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Spatiotemporal PM concentration prediction using MODIS AOD with significant 
PM factors in rural and urban landscapes in Thailand is necessary to the public due to 
the limitation of the PM monitoring station. The study will provide the spatial pattern 
of PM10 and PM2.5 concentration and air quality index classification in both landscapes 
in the winter and summer seasons at the district level. The derived results can be used 
as a guideline for improving air quality and reducing impacts on human health. The 
research objectives were (1) to identify significant factors on PM10 concentration in the 
rural landscape and PM2.5 concentration in the urban landscape in the winter and 
summer seasons and their relationships using the multicollinearity test and the OLS 
regression analysis, (2) to predict spatiotemporal PM10 and PM2.5 concentration using 
GWR and MEM models, and (3) to evaluate a suitable spatiotemporal model for PM10 
and PM2.5 concentration prediction and validation. 

This study firstly prepared dependent and independent variables, including 
ground-level PM concentration, relative humidity, temperature, wind speed, pressure, 
visibility, brightness temperature and fire radiative power variables using the identified 
optimum interpolation method. The remaining independent variables, including MODIS 
AOD, NDVI, BUI, road density, factory density, elevation, fire hotspot, population 
density, and GPP, were prepared using spatial analysts. Then, the zonal statistics 
analysis extracted the mean and standard deviation values of all variables and then 
normalized them using the Z-score method. After that, the dependent and 
independent variables on PM10 concentration in the rural landscape and PM2.5 
concentration in the urban landscape in the winter and summer seasons were applied 
to identify significant spatiotemporal factors based on a multicollinearity test and the 
OLS regression analysis. Then, the significant factors were separately applied to predict 
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CHAPTER I 
INTRODUCTION 

 
1.1 Background problems and significance of the study 

Air pollution has been a significant problem in recent decades, which has a 
profound toxicological impact on human health and the environment (Ghorani, Riahi, 
and Balali, 2016). According to the World Health Organization (WHO) report, 3.7 million 
premature deaths related to ambient air pollution occurred worldwide in 2012. 
Premature deaths had increased to 4.2 million worldwide in 2016 (Chu et al., 2016; 
Zhang et al., 2019). Moreover, the Western Pacific and South-East Asia Region (SEAR) 
had 799,000 deaths in 2012 (Sonwani and Maurya, 2019). 

Ambient air pollutants include particulate matter (PM), ozone, nitrogen dioxide, 
sulfur dioxide, and other contaminants. Typically, PM is a complex mixture of solid 
and liquid particles of primary and secondary origin, containing a wide range of 
inorganic and organic components. PM mass and composition are also highly variable 
in spatial-temporal terms and are strongly influenced by climatic and meteorological 
conditions (Wiseman and Zereini, 2010). 

PM is measured as particles with an aerodynamic diameter of fewer than 10 
micrometers (PM10) and less than 2.5 micrometers (PM2.5) (Kulshreshtha, 2019). 
Besides, they can be emitted from natural and human-made sources, including forest 
fires, dust storms, traffic, and industry. These are the most likely to impact human 
health as they are small enough to be inhaled and respired. Particles in PM10 are 
inhalable and may reach the upper part of the airways and lungs, while smaller PM2.5 
particles are more able to penetrate the lungs and perhaps reach the alveoli deeply. 
Ultrafine, which has a cut-off of 0.1 micrometer, may make up a small proportion of 
the total mass but may have the most significant health impacts due to their ability 
to pass from the lung directly into the bloodstream and their larger reactive surface 
area, which may be capable of inducing more significant damage (Wiseman and Zereini, 
2010). 
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Although PM exposure depends on physical characteristics, including breathing 
mode, rate, and volume of persons, the particles’ size has been directly linked to the 
leading cause of health problems. Generally, the smaller a particle is, the more deeply 
it will penetrate to deposit on the respiratory tract at an increasing rate. In nasal 
breathing, the cilia and the mucus act as a very active filter for most particulates 
exceeding 10 micrometers, coarse PM. Because the coarse PM fraction settles quickly, 
it tends to lodge in the upper throat or the bronchi. If humans inhale this PM, it will 
be initially collected in the nose and throat. The body will then react to eliminate 
these intruding PMs through sneezing and coughing (Kim, Kabir, and Kabir, 2015). 

While particles that have the most impact on human health have been 
acknowledged as those less than 10 micrometers in diameter, they can penetrate 
within the respiratory tract beginning with the nasal passages to the alveoli, deep within 
the lungs due to their excessive penetrability. Particles between approximately 5 and 
10 micrometers are most likely deposited in the tracheobronchial tree. In comparison, 
those between 1 and 5 micrometers are deposited in the respiratory bronchioles and 
the alveoli, where gas exchange occurs. These particles can affect gas exchange within 
the lungs and even penetrate the lung. Eventually, these particles will escape into the 
bloodstream to cause significant health problems (Kim et al., 2015). 

Besides, the Health Effects Institute (2020) presented the number of deaths 
attributable to PM2.5 in a given year reflects those deaths that likely occurred earlier 
than would be expected in the absence of PM2.5, computed based on nonlinear 
Integrated-Exposure-Response (IER) functions, all ages, for both sexes combined 
between 1990 and 2019 in Thailand are continually increasing shows in Table 1.1. 
However, Apte, Brauer, Cohen, Ezzati, and Pope (2018) presented that exposure to 
ambient fine particulate matter (PM2.5) air pollution is a significant risk for premature 
death. On the other hand, If PM2.5 in all countries met the World Health Organization 
Air Quality Guideline (10 μg/m3), the estimated life expectancy could increase by a 
population-weighted median of 0.6 years (interquartile range of 0.2−1.0 years). 
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Table 1.1 Number of deaths attributable to PM2.5 in Thailand between 1990 and 2019. 
Year Exposure lower Exposure means Exposure upper 
1990 7,340 14,700 23,900 
1995 10,600 19,300 29,200 
2000 13,600 22,800 32,900 
2005 16,900 24,600 32,700 
2010 21,400 27,800 34,100 
2011 21,400 27,800 33,600 
2012 21,300 27,300 33,400 
2013 21,000 26,800 32,400 
2014 21,200 26,800 32,700 
2015 21,600 27,200 33,100 
2016 22,400 28,400 35,200 
2017 21,700 29,200 37,800 
2018 22,300 30,500 40,300 
2019 23,200 32,200 43,400 

Source: Health Effects Institute (2020). 

 
PM has diverse effects on Thailand’s economy, impacting tourism, property 

values, and medical treatment expense. According to the Kasikorn Research Center 
report in 2019, the smog could cost Thailand 6.6 billion baht in losses for the 
healthcare and tourism sectors due to the impact of air pollution (The Thaiger & The 
Nation, 2019). Thai Public Broadcasting Service reported the news about the effect of 
PM2.5 on medical expenses and the loss of tourism opportunities in and around 
Bangkok if PM2.5 does not ease within a month, medical expenses to be borne by 
each individual is an average of 1,000 baht for each medical visit and 22.50 baht per 
day for face masks. Total medical costs could range from 1,600 to 3,100 million baht, 
depending on the air pollution period (Thai PBS WORLD, 2019). 

Therefore, the monitoring of PM10 and PM2.5 needs to be improved in many 
countries to assess population exposure and help local authorities improve air quality 
(World Health Organization, 2013). However, with many limitations, most pollutant 
concentration information is obtained from ground monitoring stations. For example, 
these stations are limited, unequally distributed, and have different measure frequency 
ranges. These limitations may affect the geographical and demographical range of 
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studies, resulting in an information bias and reducing exposure-response studies (Chu 
et al., 2016). 

Furthermore, the spatial-temporal variation of PM10 and PM2.5 is complex, and 
continuous monitoring is inattentive in many countries and regions. Thus, satellite-
based remote sensing has become a widely used monitoring technique. Because it can 
provide extensive spatial coverage and a cost-effective way for studies, it acquires 
directly from the measured spectral Aerosol Optical Depth (AOD), which is the integral 
of the aerosol light extinction over the vertical path through the atmosphere (Levy, 
2009). Consequently, spatiotemporal PM concentration prediction using MODIS AOD 
with significant PM factors in Thailand is necessary to the public due to PM monitoring 
station limitations.  

