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Abstract

The Aiyara B1 cluster is a model of the power-saving cluster that had been
developed after the Aiyara Cluster Mk-l. The B1 cluster had been improved by re-designing
the hardware cdnﬁguration of the physical cluster and re-implementing the two logical
clusters which run on top of the physical one.

This report contains the development and the experimental results of the
characteristics of the Aiyara B1 cluster, mainly the data processing rate. After the redesign
and improvement, it is found that the Aiyara Bl cluster is almost 2 times faster than the
Mk-1 model. Additionally, this report also discusses the power consumption aspect of the

Aiyara B1 cluster too.
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Chapter 1

Introduction

Hadoop [1] has been a de facto standard for unstructured and semi-structured Big
Data analytics recently. It contains two major components, namely the Hadoop Distributed
File System (HDFS) [2] and the MapReduce engine. The technology behind HDFS is based on
the concept of the Google File System [3], while Hadoop’s MapReduce engine implements
the Map-Reduce programming model [4]. Widely adapted to run both on the cloud and in
corporate sections, Hadoop has been included in several software stacks for Big Data, such
as CDH from Cloudera, MapR, and Hortonworks, for instance. Also in early 2014, Intel

invested in the Big Data industry to further fund the development of Hadoop’s ecosystem

[5].

Unfortunately, the public cloud is not a safe place for storing corporate data. Many
serve security exploits have been discovered and widely-spread ones, for example, the
Heartbleed exploit [6], which may put data on the cloud in danger. Some of these security
exploits are reported to be known by intelligence organizations years before being revealed
to the public [7]. Thus, the cloud outside the corporate is not an option for processing

sensitive data to date.

A corporate usually consider building its own data center to store its data as an
alternative choice to the public cloud. However, a data center is an expensive investment,
both in terms of constructing and operating. According to Hamilton’s cost model of data
centers [8], more than 35 % of the total cost is the building facilities, the electrical power,
and the cooling operations. So, small or medium-size corporates may not be affordable to

maintain their own ones.

Big Data clusters made with ARM-based system-on-chip boards would be a better
choice compared to building a data center. Kaewkasi and Srisuruk reported that they
successfully built a Hadoop cluster with this kind of board and used it to process Big Data in
an acceptable time [9]. Besides their work, there were several efforts that also studied a

cluster made with commaodity ARM boards [10], [11], [12], [13].



However, an ARM cluster is known to suffer from low performance because of fts
power-efficient nature. In the previous work [9], there was a conclusion that the CPU power
of the ARM cluster is the primary reason that prevents this kind of cluster from being used in
the production environment. This performance limitation motivated the work described in
this report to further optimize Hadoop and the related software stack on the new Aiyara B1
cluster. This work described in this report further exploring of an effort to reduce the CPU

usage in other parts of the system to increase the overall performance of the cluster.

Although the whole software stack, including the operating system, and the Java
Virtual Machine (JVM), was optimized, this work focused on the optimization of Hadoop, and
Spark [14]. The research questions of this work are as follows. Firstly, how does the data
integrity verification in HDFS affect the performance of the cluster? Secondly, how does the
data compression used by Spark affect the performance of the cluster? Finally, how does

the power consumption relate to this performance tuning?

To answer these questions, we propose a new hardware configuration of the Aiyara
B1 cluster based on an ARM cluster reported in [9]. The performance improvement of the
new model is described in this report. The filtered version of the most frequent word (MFW)
program, also mentioned in [9], was used for benchmarking the cluster in this work. Also, the
versions of Hadoop and Spark used in this work is the same one as bundled in Cloudera’s
CDH5 [15]. It was intended to demonstrate that the cluster could perform data analytics

using one of the de facto Hadoop distributions.

The contributions of the work described in this report are as follows. Firstly, a set of
performance improvement techniques, including their parameters, for Hadoop and Spark on
the Aiyara B1 cluster, is presented. Secondly, the power consumption measurement of
different software configurations is presented. It is also interesting to find that power
consumption can reflect the behavior of the transformation stages of Spark. The remainings

of this report are organized as follows.



Chapter 2 discusses related works. Chapter 3 presents the cluster machine, both in
physical and logical forms. Chapter 4 discusses performance tuning techniques. Chapter 5

reports and discusses the experimental results, and this report ends with a conclusion and

future works in Chapter 6.



