is symmetric and well approximated by Bohr's	
	theory, which is a Gaussian distribution (Bohr, 1915; International	
	Commission on Radiation Units and Measurements, 1993)	16
2.9	This illustration shows the passage of a proton through many	
	Coulomb scattering events. The graphic additionally labels the	
	scattering angle's root mean square (rms), denoted as $ heta$, and the	
	projected scattering angle, denoted as $ heta$ x (Leo, 1994). $$	17
2.10	This picture shows the concepts underlying the track model and	
	propagation. The track propagator is the function $f_{k\mid i}$, which ad-	
	vances the track from surface i to surface k. The mathematical	
	form of this function is determined by the track model, which is	
	the solution to the equation of motion in the detector's magnetic	
	field (Koch and Newhauser, 2010).	19
	This illustration shows the passage of a proton through many Coulomb scattering events. The graphic additionally labels the scattering angle's root mean square (rms), denoted as θ , and the projected scattering angle, denoted as θ x (Leo, 1994) This picture shows the concepts underlying the track model and propagation. The track propagator is the function $f_{k i}$, which advances the track from surface i to surface k. The mathematical form of this function is determined by the track model, which is	17

Figure		Page
2.11	(a) - The outermost shell of a silicon atom contains four elec-	
	trons. (b) - A valence bond is formed when two silicon atoms	
	come together, with each atom contributing one of its valence	
	electrons. (c) - The silicon atoms continue to assemble to create	
	a silicon crystal. With the exception of the atoms on the crystal's	
	outer borders, each silicon atom establishes valence bonds with	
	its four neighboring atoms. (Source: Max Maxfield)	21
2.12	The mental representation of n-type and p-type atomic struc-	
	tures of doped silicon. (Source: http://www.answers.com/topic/	
	n-type-silicon-technology)	22
2.13	The illustration of n-type and p-type doped semiconductor band	
	structures. (Source: http://hyperphysics.phy-astr.gsu.edu)	22
2.14	The illustration of a depletion region formed by linking n-type	
	and p-type semiconductors. (Source: https://www.studypage.in/	
	physics/formation-of-a-p-n-junction)	23
2.15	Schematic cross section of a MAPS pixel (Kofarago, 2015)	24
2.16	A schematic illustrating the ALICE experiment (ALICE Collabora-	
	tion, 2008)	25
2.17	A plan view of a cyclotron containing a cylindrical chamber with a	
	centrally positioned ion source. The chamber is vacuum-packed	
	and sandwiched between the poles of an electromagnet, which	
	provides a uniform magnetic field perpendicular to the chamber's	
	flat faces. The voltage is generated by an oscillator that operates	
	at a frequency equal to the rotational frequency of the particles	
	in the magnetic field. The accelerated particles travel in semicir-	
	cular trajectories with increasing radius (Britannica The Editors of	
	Encyclopaedia, 2024)	26

Figure		Page
2.18	The figure of ESS by using multi-wedge graphite absorbers. The	
	absorbers are positioned from opposing sides of the beam route,	
	and when they move into the path, they modify the energy by	
	forming a uniform layer of carbon, ensuring uniformity (Source:	
	Varian medical systems).	27
3.1	The detector geometry of MAPS telescope in GATE simulation	
	which has 2.5 cm of air gap between each ALPIDE. The distance	
	between nozzle and isocenter is about 42.1 cm that the first	
	ALPIDE is located at the isocenter.	29
3.2	Schematic cross-section of ALPIDE	30
3.3	The measurement of KCMH proton beam at distance from isocenter.	31
3.4	The diagram illustrates the sequence of steps in the tracking al-	
	gorithm. Hits in different layers of the detector are depicted as	
	blue dots. The process begins by selecting the first hit of a track	
	(highlighted in green) from the first layer (A). Next, candidates for	
	the track are searched using a cone defined by S_{max} (B). If the cal-	
	culated S_n for a new candidate is lower than S_{max} , the hit is added	
	to the track (C). If multiple hits are identified, the candidate with	
	the lowest S _n value is selected (D). These steps are repeated for	
	the subsequent layers (E) until the last layer of the detector is	
	reached (F). Afterward, hits belonging to this track are removed	
	from the pool of hits, and the reconstruction of the next track	
	begins (G). The algorithm continues until all identified tracks are	
	successfully reconstructed (H)	36
3.5	The cone intersects C(0,0; $lpha,\!\delta,\! heta$) with a horizontal plane where z	
	> 0, the resulting shape is an ellipse. The major axis of the ellipse	
	aligns with the x-axis, while the minor axis aligns with the y-axis.	
	(Maxim et al., 2009).	37