In this study, spatiotemporal characteristics of PM concentration will be 
described according to two different landscape types: urban and rural and two 
different seasons: winter (October to February) and summer (March to May). 
Agricultural operations in a rural landscape, notably agricultural debris burning, 
generate massive sources of PM10 contribution. Arslan and Aybek (2012) stated that 
agricultural field operations cause dust production in conventional crop production, 
including soil tillage and seedbed preparation, planting, fertilizer, pesticide application, 
harvesting, and post-harvest processes (Arslan and Aybek, 2012). The high PM10 
concentration distribution in the dust blown by the wind, especially on the surfaces 
without cement and asphalt (Li et al., 2017). On the contrary, the high PM2.5 
concentration is mainly found with high population, rapid urban expansion and local 
economic growth (Lin et al., 2014). The PCD identified four critical air pollutant areas 
in Thailand, including (1) haze and smog in the Northern region, (2) PM10 concentration 
at Na Phra Lan district, Saraburi, (3) PM2.5 concentration in Bangkok Metropolitan and 
vicinity areas, and (4) volatile organic compounds (VOCs) at Map Ta Phut, Rayong. The 
PCD spent a budget of 95.04 million Baht to mitigate these pollutants in those areas 
(PCD, 2021). Thus, two study areas will be selected here according to the recent land 
use data of the Land Development Department (2019). 
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The expected results will provide significant spatiotemporal factors on PM10 
and PM2.5 concentration in the rural and urban landscapes. The derived results will 
also provide the spatial pattern of PM10 and PM2.5 concentration in both landscapes 
at the district level in the winter and summer seasons. Additionally, the results can be 
used as a guideline for improving air quality and reducing impacts on human health in 
Thailand. 

 

1.2 Research objectives 
With a suitable prediction model, the research aims to predict spatiotemporal 

PM10 and PM2.5 concentration in the rural and urban landscape in the winter and 
summer seasons. The specific research objectives are as follows: 

(1) To identify significant factors on PM10 concentration in the rural landscape 
and PM2.5 concentration in the urban landscape in the winter and summer seasons 
and their relationships using the multicollinearity test and the OLS regression analysis, 

(2) To predict spatiotemporal PM10 and PM2.5 concentration using GWR and 
MEM models, and 

(3) To evaluate a suitable spatiotemporal model for PM10 and PM2.5 
concentration prediction and validation. 
 

1.3 Scope of the study 
The scope of the study can be summarized as follows: 
(1) The multilinearity test and OLS regression analysis are applied to identify 

significant spatiotemporal factors and the relationship between PM10 concentration in 
the rural landscape and PM2.5 concentration in the urban landscape in winter (October 
2019 to February 2020) and summer (March 2020 to May 2020) seasons. 

(2)  The GWR and MEM models are applied to predict monthly PM10 
concentration in rural and PM2.5 concentration in urban landscapes. 

(3)  A suitable spatiotemporal PM10 and PM2.5 concentration prediction 
model is evaluated using AICc analysis. 
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(4) Suitable spatiotemporal model for PM10 and PM2.5 concentration 
prediction is validated based on the new dataset in winter (October 2020 to February 
2021) and summer (March 2021 to May 2021) using Pearson correlation analysis. 

 

1.4 Limitation of the study 
The limitation of the study is summarized as follows: 
(1) The interpolation result’s accuracy depends on the number of 

meteorological and pollutant monitoring stations and their distributions. 
(2) Due to cloud cover over remotely sensed imagers in the rainy season, 

spatiotemporal PM10 and PM2.5 concentration in rural and urban landscapes will focus 
on the winter and summer seasons. 

(3) Due to the COVID-19 pandemic in Thailand, the new dataset (October 2020 
to May 2021) is applied to validate the suitable spatiotemporal PM10 and PM2.5 
models because of site visiting limitations by Government regulation. 
 

1.5 Study area 
Two study areas are chosen to serve two different studies on PM10 

concentration in the rural landscape and PM2.5 concentration in the urban landscape, 
as shown in Figure 1.1. The supporting reason for choosing rural and urban landscapes 
is based on the recent land use data of the Land Development Department (2019). 

According to the land use data of the Land Development Department (2019), 
the rural landscape covers approximately 15,827 sq. km with 60 districts from 6 
provinces: Ang Thong, Lop Buri, Phra Nakhon Si Ayutthaya, Pathum Thani, Saraburi, and 
Sing Buri provinces. More than 65 percent of the rural landscape’s total area in 2019 
is agriculture, including paddy fields, field crops, orchards, and perennial trees. At the 
same time, urban, forest, waterbody and miscellaneous areas are about 13%, 12%, 
4%, and 4%, respectively.  

On the contrary, the urban landscape, including Bangkok and its vicinity, covers 
approximately 6,180 sq. km with 72 districts from 5 provinces, including Bangkok, 
Nakhon Pathom, Nonthaburi, Samut Prakan, and Samut Sakhon provinces. The urban 
areas cover about 39% of the total area, while agriculture, forest, waterbody and 
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miscellaneous areas are about 49%, 1%, 4%, and 7%, respectively. This landscape, 
especially Bangkok, Thailand’s capital city, has the highest population density of about 
3,619 persons per sq. km (Bangkok GIS, 2018), heavy traffic congestion and rapid urban 
expansion. 
 

1.6 Benefits of the study 
The benefits of the study are summarized as follows: 
(1) The optimum interpolated method for monthly mean PM concentration, 

meteorological (relative humidity, temperature, wind speed, pressure, visibility), and 
MODIS fire data (brightness temperature and fire radiative power). 

(2) Identify significant monthly factors on PM concentration and characterize 
the spatiotemporal relationship between PM concentration and significant factors in 
the different landscapes in the winter and summer seasons. 

(3) Predict PM concentration distribution and map monthly air quality index 
according to the Thai Air Quality and US EPA standards from the GWR and MEM models. 

(4) Validate the suitable spatiotemporal model for the PM concentration 
prediction (GWR) based on the new dataset. 

(5) Spatial relationship between PM10 and PM2.5 concentration and significant 
monthly factors in rural and urban landscapes during winter and summer. 

(6) Spatial relationship between PM10 and PM2.5 concentration and land use 
type in winter and summer. 
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Figure 1.1 LULC classification and location map of the study area, (a) rural and (b) 
urban landscape.
 

 



CHAPTER II 
BASIC CONCEPTS AND LITERATURE REVIEWS 

 
Under this chapter, basic concepts and theories related to the research include 

(1) MODIS AOD, (2) significant spatiotemporal factor on PM concentration, (3) 
Geographically Weighted Regression (GWR), (4) Mixed-Effect Model (MEM), and (5) 
Spatial Interpolation Methods are here summarized. 

 

2.1 MODIS AOD 
The MODerate resolution Imaging Spectroradiometers (MODIS) was launched 

aboard NASA’s Terra and Aqua satellites in December 1999 and May 2002. The MODIS 
mission is cross-disciplinary, addressing the Earth System from land, ocean, and 
atmosphere perspectives. The atmosphere focus encompasses aerosol, clouds, water 
vapor, atmospheric temperature sounding, the interaction between these parameters, 
and across disciplines, especially in understanding how these parameters affect the 
Earth as a system and its climate. MODIS AOD on Terra and Aqua is collocated with 
the Multiangle Imaging Spectro Radiometer (MISR). It flies information with a 
constellation of complementary sensors. Initially, MODIS aerosol algorithms are 
standalone procedures, but combining information from several sensors provides 
better retrievals and new products (Remer et al., 2013). 

