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CHAPTER I 

INTRODUCTION 
 

1.1 Background and Rationale 

Nakhon Ratchasima is located in northeastern Thailand, in the Khorat-Ubol 

Basin of the Khorat Plateau. Saline soil can be found in many parts of Thailand, and 

the source of the salinity might vary depending on the region's geological features. 

Human activity can contribute to soil and water salinity issues (Peck & Hatton, 2003). 

The Maha Sarakham Formation, which is mainly composed of interbedded rock salt 

layers, underlies most of northeast Thailand and provides the region's primary source 

of salinity (Wongsomsak, 1986). For regional groundwater exploration conventional 

methods involving geological, hydrogeological, and geophysical techniques, are costly 

due to the expenses associated with drilling, time-consuming procedures, and their 

complexity (Ndatuwong & Yadav, 2014). Meanwhile, Remote Sensing (RS) and 

Geographic Information Systems (GIS) are employed to identify the locations of 

potential zones. A Geographically Weighted Regression (GWR) model takes into account 

the spatial variability of independent and dependent variables (Fotheringham, 

Brunsdon, & Charlton, 2002) by evaluating correlations between observed points based 

on distance GWR models outperform the Ordinary Least Squares (OLS) Regression 

model in prediction for data with spatial heterogeneity (Brown et al., 2012; Pratt & 

Chang, 2012; Tu & Xia, 2008). The GWR has been widely used in hydrology to evaluate 

spatial correlations between various environmental characteristics, such as the 

relationship between land use categories and water quality (Pratt & Chang, 2012; Tu, 

2011, 2013; Tu & Xia, 2008). Furthermore, groundwater salinity can be predicted using 

GWR in places where surface displacement measurements are unavailable or 

insufficient for groundwater quality mapping. The method is gaining popularity and has  
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been utilized in the research of economic, social, and environmental issues with 

geographical variability. In this study, GWR was used to identify a spatial regression 

model to examine correlations between groundwater salinity as a dependent factor 

and groundwater recharge potential and quality as an independent or influencing 

factor. Slope, geology, landforms, annual rainfall, soil texture class, drainage density, 

land use/land cover, chloride content, total dissolved solids, hydrogeological unit, 

groundwater potential, lineament density, and normalized difference vegetation index 

were among the independent factors studied. 

 

1.2 Research Objectives 

The objectives of this study are to 1) compare the performance of OLS 

regression and GWR models for salinity distribution in the Non Thai, Non Sung, Non 

Daeng, Khong, and Kham Sakae Saeng districts of Nakhon Ratchasima province, 2) 

investigate the spatial relationships between groundwater salinity and influencing 

factors. 

 

1.3 Scope and Limitations 

The scope and limitations of the research include as following: 

1) The study area covered Non Thai, Non Sung, Non Daeng, Khong, and Kham 

Sakae Saeng districts in Nakhon Ratchasima Province. 

2) The salinity content, chloride content, and total dissolved solids (TDS) are 

from the previous study by Thongwat (2018). 

3) Slope, drainage density, lineament density, landforms, annual rainfall, 

geology, hydrogeological unit, groundwater potential, soil texture class, land use/land 

cover, normalized difference vegetation index, chloride content, and total dissolved 

solid were used as independent factors of groundwater discharge potential and quality. 
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4) ArcGIS software was used to run an exploratory regression model to 

determine the best model and create layer maps that help develop groundwater 

potential zoning maps. 

5) The GWR4 software was used to determine and compare OLS regression 

and GWR models. 

 

1.4 Research Methodology 

Figure 1.1 provides a condensed representation of the research methodology, 

comprising six sequential stages: literature review, data collection and preparation, 

regression analysis, comparison of OLS regression and GWR models, discussions and 

conclusions, and thesis composition. Each step is as follows: 

 

Figure 1.1 Flowchart of the research methodology. 
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1.4.1 Literature Review 

Literature relevant to the research will be reviewed, summarized, and 

documented. The thesis will encompass a concise overview of the literature review, 

which will include the geology of the Khorat Plateau, the stratigraphy of the Maha 

Sarakham Formation, the hydrogeology of Nakhon Ratchasima, groundwater quality in 

Nakhon Ratchasima, saline soil in Nakhon Ratchasima, and regression analysis. The data 

was obtained from research articles, technical reports, and conference proceedings. 

1.4.2 Data Collection and Preparation 

The projections of each thematic layer were standardized, and the 

raster layers were converted into vectorized polygons. GDEM was used to generate the 

drainage density, lineament density, and slope in ArcGIS. Landforms, soil texture class, 

land use/land cover, and normalized difference vegetation index were obtained 

through the utilization of the Google Earth Engine and the Python API. Rainfall was 

gathered by the Royal Irrigation Department (RID). Geology, groundwater potential, and 

hydrogeological units were gathered from the Department of Mineral Resources (DMR) 

and digitized in ArcGIS. Salinity, chloride content, and total dissolved solids were 

collected from Thongwat (2018). 

1.4.3 Regression Analysis 

A statistical method for evaluating or estimating the association 

between a dependent variable and a group of independent explanatory variables. 

1) Ordinary Least Squares (OLS) Regression  

A global linear regression model predicts or models a 

dependent variable based on its correlations to a set of independent variables. A 

model is typically fitted using a process known as a multiple linear regression model 

to predict the dependent variable using a linear combination of the independent 

variables.  
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2) Geographically Weighted Regression (GWR) 

A local form of spatial analysis was introduced in the 

geographical literature by Brunsdon, Fotheringham, and Charlton (1996); Brunsdon, 

Fotheringham, and Charlton (1998); Fotheringham et al. (2002). They utilized statistical 

methods for curve-fitting and smoothing to develop this approach. Geographically 

Weighted Regression (GWR) is an extension of Ordinary Least Squares (OLS) regression 

that considers spatial variation by examining the deviations of locally weighted 

regression coefficients from global coefficients. 

1.4.4 Comparison between OLS Regression and GWR Models 

The residuals and predictions of the dependent variables can be used 

to determine the model's goodness of fit. The coefficient of determination (R2) or the 

adjusted coefficient of determination (adjusted R2) value is the typical goodness of fit 

measure for the conventional global model. The corrected Akaike Information Criterion 

(AICc) is a measure of goodness of fit that utilize extensively in the GWR (Hurvich, 

Simonoff, & Tsai, 1998). The AICc can be used to compare models with different 

independent variable subsets, the global OLS, and a local GWR model. 

1.4.5 Discussions and Conclusions 

The reliability and adequacy of the utilized approaches are discussed, 

and areas for future research are identified. The research findings will be documented 

and published. 

1.4.6 Thesis Writing 

All research activities, methods, and results are documented and 

followed in the thesis. 
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1.5 Thesis Contents 

This thesis is divided into five chapters. Chapter I includes background and 

rationale, research objectives, scope and limitations, and research methodology. 

Chapter II includes literature reviews of the previous studies related to the geology of 

the Khorat Plateau, the stratigraphy of the Maha Sarakham Formation, hydrogeology 

of Nakhon Ratchasima, groundwater quality of Nakhon Ratchasima, saline soil area of 

Nakhon Ratchasima, and regression analysis. Chapter III describes data collection and 

preparation, and methods for regression analysis include OLS regression and the GWR 

model. Chapter IV shows the results of OLS regression and the GWR model and a 

comparison between the two models and discussions. Chapter V presents conclusions 

and recommendations for future studies.  
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CHAPTER II 

LITERATURE REVIEW 
 

This chapter included a review of previous studies on the geology of the Khorat 

Plateau, the lithostratigraphy of the Maha Sarakham Formation, hydrogeology in 

Nakhon Ratchasima, groundwater quality in Nakhon Ratchasima, saline soil in Nakhon 

Ratchasima, and regression analysis. The results of the review of the literature are 

summarized below. 

 

2.1 Geology of Khorat Plateau 

The northeastern region of Thailand, referred to as the Khorat Plateau, is 

characterized by two extensive evaporate basins from the Cretaceous period. These 

basins, namely the Udon-Sakon Nakhon basin in the north and the Khorat-Ubol basin 

in the south, are geographically separated by the Phu Phan Range. The Khorat Plateau 

is primarily composed of Mesozoic-era continental sedimentary rocks belonging to the 

Khorat Group, predominantly from the Cretaceous period. The stratigraphy of the 

Khorat Plateau encompasses both Mesozoic and Cenozoic periods, as depicted in 

Figure 2.1 (El Tabakh, Utha-Aroon, & Schreiber, 1999). 

The Khorat Group can be subdivided into two main units: the Lower Khorat 

Unit and the Upper Khorat Unit. The Lower Khorat Unit, there are several formations 

including the Huai Hin Lat Formation, Nam Phong Formation, Phu Kradung Formation, 

Phra Wihan Formation, Sao Khua Formation, Phu Phan Formation, and Khok Kruat 

Formation. On the other hand, the Upper Khorat unit consists of the Maha Sarakham 

Formation and Phu Tok Formation, as shown in Figure 2.2A. They are widely exposed 

throughout the northeastern part of Thailand, particularly on the edge of the Khorat  
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Plateau. The subsequent sections provide concise descriptions of the stratigraphic rock 

units, arranged in ascending order from the lower formations to the upper formations. 

 

Figure 2.1 The Khorat-Ubol basin and the Udon-Sakon Nakhon basin (modified from 

El Tabakh et al. (1999)). 

2.1.1 Lower Khorat Unit 

1) Huai Hin Lat Formation 

The lowest unit within the Khorat Group is the Huai Hin Lat 

Formation, characterized by a diverse lithology consisting of conglomerate, limestone 

conglomerate, sandstone ranging from grey to dark grey, siltstone, black shale, and 

marl containing plant fossils. 

2) Nam Phong Formation 

The Nam Phong Formation is divided into two parts. The upper 

part is mostly siltstone, with some sandstone and claystone and a thin layer of 
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limestone. Siltstone is a dusky red to reddish-brown to purple rock that is 

noncalcareous to slightly calcareous and contains lithoclastic claystone, limestone, 

and quartz grains. The lowest part consists of reddish-brown sandstone, siltstone, and 

claystone. Huai Hin Lat Formation is overlain by formation conformity. Its unconformity 

overlies Permian limestone in several regions. 

3) Phu Kradung Formation 

The Phu Kradung Formation is mainly composed of interbedded 

sandstone and siltstone, with occasional limestone lenses and concretions and a thin 

bed of claystone. Sandstone has a variety of colors, including light grey, light to 

medium brown, reddish-brown, and medium green to off-white with varicolored grains. 

4) Phra Wihan Formation 

The Phra Wihan Formation predominantly consists of light buff 

to grey sandstones with varying grain sizes, ranging from fine to coarse, accompanied 

by siltstones and mudstones to a lesser extent. Conglomerate occurrences are 

sporadic within the formation (Meesook, 2011). These sediments were deposited in a 

fluvial setting, specifically a shallow braided river system with high energy, along with 

the associated floodplain (Racey et al., 2009). The formation's thickness can vary 

between 100 and 250 meters. 

5) Sao Khua Formation 

The Sao Khua Formation is characterized by its reddish-brown 

conglomeratic sandstone, siltstone, and mudstone, occasionally accompanied by 

calcretes. Its thickness can vary between 100 and 600 meters. The formation is 

primarily deposited in a low-energy environment characterized by meandering 

channels and expansive floodplains. 
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      (A)         (B) 

Figure 2.2 (A) Stratigraphy of the Khorat Basin, and (B) lithostratigraphy of the Maha Sarakham Formation (modified from El Tabakh et 

al. (1999) and Hansen, Wemmer, Eckhardt, Putthapiban, and Assavapatchara (2016)). 
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6) Phu Phan Formation 

The Phu Phan Formation is characterized by greyish-white, 

medium to coarse-grained cross-bedded sandstones, accompanied by lacustrine grey 

siltstones and mudstones, with occasional conglomerates. Generally, the formation 

has a thickness ranging from 75 to 150 meters. The contact between the Phu Phan 

Formation and the underlying Sao Khua Formation varies, with local instances of 

erosive or distinctively sharp contact, but is mostly conformable with the overlying 

Khok Kruat Formation. The prevailing depositional environment of the Phu Phan 

Formation is interpreted as a high-energy, low-sinuosity braided river system with 

subordinate floodplains (Meesook, 2011; Racey et al., 2009). 

7) Khok Kruat Formation 

The Khok Kruat Formation consists primarily of reddish-brown 

sandstone, siltstone, shale, and mudstone, with occasional conglomerate layers 

(Meesook, 2011; Racey et al., 2009). A few meters below the Maha Sarakham 

Formation's underlying basal anhydrite, the reddish color gradually changes to 

greenish-grey. The presumed depositional setting was a meandering river system, 

characterized as less developed compared to the rivers that deposited the Sao Khua 

Formation (Meesook, 2011). The fauna present provides evidence of a riverine 

environment with potential marine influence (Racey et al., 2009).  

2.1.2 Upper Khorat Unit 

1) Maha Sarakham Formation 

The Maha Sarakham Formation comprises four distinct salt units: 

the basal anhydrite and potash zone, lower salt and clastic bands, middle salt and 

clastic layers, and upper salt and clastic units (Figure 2.2B). Its thickness ranges from 

250 to 1,100 meters across the basin, and its distribution varies in regions influenced 

by rock salt formations (Suwanich, 2007; Tabakh, Schreiber, Utha-Aroon, Coshell, & 

Warren, 1998). Each of the three units contains pseudomorphs of bottom-growth 

gypsum beds that have been replaced by halite. Due to the formation's origin in a 
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hyper-saline, inland lake within a dry continental desert, fossils are scarce (Booth & 

Sattayarak, 2011; Racey et al., 2009). Anticlines can be observed in different parts of 

the basin, including salt domes and salt formations. According to the descriptions 

provided by El Tabakh et al. (1999), a detailed description of all members, including 

the siliciclastic, is as follows. The rock salt found on the Khorat Plateau exhibits similar 

characteristics and correlations in both the Khorat and the Sakhon Nakhon Basins, 

suggesting that these two basins were once part of a single large basin during 

deposition until the Phu Phan Range uplifted in the Early Paleocene. 

2) Phu Tok Formation 

The Phu Thok Formation is located in the northern and central 

regions of the Khorat Plateau. It has a thickness ranging from 200 to 350 meters. The 

lower portion, approximately 100-200 meters, consists predominantly of brick-red to 

red-brown claystone with occasional siltstone and rare thin beds of fine-grained 

sandstone. However, the upper section primarily consists of thick layers of brick-red 

sandstone exhibiting cross-bedding. The lower part of the formation is believed to 

have been deposited in a relatively calm fluvial system, while the upper part is most 

likely indicative of an aeolian environment. 

Tatong and Margane (2004), classified the sedimentary deposits 

in Nakhon Ratchasima into different categories, which include Residual Deposits (Qr), 

Colluvium Deposits (Qc), High Terrace Deposits (Qt), and Alluvial Deposits (Qa). 

3) Residual Deposits (Qr) 

Residual deposits within the Phu Thok Formation are formed 

through weathering processes occurring in situ. These deposits are primarily located 

in the northwestern region of Nakhon Ratchasima. The sequence of these deposits 

typically comprises layers of clayey silt or clayey fine sand, which overlay laterite 

and saperite. Additionally, these deposits may exhibit some internal sedimentary 

structures. 

  

 



13 

 

4) Colluvium Deposits (Qc) 

Colluvium Deposits were distinguished from the preexisting 

High Terrace Deposits by Chaimanee (2003). The sequence of Colluvium Deposits is 

characterized by its significant thickness, featuring a loose layer of reddish sand 

positioned above a gravelly laterite layer, which includes a few tektites. Beneath 

these two layers, there is an angular gravel bed. 

5) High Terrace Deposits (Qt) 

In the central region of Nakhon Ratchasima, one can encounter 

elongated hills known as High Terrace Deposits, stretching predominantly along the 

southern bank of the Lam Takhong River. These deposits, shaped by the forces of 

weathering, have transformed into mottled clay over time. At Ban Phu Khao Thong in 

Mueang district, these formations overlay the Khok Kruat Formation. Comprising mainly 

of fluvial sand and gravel, the High Terrace Deposits are further classified into two 

distinct sections: the lower, characterized as the older gravel beds, and the upper, 

representing the younger gravel beds. 

Sataragsa (1987) has designated the lower section of the 

geological formation as the Phu Khao Thong Formation (see Figure 2.3). This segment 

primarily comprises partially consolidated bedded sand and gravel. The bedding of the 

Phu Khao Thong Formation exhibits a moderate inclination towards the north. The 

sediments display varying colors, ranging from shades of grey to yellowish-grey, with 

sporadic patches of red. The sandstone beds reveal conspicuous crossbedding 

features. In contrast, the gravel layers contain fragments primarily composed of black 

chert, quartz, and petrified wood, with poor sorting and varying degrees of roundness. 

The estimated age of the Phu Khao Thong Formation falls within the Late Tertiary 

period. 

Moving to the upper part of the formation, we encounter layers 

of gravel and sand, overlain by laterite and eolian deposits, deposited approximately 

2,000 to 3,500 years ago. The transition between the upper and lower parts of the 

formation is marked by an erosional contact. The gravel and sand within this segment 
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exhibit subrounded to rounded shapes and are well sorted. The fragments present in 

these layers are primarily composed of quartz, chert, and tektites. The age of the 

tektites has been determined using K/Ar isotopic and fission methods, indicating an age 

range of 0.68 to 0.73 million years before the present. 

 

Figure 2.3  Stratigraphic section of the High Terrace at Ban Phu Khao Thong, Mueang 

district, Nakhon Ratchasima (After Tatong and Margane (2004)). 

6) Alluvial Deposits (Qa) 

The alluvial deposits found in the floodplains of the Mun, Lam 

Takhong, and Lam Chiang Krai rivers, particularly in the northern region of Nakhon 

Ratchasima, consist of various sediment types. These include silty clay, sandy clay, and 

clayey sand. Channel deposits within the floodplain are predominantly composed of 

sand and gravel. The color of these deposits ranges from grayish-brown to reddish-

brown. Chaimanee (2003) classified the alluvial deposits into four units based on their 

sedimentary sequences and content, which are influenced by different sediment 

sources: Lam Takhong alluvial, Mae Nam Moon alluvial, Lam Chakkarat, and Alluvium 

Complex. The primary deposits within these sequences are fine sediments that 
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occasionally mix with sand and gravel. In general, as one moves towards the lower 

portion of the sequences, the sediments become coarser. 

 

2.2 Lithostratigraphy of the Maha Sarakham Formation 

The Maha Sarakham Formation, spanning from the Cretaceous to early Tertiary 

periods, consists of three evaporitic successions that are present in both the Khorat-

Ubol basin and the Udon-Sakon Nakhon basin. These evaporites are characterized by 

extensive deposits of halite, anhydrite, and abundant potassic minerals such as sylvite 

and carnallite. Additionally, tachyhydrite and small amounts of borates can also be 

found within these formations (El Tabakh et al., 1999). 

Based on the research by El Tabakh et al. (1999); Hansen et al. (2016), the 

stratigraphy of the Maha Sarakham Formation can be summarized as follows: 

2.2.1 Lower Member 

1) Basal Anhydrite Unit 

The Basal Anhydrite Unit is the lowermost part of the Maha 

Sarakham Formation found in both the Khorat-Ubol and Udon-Sakon Nakhon basins. 

It is situated above the Khok Kruat Formation with a distinct disconformity, and it 

exhibits a stylolitic surfaces (El Tabakh et al., 1999; Tabakh et al., 1998). The most of 

anhydrite is formed directly or by the conversion of gypsum from beds and clusters 

with gradational contacts to enveloping sediments (Tabakh et al., 1998). Its thickness 

ranges between 0.7 and 6.2 meters (Utha-Aroon, 1993). 

