Please use this identifier to cite or link to this item:
http://sutir.sut.ac.th:8080/jspui/handle/123456789/428
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Boris I. Kvasov | - |
dc.date.accessioned | 2008-07-14T06:38:46Z | - |
dc.date.available | 2008-07-14T06:38:46Z | - |
dc.date.issued | 1996 | - |
dc.identifier.citation | in : Advanced Topic in Multivariate Approximation,F.Fontanella,K.Jetter and P.J. Laurent (eds.),pp.181-196,1996.,0 | en |
dc.identifier.uri | http://sutir.sut.ac.th:8080/jspui/handle/123456789/428 | - |
dc.description | ผลงานวิชาการคณาจารย์มหาวิทยาลัยเทคโนโลยีสุรนารี | en |
dc.description.abstract | Algorithms are presented for the construction of histopolating splines consisting of linear/linear rational or quadratic polynomial pieces. A unique comonotone histospline of such kind exists for any histogram with weak alternation of data. In general case, without weak alternation of data, a modified comonotone spline histopolation strategy should be used. The method is implemented via the representation with histogram heights and knot values of first derivatives of the spline. Numerical examples are given. | en |
dc.format.extent | 244222 bytes | - |
dc.format.extent | 16814 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | en | en |
dc.subject | Shape preserving | en |
dc.subject | splines | en |
dc.title | Shape preserving spline approximation via local algorithms. | en |
dc.type | Article | en |
Appears in Collections: | บทความ (Articles) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
bib113.pdf | เอกสารฉบับเต็ม | 238.5 kB | Adobe PDF | View/Open |
bib113_abs.pdf | เอกสารฉบับย่อ | 16.42 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.