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Exoplanetary atmospheric research using transmission spectroscopy is one of
the most active fields in exoplanetary research. A retrieval technique is used to extract
the transmission spectra for an understanding of the exoplanet atmospheres. However,
traditional retrieval methods (e.g.,, MCMC and nested sampling) take a long time to
retrieve parameters. To save computation time, machine learning methods were used
to retrieve exoplanet atmosphere properties. Apart from that, there are also various
filter selection choices, such as the Johnson-Cousins and Sloan Digital Sky Survey
(SDSS) systems. In the transmission spectroscopy observation, all available filters are
used to receive all possible information without filter ordering or filter selection. The
goal of this research is to use random forest regression, a supervised machine learning
algorithm, to obtain the atmosphere characteristics of Jovian planets from broad-band
transmission spectra at an optical wavelength instead of the traditional method. The
random forest regressor has been shown to have the best accuracy in predicting
planetary radius (R%; =0.999] while also having acceptable accuracy in predicting
planetary mass, temperature, and metallicity of the planetary atmosphere. Random
forest regression takes significantly less time to process while providing results that are
comparable to the PLATON package's nested sampling retrieval. Furthermore, the
feature importance is used to rank the filters. Every iteration, the filter with the lowest
significance is dropped. The filters are arranged in descending sequence as |, U, ¢, i', B,
V, Z', U, r', and R. Our results suggest that, the optimal number of filters that yield the
closest prediction to the highest filters is 7.

v 34
School of Physics Student’s Signature_W¥s7Y kﬂ\uémnw

Academic Year 2020 Advisor’s Signature /,}Lw —
l




ACKNOWLEDGEMENTS

The completion of my thesis would not have been possible without the
assistance, support, and encouragement of the following people:

First and foremost, | would like to express my deepest appreciation to my
thesis advisors, Asst. Prof. Dr. Poemwai Chainakun and Dr. Supachai Awiphan, from
the National Astronomical Research Institute of Thailand (NARIT), for their support,
assistance, thoughtfulness, and kindly guidance throughout the study. | would like to
extend my sincere thanks to Dr. Eamonn Kerins from the University of Manchester,
who inspired this thesis. Thanks should also go to Dr. Nuanwan Sanguansak, who
gave me the beginnings of my path in astronomy.

I also want to express my gratitude to the lecturers in the School of Physics
who have taught me and helped me expand my knowledge and development over
the years. A special thanks to our astronomy and astrophysics group members for
their interesting discussions and comments. Many thanks to Kittipong Wangnok and
Jaruchit Siripak, members of our research group, who always give me their support.

I would like to express my gratitude to Dr. Utane Sawangwit and Asst. Prof.
Dr. Tirawut Worrakitpoonpon for sitting on the thesis committee and providing me
with valuable advice.

I also would like to acknowledge the funding resources from the Develop-
ment and Promotion of Science and Technology Talents Project (DPST), Suranaree
University of Technology (SUT), National Astronomical Research Institute of Thailand
(NARIT), and Spectroscopy and Photometry of Exoplanetary Atmospheres Research
Network (SPEARNET).

Last but not least, | want to express my heartfelt appreciation to my parents
and my supporter, Tawanchat Simantathammakul, for their sympathy, encouragement,

and support during my studies, as well as for inspiring me to finish the thesis.

Patcharawee Munsaket



CONTENTS

CHAPTER

I INTRODUCTION . . . . . . . . . . oottt e s e e e

I LITERATUREREVIEW . . . . . . . . . . . . . . . ...
2.1  Exoplanets and their atmosphere . . . . . . . . . . . . ..
2.2 Photometric system . . . . .. . . . ...
2.3 Transmission spectroscopy . . . . . .. ... ...

2.4  Retrieval

2.5  Previous random forest regressor in exoplanet atmospheric retrieval
METHODOLOGY . . . . . . . . . . . . . .. i v ..

3.1  Synthesize transmission spectra . . . . . .. . . . ... L.
3.2 Machine learning method . . . . ..o oL L L
3.2.1 Random forest regressor . . . . . . . . . . . . ..
3.2.2 Tuning hyperparameters . . . . . . . . . . . . ..
3.2.3 Model evaluation . . . . . . . .. .. .. .. ..
3.3  Optimal filter investigation . . . . . . . . . . .. ... ..
3.3.1 Feature importance . . . . . . . . . ... .. ..
3.3.2 Filter selection . . . . . . . . . ... ... ...
RESULT . = ¢ « 2 s s 558 5 s 8 65 s 8 % 2 & 5 8 5 & ® & 6 5 & &
41 Machine learning model . . . . . . . . ...
42 Model efficiency . . . . . . . ...