Terra crosses the equator in a descending orbit at the nominal local time of 
10:30 am, while Aqua crosses in an ascending orbit three hours later. Each sensor is 
independent, but working with the twin sensors on two different platforms with 
equator crossing times 3 hours apart allows for some daily signal analysis and provides 
a cross-check on sensor calibration drift and artifacts. MODIS has 36 channels spanning 
the spectral range from 0.41 to 15 micrometers and representing three spatial 
resolutions: 250 meters (2 channels), 500 meters (5 channels), and 1 km (29 channels). 
The aerosol retrieval uses eight channels (0.41-2.13 micrometers) to retrieve aerosol 
characteristics and uses additional wavelengths in other parts of the spectrum to 
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identify clouds and river sediments. MODIS scans cross-track, observing each target at 
only one angle per orbit. Swath width is 2,330 kilometers, which nearly covers the 
globe daily and provides multiple daily views of high latitude locations (Remer et al., 
2013; Remer et al., 2005; Remer et al., 2012). 

The primary MODIS aerosol data product is the aerosol optical depth (AOD, 
also known as aerosol optical thickness, AOT) at a wavelength of 550 nm. Besides, 
each algorithm provides additional information about the aerosol, such as single 
scattering albedo, spectral AOD, descriptions of relative aerosol size, and quality 
assurance information. Furthermore, the aerosol size distribution is derived over the 
oceans, and the aerosol type is derived over the continents. “Fine” aerosols 
(anthropogenic/pollution) and “course” aerosols (natural particles, e.g., dust) are also 
derived. Daily Level 2 (MOD_04) data are produced at a pixel array spatial resolution 
of 10 x 10 kilometers (at nadir). The aerosol product includes the “deep-blue” 
algorithm recently developed to get aerosol optical thickness over bright land areas 
(Levy and Hsu, 2019). 

In general, the MODIS level-2 atmospheric aerosol product (MOD04_L2, 
MYD04_L2) provides full global coverage of aerosol properties from the Dark Target 
(DT) and Deep Blue (DB) algorithms. The DT algorithm is applied over the ocean and 
dark land (e.g., vegetation), while the DB algorithm in Collection 6 (C6) covers the entire 
land areas, including dark and bright surfaces. Both results are provided on a 10x10 
pixel scale (10 km at nadir). Each MOD04_L2 product file covers a five-minute time 
interval. The output grid is 135 pixels in width by 203 pixels in length. Every tenth file 
is stored in Hierarchical Data Format (HDF-EOS). Based on C5 validation studies, many 
Science Data Sets (SDSs) have been deleted with C6 from the DT product 
(Angstrom_Exponent_Land, Optical_Depth_Small_Land, etc.), while many SDSs have 
been renamed or added. Several algorithm changes have led to significant changes in 
regional aerosol product statistics. For C6, the DT algorithm team now provides a new 
3 km spatial resolution product intended for the air quality community; this is provided 
in a separate file (M*D04_3K) (Levy and Hsu, 2015). An example of an aerosol optical 
depth product at 3 km resolution is displayed in Figure 2.1. 
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(a) (b) 

Figure 2.1 The aerosol optical depth product retrieved from 29 January 2019 at 3 km 
spatial resolution (a) MOD04_3K and (b) MYD04_3K. 
 

2.2 Significant spatiotemporal factor on PM concentration 
PM concentration vary from place to place and depend on meteorological, 

biophysical, and socio-economic factors. The significant factors on PM concentration 
are reviewed from the previous studies with plus specif are summarized in Table 2.1. 
 
Table 2.1  Significant factor in PM concentration. 

Categories 
Factors (Number of 

papers) 
Reference Data type 

Meteorological 
data 

Relative humidity 
(11) 

Kloog, Koutrakis, Coull, Lee, and Schwartz (2011); 
Yuanai Guo and Zhang (2014); Meng et al. (2016); 
You, Zang, Pan, Zhang, and Chen (2015);  Ma et 
al. (2016); You et al. (2016); Zheng, Zhang, Liu, 
Geng, and He (2016); Jiang, Sun, Yang, and Zhang 
(2017); Luo et al. (2017); Yuanxi Guo, Tang, Gong, 
and Zhang (2017); He and Huang (2018) 

dynamic 

Temperature (10) Kloog et al. (2011); Yuanai Guo and Zhang (2014); 
Meng et al. (2016); You et al. (2015);  You et al. 
(2016); Zheng et al. (2016); Jiang et al. (2017); Luo 
et al. (2017); Yuanxi Guo et al. (2017); He and 
Huang (2018) 

dynamic 
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Table 2.1 (Continued). 

Categories 
Factors (Number of 

papers) 
Reference Data type 

Meteorological 
data 

Wind direction* (2) Meng et al. (2016); Yuanxi Guo et al. (2017) dynamic 
Wind speed (11) Kloog et al. (2011); Yuanai Guo and Zhang (2014); 

Meng et al. (2016); You et al. (2015); Ma et al. 
(2016); You et al. (2016); Zheng et al. (2016); Jiang 
et al. (2017); Luo et al. (2017); Yuanxi Guo et al. 
(2017); He and Huang (2018) 

dynamic 

Precipitation* (1) Luo et al. (2017) dynamic 
Pressure (4) Jiang et al. (2017); Luo et al. (2017); Yuanxi Guo 

et al. (2017); He and Huang (2018) 
dynamic 

Visibility (5) Kloog et al. (2011); Yuanai Guo and Zhang (2014); 
You et al. (2015); You et al. (2016); Jiang et al. 
(2017) 

dynamic 

Planetary boundary 
layer height * (5) 

Yuanxi Guo et al. (2017); Zheng et al. (2016); 
Kloog et al. (2011); He and Huang (2018); You et 
al. (2015) 

dynamic 

Biophysical data MODIS AOD (14) Kloog et al. (2011); You et al. (2015); Chu et al. 
(2016); Ma et al. (2016); Meng et al. (2016); You 
et al. (2016); Zheng et al. (2016); Yuanxi Guo et 
al. (2017); Jiang et al. (2017); Ni, Cao, Zhou, Cui, 
and Singh (2018); Xue et al. (2019); K. Zhang et 
al. (2019); Hamer, Franklin, Chau, Garay, and 
Kalashnikova (2020); He, Gu, and Zhang (2020) 

dynamic 

Vegetation 
area/Green open 
space (7) 

Meng et al. (2016); Ma et al. (2016); Jiang et al. 
(2017); Luo et al. (2017); Yuanxi Guo et al. (2017); 
He and Huang (2018); Kloog et al. (2011) 

Static 

Urban area (3) Kloog et al. (2011); Lin et al. (2014); Luo et al. 
(2017) 

Static 

Pollutant point 
source/emission * (2) 

Kloog et al. (2011); Meng et al. (2016) Static 

Road density (by 
level)/ Traffic density 
(3) 

Kloog et al. (2011); Meng et al. (2016); Luo et al. 
(2017) 

Static 

Factory density (1) Luo et al. (2017) Static 
Brightness 
temperature (1) 

Wiseman and Zereini (2010) dynamic 

Fire radiative power 
(1) 

Wiseman and Zereini (2010) dynamic 
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Table 2.1 (Continued). 

Categories 
Factors (Number of 

papers) 
Reference Data type 

Biophysical data Fire hotspot (1) Wiseman and Zereini (2010) dynamic 
NO2 density * (1) Zheng et al. (2016) Static 
Elevation (5) Kloog et al. (2011); Jiang et al. (2017); Luo et al. 

(2017); Yuanxi Guo et al. (2017); He and Huang 
(2018) 

Static 

Aspect * (1) Luo et al. (2017) Static 
Slope * (1) Luo et al. (2017) Static 
Geomorphy feature 
(GEOM) * (1) 

Jiang et al. (2017) Static 

Socio-economic 
data 

Population data (6) Kloog et al. (2011); Lin et al. (2014); Meng et al. 
(2016); Luo et al. (2017); Yuanxi Guo et al. (2017); 
He and Huang (2018) 

dynamic 

GDP (GPP) (2)  Lin et al. (2014); Luo et al. (2017) dynamic 
Note: *These factors will not be applied in the tentative research framework. 
 

