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Traditional 2D fingerprint scanners are vulnerable to spoofing due to their reliance 
on surface data.  In response, this work proposes a novel fingerprint identification 
technique using cross-sectional images from Optical Coherence Tomography (OCT). These 
images are processed using a Convolutional Neural Network (CNN) , initially trained on a 
conventional architecture. The model is then enhanced with transfer learning, utilizing the 
broad feature sets of pre- trained models including InceptionV3, ResNet50, VGG16, and 
Xception.  To further boost prediction accuracy, this research apply an ensemble model 
principle using a majority voting method for the final output. This approach greatly reduces 
susceptibility to spoofing and offers superior accuracy, achieving 100%  in 12 identity 
fingerprints.  this research highlights the potential of OCT images and deep learning 
proposed for the applied with the security and reliability of fingerprint-based identity 
verification systems.  

In conclusion, innovative application of OCT, deep learning, and ensemble models 
pave the way for optional cybersecurity measures. By achieving 100% accuracy in  a tests, 
this work demonstrate a tangible advancement over traditional 2D fingerprint scanning 
techniques, underlining the significant potential approach in bolstering the effectiveness 
and reliability of fingerprint-based identity verification systems. 
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CHAPTER I 
INTRODUCTION 

 

1.1 Background and motivation 
Nowadays, with the system of authentication required in every industry, the 

primary concern with personal data is privacy; bioinformatics has been utilized as a sort 
of protection in this regard.  The traditional bioinformatics for fingerprint scanner 
techniques is capacitive technology, optical technology, and ultrasonic technology 
(Memon, S. , Sepasian, M.  and Balachandran, W. , 2009) .  These traditional methods are 
widely used in every sector, for instance, mobile phones, accessing the security system, 
banking sector, and even identifying person at border control.  The ridges on the finger 
used for personal identification are scanned in only two dimensions by these technologies. 
Additionally, the data was primarily saved as a template using traditional methods. When 
a user tries to access the system, the system compares the templates and scores the 
match using a threshold. Other systems will be dismissed as imposters if a score exceeds 
the cutoff, allowing the user to use the system as authentic, accordingly, a traditional 
scanner with access based on a matching template showed that it still has vulnerabilities 
(Biggio, B., Akhtar, Z., Fumera, G., Marcialis, G. L. and Roli, F., 2012). To address the issue, 
research suggests three-dimensional technology such as Optical coherence tomography 
(OCT)  has efficient against the non- authentic fingerprint attack by detecting the spoofs 
finger and bonafide finger with a true detection rate (TRD) of 99.73% (Chugh, T. and Jain, 
A.  K. , 2019a, 2019b) .  So, classification by internal fingertip images could prevent hacking 
systems by classifying the real and fake fingerprint images obtained from OCT with very 
high accuracy. 
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OCT is a non- invasive imaging technique that uses light waves to capture detailed 
images of internal structures (Huang, D., Swanson, E. A., Lin, C. P., Schuman, J. S., Stinson, 
W. G., Chang, W.... 1991). In the field of biometrics, OCT has been used to capture images 
of the internal structures of the fingertips for the purpose of identification.  The use of 
internal fingertip images for identification offers several potential benefits over traditional 
surface fingerprint scanners. One advantage is that internal fingertip images may be more 
resistant to spoofing and other forms of tampering since they capture the deeper layers 
of the skin that are not visible from the surface.  This can make it more difficult for an 
unauthorized person to impersonate someone else using a fake fingerprint (Biggio, B. , 
Akhtar, Z., Fumera, G., Marcialis, G. L. and Roli, F., 2012). Internal fingertip images captured 
using OCT offer a potential advantage in identification accuracy and reliability compared 
to surface fingerprint scanners.  Factors like sweat, dirt, and wear can compromise the 
accuracy of surface scans, whereas OCT captures the deeper layers of the skin, minimizing 
these issues. 

However, the complexity of OCT images and the need for sophisticated optics and 
advanced image processing techniques pose challenges in extracting relevant features. In 
addition, it is important to ensure that the dataset of OCT fingerprints used for training the 
deep learning model is diverse and representative of the population to be identified. 
Furthermore, OCT images cannot be distinguished by the human eye due to the slicing 
data in the area 4x4 mm around 1,000 images per scanning, and previous research has 
successfully utilized these images to distinguish between fake and real fingers based on 
internal fingertip characteristics.  Thus, we aim to apply OCT images to deep learning 
models to achieve accurate identification results. 

 

1.2 Objectives of the research  
1.2.1 Develop and investigate a deep learning model to recognize human 

fingerprint images obtained through Optical Coherence Tomography (OCT). 
1.2.2 Establish a streamlined workflow for the deep learning process applied to 

fingerprint identification systems using OCT imaging. 
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1.2.3 Distinguish and categorize true positives and false negatives from a dataset 
comprising 12 unique fingerprints. 
 

1.3 Scope and Limitations of the Study 
This research project studies machine learning applied for in-house OCT system by 

utilizing convolution neural networks. First, preparing data, we will collect OCT fingerprint 
images from 12 unique fingers.  Each scan using the OCT machine in the 4x4 mm area 
captures approximately 1,000 images per finger, providing a diverse range of information 
about the internal fingerprint structure. These images exhibit variations in position, depth, 
and area, allowing for a comprehensive understanding of the fingerprint characteristics. 
With all 12 fingers scanned, the dataset comprises approximately 12,000 images, offering 
a substantial and rich collection of fingerprint data.  This extensive dataset enables a 
detailed analysis and enhances the model's ability to accurately classify and identify 
fingerprint OCT images.  However, due to the constraints of our graphics processing unit’s 
memory.  Specifically, we utilize a GTX1060 with a 6GB capacity, which, while robust, 
ensures efficient processing and avoids out-of-memory (OOM) issues.  For the spec of in-
house OCT, the working concept will be followed by (Liu, X., Zaki, F., Wang, Y., Huang, Q., 
Mei, X.  and Wang, J. , 2017) ; the system uses a near- infrared broadband light source 
(superluminescent diode (SLD) , 800-840 nm central wavelength, and 60 nm bandwidth) . 
The source of low- coherence light ( SLD)  emits light through a fiber optic Michelson-
interferometer configuration, consisting of a sample arm and a reference arm. Lens 30 nm 
focal length had been used in sample arm to focus probe beam and receive the signals 
back from a finger.  Light propagated back from the sample and reference is detected by 
a charge- coupled device (CCD)  sensor.  We obtain the OCT fingerprint images.  Then the 
software-based solution gives us the grey- scale images with depth information.  For the 
deep learning part, we be followed the design CNNs by LeCun, Bengio, et al., 2015, the 
related model, and utilize the pre-trained model to compare the efficiency with the result. 
We increase the performance by using the ensemble model for the combined multiple 
models, and then the system vote and average the results for the best outcome.  The 
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evaluation accepts the appropriate model, for instance, the confusion matrix and F1-score. 
The model aims to classify and identify fingerprint OCT images with accuracy of AUC more 
than 0.98.  

In this research, deep learning had been used to learn the images from captured 
internal fingertip images for prediction and identification. The scopes are listed as follows: 

1.3.1 Data collected only from twelve unique user fingers. 
1.3.2 This study was based on using CNN and ANN. 
1.3.3 The study employed pre-trained deep learning models such as Inceptionv3, 

VGG16 , Xception, and ResNet50  along with a custom model for feature extraction from 
the internal fingertip images. 

1.3.4 The study incorporated a voting method for ensuring the robustness of the 
proposed security system. 

 

1.4  Expected results 
1.4.1 Identification system could predict unseen cross- sectional fingerprint oct 

image datasets with high accuracy. 
1.4.2 Proposing an application of OCT machines as a security system by 

incorporating fingerprint information to apply system security. 
 



 
 

CHAPTER II 
LITERATURE REVIEWS 

 
In this chapter, the working principles of optical coherence tomography (OCT) for 

fingerprint identification are explored. Various techniques proposed for capturing and 
processing OCT images of fingerprints are examined, along with the performance of these 
techniques in terms of accuracy, reliability, and security. Limitations or challenges 
associated with using OCT for fingerprint identification are also discussed, as well as 
potential future research directions in this area. Furthermore, the literature review includes 
a comparison of the results obtained using OCT and those acquired through traditional 
fingerprint scanners. 

 

2.1 Fingerprint scanner 
A fingerprint scanner is a tool used to collect and examine prints to identify or 

verify someone. Nowadays, many applications, including security systems, mobile devices, 
and attendance monitoring systems, use fingerprint scanners extensively. This traditional 
technology works by capturing an image of a surface fingertip and then analyzing the 
characteristics and pattern of the image for matching with the template. Standard 
technology generally has three types of sensors that are 1) capacitive sensor (Lee, J., Min, 
D., Kim, J. and Kim, W., 1999), 2) optical reflection (Soifer, V., Kotlyar, V., Khonina, S. and 
Skidanov, R., 1998), and 3) ultrasonic sensor (Lu, Y., Assaderagh, F., Daneman, M., Jiang, X., 
Lim, M., Li, X.... 2016). Matching score for these technologies, the system will raise the 
score with a threshold called the matching score. If a score exceeds the threshold, the 
user can access the system as authentic; other systems will be rejected as an imposter. 
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2.1.1 capacitive sensor 
Most smartphone secure technology utilizes a capacitive scanner; this type 

of scanner is named after the capacitive sensor. The scanner uses arrays of tiny capacitors 
for the working principle to collect the data, as shown in Figure 1.  

 

 
Figure 1 Schematic of working principle of capacitive scanner. 

 
The sensor comprises a matrix of small capacitors used to measure the 

electrical charge on the surface of the finger. When a finger is placed on the sensor, the 
electrical charge on the surface of the finger changes the capacitance at each point on 
the sensor, creating a unique fingerprint image. Hence, the system will store the unique 
fingerprint for the database and compare it when users try to access it. Hackers cannot 
use a two-dimension image to fraud a system. So, more capacitive sensors, more security. 

2.1.2 Optical scanner 
The oldest technology for a scanner is optical type; this method uses 

algorithms to detect unique patterns from the finger surface, for instance, ridges or marks 
from a fingertip, as shown in Figure 2.  
 

 

Figure 2 Schematic of working principle of an optical fingerprint scanner. 
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This type of scanner works by capturing the image of a fingerprint from the 
light source and a charge-coupled device (CCD) or a complementary metal-oxide-
semiconductor (CMOS) sensor. The light emits to a surface fingertip then a pattern of ridges 
and valleys scatters the light in different directions. CCD or CMOS sensor will capture the 
light and convert it to an electrical signal. So, that could create an image matching the 
pre-existing template to identify and verify the individual. Not only optical scanner only 
captured two-dimension images but this sensor also depends on the quality of receiving 
sensor. That is mean good image quality will get more secure.   

2.1.3 Ultrasonic sensor 
An ultrasonic fingerprint scanner works by capturing an image of the 

fingerprint using ultrasonic waves. the equipment includes the ultrasonic transmitter and 
receiver. The transmitter will transmit the ultrasonic pulse incident to the fingertip. Some 
pulses are absorbed, and some are bounced by the receiver sensor as Figure 3.  

 
Figure 3 Schematic of working principle of an ultrasonicl fingerprint scanner. 

 
The sensor received the signal and then created a map of the fingerprint's 

ridges and valleys. The scanner then compares this map to a pre-existing template to 
determine a match and verify the identity of the individual. 

In summary, conventional fingerprint sensors primarily rely on 2D 
information from the surface of the fingertip. The goal is to enhance security by integrating 
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in-house technology with new applications, which could provide a valuable alternative to 
system security. 

 

2.2 Optical coherence tomography  
Optical coherence tomography ( OCT)  technology, invented in the 1990s, is 

equipment that is equivalent to ultrasonography. Let's say the technology is analogous to 
the image captured by ultrasound imaging but has a much better resolution(Huang, D. , 
Swanson, E. A., Lin, C. P., Schuman, J. S., Stinson, W. G., Chang, W., Hee, M. R., Flotte, T., 
Gregory, K. and Puliafito, C. A., 1991). Furthermore, OCT is a high-resolution, non-invasive 
optical imaging modality based on low- coherence interferometry or near- infrared light 
rather than possibly dangerous ionizing radiation, for detecting depth- resolved 2-
dimension and 3-dimension images of highly scattering semi- transparent, e. g. , biological 
tissue.  For types of OCT, time domain optical coherence tomography ( TD- OCT)  and 
spectral-domain optical coherence tomography (SD-OCT)  are the primary type of OCT 
(Fercher, A. F., Hitzenberger, C. K., Kamp, G. and El-Zaiat, S. Y., 1995). TD-OCT measures 
the temporal interference of a broad-band light beam; its imaging speed is significantly 
constrained by the need to mechanically scan its reference mirror to obtain a depth-
sectioning image (Bouma, B.  E.  and Tearney, G.  J. , 2002) .  On the other hand, it analyzes 
interference in the light spectrum without scanning the reference mirror, significantly 
speeding up imaging (Fercher, A., Drexler, W., Hitzenberger, C. and Lasser, T., 2003). Various 
fields, including dermatology, ophthalmology, biology, aquatic toxicity, and material 
characterization, have already used OCT technology.  

2.2.1 Michelson interferometry 
The working principle of OCT is based on the Michelson interferometry. The 

light source emits the wave to the beam splitter.  The incident wave will split into two 
paths.  One half is reflected by a reference mirror.  The other is reflected by the sample. 
The back-reflected beam will be interferenced with by the beam splitter then the detector 
receives the signal in Figure 4. 
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Figure 4 Schematic of Michelson interferometer. 

Lastly, several depths in the biological tissue were backscattered from the 
sample beam that was reflected from a mirror.  These images provide a detailed cross-
sectional view. Accordingly, in-house software will convert the signal to images with depth 
information.  

2.2.2 Signal processing for image generation  
The acquired interferometric signals need to be processed to generate 

meaningful images. Fourier transformation is employed to convert the interference signals 
into depth-resolved A-scans. Signal dispersion, caused by variations in the refractive index, 
is a significant challenge in OCT imaging.  Sophisticated algorithms and techniques have 
been developed to compensate for dispersion and improve image quality.  Various data 
acquisition schemes, such as time- domain and frequency- domain OCT, have been 
explored to enhance imaging speed and sensitivity (Huang, D. , Swanson, E.  A. , Lin, C.  P. , 
Schuman, J. S., Stinson, W. G., Chang, W., Hee, M. R., Flotte, T., Gregory, K. and Puliafito, 
C. A., 1991). 

2.2.3 Data augmentation 
Data augmentation involves making random adjustments to the dataset, 

which enhances its quality during training. This technique can mitigate overfitting, leading 



 
 

10 

to improved model performance.  Moreover, data augmentation can expand the dataset 
by generating additional variations.  Perez et al.  demonstrated that image augmentation 
could boost the performance of deep learning models (Perez, L.  and Wang, J. , 2017) . 
Figure 5 below illustrates an example of applying the augmentation technique to OCT 
fingerprint images. 

 
Figure 5 Image processing which A)raw data B) contrast adjust with noise filter (median 
filter) C) and D) Heat mapping. 
  

Figure 5 demonstrates an example of adapting image processing techniques 
for OCT fingerprint images in a training dataset before training the model.  Image A 
represents the raw data, while image B shows the processed image with adjusted noise 
(median filter) and contrast. Images C and D present heat maps to basic visualize how the 
networks extract features from the photos and gather information from various aspects. 
After image processing, OCT fingerprint images contain a rich of details.  As the surface is 
densely packed with information, this area can be considered as a biomarker for 
fingerprints. (Almahdi, R. and Ragb, H., 2019).  