Chapter 2
Related Works

A low-power cluster for Big Data has not been widely studied because of the reason
of the inadequate power of this family of processors. However, there have been several

works recently trying to develop and optimize this kind of cluster for Big Data.

2.1.  Microwulf

Microwulf [20] has been presented in 2008 as a cluster designed to follow Beowulf’s
architecture. It was considered a cheap cluster because its price-to-performance ratio is
under $100 per GFLOPS. The machine could be performing well under 25 degrees Celcius.
Like the Beowulf cluster, Microwulf has been designed to be a computing cluster, so it is
quite different from a Big Data cluster from the application’s perspective. Microwulf’s tasks

are usually CPU-bound, while the tasks for a Hadoop cluster are often I/O bound.

2.2.  lIridis-Pi

Iridis-Pi [10] is a small version, made of the Raspberry Pi Model B [21], of the Iridis
super-computer at Southampton. Iridis-Pi consists of 64-node Raspberry Pi boards, each
equipped with a 700 MHz processor. The Model B of Raspberry Pi has 512 MB of RAM.
Similar to Microwulf, Iridis-Pi is a demonstrating cluster for intensive computation with MPL.
Although a Raspberry Pi board has been successfully employed in these computing
applications, it is not for an application like Big Data processing. Not only Raspberry Pi
has a processor speed of 700 MHz but also has a limited amount of memory. A Hadoop
cluster requires each node to run both HDFS and Spark software together, thus it is
obviously too heavy for a Raspberry Pi board.

2.3.  Whitehorn Cluster

This inefficiency of Raspberry Pi in the Big Data area has also been demonstrated on
a 5-node cluster by Whitehorn [1]. The author reported that the size of Java’s heap can be
allocated very limitedly at 272 MB from the total memory of 512 MB. The author also
mentioned that this kind of cluster could not be used in production. Later the developers at

Cubietech [13], the company behind Cubieboard, formed an 8-node cluster using Cubiebard



A10, similar to ours. It was the first time that Hadoop, both HDFS and the MapReduce

engine, could be used to perform trivial tasks but not for processing real-world data.

2.4. The Aiyara Cluster Mk-|

As the prior work of this work described in this report, Kaewkasi and Srisuruk reported
that their 22-node Cubieboard A10 cluster has successfully processed a non-trivial size of
data, 34 GB, in an acceptable time [9], where the median size of Big Data reported in [22] is
approximately 15 GB. Instead of using Hadoop’s MapReduce engine, they deployed Spark on
top of the HDFS layer. They identified the inadequate CPU’s power as the bottleneck of
their Hadoop cluster and found that the CPU was spent mainly on the Hadoop’s I/O.

Motivated by their works, the work described in this report further explores the
characteristics of performance and power consumption of the new model, the Aiyara Bl

cluster.



Chapter 3

Cluster Machine

This chapter describes the hardware and software configuration of the Aiyara Bl
cluster. There are two logical clusters, an HDFS, and a Spark cluster laid on top of the

physical cluster.

3.1.  Physical Cluster

The physical cluster used in the work described in this report extends the best
performance configuration reported in [9]. Each node in this new model, the Aiyara B1, is
equipped with an ARM Cortext-A8 SoC board at 1 GHz with 1 GB RAM and 100 Mbps
Ethernet PHY port. All worker nodes are connected with a 60 GB SSD each via the SATA port.
From the previous work [9], the authors reported that a cluster with SDs is less stable than
one with mechanical drives. In this work, the cluster’s stability had been observed and
found that the less stability was caused by inadequate power supplies. When the cluster
was starting up, its power consumption would be spiking to, at least, two times its idle state.
This led to the random disconnection of SSD block devices, /dev/sda, on some nodes. A
consequence would be the failure of some HDFS’s DataNodes, and finally, the whole cluster
could not continue working. After this finding, more power supplies were added to the

cluster.

Fig. 1 - The hardware configuration of the Aiyara B1 cluster.



For the current hardware configuration, there were 5 power supplies for worker
nodes. Each was divided to serve 4 nodes, i.e. 4 boards and 4 SSDs. The driver and the
master node were powered separately by a small supply, as no power spiking was found

from them.

