CONTENTS

		Page
ABS	FRACT IN THAI	
ABS	FRACT IN ENGLISH	
ACKI	NOWLEDGEMENTS	
CON	TENTS	IV
LIST	OF TABLES	VI
LIST	OF FIGURES	VII
CHA	PTER	
I	INTRODUCTION	1
	1.1 Hydrogen energy	1
	1.2 Fuel cells	3
	1.3 References	9
II	LITERATURE REVIEWS	10
	2.1 Doping with catalysts and/or additives	11
	2.2 Reactive hydride composites (RHCs)	14
	2.3 References	20
III	EXPERIMENTS	23
	3.1 Sample preparations	23
	3.2 Characterizations	24
	3.2.1 Powder X-ray diffraction (XRD)	24
	3.2.2 Fourier transform infrared spectroscopy (FTIR)	24
	3.2.3 X-ray photoelectron spectroscopy (XPS)	25
	3.2.4 Solid-state nuclear magnetic resonance spectroscopy (NMR)	26
	3.2.5 Optical microscopy	27
	3.2.6 Kinetic measurements	28
	3.3 References	
IV	RESULTS AND DISCUSSION	31
	4.1 Results and Discussion	31
	4.1.1 Investigation of phase compositions	31
	4.1.2 Morphological studied	
	4.1.3 The first dehydrogenation kinetics	
	4.1.4 Reaction mechanisms	35

CONTENTS (Continued)

		Page
4.1.	5 Dehydrogenation kinetics and reversibility	
4.2 Refe	erences	43
V CONCL	USIONS	45
CURRICULUM V	ITAE	46

LIST OF TABLES

Table		Page	
1.1	Types of fuel cells	4	
1.2	Competing technologies for hydrogen storage systems	6	
1.3	US DOE Freedom CAR hydrogen storage system targets	8	

LIST OF FIGURES

Figure	Pa	age
1.1	Processes of hydrogen productions	1
1.2	Bio-hydrogen processing cycle	2
1.3	Components of Toyota Mirai	2
1.4	Polymer electrolyte membrane fuel cells (PEMFCs)	5
2.1	Volumetric versus gravimetric hydrogen density of various	
	hydrogen storage systems	10
2.2	Temperature-programmed dehydrogenation (TPD) curves of	
	xLiBH ₄ -NbF ₅ mixtures (x = 1, 5, 10, 20, 40) and pristine LiBH ₄	12
2.3	TG/MS profiles of the pure LiBH $_4$ (black) and	
	LiBH ₄ /NG composite (red). The ramping rate is 5 °C/min	13
2.4	Enthalpy diagram revealing the destabilization of LiBH $_4$ by	
	compositing with MgH ₂	14
2.5	Dehydrogenation profiles at 350 °C of $4LiBH_4 + YH_3$ composite	
	under (a) vacuum and (b) 3 bar H_2 , and $6LiBH_4$ + Ce H_2 composite	
	under (c) vacuum (d) 3 bar H ₂	16
2.6	Hydrogen desorption behaviors of as-prepared AlH_3 , as-milled	
	$2LiBH_4 + AlH_3$, $2LiBH_4 + Al$, and $LiBH_4$ during heating process:	
	(a) temperature program, (b) hydrogen desorption capacity (wt. %),	
	(c) fractional hydrogen desorption of ${\rm LiBH}_4$ in samples	17
2.7	TG/DSC/MS profiles of $LiBH_4/Li_3AlH_6$ composite at a heating rate of	
	5 °C min ⁻¹	18
2.8	Schematic representation of the formation of an AlB_2 shell around an	
	Al particle preventing the formation of LiAl and the reformation	
	of LiBH ₄	19
3.1	Glove box (Omni-Lab System, VAC) (A) and SPEX SamplePrep 8000D DUAL	-
	Mixer/Mill and stainless-steel vial (B)	23
3.2	A Bruker D2 Phaser Powder X-ray diffractometer (A) and sample holder,	
	covered by a poly (methyl methacrylate) dome (B)	24
3.3	A Bruker Tensor 27 Fourier transform infrared spectrophotometer	25
3.4	X-ray photoelectron spectroscopy at Synchrotron Light	
	Research Institute (SLRI)	26
3.5	A Bruker Ascend $^{ extsf{TM}}$ 500 Solid-State magic-angle spinning nuclear magnetic	

LIST OF FIGURES (Continued)

Figure		Page
	resonance (MAS NMR) spectrometer (A) and zirconia end-capped	
	tube (B)	27
3.6	An Olympus optical microscopes (A) and sandwiched glass slides of	
	sample (B)	28
3.7	Schematic diagram of Sievert-type apparatus	29
3.8	Laboratory-scale setup of Sievert-type apparatus	29
4.1	PXD spectra of as-prepared LB-LA (a), LB-LA (220) (b), and	
	LB-LA (220)-CNT (c)	31
4.2	FTIR spectra of as-prepared LB-LA (a), LB-LA (220) (b), and	
	LB-LA (220)-CNT (c)	32
4.3	B 1s XPS spectra of as-prepared LB-LA (a), LB-LA (220) (b),	
	and LB-LA (220)-CNT (c)	33
4.4	Micrographs of LB-LA (A), LB-LA (220) (B), and LB-LA (220)-CNT (C)	34
4.5	The 1 st dehydrogenation kinetics of as-prepared LB-LA, LB-LA (220),	
	and LB-LA (220)-CNT	35
4.6	PXD spectra of dehydrogenated LB-LA (a), LB-LA (220) (b),	
	and LB-LA (220)-CNT (c)	36
4.7	FTIR spectra of dehydrogenated LB-LA (a), LB-LA (220) (b),	
	and LB-LA (220)-CNT (c)	37
4.8	Solid-state ²⁷ Al MAS NMR spectra of dehydrogenated LB-LA (220) (a)	
	and LB-LA (220)-CNT (b)	
4.9	Dehydrogenation kinetics and reversibility of LB-LA (220) (A)	
	and LB-LA (220)-CNT (B) with respect to LB-LA	
4.10	PXD spectra of rehydrogenated LB-LA (220) (a) and LB-LA (220)-CNT (b)	40
4.11	FTIR spectra of rehydrogenated LB-LA (220) (a) and LB-LA (220)-CNT (b)	41
4.12	Solid-state ²⁷ Al MAS NMR spectra of rehydrogenated LB-LA (220)	
	(a) and LB-LA (220)-CNT (b)	42

IX