COMPACTION OF Li-N-H BASED HYDROGEN STORAGE FOR KINETIC IMPROVEMENT AND SUPPRESSION OF NH³ RELEASE

CHONGSUTTHAMANI SITTHIWET

AAAAAAAA

CATIONER

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Chemistry Suranaree University of Technology Academic Year 2022

การกดอัด Li-N-H ในการเก็บไฮโดรเจน เพื่อการปรับปรุง คุณสมบัติทางจลนศาสตร์ และยับยั้งการปลดปล่อย NH³

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรดุษฎีบัณฑิต สาขาวิชาเคมี มหาวิทยาลัยเทคโนโลยีสุรนารี ปีการศึกษา 2565

COMPACTION OF LI-N-H BASED HYDROGEN STORAGE FOR KINETIC IMPROVEMENT AND SUPPRESSION OF NH₃ RELEASE

Suranaree University of Technology has approved this thesis submitted in partial fulfillment of the requirements for the Degree of Doctor of Philosophy.

Thesis Examining Committee

(Assoc. Prof. Dr. Anyanee Kamkaew) Chairperson

Copee Ute

(Assoc. Prof. Dr. Rapee Utke) Member (Thesis Advisor)

 \sqrt{ab}

(Dr. Priew Eiamlamai) Member (Thesis Co-Advisor)

Mayorg Charles

(Dr. Narong Chanlek)

Member⁵

Thecranon Sintenon

(Assoc. Prof. Dr. Theeranun Siritanon) Member

Mujorpom alt

C_{h1}3ng

(Assoc. Prof. Dr. Yupaporn Ruksakulpiwat) Acting Vice Rector for Academic Affairs and Quality Assurance

(Prof. Dr. Santi Maensiri) Dean of Institute of Science

จงสุทธามณี สิทธิเวช : การกดอัด Li-N-H ในการเก็บไฮโดรเจน เพื่อการปรับปรุงคุณสมบัติ ทางจลนศาสตร์ และยับยั้งการปลดปล่อย NH3 (COMPACTION OF Li-N-H BASED HYDROGEN STORAGE FOR KINETIC IMPROVEMENT AND SUPPRESSION OF NH₃ RELEASE) อาจารย์ที่ปรึกษา : รองศาสตราจารย์ ดร.ระพี อูทเคอ, 56 หน้า

คำสำคัญ: การดูดซับไฮโดรเจน/ ไฮไดรด์ของโลหะ/ จลนพลศาสตร์ / ท่อนาโนคาร์บอน/ การจัดเก็บ ไฮโดรเจน/ โลหะทรานซิชัน/ การผันกลับได้/ การปลดปล่อยไฮโดรเจน

ลิเธียมเอไมด์ (LiNH₂) เป็นหนึ่งใน<mark>วัส</mark>ดุที่มีแนวโน้มในการกักเก็บไฮโดรเจนได้ดี เนื่องจากมี ปริมาณไฮโดรเจนตามทฤษฎีสูง (8.7 wt. <mark>%) อ</mark>ย่างไรก็ตาม ก๊าซแอมโมเนีย (NH₃) ที่ปล่อยออกมา ระหว่างการสลายตัวของ LiNH₂ จะเป็นพิษต่อตั<mark>ว</mark>เร่งปฏิกิริยาของเซลล์เชื้อเพลิง (PEMFCs) แม้ว่าจะ ใช้สารประกอบไฮไดรด์ (RHC) ระหว่าง <mark>L</mark>iNH₂ แ<mark>ล</mark>ะ LiH ที่สามารถแก้ปัญหานี้ได้ แต่มีการสังเกตว่ามี การปล่อย NH₃ บางส่วนและจลนพล<mark>ศา</mark>สตร์ที่ไม่ดี<mark>ด้ว</mark>ยเมื่อจำนวนรอบที่เพิ่มขึ้น จึงมีการเสนอวิธีการ บดผสมสารด้วยลูกบอลที่ใช้พลังงานการหมุนสูงรวมทั้งเติมตัวเร่งปฏิกิริยาและสารเติมแต่งจำพวก คาร์บอนเพื่อปรับปรุงคุณสมบัติ<mark>ทาง</mark>จลนพลศาสตร์ของ<mark>สาร</mark>ประกอบ LiNH₂-LiH ในงานปัจจุบัน มีการ แสดงผลของตัวเร่งปฏิกิริยาที่เป็นโลหะทรานซิชันแฮไลด์ (TiF₄) และท่อนาโนคาร์บอนที่มีผนังหลาย ์ชั้น (MWCNTs) ต่อประสิ<mark>ท</mark>ธิภาพ<mark>การปลดปล่อยและกักเก็</mark>บไฮโดรเจนของ LiNH₂-LiH ที่ถูกกดอัดและ ้บรรจุในถังเก็บไฮโดรเจ<mark>นข</mark>นาด<mark>เล็ก ซึ่งแสดงผลการเร่งปฏิ</mark>กิริย<mark>าขอ</mark>ง TiF₄ ต่อการแตกตัว/การรวมตัว กันใหม่ของไฮโดรเจนรว<mark>มถึงการนำความร้อนที่ดีขึ้นและการซึมผ่า</mark>นของไฮโดรเจนจากท่อ MWCNTs และเป็นประโยชน์ต่อการดู<mark>ดซับไฮโดรเจนที่แสดงในผลการทดล</mark>องโดยปฏิกิริยาแบบขั้นตอนเดียวและ อุณหภูมิที่ต่ำกว่าในช่วง 150-350 °C (100 °C จาก LiNH₂-LiH ที่ไม่มีตัวเร่งปฏิกิริยาและสารเติมแต่ง ที่ถูกกดอัดเช่นเดียวกัน) ร่วมกับช่วงอุณหภูมิที่ราบและอัตราการไหลของไฮโดรเจนคงที่ (50 sccm) สูงสุด 30 นาทีระหว่างกระบวนการปลดปล่อยไฮโดรเจนด้วยแทงค์กักเก็บสารขนาดเล็ก ความจุของ ไฮโดรเจนในระหว่างรอบการกักเก็บและปลดปล่อยไฮโดรเจน เพิ่มขึ้นจาก 1.90-2.40 เป็น 3.10-4.70 โดยน้ำหนัก % H₂ (ตั้งแต่ 29 ถึง 80% ของความจุทางทฤษฎี) ที่น่าสนใจคือ Li₅TiN₃ ที่ตรวจพบได้ จากการหมุนเวียนรอบการกักเก็บและปลดปล่อยไฮโดรเจน จะดูดซับ NH₃ เพื่อสร้างสารประกอบ Li₅TiN₃(NH₃), มีส่วนสนับสนุนคุณสมบัติการดูดซับไฮโดรเจนของระบบ LiNH₂-LiH อย่างไรก็ตาม การขยายตัว/การหดตัวของตัวอย่างเม็ดเมื่อรอบการกักเก็บและปลดปล่อยไฮโดรเจนเพิ่มขึ้น ส่งผลให้ เกิดการเสียรูปและ/หรือรอยแตก อาจทำให้เกิดการปลดปล่อย NH₃ ระหว่างจำนวนรอบที่มากขึ้น เช่นนี้จึงมีการเสนอแนวคิดในการประกบเม็ด LiNH $_2$ -LiH ด้วยชั้นของสาร LiH ปริมาณ 10–30 wt. %

พบว่าเม็ด LiNH₂-LiH ที่ประกบด้วย LiH ไม่แสดงสัญญาณของการปล่อย NH₃ ด้วยความจุ H₂ 3.5–4.0 wt. % ในรอบที่ 1 เมื่อวนเป็นรอบ (รอบที่ 2-6) การสลายตัวของเม็ด LiNH2-LiH ที่ประกบด้วย 10 wt. % LiH แสดงสัญญาณ NH₃ ในขณะที่มี 30 wt. % LiH ปล่อยเฉพาะ H₂ ที่มีความจุ 2.3–2.6 โดย น้ำหนัก % H2 ไม่เพียงแต่การปลดปล่อยไฮโดรเจนที่มีประสิทธิภาพและกระบวนการย้อนกลับของ ตัวอย่างที่มีน้ำหนัก 30 wt. % LiH-sandwiched LiNH₂-LiH ถูกอธิบายโดยผลการทดลองที่เพียงพอ และความเสถียรเชิงกลของชั้น LiH ในเม็ดสารตัวอย่างเท่านั้น แต่ยังรวมถึงการก่อตัวของเฟสที่แอคทีฟ ใหม่ (LiH $_{1-x}F_x$ และ Li $_2$ NH $_{1-y}F_y$) อีกด้วย

สาขาวิชาเคมี ปีการศึกษา 2565

CHONGSUTTHAMANI SITTHIWET: COMPACTION OF LI-N-H BASED HYDROGEN STORAGE FOR KINETIC IMPROVEMENT AND SUPPRESSION OF NH₃ RELEASE. THESIS ADVISOR: ASSOC. PROF. RAPEE UTKE. Ph.D. 56 pp.

Keyword: HYDROGEN SORPTION/ METAL HYDRIDES/ KINETICS / CARBON NANOTUBES/ HYDROGEN STORAGE/ TRANSITION METALS/ REVERSIBILITY/ DEHYDROGENATION

Lithium amide (LiNH₂) is one of the most promising hydrogen storage materials due to its high theoretical hydrogen content (8.7 wt. %) and low cost. However, NH₃ gas released during LiNH₂ decomposition is poisonous for PEMFCs' catalysts. Although the reactive hydride composites (RHCs) between LiNH₂ and LiH can solve this problem, partial emission of NH₃ and poor kinetics with the enhanced cycling numbers are observed. High-energy ball milling as well as catalytic and additive doping have been proposed to improve the properties of LiNH₂-LiH composite. In the present work, the effects of transition metal-based catalyst (TiF4) and multi-walled carbon nanotubes (MWCNTs) on de/rehydrogenation performance of compacted LiNH₂-LiH in small hydrogen storage tank are discussed. Catalytic effects of TiF₄ on hydrogen dissociation/recombination and the improved thermal conductivity and hydrogen permeability from MWCNTs benefit hydrogen sorption. The single-step reaction and lower temperature in range of 150-350 °C (100 °C lower than the compacted LiNH₂-LiH without additives) together with long plateau temperature and constant hydrogen flow rate (50 sccm) up to 30 min during dehydrogenation in the small tank are presented. The hydrogen capacities during de/rehydrogenation cycles increase from 1.90-2.40 to 3.10-4.70 wt. % H₂ (from 29 to up to 80% of theoretical capacity). Interestingly, Li₅TiN₃ detected upon cycling absorbs NH_3 to form $Li_5TiN_3(NH_3)_x$, favoring hydrogen sorption properties of LiNH₂-LiH system. However, the expansion/contraction of the pellet samples upon de/rehydrogenation cycles results in deformation and/or cracks. This possibly causes NH₃ release during cycling. The idea of sandwiching LiNH₂-LiH pellet with LiH layers (10-30 wt. %) is proposed. The LiH-sandwiched LiNH₂-LiH pellets show no sign of NH₃ release with the hydrogen capacitates of 3.5–4.0 wt. % H₂ in the 1st cycle. Upon cycling (the 2^{nd} -6th cycles), the decomposition of LiH-sandwiched LiNH₂-LiH

pellets with 10 wt. % LiH shows NH₃ signal, while that with 30 wt. % LiH releases only hydrogen with the storage capacities of 2.3-2.6 wt. % H₂. Effective dehydrogenation and reversibility of the 30 wt. % LiH-sandwiched LiNH₂-LiH pellet are explained by not only sufficient content and mechanical stability of LiH layers but also the formation of the new active phases ($LiH_{1-x}F_x$ and $Li_2NH_{1-y}F_y$).