2) Lower Salt Unit 

The Lower Salt Unit is situated below the Basal Anhydrite and 

the Potash Zone Unit. It mainly consists of coarse-crystalline, transparent to 

semitranslucent halite, with occasional thin layers of anhydrite Utha-Aroon (1993). The 

unit is divided into two sequences by an anhydrite marker bed known as the Halite L1 

and Halite L2 Units, as named by El Tabakh et al. (1999). These marker beds, along 

with subsequent deposits, are primarily formed from seawater. The contact with the 
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Basal Anhydrite Unit is sharp and immediate. According to Utha-Aroon (1993), this 

could be attributed to either a sudden change in gypsum solubility as the brine entered 

the halite saturation field or a pressure-induced solution during burial. The thickness 

of this unit varies across the basin due to location and salt flowage, ranging from 30 to 

500 meters (Suwanich, 2007). 

3) Potash Zone Unit 

The Potash Zone Unit is situated between the Lower Salt and 

the Several Color Bands Salt Units. It consists of layers containing potassium and 

magnesium minerals and is extensively distributed across the Khorat Plateau 

(Suwanich, 2007). The thickness and distribution of the Potash Zone Unit vary 

significantly, likely due to uneven dissolution, deformation, and minor variations in the 

deposition (El Tabakh et al., 1999). The Potash Zone Unit contains various potash 

minerals such as sylvite (KCl), carnallite (MgCll2∙KCl∙6H2O), and tachyhydrite 

(CaMgCll6∙12H2O) (Hite and Japakasetr (1979)). Sylvite is a secondary deposit that forms 

by leaching carnallite and occurs in intervals following the carnallite beds. On the other 

hand, potash minerals have a primary origin. The Potash Zone Unit is divided into three 

zones: a lower zone containing halite with small amounts of red-colored carnallite 

filling dissolution cavities, a middle zone consisting of pale red or colorless carnallite 

and halite, and an upper zone dominated by sylvite with traces of anhydrite and 

gypsum pseudomorphs (El Tabakh et al. (1999)). The boundaries between these zones 

exhibit gradual transitions. Borate minerals are commonly found in association with 

sylvite and halite, either as thin layers within the sylvite beds or as dispersed nodules 

and grains. Tachyhydrite is typically observed as a single bed situated between 

carnallite beds, with smooth contact. The presence of carnallite serves as an indicator 

of the lower boundary of the Potash Zone Unit. The unit's thickness typically varies 

from 10 to 80 meters, with an average thickness of 50 meters (El Tabakh et al., 1999; 

Suwanich, 2007). 
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4) Several Color Bands Salt Unit 

The several color bands salt unit, which overlays the Potash 

Zone Unit, is a thin layer that exhibits varying colors such as grey, orange, red, honey, 

colorless, and smokey dark halite. It is likely that groundwater leaching played a role 

in its formation. The unit transitions into the underlying Potash Zone and contains 

deposits of carnallite and tachyhydrite (Suwanich, 2007). 

5) Lower Clastic Unit  

The Lower Clastic Unit is situated below the Potash Zone and 

above the Middle Salt Unit. The lithology of this unit closely resembles that of the 

Middle Clastic Unit, consisting of semi-consolidated to moist mudstones. It exhibits a 

dissolving contact with the underlying rock unit but lacks gypsum. The Lower Clastic 

Unit is predominantly dark red to reddish-brown in color, with occasional greenish-grey 

sections at the base. Within this unit, there are veins and veinlets of carnallite, which 

typically display a deep red-orange hue. The thickness of the Lower Clastic Unit can 

range from a few meters to up to 70 meters (Suwanich, 2007; Utha-Aroon, 1993). 

2.2.2 Middle Member 

1) Middle Salt Unit 

The Middle Salt Unit is positioned above the Lower Clastic Unit 

and below the Middle Clastic Unit, with an average thickness ranging from 30 to 130 

meters (Suwanich, 2007). Similar to the Lower Salt Unit, the Middle Salt Unit exhibits 

various depositional and diagenetic characteristics. El Tabakh et al. (1999) divided this 

halite unit into two sequences: the Halite M1 Unit and the Halite M2 Unit, which are 

separated by an anhydrite marker bed. The Halite M1 Unit consists of well-bedded, 

dark honey-colored halite layers interspersed with thin beds of anhydrite and gypsum 

pseudomorphs. Occasional occurrences of sylvite and carnallite spots have also been 

observed within this unit. On the other hand, the Halite M2 Unit features alternating 

dark honey-colored bedded halite and dark smoky-colored halite beds, along with 

anhydrite stringers and gypsum pseudomorphs. 
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2) Middle Clastic Unit 

The Middle Clastic Unit is positioned above the Middle Salt Unit 

and below the Upper Salt Unit. It primarily consists of clay, displaying a dark reddish-

brown color. Occasional occurrences of breccia strata have been identified within this 

rock layer. In certain locations, calcareous components, gypsum veins, and veinlets 

can be found near the base (Suwanich, 2007). The thickness of the Middle Clastic Unit 

varies between 20 and 70 meters (El Tabakh et al., 1999). In cases where the Upper 

Salt Unit is absent due to dissolution and salt flowage, the Upper Clastic Unit directly 

overlays the Middle Clastic Unit. The contact between the Middle Clastic Unit and the 

underlying Middle Salt Unit can exhibit either a sharp or gradational transition 

(Suwanich, 2007). 

2.2.3 Upper Member 

1) Upper Salt Unit  

If not affected by salt structures or dissolution processes, the 

Upper Salt Unit is typically positioned above the Middle Clastic Unit and the underlying 

Upper Clastic Unit. The dissolution and erosion caused by salt flowage can result in 

the disappearance of Upper Salt ridges and domes near areas of structural uplift. The 

thickness of the unit varies significantly and can reach up to 20 meters. It 

predominantly consists of moderate to dark yellowish-brown halite, with occasional 

thin layers of anhydrite, dark smoky-colored halite bands, milky-white-colored halite, 

and rare, orange-colored halite grains. While the Upper Salt Unit shares similarities with 

the Middle Salt Unit in terms of its characteristics, geochemical methods utilizing K/Br 

content can be employed to distinguish between them (Suwanich, 2007). The Upper 

Salt Unit has been categorized into two sequences by various researchers, including 

Suwanich (2007) and El Tabakh et al. (1999). These sequences are referred to as the 

Halite U1 Unit and the Halite U2 Unit, with an anhydrite marker bed of around 1.5 

meters separating them. The Halite U1 Unit consists of moderate to dark-honey or 

yellowish-brown halite, accompanied by minor anhydrite beds and occasional layers 
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of gypsum pseudomorphs. On the other hand, the Halite U2 Unit primarily comprises 

dark-honey halite, interspersed with dark smoky-colored halite and minor, orange-

colored halite. Some localized occurrences of potash residues have also been 

observed in this unit. 

2) Upper Clastic Unit  

The Upper Clastic Unit, situated at the top of the Maha 

Sarakham Formation, predominantly consists of pale to moderate reddish-brown or 

brick-red sandstone, siltstone, and claystone (Suwanich, 2007). The presence of cross-

beds and well-defined bedding is evident within this unit. Its thickness can vary 

significantly, reaching up to 680 meters (El Tabakh et al., 1999). Within the middle to 

lower parts of the unit, white clear gypsum veins and veinlets can be observed. The 

contact between the Upper Clastic Unit and the overlying Phu Tok Formation, which 

is also clastic in nature, is not clearly delineated. However, it is noteworthy that the 

clastic material within the Phu Tok Formation appears to be coarser compared to that 

of the Upper Clastic Unit. 

 

2.3 Hydrogeology of Nakhon Ratchasima 

According to Tatong and Margane (2004), the hydrogeological characteristics of 

Nakhon Ratchasima are primarily influenced by compacted formations consisting of 

Mesozoic sandstone, shale, and siltstone. Unconsolidated formations are limited to 

the vicinity of the Mun and Lam Takhong rivers. These formations can be classified 

into two distinct aquifer categories, as described below. 

2.3.1 Unconsolidated Aquifer 

The Unconsolidated Aquifer occurs in two distinct depositional settings, 

namely alluvial deposits and high terrace and colluvium deposits, which are described 

below. 
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1) Alluvial Deposits 

Aquifers are present within these deposits, located adjacent to 

the Mun and Lam Takhong rivers. These aquifers form elongated strips that stretch 

from east to west. Groundwater is stored within sand and gravel layers at depths 

varying from 10 to 30 meters. These layers were formed by meandering streams and 

primarily consist of sand and gravel, with occasional thin layers of clay. It is important 

to note that groundwater within this layer is hydraulically interconnected. 

2) High Terrace and Colluvial Deposits 

These deposits form aquifers in the hilly region south of 

Nakhon Ratchasima and in the floodplain area where alluvial deposits are overlain. 

Groundwater is typically found at two distinct depth intervals in sand and gravel: 20 

- 40 meters and 50 - 70 meters below the ground surface. A layer of fine-grained rock 

roughly 10 meters thick divides the two sand and gravel levels. 

2.3.2 Consolidated Aquifer 

The consolidated aquifer is divided into eight formations, which are 

described below: Nam Phong Formation, Phu Kradung Formation, Phra Wihan 

Formation, Sao Khua Formation, Phu Phan Formation, Khok Kruat Formation, Maha 

Sarakham Formation, and Phu Tok Formation. 

1) Nam Phong Formation 

This formation is composed of siltstone, sandstone, and 

conglomerates. The formation has a total thickness of 1,456 meters. The aquifer is 

supported by the Pre-Khorat erosional unit. 

2) Phu Kradung Formation 

This unit has a thickness of approximately 972 meters. Their 

outcrops and sub-outcrops were discovered across the Khorat Plateau. It is comprised 

of shale, siltstone, sandstone, and conglomerate.  
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3) Phra Wihan Formation 

Its thickness ranges between 50 to 297 meters. This formation 

is composed of a massive white to pink, thick-bedded, well-sorted quartz sandstone 

with thin layers of laminated red siltstone. The groundwater was of high quality. 

4) Sao Khua Formation 

This unit is made up of sandstone and siltstone with 

thicknesses ranging from 400 to 720 meters. It was found in regions with flat to 

undulating terrain. The yield of groundwater from several boreholes in the Sao Khua 

aquifer is between 5 to 10 cubic meters per hour, with particularly high-quality water. 

5) Phu Phan Formation 

Massive coarse-grained quarzitic sandstone with occasional 

conglomerate defines the unit. Its thickness is between 100 to 400 meters. 

Geomorphologically, the landscape ranges from almost flat top hills to undulating 

terrain. The yield of groundwater ranges from 1 to 10 cubic meters per hour. This 

amount can be predicted from a drilling well that has penetrated the aquifer's 

fractured zones. Groundwater is generally of high quality, with significant iron amounts 

on occasion. Flowing artesian water was not discovered in the Phu Phan formation 

aquifer. Several flowing wells have been drilled, though. 

6) Khok Kruat Formation 

Groundwater is present mostly in the voids between fractures 

and bedding planes of sandstone, shale, and siltstone. The quality of the groundwater 

in this formation is generally good. However, saltwater can be found in places where 

the rock contacts the Maha Sarakham Formation. 

7) Maha Sarakham Formation 

The Maha Sarakham Formation is typically found at a relatively 

shallow depth of around 80 to 100 meters below the Earth's surface. The upper 

surface of the rock salt exhibits a smooth and moderate inclination towards the 
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northeast, as observed from seismic section profiles. Due to the limited presence of 

primary porosity, the formation predominantly acts as an aquitard, impeding the flow 

of groundwater. Groundwater can only accumulate within the formation when it 

comes into contact with porous rock units. Brine water, commonly extracted from 

aquifers associated with these porous rock units, serves as a major source for salt 

mining activities. 

8) Phu Tok Formation 

When compared to the underlying formations, it is not well 

cemented and slightly soft. It is mainly composed of claystone, siltstone, and 

sandstone. At outcrop, the topography is mainly flat to slightly undulating. The 

formation can form a suitable aquifer. Groundwater can be trapped in both primary 

and secondary pore spaces within the formation. However, the presence of 

underlying rock salt layers can contribute to the salinization of groundwater. The high 

concentration of salt chloride in the formation leads to poor-quality groundwater. In 

certain areas, local communities extract salty water and use it to produce table salt. 

However, regions with deeper rock salt layers or where freshwater forms a shallow 

lens over the saltwater in recharge areas may have low salinity in groundwater. 

 

2.4 Groundwater Quality of Nakhon Ratchasima 

Total Dissolved Solids (TDS) contain nitrate and iron, which may be harmful to 

human health, according to Tatong and Margane (2004). Groundwater with this high 

TDS content is unsuitable for human consumption. The TDS dissolved in groundwater 

of this region is mostly sodium chloride (NaCl). 

Wannakomol (2012) identified shallow saline groundwater levels in Sikhio, Dan 

Khun Thot, Phra Thong Kham, Kham Sakae Saeng, Non Sung, Phimai, Kham Thale So, 

Muang Nakhon Ratchasima, and Chaloem Phra Kiat districts using an electrical survey 

in Nakhon Ratchasima province. The groundwater quality and hydrogeology of the 

study area were summarized as follows: 
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1) Non Thai district 

The main rock types present in this district are shale, sandstone, 

siltstone, claystone, and rock salt, collectively known as the Maha Sarakham 

Formation. Rock salt serves as the primary contributor to the presence of saline and 

brackish groundwater. Aquifers containing groundwater have been identified within 

fractures in the rock formation. The yield of groundwater from these aquifers varies 

between 2 and 10 cubic meters per hour. On average, the aquifers have a depth of 15 

to 30 meters, with the water level typically ranging from 3 to 8 meters. The 

groundwater in these aquifers is characterized by its salinity, brackishness, and 

hardness. 

2) Non Sung district 

The predominant rock type in the Non Sung district is rock salt 

from the Maha Sarakham Formation. Consequently, the groundwater in this district is 

characterized by its salinity, hardness, and elevated iron levels. 

3) Non Daeng district 

The geological composition of this district consists of shale, 

sandstone, siltstone, claystone, and rock salt derived from the Maha Sarakham 

Formation. Groundwater characteristics vary depending on the location: the 

groundwater in the river plain along the Sakae River is saline and brackish, while the 

groundwater on the hill is freshwater. The yield of groundwater ranges from 2 to 10 

cubic meters per hour, with an average aquifer depth of 10 to 30 meters and a water 

level ranging from 3 to 8 meters. 

4) Khong district 

The geological composition of the district consists of various 

rock types such as shale, sandstone, siltstone, claystone, and rock salt from the Maha 

Sarakham Formation. The majority of groundwater in the area is characterized as saline 

or brackish, although freshwater sources have been identified in certain locations. 
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Groundwater yield ranges from 2 to 10 cubic meters per hour, with an average aquifer 

depth of 20 to 50 meters and a water level ranging from 3 to 8 meters. The quality of 

groundwater is generally high in terms of salinity, brackishness, and hardness, although 

some areas exhibit better quality. 

5) Kham Sakae Saeng district 

The Maha Sarakham Formation is composed of shale, 

sandstone, siltstone, claystone, and rock salt. The groundwater in the Kham Sakae 

Saeng district is predominantly characterized by high salinity, brackishness, and 

hardness, accounting for over 80% of the total groundwater quality. However, some 

regions exhibit medium to good quality. Freshwater areas are primarily located in the 

northern and northwestern parts of the district. The yield of groundwater ranges from 

2 to 10 cubic meters per hour, with an average aquifer depth ranging from 10 to 35 

meters and a water level varying from 3 to 8 meters. 

 

2.5 Saline Soil of Nakhon Ratchasima 

Saline soil contains a high concentration of dissolved salts. Saline soil areas 

are mainly devoid of vegetation or have only sparse vegetation. When dry, salt-

affected soil areas can have a bright white, crusty color. The problem of soil salinity 

can be found all over the world, and the causes of the salinity might vary depending 

on the geological characteristics of the region. In both irrigated and non-irrigated 

agricultural areas, human activities can produce soil and water salinity concerns (Peck 

& Hatton, 2003).  

According to DMR (2015), the Khorat Plateau covers approximately one-third of 

Thailand and was classified as saline soil terrains with three salinity levels: (1) 

extremely saline terrain, (2) moderately saline terrain, and (3) slightly saline terrain. 

Udon Thani, Sakon Nakhon, Nakhon Phanom, Khon Kaen, Kalasin, Chaiyaphum, Maha 

Sarakham, Roi Et, Yasothon, Amnat Charoen, Nakhon Ratchasima, Buri Ram, Surin, Si 

Sa Ket, and Ubon Ratchathani are the fifteen provinces affected by saline soils, which 
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are primarily caused by dissolved sodium chloride from deep level. During each dry 

season, salt is dispersed throughout the lowland ground surface.  

Saline soil can be found in various regions of Thailand, and the salinity occurs 

from a variety of geologic conditions. The Maha Sarakham Formation, which is 

comprised of interbedded rock salt layers, underlies large areas of northeastern 

Thailand and is the region's main source of salinity. The Maha Sarakham Formation 

rock salt continues to cause serious difficulties with saline soils and saline water in 

the area (Wongsomsak, 1986). Topsoil contaminated with saltwater is typically found 

in low-lying areas with shallow groundwater levels and a low groundwater head 

gradient (Seeboonruang, 2013; Wannakomol, 2012). 

The Rock Salt Members, with a potential thickness of 700 meters, play a 

significant role in causing salinity in the Khorat Plateau. Within the salt-bearing layer 

of the Upper Clastic Member of the Maha Sarakham Formation, salts such as gypsum, 

sulfate, and carbonate have accumulated. During the rainy season, a portion of the 

salty content is leached away, resulting in a reduction in salinity. Soil salinity has 

rapidly spread and reduced the quality of life for many people, producing various 

economic, social, and environmental problems. 

One of the provinces affected by salinity is Nakhon Ratchasima. There are 

approximately 3,424 square kilometers of agricultural land with saline soil. Although 

salinity can contribute to the enhancement of soil structure, it can also exert adverse 

effects on plant growth and agricultural productivity. Northeastern Thailand's salt-

affected soils are mainly sandy, with low infertility and high sodium and chloride 

concentration. Other observable indicators of saline soil encompass the presence of 

salt crystals in close proximity to an elevated soil moisture level at the uppermost 

layer. 
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2.6 Thematic Layers 

2.6.1 Slope 

The slope of a surface is the greatest rate of change in height across an 

area of the surface, and it is the primary topographical component influencing land 

stability (Manjare, 2014). Due to its impact on the infiltration of groundwater into the 

subsurface, the slope of the topography serves as a suitable indicator for assessing 

groundwater conditions (Sikakwe, Ntekim, Obi, & George, 2015). In regions with 

moderate slopes, surface runoff occurs gradually, allowing rainwater more time to seep 

into the ground. On the other hand, areas with steep slopes facilitate rapid runoff, 

reducing the residence time of rainwater and resulting in slightly lower infiltration (Malik 

& Rajeshwari, 2011). The slope map of the area was created using the ASTER Global 

Digital Elevation Model (GDEM) with a spatial resolution of 30 m. 

2.6.2 Drainage Density 

It is defined as stream network spacing and its relationship to surface 

runoff and permeability (Magesh, Chandrasekar, & Soundranayagam, 2012). It is an 

important factor for determining the groundwater potential zone because it is an 

inverse function of permeability. The interpretation of groundwater conditions in a 

specific region is influenced by the drainage characteristics of the basin, which in turn 

affect the subsurface hydrological condition. When the rock has low porosity, it results 

in a reduced rainfall infiltration (Hutti & Nijagunappa, 2011). The drainage density was 

generated in ArcMap using the spatial analyst tool, which was used to extract stream 

networks from the global digital elevation model (GDEM). The drainage density was 

determined from the derived stream network after the line density was prepared. 

