CONTENTS

		Page
ABSTF	RACT IN THAI	I
ABSTR	RACT IN ENFLISH	II
ACKN	OWLEDGMENTS	VI
CONT	ENTS	VII
LIST C	DF TABLES	V
LIST C	DF FIGURES	VIII
LIST C	OF ABBREVIATIONS	X
CHAP	TER	
I	INTRODUCTION	1
	1.1 Research objectives	
	1.2 Research hypothesis	3
	1.3 Thesis outline	
II	LITERATURE REVIEWS	5
	2.1 Ethylene detection	5
	2.1.1 Gas chromatography (GC)	5
	2.1.2 Electrochemical sensing	6
	2.1.3 Optical sensing	7
	2.2 Microstructure optical fibers (MOFs)	
	2.2.1 Solid-core photonics crystal fiber (SC-PCF)	
	2.2.2 Hollow-core photonics crystal fiber (HC-PCF)	
	2.2.3 Fabrication of microstructure optical fibers (MOFs)	
	2.2.4 Simulation structure of MOFs	
	2.3 Optical fiber sensor	24

CONTENTS (Continued)

			Page
	2.3.1 Fabric	ations of Optical Fiber Sensors	25
	2.3.2 Micros	structure optical fibers (MOFs) refractive index (RI) s	ensor 29
	2.3.3 Hollow	w core microstructure optical fibers (HC-MOFs) gas	sensor 34
III	MATERIALS A	ND METHODS	37
	3.1 Mode field	d distribution	
	3.2 Research	procedure	
	3.2.1 COM	SOL Multiphysics software	
	3.2.2 Finite	e elements method (FEM)	
	3.2.3 Confi	nement loss	
IV	RESULTS AND	DISCUSSION	48
	4.1 Structure o	ptimization for 3.2 µm guiding	51
	4.1.1 Effect	of changing of tube thickness (t)	51
	4.1.2 Numb	er of cladding tubes	53
	4.1.3 Effect	of core diameter (D _c) with loss	54
	4.1.4 Effect	of changing the cladding tube diameter (d $_{\circ}$)	56
	4.1.5 Effect	of changing of inner tube diameter (d _i)	56
	4.1.6 Non-n	ested/Nested HC-ARF	57
	4.2 Effect of ch	anging cladding materials	59
	4.3 Ethylene ga	as sensing simulation results	60
V	CONCLUSION	AND FUTRUE WORK	64
REFE	RENCES		66
APPE	NDICES		
	APPENDIX A	CONVENTIONAL OPTICAL FIBER	71
	APPENDIX B	REFRACTIVE INDEX OF FIBER MATERIALS AND	
		REFRACTIVE INDEX OF ETHYLENE GAS	80
CURF			

LIST OF TABLES

Table	Page
1	Advantages and disadvantages of ethylene detection method.
2	Overview of the various types of MOF-based refractometers
3	Comparison of performance indicators for different HC-PCF gas sensors 3
4	The confinement loss for different mesh sizes in the fiber core
5	Relationship between concentration of ethylene gas and refractive index6

LIST OF FIGURES

Figure	2	Page
1	Diagram of gas chromatographic method	6
2	Example of Amperometric sensos.	7
3	NDIR gas sensor merged with preconcentrator	8
4	Simple diagram for photoacoustic spectroscopy (PAS)	8
5	Schematic of the experiment set up	10
6	The cross-section of (a) single-mode fiber (SMF)	11
7	The cross-section of solid-core PCF	12
8	The cross-section of hollow-core PCF	12
9	Scanning electronic microscopy (SEM) images of various HC-PCFs	13
10	Bragg scattering principle	14
11	A Fabry–Pérot etalon	15
12	Loss-dependence of hollow-core antiresonant triangular-core fibers	16
13	Timeline of the hollow-core optical fiber evolution	17
14	Nozzle for extrude the MPOFs	
15	Set up for drawing the MPOFs from 3D printer	
16	Schematic of the designed fiber sensor	20
17	2-D and 3-D electric field distributions of the fundamental mode	20
18	Loss spectra of the designed sensor when n_{a} varies from 1.33 to 1.35 .	21
19	Transverse geometry, and fundamental mode field of PCF geometry	22
20	Proposed hexagonal PCF structure in COMSOL Multiphysics	23
21	The sensitivity profile of Ethyl Alcohol water mixture	23
22	Geometry of HC-NANF	24
23	Penetration depth compare with the refractive index of the cladding	25
24	Frabication fiber grating sensor by using the femtosecond laser	
25	The fiber bragg grating structure	