School of Chemistry Academic Year 2022

ACKNOWLEDGEMENTS

This work would have never been accomplished without the contribution of many people. Firstly, I would like to thank my supervisor, Assoc. Prof. Dr. Rapee Utke for her expert guidance, support, discussions, encouragement, putting up with my moaning in many years, and always believing in me over the course of my thesis.

I also would like to thank my co-supervisor, Dr. Priew Eiamlamai from National Energy Technology Center, National Science, and Technology Development Agency for her great help and support and gratefully acknowledged for valuable help with the experimental work and kind suggestions during my visits to National Metal and Materials Technology Center.

I wish to gratefully acknowledge the financial support I have received from the Thailand Graduate Institute of Science and Technology (TGIST), Thailand (TG-33-19-60-015D) which enables me to continue my study after my bachelor's degree.

Also, I would like to thank all members of the Hydrogen Storage Material Lab and Solid-state Chemistry at SUT for their help, fulfillment, discussions, and friendship.

I would like to thank The Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, Thailand, and the people from Mechanical workshop at Facility Building 1 (F1) SUT.

Finally, I would also like to thank my parents for their encouragement and moral support in every step of my academic career.

Chongsutthamani Sitthiwet

CONTENTS

CONTENTS (Continued)

LIST OF FIGURES

LIST OF FIGURES (Continued)

LIST OF FIGURES (Continued)

LIST OF TABLES

CHAPTER I

INTRODUCTION

1.1 Hydrogen energy

Alternative energies are of significant interest regarding the increase in global temperature, air pollution, and demand for fossil fuels with the depletion of crude oil resources. From Figure 1.1, the release of $CO₂$ per capita during 2001-2019 increases from 1.65 to 1.75 tCO₂/MWh in the afrika, whereas that in Europe decreases continuously to \sim 1.00 tCO₂/MWh (Dematteis et al., 2021). These trends are the implementation of greater uses of renewable energies in Europe that are beneficial in the reduction of $CO₂$ emissions.

Figure 1.1 Global carbon dioxide (CO_2) production per electricity (Dematteis et al., 2021).

For Thailand, the government has drafted a plan to reduce greenhouse gas emissions, mostly from transportations and industries by aiming to increase the use of renewable. energy up to 8-20% of the country's energy consumption within 2036(Thailand Power Development Plan, 2015) . One of the most efficient renewable energies is hydrogen energy because of its high energy density (142 MJ kg⁻¹), great variety of sources (e.g., water, biomass, and organic matters), and low environmental impact (e.g., use in fuel cells) (Jainet al., 2010). Hydrogen is classified based on how the production process impacts the environment (Figure 1.2).

Figure 1.2 Visualization of the hydrogen production routes with a specific color. (http://www.chem4us.be/blue-green-gray-the-colors-of-hydrogen/).

Firstly, brown or gray hydrogen is produced by gasification or steam methane reforming (SMR) of hydrocarbon or fossil fuels. The products are a mixture of H_2 and CO₂. . Therefore, this method does not reduce carbon even though hydrogen gas is clean energy. Next, blue hydrogen uses hydrocarbon or fossil fuels as raw materials, while the obtained $CO₂$ is captured and used to produce other forms of renewable fuels. (Carbon Capture & Storage Technology). The last one is green hydrogen, which produced no $CO₂$ emissions using clean electricity from renewable energy sources, such as solar or wind power, to electrolyze water splitting. Among all hydrogen types, green hydrogen is the most environmentally friendly (Hydrogen, 2021). Hydrogen energy is classified into two categories according to applications, i.e., (1) portable energy storage systems often used in applications requiring fast charging, such as mobile phones and electric vehicles and (2) stationary energy storage systems. Hydrogen energy in all sections consists of productions, storages, and utilizations in the fuel cell system (Jena et al., 2011). From Figure 1.3, hydrogen is produced from water splitting using renewable sources (e.g., sun and wind) through an electrolyzer, stored in the storage tank, and supplied to fuel cells to produce electricity. (Sharaf and Orhan et al., 2014). Our work has been focused on hydrogen storage materials and systems.

2.2 Hydrogen storages methods and applications

 Hydrogen can be stored by physical- and material- based methods (Figure 1.4) (Ren et al., 2017). For the physical-based method, the current technology practically used in the market is compressed hydrogen gas under 70 MPa with gravimetric and volumetric capacities of 5.7 wt. % H_2 and 40 gH₂/L, respectively. Although hydrogen capacities of the compressed gas is satisfied according to US-DOE targets (Table 2), its heavy and bulky tank as well as safety concerns due to high pressure still obstruct the practical uses. For cryogenic liquid, hydrogen is stored at low temperature (≤20K) to obtain higher volumetric hydrogen capacity (70 kgH₂m⁻³). However, large thermal losses and the cost of insulation for storage tanks and hydrogen stations hinder its applications. Thus, physically and chemically material-based storage methods have been proposed. Hydrogen can be stored physically in microporous materials with high surface area through Van der Waals interaction and chemically in metal and complex hydrides (Ren et al., 2017).

How is hydrogen stored?

Figure 1.4 Hydrogen storage methods (Rambhujun et al., 2020).

Physisorption-based microporous materials include carbons, zeolites, and metalorganic frameworks (MOFs). They adsorb molecular hydrogen in their porous structures and hydrogen storage capacity depends on the specific surface area. In chemisorption, chemical reactions between metals or alloys with hydrogen provide high theoretical volumetric and gravimetric capacities of 40-120 kgH₂ m⁻³ and 5- 18 wt. % H₂, respectively. Nevertheless, high operating temperature and pressure conditions for de/rehydrogenation, for example, rehydrogenation of LiBH₄ at ~600 °C under 155 bar H_2 for >12 h (He et al., 2019), slow kinetics, and release of by-product gases poisoning fuel cell catalyst, and membranes (e.g., B_2H_6 from LiBH₄ and NH₃ from LiNH₂) (Yan et al., 2012) obstruct the application of hydrides as hydrogen storage materials.

	Gravimetric		Volumetric	Temperature	Pressure
Storage System	density		density	$(^\circ \text{C})$	(bar H_2)
Targets	(kg H ₂ /kg)	(kg H_2/L system)			
	system)				
2025	0.055		0.040	$-40-85$	$5 - 12$
Ultimate	0.065		0.050	$-40-85$	$5 - 12$
	Gravimetric		Volumetric	Temperature	Pressure
Current Status	density		density	$(^{\circ}C)$	(bar H_2)
	(kg H ₂ /kg)		(kg H ₂ /L)		
	system)		system)		
Metal Hydride (MH):	12		12 ²	125	$0.2 - 10$
NaAlH ₄					
Sorbent: MOF-5	38		21	-193	100
Chemical hydrogen	46		40		
(CH) Storage: Off-					
Board Regenerable					
(AB)					

Table 1.1 Targets of material-based automotive hydrogen storage systems set by the US-DOE. ([https://www.energy.gov/eere/fuelcells/doe-technical-targets-onboard-hydro](https://www.energy.gov/eere/fuelcells/doe-technical-targets-onboard-hydro-%20gen-storage-light-duty-vehicles)[gen-storage-light-duty-vehicles\)](https://www.energy.gov/eere/fuelcells/doe-technical-targets-onboard-hydro-%20gen-storage-light-duty-vehicles)

In this work, we aim not only to improve kinetics and hydrogen capacities of hydrides approaching the 2020 US-DOE targets (Table 1.2) (Huanget al., 2021) but also upscaling to hydrogen storage tank. Among several solid-state hydrides, lithium amide (LiNH₂) is one of the most promising materials for reversible hydrogen storages because it contains high theoretical hydrogen content of 8.7 wt. % (Figure 1.5) (Miceli, 2010). However, ammonia (NH₃) released upon decomposition of LiNH₂ (equation (1.1)), toxic to fuel cell catalysts must be suppressed (Yao et al., 2007).

Figure 1.5 Theoretical hydrogen storage capacities of hydrogen storage materials (Miceli, G. (2010)).

To use LiNH₂ as hydrogen storage material, reactive hydride composites (RHCs) between LiNH₂ and other h<mark>ydri</mark>des, such as LiNH₂-MgH₂ (Xilin et al., 2014), LiNH₂-LiAlH₄ (Dolotko et al., 2011), LiNH₂-LiBH₄ (Li<mark>u et al., 2009), LiNH</mark>₂-MgH₂-LiBH₄ (Wang et al., 2015), and LiNH₂-Ca(BH)₄ (Y<mark>ua et al., 2011) ha</mark>ve been proposed. Among all LiNH₂-based composites, LiNH₂-LiH is one of the best-performing materials for storing hydrogen due to its relatively low operating temperature, good reversibility, and low cost (Fernandez et al., 2013). Nevertheless, partial emission of NH₃ as well as poor kinetics, especially with the enhanced cycling numbers are observed. Thus, this work focuses on kinetic improvement and suppression of NH₃ release of LiNH₂-LiH composite by compaction into the pellets and sandwiching with LiH layer. Moreover, hydrogen storage performance in the small hydrogen storage tank is studied.