2.6.3 Lineament Density 

Lineaments are linear topographic features that represent the 

underlying geological structure. Lineament refers to the weak zones of bedrock that 

are considered secondary aquifers in rock outcrops because of their higher 

permeability and porosity (Selvam et al., 2016). Lineaments are strong indications of 
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groundwater potential because they allow water to flow (Kumar, 1999; V.R, Aravindan, 

& Gopinath, 1998). A high lineament density results in a high groundwater potential, 

while a low lineament density results in a low groundwater potential. 

2.6.4 Landform 

Landform investigations are a critical component of assessing both 

surface and groundwater resources. Landform mapping assists in the identification and 

categorization of various landforms and structural characteristics that support 

groundwater occurrences (Malik & Rajeshwari, 2011). Analyzing the formation of 

landforms and studying the geological aspects in a comprehensive manner can aid in 

identifying the existence of areas that are permeable and have high porosity (Karanth 

& Seshu babu, 1987). An essential aspect in estimating groundwater resources is the 

classification of landforms based on their morphological and lithological characteristics, 

as it helps establish hydro-morphological features. The examination of landforms is 

vital for comprehending a range of factors that impact groundwater resources, 

including the distribution of groundwater, slope characteristics, relief patterns, 

weathering depths, the composition and thickness of deposited materials, and the 

spatial arrangement of diverse landforms. In their study, Theobald, Harrison-Atlas, 

Monahan, and Albano (2015) attributed both collective and individual weights to the 

landform data obtained from the SRTM Landform dataset, considering its impact on 

the occurrence of groundwater. The landform data underwent acquisition and 

processing through the utilization of the Google Earth engine and the Python API, and 

the values were subsequently organized using the attribute table in ArcGIS. 

2.6.5 Annual Rainfall 

Rainfall plays a critical role in the water cycle as it has a significant 

impact on groundwater potential. When rainfall is abundant, there is a greater 

likelihood of groundwater recharge, while scarce rainfall significantly reduces the 

potential for groundwater replenishment (Kumar, Gautam, & Kumar, 2014). The annual 
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rainfall data was collected by the Royal Irrigation Department (RID), and ArcGIS spatial 

analyst tools were employed to interpolate and classify the data. 

2.6.6 Geology 

The type of rock exposed to the surface has a significant impact on 

groundwater recharge, according to Shaban, Khawlie, and Abdallah (2006). Geological 

factors impact groundwater recharge by affecting the percolation of water. Geology 

data, obtained from Thailand's Department of Mineral Resources (DMR) at a scale of 

1:50,000 using the Web Map Service (WMS), was digitized, and classified using ArcMap. 

2.6.7 Hydrogeological Unit 

An aquifer is a geological formation or zone with specific hydraulic 

properties that significantly impact groundwater storage and movement. It is 

considered a crucial dataset in assessing groundwater potential. An aquifer can consist 

of a single soil or rock unit or a combination of formations, providing abundant water 

to wells and springs due to its saturated and permeable characteristics (Lohman & 

Mentink, 1972). The hydrogeological unit data, obtained from Thailand's Department 

of Mineral Resources (DMR), was processed, and classified using ArcMap by digitizing 

and utilizing the WMS at a scale of 1:50,000. 

2.6.8 Groundwater Potential 

The reclassification of groundwater potential is influenced by two 

factors: 1) Specific yield, which plays a crucial role in land surface models for predicting 

the depth of the water table, thereby influencing the relationship between soil 

moisture and groundwater (Lv, Xu, Yang, Lu, & Lv, 2021). 2) Total dissolved solids (TDS), 

as defined by WHO. TDS levels of approximately 500 ppm are recommended, with a 

maximum of 1,500 ppm allowed. TDS concentrations in groundwater samples are high 

due to salt leaching from the soil, and domestic wastewater may percolate into the 

groundwater (Sarath Prasanth, Magesh, Jitheshlal, Chandrasekar, & Gangadhar, 2012). 

The salinization of soil is considerably aided by the quality and yield of groundwater 
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(Sattayarak, 1987). Specific yield and Total Dissolved Solids (TDS) were acquired at a 

1:50,000 scale through the utilization of the Web Feature Service (WFS) provided by 

Thailand's Department of Mineral Resources (DMR). The data were digitized, classified, 

and processed using ArcMap. 

2.6.9 Soil Texture Class 

Soil, as a natural resource, holds significant importance in delineating 

zones of groundwater potential and is crucial for facilitating groundwater recharge 

(Radhakrishnan & Ramamoorthy, 2014). Sandy loam exhibits a high rate of infiltration, 

indicating areas with high groundwater potential. In contrast, clay has a lower 

infiltration rate and thus lower groundwater potential. The collection and processing 

of soil texture class data were conducted utilizing the Google Earth engine and the 

Python API. 

2.6.10 Land Use /Land Cover 

It plays a substantial role in influencing the runoff, infiltration, and 

groundwater recharge capacity of a watershed or subbasin (Guru, Seshan, & Bera, 2017), 

Additionally, it offers soil-related data such as soil moisture content, groundwater 

levels, surface water conditions, and an indicator of groundwater potential 

development (Ahmad et al., 2020). The land use and land cover datasets were 

collected from the Sentinel-2 Land Use and Land Cover map developed 

collaboratively by Esri, Microsoft, and Impact Observatory. These datasets were 

processed using the Google Earth Engine and Python API. 

2.6.11 Normalized Difference Vegetation Index 

The Normalized Difference Vegetation Index (NDVI) can be utilized to 

assess groundwater levels, specifically in naturally vegetated regions like forests or 

shrublands. The NDVI serves as an important indicator of water availability, which 

significantly impacts the growth and coverage of dense vegetation. In areas with 

shallow water tables, natural vegetation, and a lack of in-situ groundwater 
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observations, the NDVI can serve as a reliable indicator of groundwater storage 

conditions (Bhanja et al., 2019). The NDVI data were obtained from Sentinel-2 images 

and underwent processing using the Python API of the Google Earth Engine platform. 

2.6.12 Salinity Content 

Salinization is a significant environmental problem that has adverse 

effects on soil quality, water resources, agricultural productivity, and the balance of 

natural ecosystems. Elevated levels of different elements, including sodium, sulphate, 

boron, fluoride, selenium, arsenic, and increased radioactivity, are commonly linked to 

higher levels of groundwater salinity (Gopal, 2019). Soil salinization poses a significant 

risk to the desertification of land, particularly in regions that experience frequent 

droughts. In such areas, there is high evaporation from the soil, and surface water 

contains highly soluble salts. The movement of water and salt at a regional level is 

influenced by factors such as climate, topography, hydrogeology, and human activities, 

which can contribute to the occurrence of these conditions (Cui, Lu, Zheng, Liu, & Sai, 

2019). 

2.6.13 Chloride Content 

Chloride is a prevalent anion found in tap water, often combining with 

calcium, magnesium, or sodium to form various salts due to its negative charge. Unlike 

elements, ions do not have a balanced charge. Sodium chloride (NaCl) is a common 

compound composed of sodium and chlorine. When dissolved in water, sodium 

chloride generates a positively charged ion and a negatively charged chloride anion. 

Chloride can be found in rainwater, streams, groundwater, seawater, wastewater, urban 

runoff, and geological formations. 

2.6.14 Total Dissolve Solid 

Total Dissolved Solids (TDS) is among the multiple techniques used to 

assess salinity levels. TDS quantifies the concentration of all dissolved substances in 

water, encompassing organic matter and suspended particles that can traverse a highly 
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refined filter. In laboratory settings, TDS measurements are conducted and reported in 

milligrams per liter (mg/L) ("Chemicals of Concern (COC) - Groundwater Information 

Sheets (Salinity)," 2017). 

 

2.7 Regression Analysis 

Regression analysis is widely acknowledged as the most commonly used 

statistical method for studying or estimating the relationship between a dependent 

variable and a set of independent predictor variables. By identifying and assessing these 

relationships, Insights into the dynamics of a given area are gained, predictions about 

future occurrences are made, and exploration of the underlying factors contributing to 

specific spatial patterns is conducted (M. Charlton & A. S. Fotheringham, 2009). 

The most well-known regression approach is Ordinary Least Squares (OLS). It's 

also a useful place to begin any spatial regression analysis. It creates a single regression 

equation to represent the process and gives a global model of the variable or process 

you are attempting to understand or predict (M. Charlton & A. S. Fotheringham, 2009). 

Geographically Weighted Regression (GWR) is a spatial regression approach 

gaining popularity. It fits a regression equation to each feature in the dataset, providing 

a localized modeling approach for a better understanding and prediction of the 

variable being investigated. The proximity characteristics, or bandwidth, are determined 

by user-defined parameters such as Kernel type, Bandwidth method, Distance, and 

Number of neighbors. GWR offers robust statistical tools for exploring and estimating 

linear relationships (M. Charlton & A. S. Fotheringham, 2009). 

Positive and negative linear relationships exist, Figure 2.4 shows both positive 

and negative associations and situations in which no relationship exists between two 

variables (ESRI, n.d.). 
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(A)    (B)    (C) 

Figure 2.4 Scatterplots: (A) positive relationship, (B) negative relationship, and (C) two 

variables are unrelated (ESRI, n.d.). 

2.7.1 Ordinary Least Square Regression 

M. Charlton and S. Fotheringham (2009) stated that regression involves 

a range of methods employed to analyze the relationship between a dependent 

variable and one or more independent variables. The dependent variable, also known 

as the y-variable or response variable, is examined in conjunction with the independent 

variables, which can be referred to as x-variables, predictor variables, or regressors. 

An equation represents a regression model. A linear regression model 

(Equation 2.1) can have the following form in its most basic version: 

 for i=1 … n (2.1)  

where  is the dependent variable that is measured at some location i,  

xi is the independent variable,  

 is the error term, and  

 and are parameters that are to be estimated such that the value of 

 is minimized over the n observations in the dataset. The is the 

predicted or fitted value for its observation, given its value of x. The term is 

known as the residual for its observation, it is important for the residuals to exhibit 

independence and conform to a Normal Distribution with a mean of zero. To 

accomplish this, an Ordinary Least Squares (OLS) Regression is commonly employed 

to fit such a model. 
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More generally, a multiple linear regression model may be written as 

Equation 2.2: 

  for i=1 … n (2.2)  

In the case where the predictions of the dependent variable are 

obtained by combining the independent variables linearly, the estimator for Ordinary 

Least Squares (OLS) takes the form as shown in Equation 2.3: 

 (2.3)  

In the context of statistical analysis, the estimated parameters are 

represented by the vector , the design matrix X comprises the independent 

variables' values along with a column of 1s, the vector y represents the observed 

values, and the inverse of the variance-covariance matrix is denoted as . 

For example, weighting the observations in regression is sometimes 

advantageous to account for varying levels of data uncertainty. The square matrix W 

is enhanced by incorporating weights along its leading diagonal, thereby modifying the 

estimator (Equation 2.4) to incorporate these weights: 

 (2.4)  

The goodness of fit evaluates how well the model can replicate the 

observed y values. The measure of goodness of fit is often represented by the R2 value, 

which falls between 0 and 1. It quantifies the proportion of variation in the observed 

y values that can be attributed to the variation in the model. However, since the R2 

value can be artificially increased by adding more variables, the adjusted R2 is 

commonly used. The adjusted R2 considers the number of independent variables in 

the model and reflects the model's simplicity. 

In a regression model, it is important to assess if a parameter's value 

significantly deviates from zero, indicating that changes in the associated variable affect 

the predictions. To determine the meaningful contribution of variables in the model, 
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the estimated parameter for each variable is divided by its standard error. These 

statistics follow a t-distribution, and their comparison to critical values from the t-

distribution helps evaluate their significance, considering the degrees of freedom in the 

model. 

2.7.2 Geographically Weighted Regression 

Brunsdon et al. (1996); Brunsdon et al. (1998); Fotheringham et al. (2002) 

introduced Geographically Weighted Regression (GWR) as a local form of spatial 

analysis. GWR is an extension of OLS regression which models relationships as they 

vary across space by evaluating which locally weighted regression coefficients deviate 

from global coefficients in the geographical literature. It draws from statistical 

approaches for curve-fitting and smoothing applications. In other words, GWR is used 

to recognize the various nonstationary in variable values; stationarity refers to the 

situation in which the mean, variance, and location dependency do not change 

throughout space. GWR, in effect, moves a weighted window all over the spatial data 

and estimates unbiased slope and intercept parameters from "fit points," which can 

then be compared to global estimated parameters from a distance matrix of all points 

in the dataset. The size of the bandwidth can be calibrated in a variety of ways, and 

data is weighted as a function of the distance from the fit point using a kernel density 

function. The regression equation is modified across geographic space to account for 

variation caused by changes in spatial autocorrelation structure across an environment. 

Although GWR explicitly models spatial variation, it is limited in that it violates the 

predictor independence assumption as the same location may be included in different 

local estimated parameters, and there are also known issues with determining the 

goodness of fit statistics. For an in-depth discussion of GWR. 

According to M. Charlton and S. Fotheringham (2009), It is also assumed 

that the analyst possesses a dataset with a dependent variable y and a set of m 

independent variable(s) Xk, k=1...m, and that a suitable coordinate system provides a 

measure of the position for each of the n observations in the dataset. 
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One possible formulation (Equation 2.5) for the GWR variant of the OLS 

regression model's equation could be: 

 (2.5)  

The notation 𝛽#"(𝑢) indicates that the parameter explains a relationship 

that is specific to location u. If measured values for the independent variables are 

available at location u, a prediction for the dependent variable could be made. 

Usually, the locations at which estimated coefficients are obtained correspond to the 

data collection points, although this may not always be true. 

This appears to be an unusual claim, but the clarity emerges when 

considering the nature of geographical weighting. 

2.7.3 Weighting Functions 

The weighted function for parameter estimation was developed by 

Fotheringham et al. (2002). This model's estimator is identical to the WLS (weighted 

least squares) global model above, except that the weights are conditioned on the 

position u relative to the other observations in the dataset and so change for each 

location. The estimator (Equation 2.6) is written as follows: 

 (2.6)  

where W(u) is a square matrix of weights according to location u in the study area; 

XTW(u)X is the geographically weighted variance-covariance matrix (the estimation 

requires its inverse); and y is the vector of dependent variable values. 

The W(u) matrix includes geographical weights in its lead diagonal and 

0 in its off-diagonal components. 
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2.7.4 Bandwidth Selection 

The weights themselves are determined using a weighting technique 

known as a kernel. There are several kernels that can be used: A Gaussian form is usual 

(Equation 2.7): 

 (2.7)  

where wi(u) is the geographical weight of its observation in the dataset in relation to 

the location u, di(u) is a measurement of the distance between its observation and the 

location u, and h is the bandwidth. When employing Cartesian coordinates, the 

distances typically employed are Euclidean distances, while spherical coordinates 

often utilize Great Circle distances. However, it is possible to use non-Euclidean 

distances, such as distances along a road network, without any limitations. 

The bandwidth in the kernel is measured in the same units as the 

dataset's coordinates. As the bandwidth increases, the weights tend to converge 

towards unity, causing the local GWR model to approach the global OLS model. 

As explained previously, the usual practice is to estimate parameters at 

the locations where the dataset's observations were collected. This allows for 

predicting the dependent variable and calculating the residuals, which are essential for 

assessing the model's goodness of fit. Further discussion on this topic will be provided 

below. In addition to the sample sites, parameters can also be estimated at non-

sample sites within the study region, such as the points of a grid or the locations of 

observations in a validation dataset that shares the same dependent and independent 

variables as the calibration dataset. 

The sample points refer to the specific locations where the calibration 

data was collected, while the regression points correspond to the locations where the 

parameter estimation takes place. The components of a local model consist of the 

geographically weighted estimator, kernel, and bandwidth. 
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Alternative kernels can be utilized in GWR, although their specific form 

is of less importance as long as they exhibit a "Gaussian-like" behavior. The selection 

of the bandwidth plays a more crucial role in determining the model's goodness of fit 

than the kernel's shape. When the sample points in the research area are appropriately 

distributed, a kernel with a fixed bandwidth is a suitable choice for modeling. However, 

if the sample points exhibit clustering or irregular spacing, it is preferable to adapt the 

kernel's size, accordingly, increasing it when the sample points are sparse and 

decreasing it when they are dense. One approach to achieve this adaptive bandwidth 

specification is to choose a kernel that ensures an equal number of sample points for 

each estimation. This can be achieved by sorting the distances of the sample points 

from the desired regression point and including only the first p observations, where 

the optimal value of p is determined from the data. The weight for each observation 

within the bandwidth can be determined using the specified kernel, setting the weight 

to zero for observations outside the bandwidth and excluding them from the local 

calibration. An example of such a kernel is the bi-square kernel (Equation 2.8). 

 (2.8)  

Where di(u) > h, wi(u) is zero. This is a near-Gaussian function with the helpful property 

of having a zero weight at a finite distance. In ArcGIS, the fixed radius kernel is 

implemented as a Gaussian kernel, while the adaptive kernel utilizes the bi-square 

kernel. 

2.7.5 Model Calibration and Diagnosis 

When the sample and regression points overlap, the residuals and 

predictions of the dependent variables are provided, allowing for the assessment of 

the model's goodness of fit. The traditional global model typically utilizes the R2 or 

adjusted R2 value as a measure of goodness of fit, with the adjusted value being 

preferred in model comparisons as it considers the number of variables or parameters 

in the model. However, when utilizing GWR, the computation of a goodness-of-fit value 
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becomes more complex, requiring consideration of the effective number of parameters 

in the model. 

The hat matrix, denoted as S, plays a significant role in regression 

modeling. By multiplying the observed y values by S, Upon obtaining the predicted or 

fitted values, represented by Equation 2.9, the process involves the following steps: 

 (2.9)  

In a global model, the count of parameters can be determined by the 

trace of the matrix S, which is the summation of values along the leading diagonal. 

This is denoted as tr(S). For an OLS regression, the number of parameters in the model 

is equivalent to the trace of S. In the case of a GWR model, the effective number of 

parameters is calculated using the formula 2tr(S)-tr(STS). The effective number of 

parameters in the model is influenced by both the number of independent variables 

and the bandwidth. This value is often non-integer and can be relatively large. 

Consequently, it serves as a valuable metric for assessing the fit of the model. 

The corrected Akaike Information Criterion (Hurvich et al., 1998) in 

Equation 2.10 is a widely used measure of goodness of fit in GWR. It is represented as 

follows: 

 (2.10)  

where the equation includes the variables n, , and tr(S), representing the number 

of observations, estimated standard deviation of the residuals, and the trace of the 

hat matrix, respectively. The AICc is a useful metric for comparing models that share 

the same dependent variable but have different independent variables. It considers 

the model's complexity, incorporating a penalty for degrees of freedom, especially 

when comparing models with significantly different right-hand sides. 

The AICc is utilized to quantify the information discrepancy between 

the fitted model and the unknown true model. This discrepancy is referred to as the 

Kullback-Leibler information distance and is a relative measure rather than an absolute 
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one. According to a commonly accepted rule of thumb, two models are considered 

equivalent if the difference in their AICc values is less than 3, although a more cautious 

analyst may use a threshold of 4. The actual magnitudes of the AICc values displayed 

in the GWR output are not significant, as the focus lies on the differences between the 

AICc values. The AICc equation contains logarithmic terms, and it can be demonstrated 

that the disparity in AICc values for two models with identical degrees of freedom 

corresponds to the ratio of their likelihoods. However, it is important to note that the 

AICc is not a likelihood ratio test. 