4.3  Filter optimization . . . . . . . . ... ...

Page



CONTENTS (Continued)

Page
V. DISCUSSION AND CONCLUSION . . . « o v o v oot 31
REFERENCES . . . . o o oo oo 33
APPENDIX . . . . .. A 37



Table
3.1

4.1

LIST OF TABLES

The input parameters for generating the spectra using the transit
depth calculator module in PLATON. Note that M, is in Jupiter
mass (M) and R, is in earth radius Rg). . . . . . . . . . ..
The performance of our random forest regressor model is com-
pared to that of the PLATON retrievals with 50 and 100 live
points. Note that the models are run on a machine with a Core
i9-10900 CPU and 32 GB of RAM that runs Ubuntu 18.04.2 LTS

(Munsaket et al., 2021)

Page

13



LIST OF FIGURES

Figure Page
2.1 Johnson-Cousins U, B, V, R. and |, (Granzer, 2014a). . . . . . 5
2.2 Sloan u’, ¢’, r’, i’ and Z’ filter curves (Granzer, 2014b). . . . . 5
2.3 The transit depth is increased due to the absorption of the

exoplanet atmosphere in different wavelengths. . . . . . . . 6
2.4 Transmission spectra of four metallicity variation cases (1x, 10x,

100x, and 1000x solar) (Kawashima and lkoma, 2019). . . . . . 8
2.5 Transmission spectra of four C/O ratio variation cases (0.5, 1, 10,

and 1,000) (Kawashima and lkoma, 2019). . . . . . . . . . . 9
2.6 Transmission spectra of two temperature variation cases (790 K

and 1,290 K) (Kawashima and lkoma, 2019). . . . . . . . . . 10
3.1 The flowchart for retrieving exoplanet atmospheric parameters

from the synthetic transmission spectra in the optical wavelength

using a random forest regressor and for the filter optimization. 13
32 The variation of transmission spectrum due to the variation of

temperalie? N A 4 4. . 6. ARy . . . . . . . . .. 15
33 The variation of transmission spectrum due to the variation of

10-based logarithm of metallicity. . . . . . . . . . . . . .. 16
34 The variation of transmission spectrum due to the variation of

carbon-oxygen ratio. . . . . . . . . . .. .. ... ... 17
35 A synthesized transmission spectrum (red) obtained by simulated

transmission spectra from PLATON (turquoise) weighted by the

transmission profiles of the filters (b) (Munsaket et al., 2021). . 18
4.1 The cross-validation score (R?) obtained by tuning hyperparam-

eters using the GridSearchCV with the 5-fold cross varidations

(Munsaket et al.,, 2021). . . . . . . . . . ... 23



Figure
4.2

4.3

4.4

4.5

4.6
a7

LIST OF FIGURES (Continued)

The real and predicted values of five planetary parameters: (a)
planetary mass, (b) planetary radius, (c) planetary atmospheric
temperature, (d) metallicity of the planetary atmosphere, and
(e) Carbon to Oxygen ratio in the atmosphere, of 20,000 test sets
using a random forest regressor (light blue), the PLATON nested
sampling retrieval with a number of live points of 50 (blue) and
100 (green). The red dashed lines show the perfect prediction
lines (Munsaket et al,, 2021). . . . . . . . . . . . . . ...
The feature importance obtained by the random forest regressor

model varies with the number of filters ranging from 10 to 2.

The white area represents the eliminated filters for each iteration.

The parameters’ prediction accuracy changes with the number
of filters. The x-axis is the number of filters in each prediction,
and the y-axis is the accuracy of the prediction. The blue, or-
ange, green, red, and purple dash-dotted lines are the accuracy
of planetary mass, planetary radius, temperature, logarithmic
metallicity, and carbon-oxygen ratio, respectively. . . . . . .
The cross-validation score of each random forest regressor
model with the different number of filters. . . . . . . . ..
The filter optimization predictions” trend. . . . . . . . . . .
The filter transmission curve for each filter combination where
the filter that is least importance is eliminated, one by one.

Real and predicted values of five planetary parameters for 10
fitters (U, B, V, R, , u’, ¢, r,"and Z’). . . . . ... . ...
Real and predicted values of five planetary parameters for 9
fitters (U, B, V, l, u’, ¢, v,V andZ). . . . . . . . . . . ...
Real and predicted values of five planetary parameters for 8
fitters (U, B, V, I, u’, ¢',"and 2’). . . . . . . . . . .. ...

Vil

Page

25

26

27

28
29

30

38

39

40



LIST OF FIGURES (Continued)

Figure Page
a4 Real and predicted values of five planetary parameters for 7

fitters (U, B, V, I, ¢,V and Z’). . . . . . . . . . . ... ... a1
5 Real and predicted values of five planetary parameters for 6

fitters (U, B, V, I, ¢ and ). . . . . . . . . . .. ... ... 42
6 Real and predicted values of five planetary parameters for 5

filters (U, B, I, ¢ and i’). . . . . . . . . ... .. ... .. 43
7 Real and predicted values of five planetary parameters for 4

filters (U, I, ¢ and V). . . . . . . . . . . .. ... 44
8 Real and predicted values of five planetary parameters for 3

fitters (U, land ¢’). . ... . . . . . . .. 45
9 Real and predicted values of five planetary parameters for 2

fiters(Uand ). . . . . . . . . . .. 46



LIST OF ABBREVIATIONS

CPU Central Processing Unit

GB Gigabyte

LTS Long-Term Support

MCMC Markov Chain Monte Carlo

MSE Mean Squared Error

NARIT National Astronomical Research Institute of Thailand

PC Personal Computer

PLATON PLanetary Atmospheric Transmission for Observer Noobs
RAM Random Access Memory