1.3 References

- Dematteis, E.M., Barale, J., Corno, M., Sciullo, A., Baricco, M., and Rizzi, P. (2021). Solid-State Hydrogen Storage Systems and the Relevance of a Gender Perspective. *Energies, 14,* 6158. doi: [10.20944/preprints202106.0617.v1](https://doi.org/10.20944/preprints202106.0617.v1)
- Dolotko, O., Kobayashi, T., Wiench, J.W., Pruski, M., and Pecharsky, V. (2011). Investigation of the thermochemical transformationsin the LiAlH₄-LiNH₂ system. *Int. J. Hydrogen Energy, 36,* 10626-10634. doi: [10.1016/j.ijhydene.2011.05.163](https://doi.org/10.1016/j.ijhydene.2011.05.163)
- Fernandez Albanesi, L., Arneodo Larochette, P., and Gennari, F.C. (2013). Destabilization of the LiNH₂-LiH hydrogen sto<mark>rag</mark>e system by aluminum incorporation. *Int. J. Hydrogen Energy, 38,* 12325-12334. doi: [10.1016/j.ijhydene.2013.07.030](http://dx.doi.org/10.1016/j.ijhydene.2013.07.030)
- Huang, Y., Cheng, Y., and Zhang, J. (2021). A Review of High Density Solid Hydrogen Storage Materials by Pyrolysis for Promising Mobile Applications. *Ind. Eng. Chem. Res., 60,* 2737−2771. doi: [10.1021/acs.iecr.0c04387](https://doi.org/10.1021/acs.iecr.0c04387)
- Hydrogen. (2021). Types of hydrogen. *[On-line]. Avialable: https://aureliaturbines.com [/articles.](https://aureliaturbines.com/articles)*
- Jain, I.P., Lal, C., and Jain, A. (2010). Hydrogen storage in Mg: A most promising material. *Int. J. Hydrogen Energy, 35*, 5133-5144. doi: [10.1016/j.ijhydene.2009.08.088](https://doi.org/10.1016/j.ijhydene.2009.08.088)
- Jena, P. (2011). Materials for Hydrogen Storage: Past, Present, and Future. *J. Phys. Chem. Lett, 2,* 206–211. doi: [10.1021/jz1015372](https://doi.org/10.1021/jz1015372)
- Liu, Y., Luo, K., Zhou, Y., Gao, M., and Pan, H. (2009). Diffusion controlled hydrogen desorption reaction for the LiBH₄/2LiNH₂ system. *J. Alloys Compd, 481*, 473-479. doi: [10.1016/j.jallcom.2009.02.142](https://doi.org/10.1016/j.jallcom.2009.02.142)
- Miceli, G. (2010). First principles study of the LiNH₂/Li₂NH hydrogen storage system. *Ph.D., Thesis*.
- Ren, J., Musyoka, N.M., Langmi, H.W., Mathe, M., and Liao, S. (2017). Current research trends and perspectives on materials- based hydrogen storage solutions: A critical review. *International Journal of Hydrogen Energy, 42*(1), 289-311. doi: 10.1016/j.ijhydene.2016.11.195
- Rambhujun, N., Salman, M.S., Wang, T., Pratthana, C., Sapkota, P., Costalin, M., Lai, Q., and Aguey-Zinsou, K.F. (2020). Renewable hydrogen for the chemical industry. *MRS Energy and Sustainability,7,* e33*.* doi: [10.1557/mre.2020.33](https://doi.org/10.1557/mre.2020.33)
- Sharaf, O.Z., and Orhan, M.F. (2014). An overview of fuel cell technology: Fundamentals and applications. *Renewable and Sustainable Energy Reviews, 32,* 810-853. doi:10.1016/j.rser.2014.01.012
- Thailand Power Development Plan 2015-2036 (PDP2015) (2020) *[On- line] . Available: [https://www.egat.co.th/en/images/about-egat/PDP2015_Eng.pdf.](https://www.egat.co.th/en/images/about-egat/PDP2015_Eng.pdf)*
- Wang, Z., Lijun, J., Yuanfang, W., Jianhua, Y., Baolong, Y., Zhinian, L., Xiaopeng, L., and Shumao, W. (2015). Improved dehydrogenation cycle performance of the 1.1MgH₂-2LiNH₂-0.1LiBH₄ system by addition of LaNi_{4.5}Mn_{0.5} alloy. *J. Rare Earths*, *33,* 783. doi: [10.1016/S1002-0721\(14\)60485-3](https://doi.org/10.1016/S1002-0721(14)60485-3)
- Xilin, Z., Shumin, H., Xin, Z., Yuan, L., and Baozhong, L. (2014). Effect of lanthanum hydride on microstructures a<mark>n</mark>d hyd<mark>r</mark>ogen storage performances of 2LiNH₂-MgH₂ system. *J. Rare Earths, 32,* 429-433. doi: [10.1016/S1002-0721\(14\)60089-2](https://doi.org/10.1016/S1002-0721(14)60089-2)
- Yan, Y., Remhof, A., Hwang, S.J., Li, H.W., Mauron, P., Orimo, S., Züttel, A. (2012). Pressure and temperature dependence of the decomposition pathway of LiBH4. *Phys Chem Chem Phys, 14*(18), 6514-6519. doi:10.1039/c2cp40131b
- Yao, J.H., Shang, C., Aguey-Zinsou, K.F., and Guo, Z.X. (2007). Desorption characteristics of mechanically and chemically modified LiNH₂ and (LiNH₂ + LiH). *J. Alloys Compd, 432*, 277–282. doi: [10.1016/j.jallcom.2006.05.113](http://dx.doi.org/10.1016/j.jallcom.2006.05.113)
- Yua, X.B., Yang, Z.X., Guo, Y.H., and Li, S.G. (2011). Thermal decomposition performance of Ca(BH⁴)2/LiNH² mixtures. *J. Alloys Compd, 509S,* S724– S727. doi: [10.1016/j.jallcom.2010.11.076](https://doi.org/10.1016/j.jallcom.2010.11.076)

CHAPTER II LITERATURE REVIEW

2.1 Hydrogen storage in metal hydrides

 Hydrogen chemisorption in the forms of metal and complex hydrides consists of dissociation of hydrogen molecule, diffusion of hydrogen atoms into interstitial sites of metal and formation of M-H bond (Figure 2.1(A)). Nucleation and growth of hydride will occur under moderate temperatures and pressures following the pressurecomposition (PCT) isotherms (Figure 2.1(B)(i)) (Klebanoff, 2016). The PCT curve is the correlation between the equilibrium pressure and the hydrogen storage content at temperature settings. The α-phase region corresponds to the formation of metal hydride at low pressures. The plateau region is in accordance with the equilibrium of ^α and ^β phases. Nucleation and growth of the metal hydride refer to β-phase region. The plateau region in the PCT plot indicates the reversible hydrogen content. Considering van't Hoff equation (2.1), enthalpy (∆H) and entropy (∆S) of hydride formation can be obtained from slope and y-intercept of the van't Hoff plot (Figure 2.1(B)(ii).

$$
\ln(P_{eq}/P_0) = \frac{\Delta H}{RT} = \frac{\Delta S}{RT}
$$
 (2.1)

Where Pe_q is the plateau pressure, T is the temperature, Pe_l is the reference pressure (1 bar), R is the gas constant (R = 8.314 J.mol⁻¹. K⁻¹), ∆H and ∆S are the enthalpy and entropy changes, respectively.

The enthalpy of metal hydrides relates to the heat during hydrogen absorption and desorption. To obtain equilibrium pressure (P_{eq}) of 1 bar at 40-150 °C, an operating temperature of fuel cell, ∆H of 30– 55 kJ/mol with constant ∆S (130 J/mol K) is required (Züttle, 2008).

Figure 2.1 Hydride formation (^α and ^β phase) (A), PCT curves (i) and van't Hoff plot (ii) (B) (Modi et al., 2021).

 $1₀$

Thus, metal hydrides with high hydrogen capacity and suitable thermodynamic properties are challenging for hydrogen storage materials. Another barrier for the practical application of metal hydrides is kinetic, considering a rate-limiting step for a particular reaction. From Figure 2.2(A), during absorption hydrogen gas is physisorption onto the surface of metal hydride (step 1). Then, hydrogen molecules dissociate into atoms, further occupying and penetrating into the interstitial sites of the host metal (steps 2 and 3). When the amount of hydrogen increases, diffusion through the hydride layer occurs (step 4) to complete hydride formation. For desorption, metal hydride decomposes into metal and hydrogen (step 1). Hydrogen atom diffuses through metal (step 2) and to the surface (step 3). Finally, the recombination of hydrogen atoms into molecules (step 4), releasing to the environment (step 5).

Figure 2.2 Steps for the absorption (A) and desorption (B) of the metal hydrides. (Jain et al., 2018).

The chemical reaction's activati<mark>on energy (E_a) presents</mark> a barrier in the reaction pathway, in which many hydrides show significantly high Ea. To practically use metal hydride, rapid hydrogen de/rehydrogenation at moderate temperature is needed. Catalytic doping is of interest due to lowering Ea without any changes in chemical structures of reactants and products as well as thermodynamic properties (Züttle, 2008). Ea can be investigated by differential scanning calorimetry (DSC) technique and Kissinger equation (2.2).

$$
\ln (\beta/T_{\text{p}}) = \frac{-\text{Ea}}{\text{RTp}} + \ln(\text{ko}) \quad \text{a} \quad \text{or} \quad \text{or} \quad \text{or} \quad \text{or} \quad \text{or} \quad (2.2)
$$

where $β$ is the heating rate ($°C/min$), Tp is the peak desorption temperature, R is the gas constant (8.314 J mol⁻¹ K⁻¹), Ea is the activation energy, and \mathbf{k}_0 is a constant.

2.2 LiNH² /Li2NH and their tuning strategies

Although other metal hydrides and/or complex hydrides following Figure 1.5 have accomplished high gravimetric and volumetric hydrogen capacities, their dehydrogenation temperatures are still high due to the large enthalpy. LiNH₂/Li₂NH system is one of the most competitive materials for hydrogen storage because of their suitable gravimetric and volumetric capacities according to the U.S. (DOE) (5.5 wt. % and 40 $gH₂/L$, respectively) (Partnership., 2017). LiNH₂ consists of Li⁺ cation and NH₂⁻ anionic group with tetragonal by space group of *I-4*, which preferred an anti-fluorite with the arrangement of Li in a tetrahedral hole and N in a cubic close-packed. However, LiNH₂ decomposes into Li₂NH and NH₃ at 373-375 °C under vacuum (e<mark>quation</mark> (2.3)) instead of hydrogen. Thus, LiNH₂-LiH composite has been proposed, which <mark>t</mark>he ob<mark>t</mark>ained NH₃ further reacts with LiH to form Li₂NH and H₂ (equation (2.4)). Howeve<mark>r, t</mark>he dete<mark>rio</mark>ration of LiH due to hydrolysis/oxidation led to NH₃ emission, resulting in poisoning proton exchange membranes (PEMFCs) and poor hydrogen capacity (Shaw et al., 2008). Moreover, poor kinetics due to slow NH₃ diffusion through the Li₂NH coated on the LiNH₂ core and deficient interfaces between LiH and NH₃ are serious issues (Chen et al., 2002). Regarding the previous work reported by Chen et al. (2003) and Chen et al. (2<mark>002), overall reaction for LiNH₂-LiH de</mark>composition (equation (2.5)) provides the storage capacity of 6.5 wt. % H_2 . .

For Li2NH, it has two crystal structures of *Fm-3m* and *Imma* space group as lowtemperature (LT) and high-temperature (HT) phases, respectively (Juza, 1951). Phase transition of Li₂NH from the LT to the HT can be detected at 400-500 K. During the decomposition of LiNH₂, the rate-limiting step is NH_3 formation at the interface of $LiNH₂/Li₂NH$ (Figure 2.3).

Figure 2.3 The decomposition path of the LiNH₂/Li₂NH (Miceli et al., 2010).

Several approaches to improve de/rehydrogenation kinetics and suppress $NH₃$ emission of LiNH₂-LiH composites, including nanop<mark>a</mark>rticle p<mark>rep</mark>aration and catalytic doping have been reported. Varin et al. (2010) studied <mark>the</mark> effects <mark>of m</mark>illing time and LiNH₂: LiH molar ratio. When the milling time increas<mark>ed up to 25 h, the g</mark>rain size of LiNH₂-LiH composite decreased, enhancing specific surface area. (Figure 2.4(A)).

Figure 2.4 The specific surface area to ball milling time of the LiNH₂-LiH composite (A) and DSC profiles for varied milling time (B).

Dehydrogenation temperature decreased with the increase of milling time up to 25 h (Figure 2.4(B)). From Table 2.1, not only milling time but also the enhancement of LiH content benefits dehydrogenation kinetics.

Table 2.1 Summary of the DSC profiles for LiNH₂-LiH by varied milling time and LiH molar ratio.

When the milling time increased, the onset temperature decreases from 268 °C to 180 °C because most LiNH₂ could effectively react with LiH. The latter was explained by good contact between LiNH₂ and LiH particles. In the case of LiNH₂: LiH mole ratios increasing from 1:1 to 1:1.4, onset desorption temperature decreased because of excess LiH overcoming hydrolysis/oxidation into LiOH or Li₂O.

Furthermore, various additives and/or catalysts, such as metal hydrides (LiH, NaH, KH, MgH₂, CaH₂, and TiH₂ (Amica et al., 2015), graphite (Varin et al., 2011), nitrides, and Ti-Li-N compounds (TiN, BN and Li₅TiN₃ (Aguey-Zinsou et al., 2007), (Nayebossadri et al., 2011), (Du et al., 2015), halides (AlCl₃ (Ferna[']ndez Albanesi et al., 2013), MgCl₂ (Davies et al., 2015), CeF₄

(Lin et al., 2018), KF (Dong et al., 2016), RbF (Dong et al., 2017), amide KNH₂ (Ping et al., 2019), and oxides (LiOH, NaOH, KOH (Dong et al., 2015), and LiTi₂O₄ (Zhang et al., 2015) have been studied to improve hydrogen sorption properties of LiNH₂-LiH composite. Amica et al. (2015) studied chemical interactions during hydrogen cycling of LiNH₂-1.6LiH doped with MH₂ (M = Mg, Ca, Ti). The results showed that LiNH₂ doped with MgH₂ and CaH₂ produced the solid solutions of $Li_2Mg(NH)_2$ and CaNH-Ca(NH₂)₂, revealing superior de/rehydrogenation kinetics (Figure 2.5). However, TiH₂ showed poorer kinetics with respect to MgH₂ - and CaH₂ – doped samp<mark>le</mark>s. This can be explained by the fact that TiH₂ presented direct contact with LiNH₂ and <mark>LiH, wh</mark>ereas MgH₂ and CaH₂ interacted with LiNH₂ . Furthermore, Dong et al. (2016) reported the positive effects of potassium fluoride (KF) on the LiNH₂-LiH composite, in which the cycling stability of LiNH₂-LiH was enhanced after doping with KF (Figure 2.6).

