Please use this identifier to cite or link to this item:
http://sutir.sut.ac.th:8080/jspui/handle/123456789/588Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | P. Sattayatham | - |
| dc.contributor.author | S. Tangmanee | - |
| dc.contributor.author | Wei Wei | - |
| dc.date.accessioned | 2008-07-16T03:12:36Z | - |
| dc.date.available | 2008-07-16T03:12:36Z | - |
| dc.date.issued | 2002-12-01 | - |
| dc.identifier.citation | Journal of Mathematical Analysis and Applications, Volume 276, Issue 1 2002, Pages 98-108 | en |
| dc.identifier.uri | http://sutir.sut.ac.th:8080/jspui/handle/123456789/588 | - |
| dc.description.abstract | We prove an existence result for T-periodic solutions to nonlinear evolution equations of the form x(t)+A(t.x(t))=f(t.x(t)). O<t<T. Here VHV* is an evolution triple, A :I×V→V* is a uniformly monotone operator, and f :I×H→V* is a Caratheodory mapping which is Hölder continuous with respect to x in H and exponent 0<1. For illustration, an example of a quasi-linear parabolic differential equation is worked out in detail. | en |
| dc.format.extent | 104547 bytes | - |
| dc.format.mimetype | application/pdf | - |
| dc.language.iso | en | en |
| dc.subject | Evolution equation | en |
| dc.subject | Time-periodic solution | en |
| dc.subject | Quasi-linear parabolic differential equation | en |
| dc.title | On periodic solutions of nonlinear evolution equations in Banach spaces | en |
| dc.type | Article | en |
| Appears in Collections: | บทความ (Articles) | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| sdarticle_sattayatham5.pdf | Fulltext | 102.1 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.