SDSS Sloan Digital Sky Survey

WFC3 Wide Field Camera 3



CHAPTER |
INTRODUCTION

Humanity’s suspicion of the existence of extraterrestrial life in the universe
has given birth to the study of extrasolar planets. Some people may have heard of
these questions: how many stars out of the billions are habitable for life, or what
is a suitable environment that supports life? More than 4,500 exoplanets (Exoplanet
Exploration: Planets Beyond Our Solar System, 2021) have been confirmed to date
due to the desire to find answers to these issues. An exoplanet is a planet that
exists outside our solar system and orbits the host star. Up to now, exoplanets have
been classified with many criteria. For example, they can be classified into four types
which are Gas Giants, Neptune-like, Super-Earth, and Terrestrial.

Most confirmed exoplanets are now discovered by indirect detections since
planets are often near their host stars, which are significantly brighter than the planets.
For the mentioned reason, direct detection of an exoplanet is very challenging.
Astrometry, radial velocity, gravitational microlensing, and transit methods are all
indirect detection techniques. The transit method is powerful because we can observe
the brightness of a host star decrease when a planet passes in front of it periodically.

The study of planetary atmospheres is a rapidly expanding area in the field
of exoplanet research which investigates the characteristics of the weather on these
extrasolar planets. The exoplanet atmospheric study is the expanding of knowledge
in atmospheric science. Transmission spectroscopy can be used to examine the
atmospheres of these exoplanets from both ground-based and space-based obser-
vations. Transmission spectroscopy is a typical approach for studying exoplanetary
atmospheres by measuring the variation of transit depths with wavelengths that re-
lies on the characteristics of components in the planetary atmosphere (Seager and
Sasselov, 2000). The transmission filters are an important tool in the transmission
spectroscopy technique.

Atmospheric retrieval techniques can provide information on the exo-
planet’s atmosphere. Nevertheless, typical retrieval techniques such as MCMC

(Foreman-Mackey et al.,, 2013) and nested sampling (Shaw et al,, 2007) are time-



consuming. Hence, machine learning algorithms have been used to retrieve exoplanet
atmospheric characteristics to minimize computing time. For example, random forest
regression, a supervised machine learning algorithm, has previously been used to
estimate the variables of an exoplanet’s atmosphere using Hubble Space Telescope
Wild Field Camera 3 data (WFC3) (Marquez-Neila et al., 2018). Other than devoting a
significant amount of time to retrieval, there are also many options for filter selec-
tion, such as the Johnson-Cousins and the Sloan Digital Sky Survey (SDSS) system. All
available filters in the observation for transmission spectroscopy are used to collect
all possible important information without filter ordering or filter selection. Obser-
vations in this research field commonly use one filter per night, which is another
time-consuming factor.

The objective of this work is to examine the optimal method for selecting
filtters suited for investigating the broad-band transmission spectra of hot Jupiters.
The transmission spectra of hot Jupiters are simulated by the PLanetary Atmospheric
Transmission for Observer Noobs (PLATON) (Zhang et al., 2020). The filter transmissions
are then used to weigh the spectra. The atmospheric parameters are predicted using
the python Scikit-learn package’s random forest regression model (Pedregosa et al.,
2011). The results are compared to those produced using standard PLATON’s nested
sampling retrieval. The filter selection is carried out by considering feature importance,
where each feature is each optical filter in the specific waveband. The filter selection
presented here will assist observatory planning and minimize the time required for

data processing.



CHAPTER I
LITERATURE REVIEW

2.1 Exoplanets and their atmosphere

In our solar system, all planets orbit around the Sun. Planets that orbit
around other stars are called extrasolar planets. “A host star” or “a parent star” is
the name given to the star in the system. Many planets can orbit a host star in a
single system. Finding extraterrestrial life is one goal of exoplanet research. The first
exoplanet was confirmed in 1992 in the orbit of the pulsar PSR1257+12 using a radio
pulsar timing technique (Wolszczan and Frail, 1992).

