TABLE OF CONTENTS

	Page
ABSTRACT(THAI)	
ABSTRACT(ENGLISH)	ا
ACKNOWLEDGEMENT	
TABLE OF CONTENTS	IV
LIST OF TABLES	VI
LIST OF FIGURES	VII
SYMBOLS AND ABBREVIATIONS	X
CHAPTER I INTRODUCTION	
1.1 Background	1
1.2 Purpose of the Research	4
1.3 Scope of the Research	5
1.4 Research Questions	5
1.5 Expected Contribution of the Research	6
CHAPTER II LITERATURE REVIEWS	
2.1 Previous Studies on Recycled Concrete Aggregate (RCA)	7
2.2 Influence of Replacing RCA in Concrete as Coarse Aggregate	8
2.3 Hemp Fiber Treatment	12
2.4 Previous Studies on Hemp Fiber Reinforced Concrete	13
2.5 Knowledge Gap and Proposed Research on Hemp Fiber	14
CHAPTER III RESEARCH METHODOLOGY	
3.1 Materials	17
3.1.1 Cement	17
3.1.2 Fine and Coarse Aggregate	17

TABLE OF CONTENTS (Continued)

	Page
3.1.3 Hemp Fiber	20
3.2 Methodology	20
3.2.1 Mixing Proportions	20
3.2.2 Concrete Setting Time	23
3.2.3 Compressive and Flexural Tests	24
3.2.4 Flexural Fatigue Test	26
3.2.4 SEM Analysis	26
CHAPTER IV RESULTS AND DISCUSSIONS	
4.1 Concrete Setting Time	28
4.2 Compressive Strength	30
4.3 Flexural Strength	35
4.4 Mechanical Properties of HFRC	43
4.5 SEM Analysis of HFRC	49
4.6 Flexural Fatigue of HFRC	54
CHAPTER V CONCLUSIONS AND RECOMMENDATIONS	
5.1 Conclusion	59
5.2 Recommendation	62
REFERENCES	64
APPENDIX A	70
LIST OF PUBLICATIONS	71
BIOGRAPHY	88

LIST OF TABLES

Table	Page
2.1 Physical properties of fine and coarse aggregate (Safiuddin et al., 2021)	9
2.2 Concrete mix proportions (Safiuddin et al., 2011).	9
3.1 Chemical composition of ordinary Portland cement (OPC)	17
3.2 Basic physical and engineering properties of fine, coarse aggregate, PET and	
Crumb Rubber.	18
3.3 Mixing proportion of waste polymer using NRL	21
4.1 Mechanical properties of HFRC and waste polymer concrete using NRL	48

LIST OF FIGURES

Figure	Page
2.1 Gradation curve of natural coarse aggregate and recycled concrete aggregate	5
(Safiuddin et al., 2011)	8
2.2 Replacement of RCA in concrete slump flow (Safiuddin et al., 2011)	10
2.3 Replacement of RCA in compressive strength (Safiuddin et al., 2011)	10
2.4 Replacement of RCA in flexural strength (Safiuddin et al., 2011)	11
2.5 Replacement of RCA in modulus of elasticity (Safiuddin et al., 2011)	11
2.6 Replacement of RCA in splitting tensile strength (Safiuddin et al., 2011)	12
2.7 SEM of untreated hemp fiber and 6% NaOH treatment hemp fiber (Peletano	vic et
al. 2021)	13
3.1 Particle size distributions of sand, crushed limestone, recycled concrete	
aggregate, crushed limestone + sand, and recycled concrete aggregate + sand	19
3.2 Particle size distributions of sand, crushed limestone, and waste polymer	19
3.3 Hemp fiber preparation and treatment process.	20
3.4 Hemp Fiber Concrete Mixing: (a) mortar with hemp fiber (b) hemp fiber conc	rete
(c) slump test.	23
3.5 Penetration Resistance Apparatus and Concrete Sample	24
3.6 Compressive Strength Test Machine	25
3.7 Flexural Strength Test Machine.	25
3.8 Flexural Fatigue Test Machine.	26
3.9 Scanning Electron Microscopy Machine	27
4.1 Curve of Initial and final setting time of HFRC using NCA.	29
4.2 Curve of Initial and final setting time of HFRC using RCA	29
4.3 Initial and final setting time of HFRC.	30