The AICc is applicable for comparing models that have distinct subsets 

of independent variables, including the global OLS model and local GWR models. The 

software assesses the AICc to determine the "optimal" bandwidth value, selecting the 

bandwidth with the lowest AICc to estimate the model parameters. Nevertheless, it is 

ultimately the analyst's responsibility to choose the best value, and there may be valid 

conceptual reasons for opting for a bandwidth value that deviates from the 

recommendation based on the AICc versus bandwidth plot. 

 



 

 

CHAPTER III 

RESEARCH METHODOLOGY 
 

3.1 Study Area 

The study site under examination is located in the northeastern part of 

Thailand, specifically in Nakhon Ratchasima Province. It spans from 818000E to 888000E 

and 1664000N to 1722000N, following the WGS 1984 UTM zone 47N coordinate system. 

The study area covers approximately 2,390 square kilometers and includes the districts 

of Non Thai, Non Sung, Non Daeng, Khong, and Kham Sakae Saeng within the province. 

This information is depicted in Figure 3.1. The region is among several areas impacted 

by the salinity of the Maha Sarakham Formation. In terms of climate, the average 

temperature in the area is 27.40 °C, with a relative humidity of 71% and an annual 

rainfall of 1,028.10 millimeters. The region experiences a distinct dry season from 

November to May, during which rainfall is limited. The dry season can be further 

divided into two parts: the cool season from November to February, characterized by 

chilly nights, and the hot season from March to May, with temperatures reaching up 

to 40 °C. The rainy season occurs from May to November, with the southwest monsoon 

prevailing and bringing the highest precipitation levels during this period. Rainfall during 

this season is often in the form of short showers lasting for an hour or two. As the rainy 

season progresses, rainfall intensifies, with peak levels typically observed in August and 

September. 

 

3.2 Data Collection and Preparation 

This study utilized secondary data for mapping groundwater potential. 

Fourteen thematic layers were obtained from reliable online sources (Table 3.1). 

Salinity, chloride, and total dissolved solids maps were sourced from Thongwat (2018). 

 



41 

 

The slope and lineament density maps were generated from ASTER GDEM data. The 

drainage density map was derived from stream networks using ASTER GDEM. The 

landforms map was acquired from the SRTM Landform dataset. The soil texture class 

map was obtained from the USDA system described by Hengl (2018). The land use/land 

cover map was sourced from the collaborative effort of Esri, Microsoft, and Impact 

Observatory for Sentinel-2 data. The normalized difference vegetation index map was 

derived from Sentinel-2 images. The annual rainfall map was obtained from the Royal 

Irrigation Department (RID). The geology, groundwater potential, and hydrogeological 

unit maps were obtained from the Department of Mineral Resources (DMR).  

 

Figure 3.1 The study area of saline soils area in Nakhon Ratchasima province, Thailand. 
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Table 3.1 The data type and data sources of thematic layers. 

No. Thematic Layers Data 

Type 

Resolution Source 

1 Salinity content (SC) XML - Thongwat (2018) 

2 Chloride content (CC) XML - Thongwat (2018) 

3 Total dissolve solid (TDS) XML - Thongwat (2018) 

4 Slope (Sl) Raster 30 m ASTER GDEM 

5 Drainage density (DD) Raster 30 m ASTER GDEM 

6 Lineament density (LD) Raster 30 m ASTER GDEM 

7 Landforms (Lf) Raster 90 m Theobald et al. (2015) 

8 Soil texture class (STC) Raster 10 m Hengl (2018) 

9 Land use /land cover (LULC) Raster 10 m Impact Observatory 

(2022) 

10 Normalized difference 

vegetation index (NDVI) 

Raster 10 m Sentinel-2 

11 Annual rainfall (Rf) XML - RID 

12 Geology (Geol) WMS 1:50,000 DMR 

13 Hydrogeological unit (HU) WMS 1:50,000 DMR 

14 Groundwater potential (GP) WMS 1:50,000 DMR 

Note: Information in the bracket is variable abbreviated names used in the analysis. 

The presence of groundwater is governed by factors such as geology, structure, 

geomorphology, and drainage density, while the recharge of groundwater is influenced 

by land use, rainfall patterns, and the rate of infiltration (Manjare, 2014). The selection 

of factors used in groundwater studies may vary depending on the data availability for 

each researcher. Key factors include slope, drainage density, lineament density, 

landforms, annual rainfall, geology, hydrogeological units, groundwater potential, soil 

texture classes, land use/land cover, normalized difference vegetation index, salinity 

content, chloride content, and total dissolved solids. Each thematic layer was 

projected to the WGS_1984_UTM Zone_47N coordinate system for consistency. 

 



43 

 

In this study, all the thematic layers were employed to conduct an analysis of 

groundwater potential zones. The resulting classifications of these layers are presented 

in Table 3.2. 

3.2.1 Dependent Variable 

1) Salinity Content Map 

The salinity content map was classified into five categories 

(“Understanding Salinity”, 2020) : 4.42 km2 (0.19%) of Freshwater (< 0.50 ppt), 782.41 

km2 (32.76%) of Marginal water (0.50 – 1.00 ppt), 853.43 km2 (35.73%) of Brackish water 

(1.00 – 2.00 ppt), 728.07 km2 (30.48%) of Saline water (2.00 - 10.00 ppt), and 20.18 km2 

(0.84%) of Highly saline water (10.00 - 30.00 ppt) as shown in Table 3.2 and Figure 3.2. 

3.2.2 Independent Variable 

1) Chloride Content Map 

The Chloride content map was classified into six classes 

according to Thongwat (2018): 0.22 km2 (0.01%) of Freshwater (< 150.00 ppm), 4.36 

km2 (0.18%) of Fresh-brackish water (150 – 300 ppm), 613.72 km2 (25.67%) of Brackish 

water (300 – 1,000 ppm), 1,639.48 km2 (68.57%) of Brackish-salt water (1,000 – 10,000 

ppm), 103.60 km2 (4.33%) of Saltwater (10,000 – 20,000 ppm), and 29.52 km2 (1.23%) 

of Hyper-halite water (> 20,000 ppm) as shown in Table 3.2 and Figure 3.3. 

2) Total Dissolved Solid Map 

The Total dissolved solid map was classified into three (Pradhan 

& Pirasteh, 2011): 623.77 km2 (26.09%) of Freshwater (0 – 1,000 ppm), 1,747.19 km2 

(73.09%) of Brackish water (1,000 – 10,000 ppm), and 19.60 km2 (0.82%) of Saline water 

(10,000 – 100,000 ppm) as shown in Table 3.2 and Figure 3.4. 

3) Slope Map 

The slope map was classified into two categories (Elewa & 

Qaddah, 2011): 2,368.69 km2 (99.32%) of Flat (0 – 2 %), and 16.11 km2 (0.68%) of 

Undulating (2 - 8 %) as shown in Table 3.2 and Figure 3.5. 
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Figure 3.2 Salinity content. 

 

Figure 3.3 Chloride content. 
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Figure 3.4 Total dissolved solids. 

 

Figure 3.5 Slope. 
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4) Drainage Density Map 

The drainage density map was classified into three density 

classes (Aldharab, Ali, Ikbal, & Ghareb, 2019): 1,805.11 km2 (75.53%) of Very coarse 

drainage density (< 2 km/km2), and 584.73 km2 (24.47%) of Coarse drainage density (2 

– 4 km/km2) as shown in Table 3.2 and Figure 3.6. 

5) Lineament Density Map 

The lineament density map is reclassified into two classes: 

2,279.81 km2 (95.38%) of Absent, and 110.43 km2 (4.62%) of Present as shown in Table 

3.2 and Figure 3.7.  

6) Landform Map 

The landform data from the SRTM Landform dataset were 

collected and processed using the Google Earth engine and the Python API, and 

Theobald et al. (2015) assigned different weightage to the data based on its influence 

on groundwater occurrence. The landform map of the study area is covered by a 

variety of landform features 11.54 km2 (0.48%) of upper slope (warm), 888.30 km2 

(37.17%) of upper slope (flat), 4.45 km2 (0.19%) of lower slope (warm), 1,084.20 km2 

(45.37%) of lower slope (flat), 385.52 km2 (16.13%) of the valley, and 15.62 km2 (0.65%) 

of the valley (narrow) as shown in Table 3.2 and Figure 3.8. 

7) Soil Texture Class Map 

Hengl (2018) categorized the soil texture class into five distinct 

classes, with approximately 809.42 km2 covering more than one-third of the area 

(33.87%) of Sandy clay loam, 714.10 km2 (29.88%) of Loam, 527.55 km2 (22.07%) of 

Sandy loam, 328.14 km2 (13.73%) of Clayey loam, and 10.66 km2 (0.45%) of Clay as 

shown in Table 3.2 and Figure 3.9. 
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Figure 3.6 Drainage density. 

 

Figure 3.7 Lineament density. 
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Figure 3.8 Landforms. 

 

Figure 3.9 Soil texture class. 
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8) Land Use /Land Cover Map 

Based on the Sentinel-2 10m Land Use/Land Cover Time Series 

dataset, the LULC map was categorized into seven classes according to Impact 

Observatory (2022), with 24.91 km2 (1.04%) labeled as no data, 11.29 km2 (0.47%) of 

water, 1.26 km2 (0.05%) of grass, 1,928.06 km2 (80.67%) of flooded vegetation, 221.71 

km2 (9.28%) of scrub/shrub, 1.42 km2 (0.06%) of the build area, and 201.53 km2 (8.43%) 

of cloud as shown in Table 3.2 and Figure 3.10. 

9) Normalized Difference Vegetation Index Map 

The NDVI was reclassified into five classes  (Atun, Kalkan, & 

Gürsoy, 2020): 17.57 km2 (0.74%) of water, 3.23 km2 (0.14%) of bare soil, 2,106.69 km2 

(88.15%) of sparse vegetation, 262.24 km2 (10.97%) of moderate vegetation, 0.05 km2 

(<0.01%) of dense vegetation as shown in Table 3.2 and Figure 3.11. 

 

Figure 3.10 Land use /land cover. 
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Figure 3.11 Normalized difference vegetation index 

10) Annual Rainfall Map 

The annual rainfall map was projected and divided into four 

using the natural breaks (Jenks) classification method: 154.45 km2 (6.47%) of Low 

rainfall (186–193 millimeters), 722.25 km2 (30.23%) of Medium rainfall (193–199 

millimeters), 890.51 km2 (37.28%) of High rainfall (199–204 millimeters), and 621.75 km2 

(26.03%) of Very High rainfall (204–206 millimeters) as shown in Table 3.2 and Figure 

3.12. 

11) Geology Map 

The geology map was obtained from the Web Feature Service 

(WFS), digitized, and categorized into four geological units (Department of Mineral 

Resources, n.d.). These units consist of 190.24 km2 (7.96%) of Pleistocene River terrace 

deposits (Q1), 1,266.95 km2 (53.00%) of Quaternary Alluvial deposits (Q2), 10.57 km2 

(0.44%) of Khok Kruat Formation (Kk), and 922.80 km2 (38.60%) of Maha Sarakham 

Formation (KTms) as shown in Table 3.2 and Figure 3.13. 
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12) Hydrogeological Unit Map 

The hydrogeological unit map was obtained, digitized, and 

categorized into two units according to groundwater quality. Each unit was assigned 

distinct scores (Department of Mineral Resources, n.d.) : 93.11 km2 (3.89%) of 

Floodplain Deposits Aquifer (Qfd), and 2,297.45 km2 (96.11%) of Maha Sarakham Aquifer 

(Ms) as shown in Table 3.2 and Figure 3.14. 

13) Groundwater Potential Map 

The groundwater potential map was generated by specific yield 

(Sy) and TDS data. It was then classified into four categories based on guidelines 

provided by Department of Mineral Resources (n.d.): 1936.65 km2 (81.01%) of G1 (Sy: 

< 2 m3/h, TDS: 500 - 1,500 ppm), 385.41 km2 (16.12%) of G2 (Sy: 2 – 10 m3/h, and TDS: 

500 - 1,500 ppm), 59.96 km2 (2.51%) of R1 (Sy: < 2 m3/h, and TDS: > 1,500 ppm), and 

8.54 km2 (0.36%) of R2 (Sy: 2 – 10 m3/h, and TDS: > 1,500 ppm) (Table 3.2 and Figure 

3.15). 

 
Figure 3.12 Annual rainfall

 



52 

 

 

Figure 3.13 Geology. 

 

Figure 3.14 Hydrogeological unit. 
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Figure 3.15 Groundwater potential. 

Table 3.2 Classification of thematic layers. 

No. Thematic Layers Feature classes Rating Area (%) 

1 Salinity Content 

(ppt) 

Freshwater < 0.50 0.19 

Marginal water 0.50 - 1.00 32.76 

Brackish water 1.00 -2.00 35.76 

Saline water 2.00 - 10.00 30.48 

Highly saline water  10.00 - 30.00 0.84 

Brine water > 30.00 - 
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Table 3.2 Classification of thematic layers (Continued). 

No. Thematic Layers Feature Classes Rating Area (%) 

2 Chloride Content 

(ppm) 

Freshwater < 150 0.01 

Fresh-brackish water 150 – 300 0.18 

Brackish water 300 – 1,000 25.67 

Brackish-salt water 1,000 – 10,000 68.57 

Saltwater 10,000 – 20,000 4.33 

Hyper-halite water > 20,000 1.23 

3 Total Dissolved 

Solid (ppm) 

Freshwater 0 – 1,000 26.09 

Brackish water 1,000 – 10,000 73.09 

Saline water 10,000 – 100,000 0.82 

Brine water > 100,000 - 

4 Slope (%) Flat 0 - 2 99.32 

Undulating 2 - 8 0.68 

Rolling 8 - 15 - 

Moderately steep 15 - 30 - 

5 Drainage density 

(km/km2) 

Very coarse < 2 75.53 

Coarse 2 - 4 24.47 

Moderate 4 - 6 - 

Fine 6 - 8 - 

Very fine > 8 - 

6 Lineament 

Density 

Absent 1 95.38 

Present 2 4.62 

 



55 

 

Table 3.2 Classification of thematic layers (Continued). 

No. Thematic Layers Feature Classes Rating Area (%) 

7 Landforms Peak/ridge (warm) 11 - 

Peak/ridge 12 - 

Peak/ridge (cool) 13 - 

Mountain/divide 14 - 

Cliff 15 - 

Upper slope (warm) 21 0.48 

Upper slope 22 - 

Upper slope (cool) 23 - 

Upper slope (flat) 24 37.17 

Lower slope (warm) 31 0.19 

Lower slope 32 - 

Lower slope (cool) 33 - 

Lower slope (flat) 34 45.37 

Valley 41 16.13 

Valley (narrow) 42 0.65 

8 Soil texture class Clay 1 0.45 

Silty Clay 2 - 

Sandy Clay 3 - 

Clayey Loam 4 13.73 

Silty Clay loam 5 - 

Sandy Clay Loam 6 33.87 

 



56 

 

Table 3.2 Classification of thematic layers (Continued). 

No. Thematic Layers Feature Classes Rating Area (%) 

  Loam 7 29.88 

Silty Loam 8 - 

Sandy Loam 9 22.07 

Silt 10 - 

Loamy Sand 11 - 

Sand 12 - 

9 Land use /land 

cover 

No Data 1 1.04 

Water 2 0.47 

Trees 3 - 

Grass 4 0.05 

Flooded Vegetation 5 80.67 

Crops 6 - 

Scrub/Shrub 7 9.28 

Built Area 8 0.06 

Bare Area 9 - 

Snow/Ice 10 - 

Clouds 11 8.34 

10 Normalized 

difference 

vegetation index 

Water < 0.00 0.74 

bare soil 0.00 – 0.03 0.14 

sparse vegetation 0.03 – 0.30 88.15 

moderate vegetation 0.30 – 0.50 10.97 
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Table 3.2 Classification of thematic layers (Continued). 

No. Thematic Layers Feature Classes Rating Area (%) 

  dense vegetation > 0.50 < 0.01 

11 Annual rainfall 

(mm) 

Low rainfall < 188 6.47 

Medium rainfall 188 – 196 30.23 

High rainfall 196 – 202 37.28 

Very High rainfall 202 – 216 26.03 

12 Geology Kk 1 0.44 

KTms 2 38.60 

Q1 3 7.96 

Q2 4 53.00 

13 Hydrogeological 

unit 

Qfd 1 3.89 

Ms 2 96.11 

14 Groundwater 

potential (m3/h, 

ppm) 

G2  Sy: 2 - 10  

TDS: 500 - 1,500 

16.12 

R2  Sy: 2 - 10  

TDS: > 1,500  

0.36 

G1  Sy: < 2  

TDS: 500 - 1,500  

81.01 

R1  Sy: < 2  

TDS: > 1,500 

2.51 
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3.2.3 Data Preparation 

1) Fishnet tool 

Grids are used to display coordinates or divide areas in a map. 

Create a grid to analyze the raster using the create fishnet tool in data management 

tools into 1,000 m x 1,000 m according to software limitation. The output feature class 

contains the fishnet of rectangular cells and clip using study area extent as shown in 

Figure 3.16. 

 

Figure 3.16 Grid cell size 1,000 m x 1,000 m. 

2) Add Geometry Attributes Tool 

Adds new attribute fields to the input features representing each 

feature's spatial or geometric characteristics and location, such as length or area and 

x-, y-, z-, and m-coordinates. This study uses the field (CENTROID_INSIDE) on Add 

Geometry Attributes tool in the data management tool. 

3) Make XY Event Layer Tool 

Creates a new point feature layer based on x- and y-coordinates 

defined in a table. If the source table contains z-coordinates (elevation values), that 
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field can also be specified in the creation of the event layer. The layer created by this 

tool is temporary. Make XY event layer tool in data management tool as shown in 

Figure 3.17 shows the inside centroid of each polygon.  

 

Figure 3.17 Converting polygon features to point features. 

4) Extract Multi Values to Points Tools 

Extract Multi Values to Points Tools in Spatial Analyst Tool can 

extract cell values at locations specified in a point feature class from one or more 

raster and record the values to the attribute table of the point feature class. 

If the field is populated with a zero or null value, that feature will be removed from 

the database. 

 

3.3 Regression Analysis Model Development 

3.3.1 Exploratory Spatial Data Analysis (ESDA) 

Following the data mapping process, the next step in data exploration 

involves utilizing Exploratory Spatial Data Analysis (ESDA) tools. These tools provide a 
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quantitative approach to examining the data beyond mere mapping, enabling a more 

comprehensive understanding of the investigated phenomena. This deeper  

understanding aids in making informed decisions regarding the construction of the 

interpolation model. To assist in achieving these objectives, the ESDA tools provide 

various perspectives of the data. These perspectives can be manipulated and 

examined, creating an interconnected relationship between them and the data 

displayed in ArcMap through brushing and linking. 

1) Histograms 

The Histogram tool offers a way to examine data in a univariate 

manner. By displaying the frequency distribution and providing summary statistics, it 

allows you to gain insights into the dataset of interest. 

The frequency distribution, depicted as a bar graph, illustrates 

the occurrence of values within specific intervals or classes. Determination of the 

number of classes with equal width to be utilized in the histogram is flexible. The 

height of each bar represents the relative proportion of data falling within each class. 

In some cases, it may be necessary for the data to follow a 

normal distribution for certain analytical methods. If the data exhibits skewness, 

indicating an asymmetric distribution, it might be beneficial to apply data 

transformation techniques to achieve a normal distribution.  

2) Transform Field Tool 

The transformation process modifies the continuous values in 

one or multiple fields by employing mathematical functions on each value, thereby 

altering the distribution's shape. The available transformation methods encompass log, 

square root, Box-Cox, multiplicative inverse, square, exponential, and inverse Box-Cox. 

Applying a transformation can effectively mitigate skewness 

within the distribution and yield a normal (Gaussian) distribution, as depicted in Figure 

3.18. 
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Figure 3.18 Shows original values are transformed to be closer to a normal distribution. 