There are several techniques for detecting exoplanets. Firstly, radial velocity
technique that observes the star wobble around the mutual center of mass of the
system due to an effect of the gravitational interaction of planets with their host
star. The changing of star radial velocity is detected from the changing of the star’s
spectral lines as an effect of the Doppler phenomena. Secondly, the direct imaging
method can be use to observe the reflecting light of an exoplanet from the host
star during its orbit. Furthermore, the astrometry method is used to observe a star’s
position changing over time due to the gravitational interaction between the host
star and the exoplanet that makes both of them orbit around the center of mass.
This method satisfies the face-on system plane, the massive planet or the planet
that orbits a low-mass star such as a brown dwarf. Another method is a gravitational
microlensing method which is based on the gravitational lens effect. It occurs when
the lensing star passes in front of the source star and causes the light trajectory that
passes through the gravitational field of the lensing star to be curved by gravity.
The last and most famous method is the transit method that observes the periodic
changing of the starlight caused by a planet passing in front of the host star. This
method is the main idea of the transmission spectroscopy technique which is used
in this work (see 2.3).

In 2001, the first exoplanet atmosphere was discovered (Charbonneau et al.,

2002). Exoplanet atmosphere research is a branch of astronomy that aims to learn



more about the nature of exoplanets. The investigation of exoplanet atmospheres
is part of the search for suitable conditions for the existence of life beyond the
solar system. Most atmosphere detections at the moment are of hot Jupiters or
hot Neptunes that orbit very close to their host star and therefore have warm and
extended atmospheres (Madhusudhan et al., 2014). Transmission spectroscopy is one
of the exoplanet atmosphere study methods. This method detects the light that

travels through an exoplanet’s atmosphere when it transits in front of its host star.

2.2 Photometric system

The light from the star emits in a broad range of wavelengths depending
on their characteristics and temperature. To study the atmosphere of an exoplanet
via transmission spectroscopy, the broad wavelength has to be truncated into the
narrow wavelength. Specific filters are used to restrict the light that transmits through
the filters. The Johnson-Cousins system and the Sloan system are the optical filters
that we used in this research. The Johnson-Cousins filters consist of U, B, V, R., and
| filtter. The Sloan filters consist of u’, ¢’, r’, i’ and z’ filters. The different filters
have different transmission properties. The transmission properties of the filters are
represented by the filter profile. The filter profile of the Johnson-Cousins and Sloan

transmission profiles represent in figure 2.1 and 2.2.

2.3 Transmission spectroscopy

Transits of exoplanets provide a chance to investigate the composition of
their atmospheres from the light that passes through them. The hot Jupiter exo-
planets are the most accomplished atmospheric characterizations (Sing et al., 2016).
However, the atmosphere of the Neptune-size and the super-Earth size planets were
also studied (Fraine et al., 2014; Kreidberg et al., 2014). Transmission spectroscopy
is one method that is widely used in exoplanet atmosphere studies. This method
measures the change in the transit depth of a light curve as a function of wavelength.
The atmosphere of an exoplanet filters the light from the host star during the transit.
Because of the absorption characteristics of the atmosphere’s composition, a specific
portion of starlight is absorbed. At a wavelength with more significant absorption

characteristics, the observed planet disk will appear larger due to the planet’s at-
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mosphere being more opaque from the absorption of the molecules or elements.
As a result of the higher absorption, the transit light curve will be deeper (figure
2.3). Using many broad band filters, spectral features in the planetary spectrum can
be detected by transmission spectroscopy. Therefore, the atmosphere’s composition
can be inferred.

The transmission spectra and the atmospheric properties of exoplanets de-
pend on model parameters such as planetary mass, planetary radius, atmospheric
temperature, metallicity, and carbon-to-oxygen ratio. The metallicity and the carbon-
to-oxygen ratio are model parameters that we use in the transmission spectra sim-
ulation by PLATON. The sensitivity of metallicity, C/O ratio, and atmospheric tem-
perature in the transmission spectra are reported in the literature (Kawashima and
lkoma, 2019). In the case of the sensitivity to metallicity, an increase in metallicity

leads to a decrease in the atmospheric scale height, which is represented by the



transit depths (figure 2.4). This is because the hydrocarbons’ photodissociation rate
and haze monomer production rate decrease at high metallicity. Note that the pho-
todissociation rate is a chemical process in which photons break down a chemical
molecule and the haze monomer production rate. At high metallicity, the haze effect
is pronounceable only at a short wavelength because the mass density of the haze
particles decrease. For the clear atmosphere at increasing metallicity, the absorption
strength is decreasing due to a decrease in the atmospheric scale height.

For C/O ratio sensitivity as shown in figure 2.5, the transit depth increases
with increasing C/O. The higher C/O means the monomer production rate, the mass
density, and the average size of haze particles are larger. Although the C/O is
extremely high (i.e. C/O = 10%), the photodissociation rate of hydrocarbons is not
limited by the amount of carbon but depends on the amount of incoming photon
flux. The temperature-dependent transmission spectra are shown in figure 2.6. In any
case of haze, the higher temperature provides a higher transit depth and the spectral

features are more pronounced because of the larger atmospheric scale height.

