CONTENTS

Pag	e
. ~ >	-

ABSTRACT IN THAI	
ABSTRACT IN ENGLISH	
ACKNOWLEDGEMENTS	III
CONTENTS	V
LIST OF TABLES	VIII
LIST OF FIGURES	IX
CHAPTER	
I INTRODUCTION	
1.1 Background and motivation	1
1.2 Objectives of the thesis	4
1.3 Outline of the thesis	4
II THEORY AND LITERATURE REVIEW	6
2.1 Inorganic light-emitting diodes (leds)	6
2.2 White and colored leds	7
2.3 Phosphor-converted leds	9
2.4 Composition of the present glass	11
2.4.1 Borate (B ₂ O ₃)	13
2.4.2 Gadolinium oxides (Gd ₂ O ₃)	13
2.4.3 Dysprosium oxides (Dy ₂ O ₃)	14
2.5 Glass forming networks	
2.5.1 Network formers	14
2.5.2 Intermediate	14
2.5.3 Network modifiers	15
2.6 Lanthanides	15

CONTENTS (Continued)

			Page
	2.7	CIE Chromaticity coordination and color correlated temperatur (CCT)	17
	2.8	Scintillation	17
	RES	EARCH METHODLOGY	20
	3.1	Sample preparation	20
		3.1.1 Preparation of Dy_2O_3 doped (host glass)	20
	3.2	Physical properties	21
		3.2.1 The density & Molar volumes	21
		3.2.2 Refractive index	22
	3.3	Structural properties	23
		3.3.1 X-ray diffraction	23
	3.4	Optical and spectral properties	24
		3.4.1 Fourier-transform infrared spectroscopy	24
		3.4.2 UV-Visible spectrophotometer	25
		3.4.3 Photoluminescence technique	26
		3.4.4 X-ray induced luminescence technique	27
		3.4.5 Electroluminescent	27
IV	RES	SULTS AND DISCUSSION	29
	4.1	27.5GD ₂ O ₃ -(72.5-X) B ₂ O ₃ -XDy ₂ O ₃ GLASS SYSTEM	29
		4.4.1 Structural properties of glass	29
		4.4.2 Physical properties	30
		4.4.3 Fourier Transform Infrared Spectroscopy (FTIR)	32
		4.4.4 UV-vis-NIR Spectrophotometer	33
		4.4.5 Absorption Spectra	34
		4.4.6 Energy Transfer	36
		4.4.7 Photoluminescence excitation and emission (PLEs) spectra	36
		4.4.8 Decay Time	

CONTENT (Continued)

Page

	4.4.9 CIE chromaticity coordinates and color correlated	
	temperature (CCT)	
	4.4.10 Application of Blue LED Encapsulation	
V	CONCLUSIONSION	41
REFE	RENCES	42
CURRICULUM VITAE		47

VII

LIST OF TABLES

Tabl	e	Page
2.1	Comparison of advantages and disadvantages of LED	11
2.2	Electron configuration of lanthanide elements and ions104	16
3.1	Chemical composition of GdBDy glass	20
4.1	The density and molar volume results of 27.5Gd $_2O_3$ -(72.5-x) B_2O_3 -xDy $_2O_3$	
	glass system	31
4.2	FTIR band spectral allocations of the glass system composed of	
	27.5Gd ₂ O ₃ -(72.5-x) B ₂ O ₃ -xDy ₂ O ₃	33

LIST OF FIGURES

Figu	re	Page
1.1	The timeline of major discoveries in modern lighting technologies(Adapt-	
	form: GE History, the history of the LED, OSRAM, and Lengthening the day)	3
2.1	LEDs with a traditional 5-millimeter diameter (on the left) and an LED with	
	a high-power lighting	7
2.2	Summary of different concepts to generate white light by primary light	
	sources	7
2.3	The typical spectrum of a blue InGaN LED, a green InGaN LED, and a red	
	AlGaInP LED (ranging from x = 0.0 to about 0.45)	8
2.4	InGaP LED shaped as a truncated inverted pyramid for efficient light extrac-	
	tion	9
2.5	Emission spectra of a white LED comprising a 460 nm-emitting blue InGaN	
	chip and a phosphor as a function of the optical thickness of the YAG:Ce	
	layer	10
2.6	The volume-temperature diagram for a glass-forming liquid	12
2.7	A schematic representation of the scintillator mechanism (STE stands for	
	self-trapped excitons; CB stands for conduction band; VB stands for valence	
	band; CL is for cross luminescence; adapted with permission from	
	(Nikl, M. 2006)	18
2.8	(a) A diagram showing how X-ray imaging is set up. (b) An X-ray image was	
	created with a Rb_2CuCl_3 /PDMS scintillator and a 20-second exposure dura-	
	tion. (c) The intensity profile of the X-ray image with the contrast ratio	
	is considered. The region of interest (ROI) is depicted here by the inserted	
	green rectangle. (d) an X-ray image of a double-wire IQI with $Rb_2CuCl_3/$	
	PDMS scintillator and (e) with a CaWO $_4$ phosphor available in the market-	
	place. (f) Using the results from d) and (e), a plot of the resolution was	
	constructed	19