2.2.3.1 Noise reduction technique 
After the processing image from OCT system, the sparkle noise or 

granular appearance is the consequent of coherent light from using OCT.  That’ s lead to 
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downgrading the quality of image and effect to the model’ s performance.  The noise 
removal technique had been processed in the image for control the image quality. Noise 
removal technique will show in below: 

• Median filter: a median filter has proven effective in enhancing 
image quality and improving the performance of models. The median filter is a non-linear 
spatial filtering technique that replaces each pixel value with the median value within its 
local neighborhood. This method effectively reduces the influence of speckle noise while 
preserving important image details and edges.  By taking into account the statistical 
properties of the pixel neighborhood, the median filter successfully suppresses noise 
without causing significant blurring or loss of relevant image information (Zhu, Y.  and 
Huang, C., 2012). The approximately of noise variance of the median filtering is below: 

 
Where 2  is input noise power (the variance), n is the size of the 

median filtering kernel, f(n )  is the function of the noise density. And the noise variance 
of the average filtering is 

 
• Rotating kernel transformation ( RKT) :   RKT technique is an 

advanced method for noise removal and image enhancement.  RKT employs a rotating 
kernel transformation to address noise-related issues. By applying a rotation to the kernel 
matrix, RKT introduces a unique transformation that effectively reduces noise while 
preserving important image details. The adaptive nature of the rotating kernel allows it to 
capture and suppress various types of noise, including random and structured patterns. 
The RKT technique has demonstrated promising results in enhancing image quality and 
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improving the performance of models, making it a valuable tool for noise reduction in a 
wide range of applications (Rogowska, J. and Brezinski, M. E., 2000). 

2.2.4 Presentation attack 
The fingerprint image from optical coherence tomography is called the OCT 

fingerprint.  The stratum corneum ( surface fingerprint) , the epidermis, the internal 
fingerprint ( papillary junction, sweat glands, and the dermis)  will all have depth 
information, which implies the image will have this information (Chugh, T. and Jain, A. K., 
2019b). The information had shown in Figure 6.  

 
Figure 6 B-scan image with the dept information of fingertip. 
 

According to the traditional fingerprint scanner that based on the surface 
of fingerprint, that made them easy to hack by presentation attack instruments (PAIs) with 
highly accurate finger surfaces.  PAIs were created with inexpensive and easy- to- find 
materials, for instance, play- doh, gelatin, wood glue etc.  These materials can use to 
produce an instrument to fraud into a security system, with success reported at around 
70% (Chugh and Jain, 2019). 

2.3 Deep learning 
A branch of machine learning called deep learning (DL) uses a network of features 

to learn from the dataset's statistical information and can learn and decide by itself.  The 
architecture of deep learning is based on artificial neural networks or has a functional 
design that resembles the organic neural network of the human brain (Goodfellow, I. , 



 
 

13 

Bengio, Y. and Courville, A., 2016). To create the models, DL typically divides the data into 
training and testing sets.  To replicate the analysis of future data for the testing set, the 
training set's goal is to improve forecast data precision and fine- tune model parameters. 
Accordingly, DL is more practical than classic ML since it integrates "end- to-end"  data 
learning of feature representations and model predictions (Figure 7). Deep neural networks 
are one type of trained computer model (DNN) (LeCun, Y., Bengio, Y. and Hinton, G., 2015). 

 
Figure 7 Deep learning: combining of feature extraction and prediction. 

According to the literature review above, standard fingerprint identification 
technology is often based on FTIR and capacitive sensors and only takes into account the 
ridges or surfaces of the finger. Because of this, they were simple targets for presentation 
attack instruments (PAIs) with extremely precise finger surfaces. According to Akbari et al 
study of fingerprint recognition using OCT fingerprint photos, the algorithm for doing so is 
based on scanning and segmenting OCT images. They argue that increasing the automation 
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of fingerprint recognition will help this system succeed (Akbari, N. , 2012) .  Moola et al. 
investigated the design utilizing an antiquated security method known as fingerprint 
matching for the security that used the fingerprint OCT.  They used specialized hardware 
to capture the skin's lower layers, then they removed and translated the data for a 
compatible template. The study's integration of the matching OCT with the currently used 
standard fingerprint recognition has demonstrated the framework's capability.  They 
contend that a system using OCT image matching has various advantages over existing 
technologies, including the capacity to improve existing technologies and boost matching 
system dependability (Moolla, Y. , Singh, A. , Saith, E.  and Akhoury, S. , 2015) .  Numerous 
studies used OCT fingerprints in machine learning; Raja et al study, informs us about the 
transfer weight of AlexNet for two streams convolution neural network (TS-CNN) .  They 
train the network using 200 distinct fingerprints to show the various layered sub- surface 
OCT fingerprints.  The model's performance was assessed using an equal error rate (EER) , 
and as a consequence, they discovered an EER of 0. 17 percent and results that were in 
line with the Neurotechnology Commercial-Off-The-Shelf (COTS) system.  

In conclusion, presentation attacks can be avoided by using OCT images for 
fingerprint recognition.  Unlike conventional fingerprint scanning techniques, which only 
record surface-level data, OCT scans to record the interior structure of the finger, which is 
more challenging to recreate. Therefore, using OCT pictures can offer a more secure means 
of authentication, lowering the chance of fabrication or impersonation.  Additionally, the 
accuracy and resilience of the system can be further enhanced by the application of deep 
learning algorithms for fingerprint recognition using OCT images, offering a practical remedy 
for combating presentation attacks.  

2.3.1 Convolutional neural networks 
Convolutional Neural Networks ( CNNs)  are a class of deep learning 

algorithms that have revolutionized computer vision applications, including object 
detection, segmentation, identification, and classification. The term "convolutional" refers 
to the network's use of the mathematical operation called convolution, which involves 
processing input images with multiple layers of neurons. CNNs extract features from input 
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OCT fingerprint images with depth information, and feature extraction is the primary 
function of CNNs for prediction. Let's discuss the layers of a CNN: 

The convolutional layer comprises an input image and a convolutional 
matrix operator.  It functions by applying a set of filters to the image to extract essential 
features, such as edges, textures, and shapes.  The outputs are combined to generate a 
feature map. In summary, a convolutional layer is a vital building block of a CNN, enabling 
the model to learn features and representations of the input data in a manner that is 
well- suited for image processing tasks.  The weight matrix or convolution matrix is also 
referred to as a kernel or filter. This filter operates on the image data, starting at the edge 
and shifting to other pixels based on the set parameters. After processing the entire image, 
a new image is generated for the next layer. This layer reduces the dimension of the input 
image. An example is provided in Figure 8 below: 

For the definitions in CNN that should concern will describe in below. 

• Convolution (conv): Explain how convolutional layers extract local 
features by applying filters to input data. 

• Pooling (pool): Describe the process of downsampling input data to 
reduce spatial dimensions while preserving important features. 

o Max Pooling: The max pooling operation selects the maximum 
value within each pooling window and discards the rest. It reduces the spatial dimensions 
of the feature map while retaining the most prominent features. 

o Average Pooling: Average pooling calculates the average value 
within each pooling window. It helps in downsampling the feature map while maintaining 
an overall representation of the input data. 

o Global Pooling: Global pooling performs pooling across the entire 
spatial dimensions of the feature map, resulting in a single value per channel. It is often 
used in the final layers of CNNs for spatial summarization before the fully connected 
layers. 
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Figure 8 Convolution calculation. 
 

The convolution operation typically results in reduced size of the output 
image.  However, if it is desired to maintain the size of the original data, padding can be 
applied before the convolution process. Padding is a technique that involves adding zeros 
around the edges of the original image, as illustrated in Figure 9.  This process helps 
preserve the spatial dimensions of the input image, ensuring that the output image retains 
the same size as the original. 
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Figure 9 Convolution operation (a) zero padding (b) padding is 1. 
 

Pooling layers come in various forms for constructing CNN architectures, 
but they all share the common goal of progressively reducing the network's spatial 
dimensions.  This reduction lowers the number of parameters and simplifies the overall 
computation of the network. In this project, both individual models and transfer learning 
approaches primarily employ the Max-pooling technique. With the max-pooling method, 
the pixel value of the resulting image is determined by selecting the highest value within 
each local group. Figure 10 provides an example of the max-pooling process in action. 
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Figure 10 Max pooling. 
 

The Flatten layer transforms a three-dimensional layer into a one-
dimensional vector, which can then be fed into a fully connected layer for classification. 
For instance, a 5x5x2 layer would be converted into a vector of size 50. The resulting 
outputs represent the probabilities of each category, which are used to classify the input 
image. 

2.3.2 Artificial neural networks 
Artificial Neural Networks serve as the foundation of deep learning, enabling 

complex pattern recognition, decision-making, and prediction tasks. By mimicking the 
structure and function of biological neural networks, subunits called neurons or nodes. 
Each neuron associated with which weight factors 1 2 3 n(w ,w ,w ,...w )  to determine the 
importance of input values 1 2 3( , , ,... )nx x x x  as shown in figure 11. Each neuron 
connection is assigned a weight, and the input signals are multiplied by these weights. 
Additionally, a bias term is incorporated to adjust the output signal, which is determined 
by the discrete steps based on the summation of the input signals. The activation of the 
output neuron can be mathematically expressed as follows: 

 
Where  n is the number of input connections into unit j.  
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𝑤𝑖𝑗 is the weight of the connection between unit i of the previous layer 
and unit j. 

𝜃𝑗 is the bias that adjusts the output signal to provide neuron with a 
trainable constant value. 

 

Figure 11 Basic artificial nueron (Zilouchian, A. and Jamshidi, M., 2001). 
 

The activation function plays a crucial role in converting the computed 
value from the weighted sum of a neural network's structure. Its primary function is to 
transform the activation level of a neuron, denoted as y, into an output value. Various 
activation functions are commonly encountered in neural networks, including: 

• Linear Function: returns the same value that was used as its argument.  

 
• Sigmoidal function: returns the value input and squeeze the 

remaining values 0 to 1. 
 
 

• Hyperbolic tangent function:  resemble sigmoidal function.  The 
difference is that the negative inputs will be mapped negative, and the zero inputs will 
be mapped near zero.  

-x

1
f(x) = , 0 f(x) 1

1 + e
 
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• Rectified Linear Unit (ReLU): ReLU activation sets the output to zero 

for negative inputs and leaves positive inputs unchanged.  It offers faster convergence 
during training and helps mitigate the vanishing gradient problem (Agarap, A. F., 2018). 

 
For the definitions in ANN that should concern will describe in below. 

• Fully Connected (FC) Layer: Define the layer in which all neurons are 
connected to every neuron in the previous and following layers. 

• Softmax: Explain the activation function often used in the output layer 
for multiclass classification problems. 

• Dropout:  Define the regularization technique that randomly sets a 
portion of neurons to zero during training to prevent overfitting. 

From these knowledge, neural network could be combined from CNN and 
ANN design a powerful architecture for training models, we can construct a robust and 
adaptable framework.  This foundation enables us to delve into the exciting realm of 
transfer learning, where pre-trained models can be leveraged to enhance performance on 
new tasks with limited data (Zilouchian, A. and Jamshidi, M., 2001). 

2.3.2 Transfer learning 
Transfer learning is a technique that leverages pre-trained models to adapt 

to new tasks with limited data. This technique has been applied to a variety of jobs, 
including speech recognition, natural language processing, and computer vision. It has 
been demonstrated to be successful in tasks where labeled data is few or where obtaining 
labeled data is expensive. Transfer learning can perform better than training a model from 
start on a new task because it makes use of the knowledge acquired from one assignment, 
by fine-tuning a pre-trained model on a dataset of OCT images of fingerprints, the diagram 
of the concept of transfer learning showed in figure 12. The primary goal is to efficiently 
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capture the features of the fingerprints and enhance the accuracy of the identification 
process. (Yosinski, J., Clune, J., Bengio, Y. and Lipson, H., 2014).  

 
Figure 12 diagram of transfer learning. 

 
In this study, different pre-trained models, such as ResNet50, Xception, VGG16, and 

InceptionV3, are explored and their performance on the task of identifying human 
fingerprints using OCT images is compared. The focus will now shift to a closer examination 
of the selected pre-trained models for this study. 

2.3.2.1 ResNet50 
Starting with the pre-trained ResNet50 model. A deep residual 

network called ResNet50 was developed and trained on the ImageNet dataset, which 
consists of millions of photos of various objects. The enormous dataset from which our 
pre-trained model has previously learned rich features can be used as the foundation 
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for our fingerprint classification challenge, the pre-trained ResNet50 model will be fine-
tuned by training it on a smaller dataset of OCT images of human fingerprints. This fine-
tuning process will update the weights of the pre-trained model. The structure of 
ResNet50 will show in Figure 13 (He, K., Zhang, X., Ren, S. and Sun, J., 2016).  

 
Figure 13 Resnet-50 model architecture (Ridha Ilyas, B., Beladgham, M., Merit, K. and 
taleb-ahmed, A., 2019). 
 

2.3.2.2 Xception 
A deep convolutional neural network model termed the Xception 

architecture has been pre- trained using the ImageNet dataset, a sizable image 
categorization dataset.  A distinct but related job, such as identifying fingerprints using 
optical coherence tomography ( OCT)  pictures, can be solved using this model as a 
framework for transfer learning. In transfer learning, the pre-trained model is adjusted for 
the new job by adding fresh data in this case, OCT images to the weights of its layers. The 
architecture of Xception is made up of several stacked blocks of pointwise and depthwise 
separable convolution layers. The pointwise convolution layers capture the channel-wise 
information, while the depthwise separable convolution layers collect the spatial 
information.  The Xception model's output can be linked to a fully connected layer that 
has as many neurons as classes in the target task— in this case, classes for various 
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fingerprints—in the target task. The output of the fully connected layer is used to forecast 
an input image's class.  When the OCT photos are used to train the optimized Xception 
model from beginning to end, the accuracy of the task of fingerprint identification is 
increased in comparison to starting from scratch.  The structure of Xception will show in 
Figure 14 (Chollet, F., 2017).   

 
Figure 14 Xception neural network architecture diagrams of the model (Chollet, F., 2017). 

 
2.3.2.3 VGG16 

The VGG16 architecture is a deep convolutional neural network 
model that was previously trained using the ImageNet dataset, a sizable image 
classification dataset. In transfer learning, the pre-trained model is adjusted for the new 
job by adding data in this case, OCT images to the weights of its layers. VGG16's 
architecture is made up of several convolution and pooling layer stacks that are then 
followed by a few fully connected layers. While the pooling layers minimize the spatial 
dimension of the feature maps and preserve the most crucial data, the convolution layers 
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collect both spatial and channel-wise information. Using the input image as a basis, 
predictions are made using the fully connected layers. A fully connected layer with several 
neurons equal to the classes in the target task, in this case, the number of classes for 
various fingerprints, can be connected to the output of the VGG16 model. The output of 
the fully connected layer is used to forecast an input image's class. The accuracy of the 
fingerprint identification task will therefore be increased when the tweaked VGG16 model 
is trained end-to-end utilizing the OCT images as opposed to starting from scratch. The 
structure of VGG-16 will show in Figure 15 (Simonyan, K. and Zisserman, A., 2015).   

 
Figure 15 VGG16 neural network architecture diagrams of the model (Loukadakis, M., Cano, 
J. and O'Boyle, M., 2018). 