The Box-Cox transformation techniques utilize a specific power 

function, as expressed in equation 3.1, to achieve the normalization of the data within 

the chosen fields: 

𝑥$ = -
(𝑥 + 𝜆%)&! − 1

𝜆'
, 	𝜆' ≠ 0

ln(𝑥 + 𝜆%), 	𝜆' = 0
 (3.1)  

In equation 3.1, the transformed value (x') is obtained from the 

original value (x) by applying the power (exponent) parameter (λ1) and the shift 

parameter (λ2) 

The Box-Cox transformation is applicable only to positive values. 

In case the selected fields contain negative or zero values, a default shift is applied to 

make the values positive before the transformation. The default shift value is 

determined by the maximum absolute negative value in the field, ensuring 

nonnegative values. Additionally, a small infinitesimal value (~10-6) is added to make 

the transformed values nonzero. The Power parameter allows specifying the desired 

power value for the transformation, which can range from -5 to 5. If no specific value 
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is provided, the geoprocessing messages will display the best approximation of a 

normal distribution curve. 

3.3.2 Fit an OLS Model and Perform Diagnostics 

1) Calculate Distance Band from Neighbor Count Tool 

The Calculate Distance Band from Neighbor Count Tool, which 

is one of the Spatial Statistics Tools, can be used to determine the minimum, 

maximum, and average distances required to ensure that each feature in a set has at 

least N neighbors. The input parameter N specifies the number of neighbors to be 

considered. The maximum distance output value from this tool indicates the distance 

that needs to be traveled away from each feature to ensure that every feature has at 

least N neighbors. On the other hand, the minimum distance output value is the 

distance from each feature to ensure that at least one feature has N neighbors. The 

average distance output value represents the average distance from each feature to 

find its N nearest neighbors. 

This tool is useful for determining a neighborhood distance band 

or threshold distance value. The maximum distance output value obtained from this 

tool can be used as the distance band or threshold distance parameter value for other 

spatial analysis tools. This way, the distance band parameter can be set appropriately 

to ensure that the analysis is carried out at the appropriate spatial scale and that the 

results are reliable. 

2) Incremental Spatial Autocorrelation 

Spatial autocorrelation refers to the degree to which the values 

of a variable are correlated in space, that is, the extent to which nearby locations tend 

to have similar values of the variable being studied. This is an important concept in 

spatial analysis because it can provide insights into the underlying spatial processes 

that are responsible for the distribution of the variable. One tool that is commonly 

used to measure spatial autocorrelation is the Incremental Spatial Autocorrelation 

Tool. 
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This tool, which is part of the Spatial Statistics Tools in ArcGIS 

software, allows users to measure spatial autocorrelation for a series of distances. The 

tool also generates a line graph of those distances and their corresponding z-scores. 

Z-scores are a measure of the intensity of spatial clustering, with statistically significant 

peak z-scores indicating distances where spatial processes promoting clustering are 

most pronounced. These peak distances can be used as appropriate values for tools 

with a Distance Band or Distance Radius parameter. 

The Incremental Spatial Autocorrelation Tool is particularly 

useful because it allows for the identification of specific distances at which spatial 

clustering is strongest. This information can be used to inform subsequent analyses 

and to gain a better understanding of the underlying spatial processes that are driving 

the observed patterns in the data. By using this tool, researchers can gain valuable 

insights into the spatial distribution of variables and can develop more accurate 

models to explain and predict spatial phenomena. 

3) Generate Spatial Weights Matrix 

In spatial analysis, a spatial weights matrix plays a crucial role in 

representing the spatial structure of data by quantifying the spatial relationships 

between the features in the dataset. The selection of an appropriate conceptualization 

for the spatial weights matrix is essential, as it reflects how the features interact with 

each other. The Generate Spatial Weights Matrix tool is used to create an SWM file 

that contains spatial relationship values using sparse matrix techniques, which reduces 

disk space, computer memory, and the number of calculations required. These values 

are utilized in various spatial statistics tools such as Spatial Autocorrelation, Hot Spot 

Analysis, and Cluster and Outlier Analysis. While the SWM file can store spatial 

relationships for all features in the dataset, in practice, it is advisable to relate each 

feature to only a few others. This is achieved through the sparse methodology, which 

stores only nonzero relationships, resulting in a smaller file size and faster calculations. 
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4) Exploratory Regression 

The Exploratory Regression tool in the ArcGIS software is a useful 

technique to determine the best-fit model. This toolbox searches for the optimal 

model by evaluating all possible combinations of the explanatory variables based on 

various model performance indicators, such as R2, VIF, AIC, and JB p-values. The best-

fit model identified by the Exploratory Regression tool is then validated using the 

stepwise variable selection method, which involves assessing changes in model 

diagnostics after adding or deleting variables. This method ensures that the selected 

model is robust and provides reliable results. 

5) Ordinary Least Squares Regression 

Regression analysis is a fundamental statistical technique used 

extensively in the social sciences to identify and measure relationships between two 

or more feature attributes. This method is commonly employed to better understand 

the dynamics of a particular location, predict future trends or events, and examine the 

causes of why things occur where they do. Ordinary Least Squares (OLS) is the most 

well-known and widely used regression technique, serving as a foundation for all 

spatial regression analyses. OLS is used to develop a global model that captures the 

overall behavior of the variable or process under investigation. The approach involves 

fitting a single regression equation to the entire dataset, thereby creating a unified 

representation of the process. This method provides a valuable starting point for 

spatial analysts looking to model complex phenomena and develop a deeper 

understanding of the underlying relationships. 

3.3.3 Geographically Weighted Regression 

Geographically Weighted Regression (GWR) is a spatial regression 

technique used in various disciplines, including geography. It aims to evaluate a local 

model of the variable or process of interest by fitting a regression equation to every 

feature in the dataset. This approach enables us to consider the spatial heterogeneity 

of the relationships between variables across a study area. In the construction of 
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distinct equations, Geographically Weighted Regression (GWR) takes into account both 

the dependent and explanatory variables of the features located within the vicinity of 

each target feature. The size and range of each analyzed neighborhood are determined 

by the parameters of Neighborhood Type and Neighborhood Selection Method. It is 

crucial to select these parameters thoughtfully to ensure the credibility and reliability 

of the analysis. It should be emphasized that the GWR technique is well-suited for 

datasets with a considerable number of features, typically several hundred. Therefore, 

it is not an appropriate method for small datasets. Additionally, GWR does not work 

with multipoint data, which should be preprocessed into point data before analysis. 

Overall, GWR is a powerful tool for analyzing spatially varying relationships, allowing 

researchers to gain a more comprehensive understanding of the data and make 

informed decisions. 

3.3.4 Compare Model 

The alignment of sample and regression points enables the examination 

of residuals and predictions of the dependent variables, facilitating the evaluation of 

the model's goodness of fit. For traditional global models, the R2 or adjusted R2 value 

is commonly used as a measure of goodness of fit. When comparing different models, 

the adjusted R2 is favored due to its consideration of the number of variables or 

parameters incorporated in the model. Models with more variables generally have 

higher R2 values than those with fewer variables. Nevertheless, in the case of GWR, 

evaluating the goodness of fit becomes more intricate, necessitating the inclusion of 

the effective number of parameters in the model during the calculation of the 

goodness-of-fit measure. 

The AICc, a statistical metric adjusted for small sample sizes, serves to 

compare the discrepancy between a fitted model and the underlying 'true' model. 

Termed the Kullback-Leibler information distance, this measure is not absolute in 

nature. As per a widely accepted guideline, if the disparity in AICc values between two 

distinct models is below 3 (or potentially 4 for more cautious analysts), they are 
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deemed equivalent. While the absolute values of AICc in GWR output may appear 

unexpectedly high or low, the differences in AICc values remain significant. 

The AICc calculation involves logarithmic terms and can be shown that 

the disparity between AICc values for two models with equal degrees of freedom 

corresponds to the ratio of their likelihoods. Nevertheless, it is essential to emphasize 

that the AICc should not be considered as a likelihood ratio test. The AICc is commonly 

used to compare models with different sets of independent variables, including the 

global OLS model and a local GWR model. The software automatically calculates the 

AICc and determines the "optimal" bandwidth value, which is then used to estimate 

the model parameters. However, the final choice of the bandwidth value is left to the 

analyst's discretion, as there may be valid conceptual reasons to deviate from the AICc 

recommendation based on the bandwidth plot. Overall, the AICc is a valuable tool for 

evaluating model fit, enabling more precise and accurate model selection. 

 



 

 

CHAPTER IV 

RESULTS AND DISCUSSION 
 

This chapter consists of 1) the comparative results of the OLS regression model 

and GWR model for salinity distribution in the Non Thai, Non Sung, Non Daeng, Khong, 

and Kham Sakae Saeng districts of Nakhon Ratchasima province, 2) investigate the 

spatial relationships between groundwater salinity and influencing factors. 

 

4.1 Results of Global Model: Ordinary Least Squares (OLS) Regression 

Analysis 

Based on the OLS model regression coefficient estimates, along with the 

Standard Error, t-Statistic, Probability, Robust_SE, Robust_t, Robust_Pr, and VIF for each 

estimated coefficient, the signs on the coefficient estimates are as expected and 

statistically significant. The t-Statistics has tested the hypothesis that the value of an 

individual coefficient estimate is not significantly different from zero, and the 

coefficient estimates are sufficiently large to assume that they are not zero in the 

population from which all sample data were drawn. Additionally, the VIF values are 

all reasonably small (less than 7.5), indicating no strong evidence of variable 

redundancy. 

However, this OLS model was fitted with spatial data, so it is likely that there 

will be some structure in the residuals that cannot be accounted for by the model. 

This may contribute to its indifferent performance. The Jarque-Bera statistic suggests 

that the residuals are not normally distributed (Table 4.2). As a result, the OLS tool 

warns us to check whether the residuals are spatially autocorrelated. 
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In summary, the OLS model regression coefficient estimates, and regression 

diagnostics were specified as outputs and can be examined in Table 4.1 and Table 4.2, 

respectively.  

The model diagnostics for this analysis can be found in Table 4.2, Table 4.5, 

and APPENDIX D. There are several measures of goodness-of-fit, including R2 and 

adjusted R2. The R2 assesses how much of the dependent variable variation can be 

attributed to the model variation. Generally, higher values indicate better predictive 

performance, but this is dependent on the number of variables in the model. The 

adjusted R2 is preferred because it adjusts for more variables. This suggests that some 

variables may have been removed or that the model needs to be adjusted. For 

comparing different models, AICc can be used as a measure of goodness-of-fit. The 

AICc value was calculated as -5,461.8258. Generally, it is preferable to have a smaller 

AICc, but differences of less than 3 or 4 are considered equivalent in terms of 

explanatory power.  

The information provided pertains to two questions: (a) identifying locations 

with unusually high or low residuals and (b) determining whether the residuals show 

any spatial autocorrelation. According to Figure 4.1, standardized residuals are 

displayed from the global model. As shown on the map, large positive residuals 

(StdResid > 2.5 Std. Dev.) are found in the northeast of the Non Sung district, which 

contains brackish water in terms of salinity, chloride, and total dissolved solids. 

According to the current model, this area has underestimated salinity levels because 

the high positive residuals indicate over-prediction and require further investigation to 

determine the possible causes. 
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Table 4.1 Ordinary least squares (OLS) regression coefficient estimate results. 

Variable Coefficient Std. Error t-Statistic Probability Robust_SE Robust_t Robust_Pr VIF 

Intercept -35.605687 0.540819 -65.836591 0.000000* 0.527825 -67.457326 0.000000* - 

LD 0.355430 0.026170 13.581471 0.000000* 0.023625 15.044411 0.000000* 1.142010 

NDVI -0.107198 0.028275 -3.791310 0.000165* 0.028825 -3.718949 0.000217* 1.300689 

RF 0.005731 0.000432 13.277345 0.000000* 0.000424 13.517349 0.000000* 3.237558 

GP -0.012500 0.003519 -3.552338 0.000404* 0.003888 -3.214989 0.001337* 1.107265 

CC1 0.915191 0.007244 126.331509 0.000000* 0.009925 92.207515 0.000000* 2.714861 

TDS1 15.420554 0.257127 59.972550 0.000000* 0.255014 60.469405 0.000000* 5.729843 

SL1 -0.009607 0.003184 -3.017608 0.002585* 0.003355 -2.863518 0.004230* 1.189904 

DD1 0.005698 0.002480 2.297442 0.021660* 0.002160 2.637592 0.008396* 1.247319 

LF1 -0.006554 0.001616 -4.054770 0.000059* 0.001561 -4.198215 0.000033* 1.192347 

STC1 0.000255 0.000064 4.011279 0.000070* 0.000064 4.012223 0.000070* 1.122606 

LULC1 -0.002333 0.001162 -2.008506 0.044688* 0.000925 -2.522358 0.011708* 1.048693 

GEOL1 0.000057 0.000021 2.663031 0.007790* 0.000022 2.653578 0.008010* 1.561706 
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Table 4.2 OLS model diagnostics. 

Diagnostics 

Name 

Diagnostics 

Value 
Definition 

AIC -5,461.994030 Akaike's Information Criterion (AIC) serves as a comparative measure 

of model performance, where a lower AIC value indicates a superior 

model. 

AICc -5,461.825896 Corrected Akaike's Information Criterion: second-order correction for 

small sample sizes. 

R2 0.975724 R-Squared, also known as the Coefficient of Determination, 

represents the percentage of variability in the dependent variable 

that can be accounted for by the model. 

Adj. R2 0.975608 Adjusted R-Squared is a modified version of R-Squared that takes into 

account the complexity of the model, specifically the number of 

variables, in relation to the data. 

F-Stat 8,373.634298 The Joint F-Statistic Value is employed to evaluate the overall 

significance of the model. 

F-Prob 0.000000* Joint F-Statistic Probability (p-value): The probability that none of the 

explanatory variables influence the dependent variable. 

Wald 117,383.495120 The Wald Statistic is employed to evaluate the overall significance 

and robustness of the model. 

Wald-Prob 0.000000* The Wald Statistic Probability (p-value) indicates the probability, 

based on robust standard errors, that none of the independent 

variables have an effect on the dependent variable. 

K(BP) 156.086567 Koenker's studentized Breusch-Pagan Statistic is utilized to examine 

the accuracy of standard error estimates when there is 

heteroskedasticity, indicating non-constant variance. 

K(BP)-Prob 0.000000* The Koenker (BP) Statistic Probability (p-value) measures the 

likelihood that heteroskedasticity, which indicates non-constant 

variance, has not affected the reliability of standard errors. 

JB 11,143.947084 The Jarque-Bera Statistic is employed to ascertain if the residuals 

depart from a normal distribution. 

JB-Prob 0.000000* The Jarque-Bera Probability (p-value) indicates the likelihood that the 

residuals follow a normal distribution. 

Sigma2 0.006622 Sigma-Squared refers to the Ordinary Least Squares (OLS) estimate of 

the variance of the residual term (error term). 
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Figure 4.1 Standardized residual of the global model (OLS). 

The distribution of the residuals was examined using global spatial 

autocorrelation, and Moran's I statistic was used for this purpose (Figure 4.2). According 

to the results, the OLS model had a dispersed pattern, and residuals were highly 

autocorrelated, indicating possible local variations. To confirm this assumption, 

however, a geographically weighted regression analysis was conducted. According to 

Moran's I value for the OLS model was -0.002194 with a p-value of 0.000000, which 

was statistically significant, implying that the residuals were not randomly distributed. 

The study's results have identified the best model according to Equation 4.1, 

which describes the spatial relationships between groundwater salinity and the 

influencing factors in the saline soil area of Nakhon Ratchasima province. 

Y = - 35.605686 + 0.355430X1 - 0.107198X2 + 0.005731X3 - 0.012500X4 + 

0.915191X5 + 15.420554X6 - 0.009607X7 + 0.005698X8 - 0.006554X9 + 0.000255X10 - 

0.002333X11 + 0.000057X12 

(4.1)  
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Where Y is Salinity Content (SC1), X1 is Lineament Density (LD), X2 is Normalized 

Difference Vegetation Index (NDVI), X3 is Annual Rainfall (RF), X4 is Groundwater 

Potential (GP), X5 is Chloride Content (CC1), X6 is Total solid Content (TDS1), X7 is Slope 

(Sl1), X8 is Drainage Density (DD1), X9 is Landform (Lf1), X10 is Soil Texture Class (STC1), 

X11 is Land Use/ Land Cover (LULC1), and X12 is Geology (Geol1). 

 

Figure 4.2 Summary of global spatial autocorrelation (Moran’s I). 
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4.2 Results of Local Model: Geographically Weighted Regression (GWR) 

Analysis 

The summary statistics of the local model are shown in Table 4.3 and the 

values of standardized residuals from the local model (GWR) are shown in Figure 4.3. 

A positive residual (StdResid > 2.5 Standard Deviation) is mostly found in the northwest 

of the Khong district. Moreover, a positive residual can be found scattered throughout 

the Non Sung district, Kham Sakae Sang district, Non Thai district, and Non Daeng district 

in descending order respectively. The presence of positive residuals for a specific area 

suggests that there are significant discrepancies between the predicted values and the 

actual observed values of salinity content in that particular location. These positive 

residuals indicate that the model may be underestimating the salinity content in that 

area. 

Table 4.3 Summary statistics of the local model. 
Variable Mean Std. Deviation Minimum Maximum 

Intercept -23.170691 15.083501 -59.222814 44.050705 

LD 0.137691 1.002525 -6.487336 1.948503 

NDVI -0.002584 0.109274 -0.332169 0.348690 

RF 0.004080 0.007185 -0.016654 0.035667 

GP -0.013286 0.031139 -0.202453 0.097654 

CC1 1.094047 0.393069 0.069137 1.893547 

TDS1 8.697749 8.789318 -27.415645 29.465958 

Sl1 -0.003182 0.008078 -0.023830 0.023884 

DD1 0.003086 0.012397 -0.028538 0.039837 

Lf1 -0.001870 0.003895 -0.013114 0.009736 

STC1 0.000076 0.000154 -0.000272 0.000663 

LULC1 -0.000165 0.005207 -0.018065 0.012576 

Geol1 0.000038 0.000125 -0.000311 0.000341 
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Figure 4.3 Standardized residual of the local model (GWR). 

There could be several reasons for the occurrence of such positive residuals. 

Firstly, it is possible that there are influential variables or factors in that specific area 

that are not adequately captured or represented by the independent variables 

included in the model. These unaccounted factors may have a substantial impact on 

salinity content, leading to the observed discrepancies. Secondly, it is important to 

consider the limitations of the model itself. The GWR model assumes that the 

relationship between the independent variables and the dependent variable is 

spatially varying. However, if the model fails to accurately capture the spatial variations 

in the relationship, it may result in large positive residuals in certain areas. Furthermore, 

it is crucial to thoroughly examine the data quality and potential outliers in the dataset. 

Anomalies or errors in the collected data could contribute to the presence of large 

positive residuals. It is essential to verify the accuracy and reliability of the data to 

ensure that it is representative of the true salinity content in the study area. 
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To address this issue, further investigation and analysis are required. It may be 

necessary to consider additional variables or refine the existing ones to better capture 

the spatial variability of salinity content. Additionally, examining potential outliers and 

refining the data collection process can help improve the accuracy and reliability of 

the model. 

Overall, the identification of positive residuals in the GWR model highlights the 

need for careful interpretation and potential refinement of the model to enhance its 

predictive performance and better understand the spatial patterns of salinity content 

in the specific area. 