Fig. 1 shows the hardware configuration of the cluster. Marker (a) is a Gigabit Ethernet
switch connecting all nodes together. The 5 power supplies are located at marker (b). ARM
SoC boards wiring together via their Ethernet ports are at marker (). Boards on the left-hand
side are the Spark Driver and the master node of both HDFS and Spark. On the right-hand
side of marker (c) are the ARM boards. Each of them runs a Spark Worker and an HDF5
DataNode. Each SSD attached to the ARM board is lined altogether in a row at marker (d).

3.2.  Logical Clusters

The diagram in Fig. 2 illustrates the component architecture of the cluster.

—
~
f
coordinate fork
Spark » Spark |T> Spark
Master Worker Executor
L/ N
report ask
control read
trol e
contro
Ph sical HDFS == HDFS
Spark y DataNode ) report NameNode
Driver Nodes >
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Fig. 2. The logical block diagram of the Aiyara B1 cluster.

There are both a Spark Worker and an HDFS’s DataNode on the same physical node.
A job execution will be starting from the Spark Driver node. It will submit a job to the Spark
Master and the job will be serialized and sent to all available Spark Workers. Just before
executing the job, the Spark Worker will fork a Spark Executor, which is responsible for
processing the job’s data. A Spark Worker is supervising one or more Spark Executors. If one
of them dies, its supervisor will fork another Executor to recompute the lost tasks. To
process the job’s data, the Executor will ask about the data block’s information from the

HDFS’s NameNode, located on the physical master node. Then, the Executor will read the



actual job’s data, 64 MB each, from the nearest’s DataNode, which is usually on the same
physical node. This locality level is called NODE_LOCAL in Spark. Shaded blocks in Fig. 2

represent the HDFS cluster, while others represent the Spark cluster.

3.3.  Software Upgrades
Upgrading the software stack to Hadoop and Spark of CDH5 made the cluster
unstable at first. There are several changes inside them that prevent the software to run out

of the box on the cluster.

Firstly, the default block size in Hadoop version 2.3 is 128 MB instead of 64 MB as in
version 0.20 [2]. This was the first cause that made the benchmarks fail. So, the block size

value of 64 MB was selected in our experiments.

Secondly, the whole software package required a larger amount of memory
compared to the previous work [9]. The first observation found was that a number of Spark
Executors had died silently. It was later revealed that the Executor’s processes were killed
by the operating system as the whole system was running out of memory. This caused Spark
Workers to try to re-spawn their Executors several times and eventually made the cluster fail
to complete the job. This problem had been prevented by creating a swap partition on the

built-in NAND flash device to allow a larger amount of memory.

Thirdly, we also found that the ext4 file system is not suitable to use as Spark’s spill
directory. A spill directory is used to temporarily store intermediate results during the data
shuffling stages [16]. Spark will be creating a lot of directories and files, and sometimes
performance degradation could be observed. In the worse case, a file or a directory was
reported as not being found. With the swap partition prepared for Spark Executors, it was
decided to move Spark’s spill directory to a tmpfs file system which was mapped onto the
virtual memory. With the tmpfs, Spark would then spill the intermediate results off-heap
rather than directly to the disk. Then the paging out mechanism would help flush these
results to the swap partition as big blocks, rather than a set of small files written to the ext4

file system. Fig. 3 describes the architecture before (a) and after (b) settings.



fMemory

store M
HDFS | Spark > Heap
DataNode Executor L
Spilll
Local
ext4
(@)
/,Memow ‘\
store A N
HDFS < - Spark " tmpfs
DataNode Executor P

page out

Swap
Partition

the setting (b) after the improvement.

Fig. 3. The setting (a) before the performance improvement and




Chapter 4

Performance Tuning Techniques

This chapter discusses a number of performance tuning techniques applied to the
cluster after it is made stable. The following topics, namely JVM, data integrity verification,

and data compression, are tuned to boost the performance of the cluster.

4.1.Java Virtual Machine
Hadoop and Spark are written in JVM-based languages, so they run on the JVM.
Practically, the parameters of the JVM affect the performance of Hadoop and Spark directly.
Moreover, both Hadoop and Spark have an assumption that they will be running on
server-class hardware, so their several default parameters are not fit for an ARM processor.

To understand this, internal switches of the JVM are needed to observe.

The internal of Oracle’s JVMs for ARM is studied and switches of the two virtual
machines, the JDK 1.7.0 51 and the Embedded Java Runtime Environment (EJRE), were
compared. Al default switches of both JVMs were listed and the following was found. The
JDK compiled for ARM contains both versions of HotSpot VM, the client (C1), and the server
(C2), similarly to the desktop JDK. However, C1 is not compiled to be hard float. It does not
support ARM’s VFP nor ARM’s NEON instructions. This unsurprisingly makes C1 very slow on
an ARM board.