2.3.2.4 InceptionV3  
A deep convolutional neural network called InceptionV3 

architecture was trained using ImageNet, a sizable image dataset. The pre-trained 
InceptionV3 network might be used in this project as a fixed feature extractor with a 
custom classifier built on top or as a feature extractor with variable features. The 
InceptionV3 architecture is made up of many Inception modules, each of which is made 
up of parallel convolutional and pooling layers, followed by a concatenation layer. The 
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pooling layer aids in reducing the spatial dimension of the feature map, while the parallel 
convolutional layers enable the network to learn multi-scale characteristics from the input 
image. The network's final dense layer is taught to produce class probabilities, which might 
then be retrained for the identification job using the fingerprint dataset. By fine-tuning the 
pre-trained weights of the network on the fingerprint dataset, it is possible to increase 
network performance by customizing it for the given purpose. The structure of inceptionV3 
will show in Figure 16 (Szegedy, Christian, Vanhoucke, Vincent, Ioffe, Sergey, Shlens, 
Jonathon and Wojna, Zbigniew, 2016).   

 
Figure 16 InceptionV3 neural network architecture diagrams of the model (Szegedy, 
Christian, Vanhoucke, Vincent, Ioffe, Sergey, Shlens, Jon and Wojna, Zbigniew, 2016). 

 
In conclusion, the objective of this study is to apply deep learning and transfer 

learning to recognize human fingerprints by OCT images. A small dataset of OCT photos 
will be utilized to fine-tune the pre-trained ResNet50 model, and the resulting model will 
be used to categorize fingerprints in fresh, unused OCT images. Subsequently, multiple 
trained models will be combined to achieve the best prediction. This approach leverages 
the strengths of each model, enhancing overall performance and increasing the likelihood 
of obtaining accurate predictions. 

2.3.3 Ensemble model 
To achieve more reliable and accurate predictions. An ensemble model is 

suggested, a powerful technique to improve predictive performance. This approach 
combines the individual model and transfer learning mentioned earlier into an ensemble 
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model using a weighted average or another mathematical function, producing results as a 
single model. The ensemble method is typically applied in situations where a high level of 
accuracy is required due to data limitations and constrained processing resources. There are 
several ensemble techniques commonly used in practice, including but not limited to: 

2.3.3.1 Bagging: Bagging (Bootstrap Aggregating) generates multiple 
subsets of the original dataset through bootstrap sampling, trains individual models on 
each subset, and combines their predictions through averaging or voting. This technique 
helps reduce model variance and improve stability as shown in Figure 17.  

 
Figure 17 Bagging technique schematic. 
 

2.3.3.2 Voting: A voting ensemble classifier is used, wherein each model 
provides a prediction, and the final prediction is determined by a majority vote. For 
example, if five models predict class A, class B, and class A respectively, class A would be 
the final prediction. In this case, there are 12 classes representing each unique finger. The 
diagram of the voting method is illustrated in Figure 18 
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Figure 18 Voting technique schematic. 
 

2.3.3.3 Boosting: Boosting is a type of machine learning that trains weak 
models one after the other to make a strong predictive model as shown in figure 19. It 
aims to improve how well models work by putting more attention on samples that were 
wrongly labeled before. Each time the process is repeated, the next model is taught to 
pay more attention to these wrongly classified samples, which "boosts" their importance. 
By combining the predictions of all the models, usually using a weighted voting system, 
boosting can make a powerful ensemble model that is great at handling complex patterns 
and getting high accuracy.  

 
Figure 19 Boosting technique schematic. 
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2.3.4 Performance evaluation 
Model evaluation is a crucial step in deep learning to measure the 

effectiveness of a trained model. This makes it easier to assess how effectively the model 
generalizes to unseen data.  Accuracy is a popular performance statistic in deep learning 
that compares the proportion of accurate predictions a model makes to all other possible 
predictions. The performance of the model may also be assessed using additional metrics 
including ROC curve, precision, recall, F1- score, and confusion matrix.  It is crucial to 
properly assess the model's performance because doing so might point out areas for 
improvement and provide guidance for future work (Kulkarni, A. , Chong, D. and Batarseh, 
F., 2020; Li, Q., Yang, Y., Guo, Y., Li, W., Liu, Y., Liu, H. and Kang, Y., 2021).  

The confusion matrix in Table 1 represents the count from the predicted 
and actual values of each class.  It is a significant table that may be used to gauge how 
effective categorization models are.  
 
Table 1 Confusion matrix. 

 
 
Where  True Positives (TP): Predicted as correctly on event values. 
 True Negatives (TN): Predicted as correctly on no-event values. 
 False Positives (FP): Predicted as incorrectly on event values. 
 False Negatives (FN): Predicted as incorrectly on no-event values. 
From the confusion matrix table, the data inside can be utilized to calculate 

various performance metrics, such as accuracy, precision, recall, and F1 score.  These 
metrics provide a comprehensive assessment of the classification model's performance, 
helping to identify its strengths and weaknesses.  It is widely used for classification. 
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Accuracy is the most common for evaluating performance, which is a measure of the 
accuracy of the model by considering all classes. Precision represents the accuracy of the 
model that predicts positive values.  The recall represents how accurate the model is for 
correctly predicting positive classes.  And F1 score is a value that calculates from the 
weighted harmonic mean between the precision and the recall.  That four values could 
be written as follows. 

• Accuracy is the proportion of correct predictions. 

Accuracy =  
 

• Precision measures how accurate the predictions are.  

Precision =  
 

• Recall measures how well that finds all the positives. 

Recall =  
 

• F1 score is the harmonic mean of the precision and recall.  
F1 score =  2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 
In addition, multi-classification can be visualized, and the performance is 

measured using the AUC-ROC curve for the variety of thresholds. ROC (Receiver Operating 
Characteristics) curve is a probability curve, and AUC (Area under the curve) represents 
the degree or measure of separability. They will determine how a model can discriminate 
between classes: Higher AUC, a better model. The ROC curve plots the true positive rate 
(TPR) or sensitivity on the y-axis and the false positive rate (FPR) on the x-axis (Figure 20). 

 
 

 

 



 
 

30 

 
Figure 20 AUC-ROC curve. 
 

However, it is important to note that the AUC-ROC curve provides insights 
into the overall performance of the model but does not explicitly address potential fitting 
problems, such as overfitting or underfitting. These fitting issues can impact the model's 
ability to generalize to unseen data and may affect its performance in real-world scenarios. 

• Underfitting: Underfitting occurs when a model fails to capture the 
underlying patterns and relationships in the data, resulting in poor performance and low 
accuracy. Underfitting, in the context of AUC-ROC curve analysis, is a curve that doesn't 
distinguish between classes well enough, which leads to a low AUC score. This means that 
the model has trouble telling the difference between positive and negative situations. As 
a result, the model's classification performance isn't as good as it could be. Underfitting 
happens when the model is too simple or doesn't have enough complexity to capture 
the complexities of the data. This makes the model's representation too simple.  

• Overfitting: Overfitting, on the other hand, arises when a model 
becomes excessively tailored to the training data, capturing noise and irrelevant patterns. 
In the AUC-ROC curve analysis, overfitting is reflected by a curve that exhibits high 
sensitivity and specificity on the training data but fails to generalize well to unseen data. 
As a result, the AUC score may appear high when evaluated on the training set, but it 
significantly drops when applied to new, unseen instances. Overfitting can occur when the 
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model is overly complex, capturing noise and specificities unique to the training set, rather 
than learning the general patterns of the underlying data distribution. 
 

2.4 Explainable artificial intelligence 
Explainable artificial intelligence (XAI) has emerged as an essential component of 

modern AI systems, particularly in the context of image classification. The need for 
interpretability and trust in AI models has driven research into techniques that facilitate 
better understanding and communication of model decisions (Barredo Arrieta, A., Díaz-
Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A.... 2020; Gilpin, L. H., Bau, D., 
Yuan, B. Z., Bajwa, A., Specter, M. and Kagal, L., 2018). In this literature review, the primary 
focus is on prominent XAI methods, with special attention given to SHapley Additive 
exPlanations (SHAP) for image classification tasks. The strengths and limitations of the 
SHAP approach are discussed to provide a comprehensive understanding of its 
applicability and potential challenges in the context of image classification. 

2.4.1 SHapley Additive exPlanations (SHAP) 
SHAP, developed by Lundberg and Lee (2017), is a model-independent 

method that produces explanations for specific predictions by attributing importance 
values to each feature using concepts from cooperative game theory (Lundberg, S. M. and 
Lee, S.-I., 2017). SHAP has been applied to various image classification tasks, demonstrating 
its effectiveness in producing explanations that are understandable to humans (Selvaraju, 
R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D. and Batra, D., 2017). This method has 
been employed in multiple sectors, such as medical image analysis (Altmann, A., Toloşi, 
L., Sander, O. and Lengauer, T., 2010), remote sensing (Lundberg, S. M., Erion, G. G. and 
Lee, S.-I., 2018), and object recognition (Zhou, B., Khosla, A., Lapedriza, A., Oliva, A. and 
Torralba, A., 2016). SHAP has shown the ability to provide comprehensible classifications 
for complex models in each of these applications, assisting end users and domain experts 
in understanding and trusting the AI system's decisions (Simonyan, K., Vedaldi, A. and 
Zisserman, A., 2013).  
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Despite its benefits, SHAP has some limitations. For example, it can be 
computationally expensive for large-scale datasets or complex models, which may hinder 
real-time explanations (Molnar, C., 2020). Moreover, the quality of explanations may vary 
depending on the choice of the explainer method and the specific model being explained 
(Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B.... 2020). 

SHAP is a popular XAI technique for image classification that offers 
interpretable and reliable explanations for sophisticated AI models. While SHAP has 
limitations, its effectiveness in various domains demonstrates its potential to enhance 
model decision comprehension and communication (Adadi, A. and Berrada, M., 2018). 
Future research should continue to address the constraints of SHAP, develop innovative 
XAI methodologies, and investigate their applicability in real-world situations (Guidotti, R., 
Monreale, A., Ruggieri, S., Turini, F., Giannotti, F. and Pedreschi, D., 2018). 

2.4.2 LIME (Local Interpretable Model-agnostic Explanations) 
LIME, proposed by Ribeiro et al. (2016), is another widely used model-

agnostic interpretability method that aims to provide local explanations for individual 
predictions. This technique generates explanations by approximating the complex model's 
behavior with a locally interpretable model. LIME has been successfully applied to various 
domains, including image classification, and healthcare. For image classification tasks, LIME 
has been used to highlight the important regions or features in an image that contributed 
to a specific prediction. This approach aids in understanding the decision-making process 
of black-box models and facilitates human interpretability (Ribeiro, M. T., Singh, S. and 
Guestrin, C., 2016). 

2.4.3 Grad-CAM (Gradient-weighted Class Activation Mapping) 
Grad-CAM, proposed by Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., 

Parikh, D., and Batra, D. (2017), is an interpretability method that gives visual explanations 
for convolutional neural networks (CNNs) by highlighting the parts of an image that 
contributed most to the model's prediction. This method uses the gradient information 
from the CNN's last convolutional layer to make a class activation map that shows how 
important different parts of the image are. Grad-CAM has been used successfully for many 
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computer vision tasks, such as finding objects, dividing up images, and answering visual 
questions. By showing the important areas on a map, Grad-CAM gives useful information 
about how CNNs make predictions and helps people understand how decisions are made. 
It gives explanations that humans can understand by pointing out the parts of the image 
that affected the model's output. Grad-CAM is a flexible interpretability method because 
it can be used with both pre-trained and custom CNN architectures (Selvaraju, R. R., 
Cogswell, M., Das, A., Vedantam, R., Parikh, D. and Batra, D., 2017).  

 



 
 

CHAPTER III 
METHODOLOGY 

 
In this chapter, the methodology employed to implement the proposed solution 

for identifying human fingerprints using optical coherence tomography (OCT) images 
through deep learning is presented. The methodology encompasses the pre-processing of 
OCT images, selection and fine-tuning of pre-trained models such as ResNet50, Xception, 
VGG16, and InceptionV3, as well as the assessment of model performance using various 
metrics, including accuracy, precision, recall, and F1 score. Moreover, the chapter outlines 
the experimental setup, which covers the dataset utilized for training and testing, the 
hardware and software configurations, and the implementation specifics of the models. 

 

3.1 Preparing data 
In the data preparation step of the project, the left and right random fingers refer 

to twelve different people were captured using optical coherence tomography (OCT) 
imaging (Figure 22). An OCT machine was used to capture fingerprint images within a 4x4 
mm area. Each scan generated approximately 1,000 grayscale images per finger, 
highlighting the variations in position, depth, and area of the internal fingerprint structure. 
With all 12 fingers scanned, the dataset comprised approximately 12,000 images, forming 
a comprehensive and diverse collection of fingerprint data for subsequent analysis and 
model development. Consequently, finger was captured in approximately 1,000 grayscale 
images for 3 times, providing depth information on the finger's surface and internal 
structure (Figure 21). Hence, in the dataset collection, the size of raw dataset about 3,000 
images per class. This novel approach of using OCT imaging provided additional 
information about the finger beyond just the external surface and ridges of the fingerprint. 
The images obtained from OCT are often referred to as "layers," which can be used to  
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create a cross- sectional of 3D representation of the finger.  This unique characteristic of 
the OCT- captured images provides a potentially more reliable and secure method of 
identifying individuals as it includes both external surface fingerprint data and internal 
information about the finger, such as sweat glands.  Therefore, the proposed system has 
the potential to be superior to conventional fingerprint identification methods, and the 
collected dataset can be used for training and evaluating deep learning models. 

 
Figure 21 Example of finger OCT captured. 
 

 
Figure 22 In-house optical coherence tomography. 
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In addition to collecting and organizing the OCT data, data augmentation, and 
processing techniques will be applied to enhance the quality and diversity of the dataset. 
Various image processing techniques, such as noise reduction, brightness adjustment, and 
contrast enhancement, will be employed to generate new images from the original OCT 
data. This process will increase the variety of the dataset, which is essential for the deep 
learning model's performance. Furthermore, heat mapping will be utilized to understand 
which regions of the images the model is using for classification. By visualizing these 
regions, insights can be gained into the fingerprint features the model is using for 
identification, which can be beneficial for further improving the model's performance. 

In the data preparation phase, we captured multiple samples of each finger for 
the training set. To enhance the challenge and improve the model's capability, we applied 
digital processing techniques to these captured images. Subsequently, we randomly 
selected about 1,000 for a training set, with 900 images from each image collection and 
an additional 100 random images from the augmentation process. This ensured that each 
class in the training set had around 900 randomized images and 100 digitally processed 
images, resulting in a total of around 1000 images per class or finger. For 12 classes, the 
number of training data sets is 12,108 internal fingertip images. This approach allowed us 
to create a diverse and comprehensive training dataset that encompassed variations and 
challenges commonly encountered in fingerprint identification tasks. 

 

3.2 Model Architecture and Selection 
In this study, the methodology for developing the model architecture involved 

two approaches: building custom models and using pre-trained transfer learning models. 
As described in the literature review (section 2.3.2), the individual models that were built 
with shallow layers, such as pooling, batch normalization, dropout, and CNNs, did not 
perform well in terms of accuracy and generalization. Hence, pre-trained transfer learning 
models were utilized, including RestNet50, Xception, VGG16, and InceptionV3, which were 
selected based on their high performance in previous image classification tests and their 
availability in popular deep learning frameworks like Keras. By leveraging features learned 
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from a diverse and large dataset like ImageNet, transfer learning allowed the model to 
learn more efficiently from the limited fingerprint dataset available, thereby improving the 
model's accuracy and generalization capabilities for the specific fingerprint recognition 
challenge. 
The custom CNN model was created using specific parameters: a convolutional layer with 
a kernel size of 3x3 for extracting 128 features. At this layer, the activation function ReLu 
was utilized (Agarap, A. F., 2018). The pooling layer employed max-pooling to obtain 
essential 2x2 information. During training, 500 epochs, a batch size of 128, and a learning 
rate of 0.0001 were used. The architecture of the custom model is illustrated in Figure 23. 