The model performance map or R2 of the local model as shown in Figure 4.4 

is mostly found in the northeast of the study area, especially the Non Daeng district, 

Non Daeng district Non Sung district, Khong district, Kham Sakae Sang district, and Non 

Thai district in descending order respectively. A high Local R2 indicates that the spatial 

regression model captures a substantial portion of the spatial variation in the 

dependent variable (salinity content) within the study area. This suggests that the 

independent variables included in the model explain a significant proportion of the 

variability in salinity content at the local level. A high Local R2 implies a good fit of the 

model to the data, indicating that it can effectively predict salinity content in specific 

regions of interest. 

On the other hand, a low Local R2 suggests that the spatial regression model 

explains only a limited amount of the spatial variation in the dependent variable. This 

could be due to various reasons. It is possible that the independent variables included 

in the model are not strong predictors of salinity content at the local level, or there 

may be influential factors that are not captured by the model. Additionally, if there is 

a high degree of spatial heterogeneity or complex spatial patterns in the relationship 

between the independent variables and salinity content, it can result in a lower Local 

R2 as shown in Figure 4.4 on the northwest of the Non Thai district showing medium 

and low Local R2. 
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Figure 4.4 Local R2 of the local model (GWR). 

It is important to interpret the Local R2 in conjunction with other diagnostic 

measures and the specific context of the study area. While a high Local R2 indicates a 

strong relationship between the independent variables and salinity content in certain 

regions, it does not necessarily imply a causal relationship or generalizability to other 

areas. Local R2 values should be interpreted and compared within the spatial context 

of the study to gain a comprehensive understanding of the model's performance at 

the local level. 

Local spatial autocorrelation was utilized to assess the random distribution of 

the residuals, and Moran's I statistic was computed, as shown in Figure 4.5 and 

APPENDIX D. The findings demonstrate that the Moran's I value of the GWR model is 

0.000299, and the p-value for testing the hypothesis that this value differs significantly 

from zero is 0.002104 (with a z-score of 3.075130). The pattern observed was 

"Clustered" suggesting the presence of significant local variations in the residuals. The 
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residuals from the GWR local regression model exhibited statistically significant 

autocorrelation. 

 

Figure 4.5 Summary of local spatial autocorrelation (Moran’s I). 
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4.3 Comparison of OLS and GWR Models 

According to Phoemphon and Terakulsatit (2023), the research aimed to assess 

groundwater potential zones in saline soil areas using remote sensing, GIS, and AHP 

techniques. Multiple influencing factors, including slope, rainfall, soil texture, and land 

use, were considered in the analysis. The weights of these factors were determined 

using the AHP technique, resulting in the classification of zones into five categories. 

Validation of the results using salinity data from groundwater wells showed an R2 value 

of 0.7131. The findings revealed that the majority of the study area exhibited moderate 

to poor groundwater potential. 

After comparing the fit of the global model (OLS) and local model (GWR) as 

presented in Table 4.5, it was observed that the locally adjusted R2 (0.99) performed 

better than the global adjusted R2 (0.97), indicating an improvement in model 

performance. The preferred measure of model fit, AICc, revealed that the local model 

(-9,801.87) had a significantly better fit than the global model (-5,461.82), with a 

difference of 4,340.05. These results were further supported by the statistical 

significance of Table 4.4 (F (2249, 251) = 0.0178, p < 0.001). Consequently, an 

examination of the impact of local coefficient estimates was necessary. 

A model suitability test was performed using the F-Statistic, and the results are 

presented in the table provided. 

Table 4.4 Geographically weighted regression (GWR) ANOVA results. 

Source SS DF MS F 

Global Residuals 16.555 2,500.000   

GWR Improvement 14.032 251.076 0.056  

GWR Residuals 2.523 2,248.924 0.001 49.813 

 

OLS (Ordinary Least Squares) is a widely used regression technique that offers 

several advantages. One of its primary strengths is its simplicity, making it easy to 

understand and implement. As a baseline model, it provides a straightforward 
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approach to analyzing statistical relationships. OLS is computationally efficient and 

suitable for large datasets with a limited number of predictors, enabling efficient 

estimation of model parameters. Additionally, OLS allows for the interpretation of 

coefficient estimates, providing insights into the individual effects of independent 

variables on the dependent variable. This interpretability facilitates the comparison of 

predictor importance through standardized coefficients. Furthermore, OLS provides 

statistical inference measures such as p-values, confidence intervals, and hypothesis 

tests, supporting reliable statistical conclusions. 

However, OLS also has certain limitations that need to be acknowledged. One 

significant drawback is its assumption of spatial homogeneity. OLS assumes that the 

relationship between independent variables and the dependent variable is constant 

across space, disregarding potential spatial variations. Consequently, when spatial 

heterogeneity exists, OLS may yield biased estimates. Another challenge is its 

sensitivity to outliers and influential observations, which can disproportionately 

influence the regression results, potentially distorting the estimated coefficients and 

overall model performance. 

In contrast, GWR (Geographically Weighted Regression) addresses some of the 

limitations of OLS and offers distinctive advantages. GWR explicitly accounts for spatial 

variation in the relationship between independent variables and the dependent 

variable. It allows for different relationships to exist in different areas, capturing local 

nuances and spatial heterogeneity. This localized analysis is a major strength of GWR, 

providing insights into how the effects of predictors vary across the study area. 

Moreover, GWR can outperform OLS in terms of model performance when there are 

significant spatial variations in the relationships between variables. By capturing local 

patterns, GWR enhances predictive accuracy in areas with pronounced spatial non-

stationarity. 

However, GWR also has its own set of limitations. One notable drawback is its 

increased complexity compared to OLS. GWR requires additional computational 

resources and statistical techniques as it estimates regression parameters for each local 
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area. Consequently, GWR may be computationally demanding, particularly for large 

datasets. Another challenge lies in the interpretation of GWR results. Due to the 

localized nature of the model, interpreting coefficients and their significance becomes 

more challenging. The coefficients may vary across different locations, making it 

difficult to generalize the findings to the entire study area. Additionally, GWR has the 

potential for overfitting, particularly in areas with sparse data or extreme local 

variations, which may lead to less reliable predictions. 

Considering these advantages and disadvantages, it is recommended to use 

GWR model. Since the objective is to investigate the relationship between groundwater 

salinity and independent variables in the soil salinity area of Nakhon Ratchasima, it is 

important to account for potential spatial variations. GWR's ability to capture local 

patterns and spatial heterogeneity makes it a suitable choice for this study. By using 

GWR, Insights into how the effects of predictors vary across different locations can 

enhance the understanding of salinity content patterns in the specific study area. 

However, it is crucial to carefully interpret the GWR results, considering the localized 

nature of the model and the challenges associated with coefficient interpretation. 

Table 4.5 Comparison of the global model (OLS) and local model (GWR). 

Diagnostic Global Model (OLS) Local Model (GWR) 

Residual sum of squares 16.555494 2.523233 

ML based sigma estimate 0.081166 0.031687 

Unbiased sigma estimate 0.081377 0.033496 

-2 log-likelihood -5,489.994000 -10.217.392000 

AICc -5,461.825900 -9,801.877000 

BIC/MDL -5,380.384700 -8,715.614900 

CV 0.006660 0.001267 

R2 0.975724 0.996300 

Adjusted R2 0.975598 0.995865 
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4.4 Discussion 

The primary objective of this study was to examine the relationship between 

various influent factors and salinity content (SC) in the saline soil area of Nakhon 

Ratchasima province. The initial hypothesis proposed that higher levels of LD, RF, CC1, 

TDS1, DD1, STC1, and Geol1 would lead to an increase in SC. In contrast, lower levels 

of NDVI, GP, Sl1, Lf1, and LULC1 would decrease SC. Additionally, considering the 

expected spatial non-uniformity of the relationship, the implementation of a spatial 

regression model, specifically the Geographically Weighted Regression (GWR), was 

anticipated to provide superior predictions of SC compared to the non-spatial Ordinary 

Least Squares (OLS) model. 

The obtained results from the saline soil area of the study area provide 

substantial support for the proposed hypothesis, both in terms of the impact of each 

individual variable and the overall performance of the spatial GWR model. There is a 

significant negative correlation between SC and NDVI, GP, Sl1, Lf1, and LULC1. 

Conversely, a positive association is observed between SC and LD, RF, CC1, TDS1, DD1, 

STC1, and Geol1. Based on these results, higher levels of these influencing factors are 

associated with an increase in salinity content, while lower levels are associated with 

a decrease. 

Furthermore, the comparison between the local (GWR) model and the global 

(OLS) model reveals the superiority of the former in capturing the spatial variations 

within the data. The utilization of a global regression model, such as OLS, is valuable 

for assessing statistically significant relationships. However, the incorporation of a local 

regression model, like GWR, allows for the examination of regional variations and the 

identification of spatial patterns that may remain concealed by the global model. This 

finding aligns with the suggestions by Fotheringham et al. (2002) and highlights the 

enhanced model performance of the GWR model in the analysis of spatial data.  

In the saline soil area of Nakhon Ratchasima province, where the model 

performance reaches its highest level, the results indicate that salinity content tends 

to decrease as the levels of NDVI, GP, Sl1, Lf1, and LULC1 increase. This suggests that 
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these influencing factors play a vital role in mitigating salinity content in the study area. 

Understanding and incorporating these factors into future land and water resource 

management strategies can contribute to effective measures to address salinity-related 

challenges. 

The outcomes of this study have important implications for salinity management 

and highlight the significance of considering spatial variations when analyzing and 

modeling salinity content. By a combination of global and local regression models, 

researchers and policymakers can expand their understanding of the relationships 

between influencing factors and salinity content. This will result in more targeted and 

efficient interventions. 

In summary, the findings of this study provide substantial evidence supporting 

the hypothesis regarding the impact of various influencing factors on salinity content 

in the saline soil area of Nakhon Ratchasima province. The results demonstrate a 

negative association of NDVI, GP, Sl1, Lf1, and LULC1 with salinity content. In contrast 

LD, RF, CC1, TDS1, DD1, STC1, and Geol1 exhibit a positive association. Further, the 

superior performance of the local (GWR) model compared to the global (OLS) model 

emphasizes the importance of incorporating spatial regression techniques to analyze 

salinity data. In addition to contributing to the current understanding of salinity 

management, these findings provide valuable insights that can be used to guide future 

research and decision-making in similar regions.  

 



 

 

CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 
 

5.1 Conclusions 

This study used the global model (OLS) and local model (GWR) to investigate 

the spatial relationship between groundwater salinity and the independent variable in 

the soil salinity area of Nakhon Ratchasima province. It was found that the GWR model 

was more accurate than the OLS model based on an adjusted R2 of 0.995865 and an 

AICc of -9,801.877000.  

Based on the GWR model, the results showed that the salinity content is 

negatively associated with NDVI, GP, Sl1, Lf1, and LULC1, but positively associated with 

LD, RF, CC1, TDS1, DD1, STC1, and Geol1, and that the spatial regression model of GWR 

generated the highest model performance when predicting salinity content. The 

standardized residuals reveal a clear spatial pattern, with the majority of high values 

concentrated in the northwest of the Khong district. These areas exhibit a significant 

positive deviation from the expected values based on the regression model. In 

contrast, positive residuals are scattered throughout the Non Sung district, Kham Sakae 

Sang district, Non Thai district, and Non Daeng district, with decreasing occurrence from 

the highest to the lowest. These scattered positive residuals indicate localized areas 

where the observed salinity content differs from the predicted values. The 

identification of these residual patterns can provide valuable insights into the spatial 

variability of salinity content and can guide further investigation into the underlying 

factors influencing salinity in these specific areas. In addition, the highest performance 

of the model is mostly found in the northeast of the study area, especially the Non 

Daeng district, Non Sung district, Khong district, Kham Sakae Sang district, and Non Thai 

district in descending order respectively. Furthermore, it highlights the need for similar 
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studies in multiple areas, to determine and conclude major variables impacting salinity 

content. 

This study represents one of the studies to use chemical data along with spatial 

regression analysis to explore how NDVI, GP, Sl1, Lf1, LULC1, LD, RF, CC1, TDS1, DD1, 

STC1, and Geol1 affect salinity content (SC), a beneficial method in multiple ways. The 

study demonstrated the benefits of detailed chemical data, both with respect to 

model performance and by allowing spatial analysis of the data. Moreover, this study 

emphasizes the importance of using the global non-spatial analysis (OLS) model to 

determine statistically significant relationships and examining regional variations in the 

relationship between salinity content and independent variables using the local spatial 

analysis (GWR) model; revealing spatial patterns not found in global models. In 

addition, both OLS and GWR regression techniques have their respective advantages 

and disadvantages. OLS offers simplicity, computational efficiency, interpretability, and 

statistical inference measures. On the other hand, GWR accounts for spatial variation, 

captures local nuances, and can outperform OLS in the presence of significant spatial 

variations. However, GWR is more complex, computationally demanding, and 

challenging in coefficient interpretation, with the potential for overfitting. 

Consequently, this study contributes to the knowledge on salinity content and the use 

of the local spatial analyses (GWR) model in groundwater assessment studies. This 

knowledge can be applied to urban planning for the management and use of 

groundwater resources. 

 

5.2 Recommendations for further research 

In future studies, additional variables such as distance to the water body and 

remote sensing data can be considered to enhance the predictive performance of 

salinity content in Nakhon Ratchasima province. By including these factors, obtaining a 

more comprehensive understanding of the spatial relationship between groundwater 

salinity and relevant environmental factors would be possible. 
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Moreover, it is recommended that alternative statistical models be used in 

future research to test the prediction model's accuracy. An example of such a model 

would be a logistic regression model that would establish a functional relationship 

between an independent and dependent variable. Alternatively, other machine 

learning algorithms may improve prediction accuracy. 

These suggestions can be incorporated into future research endeavors to 

provide a more robust and comprehensive analysis. In addition, it should be 

investigated in the field to check the collected data according to these models. It will 

be possible to better understand the factors influencing salinity content in the study 

area as a result of this study. 
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Table A1 Chemical properties of groundwater samples in May 2019. 
No Station Location district Sub-district UTM E UTM N TDS SC CC 

1 5705D031 Non Daeng Municipal School Non Daeng Non Daeng 238141 1706668 7,614.00 22.7 51,046.54 

2 5405B007 Phu Wittaya School Non Daeng Non Daeng 238343 1705364 958.00 1.00 1,648.38 

3 NR270 Ban Nong Ya Khao Non Daeng Samphaniang 238705 1711383 1,010.00 1.07 2,202.90 

4 MG799 Ban Muang Kao School Non Thai Banlang 170377 1689973 1,074.00 1.08 1002.00 

5 - Ban Muang Kao 1 Non Thai Banlang 170363 1690249 902.00 0.87 872.00 

6 - Ban Muang Kao 2 Non Thai Banlang 170357 1688964 487.00 0.89 894.00 

7 - Ban Muang Kao 3 Non Thai Banlang 170013 1689327 812.00 0.84 972.32 

8 SC409 Ban Muang Kao Temple Non Thai Banlang 170683 1689675 483.00 0.48 885.43 

9 - Ban Sawai Non Thai Sai O 181412 1691223 952.00 0.97 1161.04 

10 PW13862 Ban Nong Ta Maen Non Thai Thanon Pho 192879 1693814 607.00 0.71 899.21 

11 MG1571 Nong Doom Health Promoting Hospital Non Thai Makha 187792 1689952 705.00 0.58 556.04 

12 - Ban Dong Plong Non Sung Lum Khao 215050 1687249 14,400.00 7.54 7,540.00 

13 - Ban Krok Kham Non Sung Lum Khao 209452 1684940 3,074.00 3.76 3,548.00 

14 - Ban Talad Kae Non Sung Than Prasat 222250 1687690 1,064.00 1.03 964.00 

15 - Ban Bu Non Sung Dan Khla 203592 1674430 1,045.00 0.51 138.00 

16 D0516 Ban Non Makok Non Sung Tanot 206821 1671468 6,720.00 2.70 3,912.00 

17 - Ban Salao Non Sung Phon Sungkhram 212794 1698603 995.00 0.96 203.00 

18 MY610 Ban Non-Thong Khong Non Teng 206847 1708043 467.00 0.45 103.31 

19 MY853 Ban Non-Thong Temple Khong Non Teng 206466 1707680 879.00 0.57 358.19 

20 PW16 Ban Nong Bua Gra Jai School Khong Non Teng 207618 1709139 838.00 0.83 941.93 
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Table A1 Chemical properties of groundwater samples in May 2019 (Continued).  
No Station Location district Sub-district UTM E UTM N TDS SC CC 

21 5805D004 Ban Don Klang School Khong Nong Manao 207201 1716400 247.00 0.25 358.54 

22 5805A004 Ban Taluk Nam Khwang Khong Nong Manao 206169 1716165 1,746.00 1.98 2,958.42 

23 MG679 Ban Nong Sakae School Khong Nong Bua 195999 1717793 867.00 0.86 948.01 

24 AFD815 Ban Tha Yai 1 Khong Nong Bua 197134 1717526 504.00 0.55 293.12 

25 MY619 Ban Tha Yai 2 Khong Nong Bua 197358 1717630 799.00 0.77 442.81 

26 5505G052 Ban Ta Kim Khong Nong Bua 192508 1717165 2,006.00 3.30 3,942.48 

27 25111 Ban Ba Dao Rueang Khong Nong Bua 197316 1714455 2,172.00 3.62 4,091.32 

28 5405B019 Ban Don Du Khong Mueang Khong 214581 1714842 1,031.00 1.01 1,002.41 

29 MG1014 Ban Kok Pet 1 Khong Mueang Khong 214630 1710905 2,273.00 3.01 4,101.25 

30 MG832 Ban Kok Pet 2 Khong Mueang Khong 214775 1711005 921.00 0.91 1,049.26 

31 MY327 Ban Kok Pet Temple Khong Mueang Khong 215532 1711669 997.00 0.98 1,101.94 

32 PW20092 Ban Mai Don Tua Pap Khong Ban Prang 184962 1715211 1,784.00 2.05 2168.53 

33 MG1017 Ban Don Tua Khong Ban Prang 185261 1715430 869.00 0.85 741.39 

34 AFD806 Ban Huay Luek Khong Ban Prang 184921 1712189 1,551.00 0.58 673.84 

35 5905H052 Ban Thap Ma Kham School Khong Ban Prang 184934 1710462 3,404.00 3.12 6,117.99 

36 5805B035 Ban Non Mueang School Kham Sakae Saeng Non Mueang 191889 1706585 835.00 0.53 1,095.37 

37 SC1145 Ban Taluk Hin Kham Sakae Saeng Non Mueang 188468 1705543 517.00 0.55 414.000 

38 MY331 Ban Ngio School Kham Sakae Saeng Non Mueang 191207 1708251 1,074.00 1.60 1,968.94 

39 MY337 Ban Khum Muang Kham Sakae Saeng Non Mueang 189356 1706970 988.00 0.90 1,076.16 

40 MG320 Ban Sa Kruat Kham Sakae Saeng Non Mueang 191778 1706565 716.00 0.56  683.66 
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Table A1 Chemical properties of groundwater samples in May 2019 (Continued). 
No Station Location district Sub-district UTM E UTM N TDS SC CC 

41 5605B031 Ban Khu Mueang School Kham Sakae Saeng Mueang Kaset 195665 1706447 537.00 0.59 437.54 

42 5905D059 Chomcho Nong Hua Fan School Kham Sakae Saeng Nong Hua Fan 201683 1706461 4,297.00 4.38 7,305.28 

43 MY228 Ban Non Makluea Temple Kham Sakae Saeng Nong Hua Fan 198289 1710131 1,719.00 1.43 2,175.90 

44 5505C054 Ban Non Makluea School Kham Sakae Saeng Nong Hua Fan 198165 1710145 1,487.00 1.48 2,311.79 

45 MG1637 Ban Jod School Kham Sakae Saeng Nong Hua Fan 207082 1705864 1,998.00 1.45 2,310.77 

46 5905H029 Chiwuek 1 Kham Sakae Saeng Chiwuek 188847 1695635 480.00 0.49 358.54 

47 5805H044 Chiwuek 2 Kham Sakae Saeng Chiwuek 187952 1700628 1,247.00 1.39 2,060.40 

48 PW73 Ban Hua Bung Kham Sakae Saeng Chiwuek 188906 1696058 490.00 0.24 227.90 

49 MY458 Ban Nong Pho Kham Sakae Saeng Chiwuek 187583 1697185 1,069.00 0.81 948.01 

50 5805H049 Ban Non-Phak Chi School Kham Sakae Saeng Chiwuek 186671 1698911 1,487.00 1.43 2,217.99 

51 MG1441 Ban Nook 1 Kham Sakae Saeng Kham Sakae Saeng 201285 1698994 587.00 0.99 1,266.29 

52 MG1442 Ban Nook 2 Kham Sakae Saeng Kham Sakae Saeng 201393 1698950 2,050.00 0.88 805.20 

53 MG1443 Ban Nook School Kham Sakae Saeng Kham Sakae Saeng 200904 1699036 1,602.00 1.31 1,777.51 

54 MG318 Ban Namab Kham Sakae Saeng Kham Sakae Saeng 203193 1699010 600.00 0.59 734.55 

55 AFD998 Ban Bu La Kro Kham Sakae Saeng Kham Sakae Saeng 196920 1694693 1,447.00 0.97 1,253.37 

56 5705B005 Ban Sema school Kham Sakae Saeng Mueang Nat 208529 1701210 1,494.00 1.42 1,975.01 

57 AA1655 Ban Nong Pho Namab School Kham Sakae Saeng Mueang Nat 204767 1699728 537.00 0.51 492.48 
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1. OpenLandMap Soil Texture Class (USDA System) 

Soil texture classes (USDA system) for 6 soil depths (0, 10, 30, 60, 100, and 200 

cm) at 250 m. Derived from predicted soil texture fractions using the soiltexture 

package in R. 