LIST OF FIGURES (Continued)

Figure	Page
4.4 Strength development of compressive strength using NCA and RCA	32
4.5 Stress-stain curve at (a) 28-days and (b) 7-days using RCA	33
4.6 Stress-stain curve at (a) 28-days and (b) 7-days using NCA	34
4.7 Compressive failure of hemp fiber reinforced concrete using NCA	35
4.8 Compressive failure of hemp fiber reinforced concrete using RCA	35
4.9 Strength development of compressive strength of waste polymer concrete	using
NRL	37
4.10 Stress-stain curve at 28-days of waste polymer concrete using NRL	37
4.11 Strength development of flexural strength using NCA and RCA	39
4.12 Flexural Stress-deformation curve of (a) 28-days and (b) 7-days using RCA.	40
4.13 Flexural Stress-deformation curve of (a) 28-days and (b) 7-days using NCA.	41
4.14 Flexural failure of hemp fiber reinforced concrete using NCA	42
4.15 Flexural failure of hemp fiber reinforced concrete using RCA	43
4.16 Strength development of flexural strength of waste polymer concrete usir	ng NRL.
	44
4.17 Flexural Stress-deformation curve at 28-days of waste polymer concrete u	ısing
NRL	45
4.18 SEM of RCA-0.0H-FRC, RCA-0.5H-FRC, and RCA-1.0H-FRC.	51
4.19 SEM of NCA-0.0H-FRC, NCA-0.5H-FRC, and NCA-1.0H-FRC	52
4.20 SEM of natural hemp fiber and treatment hemp fiber with NaOH	52
4.21 SEM image of: (a) Normal Concrete, (b) NRL-modified concrete, (c) NRL10V	VP,
and (d) NRL30WP.	53
4.22 Relationship between deformation and N_f under applied flexural stress	56
4.23 Deformation and N_f of NCA and RCA at 80% applied stress ratio	57
4.24 Deformation and N_f of NCA and RCA at 70% applied stress ratio	57

4.25	Deformation	n and N_f of	NCA ar	nd RCA a	at 60%	applied	d stress	ratio	5	57
4.26	Relationship	between	fatigue	life and	stress	ratio of	various	HFRCs	5	38

SYMBOLS AND ABBREVIATIONS

AASHTO = American association of state highway and

transportation officials

 Al_2O3 = Aluminum oxide

ASTM = American society for testing and materials

b = Width of beam specimen

CaO = Calcium silicate hydrate

CSH = Calcium silicate hydrate

d = Depth of beam specimen

DoH-S = Department of highway standard

DOH = Department of highway, Thailand

EDX = Energy dispersive X-ray

FA = Fine aggregate

 Fe_2O_3 = Iron oxide

 f_f = Flexural strength

FHWA = Federal highway administration

FRC = Fiber reinforced concrete

GPa = Gigapascal

HRWR = High-range water reducer

Kg.m⁻³ = Kilogram per cubic meter

Length from support to support of beam specimen

LOI = Loss on ignition

MEPDG = Mechanistic-empirical pavement design guide

MgO = Magnesium oxide

MJ/m³ = Megajoule per cubic meter

MOR = Modulus of rupture

MPa = Megapascal

MRWR = Medium-range water reducer

SYMBOLS AND ABBREVIATIONS (Continued)

NaOH = Sodium hydroxide

b = Width of beam specimen

CaO = Calcium silicate hydrate

CSH = Calcium silicate hydrate

NCA = Natural coarse aggregate

NCA-H-FRC = Hemp fiber reinforced concrete using natural coarse

aggregate

NCHRP = National cooperative highway research program

NRL = Natural Rubber Latex

 N_f = Number of cycles at failure

OPC = ordinary Portland cement

P = Apply vertical load

PCA = Portland cement association

RCA = Recycled concrete aggregate

RCA-H-FRC = Hemp fiber reinforced concrete using recycled

concrete aggregate

SEM = Scanning electron microscope

SiO₂ = Silicon dioxide

 SO_3 = Sulfur trioxide

SR = Stress ratio

vol. = Volume

W = Water

w/c = Water to cement ratio

wt. = Weight

 ϵ = Strain

 σ = Stress

 \overline{x} = Mean strength value