 
Figure 23 Neural network architecture diagrams of a model. 
 

3.3 Training and validation procedures 
The models were trained and validated using a consistent procedure, regardless 

of whether they were developed individually or via transfer learning. The dataset, defined 
as 1000 images, was obtained randomly from three imaging sessions of each finger. The 
dataset was divided into a training set containing 60% of the data and a validation set 
containing 40% of the data. During training, the weights of the models were modified using 
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backpropagation to minimize the categorical cross-entropy loss function. The models were 
compiled with the Adam optimizer, a batch size of 64, and 500 training epochs. The 
learning rate was set to decrease from 0.1 to 0.00001 by a factor of 10 after each training 
cycle to improve convergence. However, it was not possible to lower the learning rate 
further due to out-of-memory (OOM) errors. Similarly, the batch size could not exceed 64 
due to OOM limitations. Additionally, the size of the input image was restricted to 
128x128x3 due to OOM errors. It was not possible to reduce the size further as it could 
lead to the loss of important features and affect the model's performance. Furthermore, 
the use of pre-trained models constrained us to start with a size of 128x128x3, and going 
larger than this size was not possible due to OOM limitations. The model's performance 
was evaluated on the validation set using metrics such as accuracy, precision, recall, and 
F1-score. To merge the individual models, a voting process was used to determine the 
final prediction based on the prediction that received the most votes. The performance 
of the ensemble model was assessed on the validation set using the same metrics 
described in the literature review (2.3.3 Ensemble model). All the parameters are listed in 
Table 2. 

 
Table 2 The parameter settings for four TL networks and a custom network. 
 Networks Parameters 

Initial input 
size 

Initial learning 
rate 

Batch-size Epoch Optimizer 

Inception-V3 128x128x3 0.00001 64 500 Adam 
Xception 128x128x3 0.00001 64 500 Adam 
VGG-16 128x128x3 0.00001 64 500 Adam 
Restnet-50 128x128x3 0.00001 64 500 Adam 
Custom model 128x128x3 0.00001 64 500 Adam 
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3.4 Model Evaluation and Comparison 
After training and validation, the performance of the models was evaluated and 

compared using various metrics from the review in Chapter II. The individual models 
developed and the pre-trained transfer learning models were assessed for their accuracy, 
precision, recall, and F1-score. The evaluation aimed to determine the strengths and 
weaknesses of each model without disclosing specific results at this stage of the thesis. 
The analysis considered factors such as the effectiveness of transfer learning, the impact 
of different architectures, and the performance of ensemble methods. These findings will 
be presented and discussed in detail in the subsequent chapters dedicated to model 
evaluation and comparison, providing valuable insights into the performance and 
suitability of each model for the fingerprint recognition task.  

 

3.5 Experimental Setup and hardware specifications 
In this study, a portable, low-cost, and compact OCT imaging prototype was 

designed and implemented for use in field operations. The imaging system employed a 
light source with a central wavelength of 840 nm generated by a superluminescent light-
emitting diode (SLED) from Box Optronics Technology Co., Ltd., China. The interferometer 
was based on the configuration of the free-space Michelson interferometer, with the 
interfered light beam coupled into a high-speed spectrometer for detection. A 
galvanometer mirror was used to synchronously scan the focused beam and obtain cross-
sectional images and 3D datasets. Each cross-section had a resolution of 1000 by 900 
pixels and 900 by 400 pixels, a scan area of approximately 4 mm by 4 mm, and a sampling 
distance of 4 µm between each lateral pixel. The system's depth resolution limit was 
approximately 10 microns based on the principle of low-coherence interferometry. The 
imaging speed was 25 frames per second. Overall, the OCT imaging prototype was 
designed with practicality and efficiency in mind, making it a suitable tool for fingerprint 
classification tasks in field operations. 
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3.5.1 Raw image size captured 
This section presents the methodology employed to investigate the 

potential influence of image size on the accuracy of Optical Coherence Tomography (OCT) 
machine scans. The aim was to explore whether varying image sizes, which directly impact 
scanning speed, have any discernible effect on the accuracy of OCT-based diagnoses. This 
study employed a dataset of OCT images with different sizes, and several evaluation 
metrics were utilized to assess the performance of the machine learning models. To 
investigate the impact of image size on accuracy, a comprehensive dataset of OCT images 
was collected. The dataset included images of varying sizes, obtained by manipulating the 
dimensions of the original scans. Four specific image sizes were selected: 1000x600, 
921x511, 409x511, and 150x510. These sizes were chosen to cover a wide range of 
dimensions commonly encountered in OCT machine scans. The experimental setup 
involved training a custom model using a dataset of OCT images with varying sizes. Custom 
model were employed to enable the model to learn intricate patterns and features in the 
OCT images. To assess the impact of image size on accuracy, the model was trained on 
images of different dimensions. The performance of the model was then evaluated using 
standard evaluation metrics, such as accuracy, precision, recall, and F1-score. 

 



 
 

CHAPTER IV 
RESULT AND DISCUSSION 

 
Chapter IV presents the results and discussion of the experiments conducted to 

evaluate the performance of the proposed deep learning model for fingerprint 
classification using OCT images. This chapter describes the experimental setup, dataset, 
and evaluation criteria used to measure the performance of the model. The results are 
given and discussed with an emphasis on the model's capacity to identify various unique 
fingerprints. In addition, the approach's limitations and difficulties are examined, along with 
suggested areas for enhancement. The results reported in this chapter provide useful 
insights into the efficacy of utilizing OCT images with deep learning for fingerprint 
categorization.  

 

4.1 Performance Evaluation Model 
In this section, the performance of the proposed voting ensemble model for 

fingerprint classification using optical coherence tomography (OCT) images is evaluated. 
The model comprises five separate models: a Resnet50 pre-trained model, an Xception 
pre-trained model, a VGG16 pre-trained model, an InceptionV3 pre-trained model, and a 
custom model developed by the research team. The primary performance metric for the 
evaluation is the area under the curve (AUC) value on the receiver operating characteristic 
(ROC) curves, conducted on both a validation set and a holdout test set. Additionally, 
confusion matrices are analyzed to understand the model's ability to distinguish between 
multiple classes of internal fingerprints. The evaluation results provide a comprehensive 
assessment of the performance of the proposed model and demonstrate its potential 
usefulness in practical scenarios. 
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4.1.1 Learning curve 
To evaluate the performance of the proposed voting ensemble model, five 

different models were trained on a dataset of 12,108 internal fingertip images captured 
using OCT scans. The dataset was randomly split into a 60% training set and a 40% 
validation set for each model, as discussed in the transfer learning section in Chapter II. 
The learning curves of each model are depicted below, which display the accuracy and 
loss values of each model as a function of the number of training epochs. The accuracy 
value indicates the percentage of correctly classified images, while the loss value 
represents the difference between the predicted and actual classification labels. 

The learning curve offers valuable insights into the training process, as it helps 
determine whether the model is overfitting or underfitting the data. By analyzing the 
learning curve, the optimal number of epochs required for training the model to achieve 
the best performance can be identified. In the following sections, the results of each 
model are presented based on the learning curves. 

 
Figure 24 Learning curve of RestNet50 pre-trained model. 

 
Figure 24 shows the acc-loss curve of the ResNet50 pre-trained model, which 

began with a high training and validation loss and a low training and validation accuracy. 
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However, the model quickly adjusted to the new data and, at epoch 8, had an accuracy 
of 0.99 and a loss of 0.034. After that, the training and validation loss spiked sharply, 
indicating that the model may have started to overfit. Nevertheless, the model completed 
the training phase with a high accuracy of 1. The validation accuracy kept a high level of 
consistency with a final value of 0.97 and a validation loss of 0.10. Despite some overfitting 
indicators, the ResNet50 model did a good job overall of accurately classifying the 
fingerprint images.  

 
Figure 25 Learning curve of Xception pre-trained model. 

 
Figure 25 shows the acc-loss curve of the Xception pre-trained model. The 

Xception model's learning curve has a slow start, low precision, and substantial loss at the 
beginning. But as the number of epochs rises, the model converges, and the accuracy of 
the training and validation data considerably increases as the loss falls. The model 
performs effectively and generalizes to unknown data when it achieves high accuracy on 
both the training and validation set with a very low loss after training.  
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Figure 26 Learning curve of VGG16 pre-trained model. 
 

Figure 26 shows the acc-loss curve of the Xception pre-trained model, From the 
initial epochs, both the training and validation accuracy grow dramatically while the loss 
declines. At epoch 207, the model reaches its highest level of precision with a training 
precision of 0.91, a loss of 0.39, a validation precision of 0.98, and a validation loss of 0.07. 
After the peak, the accuracy does not increase appreciably, however, the validation loss 
grows substantially at later epochs, indicating overfitting. The model achieved great 
accuracy on both the training and validation sets, with a final validation accuracy of 0.99 
and a final training and validation loss of 0.002.  
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Figure 27 Learning curve of InceptionV3 pre-trained model. 
 

Figure 27 displays the accuracy-loss curve of InceptionV3 during training. It was 
observed that both the accuracy and validation accuracy had a higher starting value. The 
validation accuracy of this model remained mostly stable, with only a minor decrease 
towards the end. The training and validation loss initially started high and decreased as 
the epoch values increased until they approached zero. In this model, however, the final 
training loss was smaller, suggesting a better capability to fit the data. Overall, the learning 
curve of the second model demonstrated its ability to handle the data effectively and 
achieve high accuracy with minimal loss values. 
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Figure 28 Learning curve of custom model. 
 

Figure 28 illustrated the learning curve of the custom model, accuracy during 
training and validation both began at low levels and rose as the number of epochs 
increased. On the other hand, when the number of epochs rose, the training and validation 
loss began to decline. The model's weights' unpredictable initialization may have 
contributed to the initial significant loss. Weights were optimized while the model 
continued to train, which reduced loss. Along with the improvement in training accuracy, 
the validation accuracy also increased, showing that the model was not overfitting the 
training set of data. The fact that the validation data was not used for weight optimization 
may also be the reason why the validation loss began out higher than the training loss 
and stayed somewhat higher throughout training.  

4.1.2 Confusion matrix 
A confusion matrix is a vital tool for evaluating the performance of a 

classification model. It displays the number of correct and incorrect predictions made by 
the model, providing insights into its effectiveness. The matrix includes four categories: 
true positives (TP), false positives (FP), true negatives (TN), and false negatives (FN). 
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Performance metrics such as accuracy, precision, recall, and F1-score can be derived from 
the confusion matrix. 

In this research, our focus is primarily on True Positives (TP) and False 
Negatives (FN) in the confusion matrix. Our objective is to correctly identify individual 
fingerprints while being aware of cases where correct identification is missed. False 
Positives (FP) and True Negatives (TN) are not considered in this context as our main 
concern lies in avoiding incorrect identification and correctly recognizing non-matching 
fingerprints. 

The unseen dataset used in this study consists of 1104 images, with each 
class representing a unique user and containing 92 images. These images are utilized to 
calculate the confusion matrix and generate a classification report for each of the five 
models. The results obtained from evaluating the test set using these models are 
presented in a table comprising the confusion matrices. 

 
Table 3 Table of confusion matrix table for ResNet50 model. 
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Table 3 shows the confusion matrix for ResNet50, the ResNet50 model 
generally delivered accurate predictions, which suggests a good level of accuracy overall. 
Users 1, 3, 5, and 10 are tiny-problematic for the model since each of these classes has a 
significant amount of incorrect predictions. The model is most accurate for users 4, 7, and 
8, with all predictions being correct.  

 
Table 4 Table of confusion matrix table for Xception model. 

 
 

Table 4 shows the confusion matrix for the Xception model, the Xception 
model is the most accurate overall and can correctly forecast the majority of courses. 
There are a few inaccuracies in the projections for users 1, 9, 10, 11, and 12, where the 
model incorrectly identified one or two data sets as belonging to a different user. The 
model's accuracy is highest for user 2, 3, 4, 5, 6, 7, and 8; all predictions were realized.  
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Table 5 Table of confusion matrix table for VGG16 model. 

 
 

Table 5 visualized the confusion matrix of Vgg16, with the majority of 
forecasts being true, the VGG16 model has good overall accuracy. Users 1, 5, and 11 are 
problematic for the model, as each of these classes has a significant amount of incorrect 
predictions. With every prediction coming true for user 4, the model has the best accuracy.  
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Table 6 Table of confusion matrix table for InceptionV3 model. 

 
 

Table 6 illustrated the confusion matrix for InceptionV3, The InceptionV3 
model achieved accurate predictions, showing excellent overall accuracy. Users 1, 3, 5, 
and 11 are problematic for the model, as each has some erroneous predictions. Users 4 
and 7 had the most accurate forecasts, with all predictions being accurate.  
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Table 7 Table of confusion matrix table for custom model. 

 
 

Table 7 shows the confusion matrix of the custom model, the overall 
accuracy of the custom model is demonstrated by the significant number of accurate 
predictions (at least 90) for the majority of classes. There are errors in the predictions, 
especially for users 1, 6, and 11, for whom the model misclassified one or two 
observations. For user 4, the model's accuracy is the highest, since all predictions are 
accurate.  

 

4.2 Model comparison 
Let’s consider the learning curve, the curves of the five models show a similar 

pattern of convergence in which training and validation losses drop with increasing epochs 
while training and validation accuracies improve. However, the particular contours of the 
curves varied amongst models, presumably due to variances in their designs. The ResNet50 
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and Xception models begin with relatively low precision and significant losses but 
ultimately attain high precision and low losses. 

Considering the confusion matrix, it presents a summary of the performance of 
each model. All five models were able to predict with an accuracy of over 97 percent. 
The data from the confusion matrix can be utilized to calculate the classification report 
for comparing the models. The calculation of the classification report was reviewed in 
Chapter II (Section 2.3.4 Performance Evaluation). The table below displays the 
classification report of the five models, providing the data for accuracy, precision, recall, 
and F1 score, which are used to assess a classifier's performance. 

 
Table 8 Comparison of Classification report between five models and voting method. 

Network Accuracy Precision Recall F1-score Support 

Inception-V3 97.59 97.65 97.61 97.62 1104 

Xception 99.13 99.2 99.18 99.19 1104 

VGG-16 100 100 100 100 1104 

Resnet-50 97.1 97.18 97.1 97.12 1104 

Custom model 98.65 98.66 98.69 98.67 1104 

Voting method 100 100 100 100 1104 

 
This table presents a comparison of the performance of five different models and 

a voting method used to identify users based on OCT scans of their internal fingertips. The 
accuracy of the models ranged from 97.1% to 100%, with the VGG-16 model achieving 
perfect accuracy. Precision, recall, and F1-score were all above 97%, with the Xception 
model achieving the highest values for these metrics. The custom model achieved an 
accuracy of 98.65%, which is slightly lower than the Xception model's accuracy of 99.13%. 
However, the voting method achieved perfect accuracy, indicating that it was able to 
leverage the strengths of each model to correctly identify every user in the dataset. This 
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table provides important insights into the strengths and weaknesses of each model and 
highlights the effectiveness of using an ensemble method to improve the accuracy of the 
classification system. 