Table B1 Bands of Soil texture class (USDA system). 

Name Description 

b0 Soil texture class (USDA system) at 0 cm depth 

b10 Soil texture class (USDA system) at 10 cm depth 

b30 Soil texture class (USDA system) at 30 cm depth 

b60 Soil texture class (USDA system) at 60 cm depth 

b100 Soil texture class (USDA system) at 100 cm depth 

b200 Soil texture class (USDA system) at 200 cm depth 

 

Table B2 Bands Class Table of Soil texture class (USDA system). 

Value Symbol Description 

1 Cl Clay 

2 SiCl Silty Clay 

3 SaCl Sandy Clay 

4 ClLo Clayey Loam 

5 SiClLo Silty Clay Loam 

6 SaClLo Sandy Clay Loam 

7 Lo Loam 

8 SiLo Silty Loam 

9 SaLo Sandy Loam 

10 Si Silt 

11 LoSa Loamy Sand 

12 Sa Sand 
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GEE Scripts 

var dataset = ee.Image("OpenLandMap/SOL/SOL_TEXTURE-CLASS_USDA-TT_M/v02"); 

 

var visualization = { 

  bands: ['b0'], 

  min: 1.0, 

  max: 12.0, 

  palette: [ 

    "d5c36b","b96947","9d3706","ae868f","f86714","46d143", 

    "368f20","3e5a14","ffd557","fff72e","ff5a9d","ff005b", 

  ] 

}; 

 

Map.centerObject(dataset); 

 

Map.addLayer(dataset, visualization, "Soil texture class (USDA system)"); 

 

 

2. Global SRTM Landforms 

The SRTM Landform dataset provides landform classes created by combining 

the Continuous Heat-Insolation Load Index (SRTM CHILI) and the multi-scale 

Topographic Position Index (SRTM mTPI) datasets. It is based on the 30m SRTM DEM 

(available in EE as USGS/SRTMGL1_003). 

The Conservation Science Partners (CSP) Ecologically Relevant Geomorphology 

(ERGo) Datasets, Landforms, and Physiography contain detailed, multi-scale data on 

landforms and physiographic (aka land facet) patterns. Although there are many 

potential uses for these data, the original purpose for these data was to develop an 

ecologically relevant classification and map of landforms and physiographic classes 

that are suitable for climate adaptation planning. Because there is a large uncertainty 

associated with future climate conditions and even more uncertainty around ecological 

responses, providing information about what is unlikely to change offers a strong 

foundation for managers to build robust climate adaptation plans. The quantification 
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of these landscape features is sensitive to the resolution, The highest resolution 

possible is provided given the index's extent and characteristics. 

Table B3 Bands of Global SRTM Landforms. 

Name Description 

constant SRTM-derived landform classes 

 

Table B4 Bands Class Table of Global SRTM Landforms. 

Value Description 

12 Peak/ridge 

13 Peak/ridge (cool) 

14 Mountain/divide 

15 Cliff 

21 Upper slope (warm) 

22 Upper slope 

23 Upper slope (cool) 

24 Upper slope (flat) 

31 Lower slope (warm) 

32 Lower slope 

33 Lower slope (cool) 

34 Lower slope (flat) 

41 Valley 

42 Valley (narrow) 
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GEE Scripts 

var dataset = ee.Image('CSP/ERGo/1_0/Global/SRTM_landforms'); 

var landforms = dataset.select('constant'); 

var landformsVis = { 

  min: 11.0, 

  max: 42.0, 

  palette: [ 

    '141414', '383838', '808080', 'EBEB8F', 'F7D311', 'AA0000', 'D89382', 

    'DDC9C9', 'DCCDCE', '1C6330', '68AA63', 'B5C98E', 'E1F0E5', 'a975ba', 

    '6f198c' 

  ], 

}; 

Map.setCenter(-105.58, 40.5498, 11); 

Map.addLayer(landforms, landformsVis, 'Landforms'); 

 

 

3. Sentinel-2 10m Land Use/Land Cover timeseries (2017-2021) 

This application provides access to the 700 individual 10-meter resolution 

GeoTIFF files for each year of the Sentinel-2 Land Use/Land Cover map produced by 

Esri, Microsoft, and Impact Observatory. The map is derived from ESA Sentinel-2 

imagery and is a composite of land use/land cover predictions for 9 classes for each 

year from 2017-2021. 
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Table B5 Land Cover Class Sentinel-2 10m Land Use/Land Cover time-series.  

Category Land Cover Class Description 

1 No Data - 

2 Water Water Areas where water was predominantly present throughout the year; may not cover areas with 

sporadic or ephemeral water; contains little to no sparse vegetation, no rock outcrop nor built up 

features like docks; examples: rivers, ponds, lakes, oceans, flooded salt plains. 

3 Trees Trees Any significant clustering of tall (~15-m or higher) dense vegetation, typically with a closed or 

dense canopy; examples: wooded vegetation, clusters of dense tall vegetation within savannas, 

plantations, swamp or mangroves (dense/tall vegetation with ephemeral water or canopy too thick 

to detect water underneath). 

4 Grass Grass Open areas covered in homogeneous grasses with little to no taller vegetation; wild cereals 

and grasses with no obvious human plotting (i.e., not a plotted field); examples: natural meadows 

and fields with sparse to no tree cover, open savanna with few to no trees, parks/golf courses/lawns, 

pastures. 

5 Flooded 

Vegetation 

Flooded vegetation Areas of any type of vegetation with obvious intermixing of water throughout a 

majority of the year; seasonally flooded area that is a mix of grass/shrub/trees/bare ground; 

examples: flooded mangroves, emergent vegetation, rice paddies and other heavily irrigated and 

inundated agriculture. 
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Table B5 Land Cover Class Sentinel-2 10m Land Use/Land Cover time-series (Continued).  

6 Crops Crops Human planted/plotted cereals, grasses, and crops not at tree height; examples: corn, wheat, 

soy, fallow plots of structured land. 

7 Scrub/Shrub Scrub/shrub Mix of small clusters of plants or single plants dispersed on a landscape that shows 

exposed soil or rock; scrub-filled clearings within dense forests that are clearly not taller than trees; 

examples: moderate to sparse cover of bushes, shrubs and tufts of grass, savannas with very sparse 

grasses, trees or other plants 

8 Built Area Built Area Human made structures; major road and rail networks; large homogeneous impervious 

surfaces including parking structures, office buildings and residential housing; examples: houses, 

dense villages / towns / cities, paved roads, asphalt. 

9 Bare Ground Bare ground Areas of rock or soil with very sparse to no vegetation for the entire year; large areas of 

sand and deserts with no to little vegetation; examples: exposed rock or soil, desert and sand dunes, 

dry salt flats/pans, dried lake beds, mines. 

10 Snow/Ice Snow/Ice Large homogeneous areas of permanent snow or ice, typically only in mountain areas or 

highest latitudes; examples: glaciers, permanent snowpack, snow fields. 

11 Clouds Clouds No land cover information due to persistent cloud cover. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX C 

Histogram of Distribution of the Thematic Layers 
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Figure C1 Histogram plot of Salinity Content (SC) data and summary statistics. 
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Figure C2 Histogram plot of Chloride Content (CC) data and summary statistics. 
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Figure C3 Histogram plot of Total Solid Content (TDS) data and summary statistics. 
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Figure C4 Histogram plot of Slope (Sl) data and summary statistics. 
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Figure C5 Histogram plot of Drainage Density (DD) data and summary statistics. 
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Figure C6 Histogram plot of Lineament Density (LD) data and summary statistics. 
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Figure C7 Histogram plot of Landforms (Lf) data and summary statistics. 
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Figure C8 Histogram plot of Soil Texture Class (STC) data and summary statistics. 
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Figure C9 Histogram plot of Land use/ Land cover (LULC) data and summary 

statistics. 
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Figure C10 Histogram plot of Normalized Differentiation Vegetation Index (NDVI) data 

and summary statistics. 

 

Figure C11 Histogram plot of Mean Annual Rainfall (RF) data and summary statistics. 
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Figure C12 Histogram plot of Geology (Geol) data and summary statistics. 
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Figure C13 Histogram plot of Hydrogeological Unit (HU) data and summary statistics. 

 

Figure C14 Histogram plot of Groundwater Potential (GP) data and summary statistics.

 

 



 
 

  

120 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX D 

Results of Running Script 
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Calculate Distance Band  
Calculate Distance Band Summary      

Minimum 8 neighbor distance:  1414.213562 

Average 8 neighbor distance:  1504.429429 

Maximum 8 neighbor distance:  2961.865937 

 

Distance measured in Meters 

 

Incremental Spatial Autocorrelation 
Running Moran’s I at Varying Distances… 

 

             Global Moran's I Summary by Distance             

Distance Moran's Index Expected Index Variance    z-score  p-value 

 2961.87      0.908992      -0.000398 0.000035 153.681745 0.000000 

 4825.28      0.843329      -0.000398 0.000013 233.042488 0.000000 

 6688.69      0.776456      -0.000398 0.000007 298.015862 0.000000 

 8552.10      0.719583      -0.000398 0.000004 355.082777 0.000000 

10415.52      0.672964      -0.000398 0.000003 399.550575 0.000000 

12278.93      0.621863      -0.000398 0.000002 435.354580 0.000000 

14142.34      0.571002      -0.000398 0.000002 456.921045 0.000000 

16005.76      0.523503      -0.000398 0.000001 470.057625 0.000000 

17869.17      0.473170      -0.000398 0.000001 476.003152 0.000000 

19732.58      0.424022      -0.000398 0.000001 475.547757 0.000000 

21595.99      0.380170      -0.000398 0.000001 472.813727 0.000000 

23459.41      0.342374      -0.000398 0.000001 470.480305 0.000000 

25322.82      0.308353      -0.000398 0.0 00000 466.686174 0.000000 

27186.23      0.280652      -0.000398 0.000000 466.718332 0.000000 
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29049.65      0.256630      -0.000398 0.000000 468.862839 0.000000 

30913.06      0.234645      -0.000398 0.000000 473.546832 0.000000 

32776.47      0.214408      -0.000398 0.000000 478.731997 0.000000 

34639.88      0.196319      -0.000398 0.000000 482.724570 0.000000 

36503.30      0.179313      -0.000398 0.000000 489.458597 0.000000 

38366.71      0.163570      -0.000398 0.000000 494.837220 0.000000 

40230.12      0.148577      -0.000398 0.000000 497.457915 0.000000 

42093.54      0.133480      -0.000398 0.000000 498.102712 0.000000 

43956.95      0.119261      -0.000398 0.000000 495.594790 0.000000 

45820.36      0.105141      -0.000398 0.000000 487.905864 0.000000 

47683.77      0.092020      -0.000398 0.000000 478.245803 0.000000 

49547.19      0.080608      -0.000398 0.000000 468.814601 0.000000 

51410.60      0.070874      -0.000398 0.000000 461.628657 0.000000 

53274.01      0.062312      -0.000398 0.000000 455.858820 0.000000 

55137.43      0.055105      -0.000398 0.000000 449.531676 0.000000 

57000.84      0.048607      -0.000398 0.000000 443.183179 0.000000 

 

First Peak (Distance; Value): 17869.17; 476.003152 

Max Peak (Distance; Value): 42093.54; 498.102712 

Distance measured in Meters 

 

Generate Spatial Weights Matrix  
Constructing spatial weights based on distance criteria… 

 

      Spatial Weights Matrix Summary       

Number of Features:                  2513   

Percentage of Spatial Connectivity:  26.22  
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Average Number of Neighbors:         658.92 

Minimum Number of Neighbors:         170    

Maximum Number of Neighbors:         999    

 

Distance measured in Meters 

 

Exploratory Regression 
****************************************************************************** 

Choose 10 of 13 Summary 

                                           Highest Adjusted R-Squared Results                                            

AdjR2     AICc   JB K(BP)  VIF  SA   Model                                                                                     

 0.98 -5456.68 0.00  0.00 5.66 N/A  +LD***  -NDVI***  +RF***  -GP***  +CC1***  +TDS1***  -SL1***  -LF1***  +STC1***  +GEOL1*** 

 0.98 -5454.96 0.00  0.00 5.71 N/A  +LD***  -NDVI***  +RF***  -GP***  +CC1***  +TDS1***  -SL1***  +DD1***  -LF1***  +STC1***   

 0.98 -5453.24 0.00  0.00 5.71 N/A  +LD***  -NDVI***  +RF***  -GP***  +CC1***  +TDS1***  +DD1***  -LF1***  +STC1***  +GEOL1*** 

                                                               Passing Models                                                               

AdjR2    AICc         JB       K(BP)    VIF      SA    Model                                                                                      

0.975538 -5456.682781 0.000000 0.000000 5.656793 N/A  +LD***  -NDVI***  +RF***  -GP***  +CC1***  +TDS1***  -SL1***  -LF1***  +STC1***  +GEOL1***  

0.975521 -5454.962230 0.000000 0.000000 5.714087 N/A  +LD***  -NDVI***  +RF***  -GP***  +CC1***  +TDS1***  -SL1***  +DD1***  -LF1***  +STC1***    

0.975505 -5453.244185 0.000000 0.000000 5.710472 N/A  +LD***  -NDVI***  +RF***  -GP***  +CC1***  +TDS1***  +DD1***  -LF1***  +STC1***  +GEOL1***  

0.975490 -5451.753456 0.000000 0.000000 5.601404 N/A  +LD***  -NDVI***  +RF***  -HU***  +CC1***  +TDS1***  -SL1***  -LF1***  +STC1***  +GEOL1***  

0.975438 -5446.425345 0.000000 0.000000 5.669943 N/A  +LD***  -NDVI***  +RF***  -HU***  -GP***  +CC1***  +TDS1***  -SL1***  -LF1***  +GEOL1***    

0.975435 -5446.098378 0.000000 0.000000 5.685535 N/A  +LD***  +RF***  -GP***  +CC1***  +TDS1***  -SL1***  +DD1***  -LF1***  +STC1***  +GEOL1***   

0.975426 -5445.218571 0.000000 0.000000 5.611921 N/A  +LD***  +RF***  -HU***  -GP***  +CC1***  +TDS1***  -SL1***  -LF1***  +STC1***  +GEOL1***    

0.975409 -5443.491720 0.000000 0.000000 5.607336 N/A  +LD***  +RF***  -GP***  +CC1***  +TDS1***  -SL1***  -LF1***  +STC1***  -LULC1***  +GEOL1*** 

0.975405 -5443.037604 0.000000 0.000000 5.677566 N/A  +LD***  +RF***  -GP***  +CC1***  +TDS1***  -SL1***  +DD1***  -LF1***  +STC1***  -LULC1***   

0.975380 -5440.544671 0.000000 0.000000 5.612963 N/A  +LD***  +RF***  -HU***  -GP***  +CC1***  +TDS1***  -SL1***  +STC1***  -LULC1***  +GEOL1***  

0.975369 -5439.372101 0.000000 0.000000 5.614119 N/A  +LD***  +RF***  -HU***  -GP***  +CC1***  +TDS1***  -SL1***  -LF1***  -LULC1***  +GEOL1***   
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0.975360 -5438.416702 0.000000 0.000000 5.669143 N/A  +LD***  +RF***  -GP***  +CC1***  +TDS1***  +DD1***  -LF1***  +STC1***  -LULC1***  +GEOL1*** 

0.975341 -5436.544803 0.000000 0.000000 5.593307 N/A  +LD***  +RF***  -HU***  -GP***  +CC1***  +TDS1***  -LF1***  +STC1***  -LULC1***  +GEOL1***  

 

****************************************************************************** 

Choose 11 of 13 Summary 

                                                Highest Adjusted R-Squared Results                                                 

AdjR2     AICc   JB K(BP)  VIF  SA   Model                                                                                               

 0.98 -5459.84 0.00  0.00 5.67 N/A  +LD***  -NDVI***  +RF***  -HU**  -GP***  +CC1***  +TDS1***  -SL1***  -LF1***  +STC1***  +GEOL1***    

 0.98 -5459.80 0.00  0.00 5.72 N/A  +LD***  -NDVI***  +RF***  -GP***  +CC1***  +TDS1***  -SL1***  +DD1***  -LF1***  +STC1***  +GEOL1***  

 0.98 -5458.55 0.00  0.00 5.66 N/A  +LD***  -NDVI***  +RF***  -GP***  +CC1***  +TDS1***  -SL1***  -LF1***  +STC1***  -LULC1**  +GEOL1*** 

                                                                   Passing Models                                                                    

AdjR2    AICc         JB       K(BP)    VIF      SA    Model                                                                                               

0.975578 -5459.796567 0.000000 0.000000 5.723712 N/A  +LD***  -NDVI***  +RF***  -GP***  +CC1***  +TDS1***  -SL1***  +DD1***  -LF1***  +STC1***  +GEOL1***  

0.975477 -5449.440978 0.000000 0.000000 5.689441 N/A  +LD***  +RF***  -GP***  +CC1***  +TDS1***  -SL1***  +DD1***  -LF1***  +STC1***  -LULC1***  +GEOL1*** 

0.975466 -5448.254087 0.000000 0.000000 5.615859 N/A  +LD***  +RF***  -HU***  -GP***  +CC1***  +TDS1***  -SL1***  -LF1***  +STC1***  -LULC1***  +GEOL1***  

 

****************************************************************************** 

Choose 12 of 13 Summary 

                                                     Highest Adjusted R-Squared Results                                                     

AdjR2     AICc   JB K(BP)  VIF  SA   Model                                                                                                        

 0.98 -5461.83 0.00  0.00 5.73 N/A  +LD***  -NDVI***  +RF***  -GP***  +CC1***  +TDS1***  -SL1***  +DD1***  -LF1***  +STC1***  -LULC1**  +GEOL1*** 

 0.98 -5461.61 0.00  0.00 5.68 N/A  +LD***  -NDVI***  +RF***  -HU**  -GP***  +CC1***  +TDS1***  -SL1***  -LF1***  +STC1***  -LULC1**  +GEOL1***   