2.2.1 Meteorological factor 
Many researchers have reported that air pollution concentration vary 

depending on meteorological factors. They are vital factors guiding air movement. For 
example, significant factors on PM10 concentration are seasonal variation, daily time 
variation, wind speed, wind direction, rainfall, and relative humidity (Kliengchuay, 
Meeyai, Worakhunpiset, and Tantrakarnapa, 2018). Also, space-scale dependent 
relationships are found between PM pollution and meteorological elements. One 
example is when the temperature is about 15 °C, PM pollution is severe, and when 
the temperature is less or more than 15 °C, PM pollution is slight (Li et al., 2017). 
Moreover, the meteorological condition strongly affects the relationship between 
PM2.5 and AOD (He et al., 2020). The meteorological factor in the dispersion of air 
pollution include: 

(1) Relative humidity (RH). The relative humidity quantifies humidity in 
terms of the mass of water vapor as a fraction of the maximum mass of water vapor 
that the air can hold, usually expressed as a percentage (Shonk, 2013). 

(2) Temperature (TEMP). The temperature measures how hot or cold 
an object (or air mass) is. Initially, the Celsius scale runs from 0 °C to 100 °C between 
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the freezing and boiling water points at standard atmospheric pressure (Shonk, 2013). 
Generally, the temperature is measured in Celsius. 

(3) Wind speed (WS). The wind speed is the movement of the air from 
high to low pressure. An instrument for measuring wind speed is an anemometer (Giles, 
2015). Generally, the wind speed is measured by knots. 

(4) Air Pressure (P). The pressure is the force per unit area exerted by 
the atmosphere, and it also decreases with height through the atmosphere. Air 
pressure is measured using a barometer and reported in millibars (Shonk, 2013). 

(5) Visibility (VIS). The visibility is the furthest distance at which objects 
can still clearly be seen. The visibility is stated in kilometers (Shonk, 2013). 

2.2.2 Biophysical factor 
The biophysical factors for studying PM concentration can be summarized 

as follows: 
(1) MODIS AOD. The product names “MODIS/Terra and Aqua MAIAC Land 

Aerosol Optical Thickness Daily L2G Global 1km SIN Grid” or “MCD19A2” from MODIS 
Terra and Aqua combined Multi-Angle Implementation of Atmospheric Correction 
(MAIAC) at 1 km resolution will be downloaded and applied in this study. This new 
advanced algorithm uses time-series (TMS) analysis with a combination of pixel- and 
image-based processing to improve cloud detection accuracy, aerosol retrievals, and 
atmospheric correction (Lyapustin and Wang, 2018).  

(2) Vegetation area. The normalized difference vegetation index (NDVI) 
describes agriculture and green open space. Generally, reflectance from a red channel 
centered around 660 nm and a near-infrared channel centered at 860 nm are used to 
calculate the NDVI. The near-infrared band empirically corresponds to the long-
wavelength shoulder of the chlorophyll red edge, and the red band is associated with 
the maximum chlorophyll absorption. NDVI is derived using the following equation: 

NDVI =
NIROLI5 - REDOLI4

NIROLI5 + REDOLI4
 (2.1) 

The NDVI equation produces values in the range of –1.0 to 1.0. Increasing positive 
values indicate increasing green vegetation, and negative values indicate non-
vegetated surfaces such as water, barren land, ice, snow, and clouds (Jensen, 2015). 
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(3) Urban area. The built-up index (BUI) was used to describe the urban 
area. The high positive value indicates built-up and barren land (Prasomsup, 
Piyatadsananon, Aunphoklang, and Boonrang, 2020). BUI is expressed as follows: 

BUI=NDBI-NDVI (2.2) 
Where 

NDBI = SWIROLI6 - NIROLI5

SWIROLI6 + NIROLI5
 (2.3) 

SWIR and NIR represent short-wavelength infrared radiometer and the near-infrared 
band of the spectrum bands of Landsat 8 OLI (Mehrotra, Bardhan, and Ramamritham, 
2016).  

(4) Road density (RD). The road density is a measurement of the road 
network per unit area and refers to the total road network’s length in an area per sq. 
km. 

(5) Factory density (FD). The factory density, which represents PM’s 
non-point source, is measured by the number of factorial types (Type 1, 2, and 3) with 
the rank-sum weighting method to calculate factory density per sq. km in each district. 
In this study, each factorial type’s weight is assigned a value of 1, 3, and 5 of Saaty’s 
scale for Type 1, 2, and 3, respectively.  

(6) Brightness temperature (BT). MODIS brightness temperature 31 or 
Bright_T31 is Channel 31 brightness temperature of the fire pixel measured in Kelvin. 
It is one product from MCD14DL MODIS/Aqua+Terra Thermal Anomalies/Fire locations 
1 km at nadir by NASA’s Land, Atmosphere Near real-time Capability for EOS Fire 
Information for Resource Management System (FIRMS) (Berrick, 2020). 

(7) Fire radiative power (FRP). The FRP depicts the pixel-integrated fire 
radiative power from MCD14DL; MODIS/Aqua+Terra Thermal Anomalies/Fire; in 
megawatts (MW) (Berrick, 2020). 

(8) Fire hotspot (FH). The accumulated fire hotspot in each month in 
each district is applied to calculate fire hotspot density (total point per sq. km) for 
representing fire activity in each district. 

(9) Elevation (ELEV). The SRTM DEM data from the Shuttle RADAR 
Topography Mission describes digital elevation data. The Space Shuttle Endeavour 
acquired the SRTM data in 2000. SRTM acquired data for over 80 percent of the Earth’s 
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land surface between 60 degrees N and 56 degrees S latitude. The data have been 
released with one arc-second, or about 30 meters (98 feet) (Jensen, 2015). 

2.2.3 Socio-economic factor 
(1) Population data (POP). Population density is used to describe the 

population data. The population density is a measurement of populations per unit 
area and refers to the number of people living in an area per sq. km. 

(2) Gross Provincial Product (GPP). At the national level, Gross Domestic 
Product (GDP) is the total output of goods and services for final use occurring within 
the domestic territory of a given country. It is frequently used as one of the socio-
economic factors (World Health Organization, 2020). In this study, Gross Provincial 
Product from each province is chosen and applied as a significant factor on PM 
concentration. 
 

2.3 Geographically Weighted Regression (GWR) 
Fotheringham, Brunsdon, and Charlton (2002) defined the GWR model as a 

local statistic that produces a set of local parameter estimates and shows a 
relationship that varies over space. The GWR can be expressed as follows: 

yi=β0+ ෍ βkxik
k

+εi (2.4) 

And GWR extends this traditional regression framework by allowing local rather than 
global parameters to be estimated so that the model is rewritten as: 

yi=β0(ui,vi)  + ෍ βk(
k

ui,vi)xik+εi (2.5) 

Where (ui,vi)  denotes the coordinates of the sample point in space and βk(ui,vi) is a 

realization of the continuous function βk(u,v) at point i. It allows for a continuous 
surface of parameter values, and measurements of this surface are taken at specific 
points to denote the surface’s spatial variability. Equation (2.4) is a particular case of 
equation (2.5) in which the parameters are assumed to be spatially invariant. Thus, the 
GWR equation in (2.5) recognizes that spatial variations in relationships might exist and 
provide a way to be measured. 

As it stands, though, there would appear to be problems in calibrating equation 
(2.5) because there are more unknowns than observed variables. However, models of 
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this kind do occur in the statistical literature and discussions. Our approach borrows 
from the latter two, mainly because we do not assume the coefficients to be random. 
Instead, they are deterministic functions of some other variables – in our case, location 
in space. When handling such models, the general approach is to note that although 
an unbiased estimate of the local coefficients is not possible, estimates with only a 
slight bias can be provided. 