With the aim of maximizing accuracy, the voting method was chosen as a rational 
approach in this research. All five models exhibited high accuracy rates, making the voting 
method an appropriate choice to combine their predictions. Table 8 presents the 
confusion matrix, showcasing the performance of our system. Notably, the voting method 
outperformed each model, achieving the highest accuracy. Remarkably, our system 
achieved a perfect 100% accuracy, correctly identifying the user for every fingerprint 
impression. These exceptional results highlight the effectiveness and robustness of our 
proposed system in accurately identifying users based on internal fingertip images. The 
significant implications of such high accuracy rates extend to various applications, 
particularly in the domains of application with security and access control systems. 

 

4.3 Analysis of Receiver Operating Characteristic (ROC) Curves 
In addition to using confusion matrices to evaluate the performance of a 

classification model, another widely used method is to analyze the Receiver Operating 
Characteristic (ROC) curve. The ROC curve is a graphical representation of a binary 
classifier's performance that shows the tradeoff between the true positive rate (TPR) and 
the false positive rate (FPR) for different classification thresholds. The ROC curve is an 
important tool for assessing the performance of a classification model across a range of 
thresholds and can help identify the optimal threshold for the model. In this section, the 
ROC curves of the different models used in this study are analyzed to determine their 
performance and identify the optimal threshold for each model. 
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Figure 29 ROC and AUC can visualize the performance of ResNet50. 

 
Figure 29 illustrates ResNet50 performance: The AUC of this model, which is also 

fairly good at 0.9997, indicates that it distinguishes between positive and negative 
classifications. The ROC curve illustrates that while the FPR increases, the TPR increases 
rapidly, suggesting the model's high sensitivity and capacity to recognize true positives 
with a comparatively low rate of false positives. When the TPR reaches 1, the curve 
flattens, indicating that the model's classification performance at that level is optimal.  
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Figure 30 ROC and AUC cuve visualize the performance of Xception model. 
 

Figure 30 depicts Xception's performance: This model's AUC is 1.0, the maximum 
possible value, exhibiting a remarkable ability in distinguishing between positive and 
negative classifications. The ROC curve illustrates the model's capacity to achieve 
optimum classification performance, with a TPR of 1 and an FPR of nearly 0, showing that 
the model has a high degree of sensitivity and specificity.  
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Figure 31 ROC and AUC cuve visualize the performance of VGG16 model. 

 
Figure 31 illustrates the effectiveness of VGG16: This model distinguishes between 

positive and negative classes with an AUC of 1, the maximum attainable value, exhibiting 
outstanding performance. The ROC curve illustrates the model's capacity to achieve 
optimum classification performance, with a TPR of 1 and an FPR of nearly 0, showing that 
the model has a high degree of sensitivity and specificity.  
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Figure 32 ROC and AUC cuve visualize the performance of InceptionV3. 
 

Figure 32 exhibits InceptionV3's effectiveness: The AUC of this model is 0.9998, 
which is more than the AUC of the custom model, indicating that it performs 
extraordinarily well at differentiating positive and negative classes. The ROC curve 
illustrates that while the FPR grows, the TPR climbs rapidly, confirming the model's high 
sensitivity and ability to recognize true positives with a low rate of false positives. When 
the TPR reaches 1, the curve flattens, indicating that the model's classification 
performance at that level is optimal.  
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Figure 33 ROC and AUC curve visualize the performance of the custom model. 

 
Figure 33 shows the individually designed model: The AUC for this model is 0.9953, 

showing that it distinguishes between positive and negative classifications adequately. The 
ROC curve illustrates that while the FPR grows, the TPR climbs rapidly, demonstrating that 
the model has a high sensitivity and can recognize true positives with a low rate of false 
positives. When the TPR reaches 1, the curve flattens, indicating that the model's 
classification performance at that level is optimal.  
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Figure 34 ROC and AUC cuve visualize the performance of Ensemble model. 
 

Figure 34 shows the ROC and AUC curve of the ensemble model (voting method), 
the result of the ensemble voting method showed that the ROC curves of the 12 classes 
overlapped in the same position, indicating that the model was able to effectively 
distinguish between each class with high accuracy. Furthermore, the AUC for each class 
was 1, indicating that the model achieved perfect performance for each class. These 
results suggest that the proposed ensemble voting model was able to effectively leverage 
the strengths of each model to achieve superior classification performance. 

The analysis of ROC curves offered valuable insights into the performance of the 
proposed ensemble voting model. High AUC scores for each class indicated that the 
model accurately classified each sample, while the consistent overlap of the ROC curves 
suggested that the model's performance was maintained across all classes. These findings 
demonstrate that the proposed ensemble voting model is a reliable and efficient 
approach for classifying internal images of fingertips using OCT technology. 



 
 

60 

4.4 Explainable model 
In this chapter, the results of the project, "Identifying Human Fingerprints Using 

Optical Coherence Tomography (OCT) Images with Deep Learning," are presented. The 
primary objective of this study is to develop a robust and accurate fingerprint identification 
system that utilizes deep learning models to analyze OCT images. The use of OCT imaging 
provides a promising approach for fingerprint identification, as it captures high-resolution 
data that can effectively distinguish individual fingerprints. To ensure the credibility and 
interpretability of the models, explainable AI (XAI) techniques were incorporated, enabling 
an understanding of each model's decision-making process and facilitating performance 
assessment by SHAP, as detailed in the table below. Referring to Chapter II, we selected 
the SHAP instead of LIME and Grad-CAM due to the SHAP offers a versatile approach for 
producing reliable and understandable explanations for complex models. 

In this study, the trustworthiness and interpretability of five distinct models were 
analyzed: 1) a custom model, 2) InceptionV3, 3) VGG16, 4) Xception, and 5) ResNet50. The 
SHAP method was employed for feature importance and model explanation. It provided 
valuable information about the decisions made by these models when presented with 
randomly selected, unseen data. The SHAP method generates explanations using a color-
coded system, where each color represents the impact of a specific feature on the model's 
prediction. Positive values (red) indicate that the presence of the feature increases the 
prediction likelihood, while negative values (blue) suggest that the presence of the feature 
decreases the prediction likelihood. The magnitude of the color intensity corresponds to 
the strength of the impact on the prediction. The following table offers a comprehensive 
explanation of the feature selection process. To illustrate the differences in how each 
model interprets the input data, four sample images were randomly chosen from the 
unseen OCT fingerprint dataset.  
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Table 9 Explainable model table shows the feature selection by SHAP. 

 
The custom model placed a high emphasis on the surface features of the 

fingerprint, as indicated by the concentrated red zone on the fingertip surface area. In 
contrast, the InceptionV3 and ResNet50 models exhibited a broader distribution of red 
regions throughout the images, considering various parts of the image in addition to the 
fingerprint surface. The VGG16 model had a targeted focus on crucial features, including 

Original 
image 

    
Custom 
model 

    
InceptionV3 

    
ResNet50 

    
VGG16 

    
Xception 
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the fingerprint surface, sweat glands, and sweat holes, allowing for highly informed 
predictions. The Xception model displayed a distribution of red clusters similar to 
InceptionV3 and ResNet50, indicating its consideration of multiple aspects of the image 
for identity prediction. 

These findings highlight the varying interpretability of the models and how they 
prioritize different features during the decision-making process. Such insights provided by 
the SHAP method contribute to a better understanding of the models' reasoning and 
support their trustworthiness in real-world applications. 

 

4.4 Image size effect 
This section presents the results obtained from the evaluation of image size on 

the classification report of OCT machine scans. The performance of the machine learning 
model was assessed using various evaluation values for four different image sizes. The 
findings provide insights into the relationship between image size and accuracy in OCT-
based diagnoses. The result will show in the table. 

 
Table 10 Table of classification reports for different image sizes. 
Image size (Pixels) Accuracy Precision Recall F1-score 

1000*600 0.9947 0.9948 0.9947 0.9947 
921*511 0.9634 0.964 0.9634 0.9632 
409*511 0.9947 0.9948 0.9947 0.9947 
150*510 0.9683 0.9697 0.9683 0.9681 

 
Table 10 summarizes the performance metrics achieved by the machine learning 

model for each image size. The metrics include accuracy, precision, recall, and F1-score. 
Surprisingly, the size was reduced to a very small 150x510, the results demonstrate that 
there is no significant impact of image size on the accuracy of OCT machine scans. 
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Regardless of the image size, the model achieved consistently high performance across 
all metrics, with accuracy ranging from 0.9634 to 0.9947. 

 

4.5 Applications  
The findings from this study, which leverages three-dimensional OCT-based 

fingerprint recognition, demonstrate the potential for significantly enhancing security 
systems. While the results are promising, it is important to acknowledge the limitations, 
including the small sample size and the reliance on deep learning techniques. To 
effectively apply this work to real-world security systems, further research, and 
development are needed to design a robust and scalable system tailored to specific safety 
requirements. Future advancements should focus on addressing these limitations and 
exploring additional techniques to optimize the performance, scalability, and adaptability 
cross-sectional of three-dimensional OCT-based fingerprint recognition for a wide range of 
security applications.  

Preliminary results indicate that the developed system based on the depth profile 
of three-dimensional OCT image analysis is capable of real-time person identification. The 
system effectively distinguishes individuals using OCT images captured by an active OCT 
camera system specifically designed for fingerprint recognition. This promising outcome 
demonstrates the potential feasibility and practicality of employing OCT technology for 
seamless and efficient fingerprint recognition in real-world security applications as 
visualized in Figure 39. However, further research and testing on larger datasets and under 
various environmental conditions are necessary to validate and optimize the system's 
performance, ensuring its reliability and robustness in diverse operational settings. 
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Figure 35 Example for the application workflow diagram. 
 

4.6 Discussion of Limitations and Future Directions 
This study has various limitations that must be taken into account. First, the dataset 

used in this study was acquired from a single institution, which may limit the applicability 
of the findings to other groups. In addition, the dataset was of limited size, which may 
have impacted the performance of the models. Additional research using larger and more 
diverse data sets is required to confirm the results of this study. Another limitation is the 
use of a single type of OCT machine. The models developed in this study were trained 
and tested only on OCT images obtained from one type of machine, which may limit their 
applicability to other OCT machines. Future studies should evaluate the generalizability 
of the developed models to other OCT machines. 

Despite the promising results of our internal fingertip identification system using 
OCT, several limitations must be addressed. One limitation is the need for high-quality 
images to achieve accurate identification, which can be challenging to obtain in real-world 
scenarios due to factors such as finger positioning and movement. Additionally, our system 
was developed and tested on a dataset of 12 users, which may limit the generalizability 
of the results to a larger population. 
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Plans include expanding our dataset to include a more varied group of users and 
including additional parameters such as finger shape and texture to increase the 
recognition accuracy. The use of biometric data, such as fingerprints, for identification, 
increases privacy concerns, making the potential consequence of security breaches an 
additional crucial factor. As a result, additional research is required to build effective 
security mechanisms that safeguard user data while allowing for precise and rapid 
identification. Consequently, our internal fingertip identification system shows promise as 
a non-invasive and convenient biometric authentication approach; however, additional 
study and improvement are required to solve the aforementioned constraints and assure 
its practical applicability in real-world situations.  

In the future, it may be worth exploring the possibility of tracking sweat glands for 
identification purposes, as wetness and dirt on the fingertip can impact the performance 
of the model. This could involve investigating new image processing techniques or 
incorporating additional sensor data to account for such environmental factors. These 
advancements would contribute to the practical applicability of our internal fingertip 
identification system, offering a non-invasive and convenient biometric authentication 
approach. However, it is essential to continue studying and refining the system to 
overcome the aforementioned limitations and ensure its effectiveness in real-world 
scenarios. 
 



 
 

CHAPTER V 
CONCLUSION 

 
In this research, the use of optical coherence tomography (OCT) was explored for 

application for the performance and security of traditional fingerprint scanners in the field 
of finger biometrics. A security system was proposed that leverages the internal structure 
of the fingertip, including sweat glands, epidermis, and dermis, to create an internal image 
of the finger. Pre-trained deep learning models, such as Inceptionv3, VGG16, Xception, and 
ResNet50, along with a custom model, were utilized to extract features from the internal 
fingertip images. A voting method was employed to ensure the robustness of the system. 

Experimental results demonstrated that the proposed method achieves an 
accuracy and prediction rate of around 99%, according to the confusion matrix evaluation. 
This evidence suggests that a security system based on deep learning with internal fingertip 
data has the potential to help traditional verification systems, offering higher security. 
However, some limitations should be considered, such as the relatively small sample size 
of 12 unique fingers. Expanding data collection and analysis with a larger sample size 
could enhance the accuracy and robustness of the proposed method. Moreover, the 
system was tested under controlled laboratory conditions; further testing under more 
diverse and challenging conditions is necessary to confirm its effectiveness in real-world 
scenarios. 

Future studies could focus on applying the proposed technique to other 
biometrics, such as voice or facial recognition, and integrating the system into actual 
devices with internal OCT hardware. It would also be worthwhile to investigate the 
potential for improving system security by exploring various deep-learning approaches and 
model designs. 
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In conclusion, the proposed security solution, which combines internal fingertip 
data with deep learning, has the potential to significantly enhance the efficiency and apply 
to the security of conventional fingerprint scanners. Future research may explore new 
avenues for improving the system's accuracy and security, but additional validation and 
testing are required to demonstrate its effectiveness in real-world situations. 
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APPENDIX A 

A PYTHON CODE USED IN THIS THESIS 

 

The code imports the following libraries and modules: TensorFlow (as tf), NumPy 

(as np), OpenCV (as cv2), os, tqdm, Keras, Matplotlib.pyplot (as plt), scikit-learn, plotly, 

seaborn, and pandas. These libraries provide various functionalities for deep learning 

model creation, data manipulation, visualization, performance evaluation, and result 

analysis. 

import tensorflow as tf 

import numpy as np 

import cv2 

import os 

from tqdm import tqdm #checking progress 

from tensorflow import keras  

from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import Dense, Dropout, Activation, Flatten 

from tensorflow.keras.layers import Conv2D, MaxPooling2D 

import matplotlib.pyplot as plt 

from sklearn.model_selection import train_test_split 

from os import listdir 

from os.path import isfile, join 

from tensorflow.keras.models import load_model 

from sklearn.metrics import roc_curve, auc 

from sklearn.metrics import confusion_matrix 

from sklearn.metrics import classification_report 

import plotly 

import plotly.figure_factory as ff 

import seaborn as sn 
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import pandas as pd 

import numpy as np 

from tensorflow.keras.callbacks import CSVLogger 

import shap 

 

This section determines the size and location of the image. 
width = 128 

num_classes = 12 

data_path = 'Identi/train_jpg2/' 

data_img = [data_path + f for f in listdir(data_path) if listdir(join(data_path, f))] 

data_img 

 