In contrast, C2 is compiled to be hard float, supporting both VFP and NEON. So the
benchmarks were conducted on the cluster using C2, the server mode of the JVM. The EJRE
is an optimization and commercial version built on top of the normal JDK. There are
real-time-related switches in the EJRE and it disables UsePerfData by default. The EJRE
contains only a single virtual machine. The JVM used in our experiments is the JDK and it is

tuned using the same switches found in the EJRE.
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4.2.Data verification with CRC32

Hadoop uses CRC32 to verify data integrity [2]. An HDFS’s DataNode adds an extra
1-byte checksum for every 512-byte data block. Anyway, it is less than 1% extra storage
required for integrity verification. In the early versions of Hadoop, there is only Java
implementation of the CRC32 algorithms. Later in Hadoop 2.2, it is found that using a JNI
library, libhadoop, to help compute CRC32 checksum will be faster, especially for a
processor that supports special instructions for CRC32. Anyway, libhadoop does not support
properly for the ARM architecture, especially on the armhf architecture. 5o, the build
process of Hadoop is required a small modification to enable the libhadoop on ARM. A step
further to try optimizing the CRC32 checksum is to patch libhadoop with NEON-enabled
instructions [17]. So, in our experiments, there were 3 kinds of CRC32 computations, which
are the Java implementation, the native libhadoop implementation, and the NEON
libhadoop implementation.

Table 1 lsts these 3 configurations in combination with data compression

configurations, mentioned in the Data Compression section.

Table 1. All configurations that are used in the performance tuning techniques.

Configuration Name Description

java-nc Disable libhadoop in both Hadoop and Spark, and disable compression in Spark.

java-cm Disable libhadoop in both Hadoop and Spark, but enable compression in Spark with
libsnappy.

native-nc Enable the default libhadoop in Hadoop and Spark, but disable compression in Spark.

native-cm Enable the default libhadoop in Hadoop and Spark, and enable compression, libsnappy, in
Spark.

neon-nc Use the NEON-based libhadoop in Hadoop and Spark, but disable compression in Spark.

neon-cm Use the NEON-based libhadoop in Hadoop and Spark, and enable compression, libsnappy,
in Spark.

11



4.3.Data Compression

Data compression has been reported that improves performance in general cases, sO
it is enabled by default in Spark [16]. But there is an assumption that data compression
requires extra CPU power, so it is not suitable for a constrained cluster formed with ARM
processors. Data compression implementations that came with Spark are LZO and Snappy
[16]. LZO uses Java’s Unsafe package to improve performance, while Snappy uses JNI and
required separated libsnappy. LZO failed to use because Java’s Unsafe package does not
work correctly on the ARM version of JVM, so we switched to Snappy. The default version of
libsnappy has been built as a dynamic shared library, so it requires tweaking and rebuilding
again. The libsnappy can be enabled by setting the compression codec of Spark to
SnappyCodec. In our experiments, we used both compression and non-compression
configurations in combination with other 3 CRC32 configurations. Thus, there were 6 different

configurations for the experiments, as shown in Table 1.

12



Chapter 5

Experiments

This chapter describes the experiments and discusses their results. We will run
performance evaluation experiments for all 6 configurations mentioned in Table 1 in chapter
4 We used the modified version of the MFW program, called cache-enabled MFW (CMFW),

as the benchmark program.

5.1.Benchmark Program
Fig. 4 shows the CMFW program used in this work. As Spark’s Executor is
fault-tolerant by design [14], [19], its behavior of crashing, recovery and recomputation of
lost tasks is a norm. This makes the whole cluster’s behavior non-deterministic. It was found
that we could not easily complete all benchmark stages without recomputation. To have a
higher possibility of obtaining the exact experimental results, network-related parameters

were set to be large enough for every node not to be timed out.

// sc is an object of SparkContext
var tf = sc.textFile("hdfs://...")
var r0 = tf.flatMap(_.split (" ").
matches ("\\w+")) .

map(_, 1).

reduceByKey (_ + _) .

cache ()
var rl = r0.map(_.swap) .

cache ()
rl.sortByKey(false).take(lO)

Fig. 4. The cache-enabled MFW program.