2.4  Retrieval

A spectrum stores information about the atmosphere’s various intercon-
nected physicochemical processes and properties, which are discovered by their
effect on the radiation that passes through the atmosphere before reaching the ob-
server. Chemical composition, temperature structure, atmospheric circulation, and
clouds/hazes are all properties that leave their fingerprints on the spectrum. Exo-
planetary atmospheric retrieval is the process of inferring an exoplanet’s atmospheric
parameters from its observed spectrum. The returned properties can be used to look
deeply into the physical and chemical processes in the atmosphere, as well as their

formation history.
2.5 Previous random forest regressor in exoplanet atmospheric
retrieval

Nowadays, machine learning has become one of the research tools in ex-

oplanet study and also in the study of the exoplanetary atmospheric spectra. For
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example Marquez-Neila et al. (2018) used the random forest regressor by training the
model with a pre-compute grid of atmospheric models and predicting the abundance
of the molecules and the cloud opacity. The model is applied to the spectrum of
WASP-12b. The transmission spectra of WASP-12b are generated by randomly selecting
the values of 5 parameters from the parameter ranges which consist of temperature,
cloud opacity, and the volume mixing ratios or relative abundance of water, am-
monia, and hydrogen cyanide. These transmission spectra were obtained from the
previously analyzed Hubble Space Telescope Wide Field Camera 3 (WFC3) and were
binned into 13 binned data points (13 features). Their results were consistent with the
result of the nested sampling retrieval method. The sensitivity of model parameters

was investigated in the 13 bin wavelengths.



CHAPTER I
METHODOLOGY

In this research, we optimize the photometric observation’s filter transmis-
sion for the hot Jupiter atmosphere using the transmission spectroscopy technique.
Firstly, the 100,000 transmission spectra are simulated using the PLATON (Zhang et al.,
2020) where the parameters cover the range of the hot Jovian planet. The synthetic
photometric observations are then created by binning and weighting spectra that
include noise, explained in section 3.1. In section 3.2, we explain the atmospheric
parameters are estimated using a machine learning model from Scikit-learn (Pedregosa
et al,, 2011). Section 3.3 describes the optimal filter investigation where the feature
importance of the machine learning model is used to examine the optimal filter set.
The calculations are carried out on a machine with a Core i9-10900 CPU and 32 GB
of RAM that runs Ubuntu 18.04.2 LTS at National Astronomical Research Institute of
Thailand (Public Organization) (NARIT). The flowchart explaining overall methods is

represented in figure 3.1.

3.1 Synthesize transmission spectra

This thesis mainly focuses on hot Jupiters, gas giant exoplanets with ex-
tremely short orbital periods of P < 10 days (Gaudi et al., 2005). Planet mass (Mp),
planet radius (R;), planet atmosphere temperature (T), the metallicity of the plan-
etary atmosphere (log Z), and atmospheric carbon to oxygen ratio (C/O) are the
key parameters studied here. Using the PLATON forward model, 100,000 hot Jupiter
transmission spectra are generated by uniformly, randomly selecting the values of
these parameters within the range specified in table 3.1. The chosen values for
planetary mass and radius are within 68 and 95 percent confidence ranges of the
mass-radius relationship of Jovian exoplanets, respectively (Chen and Kipping, 2016).
The planets are thought to revolve around a solar-analog star. The planetary atmo-
spheric temperature investigated here covers the temperature range of the hot Jovian

planet (Madhusudhan et al., 2014). The values of metallicity and the carbon-oxygen
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Generating data Synthetic observation
Random parameters ) Simulate 100,000 spectra —> Binning with 10 filters
(Mp, Rp, T, logZ, C/O) "~ (PLATON: Transit depth calculator) {Johnson-Cousins and SDSS)

!

Retrieving parameters using random forest regressor

Splitting data Tuning hyperparameters 3
(80:20 for traintest) —> (GridSearchCV) —>» Bestmodel —> Parameters prediction

Optimize the filter transmission

Optimization using | 5] Eliminate filter with the lowest feature importance - Repeat the process |
| feature importance {per iteration) | with remaining filters |

Figure 3.1 The flowchart for retrieving exoplanet atmospheric parameters from the
synthetic transmission spectra in the optical wavelength using a random forest regres-

sor and for the filter optimization.

ratio of the atmosphere used here cover all possible values of those parameters in
PLATON (Zhang et al,, 2020). The test of the transmission spectra variation due to
the parameters changing is also produced by PLATON. The changes of transmission
spectra by the variation of temperature, the 10-based logarithm of metallicity, and

carbon-oxygen ratio are shown as an example, in figures 3.2, 3.3, and 3.4 respectively.