The function essentially loads and processes the images from the specified path, assigns 

one-hot encoded labels based on the folder names, and returns the processed images 

and labels as lists. 
#Convert image to array data and labelling one hot encoding 

def img2data(path): 

    rawImgs = [] 

    labels = [] 

    c = 0 

    for imagePath in (path): 

      for item in tqdm(os.listdir(imagePath)): 

        file = os.path.join(imagePath, item) 

        c+=1 

        l = imagePath.split('/')[2]          

        if l == 'Aom1': 

            labels.append([1,0,0,0,0,0,0,0,0,0,0,0]) 

        elif l == 'Aom2': 

            labels.append([0,1,0,0,0,0,0,0,0,0,0,0]) 

        elif l == 'Aom9': 
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            labels.append([0,0,1,0,0,0,0,0,0,0,0,0]) 

        elif l == 'Aom10': 

            labels.append([0,0,0,1,0,0,0,0,0,0,0,0]) 

        elif l == 'New1': 

            labels.append([0,0,0,0,1,0,0,0,0,0,0,0])       

        elif l == 'New2': 

            labels.append([0,0,0,0,0,1,0,0,0,0,0,0]) 

        elif l == 'New9': 

            labels.append([0,0,0,0,0,0,1,0,0,0,0,0]) 

        elif l == 'New10': 

            labels.append([0,0,0,0,0,0,0,1,0,0,0,0]) 

        elif l == 'Nuvo1': 

            labels.append([0,0,0,0,0,0,0,0,1,0,0,0]) 

        elif l == 'Nuvo2': 

            labels.append([0,0,0,0,0,0,0,0,0,1,0,0]) 

        elif l == 'Nuvo9': 

            labels.append([0,0,0,0,0,0,0,0,0,0,1,0]) 

        elif l == 'Nuvo10': 

            labels.append([0,0,0,0,0,0,0,0,0,0,0,1]) 

        img = cv2.imread(file , cv2.COLOR_BGR2GRAY) 

        img = cv2.resize(img ,(width,width)) 

        rawImgs.append(img) 

    return rawImgs, labels 

 

These steps prepare the data for training and testing by splitting it, converting it into 

NumPy arrays, and normalizing the pixel values to a suitable range for the neural network 

model. 
x, y = img2data(data_img) 

x_train,x_test2,y_train,y_test2 = train_test_split(x,y,test_size = 0.4) 

len(x_train), len(x_test) 
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x_train = np.array(x_train) 

y_train = np.array(y_train) 

x_test2 = np.array(x_test2) 

y_test2 = np.array(y_test2) 

x_train = x_train.astype('float32') 

x_test2 = x_test2.astype('float32') 

x_train /= 255 

x_test2 /= 255 

 

This code snippet demonstrates the process of creating a transfer learning model by using 

a pre-trained model as the base and adding custom layers on top for the specific 

classification task. 
## Create the transfer learning model 

base_model = tf.keras.applications.{trained_model}(input_shape=(128,128,3), 

                                                   include_top=False, 

                                                   weights='imagenet') 

base_model.trainable = True 

num_classes = 12 

 

model = Sequential([ 

        base_model, 

        Dense(16), 

        Flatten(), 

        Dense(num_classes, activation='softmax') 

    ]) 

model.summary() 

 

This code snippet demonstrates the construction of a custom deep learning model using 

a combination of convolutional layers, pooling layers, dropout layers, and fully connected 

layers. 
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## Custom model 

model = keras.Sequential([ 

        keras.layers.Conv2D(128, (3,3), activation='relu', input_shape=(width, width, 3)), 

        keras.layers.MaxPooling2D(pool_size=(2, 2)), 

        keras.layers.Dropout(0.4), 

        keras.layers.Conv2D(128,(3,3) , activation='relu'), 

        keras.layers.MaxPooling2D(pool_size=(2,2 )), 

        keras.layers.Dropout(0.4), 

        keras.layers.Conv2D(128,(3,3) , activation='relu'), 

        keras.layers.Dropout(0.4), 

        keras.layers.Dense(16), 

        keras.layers.Dropout(0.25), 

        keras.layers.Flatten(), 

        keras.layers.Dense(num_classes, activation = 'softmax') #softmax for one hot . . # sigmoid 

for 0/1 

    ]) 

model.summary() 

 

These parameters and configurations help define how the model will be trained and 

optimized. 
## Compile model with set parameters 

model.compile(optimizer=tf.keras.optimizers.Adam(lr=0.0001), loss='categorical_crossentropy' 

                , metrics= ['accuracy']) 

batch_size = 64 

epochs = 500 

 

By fitting the model to the training and validating data.  
## Fitting and save model 

history = model.fit(x_train, y_train ,batch_size=batch_size, epochs=epochs 

,validation_data=(x_test, y_test), callbacks=[csv_logger]) 
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model.save(f'Finger_new/model_{nameM}_W{width}_B{batch_size}_Lr{lr}.h5') 

print(f'model_{nameM}_W{width}_B{batch_size}_Lr{lr}') 

 

Plot the learning curve for basic evaluation. 
## Plot acc-loss learning curve 

plt.plot(history.history['accuracy']) 

plt.plot(history.history['val_accuracy']) 

plt.title('model accuracy') 

plt.ylabel('accuracy') 

plt.xlabel('epoch') 

plt.legend(['train', 'validation'], loc = 'upper left') 

plt.savefig(f'Finger_new/{nameM}_acc_L{lr}_W{width}_B{batch_size}.png', dpi=300) 

plt.show() 

#Loss 

plt.plot(history.history['loss']) 

plt.plot(history.history['val_loss']) 

plt.title('model loss') 

plt.ylabel('loss') 

plt.xlabel('epoch') 

plt.legend(['train', 'validation'], loc = 'upper left') 

plt.savefig(f'Finger_new/{nameM}_loss_L{lr}_W{width}_B{batch_size}.png', dpi=300) 

plt.show() 

 

## Load 5 trained model 
model1 = load_model('Finger_new/model_Our_W128_B64.h5') 

model2 = load_model('Finger_new/model_Res50_W128_B64.h5') 

model3 = load_model('Finger_new/model_Xcep_W128_B32.h5') 

model4 = load_model('Finger_new/model_Vgg16_W128_B64.h5') 

model5 = load_model('Finger_new/model_IncV3_W128_B64.h5') 
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Plot the Learning curve of 5 models by loop through the models 
models = ['Custom', 'ResNet50', 'Xception', 'Vgg16', 'InceptionV3'] 

for i, history in enumerate(histories): 

    # create a new figure for each model 

    plt.figure() 

    # plot the training and validation accuracy 

    plt.plot(history['accuracy'], label='Training accuracy') 

    plt.plot(history['val_accuracy'], label='Validation accuracy') 

    plt.title(f'Model {i} accuracy') 

    plt.xlabel('Epochs') 

    plt.ylabel('Accuracy') 

    plt.legend() 

    # plot the training and validation loss 

    plt.plot(history['loss'], label='Training loss') 

    plt.plot(history['val_loss'], label='Validation loss') 

    plt.title(f'{models[i]} model') 

    plt.xlabel('Epochs') 

    plt.ylabel('Acc-Loss') 

    plt.legend() 

    plt.savefig(f'Finger_new/History/{models[i]} model2.png', dpi=600) 

    plt.show() 

 

Plot confusion matrix 
predict_x={trained_model}.predict(x_test)  

classes_x=np.argmax(predict_x,axis=1) 

classes_x 

y_test_arg=np.argmax(y_test,axis=1) 

 

print(f'Confusion Matrix_{nameM}_{width}_{batch_size}_V3') 

print(confusion_matrix(y_test_arg, classes_x)) 

cm = confusion_matrix(y_test_arg, classes_x) 
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cm 

labels = ['User1','User2','User3','User4','User5','User6','User7','User8','User9', 

'User10','User11','User12'] 

 

Function for visualize confusion matrix plot with classification report. 
def cm_plot(cm, labels): 

    plt.figure(figsize=(8, 6)) # set the figure size to 8x6 inches 

    sn.set_style("whitegrid") 

    sn.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=labels, yticklabels=labels) 

    plt.xlabel('Predicted Value') 

    plt.ylabel('Real Value') 

    plt.title(f'Confusion Matrix for {nameM}') 

    plt.tight_layout() # adjust the margins to fit the labels within the plot area 

    plt.show() 

     

 

cm_plot(cm, labels) 

report = classification_report(y_test_arg, classes_x, target_names=labels, digits=4) 

 

print(report) 

 

Plot ROC and AUC curve for evaluation purpose.  
## Plot the ROC, AUC curve 

predicted_score = model4.predict(x_test) 

predicted_score.shape, y_test.shape 

sn.set_style("whitegrid") 

 

fig, ax = plt.subplots() 

ax.plot([0, 1], [0, 1], '--', color='gray') 

 

for i in range(predicted_score.shape[1]): 
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    y_real = y_test[:, i] 

    y_score = predicted_score[:, i] 

 

    fpr, tpr, threshold = roc_curve(y_real, y_score) 

    auc_score = auc(fpr, tpr) 

     

    name = f"{labels[i]}, AUC={auc_score:.4f}" 

    sn.lineplot(x=fpr, y=tpr, label=name, data=threshold) 

 

plt.xlabel('False Positive Rate') 

plt.ylabel('True Positive Rate') 

plt.title(f'ROC Curve and AUC for {nameM}') 

plt.show() 

 

The code implements a voting method to combine predictions from multiple models. It 

loads five pre-trained models and makes predictions on a set of input images. The 

predictions from each model are averaged to obtain the final prediction. The class with 

the highest probability is determined as the predicted label. The code then calculates 

and prints the confusion matrix, which shows the performance of the model's predictions 

compared to the true labels. 

def voting_method(input_images): 
    # Instantiate the individual models 

    model1 = load_model('Finger_new/model_Our_W128_B64.h5') 

    model2 = load_model('Finger_new/model_Res50_W128_B64.h5') 

    model3 = load_model('Finger_new/model_Xcep_W128_B32.h5') 

    model4 = load_model('Finger_new/model_Vgg16_W128_B64.h5') 

    model5 = load_model('Finger_new/model_IncV3_W128_B64.h5') 

 

    # Make predictions using all 5 models 

    prediction1 = model1.predict(input_images) 
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    prediction2 = model2.predict(input_images) 

    prediction3 = model3.predict(input_images) 

    prediction4 = model4.predict(input_images) 

    prediction5 = model5.predict(input_images) 

 

    # Take the average of all 5 predictions 

    final_prediction = (prediction1 + prediction2 + prediction3 + prediction4 + prediction5) / 5 

 

    # Get the class with the highest probability 

    predicted_classes = np.argmax(final_prediction, axis=1) 

 

    return predicted_classes 

 

 

# Get the true labels and the predicted labels for the test set 

y_test_arg = np.argmax(y_test, axis=1) 

predicted_labels = voting_method(x_test) 

 

# classes_x=np.argmax(predicted_labels,axis=1) 

# classes_x 

# Calculate the confusion matrix 

confusion_matrix = confusion_matrix(y_test_arg, predicted_labels) 

 

# Print the confusion matrix 

print('Confusion Matrix:') 

print(confusion_matrix) 

 

The code provided generates SHAP plots, which offer insights into the contribution of 

image features to the model's decision-making process. These plots enhance the 
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interpretability of the models and can be included in the appendix to provide visual 

evidence of the models' transparency and trustworthiness. 
## Model explainable by SHAP 

import os 

import matplotlib.pyplot as plt 

from tensorflow.keras.preprocessing import image 

from tensorflow.keras.applications.xception import preprocess_input 

 

base_folder = 'Finger_new/SHAP/' 

class_names = ['User1', 'User2', 'User3', 'User4', 'User5', 'User6', 'User7', 'User8', 'User9', 'User10', 

'User11', 'User12'] 

models = [model1, model2, model3, model4, model5] 

model_names = ['Custom', 'ResNet50', 'Xception', 'Vgg16', 'InceptionV3'] 

 

# Function to load and preprocess images 

def load_and_preprocess_image(img_path): 

    img = image.load_img(img_path, target_size=(128, 128)) 

    x = image.img_to_array(img) 

    x = np.expand_dims(x, axis=0) 

    x = preprocess_input(x) 

    return x 

 

for class_name in class_names: 

    print(f"Processing class: {class_name}") 

    class_folder = os.path.join(base_folder, class_name) 

    img_paths = [os.path.join(class_folder, img_name) for img_name in os.listdir(class_folder)] 

     

    for img_path in img_paths: 

        print(f"Processing image: {img_path}") 

        img = load_and_preprocess_image(img_path) 
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        for model, model_name in zip(models, model_names): 

            background = x_train[np.random.choice(x_train.shape[0], 100, replace=False)] 

            explainer = shap.GradientExplainer(model, background) 

            shap_values = explainer.shap_values(img) 

             

            plt.figure() 

            shap.image_plot(shap_values, -img) 

            plt.title(f"{model_name} - {class_name} - {os.path.basename(img_path)}") 

            plt.savefig(f"{model_name}_{class_name}_{os.path.basename(img_path)}.png") 

            plt.close() 

 

print("Completed!") 
 



 
 

 

APPENDIX B 
PUBLICATION AND PRESENTATION 

 

B.1 List of publication 
Ngamchuea, K., Wannapaiboon, S., Nongkhunsan, P., Hirunsit, P., and Fongkaew, I. 

(2022). Structural and Electrochemical Analysis of Copper-Creatinine Complexes: 
Application in Creatinine Detection. Journal of The Electrochemical Society, 169(2), 
020567. doi:10.1149/1945-7111/ac534



87 
 

Identifying Human Fingerprints by Using Optical Coherence 

Tomography Image with Deep Learning 

Papawit Nongkhunsana, Panomsak Meemona, Ittipon Fongkaewa, 1 

aSchool of Physics, Institute of Science, Suranaree University of Technology, 111 University Avenue, Muang, Nakhon ratchasima, 30000, 

Thailand. 

Abstract 

Optical coherence tomography (OCT) has emerged as a powerful imaging technology for obtaining depth information 

of living tissue in various fields. In this study, we present a novel approach to enhance the security and performance of 

traditional fingerprint scanners by leveraging OCT technology for internal finger biometrics. Our proposed system 

utilizes the intricate internal structure of the fingertip, including sweat glands, epidermis, and dermis, to construct a robust 

3D finger model. To extract discriminative features, we employ pre-trained deep learning models such as InceptionV3, 

VGG16, Xception, ResNet50, and a custom model. Furthermore, to ensure system reliability, we adopt a voting method 

that combines the predictions of multiple models. 

We collect a comprehensive dataset comprising internal fingertips from twelve unique individuals, with 

approximately 1,000 images per finger. Sixty percent of the dataset is allocated for training, while the remaining portion 

is used for validation. Through extensive experimentation, we achieve an impressive accuracy and prediction rate of 

around 99%, as evaluated using the confusion matrix. These findings demonstrate the potential of deep learning-based 

security systems utilizing internal fingertip data to outperform traditional verification systems and offer enhanced 

security. Nonetheless, further validation and testing in real-world scenarios are necessary to assess the effectiveness and 

practical applicability of our proposed method. Future work may involve the integration of this technology with in-house 

OCT hardware to facilitate seamless implementation in various security applications. 

[copyright information to be updated in production process] 

 

Keywords: Optical coherence tomography; Deep learning; Voting method 

1. Introduction 

In recent years, biometric technology has gained popularity to protect personal information and maintain 

privacy in numerous businesses. Fingerprint identification is one of the most prevalent biometric techniques. 