Figure 2.5 Dehydrogenation under 0.02 MPa (A) and rehydrogenation under 0.7 MPa hydrogen pressure (B) at 300 °C of the LiNH₂-1.6LiH and doping with MH₂ (M = Mg, Ca, and Ti).

Potassium hydride (KH) formed during ball milling of LiNH₂-LiH doped with KF acted as active species to improve hydrogen storage properties since it could react with NH₃ to produce KNH₂ and release hydrogen (equation 2.6).

$$
KH + NH_3 \longrightarrow KMH_2 + H_2 \tag{2.6}
$$

Lin et al. (2018) reported kinetic improvement of the LiNH₂-LiH system with 10 wt. % cerium-based materials (Ce, CeO₂, CeF₃, an<mark>d</mark> CeF₄) (Figure 2.7).

Figure 2.6 Cycling stability of LiNH₂-LiH (A) and LiNH₂-LiH-5mol%KF (B).

The best kinetic improvement and suppression of $NH₃$ emission was obtained from the sample doped with CeF₄. It was found that CeF_x species formed during the ball milling process was a good catalyst for LiNH₂ decomposition without NH₃ emission. Moreover, some active intermediate of L_i 5TiN₃ found after ball milling of LiNH₂-LiH-Ti-based compounds (e.g., Ti, TiCl₃, and TiO₂) acted as NH₃ carriers from LiNH₂ to LiH on a nanometer scale in the forms of $Li_5TiN_3(NH_3)_x$ (Teng et al., 2011).

For carbon materials, Varin et al. (2011) proposed that doping graphite (5 wt. %) into LiNH₂-1.2LiH showed an increase in the de/absorbed capacities at 325 °C from 4.7 to

5.2 wt. % H_2 as well as superior reversibility with 5 wt. % H_2 . It was suggested that graphite could prevent or reduce the oxidation/hydrolysis of LiH due to the water repelling from its surface. Moreover, hydrogen diffusion and heat transfer of hydride materials could be enhanced by several carbon materials, such as multi-walled carbon nanotubes (MWCNTs), activated carbon, graphene, and carbon nanofibers (CNFs).

Figure 2.7 Dehydrogenation profiles of the LiNH₂-LiH composites and Ce- doped LiNH₂-LiH (a), Isothermal dehydrogenation of the LiNH₂-LiH composites and CeF₄-doped LiNH₂-LiH at different temperatures (b), and NH_3 signal in MS curves of CeF₄-doped LiNH₂-LiH (c).

2.3 Small hydrogen storage tanks for hydrogen storage materials

In practical applications, the hydride materials have to be packed into a closed tank. Experimental and numerical works have investigated the hydrogen sorption properties of the storage tanks. Chaise et al. (2010) and Chung et al. (2013) studied both experimental and numerical data on the de/rehydrogenation properties of the magnesium hydride-based hydrogen storage tank. They reported the enhancement of the hydrogen sorption rate by inserting heat pipes into a novel metal hydride tank. Also, heat transfer properties affecting hydrogen sorption properties were improved by inserting a heat exchanger (Wu et al., 2014). Besides tube heat exchanger, the thermal conductivity of hydride tanks was enhanced by integrating copper wire nets, aluminum foams, and hydride–graphite composites (Shim et al., 2014), (Mazzucco et al., 2014). Furthermore, the volumetric hydrogen storage capacities for hydrogen storage tanks can be enhanced by compacting metal hydride to the pellet (Lozano et al., 2011). Recently, Yan et al. (2015) designed a cylindrical lab-scale tank based on compaction of Mg(NH₂)₂-2LiH-0.07KOH mixed with expanded natural graphite (ENG). The laboratory-scale hydrogen storage tank was designed with 205 mm and 32 mm of length and diameter, respectively. There was a porous filter tube placed in the tank center for the hydrogen diffusion pathway. In addition, three thermocouples were located in the hydride beds for measuring the temperature during de/rehydrogenation (Figure 2.8(A)). Dehydrogenation kinetics of the compacted Mg(NH₂)₂-2LiH-0.07KOH mixed with up to 17 wt.% ENG were operated at 220 °C with a hydrogen flow rate of 0.6 L/min. Three regions (I, II, and III) during hydrogenation were characterized (Figure 2.8(B)). In region I, hydrogen pressure rapidly decreases and the temperature of the hydride bed is reduced when desorption occurs. For region II, the temperature decreases continuously together with hydrogen pressure drops due to the decomposition of hydrogen storage materials. The mass flow controller demonstrates hydrogen gas flows through with a constant flow rate until the pressure drops due to complete dehydrogenation.

Finally, region III is the hydrogen desorption almost finishes shown as the reduction of hydrogen flow rate less than 0.1 L/min, and the temperature in the tank increases to the set-point temperature.

Figure 2.8 Laboratory-scale hydrogen storage tank (A) and Hydrogen desorption graph of compacted Mg(NH₂)₂-2LiH-0.07KOH with different ENG contents (B).

From Figure 2.8, when ENG is added in the hydride-based tank, the diffusion pathway and heat transfer of the hydride enhance. The latter results in an improvement of the hydrogen desorption process of the tank.

To the best of our knowledge, there have been no studies on the upscaling of $LiNH₂-LiH$ to hydrogen storage tanks. In this study, the powder samples of $L \text{iNH}_2$ -LiH will be compacted into the pellets prior to packing into the small tank to increase volumetric hydrogen capacity. However, high compaction pressure results in poor hydrogen diffusion and poor de/rehydrogenation kinetics and reversibility. Thus, catalysts and/or additives of titanium-based catalysts (TiF₄) and multi-walled carbon nanotubes (MWCNTs) will be added into LiNH₂-LiH. De/rehydrogenation kinetics of compacted LiNH₂-LiH is favored by the catalytic properties of TiF₄ as well as the improved hydrogen diffusion and thermal properties from MWCNTs (Plerdsranoy et al., 2017).