Table 3.1 The input parameters for generating the spectra using the transit depth
calculator module in PLATON. Note that M, is in Jupiter mass (M,) and Ro is in earth

radius (Rep).
Parameters Value References
Planetary mass (M) 0.3M; — 3M, Stevens and Gaudi (2013); Chen and Kipping (2016)
Planetary radius (R,) 8Rp — 20Rg Borucki et al. (2011); Chen and Kipping (2016)
Planetary atmospheric temperature (T) 1,300 — 3, 000K Madhusudhan et al. (2014)
Metallicity of planetary atmosphere (log 2) =1—3 Zhang et al. (2020)

Atmospheric Carbon-Oxygen ratio (C/O) 0.35 — 1 Zhang et al. (2020)
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Several transit observations have been made from the ground using broad-
band optical filters. The optical filters chosen in this study are Johnson-Cousins
(U, B, V, R, ) and Sloan (u’, ¢’, r’, V’, z’). To synthesize transmission spectra of
optical observations, the transmission profiles of the filters are utilized to weight
the transmission spectra simulated using PLATON, as presented in figure 3.5. The
Johnson-Cousins transmission curves are acquired using the PyAstronomy package’s
photometric transmission curves class (Czesla et al,, 2019). Sloan Digital Sky Survey
Data Release 7 (SDSS Data Release 7: http://classic.sdss.org/dr7/instruments/imager/
#filters) provides the Sloan filter profile. The weighted transmission curves represent

the transit depths of the relevant filters.

3.2 Machine learning method

The science of training machines to learn is known as machine learning. In
the learning problem, the set of n samples of data is considered for the prediction
of the properties of unknown data. If each sample contains the multiple input data,
it is said to have several attributes or features. Learning problems are divided into
two categories: supervised and unsupervised learning. Supervised learning refers to
data that contains additional properties that we want to predict. The problem of
unsupervised learning occurs when training data consists of a set of input data with

no corresponding target values.

3.2.1 Random forest regressor

A Random Forest is a supervised learning method that can be used for clas-
sification and regression. It works by training many decision trees. The output of the
individual trees for the classification and the regression are the class (discrete value)
and predicted value (continuous value), respectively. The random forest regression
method is applied in this research to retrieve the parameters from transmission spec-
tra. The spectra from 100,000 synthetic transmission spectra of 10 Johnson-Cousins
and Sloan filters were divided into two groups: 80,000 for training and 20,000 for
testing. The model features are ten binned transit depths, whereas the labels are
five planetary parameters (M,, R,, T, log Z, and C/O). To decide which attribute value

would result in the “best split”, the decision tree regression method examines all
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Figure 3.2 The variation of transmission spectrum due to the variation of temperature.
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logZ variation R = 10,000
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C/O variation R = 10,000
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Figure 3.4 The variation of transmission spectrum due to the variation of carbon-

oxygen ratio.
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Figure 3.5 A synthesized transmission spectrum (red) obtained by simulated trans-

mission spectra from PLATON (turquoise) weighted by the transmission profiles of the

filtters (b) (Munsaket et al., 2021).
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attributes and their values. In the case of regression problems, the algorithm consid-
ers the mean squared error (MSE) as the objective or cost function that should be

minimized. The MSE over the n samples is calculated as follows

MSE(y,y) = — Z( — )% (3.1)

n i=o

where §/i is the predicted value of the i sample and y; is the corresponding true

value.

3.2.2 Tuning hyperparameters

Hyperparameters are the parameters that cannot be directly learnt by the
machine. The key parameters for random forest regressor are the number of trees
(number of estimators) and the maximum depth of each tree. Both hyperparameters
are tuned using the GridSearchCV module in Scikit-learn (Pedregosa et al., 2011). When
training the model, cross-validation is performed through the use of GridSearchCV.
Note that we divide the data into two parts before training the model, which are
training data (80%) and test data (20%). The procedure of cross-validation is to split
the training data further into two parts: the training data and the validation data. In
our research, we use K-fold Cross-validation. It is an iterative process that partitions
the training data into K parts. During each iteration, one part is kept for testing
(validation), while the remaining K-1 partitions are used to train the model. In the
next iteration, the next part will be used as test data, and the remaining K-1 will be
used as train data, and so on. It records the model’s performance in each iteration
and provides the average of the performance at the end. This is a time-consuming
process, so we use the default 5-fold (K=5) cross-validation of the GridSearchCV
module in Scikit-learn. The best random forest regressor model obtained from the
hyperparameter tuning is applied to predict the parameters for the test data set.
Then, the predicted results and the computational time required are compared to
the results of the standard PLATON retrieval. Note that both random forest regressor
and PLATON are carried out on a machine with a Core i9-10900 CPU and 32 GB of
RAM that runs Ubuntu 18.04.2 LTS at NARIT.
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3.2.3 Model evaluation

To evaluate the random forest regressor model, we use the coefficient of
determination (R?) which indicates the goodness of the machine learning model’s
prediction. The model with the highest R? is our best model. The estimated R’

defines as

Zin——‘l(Yi - 91)2
Zin:1<yi - 9)2 7

where )A/i is the predicted value of the e sample, y; is the corresponding true value

R*(y,y) =1 — (3.2)

for total n samples and

L .2
y =->_vy. (3.3)
ni=1
Note that R* = 1 means all predicted values equal to the real values. R? = 0

means the predicted values are all the same as the average values (y). Negative R

occurs when the average value (y) explain the data better than the model.