5.2.Performance
Fig. 5 shows the results of benchmarking 6 configurations of the cluster using the
CMFW program. The results are directly collected from the Driver’s console. The results are
broken down as Spark’s stages. According to Fig. 5, the largest portions of the results are in
the first stage, reduce, as they are the parts the program spent for reading data from HDFS.
Time spent for the sorting stages of all benchmarks is insignificantly different as they all

involved shuffling a small amount of data, around 600-800 MB, over the network. Al

13



compression configurations, suffix denoted with -cm, used a larger amount of time
compared to non-compression configurations, suffix denoted with -nc, because the former
ones spent extra CPU time to compress the intermediate results at the reduce stage. The
fastest configuration is java-nc, but processing times of all non-compression configurations

are insignificantly different, anyway.
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Fig 5. Processing time in minutes of all 6 configurations broken down by Spark’s stages.

Lower is better.
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Fig. 6 shows the processing rate of all configurations in GB/min. The best
configuration reported here is around 0.9 GB/min, almost 2 times faster than the results

reported by the previous cluster, the Alyara Cluster Mk-.
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Fig. 6. Data processing rate in GB/minute of all 6 configurations. Higher is better.

5.3.Power Consumption

The energy consumption of each node is defined using the following equation,
k
e=V- z 1, At,
n=1

where e is energy consumption in Wh, V is electric potential in Volt, 1, is electric

current at index n in Ampere, and k is the time index of interest.

Fig. 7 shows averaged power consumption per physical node. The less
power-consuming configurations are the NEON-enabled configurations. The main reason is
that NEON is a specially designed instruction set for the ARM processor, so utilizing it makes

the CPU consumes less power than Java configurations. The Java configuration with

15



compression, java-cm, consumed the largest amount of power. This can be concluded for
two reasons. First, the data compression requires extra CPU time, as previously mentioned.
Second, the JVM requires code profiling and performs dynamic compilation during the
execution, so the power is spent by the JVM on these activities. To better illustrate that the
Java configurations consumed the larger amount of power, electric current consumption

graphs are shown in Fig. 8.
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Fig. 7. Average power consumption per node for all 6 configurations. Lower is better.
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Fig. 8. The behavior of electric current consumption over time for all 6 configurations.

It is clear that the first and the fourth graphs for Java configurations, prefix denoted
with java-, are less smoother than other configurations, especially in the first 30 minutes of
processing. It is obvious from the internal behavior of the JVM. In contrast, the current
consumption of the other 4 configurations is smoother as the HDFS layer does not use much

power when libhadoop, which is written in the C language, is used by the cluster.

To summarize the power consumption of the cluster, Fig. 9 shows the peak and
maximum average electric current consumed by each configuration. It is clear that
NEON-enabled configurations, prefix denoted with neon-, are the best for energy saving. The
processing rate and the power consumption ratio in Fig. 10 conclude that the best
configuration balancing  both performance and power consumption  is neon-nc, the

NEON-enabled configuration with non-compression.
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Chapter 6

Conclusion and Future Works

This work described in this report presents a hardware configuration and a study of
performance tuning of the Aiyara B1 cluster, an ARM cluster with 5SD storage for data
analytics using Hadoop’s distributed file system and Spark. Then, the effect of performance
tuning on power consumption is presented along with a set of tuning techniques. The
techniques include re-architecting the software stack, tuning parameters of the JVM, and
replacing parts of Hadoop and Spark with C libraries for both speeding data verification and
data compression up. The results have shown that the fastest cluster configuration is almost

2 times faster than the previous results of the Aiyara Cluster Mk-l reported in [9].

The fastest configuration can process the same size of data, the Wikipedia article of
size 34 GB, in roughly 38 minutes. Unsurprisingly, the configurations running only on the JUM
consumed more power than those with C libraries. Data integrity verification with NEON
instructions enables consumed less power than the native libhadoop. Data compression in
Spark requires extra CPU time, so it is recommended to be disabled when processing data
with ARM processors. The most balanced configuration is neon-nc, the configuration with

NEON-enabled and non-compression.

New ARM system-on-chip boards equipped with massive co-processor cores, i.e. GPU,
have emerged recently. With their low-watt and highly-parallel characteristics, it would
be possible to explore an opportunity to process Big Data with the second-level parallelism

provided by these massive co-processors.
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