2.4 References

- Aguey-Zinsou, K.F., Yao, J., Xiao G.Z. (2007). Reaction Paths between LiNH2 and LiH with Effects of Nitrides. *J. Phys. Chem. B*, *111*, 12531-12536. doi: 10.1021/jp075002l
- Amica, [G.,](https://www.sciencedirect.com/science/article/abs/pii/S036031991501277X#!) Arneodo, [P., and Gennari, Larochette](https://www.sciencedirect.com/science/article/abs/pii/S036031991501277X#!) [F.C.](https://www.sciencedirect.com/science/article/abs/pii/S036031991501277X#!) (2015). Hydrogen storage properties of LiNH₂-LiH system with MgH₂, CaH₂ and TiH₂ added. Int. J. Hydrogen Energy, *40,* 9335-9346. doi: [10.1016/j.ijhydene.2015.05.091](https://doi.org/10.1016/j.ijhydene.2015.05.091)
- Chaise, A., de Rango, P., Marty, Ph., Fruchart, D. (2010). Experimental and numerical study of a magnesium hydride tank. *Int. J. Hydrogen Energy, 35,* 6311–6322. doi: [10.1016/j.ijhydene.2010.03.057](https://doi.org/10.1016/j.ijhydene.2010.03.057)
- Chen, P., Xiong, Z., Luo, J., Lin, J., and Tan, K.L. (2002). Interaction of hydrogen with metal nitrides and imides. *Nature*, *420,* 302-304. doi: [10.1038/nature01210](https://doi.org/10.1038/nature01210)
- Chen, P., Xiong, Z., Luo, J., Lin, J., and Tan, K.L. (2003). Interaction between lithium amide and lithium hydride. *J. Phys. Chem. B, 107*, 10967-10970. doi: [10.1021/jp034149j](http://dx.doi.org/10.1021/jp034149j)
- Chung, C.A., Yang, S.W., Yang, C.Y., Hsu C.W., and Chiu, P.Y. (2013). Experimental study on the hydrogen charge and discharge rates of metal hydride tanks using heat pipes to enhance heat transfer. *Appl. Energy, 103,* 581– 587. doi: [10.1016/j.apenergy.2012.10.024](https://doi.org/10.1016/j.apenergy.2012.10.024)
- Davies, R.A., and Anderson, P.A. (2015). Synthesis and characterization of two new amide chloride compounds: Potential H₂ storage materials. Int. J. Hydrogen Energy, 40, 3001-3005. doi: [10.1016/j.ijhydene.2014.12.044](https://doi.org/10.1016/j.ijhydene.2014.12.044)
- Dong, B.X., Ge, J., Teng, Y.L., Gao, J.J., and Song, L. (2015). Improved dehydrogenation properties of the LiNH₂-LiH system by doping with alkaline metal hydroxides. *J. Mater. Chem, 3,* 905-911. doi: [10.1039/C4TA03898C](https://doi.org/10.1039/C4TA03898C)
- Dong, B.X., Gao, J.J., Tan, H., Teng, Y.L., Wang, L.Z., and Liu, W.L. (2016). Hydrogen desorption improvement of the LiNH₂-LiH-KF composite. Int. J. Hydrogen Energy, *41,* 16122-16128. doi: [10.1016/j.ijhydene.2016.04.220](http://dx.doi.org/10.1016/j.ijhydene.2016.04.220)
- Dong, B.X., Wang, L.Z., Teng, Y.L., Li, Z.W., and Zhao, J. (2017). Superior effect of RbF on decreasing the dehydrogenation operating temperature of the LiNH₂-LiH system. *J. Alloys Compd, 697,* 62-67. doi: [10.1016/j.jallcom.2016.12.130](https://doi.org/10.1016/j.jallcom.2016.12.130)
- Du, L., Mauer, G., and Vaben, R. (2015). Reaction behavior of the Li-N-H hydrogen storage system with boron nitride as an additive, *Metall. Mater. Trans, 2,* 50-57. doi: [10.1007/s40553-015-0043-z](http://dx.doi.org/10.1007/s40553-015-0043-z)
- Ferna´ndez Albanesi, L, Arneodo Larochette, P., and Gennari, F.C. (2013). Destabilization of the LiNH² -LiH hydrogen storage system by aluminum incorporation. *Int. J. Hydrogen Energy, 38,* 12325-12334. doi:10.1016/j.ijhydene.2013.07.030
- Franklin, E.C. (1935). The nitrogen system of compounds; Reinhold, *New York*, pp53–63.
- Ichikawa, T., Hanada, N., Isobe, S., Leng, H., and Fujii, H. (2004). Mechanism of Novel Reaction from LiNH₂ and LiH to Li₂NH and H₂ as a Promising Hydrogen Storage System. *J. Phys. Chem. B, 108,* 7887-7892. doi: [10.1021/jp049968y](https://doi.org/10.1021/jp049968y)
- Jain, A., Agarwal, S., and Ichikawa, T. (2018). Catalytic Tuning of Sorption Kinetics of Lightweight Hydrides: A Review of the Materials and Mechanism. *Catalysts, 8,* 651. doi:10.3390/catal8120651
- Jebsen, J., Milanese, C., Girella, A., Lozano, G.A., Pistidda, C., Bellosta von Colbe, J.M., Marini, A., Klassen, T., and Dornheim, M. (2013). Compaction pressure influence on materials properties and sorption behavior of LiBH₄-MgH₂ composite. Int. J. *Hydrogen Energy,* 38, 8357-8366. doi:10.1016/j.ijhydene.2013.04.090
- Juza, R., and Opp, K. (1951). Metallamide und Metallnitride 25. Mitteilung. Zur Kenntnis des Lithiumimides. *Z. Anorg. Allg. Chemie, 266*, 325–330. doi: 10.1002/zaac.195126 60607
- Kojima, Y., and Kawai, Y. (2005). IR characterizations of lithiumimide and amide. *Journal of Alloys and Compounds*, *395*, 236–239. doi: [10.1016/j.jallcom.2004.10.063](http://dx.doi.org/10.1016/j.jallcom.2004.10.063)
- Klebanoff, L. (2016). Hydrogen Storage Technology Materials and Applications, International Standard Book Number-13: 978-1-4398-4108-2 (eBook - PDF).
- Lin, H. J., Li, H.W., Murakami, H., and Akiba, E. (2018). Remarkably improved hydrogen storage properties of LiNH₂-LiH composite via the addition of CeF₄. Journal of Alloys *and Compounds, 735,* 1017-1022. doi: 10.1016/j.jallcom.2017.10.239
- Lozano, G.A., Bellosta von Colbe, J.M., Bormann, R., Klassen, T., and Dornheim, M. (2011). Enhanced volumetric hydrogen density in sodium alanate by compaction. *J. Power Sources, 196,* 9254–9259. doi: [10.1016/j.jpowsour.2011.07.053](https://doi.org/10.1016/j.jpowsour.2011.07.053)
- Markmaitree, T., Ren, R., and Shaw, L.L. (2006). Enhancement of lithium amide to lithium imide transition via mechanical activation. *The Journal of Physical Chemistry B, 110,* 20710–20718. doi: [10.1021/jp060181c](https://doi.org/10.1021/jp060181c)
- Mazzucco, A., Dornheim, M., Sloth, M., Jensen, T.R., Jensen, J.O., and Rokni, M. (2014). Bed geometries, fueling strategies and optimization of heat exchanger designs in metal hydride storage systems for automotive applications: A review. *Int. J. Hydrogen Energy, 39,* 17054–17074. doi: 10.1016/j.ijhydene.2014.08.047
- Modi, P., and Aguey-Zinsou, K.F. (2021). Room Temperature Metal Hydrides for Stationary and Heat Storage Applications: A Review. *Front. Energy Res,* 9, 616115. doi: [10.3389/fenrg.2021.616115](https://doi.org/10.3389/fenrg.2021.616115)
- Nayebossadri, S., Aguey-Zinsou, K.F., and Guo, Z.X. (2011). Effect of nitride additives on Li-N-H hydrogen storage system. *Int. J. Hydrogen Energy, 36,* 7920-7926. doi: [10.1016/j.ijhydene.2011.01.088](http://dx.doi.org/10.1016%2Fj.ijhydene.2011.01.088) 1 c \cap
- Partnership, U.S.D. (2017). Target Explanation Document: Onboard Hydrogen Storage for Light-Duty Fuel Cell Vehicles. *[On-line]. Avialable:* https://www.energy.gov/sites/prod/files/2017/05/f34/fcto_targets_onboard_hydro _storage_explanation.pdf.
- Ping, C., Feng, B.Q., Ge, J., Li, G.Z., Zhu, W., Teng, Y.L., Zhang, Y.R., and Dong, B.X. (2019). Cyclic reaction-induced enhancement in the dehydrogenation performances of the KNH² -doped LiNH² and LiH system. *Int. J. Hydrogen Energy, 45,* 25927-25934. doi:https:10.1016/ j.ijhydene.2019.09.109 in press.
- Plerdsranoy, P., Chanthee, S., and Utke, R. (2017). Compaction of LiBH₄-MgH₂ doped with MWCNTs-TiO² for reversible hydrogen storage. *Int. J. Hydrogen Energy, 42,* 978-986. doi:[10.1016/j.ijhydene.2016.11.066](https://doi.org/10.1016/j.ijhydene.2016.11.066)
- Shaw, L.L., Osborn, W., Markmaitree, T., and Wan, X. (2008). The reaction pathway and rate limiting step of dehydrogenation of the LiNH2+LiH mixture. *J. Power Sources*, *177*, 500–505. doi[:10.1016/j.jpowsour.2007.11.029](http://dx.doi.org/10.1016/j.jpowsour.2007.11.029)
- Shim, J.H., Park, M., Lee, Y.H., Kim, S., Im, Y.H., Suh, J.Y., and Cho, Y.W. (2014). Effective thermal conductivity of MgH₂ compacts containing expanded natural graphite under a hydrogen atmosphere*. Int. J. Hydrogen Energy, 39,* 349– 355. doi: 10.1016/j.ijhydene.2013.09.092
- Teng, Y.L., Ichikawa, T., and Kojima, Y. (2011). Catalytic Effect of Ti-Li-N Compounds in the Li-N-H System on Hydrogen Desorption Properties. *J. Phys. Chem. C, 115*, 589-593. doi:[10.1021/jp107313r](https://doi.org/10.1021/jp107313r)
- Titherley, A.W. (1894). XLV.–Sodium, potassium, and lithium amides. *Journal of the Chemical Society, 65,* 504-522. doi:[10.1039/CT8946500504](https://doi.org/10.1039/CT8946500504)
- Varin, R.A., Jang, M., and Polanskib, M. (2010). The effects of ball milling and molar ratio of LiH on the hydrogen storage properties of nanocrystalline lithium amide and lithium hydride (LiNH² + LiH) system. *Journal of Alloys and Compounds, 491,* 658– $7c₂$ 667. doi:10.1016/j.jallcom.2009.11.035
- Varin, R.A., and Jang, M. (2011). The effects of graphite on the reversible hydrogen storage of nanostructured lithium amide and lithium hydride (LiNH₂-1.2LiH) system. J. *Alloys Compd, 509,* 7143-7151. doi: [10.1016/j.jallcom.2011.04.036](https://doi.org/10.1016/j.jallcom.2011.04.036)
- Wu, Z., Yang, F.S., Zhang, Z.X., and Bao, Z.W. (2014). Magnesium based metal hydride reactor incorporating helical coil heat exchanger: Simulation study and optimal design. *Appl. Energy, 130,* 712–722. doi: 0.1016/j.apenergy.2013.12.071
- Yan, M., Sun, F., Liu, X.P., Ye, J.H., Wang, S.M., and Jiang, L.J. (2015). Effects of graphite content and compaction pressure on hydrogen desorption properties of $Mg(NH_2)_{2}$ -2LiH based tank. *J. Alloys Compd, 628,* 63-67. doi:10.1016/j.jallcom.2014.12.173
- Zhang, T., Isobe, S., Matsuo, M., Orimo, S.I., Wang, Y., Hashimoto, N., and Ohnuki, S. (2015). Effect of Lithium Ion Conduction on Hydrogen Desorption of LiNH₂-LiH Solid Composite. *ACS Catal, 5,* 1552-1555. doi:[10.1021/cs501782y](https://doi.org/10.1021/cs501782y)
- Züttle, A., and Schlapbach, L. (2008). Hydrogen as a Future Energy Carrier. WILEY-VCH Verg GmbH & Co. KGaA, Weinhein, ISBN: 978-3-527-30817-0.

CHAPTER III

EXPERIMENTAL SECTION

3.1 Chemicals

Table 3.1 Chemicals used in this work.

3.2 Apparatus

3.2.1 Glovebox and high-energy ball milling

Due to the sensitivity of hydride materials to air and moisture, all samples were handled under a nitrogen atmosphere in the glove box (Figure 3.1(A)). The ball milling was used for sample preparation (Figure 3.1(B)).

Figure 3.1 Glove box (Omni-Lab System, VAC) (A) and A QM0.4L Planetary Ball Mill, Nanjing Chishun Science & Technology (B).

3.3 Sample preparation

3.3.1 Compacted LiNH² -LiH doped with TiF⁴ and MWCNTs

LiNH₂ was mixed with LiH by 1:1 molar ratio and milled for 5 h and 10 h with a ball-to-powder weight ratio of 20:1 and 580 rpm, respectively, to obtain $LiNH_2$ -LiH composites, denoted as LNL. LNL composite (5 h) was milled with 5.0 wt.%TiF₄ for 5 h and with MWCNTs for 10 min. The powder samples of LNL (10h) and LNL-TiF₄-MWCNTs were compressed into the pellets under 200 Mpa using a pellet die set with 15 mm diameter to obtain the compacted samples of LNL and LNL-TiF₄-MWCNTs, respectively. The densities of the LNL <mark>an</mark>d LNL-TiF₄-CNT pellets were ~0.7 and 1.00 g/cm³, respectively.

3.3.2 LiH-sandwiched LiNH2-LiH-TiF4-MWCNTs pellets

LiH was pre-milled for 5 h and milled with 1 wt. % MWCNTs for 30 min. The powder sample of LNL (5h) obtained from 3.3.1 was sandwiched between MWCNTsdoped LiH by compressing under 200 MPa to obtain LiH-sandwiched LNL (Figure 3.2(A)). The amounts of MWCNTs-doped LiH layers were 10, 20, and 30 wt. % with respect to LNL content, and the obtained pellet samples were named LNL-10% LiH, LNL-20% LiH, and LNL-30% LiH, respectively.

3.4 Small hydrogen storage tanks containing compacted LNL, LNL- TiF4- MWCNTs and LiH-sandwiched LNL

All compacted samples (~2-3 g) were packed into separated cylindrical tanks with a packing volume of 21.7 mL (Figure 3.2(B-D)). Hydrogen diffusion inside the tank was improved by inserting the stainless-steel (SS) mesh sheets between the compacted pellets. Temperature profiles inside the tank were investigated using Ktype thermocouples from SL heater (TC1, TC2, and TC3 inserted at the depths of 3, 2, and 1 cm, respectively) (Figure 3.2(C-D)).

Figure 3.2 Schematic draw of LiH-sandwiched LNL pellet (A), the components of small hydrogen storage tank (B), and the positions of thermocouples along the tank length packed with compacted samples <mark>of</mark> LNL and LNL-TiF₄-MWCNTs (C) and LiH-sandwiched LNL (D).

3.5 Characterizations

3.5.1 Chemical compositions and structure

3.5.1.1 Powder x-ray diffraction (PXD)

Powder x-ray diffraction (PXD) experiments were done using a Bruker D8 ADVANCE with Cu Ka source ($\lambda = 0.15406$ nm). The pellet sample was ground and packed in the sample holder covered with a poly (methylmethacrylate)(PMMA) dome (Figure 3.3) under a nitrogen-filled glove box. The experiments were investigated at the 2θ range and the scanning step of 10–80º and 0.02º/s, respectively.

Figure 3.3 An airtight sample holder covered with a PMMA dome.

3.5.1.2 Fourier transform infrared spectroscopy (FTIR)

 Fourier transform infrared spectroscopy (FTIR) spectra were collected using an attenuated total reflection (ATR) mode (a Bruker T27/Hyp 2000) in 4000-400 cm-1 wavenumber range with 64 scans (Figure 3.4).

Figure 3.4 FTIR spectrometer of Tensor 27-Hyperion 2000 (Bruker).

3.5.1.3 X-ray photoelectron spectroscopy (XPS)

X-ray photoelectron spectroscopy (XPS) experiments were carried out at the Suranaree University of Technology (SUT), National Nanotechnology Center (NANOTEC) and Synchrotron Light Research Institute (SLRI) joint research facility, Synchrotron Light Research Institute (Public organization), Thailand (Figure 3.5). A PHI5000 Versa Probe II (ULVAC-PHI Inc., Japan) with Al K^α (1.486 keV) radiation as an excitation source was used. The powder samples were deposited on the sample holder using carbon glue tape in the glove box. Prior to the measurements, the samples were placed in the high vacuum chamber (1×10^{-8} mbar) for 2 h. The highresolution scan of each element was collected using a pass energy of 46.95 eV and a step size of 0.05 eV. Dual- beam charge neutralization (low energy electron and ion beam) method was used to minimize sample charging. The binding energy was calibrated with respect to the C 1s peak (284.8 eV).

