Please use this identifier to cite or link to this item: http://sutir.sut.ac.th:8080/jspui/handle/123456789/9842
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorPantip Piyatadsananonen_US
dc.contributor.authorApinya Boonrangen_US
dc.date.accessioned2023-09-25T11:07:06Z-
dc.date.available2023-09-25T11:07:06Z-
dc.date.issued2022-
dc.identifier.urihttp://sutir.sut.ac.th:8080/jspui/handle/123456789/9842-
dc.language.isoenen_US
dc.publisherSchool of Geoinformatics Institute of Science Suranaree University of Technologyen_US
dc.subjectAgricultural informaticsen_US
dc.subjectAgricultural industries Automationen_US
dc.subjectCassavaen_US
dc.subjectSmart agricultureen_US
dc.subjectCassava -- Diseases and pestsen_US
dc.subjectAgricultureen_US
dc.titleSemi-automatic classification of very-high-resolution images from uav for mapping weed in cassava fieldsen_US
dc.title.alternativeการจำแนกแบบกึ่งอัตโนมัติจากภาพรายละเอียดสูงจากอากาศยานไร้คนขับสำหรับจำแนกวัชพืชในแปลงมันสำปะหลังen_US
dc.typeThesisen_US
dc.degree.nameDoctor of Philosophyen_US
dc.degree.levelDoctoral Degreeen_US
dc.degree.disciplineGeoinformaticsen_US
dc.degree.grantorSuranaree University of Technologyen_US
Appears in Collections:วิทยานิพนธ์ (Thesis)

Files in This Item:
File Description SizeFormat 
Abstract.pdf16.94 MBAdobe PDFView/Open
Fulltext.pdf44.77 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.