Many researchers argue that GWR’s calibration process can be a tradeoff 
between bias and standard error. Assuming the parameters exhibit some degree of 
spatial consistency, values near the one being estimated should have relatively similar 

magnitudes and signs. Thus, when estimating a parameter at a given location i, one 

can approximate (2.5) in the region of i by (2.4) and perform regression using a subset 

of the points in the data set close to i. Thus, the βk(ui,vi)s are estimated for i in the 

usual way, and for the next i, a new subset of ‘nearby’ points is used, and so on. These 
estimates will have some degree of bias since the coefficients of (2.5) will exhibit some 
drift across the local calibration subset. However, if the local sample is large enough, 
this will allow calibration, albeit a biased one. The higher the size of the local 
calibration subset, the lower the standard errors of the coefficient estimates, but this 
must be offset against the fact that enlarging this subset increases the chance that the 
coefficient ‘drift’ introduces bias. One final adjustment to this approach may also be 
made to reduce this effect. Assuming that points in the calibration subset farther from 𝑖 are more likely to have differing coefficients, a weighted calibration is used. More 

influence in the calibration is attributable to the points closer to i. 
As noted above, the calibration of equation (2.4) assumes implicitly that 

observed data near location i have more of an influence in the estimation of the 

βk(ui,vi)s than do data located farther from i. In essence, the equation measures the 

relationships inherent in the model around each location i. Hence weighted least 
squares provide a basis for understanding how GWR operates. In GWR, an observation 

is weighted by its proximity to location i so that the weighting of observation is no 

longer constant in the calibration but varies with i. Data from observations close to i 
are weighted more than from observations farther away. That is, 
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βො(ui,vi)
=(XTW(ui,vi)X)-1XTW(ui,vi)

y (2.6) 

where the bold type denotes a matrix, β෠ represents an estimate of β, and W(ui,vi) is a 𝑛 

by n matrix whose off-diagonal elements are zero and whose diagonal elements denote 

the geographical weighting of each of the n observed data for regression point i. 
This study applies the GWR model to predict spatiotemporal PM concentration 

in the rural and urban landscape in the winter and summer seasons. 
 

2.4 Mixed-Effect Model (MEM) 
Wu (2010) explained a mixed-effects model or random-effects model had been 

widely used in the regression model analysis of longitudinal data or clustered data 
that are often complex or incomplete, such as dropouts, missing data, measurement 
errors, censoring, and outliers. Furthermore, longitudinal studies are closely related to 
repeated measures studies, in which repeated or multiple measurements of one or 
more variables are made on each individual in the study. Still, these repeated 
measurements are not necessarily made over time. For example, air pollution may be 
measured at different city locations, so multiple measurements are made over space 
in different cities. 

Moreover, there are many models considered as the MEM, including linear 
mixed-effects (LME) models, generalized linear mixed models (GLMMs), nonlinear 
mixed-effects (NLME) models, and frailty models. Still, in the LME model, the random 
effects are linear distribution. While the random effects are nonlinear in the other 
models, LME will be described below. 

Let yi= {y1,yi2,…, yini
}T be the ni repeated measurements of the response 

variable y on individual i, i = 1; 2; · · ·; n: A general LME model can be written as: 

yi=Xiβi+Zibi+ei,      i=1,2,…,n (2.7) 

bi~Nሺ0,Dሻ,      ei|~Nሺ0,Riሻ (2.8) 

where β= (β1,…,βp)T is a p x 1 vector of fixed effects, bi=(bi1,…,biq)T is a q x 1 vector 

of random effects, the ni x p matrix Xi and the ni x q  matrix Zi are known design 

matrices that may contain covariates, ei=(ei1,ei2…,eini
)Trepresents random errors of the 

repeated measurements within individual i, D is a q x q  covariance matrix of the 

random effects, and Ri is a ni x ni the covariance matrix of the within-individual errors. 
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In general, it is often assumed that Ri= σ2Ini
 for simplicity, where Ini

 is the ni× 

ni identity matrix, i.e., the within-individual measurements, are assumed to be 
independent with constant variance. This assumption may be reasonable when the 
within-individual measurements are relatively far apart (so they are approximately 
independent). The repeated measurements within individuals roughly have a constant 

variance. The value of σ2 represents the magnitude of the within-individual variation, 

and the values of the diagonal elements of D represent the magnitude of the between-

individual variation. The simplified with-individual covariance structure Ri dramatically 
reduces the number of parameters and may avoid some identifiability problems. 

The LME model, equations (2.7) and (2.8) is an extension of the corresponding 

linear regression model by adding the random effects bi in the model. In other words, 

if the term with random effects bi is omitted, LME model (2.7) and (2.8) reduces to a 
standard linear regression model. A vital characteristic of an LME model is that it is 

linear in both the mean parameters β and the random effects bi. Therefore, many 
analytic or closed-form expressions of parameter estimates can be obtained for LME 
models, significantly reducing the computational burden. This critical advantage is 
unavailable for nonlinear models in the mean parameters, random effects, or both. 

In the LME model, equations (2.7) and (2.8), the fixed effects β are population-
level parameters and are the same for all individuals, as in a classical linear regression 

model for cross-sectional data, while the random effects bi are individual-level 
“parameters” representing individual variations from population-level parameters. The 

random effects bi measure between-individual variation, and the random errors ei 
measure within-individual variation. Since each individual shares the same random 
effects, the multiple measurements within each individual or cluster are correlated. 

In a mixed-effects model, the repeated measurements {yi1, yi2, …, yini
} of the 

response within each individual can be taken at different time points for different 

individuals, and the number of measurements ni may also vary across individuals. In 
other words, an LME model allows unbalanced data in the response. This characteristic 
is an advantage of mixed-effects models. 
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In the LME model, equations (2.7) and (2.8), the design matrix Zi is often a 

submatrix of the design matrix Xi. For example, 

Xi=Zi= ൦1 xi1
1 xi2⋮
1

⋮
xini

൪ ,         bi= ቂbi0
bi1

ቃ (2.9) 

In the previous research, missing AOD data is essential in estimating PM2.5 from 
AOD. The method used to compensate for missing AOD data is essential in the 
derivation’s precision and accuracy. Besides, several factors are also included in the 
model as covariates, including metrological variables and classic land-use variables. It 
also uses the inverse distance weight (IDW) and cluster analysis to deal with missing 
AOD values, so daily ground PM2.5 levels could be predicted in a wide range. If missing 
AOD presents a non-random distribution, AOD data needs to be corrected by 
meteorological factors using the inverse probability weight method (IPW) (Chu et al., 
2016). 
 

2.5 Spatial Interpolation Methods 
Spatial interpolation is a crucial method to estimate unknown data by using 

known sample data. In this section, there are two main groupings of interpolation 
techniques. (1) Deterministic interpolation techniques create continuous surfaces from 
measured points, based on either the extent of similarity (inverse distance weighted) 
or the degree of smoothing (radial basis functions) and (2) Geostatistical interpolation 
techniques (kriging and Cokriging) utilize the statistical properties of the measured 
points. Geostatistical techniques quantify the spatial autocorrelation among measured 
points and account for the spatial configuration of the sample points around the 
prediction location (ESRI, 2015). These are summarized in the following section. 

2.5.1 Inverse Distance Weighted (IDW) method 
The IDW interpolation is used to determine pixel values by a linear 

combination of sampling points, which is assumed to be reduced by the distance 
between the mapped variables and the sampling locations (Zhang, Rui, and Fan, 2018; 
Zhang and Shen, 2015). The calculation formula is as follows: 
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Z0= ൥෍ Zi

di
k

n

i=1

൩ / ൥෍ 1

di
k

n

i=1

൩ (2.10) 

Where Z is the estimated value of 0,  Zi is the value of the control point i, di is the 

distance between 0 and i, n is used to estimate the number of control points, and k is 
the power, that is required to specify. 

2.5.2 Global Polynomial Interpolation (GPI) method 
The GPI interpolation fits a smooth surface defined by a mathematical 

function (a polynomial) to the input sample points. The GPI calculates predictions 
using the entire dataset instead of the measured points within neighborhoods. A first-
order GPI fits a flat plane; a second-order GPI fits a surface, allowing for one bend; a 
third-order GPI allows for two bends; and so forth (ESRI, 2015; Wang et al., 2014). 

2.5.3 Radial Basis Functions (RBF) method 
RBF is a function that changes with distance from a location. RBFs are a 

series of exact interpolation techniques; the surface must pass through each measured 
sample value. RBF is conceptually fitting a rubber membrane through the measured 
sample values while minimizing the surface’s total curvature (ESRI, 2015; Wang et al., 
2014). 