The data was analyzed using MultiPak software version 9.6.0 (ULVAC-PHI, Japan). Peak fitting was performed after Shirley background subtraction. The symmetrical Gaussian-Lorentzian function was used to approximate the line shapes of the fitting components.

Figure 3.5 X-ray photoelectron spectroscopy at Suranaree University of Technology (SUT), National Nanotechnology Center (NANOTEC) and Synchrotron Light Research Institute (SLRI).

3.5.2 Hydrogen sorption properties

3.5.2.1 Simultaneous thermal analysis (STA) coupled with mass spectroscopy (MS)

Hydrogen desorption was characterized by differential scanning calorimetry (DSC) and thermogravimetry (TG) using a Netzsch (STA 449 F3 Jupiter) (Figure 3.8). The sample (~15 mg) was heated to 500 °C (5 °C/min) under 50 mL N₂/min. The relative signals of H_2 and NH₃ released from the sample were investigated by mass spectroscopy (MS) using a Netzsch QMS 403C (Figure 3.6).

Figure 3.6 STA 449 F3 Jupiter coupled with QMS 403C (Netzsch).

3.5.2.2 Sievert-type apparatus for tank scale

Titration measurements were carried out using a test station automatically controlled by a program created in the Labview® environment (Dansirima et al., 2019), (Thiangviriya et al., 2019), (Thongtan et al., 2018). The small hydrogen storage tanks packed with the compacted samples were assembled with other components of the sample holders for titration measurement (Figure 3.7). The direct-acting plunger solenoid valves (a Bürkert Type 0255) were used to control hydrogen consumption and liberation during de/rehydrogenation. The pressure change during the experiments was detected by a pressure transducer (0–3000 psig, an OMEGA Engineering PX309–3KGI) . Temperature, pressure, and mass flow rate profiles were transferred to the computer using the module data loggers (a National Instruments NI USB-6009 and a Wisco AI210). Hydrogenation was carried out at isothermal conditions (Tset = 330 °C) under 10-15 bar H₂. Dehydrogenation was at Tset = 330 °C and began with the hydrogen pressure of 15 bar, remaining after hydrogenation. A mass flow controller (MFC, a Bronkhorst EL-FLOW selected F-201CV) with the operating range of 0–1.0 standard L/min (SLM) was used to measure the content of hydrogen desorbed.

The volume of hydrogen gas was achieved by integrating the peak area of hydrogen mass flow rate (SLM) versus time (min) plot. Total hydrogen storage capacity, defined as the combination of material hydrogen capacity and hydrogen content remaining after absorption was calculated as following equations.

$$
V_{STP} = \frac{P_s V_s T_{STP}}{T_s P_{STP}}
$$
 (3.1)

$$
n_{\text{H}_2} = \frac{V_{\text{STP}}}{22.4 \text{ L} \cdot \text{mol}^{-1}} \tag{3.2}
$$

H₂ capacity (wt. %) =
$$
\frac{n_{\text{H}_2} \times 2.016 \text{ g/mol}}{\text{sample weight (g)}} \times 100
$$
 (3.3)

where V_{STP} (L) and V_{s} (SL) are volumes of hydrogen gas at standard temperature and pressure condition (STP, $T_{\text{STP}} = 273.15$ K and $P_{\text{STP}} = 1.0133$ bar) and at the standard condition of MFC ($T_s = 296.15 \text{ K}$ and $P_s = 1.0156 \text{ bar}$), respectively. n_{H_2} (mol) is hydrogen mole and standard molar volume is 22.4 L/mol.

Figure 3.7 Schematic diagram of Sievert-type apparatus.

3.6 References

- Dansirima, P., Thiangviriya, S., Plerdsranoy, P., Utke, O., and Utke, R. (2019). Small hydrogen storage tank filled with $2LiBH_{4}$ - MgH₂ nanoconfined in activated carbon: reaction mechanisms and performances. *Int. J. Hydrogen Energy, 44,* 10752-10762.
- Thiangviriya, S., Plerdsranoy, P., Sitthiwet, C., Dansirima, P., Thongtan, P., Eiamlamai, P., Utke, O., and Utke, R. (2019). MgH₂-TiF₄-MWCNTs based hydrogen storage tank with central heat exchanger. *Int. J. Hydrog. Energy 44,* 20173–20182.
- Thongtan, P., Dansirima, P., Thiangviriya, S., Thaweelap, N., Suthummapiwat, A., Plerdsranoy, P., and Utke, R. (2018). Reversible hydrogen sorption and kinetics of hydrogen storage tank based on MgH_2 modified by TiF₄ and activated carbon. *Int. J. Hydrogen Energy, 43,* 12260-12270.

CHAPTER IV RESULTS AND DISCUSSION

4.1 Compacted LiNH² -LiH doped with TiF⁴ and MWCNTs

Dehydrogenation of compacted samples is characterized by the simultaneous DSC-TG-MS technique. Compacted LNL shows two-step decomposition at 246 and 416 ^oC corresponding to H₂-MS signals and storage capacities of 1.7 and 4.1 wt. % H₂, respectively (Figure 4.1(A)).

Figure 4.1 Simultaneous DSC-TG-MS results during dehydrogenation of LNL (A) and LNL -TiF₄-CNT (B).

From the previous reports, the decomposition of LiNH₂-LiH presents at 150-450 °C with NH₃ release at T > 300 °C, indicating a slow decomposition rate of LiNH₂ and deficient interface of NH₃ and LiH to produce Li₂NH and H₂ (Nayebossadri et al., 2011), (Dong et al., 2015), (Fernandez Albanesi et al., 2013). In this study, compacted LNL dehydrogenated at 150-450 °C without NH₃ release. This is because high compaction pressure results in a slow decomposition rate of LiNH₂ and poor NH₃ diffusion. In the case of compacted LNL-TiF₄-CNT, a single-step reaction shows onset and main dehydrogenation temperatures at 150 and 250 °C, respectively, with H₂ capacity of 4.5 wt. % (Figure 4.1.(B)). The theoretic<mark>al</mark> capacity of LNL-TiF₄-CNT is 5.85 wt. % H₂ according to Ti F_4 and MWCNTs loading contents (10 wt. %) and the theoretical capacity of LiNH₂-LiH (6.5 wt. % H₂). By doping with TiF₄ and MWCNTs, hydrogen content liberating from compacted LiNH₂-LiH at ~35<mark>0</mark> °C increases from 1.7 to 4.5 wt. % H₂ (26-77% of theoretical capacity) (Figure 4.1). Kinetic improvement can be described by the catalytic effect of TiF_4 and the enhanced hydrogen diffusion and thermal conductivity from MWCNTs (Thiangviriya et al., 2019). However, the increase of hydrogen permeability probably favors NH₃ diffusion as observed in signals of hydrogen and NH₃ (1.5 wt. %) at T > 400 °C dur<mark>ing d</mark>ehydrogenation of compacted LNL-TiF₄-CNT (Figure 4.1(B)).

Furthermore, de/rehydrogenation kinetics of these samples are investigated. Due to the signal of NH₃ detected at $T > 400$ °C from compacted LNL-TiF₄-CNT (Figure 4.1(B)), hydrogen desorption and absorption are carried out under isothermal at setting temperature (Tset) of \sim 335 °C to avoid NH₃ release. As-prepared pellets are heated from room temperature to Tset under hydrogen pressure of ~20 bar to prevent dehydrogenation. When an isothermal condition is obtained, hydrogen gas is liberated from the tank with constant flow rate of 50 standard cc/min (sccm). When dehydrogenation starts, sample temperatures reduce due to endothermic reaction. Dehydrogenation of compacted LNL tank begins at t~6 min under the system pressure (Psys) of 7.5 bar H_2 (Figure 4.2).

.

Figure 4.2 Temperature, pressure, and hydrogen flow rate profiles during dehydrogenation of small hydrogen storage tanks containing compacted LNL (A) and LNL -TiF₄-CNT (B).

Complete dehydrogenation is obtained with total and material storage capacities of 2.77 and 1.9 $\,$ wt. % H_2 , respectively. The obtained material capacity corresponds to 1.7 wt % H_2 released from the compacted LNL at T < 300 °C detected by simultaneous DSC-TG-MS result (Figure 4.1(A)). For compacted LNLTiF₄- CNT tank, dehydrogenation starts at t~7 min under Psys of 8.0 bar H₂ (Figure 4.2(B)). Long plateau range (~20 min) with a constant hydrogen flow rate (50 sccm) up to 30 min confirm effective desorption. Total and material hydrogen capacities of 5.50 and 4.70 wt.% H_2 , respectively, agree with simultaneous DSC-TG-MS results (4.5 wt. % H₂) (Figure 4.1(B)). Therefore, the dehydrogenation kinetics of compacted was improved due to both catalytic effects of TiF₄ and hydrogen diffusion from MWCNTs. Rehydrogenation is continuously performed at isothermal conditions (Tset = 333-334 ◦C) under 10-20 bar H₂. When hydrogen pressure is app<mark>li</mark>ed to <mark>t</mark>he storage tank, temperatures rise rapidly to equilibrium temperatures (Teq) of 334-347 and 359-395 °C, in agreement with equilibrium pressure (Peq) of 3.5-5 and 7-8.5 bar H₂ of compacted LNL and LNL-TiF₄-CNT tanks, respectively (Luo et al., 2005) (Figure 4.3).

Figure 4.3 Temperature and pressure profiles during rehydrogenation of small hydrogen storage tanks containing compacted samples of LNL (A) and LNL-TiF₄-CNT (B).

Peq of compacted LNL-TiF₄-CNT is greater than that of compacted LNL and approaches the applied pressure (10-16 bar H_2), indicating superior hydrogen diffusion (Figure 4.3 (B)). The anisotropic alignment of MWCNTs in compacted LNL-TiF₄-CNT might provide

transporting channels for hydrogen in all directions of the compacted samples. The latter favors hydrogen diffusion during desorption rather than absorption due to hydrogen being applied from only one direction (top of the tank). In addition, initial temperatures at all positions (326-331 $^{\circ}$ C) in compacted LNL tank are lower than Tset (334 °C) (Figure 4.3(A)), whereas those of compacted LNL-TiF₄-CNT tank (330-337 °C) are comparable to Tset (333 $^{\circ}$ C) (Figure 4.3(B)). These results confirm superior thermal conductivity of compacted LNL-TiF₄-CNT tank. Complete rehydrogenation of both tanks is confirmed by the reduction of temperatures to the initial values within 30 min.

Figure 4.4 Dehydrogenation kinetics and reversibility during cycling of small hydrogen storage tanks containing compacted LNL and LNL-TiF₄-CNT.

Furthermore, kinetics and reversibility of compacted LNL and LNL-TiF₄-CNT tanks are evaluated. From Figure 4.4, $(1.90-2.40 \text{ wt. } \% \text{ H}_2 \text{ or } 29-37\% \text{ of theoretical }$ value) are achieved from compacted LNL tank upon five hydrogen de/rehydrogenation cycles. In the case of compacted LNL-TiF₄-CNT tank, 4.70 wt. % H_2 is obtained within 100 min during the 1^{st} cycle. However, the hydrogen capacities reduce to 3.10-3.40 wt. % H_2 (53-58% of theoretical value) with slower kinetics during the 2^{nd} -6th cycles. Nevertheless, reversible hydrogen capacity increases from 37 to 58% of theoretical values after doping with $TiF₄$ and MWCNTs.