3.3 Optimal filter investigation

3.3.1 Feature importance

From ten optical filters including Johnson-Cousins (U, B, V, R, 1) and Sloan

(u’, ¢, r, 1", z’), we do not know how each filter affects the prediction of random
forest regressor. Therefore, the feature importance is applied to investigate the filter
set suitable for the hot Jupiter atmospheric study. The importance of the feature i

(fi;) in Scikit-learn is calculated as
> ni;
fi, = — )
Zk nik

where j is the node that splits on feature i and ni; is the importance of a node j in

(3.9)

a single decision tree. The index k is all nodes. The ni; is calculated by

Nij = Wi — Wiert(j) Clert()) — Wright(j) Cright () - (3.5

The w; is the weighted number of samples reaching node j, G is the impurity value

of node j. The subscript left and right indicate the parameter of child node from left
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and right split on node j, respectively. Note that the child node is a possible split
node from the root node. If it cannot be further split, this node becomes a leaf
node. To normalize the importance of the feature i to a value between 0 and 1, the
equation 3.4 is divided by the sum of all feature (1) importance values,
fi
|| = —. (3.6)
2 fi

Finally, the feature importance of a random forest model (RF;) is calculated by the
sum of the feature’s importance value on each tree divided by the total number of

trees (1),

fi
o — I | hJH’ 57
T

where Hﬁin is the normalized feature importance for feature i in tree j.

3.3.2 Filter selection

The transmission data binned into the optical filters are considered as the
features of the machine learning model. As mentioned earlier, there are ten filters in
total from Johnson-Cousins and Sloan filter sets. In this research, we use the feature
selection process to reduce the number of filters based on their importance. The
process is done by calculating the significant impact of all filters on the machine
learning model’s prediction. For the random forest regression model, the importance
of the features is used to select the filters. Higher score indicates that the considering
feature is more significant compared to the one providing lower score. The process of
the first iteration starts with tuning the hyper-parameters for ten filers and training the
machine to obtain the best model, then predicts the labels with the best model and
finds the importance of ten features. The feature importance package from Skit-learn
(Pedregosa et al., 2011) used here performs the calculations as shown in equation
3.4. The filter with the lowest importance is eliminated for the next iteration, then
the process will repeat for the remained filters, and so on until the last two, most
important, filters left. Then, the rank of important filters for observations can be

obtained by considering the order of their importance.



CHAPTER IV
RESULT

4.1 Machine learning model

The hyperparameter tuning is performed using the GridSearchCV package
in Scikit-learn. Figure 4.1 shows the accuracy (R?) of predicted results for various
numbers of estimators and maximum depths of the tree, which are represented in
the x and y axes, respectively. The lighter color represents the higher accuracy of
the corresponding machine learning model. For the maximum depth of 320 and
the number of estimators of 2,560, the best cross-validation score is obtained (R? =
0.5949). Therefore, the planetary parameters from 20,000 spectra in our test data set
are predicted by the random forest regressor model with these best hyperparameter
values.

In figure 4.2, the comparisons between real and predicted values of five
parameters from a random forest model are represented in light blue points. The
red dashed lines represent the cased that real values equal predicted values. We
also plotted the retrieved results of nested sampling in PLATON with the number
of live points 50 and 100, represented by blue and green points, respectively, to
compare with the random forest regressor prediction. The random forest regressor
model predicts R, with the highest accuracy (R? = 0.999), and Mo, T, and log Z
with intermediate accuracy (R* = 0.742, 0.571, and 0.638, respectively). However, our
model is unable to predict the C/O ratio because the transmission features caused

by the C/O variation are not significant enough in the optical bands.

4.2 Model efficiency

To consider the performance of our random forest regressor model, the
results from our model are compared to those obtained from the nested sampling
fitting model in the standard PLATON. A sample of 100 spectra is simulated and
retrieved with the PLATON. The number of live points in the nested sampling model
was selected to be 50 and 100. All models are tested on a PC with a Core i9-10900
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Figure 4.1 The cross-validation score (R?) obtained by tuning hyperparameters using

the GridSearchCV with the 5-fold cross varidations (Munsaket et al., 2021).

CPU and 32 GB of RAM running Ubuntu 18.04.2 LTS to compare computational time.
The results are shown in the table 4.1. The random forest regressor outperforms the
PLATON nested sampling model with 160,000 and 270,000 times faster for 50 and 100
live points, respectively. Accordingly, the accuracy obtained by the regressor model

is comparable to that of the PLATON retrievals.

4.3 Filter optimization

We use the feature importance to arrange the filters by their importance
values. From the total number of filters, the process starts by tuning the hyperpa-
rameters using GridSearchCV, making prediction by using the tuned model and finding
the importance of features (filters), eliminating the filter with the lowest importance

for the next iteration, and the remaining filters will be used in the next iteration. The
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Table 4.1 The performance of our random forest regressor model is compared to
that of the PLATON retrievals with 50 and 100 live points. Note that the models are
run on a machine with a Core i9-10900 CPU and 32 GB of RAM that runs Ubuntu
18.04.2 LTS (Munsaket et al., 2021).