LIST OF FIGURES (Continued)

Figure		Page
26	Type of optical fiber shaping processes	27
27	Type of optical fiber splicing processes	28
28	Various types of optical fiber coating	29
29	Microchannel in the HCF	30
30	Sensing head designed	30
31	Flowchart for Modeling	39
32	COMSOL MUTIPHYSICS software user interface (UI) window	40
33	The structure was built and shown on the graphic window in COMSOL	41
34	Mode analysis setting in COMSOL	42
35	Fiber structure	43
36	Reflection of a plane wave at the first- and second-order SBC	45
37	Confinement loss as a function of PML thickness	45
38	Electric field distribution of the fundamental mode	46
39	Electric field distribution of the higher order modes	47
40	Example of all data plotted in OriginPro for post processing process	47
41	Initial structure with each parameter value	49
42	Confinement loss as a function of wavelength of 1 st structure	49
43	2 nd structure with each parameter value	50
44	Mesh size in fiber 2 nd structure with four domains in each circle	50
45	Final structure that we used to optimized parameters	51
46	Loss as a function of wavelength for different tube thicknesses	52
47	Modal analysis of HC-ARF structure	53
48	Modal analysis of HC-ARF for the different numbers of cladding tubes	54
49	Confinement loss as a function of core diameter	55
50	Effect of changing of cladding tube diameter at wavelength 3.2 μ m	56
51	Effect of changing of inner tube diameter at wavelength 3.2 μ m	57

LIST OF FIGURES (Continued)

Figure	Page
52	Loss as a function of wavelength of non-nested and nested structure
53	Loss as function of wavelength for non/nested with different material
54	Confinement loss as a function of wavelength for different materials
55	Optimized Structure of HC-ARF for guiding the wavelength of 3.2 $\mu m.$
56	The fiber structure with a changed refractive index of the green domain 61
57	Relationship between first resonance wavelength and the RI value
58	The fiber structure with changed refractive indexes of ethylene
59	Relationship between first resonance wavelength and the RI value

LIST OF ABBREVIATIONS

IR	Infrared
HCF	Hollow-core optical fiber
HC-ARF	hollow-core anti-resonant fiber
RIU	Refractive index unit
MOFs	Microstructure optical fibers
SC-PCF	Solid-core photonics crystal fiber
HC-PCF	Hollow-core photonics crystal fiber
RI	Refractive index
GC	Gas chromatography
FEM	Finite elements methid
LP	linearly polarized
SMF	Single mode fiber
SEM	Scanning electronic microscopy
MPOF	Microstructured polymer optical fibers
FM	Fundamental mode
ΗC-NANE	Hollow-core nested anti-resonant
	node free fiber
NDIR	Non-dispersive infrared
PAS	Photo-acoustic spectroscopy
PML	Perfect match layer
TIR	Total internal reflection
NA	Numerical aperture
EM	Electromagnetic
TEM	Transverse electromagnetic
TE	Transverse electric
ТМ	Transverse magnetic

LIST OF ABBREVIATIONS (Continued)

UV	Ultraviolet)
PCF	Photonics crystal fiber
PBGF	Photonic bandgap fibers
SPR	surface plasmon resonance
THz	Terahertz
FBG	Fiber Bragg grating
FIB	Focused ion beam
MMF	Multimode fiber
OFS	Optical fiber sensors
RIMLs	Refractive index matching liquids
ARROW	anti-resonant reflecting optical
	waveguide
LPG	Long period grating
DAS	Direct absorption spectroscopy
WMS	Wavelength modulation spectroscopy
PTS	Photothermal spectroscopy
FTS	Fourier transform spectroscopy
CLDS	Chirped laser dispersion spectroscopy
SRCS	Spontaneous Raman scattering
	spectroscopy
RCS	Raman scattering spectroscopy
SRGS	Stimulated Raman gain spectroscopy
PET	Polyethylene terephthalate
PMMA	Polymethyl methacrylate