Reaction mechanisms during de/rehydrogenation of both tanks are studied by PXD and FTIR techniques. From Figure 4.5(a), as-prepared LNL reveals diffraction patterns of LiNH₂ and LiH, implying no reaction between hydride materials during ball milling. Upon cycling (the 1st- 2nd de/rehydrogenation), diffraction patterns of LiNH₂, Li₂NH, LiH, and Li₂O are observed (Figure 4.5(b-d)). For FTIR results, all samples show vibrational peaks of LiNH₂ at 3314 and 3259 cm⁻¹, while de/rehydrogenated pellets show the signal of Li₂NH at 3252 and 3184 cm⁻¹, corresponding to asymmetric and symmetric stretching of N-H bonds, respectively (Figure 4.6(a-d)) (Kojima et al., 2005). The signals of LiNH₂, Li₂NH, and LiH detected in de/rehydrogenated pellets hint at incomplete hydrogen desorption and poor reversibility of compacted LNL tank, in agreement with the inferior hydrogen content released and reproduced to theoretical value during cycling (Figure 4.4). The formation of Li₂O is due to oxidation of Li-containing phases with oxygen and/or humidity during sample preparation.

Figure 4.5 PXD spectra of as-prepared (a), dehydrogenated (b), rehydrogenated (c), and the 2nd dehydrogenated (d) samples of compacted LNL located at the middle of the tank (TC2).

In the case of compacted LNL-TiF₄-CNT, as-prepared powder sample shows the diffraction peaks of LiNH₂, LiH, and unknown phase (Figure 4.7(a)). When the reaction occurred, dehydrogenated pellet reveals characteristic peaks of Li₂NH and LiF (Figure 4.7(b)), hinting at complete dehydrogenation and reaction between TiF₄ and Licontaining phases, respectively.

Figure 4.6 FTIR spectra of as-prepared (a), dehydrogenated (b), rehydrogenated (c), and the 2nd dehydrogenated (d) samples of compacted LNL located at the middle of the tank (TC2).

Li₂O and LiOH signals are described by the oxidation/hydrolysis of Li-containing phases during the experiments. After rehydrogenation, not only LiNH₂ and LiH are reproduced but also Li₅TiN₃ and unknown phases (Figure 4.7(c)). From the previous results, Li₅TiN₃ formed by nanocontact between LiNH₂ and Ti could absorb excess NH₃ to form Li₅TiN₃(NH₃)_x, acting as a catalyst to enhance hydrogen desorption properties of Li-N-H system (Teng et al., 2011). This phase favored desorption kinetics and reversibility of compacted LNL-TiF₄-CNT tank as compared with compacted LNL (Figure 4.4).

× LiH √ LiF ↓ Li, O + LiOH Ø Li, TiN, ? unknown * sample holder \otimes LiNH \downarrow Li NH

Figure 4.7 PXD spectra of as-prepared (a), dehydrogenated (b), rehydrogenated (c), and the 2nd dehydrogenated (d) samples of compacted LNL-TiF₄-CNT located at the middle of the tank (TC2).

For the 2^{nd} desorption, diffraction patterns of LiNH₂ and LiH are recovered together with Li₂NH, LiF, Li₂O, and LiOH (Figure 4.7(d)). FTIR spectrum of as-prepared sample shows the characteristic vibrations of $LIMH_2$ (3314 and 3258 cm⁻¹) and Li_2NH (3252 and 3184 cm⁻¹) (Figure 4.8 (a-d)). For the dehydrogenated and rehydrogenated samples, the vibration of Li₂NH (Figure 4.8(b)) and LiNH₂ (Figure 4.8(c)) are observed, respectively. Thus, compacted LNL-TiF₄-CNT not only decomposes completely but also can be reversible. However, incomplete dehydrogenation during the 2nd cycle is confirmed by mixed vibrational peaks of LiNH₂ and Li₂NH (Figure 4.8(d)). This leads to the reduction of hydrogen capacity during the 2^{nd} - 6^{th} with respect to the 1^{st} cycle of compacted LNL -Ti F_4 -CNT tank.

Figure 4.8 FTIR spectra of as-prepared (a), dehydrogenated (b), rehydrogenated (c), and the 2nd dehydrogenated (d) samples of compacted LNL-TiF₄-CNT located at the middle of the tank (TC2).

De/rehydrogenation performances at different positions (TC1-TC3) inside the compacted LNL-TiF₄-CNT tank are investigated. As-prepared powder showed the vibrational peaks of LiNH₂ (3314 and 3260 cm⁻¹) and Li₂NH (3250 and 3180 cm⁻¹). For dehydrogenated samples, all positions present mainly the vibration of Li₂NH with slight signal of LiNH₂ Figure 4.9. Therefore, reaction rate and mechanisms inside the compacted LNL-TiF₄-CNT tank are comparable. Moreover, the expansion/contraction of the pellet sample upon de/rehydrogenation cycles results in the deformation and/or cracks (Figure 4.10). It should be noted that both LNL and LNL-Ti F_4 -CNT show good mechanical stability upon cycling.

Figure 4.9 FTIR spectra of as-prepared and dehydrogenated samples at different positions inside the tank containing compacted LNL-TiF₄-CNT.

Figure 4.10 Pictures of compacted LNL and LNL-TiF₄-CNT at as-prepared state (A and C, respectively) and after cycling (B and D, respectively).

4.2 LiH-sandwiched LiNH² -LiH-TiF⁴ -MWCNTs pellets

From the previous work, NH_3 emission upon cycling might still occur due to pellet deformation (Figure 4.10). In this study, we would like to propose the idea of sandwiching LiNH₂-LiH with LiH layers to prevent NH_3 emission during de/rehydrogenation cycles. To enhance hydrogen sorption kinetics and gas diffusion, TiF₄ and MWCNTs are added into the middle layer of LiNH₂-LiH, while the outer layers of LiH are doped with 1 wt. % MWCNTs. The pellets of LiH-sandwiched LiNH₂-LiH contain 10-30 wt. % of MWCNTs-doped LiH layers. Dehydrogenation kinetics, reversibility, and hydrogen exchange reactions as well as the suppression of $NH₃$ release upon cycling of the LiH-san<mark>dwich</mark>ed LiNH₂-LiH pellets are investigated. The decompositions of as-prepared LNL and LiH-sandwiched LNL pellets are characterized by simultaneous DSC-TG-MS technique as shown in Figure 4.11. All pellet samples reveal comparable onset desorption temperatures at about 200 °C. LNL pellet shows two-step dehydrogenation at 260 and 484 °C together with NH₃ release during the second step. In the case of LiH-sandwiched LNL pellets, single-step dehydrogenation at 260–262 \degree C with no sign of NH₃ release are observed. For the percent weight loss, LNL pellet represents the combination of H₂ and NH₃ release (6.83 wt. %), while LiHsandwiched LNL pellets liberate only H₂ (4.12–5.00 wt. %) (Figure 4.11). Considering comparable desorption temperatures of all LiH-sandwiched LNL pellets, the different amounts of MWCNTs-doped LiH layers (10-30 wt. %) sandwiching at both sides of LNL pellet do not affect the desorption temperature of LiNH₂-LiH composite during the first dehydrogenation. However, high content of MWCNTs-doped LiH content (30 wt. %) results in deficient hydrogen capacity of LNL-30% LiH (3.50 wt. %) with respect to other LiH-sandwiched LNL samples.

Figure 4.11 Simultaneous DSC-TG-MS results of LNL, LNL-10% LiH, LNL-20% LiH, and LNL-30% LiH pellets. 1 Co

Since the dehydrogenation character of LNL-20%LiH is in between those of LNL-10% LiH and LNL-30% LiH. Further studies based on dehydrogenation kinetics, reversibility, and suppression of NH_3 release focus on the pellet samples with the lowest and the highest contents of MWCNTs-doped LiH (LNL-10% LiH and LNL-30% LiH). From Figure 4.12, total and material hydrogen capacities during the $1st$ cycle of $LNL-10\%$ LiH pellet are 4.97 and 3.90 wt. % H_2 , respectively, while those of LNL-30% LiH pellet are 4.27 and 3.67 wt.% H₂, respectively. These agree with simultaneous DCS-TG-MS results at 330 °C (4.0 and 3.50 wt. % H_2 , respectively) (Figure 4.11). Both LiHsandwiched LNL pellets are rehydrogenated under 10-15 bar, which two-step exothermic reaction are observed at all positions (TC1-TC3) (Figure 4.13).

Figure 4.12 Dehydrogenation kinetics of LNL-10% LiH and LNL-30% LiH pellets.

Considering reversibility, 3.90 and 3.67 wt. $\%$ H₂ are observed during the 1st cycle of LNL-10% LiH and LNL-30% LiH, respectively (Figure 4.14). During the 2nd-6th cycles, comparable total and material capacities in the ranges of 2.9–3.3 and 2.3–2.6 wt. % H₂, respectively, are obtained from LNL-10% LiH and LNL-30% LiH, respectively.

Figure 4.13 Rehydrogenation kinetics of LNL-10% LiH and LNL-30% LiH pellets.

Figure 4.14 Dehydrogenation kinetics and reversibility of LNL-10% LiH and LNL-30% LiH pellets.

After cycling, the 6th rehydrogenated pellets of both LiH-sandwiched LNL samples are investigated by simultaneous DSC-TG-MS technique to confirm $NH₃$ suppression. Both pellet samples reveal two-step decomposition (Figure 4.15). LNL-10% LiH releases both H₂ and NH₃ at the same temperature ranges at ∼250 and 400 ^oC, resulting in total weight loss of 8.20 wt. % (Figure 4.15(A)). While LNL-30% LiH provides only H₂-MS signal at the same temperature together with the total capacity of 4.10 wt. % H₂ (Figure 4.15(B)). LNL-10% LiH and LNL-30% LiH pellets present percent weight losses of 2.40 and 2.10 wt. %, respectively at 330 $^{\circ}$ C, approaching the contents of gases desorbed during the 2nd-6th cycles (2.3–2.6 wt. %) (Figure 4.14). Superior dehydrogenation performance upon cycling of LNL-30% LiH to LNL-10% LiH pellet can be described by the effective suppression of NH_3 release due to sufficient LiH content and mechanical stability upon cycling of LiH layer. Figure 4.16(A) shows that LNL-10% LiH pellet with the thin layers of MWCNTs-doped LiH has some defects and/or cracks on the MWCNTs-doped LiH layer after cycling, resulting in NH_3 release (Figure 4.16(A)).

Figure 4.15 Simultaneous DSC-TG-MS results of the 6th rehydrogenated pellets of LNL-10% LiH (A) and LNL-30% LiH (B).

In the case of LNL-30% LiH, the dense pellet of LNL layer is sandwiched with the thick layers of MWCNTs-doped LiH (Figure 4.16(B)), leading to suppression of NH₃ release upon cycling. Furthermore, chemical compositions of as-prepared, dehydrogenated, and rehydrogenated states of both LiH-sandwiched LNL samples are characterized by PXD, FTIR, and XPS techniques. Due to comparable dehydrogenation kinetics during the 2nd-6th cycles, the 6th de/rehydrogenated pellets are selected to represent the hydrogen exchange reaction upon cycling. PXD pattern of as-prepared LNL-10% LiH pellet shows the diffractions pattern of LiNH₂, LiH, Li₂O, and LiTi₂O₄, while the 5th dehydrogenated sample reveals the signals of Li₂NH, LiH, Li₂O, and LiTi₂O₄ (Figure 4.17(A)(a-b)). For after the 6th rehydrogenation, the diffraction peaks of LiNH₂ and Li₅TiN₃ are observed together with other phases, similar to as-prepared and dehydrogenated samples (LiH, Li₂O, and LiTi₂O₄) (Figure $4.17(A)(c)$).