Traditional fingerprint identification methods, however, are susceptible to cyberattacks, particularly those 

involving forged fingerprints. The vulnerabilities in the technology allow hackers to obtain unauthorized 

access to sensitive information [1]. Consequently, developing more sophisticated and secure fingerprint 

identification systems is essential. Conventional fingerprint technology captures external fingertip 

information using capacitive [2], optical reflection [3], or ultrasonic sensors to generate a template that is 

compared to the input data when a user tries to access the system [4]. This approach leaves the system 

susceptible to spoofing attacks by presentation attack instruments (PAIs) that can manipulate the surface of 

the finger [1]. To protect personal information in the digital age, it is necessary to enhance the security and 

accuracy of fingerprint identification systems in light of the growing use of biometric technology. Optical 

coherence tomography (OCT) technology has emerged as a promising solution to the security problems 

associated with conventional fingerprint identification systems. Similar to ultrasound imaging but with a 

higher resolution, OCT provides cross-sectional images of living tissues and biological substances using non-

harmful near-infrared light [5]. The two most common OCT implementations are TD-OCT and SD-OCT, 

with the latter being faster and more efficient [6, 7]. Numerous fields, including dermatology [8, 9], 

ophthalmology [10], biology [11, 12], aquatic toxicology [13, 14], and material characterization [15, 16], 

have benefited from the application of OCT technology. 

Recent research indicates that optical coherence tomography (OCT) technology can significantly improve 

the security and accuracy of fingerprint identification systems. Nevertheless, traditional methods have flaws, 

and fake fingerprints can circumvent the technology. The risk stems from the fact that conventional systems 
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only account for the finger's surface, which is the area that presentation attack instruments (PAIs) can 

manipulate. PAIs are inexpensive and readily available substances such as glue, play-doh, gelatin, etc. These 

toys can be used to commit fraud in a traditional high-security system with an approximate 70% success rate 

[17]. Therefore, developing more sophisticated technologies for detecting and preventing such attacks is 

essential. The Optical Coherence Tomography (OCT) technology is more effective against attacks involving 

non-authentic fingerprints, with an actual detection rate (TRD) of 99.73 percent, Chugh et al. [18] reported 

that OCT could distinguish between spoofed and actual fingers. 

In addition, Akbari et al. have investigated the recognition of fingerprints using OCT fingerprint images. 

Their research demonstrated that the algorithm used to recognize OCT fingerprints could be enhanced by 

automating fingerprint recognition [19]. Moola et al. have studied traditional fingerprints using OCT and 

reported that when OCT technology is integrated into the device, the system performs better than normal 

[20].  To take advantage of the potential of OCT technology, this research aims to develop more secure 

authentication and verification systems less vulnerable to cyberattacks. We will use SD-OCT to collect and 

analyze image data in order to identify unique fingerprint images with a 99% degree of accuracy using deep 

learning techniques and computer vision. We will also perform a classification algorithm on multiple 

classifications using Python programming. Using OCT images and deep learning techniques, we aim to 

improve the security and accuracy of fingerprint identification systems in the digital age and safeguard 

sensitive data. 

2. Materials and Methods 

2.1 OCT system and data collection 

The SD-OCT utilized in this study had a central wavelength of 840 nm and was generated by a 

superluminescent light-emitting diode, as shown in Figure 1. (SLED). The wave delivers light to the beam 

splitter, which then separates the light into a reference beam and a sample beam. The reference beam was 

reflected along the same path as the beam splitter after being directed to a reference mirror. The sample beam 

is transmitted to the objective lens, which focuses on the sample. Additionally, the objective lens combines 

the light reflected from the sample's structure. An interference signal was produced when both beams 

reflected off a beam splitter. A specialized, high-speed spectrometer was utilized to detect the interference 

signal in the spectral domain. To receive the depth signal, the spectral interference was Fourier transformed. 

By laterally scanning the focused beam with a Galvanometer mirror, we could acquire a cross-sectional image 

of 3D data. Each cross-section has around 1000x1000 pixel resolution. The capture area is approximately 

4x4 mm, and the sampling distance between each pixel is about 4 mm. The imaging speed is around 25 

frames per second. 

 

 

 

 

 

 

 

 

 

 

 

 

2.2 Capturing and collecting internal data from fingertip 

We captured internal fingerprint images using in-house OCT hardware with an imaging resolution around 

1000x1000 pixels, corresponding to a 4 mm x 4 mm fingerprint area. Figure 2 shows an example of a B-scan 

Figure 1. (a) A diagram of the SD-OCT and (b) a sample head for imaging. 
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(slice) image. Images reveal that the internal structure of the finger consists primarily of three layers: 1) 

epidermis, 2) dermis, and 3) subcutaneous. The surface finger or stratum corneum is the uppermost layer of 

the epidermis, which contains sweat glands [21]. The viable epidermis, which represents the innermost layer 

of the fingertip, is the subsequent layer. In the dermis layer, the papillary and reticular dermis were visible. 

As a result, when a user sustains a minor injury, all depth information could serve as a mother template and 

contain sufficient data for security, even if the finger surface is contaminated because internal information 

also retains the ridges and valleys. Sweat glands and pores could improve the accuracy of fingerprint 

identification [22]; this application of OCT properties is a breakthrough and superior to conventional 

fingerprints, as the latter cannot reach this layer. 

 

 

 
 

 

According to the aforementioned images, the captured images demonstrated promising performance at 

multiple depths. Consequently, images are commonly referred to as layer images; this made the oct-captured 

technique unique because they contain internal information about the finger that should result in a more 

secure system. As a result, we collected 12 unique fingerprints from three SD-OCT participants; due to the 

slow scanning speed, each finger must remain still for approximately one minute. From the 3D OCT volume 

data, we will then extract the 2D fingerprint image. The OCT scanning procedure involves projecting a light 

beam onto the tissue and measuring the reflected light to generate an image. In the case of internal fingerprint 

imaging, light is projected onto the fingertip, and the reflected light captures the finger's internal structure, 

including the sweat glands, epidermis, and dermis. The resulting OCT image can be utilized to extract 

fingerprint identification features, providing a potentially more secure alternative to conventional fingerprint 

scanners. 

2.3 Image augmentation 

Image augmentation is used to randomly adjust the dataset, thereby increasing the dataset's diversity for 

a more accurate model and mitigating the overfitting issue. The outcome of the prediction should be better. 

Image processing enlarges a small dataset; examples of image processing include adjusting contrast,  and 

noise adjustment. The effect of image enhancement is enhancing the performance of the model [23]. An 

example of the image being enlarged is shown in Figure 3. 

 

 

Figure 2.  B-scan image with the dept information of fingertip. 
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Figure 3 Image processing which A)raw data, B) contrast adjust with noise filter (median filter), C) and D) Heat mapping 

Figure 3 depicts the image processing of an OCT fingerprint, where A is the raw data, and B is the 

processed image with noise (median filter) and contrast adjustments. C and D are heat maps used to 

comprehend the information on the various sides and how networks will extract features from the images. 

As can be seen, image processing would provide significantly more information about internal fingertip data. 

Figures 3C and 3D show that the interior surface has a high density; we could use this region as a biomarker 

for fingerprints [24]. With all the interior raw and processed data details, it is possible to predict what 

computers and convolutional neural networks (CNNs) will look for in this data. After analyzing the OCT-

obtained internal fingerprint images, we observed increased information density from the surface to the 

interior. 

Deep learning techniques can improve the accuracy of fingerprint recognition by incorporating this 

information. Figure 3A depicts the unprocessed OCT image of the fingerprint. It is difficult to extract useful 

characteristics from it. As demonstrated in Figure 3B, we applied a median filter to the image to reduce noise 

and extract more distinct features. Using the OCT data, we also generated a heat map of the fingerprint, as 

shown in Figures 3C and 3D. The heat map depicts areas of high and low image intensity. We can observe 

that high-density regions are present from the fingerprint's surface to its interior. This data confirms that it 

can be used to create a more precise and secure fingerprint identification system. We use heat mapping to 

ensure that OCT fingerprint images contain sufficient internal information for identification. Only The 

images were processed with a median filter (3B), and our CNN was fed the raw data (3A). High levels of 

noise and interference in the raw OCT images can negatively impact the performance of the CNN. To solve 

this issue, we used a median filter to reduce noise and preserve the fine details of the fingerprint valleys, 

ridges, and other information. 

2.4 Deep Learning and Classification Model 

Our deep learning strategy utilized convolutional neural networks in this work. The dataset was split into 

two sets: a training set and a validation set, with 60% of the data assigned to the training set and 40% to the 

validation set. For the multiclass labelling of 12 fingers, one-hot encoding was used to refer to 12 unique 

users, the reason for 12 classes due to the limitation of graphics processing unit’s memory is 6 GB. We 

downsized the images and converted them to arrays to conserve computational resources. The initial layer of 

our model was a convolutional layer that extracted image features. Next, the data was sent to the max pooling 

layer, which reduced the data's size while retaining only the most essential details or values. We utilized the 

dropout layer to prevent overfitting [25]. The activation function rectified linear unit (ReLu), was essential 

to the design of our neural network architecture. 

2.4.1 Architecture of model 

In this work, the model was created from five different architectures. In the first design, we will design 

our custom network architecture for predicting the fingerprint. In the other models, we will use the complex 

architecture from ImageNet that InceptionV3, Restnet50, VGG16, and Xception will use for training the 

model, respectively [26, 27]. Then, we will ensure user confidence in the system by combining all three 

models. For the design parameter depicted in Figure 4, a convolutional layer with 128 features and a kernel 



91 

 

  

size of 3x3 was extracted. Therefore, the ReLu activation function was utilized in this layer [28]. The pooling 

layer utilized max-pooling to collect the 2x2 essential data. A learning rate of 0.0001, a batch size of 128, 

and 1000 epochs were used during training. In this work, the models were compiled using the Adam 

optimizer, a batch size of 64, and 500 training iterations. After each training cycle, the learning rate was 

decreased by a factor of 10 from 0.1 to 0.000001 in order to promote convergence. However, due to out-of-

memory (OOM) issues, it could not further reduce the learning rate. Due to OOM constraints, the maximum 

batch size was limited to 64 units. Due to OOM issues, the input image size was also restricted to 128x128x3. 

It was impossible to reduce the model's size any further because doing so would have necessitated the removal 

of essential components and negatively impacted its performance. 

 
 

Figure 4 Neural network architecture diagrams of a model 

Google developed the InceptionV3 architecture as the third iteration of its deep learning convolutional 

neural network architecture for image classification and identification applications. InceptionV3 was used to 

train around one thousand classes using an ImageNet picture dataset containing over one million images. 

This InceptionV3 has a high classification efficiency; hence it was chosen for fingerprint training [27].  The 

following model selected is the Xception model. The Xception architecture is based on the Inception 

architecture, which extracts information from input images using a combination of 1x1 and 3x3 convolutional 

filters. Xception, however, replaces the 3x3 filters with depthwise separable convolutions, which involve two 

steps: first, applying a single convolutional filter to each input channel (i.e., the "depthwise" part), and then 

concatenating the results and applying a 1x1 convolutional filter (i.e., the "separable" part) [26]. Next, the 

ResNet50 model, a deep residual network, was developed and trained on the ImageNet dataset, which 

consists of millions of photographs of various objects. The massive dataset from which our pre-trained model 

has acquired a wealth of features can serve as the basis for our fingerprint classification problem. The pre-

trained ResNet50 model will be fine-tuned by training it on a smaller dataset of OCT images of human 

fingerprints. This fine-tuning procedure will update the pre-trained model's weights [29]. Significant image 

classification dataset ImageNet was previously used to train the deep convolutional neural network model 

with the VGG16 architecture. Transfer learning modifies a once-trained model for a new task by adding data, 

in this case, OCT pictures, into the weights of its layers. Several fully connected layers follow several stacks 

of convolution and pooling layers in VGG16's architecture. The convolution layers collect spatial and 

channel-wise data, whereas the pooling layers lower the spatial dimension of the feature maps while 

preserving the essential data. The layers with complete connectivity create predictions depending on the input 

image. The output of the VGG16 model may be connected to a fully connected layer containing several 

neurons equal to the number of classes in the target task, in this case, the number of classes for various 

fingerprints. The class of an input image is predicted based on the output of the fully linked layer. Therefore, 

rather than starting from scratch, the modified VGG16 model can be trained end-to-end using the OCT data, 

thereby increasing its accuracy for the fingerprint detection task [30]. 

2.5 Ensemble model 
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We proposed the ensemble model for more precise 

or reliable forecasting. Using a weighted average or 

some other mathematical function, an ensemble model combines the aforementioned distinct models to 

provide a single output. Typically, the ensemble model is utilized in applications where the objective requires 

the highest achievable level with limited computational resources and data. The ensemble model we 

employed is a voting method classifier, a voting ensemble in which each model makes a prediction, and a 

majority vote determines the final prediction. For instance, if five models forecast A, B, and A, the final 

prediction would be A. In our scenario, there are twelve classes for each finger. Figure 5 depicts the diagram 

of the voting ensemble model. We proposed the ensemble model for more precise or reliable forecasting. 

Using a weighted average or some other mathematical function, an ensemble model combines the 

aforementioned distinct models to provide a single output. Typically, the ensemble model is utilized in 

applications where the objective requires the highest achievable level with limited computational resources 

and data. The ensemble model we employed is a voting method classifier, a voting ensemble, in which each 

model makes a prediction, and a majority vote determines the final prediction. For instance, if five models 

forecast A, B, and A, the final prediction would be A. In our scenario, there are twelve classes for each finger. 

Figure 5 depicts the diagram of the voting ensemble model. 

 

 

 

 

 
\ 

 

 

 

 
 

 

Figure 5 diagram of voting ensemble method 

 
The parameters utilized by the networks are detailed in Table 1. Set the initial input size and batch size to 

optimize the use of computational resources. The learning rate is then modified until the learning curves 

converge, ensuring the model can generalize well to the current dataset.  

The model weights were modified during training using backpropagation to minimize the categorical 

cross-entropy loss function. The models were created utilizing the Adam optimizer, 64-person batches, and 

500 training iterations. After each training cycle, the learning rate was reduced by 10 from 0.1% to 

0.000001% to promote convergence. It was unable to cut the learning rate further due to out-of-memory 

(OOM) difficulties. Due to OOM restrictions, the batch size could not exceed 64, and the maximum image 

size was 128x128x3. It was impossible to reduce the size any further because doing so would have resulted 

in losing important components and diminished the model's performance. 

  Parameters Initial input size Initial learning rate Batch-size Epoch Optimizer 

Networks   

Inception-V3 128x128x3 0.00001 64 500 Adam 

Xception 128x128x3 0.00001 64 500 Adam 

VGG-16 128x128x3 0.00001 64 500 Adam 

Resnet-50 128x128x3 0.00001 64 500 Adam 

Custom model 128x128x3 0.00001 64 500 Adam 

Table 1 The parameter settings for four TL networks and a custom network. 



93 

 

  

2.6 Evaluation model 

Using model evaluation, we can determine how well the model can solve our problem. In addition, various 

metrics can be used to evaluate the performance of a DL model. These metrics depend on the task the model 

was designed for and can include accuracy, precision, recall, and F1 score. Then we will use it to calculate 

and visualize the model's performance through a learning curve and confusion matrix [31].   

3.  Results 

3.1 Learning curve 

This work uses images of twelve internal fingertips of three people that capture from OCT scans to 

identify the person using deep learning techniques. We create a dataset for around 12,108 impressions. Then 

we randomly split 60 percent for the training set and 40 percent for the validating set for each model. The 

learning curve of each model will show in Figure 6 below.  