2.5.4 Ordinary Kriging (OK) method 
The OK interpolation method assumes that sampling the point between 

the distance or direction can illustrate the spatial correlation of the surface changes, 
where the mathematical function with the specified number of points or designated 
radius in all points first principles to determine the location of each output value 
(Bardossy, 2002; G. Zhang, Rui, and Fan, 2018; P. Zhang and Shen, 2015). The 
calculation formula is as follows: 

Z*(x)= ෍ λi Z(xi)

n

i=1

 (2.11) 

Where Z(x) is the measurement of position i, λi is the unknown weight of the 

measurement value at position i, is the predicted position, and n is the number of 
measurements. 
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2.5.5 Simple Kriging (SK) method 
The SK is an alternative to OK supposing the mean μ(x) is known (not 

necessarily constant) in the whole domain (Bardossy, 2002). In this case, the estimator 
formula is as follows: 

Z*(x)=μ(x) + ෍ λi (Z(xi)-μ(

n

i=1

xi)) (2.12) 

2.5.6 Cokriging Kriging (CK) method 
Cokriging uses information on several variable types. The primary variable 

of interest is Z1, and both autocorrelation for Z1 and cross-correlations between Z1 and 
all other variable types are used to make better predictions (ESRI, 2015). Ordinary 
cokriging assumes the models: 

Z1(s)=μ1+ε1(s) (2.13) 

Z2(s)= μ2+ε2(s) (2.14) 

Where μ1 and μ2 are unknown constants, ε1(s), ε2(s) are two types of random errors: 
autocorrelation for each of them and cross-correlation. 
 

2.6 Literature review 
2.6.1 Application of the GWR model 

Lin et al. (2014) studied the spatiotemporal variation of PM2.5 
concentration and their relationship with China’s geographic and socio-economic 
factors. The GWR model was used to estimate PM2.5 concentration with MODIS AOD, 
population, GDP, and urban areas in 2001 and 2010. The results showed high 
concentration of PM2.5 were primarily found in high populations, the high value of 
GDP, and urban expansion, including the Beijing-Tianjin-Hebei region in North China, 
East China, and Henan province. The local R2 values were 0.820 and 0.822 for 2001 
and 2010, respectively. So, the three main driving forces that impact PM2.5 
concentration are increasing populations, local economic growth, and urban 
expansion. 

You et al. (2016) studied national-scale estimates of ground-level PM2.5 
concentration in China using geographically weighted regression based on 3 km 
resolution MODIS AOD. This study used the GWR model to estimate ground-level PM2.5 
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concentration in China with MODIS AOD, wind speed, surface air temperature, 
horizontal visibility, and relative humidity. The result showed the annual mean PM2.5 
concentration in industrial structures and densely populated areas such as the Beijing-
Tianjin Metropolitan Region were higher than 85 μg/m3, with the highest concentration 
greater than 135 μg/m3. While in central China, PM concentration were greater than 75 
μg/m3. Intense human activity and rapid urbanization had led to the high production 
of PM2.5 concentration.  

Jiang et al. (2017) studied seasonal GWR models of daily PM2.5 with 
proper auxiliary variables for the Yangtze River Delta. This study used the GWR model 
to estimate PM2.5 concentration for four-season and improve the retrieval model 
accuracy with MODIS AOD, temperature, wind speed, air pressure, vapor pressure, 
relative humidity, and horizontal surface visibility geomorphic feature, elevation, and 
MODIS NDVI. The results showed that meteorological or geographical factors 
significantly improved the GWR model accuracy for retrieving PM2.5 concentration from 
satellite AOD. Besides, the GWR models of “AOD+3” (WS, Vpre, VSB) performed better 
than the other GWR models. The seasonal models in summer and autumn performed 
better than in spring and winter. 

Yuanxi Guo et al. (2017) studied ground-level PM2.5 concentration 
estimation in Beijing using satellite-based data and a geographically and temporally 
weighted regression model. The GWR model was used to estimate daily ground-level 
PM2.5 concentration and quantitatively evaluated the model’s performance with 
MODIS AOD, AERONET AOD, boundary layer height, relative humidity, surface pressure, 
temperature, wind direction, wind speed, NDVI, population data, elevation data. The 
results showed annual mean PM2.5 values ranged from 62 to 110 μg/m3, with a mean 
of 79 μg/m3, denoting very high pollution levels in Beijing. Highly polluted areas 
corresponded well with poorly vegetation-covered, heavily populated, and low-lying 
regions; The overall CV R2 was valued at 0.58. The CV MPE and RMSE were valued at 
21.01 and 30.81 μg/m3, respectively. 

Luo et al. (2017) studied the spatiotemporal pattern of PM2.5 
concentration in Mainland China and analyzed its influencing factors. The GWR was 
used to analyze the spatiotemporal patterns of PM2.5 concentration in China at a high 
spatial resolution with (1) socio-economic factors including population density, GDP, 
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road density, factory density, urban and agriculture area, and (2) natural geographic 
factors including altitude, slope, aspect, air temperature, air pressure, precipitation, 
relative humidity, wind speed. The result showed that the road, agriculture, 
population, industry, economy, and urban areas strongly correlated with PM2.5 
concentration. In contrast, a significantly strong negative correlation was found in 
vegetation, topography, and climate on PM2.5. 

The previous studies show the application of the GWR model with or 
without AOD. They use the model to estimate ground-level PM concentration 
(dependent variable) and improve the accuracy by finding the relationship between 
different meteorological, land use, and socio-economic factors (independent variables) 
in local scale areas. Finally, they found the GWR model can be applied to estimate 
the ground-level PM concentration in the areas with limited pollution data. 

2.6.2 Application of the MEM model 
Kloog et al. (2011) studied the assessing temporally and spatially resolved 

PM2.5 exposures for epidemiological studies using aerosol optical depth 
measurements in New England, USA. In this study, the LME model was used to 
estimate PM2.5 concentration with MODIS AOD data at 10 km resolution, a raster of 
open spaces at 30 m cell size, elevation, the sum of main road segment lengths in a 
10 km grid, metrological data include; temperature, wind speed, visibility, PM2.5 point 
emission, area source PM2.5 emission, and daily PM2.5 concentration station. The 
results showed that on the days with available AOD data, they found high out-of-
sample R2 (mean out-of-sample R2 = 0.830, year-to-year variation 0.725-0.904). Model 
performance was still excellent for days without AOD data (mean out-of-sample R2 = 
0.810, year-to-year variation 0.692-0.887). Significantly, these R2 were for daily, rather 
than monthly or yearly, values. The model could investigate ambient particles’ acute 
and chronic effects in short-term and long-term human exposures. 

Next, Lee, Coull, Bell, and Koutrakis (2012) studied satellite-based aerosol 
optical depth and spatial clustering to predict ambient PM2.5 concentration in New 
England, USA. The MEM with random intercepts and slopes was used in the study to 
estimate daily PM2.5 concentration with only MODIS AOD data at 10 km resolution. 
The results showed that the daily intercepts and slopes varied by season: 8.43, 7.98, 
11.02, and 8.99 for intercepts; and 8.18, 7.22, 9.25, 8.49 for slopes in winter, spring, 
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summer, and fall, respectively. The model performances were high R2 (0.83 and 0.73 
for year and season, respectively). Finally, they suggested that AOD can be a robust 
predictor of PM2.5 in the mixed-effects model. 

Yuanai Guo and Zhang (2014) studied the pollution characteristics and 
influence factors of PM2.5 in 24 capital cities on the Chinese mainland. This study used 
the LME with random intercept and LME with random intercept and a random slope 
to analyze PM2.5 concentration with the meteorological conditions data, including 
temperature, humidity, visibility, wind speed, rainfall, and weather conditions. The 
results showed that temperature, humidity, visibility, and wind speed were significant. 
PM2.5 had a position correlation with temperature and a negative correlation with 
humidity, visibility, and wind speed. Simultaneously, the most relevant factor was 
visibility, followed by wind speed, temperature, and humidity. Likewise, the PM2.5 
level had a significant seasonal characteristic. The level in winter was higher than in 
spring. By the way, the weather conditions significantly affected the PM2.5 level. PM2.5 
had a positive correlation with haze weather and a negative correlation with rainy and 
snowy conditions. 