Figure		Page
3.6	The angular parameters, $lpha$ and σ , define the arbitrary direction	
	of the cone axis, while eta represents the cone opening. The in-	
	tersection between the cone and a horizontal plane with $z > 0$	
	forms an ellipse E $(\mathrm{z};lpha,\sigma,eta)$. The major axis of the ellipse is	
	inclined at an angle to the 0x axis (Maxim et al., 2009)	39
3.7	The linked list structure of the track reconstruction which used	
	for recursive algorithm and low resources consumption	41
3.8	The beam profile of 70 MeV pencil proton beam in 200000 events.	
	The color bar of the histogram shows the entries of proton hit on	
	specific point of ALPIDE sensor.	43
3.9	The 70 MeV pencil proton beam modeled by Gaussian distribu-	
	tion. The fitting parameters are calculated as shown in Table 3.2.	44
3.10	The beam profile of 200 MeV pencil proton beam in 200000	
	events. The color bar of the histogram shows the entries of pro-	
	ton hit on specific point of ALPIDE sensor	45
3.11	The 200 MeV pencil proton beam modeled by Gaussian distri-	
	bution. The fitting parameters are calculated as shown in Table	
	3.3	46
3.12	The distribution of proton energy deposition in epitaxial layer of	
	ALPIDE sensor with 70 MeV pencil beam source	47
3.13	The distribution of proton energy deposition in epitaxial layer of	
	ALPIDE sensor with 200 MeV pencil beam source	48
3.14	3D hit data of simulations	49
3.15	The contour plot of track efficiency on various $\boldsymbol{S}_{\text{max}}$ and cone	
	angle. The color bar of these plots show the reconstruction effi-	
	ciency of tracking algorithm	50

Figure		Page
3.16	GATE/GEANT4 simulation of 400 primary proton track routes. The	
	tracks connect all candidates from layer 0 to the last layer, in	
	which the last candidates of each track are discovered	51
3.17	The track efficiency for proton sources at 70MeV and 200MeV de-	
	pends on the number of primary protons employed in the GATE/	
	GEANT4 simulation.	52
4.1	The pixel sensors telescope which consists of six ALPIDE sensor	
	and DAQ boards. (a) Each DAQ connects to single ALPIDE chip	
	and wired to external trigger signal and the power. (b) The DUT	
	is set to the layer 0 and the rest are references	54
4.2	The monolithic active pixel sensor ALPIDE	55
4.3	Block diagram of the ALPIDE pixel cell	56
4.4	The EUDAQ network typically consists of several components,	
	including the central command and control server known as	
	Run Control, the Data Collector, which is responsible for creating	
	global events and storing them on disk, the Log Collector, which	
	manages and displays log messages, and the monitor application,	
	which allows for real-time monitoring of data quality (Spannagel,	
	2016)	56
4.5	This figure shows a board for data collecting. The external signal	
	from the trigger system is received through the trigger-in port. The	
	same signal is used as an output in the trigger-out. The Alterla	
	FPGA is included in the board and is used to operate the EUDAQv2	
	firmware	57
4.6	The trigger control system scheme for FPGAs. The GUI accepts	
	frequency values from the user. The microcontroller converts	
	frequency to a binary value and sends it to the FPGA along with	
	the register address. Finally, the FPGA sends a trigger signal to the	
	ALPIDEs through the DAQ board	58
4.7	The Basys3 board layout and labels	60
4.8	SN74HC08N	61

Figure		Page
4.9	The microcontroller part that consists of Pro Mini 328 board and	
	USB programming module	62
4.10	The Graphical User Interface (GUI) of FPGA trigger	63
4.11	FPGA trigger operational signal of registering the frequency value	
	to FPGA buffer along its 2-bit address	64
4.12	FPGA trigger operational signal with turning ON Switch signal	65
4.13	The treatment room at KCMH where the experiment setup is placed.	66
4.14	The control room has monitors for requiring users to adjust pa-	
	tient bed position, parameterise proton beam and creating treat-	
	ment plan	67
4.15	For the KCMH beam test, the experiment configuration of the	
	FPGA trigger controlling system interfaced with ALPIDEs telescope.	
	While the telescope was inside, the power source and trigger were	
	wired out of the dark box. The telescope was likewise linked to	
	the power supply	69
4.16	The simulation signal used to write a frequency value to an FPGA	
	register. A particular address is assigned to each of the various	
	1-bit input values	70
4.17	The generating trigger simulation signal. The frequency is set to	
	291E of Hexadecimal	70
4.18	The WaveRunner 8254 oscilloscope	71
4.19	The FPGA trigger pulses of regular and amplified signals measured	
	by the Waverunner 8254	72
4.20	The mean of activated pixels of background measurement in 6907	
	events	72
4.21	The number of activated pixels of individual event that is pro-	
	vided FPGA trigger as pulse signal	73