  
 

  

1 2 

3 
4 
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The learning curve is important when assessing a machine learning model's performance. It gives a broad 

picture of the link between the model's accuracy and loss and the total number of training epochs. The training 

accuracy and loss are metrics used to evaluate how well the model performs during training on the training 

dataset. The training accuracy is the percentage of correctly classified images in the training dataset, while 

the training loss measures how well the model is able to predict the correct label for each image in the training 

dataset. The model's accuracy generally grows while the loss decreases as the number of epochs rises. This 

pattern might not always hold, and the learning curve can be used to spot problems with the model, including 

overfitting, underfitting or lack of convergence. To optimize the performance of the model and adjust its 

hyperparameters, it is crucial to analyse the learning curve.  

Figure 6 displays the result of training the data. First is the custom model result (Figure 6.1); training and 

validation accuracy started at low values and increased as the number of epochs increased. The training and 

validation loss, on the other hand, started high and decreased as the number of epochs increased. The initial 

high loss could be due to the random initialization of the model's weights. The weights were optimized as the 

model continued to train, resulting in a decreased loss. The validation accuracy also increased along with the 

training accuracy, indicating that the model was not overfitting to the training data. Additionally, the 

validation loss started higher than the training loss and remained slightly higher throughout training, which 

could be because the validation data was not used for weight optimization. 

Based on the learning curve for the InceptionV3 model in (Figure 6.2), we observed that the accuracy and 

validation accuracy started at a higher initial value compared to the first model (Figure 6.1). The validation 

accuracy for this model was relatively consistent and had a slight dip towards the end. The training and 

validation loss showed a similar pattern as our model, where it started high and converged towards zero with 

higher epoch values. However, the final training loss was lower in this model, which indicates that the model 

could fit the data more accurately. Overall, the learning curve for the second model showed that the model 

was able to perform well on the data and achieve high accuracy with low loss values. Figure 6.3 illustrates 

the learning curve for the third model, ResNet50, which began with low training and validation accuracy and 

significant training and validation loss. The model quickly incorporated additional data, and by epoch 8, it 

had an accuracy of 0.99 and a loss of 0.034. The subsequent rapid increase in training and validation losses 

implies that the model may have begun to overfit. Despite this, the model completed the training phase with 

a high degree of accuracy. With a final score of 0.97 and a validation loss of 0.10, validation accuracy 

maintained a high level of consistency. Despite some evidence of overfitting, the ResNet50 model performed 

well in classifying fingerprint images accurately. Figure 6.4 depicts the learning curve for the VGG16 model. 

From the beginning epochs, both the training and validation accuracy grow dramatically while the loss 

decreases. At epoch 207, the model reaches its highest level of accuracy, with a training accuracy of 0.91, a 

loss of 0.39, a validation accuracy of 0.98, and a validation loss of 0.07. After the peak, the accuracy does 

not increase appreciably, however, the validation loss grows substantially at later epochs, indicating 

overfitting. The model achieved great accuracy on both the training and validation sets, with a final validation 

accuracy of 0.99 and a final training and validation loss of 0.002.  In Figure 6.5, the learning curve for the 

Xception model shows a slow start with low accuracy and high loss in the beginning. However, as the number 

of epochs increases, the model converges, and the training and validation accuracy improves significantly 

Figure 6 The learning curves or accuracy and loss curves of five models 1) Individual model, 2) InceptionV3 model, 3) ResNet50 model, 4) 

Vgg16, and 5) Xception model. 

5 
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while the loss decreases. At the end of the training, the model achieves high accuracy on both the training 

and validation sets with a shallow loss, indicating that the model performs well and generalizes to unseen 

data. 

Overall, the learning curves of the five models show a similar pattern of convergence where both the 

training and validation losses decrease with increasing epochs. In contrast, the training and validation 

accuracies increase. However, the specific shapes of the curves vary between the different models, likely due 

to differences in their architectures. The ResNet50 and Xception models start with relatively low accuracies 

and high losses but eventually achieve high accuracies and low losses after many training epochs. On the 

other hand, the other models start with relatively high accuracies and lower losses but still improve with more 

training. Overall, all of the models achieve very high validation accuracies and low losses, which indicates 

their effectiveness for classification tasks. 

3.2 Confusion matrix 

The confusion matrix is a table that contrasts expected and actual classes to demonstrate the performance 

of a deep-learning model. It is a tool that evaluates the accuracy of a model and identifies improvement 

opportunities. When describing model performance in academic articles, particularly when dealing with 

multiclass classification challenges, the confusion matrix is useful. The five confusion matrices provided 

correspond to the performance of five models trained on a 12-class classification issue. Each matrix is a 12 

by 12 table that indicates the number of accurate and inaccurate predictions made by the model for each class. 

In each matrix, the diagonal values reflect the number of accurate forecasts, while the off-diagonal values 

represent the number of inaccurate guesses. The confusion matrix for each of the five models is displayed in 

Table 2(a-e). 
 

 
Table 2 Confusion matrix table that shows the performance of the 5 models a) Individual model, b) InceptionV3 model, c) ResNet50 

model, d) Vgg16, and e) Xception model. 

 

a 
b 
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From Table 2a, Custom model: The large number of accurate predictions (90 or more) for the majority of 

classes demonstrates the custom model's high overall accuracy. Some things could be improved in the 

predictions, particularly for users 1, 6, and 11, where the model misclassified one or two data. For user 4, the 

model has the highest accuracy, with every prediction coming true.  Most of the InceptionV3 (Table 2b) 

model's predictions were accurate, showing a high level of overall accuracy. Each of users 1, 3, 5, and 11 has 

a number of erroneous predictions, indicating that the model has difficulty with these people. Users 4 and 7 

have the most accurate model, with all accurate forecasts.  For Table 2c ResNet50 model, the majority of 

predictions were accurate, suggesting a good level of general accuracy. The model has difficulty with users 

1, 3, 5, and 10, as each of these classes has some incorrect predictions. Users 4, 7, and 8 have the most 

accurate model, with all accurate forecasts. In addition, Table 2d demonstrates that the VGG16 model has a 

high overall accuracy, with the majority of forecasts being true. The algorithm has difficulty with users 1, 5, 

and 11, as each of these categories has several erroneous predictions. For user 4, the model's accuracy is the 

highest, since all predictions are accurate. The Xception model has the highest overall accuracy for Table 2e 

and produces accurate predictions for the majority of courses. There are a few mistakes in the forecasts for 

users 1, 2, 3, and 11. The algorithm misclassified one or two data points as belonging to a different user. For 

user 4, the model's accuracy is the highest, since all predictions are accurate. 

The confusion matrix, in short, offers a helpful summary of each model's performance, showing each 

strategy's advantages and disadvantages—the result after testing five models with unseen 1104 images. It 

specifically focuses on True Positives (TP) and False Negatives (FN), showing the accuracy of predictions 

c 

e 
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and instances where the model misclassified data. The overall classification performance can be enhanced 

using these results to inform future model or data pre-processing adjustments. In summary, precision, recall, 

and F1 score are evaluation metrics calculated from a confusion matrix and used to assess a classifier's 

performance, illustrated in Table 3. 

 

 
Table 3 Classifier report table. 

Network Accuracy Precision Recall F1-score Support 

Inception-V3 97.59 97.65 97.61 97.62 1104 

Xception 99.13 99.2 99.18 99.19 1104 

VGG-16 100 100 100 100 1104 

Restnet-50 97.1 97.18 97.1 97.12 1104 

Custom model 98.65 98.66 98.69 98.67 1104 

Voting method 100 100 100 100 1104 

 

Table 3 displays the performance result of four different pre-trained models, a custom model, and a voting 

method. The metrics include accuracy, precision, recall, and F1-score. The models achieved high levels of 

accuracy, ranging from 97.1% to 100%. The VGG-16 model achieved 100% accuracy, correctly classifying 

all the instances in the test set. The Xception model achieved the highest accuracy of 99.13%, followed by 

the custom model with an accuracy of 98.65%. In terms of precision, recall, and F1-score, all models 

performed well, with scores ranging from 97.18% to 100%. The VGG-16 model achieved perfect scores of 

100% for all metrics, while the custom model achieved the highest F1 score of 98.67%. 

The classification report shows that all models, including the custom model, performed well in classifying 

the test set. However, it's crucial to remember that measurements like accuracy alone can be deceptive, 

especially when working with unbalanced datasets. That's why it's essential to consider other metrics, such 

as AUC and ROC curves, to better understand the overall model performance. In this regard, the pre-trained 

deep learning models and the custom model achieved high AUC scores, with the voting method combining 

their strengths to achieve perfect scores in all metrics. Therefore, using multiple models and evaluation 

metrics, including AUC and ROC, can lead to a more robust and reliable classification performance below 

in Figure 7(a-f). 
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Figure 7  AUC and ROC curve that shows the performance of the 5 models a) Individual model, b) InceptionV3 model, c) RestNet50 

model, d) Vgg16, e) Xception model, and f) voting method. 

Specifically, our designed model (Figure 7a) for this purpose: The AUC for this model is 0.9953, showing 

that it distinguishes between positive and negative classifications adequately. The ROC curve illustrates that 

when the false positive rate (FPR) increases, the true positive rate (TPR) increases rapidly, showing that the 

model has high sensitivity and can identify real positives at a low cost of false positives. When the TPR 

reaches 1, the curve flattens, indicating that the model's classification performance at that level is optimal.  

In Figure 7b, the AUC for the InceptionV3 model is 0.9998, which is greater than the AUC for the custom 

model and demonstrates that it performs extraordinarily well at differentiating positive and negative classes. 

The ROC curve illustrates that while the FPR grows, the TPR climbs rapidly, confirming the model's high 

sensitivity and ability to recognize true positives with a low rate of false positives. When the TPR reaches 1, 

the curve flattens, indicating that the model's classification performance at that level is optimal, indicating 

that the model can perform perfectly for classification at that level. Figure 7c demonstrates that the AUC for 

ResNet50, which is also quite high at 0.9997, distinguishes between positive and negative classifications. 

The ROC curve illustrates that while the FPR increases, the TPR increases rapidly, suggesting the model's 

high sensitivity and capacity to recognize true positives with a comparatively low rate of false positives. 

When the TPR reaches 1, the curve flattens. The models for VGG16 and Xception (Figures 7d and 7e, 

respectively) exhibit an AUC of 1, the maximum attainable value, demonstrating remarkable ability in 

distinguishing between positive and negative classifications. The ROC curve illustrates the model's capacity 

to achieve optimum classification performance, with a TPR of 1 and an FPR of nearly 0, showing that the 

model has a high degree of sensitivity and specificity.  In the final case voting technique (Figure 7f), the AUC 

is 1.0000, which is the maximum attainable value and indicates that the model distinguishes between positive 

and negative classifications perfectly. The high TPR values for various thresholds indicate that the model has 

a high sensitivity, i.e., it properly identifies a substantial number of positive cases. The low FPR values also 

indicate that the model has a high specificity, which indicates that it properly identifies a substantial fraction 

of negative situations. The outcomes indicated that the voting mechanism is highly effective for classifying 

data. 

It is clear from examining the outcomes of the many models and the voting process that each model 

exhibits distinct performance levels, as evidenced by their AUC values and the forms of their individual ROC 

curves. The distinct qualities and advantages of each model are highlighted by the disparities in the AUC 
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values and ROC curve shapes, which may be traced to the particular behaviour of each classifier for the given 

task. It is important to consider not only the AUC values and ROC curves but also other performance metrics 

such as precision, recall, and F1-score, to gain a comprehensive understanding of each classifier's 

performance. Additionally, analysing the confusion matrix can provide valuable insights into the model's 

overall performance and potential areas for improvement. 

3.3 Model interpretation 

Due to the growing use of sophisticated AI models and algorithms in crucial decision-making procedures, 
Explainable Artificial Intelligence (XAI) has attracted much interest in recent years [32, 33]. We use shap 
known as SHapley Additive exPlanations (SHAP) [34]. SHAP aims to provide understandable explanations 
for individual predictions made by any machine learning model. The table below will show the explainable 
model by random image for each model. The result of the model interpretation will show in Table 4. 

 
Table 4 Explainable model table shows the feature selection 

Original 
image 

    

Custom 
model 

   
 

InceptionV3 

   
 

ResNet50 
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In this study, we analysed the trustworthiness and interpretability of five distinct models: 1) a custom 

model, 2) InceptionV3, 3) VGG16, 4) Xception, and 5) ResNet50. We used the SHAP method to determine 

the significance of features and model explanations. It provided valuable insight into the decisions made by 

these models when presented with random, unseen data. SHAP generates colour-coded descriptions, where 

each colour represents the impact of a particular feature on the model's prediction. Positive values (red) 

indicate that the presence of the proportional feature increases the prediction probability, whereas negative 

values (blue) indicate that the presence of the proportional feature decreases the prediction probability. The 

impact on the prediction is proportional to the magnitude of the colour's intensity. The following table 

provides an exhaustive explanation of the procedure for selecting features. We consider four randomly 

selected images from the unseen dataset to illustrate how each model interprets the input data differently. 

Using the SHAP method, the following analysis examines the feature selection procedure for five distinct 

models: models - Custom, InceptionV3, ResNet50, VGG16, and Xception. We evaluate four randomly 

selected images from an unseen dataset to illustrate how each model interprets the input data differently. The 

Custom model focuses primarily on the surface area of the fingertip, whereas the InceptionV3 and ResNet50 

models exhibit a wider distribution of influential features throughout the images. In contrast, the VGG16 

model focuses on particular, important image features, such as the fingerprint surface area, sweat gland areas, 

and sweat pores. Lastly, the Xception model exhibits a red cluster distribution similar to that of the 

InceptionV3 and ResNet50 models. By gaining an understanding of these feature selection processes, we can 

gain valuable insights into the decision-making mechanisms of each model, which may inform the 

development of more effective models in future research. By analyzing and comparing the interpretability 

results of these five models in conjunction with traditional evaluation metrics such as accuracy, precision, 

recall, and F1-score, as well as domain-specific metrics pertinent to the problem at hand, we can gain a deeper 

understanding of their behaviour. This holistic approach will ultimately aid in guiding the selection of the 

most suitable model for a given application and enhancing model performance through the engineering of 

targeted features. 

4. Discussion and conclusion 

In this study, a voting ensemble deep learning model was developed for fingerprint classification using 

optical coherence tomography (OCT) images. The model comprised five models, including an individual 

model designed by the authors, an InceptionV3 model, a Restnet50 model, a VGG16 model and an Xception 

model. The model achieved strong performance, as evidenced by the high AUC values on the ROC curves 

for each class and model. The model achieved an overall AUC of 1 on the validation set and a holdout test 

set, demonstrating its ability to generalize to unseen data. Using OCT images as input for the ensemble model 

allowed for capturing high-resolution images of fingerprints, contributing to the model's good performance. 

The model's performance was further visualized through ROC curves, which showed that the model could 

effectively distinguish between the different classes of internal fingerprints. 

VGG16 

    

Xception 
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The results of this study indicate that the voting ensemble model based on a convolutional neural network 

utilizing OCT images is a promising approach for fingerprint classification tasks. However, there is still room 

for performance enhancement with this model. The model's generalization ability and overall performance 

may be enhanced by additional hyperparameter tuning and the use of a larger and more diverse training 

dataset. Using the AUC values on the ROC curves can be a useful metric for assessing the performance of 

the model in such tasks. Observed differences in AUC values and ROC curve shapes between models 

highlight the importance of selecting the optimal model for a given task while also considering other 

performance metrics and classifier properties. As demonstrated by the exceptional AUC value of 1.00 

achieved in this instance, it is possible to enhance classification performance by combining the strengths of 

multiple models using the voting method. This study contributes to the development of effective and 

trustworthy fingerprint classification methods, which may have applications in forensics and biometric 

identification. 
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