LIST OF FIGURES (Continued)

Figu	re	Page
3.1	Densitometer (Dietheim Limited, HR-200)	22
3.2	Abbe refractometer (ATAGO) with a sodium vapor lamp as a light source	
	having wavelength of 589.3 nm (D line) with monobromonaphthalen as a	
	contact layer	22
3.3	Powder X-ray Diffraction (Bruker D2 PHASER)	23
3.4	Picture of Agilent Cary 630 FTIR Spectrometer	25
3.5	(a) Block diagram of the UV-Vis NIR spectrometer	26
	(b) Picture of UV-Vis-NIR spectrophotometer (Shimadzu, UV-3600)	26
3.6	(a) Block diagram of PL process	26
	(b) Picture of fluorescence spectrometer (Agilent technology Cary Eclipse)	27
3.7	X-ray induced luminescence	27
3.8	Electroluminescent (Ocean Optics QE65 Pro spectrometer)	28
4.1	Image of glass samples containing 27.5Gd $_2O_3$ -(72.5-x) B $_2O_3$ -xDy $_2O_3$ with	
	various concentrations of Dy ₂ O ₃	29
4.2	X-ray diffraction pattern of 0.5 mol% Dy_2O_3 content glass	30
4.3	The refractive index relation of 27.5Gd $_2O_3$ -(72.5-x) B_2O_3 -xDy $_2O_3$ glasses	
	doped with varying concentrations of Dy_2O_3 ions	31
4.4	FTIR transmittance spectra of prepared glasses	32
4.5	UV-Vis-NIR spectra of 27.5Gd $_2O_3$ -(72.5-x) B $_2O_3$ -xDy $_2O_3$ glass system	33
4.6	(a) Excitation spectra and (b) Emission spectra of 27.5 Gd ₂ O ₃ -(72.5-x)	
	B_2O_3 -xDy ₂ O ₃ glass system monitored at 275 nm (c) Emission spectra	
	of 27.5Gd ₂ O ₃ -(72.5-x) B ₂ O ₃ -xDy ₂ O ₃ glass system monitored at 350 nm	34
4.7	Diagrams depicting the transfer of energy from Gd ³⁺ ions to Dy ³⁺ ions	37
4.8	(a) The relationship between the emission intensity at 576 nm and the	
	content of Dy_2O_3 in the prepared glass samples when excited at 275 nm	
	(b) The relationship between the concentration of $\mathrm{Dy}_2\mathrm{O}_3$ in the produced	
	glass samples and the emission intensity at 576 nm	37

LIST OF FIGURES (Continued)

Figur	e F	age
4.9	The Decay time profile of 27.5Gd ₂ O ₃ -(72.5-x) B ₂ O ₃ -xDy ₂ O ₃ glass system	38
4.10	Radioluminescence of Dy_2O_3 concentrations in 27.5Gd ₂ O ₃ -(72.5-x)	
	B ₂ O ₃ -xDy ₂ O ₃ (GBD) glasses	38
4.11	CIE coordinate diagram of 27.5Gd ₂ O ₃ -(72.5-x) B_2O_3 -xDy ₂ O ₃ glasses doped	
	with varying concentrations of Dy_2O_3	39
4.12	Schematic diagrams showing the Encapsulation of prepared glass on	
	Blue LED	40
4.14	Encapsulation of studied glass with Blue LED. (a) Before encapsulation of	
	glass with Blue LED (b), Blue LED powered with 3.0 volts (c) Glass	
	encapsulated on Blue LED powered with 3.0 volts	40