Figure 4.16 Microscope images of as-prepared and the 6th rehydrogenated pellets of LNL-10% LiH (A) and LNL-30% LiH (B).

Considering the FTIR spectra, as-prepared and the 6th rehydrogenated samples show vibrational peaks of LiNH₂ at 3314 and 3260 cm⁻¹ (Figure 4.17(B)(c)). For the 5th dehydrogenated sample, the vibration of Li₂NH at 3252 and 3183 cm⁻¹ is observed in Figure 4.17(B)(b)). The excess of LiH from the MWCNT-doped LiH layers leads to the formation of LiTi₂O₄. Zha<mark>n</mark>g et al. (2015) proposed that LiTi₂O₄ could enhance the mobility of Li+ ions between LiH and LiNH₂ solid phases, improving dehydrogenation of the LiNH₂-LiH composites. Besides, Li_sTiN₃ obtained from the nanocontact between LiNH₂ and Ti (from TiF₄) could absorb the excess NH₃ to form Li₅TiN₃(NH₃)_x, acting as a catalyst for enhancing hydrogen desorption properties. Thus, these formations of several irreversible phases of Li₂O, LiTi₂O₄, and Li₅TiN₃ phases affect the reduction of gas content upon cycling. For the sample of LNL-30% LiH, as-prepared pellet shows the diffractions pattern of LiNH₂ and LiH (Figure 4.18(A)(a)), while the $5th$ dehydrogenated pellet reveals the signals of Li₂NH*, Li₂O, LiH, and LiF together with LiH_{1-x}F_x, which the diffraction is in between those of LiH and LiF (Figure 4.18(A)(b)). The formation of LiH_{1-x}F_x is in accordance with the confirmed reaction between NaH and NaF to form NaH_{1-x}F_x, which the diffractions of NaH_{1-x}F_x located between those of NaH and NaF (Humphries et al., 2016).

5th dehydrogenated (b), and the 6th rehydrogenated (c) states of LNL-10%LiH.

In the PXD result, diffraction peaks of Li₂NH^{*} are slightly shifted to lower 2θ (~0.1°) with respect to Li₂NH (Figure 4.18(A)(b)). This indicates that the enlargement of Li₂NH unit cell is probably due to the substitution of F atoms for H in Li₂NH structure to form

Li₂NH_{1-y}F_y upon cycling, identical to the formation of LiH_{1-x}F_x (Figure 4.18(A)(b)). For the sample of the 6th rehydrogenation, the characteristic peaks of LiNH₂, LiTi₂O₄, LiH, and unknown phase are observed (Figure 4.18(A)(c)), indicating the successful reversibility of the LiNH₂-LiH composite.

Figure 4.18 PXD patterns (A), FTIR spectra (B), and N 1s XPS spectra (C) of the pellets as prepared (a), the $5th$ dehydrogenated (b), and the $6th$ rehydrogenated (c) states of LNL-30% LiH and as-milled $LINH₂$ powder samples.

FTIR spectra of as-prepared and the $6th$ rehydrogenated LNL-30%LiH also show comparable vibrations with those of LNL-10%LiH (Figure 4.18(B)(a) and (c)), i.e., asymmetric and symmetric N-H stretching of LiNH₂ at 3314 and 3260 cm⁻¹, respectively (Figure $4.18(B)(a)$ and (c)) (Kojima et al., 2005). However, the $5th$ dehydrogenated LNL-30% LiH shows not only characteristic peaks of Li₂NH at 3254 and 3184 cm⁻¹ but also a shoulder peak at the lower wavenumber of 3165 cm⁻¹ (Figure 4.18(B)(b)). This indicates that another N-H bond of Li₂NH with the enhanced bond length is probably attributed to the increase of electronegativity of the neighboring atom (F atom). This suggests that fluorine may substitute for hydrogen in Li₂NH to produce Li₂NH_{1−y}F_y, corresponding to PXD result. Furthermore, XPS experiments are conducted to confirm the formation of Li₂NH_{1−y}F_y. From Fig<mark>u</mark>re 4.<mark>1</mark>8(C), N 1s XPS spectrum of as-milled LiNH₂ shows the characteristic peak of LiNH₂ and Li₂NH at 398 and 398.6 eV, respectively. The appearance of Li₂NH in as-milled LiNH₂ can be due to the partial decomposition of LiNH₂ during the milling process. For the $5th$ dehydrogenated pellet, signals of Li₂NH at ∼399 eV together with the peak at higher binding energy at 399.7 eV are observed (Figure 4.18(C)(b)). Chemical bonding with a more electronegative atom leads to the decrease of the electron density in the valence shell of N atom, resulting in the enhanced binding energy of the N 1s orbital. Therefore, the N 1s XPS peak at higher binding energy (399.7 eV) with respect to that of N-H bond likely belonging to Li₂NH (399 eV) indicates the bonding between N and electronegative atom (i.e., N-F bond in this study). This fluorine substitution of hydride materials is possible due to the comparable ionic size of the hydride and fluoride ions as well as the structural similarity of their compounds (Humphries et al., 2016), (Messer, 1970). Thus, LNL-30%LiH provides not only sufficient LiH content to consume $NH₃$ but also the formation of new reactive phases of LiH_{1-x}F_x and Li₂NH_{1-y}F_y upon cycling. This leads to positive effects on de/rehydrogenation kinetics and reversibility of LiNH₂-LiH, which is confirmed by hydrogen contents reproduced upon cycling and the reaction mechanisms of F-substituted phases on kinetic properties.

4.3 References

- Davies, R. A. , and Anderson, P. A. (2015) . Synthesis and characterization of two new amide chloride compounds: potential H₂ storage materials. Int. J. Hydrogen *Energy, 40,* 3001–3005.
- Dong, B.X., Ge, J,. Teng, Y.L., Gao, J.J., and Song, L. (2015) Improved dehydrogenation properties of the LiNH₂-LiH system by doping with alkaline metal hydroxides. *J. Mater. Chem, 3,* 905-911.
- Fernandez Albanesi, L., Arneodo Larochette, P., and Gennari, F.C. (2013). Destabilization of the LiNH₂-LiH hydrogen st<mark>orage</mark> system by aluminum incorporation. Int. J. *Hydrogen Energy, 38,* 12325-12334.
- Humphries, T.D., Sheppard, D.A., Rowles, M.R., Sofianos, M.V., and Buckley, C.E. (2016). Fluorine substitution in sodium hydride for thermal energy storage applications. *J. Mater. Chem. A, 4,* 12170–12178.
- Kojima,Y., and Kawai, Y. (2005). IR characterizations of lithium imide and amide. *J. Alloys Compd, 395,* 236-239.
- Luo, W., and R€onnebro, E. (2005) Towards a viable hydrogen storage system for transportation application. *J. Alloys Compd, 404-406,* 392-395.
- Messer, C.E. (1970). Hydrides versus fluorides: structural comparisons. *J. Solid State Chem, 2,* 144–155. 1 c \cap
- Nayebossadri, S., Aguey-Zinsou, K.F., and Guo, Z.X. (2011). Effect of nitride additives on Li-N-H hydrogen storage system. *Int. J. Hydrogen Energy, 36,* 7920-7926.
- Teng, Y.L. Ichikawa, T., and Kojima, Y. (2011). Catalytic effects of Ti-Li-N compounds in the Li-N-H system on hydrogen desorption properties. *J. Phys. Chem. C, 115,* 589-593.
- Thiangviriya, S., Sitthiwet, C., Plerdsranoy, P., Capurso, G., Pistidda, C., Utke, O., Dornheim, M., Klassen, T., and Utke, [R.](https://www.sciencedirect.com/author/56986465000/rapee-utke) (2019) . Hydrogen sorption kinetics, hydrogen permeability, and thermal properties of compacted $2LiBH_{4}$ - MgH₂ doped with activated carbon nanofibers. *Int. J. Hydrogen Energy, 44,* 15218- 15227.

Zhang, T., Isobe, S., Matsuo, M., Orimo, S.I., Wang, Y., Hashimoto, N., and Ohnuki, S. (2015) . Effect of lithium ion conduction on hydrogen desorption of LiNH₂-LiH solid composite. *ACS Catal, 5,* 1552–1555.

CHAPTER V CONCLUSIONS

De/rehydrogenation performances, kinetics, and reaction mechanisms of small hydrogen storage tank containing compacted LiNH₂-LiH doped with TiF₄ and MWCNTs were investigated. The enhanced dehydrogenation kinetics was confirmed by the alteration of reaction pathway at lower temperature range of $150-350$ °C. Moreover, hydrogen content released and reproduced at isothermal condition (Tset = $335 \text{ }^{\circ}\text{C}$) increased from 1.90-2.40 to 3.10- 4.70 wt. % H_2 . Effective dehydrogenation was confirmed by the prolonged plateau temperature range and constant hydrogen flow rate (50 sccm). Upon cycling, Li $_3$ TiN₅ obtained from the nanocontact between LiNH₂ and Ti absorbed NH₃ to produce Li₅TiN₃(NH₃)_x, acting as catalyst for Li-N-H system. To further reduce NH₃ emission <mark>up</mark>on cycling, the co<mark>mp</mark>osite of LiNH₂-LiH doped with TiF₄-MWCNTs was sandwiched with MWCNTs-doped LiH layers (10–30 wt. %). During the first dehydrogenation, comp<mark>acted LiNH₂-LiH rele</mark>ased NH₃ along with H₂, while LiHsandwiched LiNH₂-LiH pelle<mark>ts desorbed hydrogen</mark> wit<mark>hou</mark>t NH₃. Kinetic properties of the 1st de/rehydrogenation of LiH- sandwiched LiNH₂-LiH pellets (10 and 30 wt. % MWCNTs-doped LiH) were comparable (3.5–4.0 wt. % H₂ within 60 min). Upon the 2nd-6 th cycles, the gases desorbed from the pellet samples with 10 and 30 wt. % MWCNTsdoped LiH (2.3-2.6 wt. %) were mixed H_2+NH_3 and only H_2 , respectively. Deficient reversible hydrogen contents were described by the formation of irreversible phases (Li₂O, LiTi₂O₄, and Li₅TiN₃). The effective suppression of NH₃ obtained from the pellet with 30 wt. % MWCNTs-doped LiH was due to sufficient content and mechanical stability of LiH layers. Moreover, F substitution for H in LiH and Li₂NH to form LiH_{1-x}F_x and Li₂NH_{1−y}F_y, respectively, were observed during dehydrogenation of the pellet with 30 wt. % MWCNTs-doped LiH. These phases likely benefited de/rehydrogenation kinetics and reversibility of the Li-N-H system.

CURRICULUM VITAE

Name Miss Chongsutthamani Sitthiwet **Date of Birth** 9th August 1991 **Place of Birth** Nakhonrachsima, Thailand **Education** (Include dates, Major and Details of Degrees, University) 2010-2013 B.Sc. (Chemistry), Rajamankala University of Technology Isan. Thailand 2014-2022 Ph.D. (Chemistry), Suranaree University of Technology, **Thailand**

Publications

- **Sitthiwet, C**., Plerdsranoy, P., Dansirima, P., Eiamlamai, P., Utke, O., Utke, R. (2020) Improved hydrogen sorption kinetics of compacted LiNH₂-LiH based small hydrogen storage tank by doping with TiF₄ and MWCNTs. Journal of Alloys and Compounds, 832, 155026.
- Sitthiwet, C., Plerdsranoy, P., Utke, O., Nijpanich, S., Chanlek, N., Eiamlamai, P., Utke, R. (2022) Hydrogen sorption kinetics and suppression of NH₃ emission of LiHsandwiched LiNH₂-LiH-TiF₄-MWCNTs pellets upon cycling. Journal of Alloys and Compounds. 909, 164673.91110000000000