Meng et al. (2016) studied the estimated ground-level PM10 in a Chinese 
city by combining satellite data, meteorological information, and land-use regression 
models. In this study, the LME was used to estimate annual and seasonal mean PM10 
concentration in 2008 with (1) MODIS AOD and (2) land use data, including green space, 
industrial land, commercial and residential land, water area, NDVI, road network, 
population data, and (3) meteorological data including temperature, relative humidity, 
wind speed, and wind direction. The results showed the annual mean predicted PM10 
concentration was 90.70 μg/m3. PM10 pollution was the most serious in winter, with a 
mean predicted concentration of 109.90 μg/m3. While summer, spring, and autumn 
seasons were 59.40, 93.40, and 87.90 μg/m3, respectively. 

Ma et al. (2016) studied satellite-derived high-resolution PM2.5 
concentration in China’s Yangtze River Delta Region using an improved linear mixed-
effects model with MODIS AOD, wind speed, relative humidity, and forest cover data. 
The result showed that the average PM2.5 concentration and AOD were 64.40 μg/m3 

and 0.71 for 10 km MODIS AOD data, respectively. For the 3 km MODIS AOD data, the 
mean PM2.5 and AOD were 57.62 μg/m3 and 0.81, respectively. The MPE and RMSE 
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values for the 3 km resolution model were smaller than the 10 km resolution model. 
Finally, the 3 km PM2.5 predictions could provide more spatial details than 10 km 
predictions for an urban scale.  

In summary, the MEM model has been applied by many researchers to 
estimate PM concentration based on MODIS AOD, with different meteorological and 
land use data. Many studies attempt to improve the model prediction accuracy and 
study the relationship between PM concentration with MODIS AOD and other significant 
factors. Finally, the MEM model can assess human exposure for short-term and long-
term epidemiological studies. Besides, it represents an attempt to adopt remote 
sensing technology to monitor on environmental field. 
 

 



CHAPTER III 
RESEARCH METHODOLOGY

 
The study on spatiotemporal PM concentration prediction using MODIS AOD 

with significant PM factors applied the GIS and remote sensing techniques to improve 
model prediction accuracy. In this study, the study area was separately identified into 
areas, including rural and urban landscapes, for studying the relationship between PM 
concentration and significant factors such as meteorological, biophysical, and 
socioeconomic data. However, PM concentration in this study is the atmospheric air 
quality measurement. Therefore, the sample is not collected directly influenced by 
the source of pollution. The height from the ground level to the end of the air sampling 
tube is more than 3 meters, and the distance of more than 1 meter from supporting 
structures is vertical and horizontal to avoid direct interference from the original, such 
as grilling and traffic.  

The overview framework of the research methodology consisted of four 
components include (1) data collection and preparation, (2) identification of significant 
spatiotemporal factors on PM concentration and relationship, (3) prediction of 
spatiotemporal PM concentration, and (4) a suitable spatiotemporal model for PM 
concentration prediction and validation, as shown in Figure 3.1. Details of each 
component are separately described in the following sections. 
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Figure 3.1 Overview of the research framework of the study.  
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3.1 Data collection and preparation 
The required input data of the study, which are included ground-level PM data 

as dependent variables, and meteorological, biophysical, and socioeconomic data as 
independent variables from October 2019 to May 2020, were firstly collected from 
national and international organizations and prepared using standard tools under the 
ArcGIS software, as a summary in Table 3.1. This study transformed all dynamic daily 
input data into monthly mean data. On the contrary, road density in 2019, factory 
density in 2019, elevation in 2000, population density in 2019, and GPP in 2019 were 
applied as static input data. Likewise, selected Landsat data in December 2019 and 
March 2020 were represented as seasonal data for winter (October-February) and 
summer (March-May). The schematic workflow with input, process and output for data 
collection and preparation is exhibited in Figure 3.2.  

In practice, available interpolation methods under the GIS environment, which 
many researchers subjectively choose, were examined to identify an optimum method 
for specific factors. In this study, seven interpolation methods, namely IDW, GPI, RBF, 
OK, OCK, SK, and SCK, were selected to examine an optimum interpolation method 
for appropriate dependent and independents variables, including average monthly PM 
data at ground level, meteorological data (relative humidity, temperature, wind speed, 
pressure, visibility) and MODIS fire data (brightness temperature and radiative firepower) 
based on the existing data between October 2019 to May 2020 using the Root Mean 
Squared Error (RMSE), which are reported by cross-validation under the ESRI ArcGIS 
environment. 

The RMSE indicates how closely the model predicts the measured values. The 
RMSE value should be smaller and derived using Eq (3.1). 

RMSE=ඨ∑ ሺpredicted-measuredሻ2n
i=1

n
 (3.1) 

Where, n is the number of measured data. 

After that, all prepared variables were normalized using the Z-score method to 
identify significant spatiotemporal factors on PM concentration and relationships using 
the multicollinearity test and the OLS regression analysis.  
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Table 3.1 List of data collection and preparation for analysis and modeling in the 
study. 
Categories Variables  Source Time-Frequency Data preparation 
PM data at 
ground level  

PM10 PCD 
BMA 

Daily 
Daily 

Optimum interpolation 
method 

PM2.5 PCD 
BMA 

Daily 
Daily 

Meteorological 
data 

Relative humidity TMD Daily Optimum interpolation 
method Temperatures TMD Daily 

Wind speed TMD Daily 
Pressure TMD Daily 
Visibility TMD Monthly 

Biophysical data MCD19A2  USGS Daily Raster Calculator 
NDVI USGS Seasonal 

(17/12/2019 and 
26/03/2020) 

Raster Calculator from 
Landsat 8 OLI data 

BUI USGS Seasonal 
(17/12/2019 and 
26/03/2020) 

Road density MOT - Calculate geometry and 
field calculator 

Factory density DIW - Spatial join and field 
calculator 

Elevation USGS - Fill (Spatial analysis) from 
SRTM 

Brightness temperature NASA Daily Optimum interpolation 
method Fire Radiative Power NASA Daily 

Fire hotspot NASA Daily Spatial join and field 
calculator 

Socioeconomic 
data 

Population density  NSO Yearly (2019) Field calculator (Extract 
from population data 
without non-registered 
people at district level)  

GPP NESDC Yearly (2019)  
Note: BMA: Bangkok Metropolitan Administration; DIW: Department of Industrial Works; MOT: Ministry of Transport; 
NASA: NASA’s Earth Science Data Systems; NSO: National Statistical Office; NESDC: Office of the National Economic 
and Social Development Council; PCD: Pollution Control Department; TMD: Thai Meteorological Department; USGS: 
United States Geological Survey. 
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Figure 3.2 Workflow of data collection and preparation. 
 

In practice, mean and standard deviation values at the district level of all 
dependent and independent variables were first extracted using the zonal statistics 
analysis. Then, they are further exported to the MS Excel spreadsheets and normalized 
using the Z-score method as:  

Z=
(X-μ)

σ
 (3.2) 

Where Z is the standard score, X is the observed value, μ is the mean of the sample, 

and σ is the standard deviation of the sample. As a result, the mean values of all 
variables are zero, and their standard deviation values are one. 

The schematic workflow of optimum interpolation method identification for 
PM, meteorological, and MODIS fire data preparation is displayed in Figure 3.3. 
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Figure 3.3 Workflow of optimum interpolation technique for PM, meteorological, and 
MODIS fire data preparation. 
 

Besides, a specific week with the highest record of daily PM10 and PM2.5 
concentration was prepared with the daily mean standardized value of dependent and 
independent variables at the district level to examine daily significant spatiotemporal 
factors. 
 