Approach Data sets Time spent Coefficient of determination (Rét)

(HrMin:Sec) M, R, T gz C/O
Random forest regressor 20,000 0:0:14 0.742 0.999 0.571 0.638 0.129
PLATON (nlive=50) 100 3:12:8 0.780 0.999 0.546 0.659 -0.842
PLATON (nlive=100) 100 5:16:45 0.791 0999 0.616 0.591 -0.604

process is repeated until only two filters remain. The result of this step is shown
in figure 4.3. The x-axis represents the number of filters from the first (10 filters) to
the last iteration (2 filters). The y-axis represents the filters, starting from the first
eliminated filter and so on. The empty area represents the eliminated filter in each
iteration. The colors correspond to the value of the importance, where the darker
color represents the lower feature importance. The Johnson-Cousins U and | are the
two remaining in the final, which are the filters of the highest importance.

To investigate the optimal number of filters, we considered the feature
importance changing with the number of filters. In figure 4.4, the data points at
each number of filters are the according to form predictions using the best model of
the same filters’ number in the figure 4.3. The prediction accuracy of the planetary
radius gives the highest value, which is consistent with the figure 4.2. For other
parameters, the accuracy is almost flat between 10 and 7 filters. After that, the
accuracy significantly decreases. The accuracy in the prediction of temperature and
carbon-oxygen ratio was negative at two filters. We also check the GridSearchCV best
score of each random forest regressor model, as shown in figure 4.5. The plot of
the cross-validation score appears to be flat between 10 and 7 filters, consistent
with the figure 4.4. Figure 4.6 shows the prediction trends of the filter optimization,
which represents the performance trend of each filter combination. Figure 4.7 shows
the filter transmission profiles of the filter combinations obtained from the filter

optimization using the lowest feature importance elimination.
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Figure 4.2 The real and predicted values of five planetary parameters: (a) planetary
mass, (b) planetary radius, (c) planetary atmospheric temperature, (d) metallicity of
the planetary atmosphere, and (e) Carbon to Oxygen ratio in the atmosphere, of
20,000 test sets using a random forest regressor (light blue), the PLATON nested
sampling retrieval with a number of live points of 50 (blue) and 100 (green). The red

dashed lines show the perfect prediction lines (Munsaket et al., 2021).
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Figure 4.3 The feature importance obtained by the random forest regressor model

varies with the number of filters ranging from 10 to 2. The white area represents the

eliminated filters for each iteration.
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CHAPTER V
DISCUSSION AND CONCLUSION

The best random forest regressor model with 80,000 training data and 20,000
test data consists of several estimators of 2,560 and a maximum depth of 320. The
results compare with the estimated results from the nested sampling fitting model
of PLATON with the number of live points set at 50 and 100. From the comparison,
the accuracy obtained by the regressor model is comparable to that of the PLATON
retrievals. The random forest regressor outperforms the PLATON nested sampling
model using 50 and 100 live points by 160,000 and 270,000 times faster, respectively.
The random forest regressor model accurately predicts the planetary radius and the
acceptable accuracy in predicting planetary mass, temperature, and metallicity of the
planetary atmosphere. Temperature predictions obtain a similar trend as the previous
Marquez-Neila et al. (2018)’s work, with an overlap temperature range. The model
does not correctly predict C/O due to the variation of C/O, which results in low
sensitivity in the transmission spectra.

In filter optimization, we use the feature importance to rearrange the optical
filters. The filter with the lowest importance is eliminated in every iteration. We obtain
the descending order of the filters as I, U, ¢’, i’, B, V, z’, u’, r’, and R. The filters
with low importance have a negligible effect on the prediction of the exoplanet’s
parameters. When the parameters’ prediction accuracy is considered, the optimal
number of filters that yields the closest prediction to the highest number of filters is
7. The negative values in the predictions of log Z and C/O are seen at the lowest
number of filters, which means the average value explains the data better than the
model. From the prediction trend of the filter’s optimization, the prediction trend of
the planet mass decrease when the mass is bigger than 2.1 M. For the prediction of
the logarithm of the metallicity, the model gives a high accuracy when the logarithm of
metallicity is between 0.5 and 2. The temperature prediction performance decreases
when the number of filters decreases.

In the prediction with the lowest accuracy of the C/O ratio, we expect

that our coefficient of determination will be higher if the C/O ratio is not a model’s
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feature. We hope that this interesting point will be investigated in the future. Other
machine learning models and hyper-parameters are not tuned in this work, which
might also help improve the prediction efficiency. All synthesized transmission spectra
are simulated from only one random seed. Hence, the error bar of accuracy is still

not included in this work. All of these can be investigated more in future work.
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REAL-PREDICTION PLOTS OF FILTER OPTIMISATION
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