 0.98 -5460.96 0.00  0.00 5.76 N/A  +LD***  -NDVI***  +RF***  -HU*  -GP***  +CC1***  +TDS1***  -SL1***  +DD1**  -LF1***  +STC1***  +GEOL1***      

       Passing Models        

AdjR2 AICc JB K(BP) VIF SA   Model 

 

****************************************************************************** 

Choose 13 of 13 Summary 
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                                                       Highest Adjusted R-Squared Results                                                        

AdjR2     AICc   JB K(BP)  VIF  SA   Model                                                                                                             

 0.98 -5462.88 0.00  0.00 5.76 N/A  +LD***  -NDVI***  +RF***  -HU*  -GP***  +CC1***  +TDS1***  -SL1***  +DD1**  -LF1***  +STC1***  -LULC1**  +GEOL1*** 

       Passing Models        

AdjR2 AICc JB K(BP) VIF SA   Model 

 

****************************************************************************** 

**************** Exploratory Regression Global Summary (SC1) ***************** 

 

              Percentage of Search Criteria Passed              

                   Search Criterion Cutoff Trials # Passed % Passed 

             Min Adjusted R-Squared > 0.80   2380     2035    85.50 

            Max Coefficient p-value < 0.01   2380      116     4.87 

                      Max VIF Value < 7.50   2380     2380   100.00 

            Min Jarque-Bera p-value > 0.00   2380     2380   100.00 

Min Spatial Autocorrelation p-value > 0.00    122      122   100.00 

 

------------------------------------------------------------------------------ 

 

     Summary of Variable Significance     

Variable % Significant % Negative % Positive 

RF              100.00      35.44      64.56 

CC1             100.00       0.00     100.00 

TDS1            100.00       0.00     100.00 

LD               98.87       0.00     100.00 

DD1              73.39      34.68      65.32 

HU               68.03      74.15      25.85 

GEOL1            65.45       0.06      99.94 
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NDVI             62.17      75.66      24.34 

SL1              59.27      66.96      33.04 

STC1             36.89      29.45      70.55 

LF1              35.31      84.87      15.13 

GP               32.16      52.27      47.73 

LULC1            24.53      92.50       7.50 

 

------------------------------------------------------------------------------ 

 

  Summary of Multicollinearity   

Variable  VIF Violations Covariates 

LD       1.14     0      --------   

NDVI     1.31     0      --------   

RF       3.42     0      --------   

HU       1.30     0      --------   

GP       1.11     0      --------   

CC1      2.78     0      --------   

TDS1     5.76     0      --------   

SL1      1.19     0      --------   

DD1      1.32     0      --------   

LF1      1.20     0      --------   

STC1     1.13     0      --------   

LULC1    1.05     0      --------   

GEOL1    1.57     0      --------   

 

------------------------------------------------------------------------------ 

 

                                         Summary of Residual Normality (JB)                                          
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      JB    AdjR2         AICc    K(BP)      VIF  SA   Model                                                               

0.000000 0.975246 -5428.846532 0.000000 5.609893 N/A  +LD***  -NDVI***  +RF***  -HU***  -GP***  +CC1***  +TDS1***  -LF1**  

0.000000 0.975240 -5428.257111 0.000000 5.730310 N/A  +LD***  -NDVI***  +RF***  -HU**  -GP***  +CC1***  +TDS1***  +DD1***  

0.000000 0.975286 -5432.983783 0.000000 5.631842 N/A  +LD***  -NDVI***  +RF***  -HU***  -GP***  +CC1***  +TDS1***  -SL1*** 

 

------------------------------------------------------------------------------ 

 

Summary of Residual Spatial Autocorrelation (SA) (Not Applicable) 

 

------------------------------------------------------------------------------ 

 

Table Abbreviations 

AdjR2 Adjusted R-Squared                                      

AICc  Akaike's Information Criterion                          

JB    Jarque-Bera p-value                                     

K(BP) Koenker (BP) Statistic p-value                          

VIF   Max Variance Inflation Factor                           

SA    Global Moran's I p-value                                

Model Variable sign (+/-)                                     

Model Variable significance (* = 0.10; ** = 0.05; *** = 0.01) 

------------------------------------------------------------------------------ 

 

Ordinary Least Squares Regression 
                                      Summary of OLS Results           `                            

 Variable Coefficient [a] StdError t-Statistic Probability [b] Robust_SE   Robust_t Robust_Pr [b]  VIF [c] 

Intercept      -35.605687 0.540819  -65.836591       0.000000*  0.527825 -67.457326     0.000000* -------- 

       LD        0.355430 0.026170   13.581471       0.000000*  0.023625  15.044411     0.000000* 1.142010 
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     NDVI       -0.107198 0.028275   -3.791310       0.000165*  0.028825  -3.718949     0.000217* 1.300689 

       RF        0.005731 0.000432   13.277345       0.000000*  0.000424  13.517349     0.000000* 3.237558 

       GP       -0.012500 0.003519   -3.552338       0.000404*  0.003888  -3.214989     0.001337* 1.107265 

      CC1        0.915191 0.007244  126.331509       0.000000*  0.009925  92.207515     0.000000* 2.714861 

     TDS1       15.420554 0.257127   59.972550       0.000000*  0.255014  60.469405     0.000000* 5.729843 

      SL1       -0.009607 0.003184   -3.017608       0.002585*  0.003355  -2.863518     0.004230* 1.189904 

      DD1        0.005698 0.002480    2.297442       0.021660*  0.002160   2.637592     0.008396* 1.247319 

      LF1       -0.006554 0.001616   -4.054770       0.000059*  0.001561  -4.198215     0.000033* 1.192347 

     STC1        0.000255 0.000064    4.011279       0.000070*  0.000064   4.012223     0.000070* 1.122606 

    LULC1       -0.002333 0.001162   -2.008506       0.044688*  0.000925  -2.522358     0.011708* 1.048693 

    GEOL1        0.000057 0.000021    2.663031       0.007790*  0.000022   2.653578     0.008010* 1.561706 

 

 

                                           OLS Diagnostics                                            

Input Features:                       DATA   Dependent Variable:                                    SC1  

Number of Observations:               2513   Akaike's Information Criterion (AICc) [d]:    -5461.825896  

Multiple R-Squared [d]:           Adjusted R-Squared [d]:                           0.975608  

Joint F-Statistic [e]:         8373.634298   Prob(>F), (12,2500) degrees of freedom:           0.000000* 

Joint Wald Statistic [e]:    117383.495120   Prob(>chi-squared), (12) degrees of freedom:      0.000000* 

Koenker (BP) Statistic [f]:     156.086567   Prob(>chi-squared), (12) degrees of freedom:      0.000000* 

Jarque-Bera Statistic [g]:    11143.947084   Prob(>chi-squared), (2) degrees of freedom:       0.000000* 

 

 

Notes on Interpretation 

 *  An asterisk next to a number indicates a statistically significant p-value (p < 0.01).                                                                                                                                                                                                                                                                 

[a] Coefficient: Represents the strength and type of relationship between each explanatory variable and the dependent variable.                                                                                                                                                                                                                            

[b] Probability and Robust Probability (Robust_Pr): Asterisk (*) indicates a coefficient is statistically significant (p < 0.01); if the Koenker (BP) Statistic [f] is statistically significant, use the Robust 

Probability column (Robust_Pr) to determine coefficient significance.                                                                     
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[c] Variance Inflation Factor (VIF): Large Variance Inflation Factor (VIF) values (> 7.5) indicate redundancy among explanatory variables.                                                                                                                                                                                                                 

[d] R-Squared and Akaike's Information Criterion (AICc): Measures of model fit/performance.                                                                                                                                                                                                                                                                

[e] Joint F and Wald Statistics: Asterisk (*) indicates overall model significance (p < 0.01); if the Koenker (BP) Statistic [f] is statistically significant, use the Wald Statistic to determine overall 

model significance.                                                                                                                             

[f] Koenker (BP) Statistic: When this test is statistically significant (p < 0.01), the relationships modeled are not consistent (either due to non-stationarity or heteroskedasticity).  You should rely 

on the Robust Probabilities (Robust_Pr) to determine coefficient significance and on the Wald Statistic to determine overall model significance. 

[g] Jarque-Bera Statistic: When this test is statistically significant (p < 0.01) model predictions are biased (the residuals are not normally distributed).    
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Spatial Autocorrelation 
Executing: SpatialAutocorrelation OLS1 Residual GENERATE_REPORT INVERSE_DISTANCE EUCLIDEAN_DISTANCE NONE # # 

Start Time: Fri Feb 10 00:56:17 2023 

Running script SpatialAutocorrelation... 

WARNING 000853: The default neighborhood search threshold was 1221.9316 Meters. 

 

 Global Moran's I Summary 

Moran's Index:   0.879164  

Expected Index:  -0.000398 

Variance:        0.000202  

z-score:         61.864007 

p-value:         0.000000  

 

Distance measured in Meters 

 

Writing html report.... 

C:\Users\WATCHA~1\AppData\Local\Temp\arc7490\MoransI_Result_3712_5500_1.html 

Completed script SpatialAutocorrelation... 

Succeeded at Fri Feb 10 00:56:19 2023 (Elapsed Time: 1.98 seconds) 

 

Semiparametric Geographically Weighted Regression  
***************************************************************************** 

*             Semiparametric Geographically Weighted Regression             * 

*                         Release 1.0.90 (GWR 4.0.90)                       * 

*                               12 May 2015                                 * 

*                 (Originally coded by T. Nakaya: 1 Nov 2009)               * 

*                                                                           * 
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*              Tomoki Nakaya(1), Martin Charlton(2), Chris Brunsdon (2)     * 

*              Paul Lewis (2), Jing Yao (3), A Stewart Fotheringham (4)     * 

*                       (c) GWR4 development team                           * 

* (1) Ritsumeikan University, (2) National University of Ireland, Maynooth, * 

*         (3) University of Glasgow, (4) Arizona State University           * 

***************************************************************************** 

Session:  

Session control file: C:\Users\WATCHARINPHOEMPHON\OneDrive - Suranaree University of Technology\WatcharinP\01 Thesis\Thesis\GWR4\model\model1.ctl 

***************************************************************************** 

Data filename: C:\Users\WATCHARINPHOEMPHON\OneDrive - Suranaree University of Technology\WatcharinP\01 Thesis\Thesis\GWR4\DATA.dbf 

Number of areas/points: 2513 

 

Model settings--------------------------------- 

Model type: Gaussian 

Geographic kernel: adaptive Gaussian 

Method for optimal bandwidth search: Golden section search 

Criterion for optimal bandwidth: AICc 

Number of varying coefficients: 13 

Number of fixed coefficients:   0 

 

Modelling options--------------------------------- 

Standardisation of independent variables: OFF 

Testing geographical variability of local coefficients: OFF 

Local to Global Variable selection: OFF 

Global to Local Variable selection: OFF 

Prediction at non-regression points: OFF 

 

Variable settings--------------------------------- 
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Area key: field5: ID 

Easting (x-coord): field3 : INSIDE_X 

Northing (y-coord): field4: INSIDE_Y 

Cartesian coordinates: Euclidean distance 

Dependent variable: field20: SC1 

Offset variable is not specified 

Intercept: varying (Local) intercept 

Independent variable with varying (Local) coefficient: field11: LD 

Independent variable with varying (Local) coefficient: field15: NDVI 

Independent variable with varying (Local) coefficient: field16: RF 

Independent variable with varying (Local) coefficient: field19: GP 

Independent variable with varying (Local) coefficient: field21: CC1 

Independent variable with varying (Local) coefficient: field22: TDS1 

Independent variable with varying (Local) coefficient: field23: Sl1 

Independent variable with varying (Local) coefficient: field24: DD1 

Independent variable with varying (Local) coefficient: field25: Lf1 

Independent variable with varying (Local) coefficient: field26: STC1 

Independent variable with varying (Local) coefficient: field27: LULC1 

Independent variable with varying (Local) coefficient: field28: Geol1 

***************************************************************************** 

 

***************************************************************************** 

  Global regression result 

***************************************************************************** 

  < Diagnostic information > 

Residual sum of squares:                   16.555494 

Number of parameters:                       13 

 (Note: this num does not include an error variance term for a Gaussian model) 
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ML based global sigma estimate:             0.081166 

Unbiased global sigma estimate:             0.081377 

-2 log-likelihood:                      -5489.994000 

Classic AIC:                            -5461.994000 

AICc:                                   -5461.825865 

BIC/MDL:                                -5380.384744 

CV:                                         0.006660 

R square:                                   0.975724 

Adjusted R square:                          0.975598 

 

Variable                  Estimate    Standard Error      t(Est/SE)  

-------------------- --------------- --------------- --------------- 

Intercept                 -35.605686        0.540819      -65.836591 

LD                          0.355430        0.026170       13.581472 

NDVI                       -0.107198        0.028275       -3.791310 

RF                          0.005731        0.000432       13.277343 

GP                         -0.012500        0.003519       -3.552337 

CC1                         0.915191        0.007244      126.331508 

TDS1                       15.420554        0.257127       59.972550 

Sl1                        -0.009607        0.003184       -3.017607 

DD1                         0.005698        0.002480        2.297442 

Lf1                        -0.006554        0.001616       -4.054770 

STC1                        0.000255        0.000064        4.011278 

LULC1                      -0.002333        0.001162       -2.008506 

Geol1                       0.000057        0.000021        2.663031 

 

***************************************************************************** 

  GWR (Geographically weighted regression) bandwidth selection 
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***************************************************************************** 

 

Bandwidth search <golden section search> 

  Limits: 66,  2513 

 Golden section search begins... 

 Initial values 

  pL            Bandwidth:    66.000 Criterion:  -9801.877 

  p1            Bandwidth:   118.087 Criterion:  -8448.409 

  p2            Bandwidth:   150.279 Criterion:  -7916.093 

  pU            Bandwidth:   202.367 Criterion:  -7424.522 

 iter    1 (p1) Bandwidth:   118.087 Criterion:  -8448.409 Diff:     32.192 

 iter    2 (p1) Bandwidth:    98.192 Criterion:  -8797.094 Diff:     19.896 

 iter    3 (p1) Bandwidth:    85.896 Criterion:  -9218.393 Diff:     12.296 

 iter    4 (p1) Bandwidth:    78.296 Criterion:  -9347.104 Diff:      7.599 

 iter    5 (p1) Bandwidth:    73.599 Criterion:  -9387.270 Diff:      4.697 

 iter    6 (p1) Bandwidth:    70.697 Criterion:  -9423.382 Diff:      2.903 

 iter    7 (p1) Bandwidth:    68.903 Criterion:  -9776.327 Diff:      1.794 

 iter    8 (p1) Bandwidth:    67.794 Criterion:  -9789.626 Diff:      1.109 

The lower limit in your search has been selected as the optimal bandwidth size. 

A new sesssion is recommended to try with a smaller lowest limit of the bandwidth search. 

Best bandwidth size 66.000 

Minimum AICc    -9801.877 

 

***************************************************************************** 

  GWR (Geographically weighted regression) result 

***************************************************************************** 

  Bandwidth and geographic ranges 

Bandwidth size:                   66.000000 
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Coordinate                Min              Max           Range 

--------------- --------------- --------------- --------------- 

X-coord           808794.569761   887280.238900    78485.669139 

Y-coord          1664834.788730  1721720.160000    56885.371270 

 

  Diagnostic information 

Residual sum of squares:             2.523233 

Effective number of parameters (model: trace(S)):                   190.816606 

Effective number of parameters (variance: trace(S'S)):              117.556990 

Degree of freedom (model: n - trace(S)):                           2322.183394 

Degree of freedom (residual: n - 2trace(S) + trace(S'S)):          2248.923778 

ML based sigma estimate:             0.031687 

Unbiased sigma estimate:             0.033496 

-2 log-likelihood:              -10217.391684 

Classic AIC:                     -9833.758472 

AICc:                            -9801.877003 

BIC/MDL:                         -8715.614868 

CV:                                  0.001267 

R square:                            0.996300 

Adjusted R square:                   0.995865 

 

*********************************************************** 

 << Geographically varying (Local) coefficients >> 

*********************************************************** 

Estimates of varying coefficients have been saved in the following file. 

    Listwise output file: C:\Users\WATCHARINPHOEMPHON\OneDrive - Suranaree University of Technology\WatcharinP\01 Thesis\Thesis\GWR4\model\model1_listwise.csv 

 

Summary statistics for varying (Local) coefficients  
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Variable                      Mean             STD  

-------------------- --------------- --------------- 

Intercept                 -23.170691       15.083501 

LD                          0.137691        1.002525 

NDVI                       -0.002584        0.109274 

RF                          0.004080        0.007185 

GP                         -0.013286        0.031139 

CC1                         1.094047        0.393069 

TDS1                        8.697749        8.789318 

Sl1                        -0.003182        0.008078 

DD1                         0.003086        0.012397 

Lf1                        -0.001870        0.003895 

STC1                        0.000076        0.000154 

LULC1                      -0.000165        0.005207 

Geol1                       0.000038        0.000125 

 

Variable                       Min              Max           Range 

-------------------- --------------- --------------- --------------- 

Intercept                 -59.222814       44.050705      103.273519 

LD                         -6.487336        1.948503        8.435839 

NDVI                       -0.332169        0.348690        0.680859 

RF                         -0.016654        0.035667        0.052320 

GP                         -0.202453        0.097654        0.300107 

CC1                         0.069137        1.893547        1.824410 

TDS1                      -27.415645       29.465958       56.881602 

Sl1                        -0.023830        0.023884        0.047714 

DD1                        -0.028538        0.039837        0.068375 

Lf1                        -0.013114        0.009736        0.022850 
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STC1                       -0.000272        0.000663        0.000935 

LULC1                      -0.018065        0.012576        0.030641 

Geol1                      -0.000311        0.000341        0.000652 

 

Variable               Lwr Quartile          Median    Upr Quartile 

-------------------- --------------- --------------- --------------- 

Intercept                 -32.299162      -23.644474      -11.777010 

LD                         -0.220619        0.340694        0.676377 

NDVI                       -0.062914       -0.009172        0.041435 

RF                          0.000088        0.003162        0.006744 

GP                         -0.021798       -0.011484       -0.000755 

CC1                         0.815744        1.172356        1.416128 

TDS1                        2.086056        9.422662       14.363044 

Sl1                        -0.007567       -0.001739        0.001304 

DD1                        -0.005435       -0.000831        0.010716 

Lf1                        -0.004613       -0.000924        0.000740 

STC1                       -0.000043        0.000046        0.000167 

LULC1                      -0.001601        0.000351        0.002919 

Geol1                      -0.000025        0.000028        0.000121 

 

Variable             Interquartile R     Robust STD 

-------------------- --------------- --------------- 

Intercept                  20.522151       15.212862 

LD                          0.896996        0.664934 

NDVI                        0.104349        0.077353 

RF                          0.006656        0.004934 

GP                          0.021044        0.015599 

CC1                         0.600384        0.445059 
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TDS1                       12.276988        9.100807 

Sl1                         0.008872        0.006576 

DD1                         0.016152        0.011973 

Lf1                         0.005353        0.003968 

STC1                        0.000210        0.000156 

LULC1                       0.004520        0.003350 

Geol1                       0.000147        0.000109 

 (Note: Robust STD is given by (interquartile range / 1.349) ) 

 

***************************************************************************** 

 GWR ANOVA Table 

***************************************************************************** 

Source                           SS          DF             MS           F 

----------------- ------------------- ---------- --------------- ---------- 

Global Residuals                16.555   2500.000 

GWR Improvement                 14.032    251.076           0.056 

GWR Residuals                    2.523   2248.924           0.001  49.812625 

 

***************************************************************************** 
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