Figure		Page
4.22	The 2-dimensional hitmap of six ALPIDE planes with 70 MeV pro-	
	ton source in 10 MU by applying 10000 events of trigger	74
4.23	The 2-dimensional hitmap of six ALPIDE planes with 200 MeV pro-	
	ton source in 10 MU by applying 10000 events of trigger	75
4.24	The histogram of EUDAQv2 output for 70 MeV and 200 MeV of	
	KCMH proton beam on 10000 trigger events	75
5.1	a) the KCMH telescope test with a collimator in the treatment	
	room with its b) schematic picture	76
5.2	The 36 cm acrylic collimator.	77
5.3	The flowchart demonstrates how multi-threading software works.	
	The Software runs from interested event 0 to interested event n.	
	The central theme monitors the export's.root file in an endless	
	loop. Upon finding the main thread .root file, the main thread	
	will compel the worker thread to terminate EUDAQv2 monitor.	
	Finally, the exporting program gathers all ROOT files before re-	
	peating the process. The last task is to repeat the procedure	
	while increasing the number of events.	78
5.4	The flowchart of the track reconstruction process that the track	
	following algorithm description can be found in section 3.2.5, the	
	track efficiency was calculated as track survival in section 5.4.4,	
	and the correlation of the reconstruction definition will be men-	
	tioned in Section 5.4.5	80
5.5	The illustration of average activated pixel count of each event for	
	every ALPIDE planes in the telescope during the dark test. The	
	red line indicates the standard deviation of activated pixels	81
5.6	The cluster size distribution of every ALPIDE layers which generate	
	noise and background signal in the dark test	82

Figure		Page
5.7	These histograms represent the distribution of pixel activations	
	from the initial sensor layer, positioned 5 cm behind the isocenter.	
	The treatment beam passes through an acrylic collimator	84
5.8	The figure shows a) the spot sigma of six ALPIDEs and b) the num-	
	ber of activated pixels from all ALPIDEs	84
5.9	The illustration of cluster size samples which can be detected by	
	the telescope with 70 MeV of proton energy	86
5.10	The illustration of cluster size samples which can be detected by	
	the telescope with 200 MeV of proton energy	87
5.11	The distribution of cluster sizes for collimated beam energies of	
	70 MeV and 200 MeV. These distributions were observed across	
	6 ALPIDE chips. In the top right corner of each figure, you can	
	find the mean and standard deviation values for the cluster size	
	distribution	88
5.12	The correlation between the typical cluster size of proton beams	
	traveling through the collimator and the typical energy deposited	
	in the ALPIDE chip is illustrated graphically. The graphic contains	
	information for proton beam kinetic energies between 70 MeV	
	and 200 MeV. The mean cluster size values on the plot are sur-	
	rounded by error bars that show the standard deviation of the	
	cluster size distribution	89
5 13	Illustration of the reconstruction efficiency of various S values	90

Figure		Page
5.14	The averaged R ² value of track reconstruction using a cone search	
	angle of $\Delta heta$ (upper) after fitting the location correlation of hit	
	data on each ALPIDE layer in the telescope. The saturated curve	
	(lower) is found by determining the average correlation of the X	
	and Y axes between the first layer and the last layer	91
5.15	The distribution of the number of reconstructed tracks in the tele-	
	scope	92
5.16	The visualization of track reconstruction from the experiment with	
	the acrylic collimator in 70 MeV and 200 MeV of proton energy	
	within single event	92
5.17	The visualization of track reconstruction from the experiment with	
	the acrylic collimator in 70 MeV and 200 MeV of proton energy.	
	The number of events which are chosen from the total data	
	events is 10 events.	93

LIST OF ABBREVIATIONS

pCT Proton Computed Tomography

PT Proton Therapy

CT Computed therapy

DTC Digital Tracking Calorimeter

PSD Positioned Sensitive Detector

RED Residual Energy Detector

YAG:Ce Yttrium aluminum garnet activated by cerium

NaI(Tl) Thallium-activated sodium iodide
CsI(Tl) Thallium-activated cesium iodide

Si strip Silicon Strip Detector

Sci Fi Scintillating Fiber

MAPS Monolithic Active Pixel Sensor

ALPIDE ALICE Pixel Detector

ALICE A Large Ion Collider Experiment

ITS Inner Tracking System

KCMH King Chulalongkorn Memorial Hospital

FPGA Field-programmable gate array

MeV Mega Electron Volt

MC Monte Carlo

CMOS Complementary Metal Oxide Semiconductor

PBS Pencil Beam Scanning

PDG Particle Data Group

DAQ Data Acquisition

QA Quality Assurance

MU Monitor Unit

GUI Graphical User Interface