3.2 Identification of significant spatiotemporal factor on PM 
concentration and relationship 

Under this component, the dependent and independent variables on PM10 
concentration in the rural landscape and PM2.5 concentration in the urban landscape 
in the winter season (October 2019 to February 2020) and summer season (March 2020 
to May 2020) were applied to identify significant spatiotemporal factors using 
multicollinearity test with Variance Inflation Factor (VIF) value and ordinary least 
squares (OLS) regression analysis with a significance level of 0.01. 

The VIF measures the amount of multicollinearity in a set of multiple regression 
variables. A high VIF value indicates that the associated independent variable is 
redundant with the other variables in the model. Therefore, the VIF value should be 
lower than 7.5 to avoid multicollinearity, as suggested in ArcGIS 10.3.1 Help (ESRI, 2015). 
The equation is shown as follows: 
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VIFi=
1

1-Ri
2 (3.3) 

Where Ri
2 are the multiple coefficients of determination in a regression of the ith 

predictor on the others. 
The main output of this component is the significant spatiotemporal factors on 

PM10 concentration in the rural landscape and PM2.5 concentration in the urban 
landscape in the winter and summer seasons. Meanwhile, the regression coefficient 
values from multiple linear equations are applied to describe a positive or negative 
correlation of significant spatiotemporal factors on PM10 and PM2.5 concentration in 
different landscapes and seasons. 

In this study, the relationship between the dependent variable (PM 
concentration) and independent variables (relative humidity, temperature, wind speed, 
pressure, visibility, MODIS AOD, brightness temperature, fire radiative power, fire 
hotspot, NDVI, BUI, road density, factory density, elevation, population density, and 
GPP) was assumed as linear form. The direction of the relationship between the 
dependent variable and sixteen candidate independent variables, which are 
categorized as a source of PM concentration, influencers on PM concentration and 
effect of PM concentration, are summarized in Table 3.2. 

 
Table 3.2 Direction of the relationship between the dependent and independent 
variables based on the assumption of a linear relationship. 
Categories Independent variable Relationship Implication 
Source of PM 
concentration 

Brightness temperature Positive As these variables increase, PM 
concentration increase Fire radiative power Positive 

Fire hotspot Positive 
Road density Positive 
Factory density Positive 
Population density Positive 
GPP Positive 
BUI Positive 

 

  

 



34 

Table 3.2 (Continued). 
Categories Independent variable Relationship Implication 
Influencers on PM 
concentration 

Relative humidity Positive As these variables increase, PM 
concentration tends to increase Pressure Positive 

Wind speed Negative 
Temperature Negative 
NDVI Negative 
Elevation Negative 

Effect of PM 
concentration 

MODIS AOD Negative As PM concentration increases, 
these variables tend to decrease Visibility Negative 

 
The schematic workflow of the significant spatiotemporal factors of PM (PM10 

and PM2.5) concentration identification and relationship is displayed in Figure 3.4. 
 

 
Figure 3.4 Workflow of identifying significant spatiotemporal factors on PM 
concentration and relationship. 
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Pearson’s correlation. The range value of correlation coefficients varies between +1 to 
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interpretation of the correlation coefficient is described in Table 3.3. 
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Table 3.3 Interpretation of correlation coefficients. 
Range of correlations coefficients Interpretation 

0.80 – 1.00 very strong positive 
0.60 – 0.79 strong positive 
0.40 – 0.59 moderate positive 
0.20 – 0.39 weak positive 
0.00 – 0.19 very weak positive 

0.00 – (-0.19) very weak negative 
-0.20 – (-0.39) weak negative 
-0.40 – (-0.59) moderate negative 
-0.60 – (-0.79) strong negative 
-0.80 – (-1.00) very strong negative 

Source: Chowdhury, Debsarkar, and Chakrabarty (2015). 

 

3.3 Prediction of spatiotemporal PM concentration 
Under this component, primary input data (MODIS AOD) and significant 

spatiotemporal independent variables (the output from component 1) on PM10 and 
PM2.5 concentration in the rural and urban landscapes, respectively, are separately 
applied to predict monthly PM concentration in winter and summer seasons using the 
GWR and MEM models. 

In practice, the GWR and MEM (fixed effect intercepts) models are first applied 
to predict monthly PM10 concentration in the rural landscape and PM2.5 
concentration in the urban landscape in two seasons (winter and summer). Then, the 
efficiency of GWR models under the cross-validation process of ERSI ArcMap software 
is reported using the corrected Akaike Information Criterion (AICc), coefficient of 

determination (R2), and Adjusted R-squared (R̅2) using the following equations.  

AICc=ሺ-2 log (L) +2kሻ+ 2k(k+1)

n-k-1
 (3.4) 

R2=1-
SSres

SStot
 (3.5) 

R̅2=1-
SSres

(n-k)ൗ
 SStot

(n-1)ൗ  (3.6) 
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Where L is the maximum likelihood for the estimated model, k is the number of 

independent variables, n is the number of sample sizes, SSres is the sum of squares of 

residual or calls the residual sum of squares, and SStot is the total sum of squares. 

In the MEM model, the efficiency of models under the cross-validation process 
of SPSS statistical software is reported using the Akaike’s Information Criterion (AIC), 
corrected Akaike information criterion (AICc) and Bayesian Information Criterion (BIC) as 
follows:  

AIC=-2log(L)+2k (3.7) 

BIC=-2 log (L) +k log (N) (3.8) 

Where log(L) is the value of the log-likelihood function of the fitted model evaluated 
at the model estimate, k is the number of fitted model parameters, and N is the 
recorded measurements. 

This component’s significant output is the predictive equations for monthly 
PM10 concentration in the rural landscape and PM2.5 concentration in the urban 
landscape in winter and summer. Additionally, the distribution of monthly PM10 
concentration in the rural landscape and PM2.5 concentration in the urban landscape 
over two seasons are presented according to the Thailand Air Quality Index (AQI) and 
US EPA standards, as described in Tables 3.4 to 3.5. In addition, The WHO has set 
guidelines on air pollution, especially PM10 and PM2.5 concentration levels, which are 
used as reference tools to set standards and goals to improve air quality for air quality 
management by policymakers worldwide, as described in Tables 3.6. For example, the 
WHO guidelines state that 24-hour average exposure for PM10 concentration should 
not exceed 45 μg/m3, while PM2.5 concentration should not exceed 15 μg/m3. As a 
result, countries can reduce the disease burden from stroke, heart disease, lung cancer, 
and chronic and acute respiratory diseases, including asthma. 

The schematic workflow of spatiotemporal PM concentration prediction is 
displayed in Figure 3.5. 
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Table 3.4 Thailand’s Air Quality Index based on PM concentration. 
Level of Thai AQI Meaning PM10 (μg/m3) PM2.5 (μg/m3) 

1 Excellent 0-50 0-25 
2 Satisfactory 51-80 26-37 
3 Moderate 81-120 38-50 
4 Unhealthy 121-180 51-90 
5 Very unhealthy > 181 > 91 

Source: Pollution Control Department (2018). 

 
Table 3.5 The US EPA Air Quality Index based on PM concentration. 
Level of AQI Meaning AQI PM10 (μg/m3) PM2.5 (μg/m3) 

1 Good 0-50 0-54  0.0-12.0 
2 Moderate 51-100 55-154 12.1-35.4 
3 Unhealthy for Sensitive Groups 101-150 155-254 35.5-55.4 
4 Unhealthy 151-200 255-354 55.5-150.4 
5 Very Unhealthy 201–300 355–424 150.5–250.4 
6 

Hazardous 
301-400 425-504 250.5-350.4 

7 401-500 505-604 350.5-500.4 
Source: (US Environmental Protection Agency, 2018) 

 
Table 3.6 WHO air quality guidelines. 

Pollutant PM 10 PM2.5 
Averaging period One day One Year One day One Year 
WHO guidelines (μg/m3) 45 μg/m3 

Not to be exceeded on 
more than three days 
per year. 

15 μg/m3 15 μg/m3 
Not to be exceeded 
on more than three 
days per year. 

5 μg/m3 

Air quality standards 
under the Air Quality 
Directive 

Limit value,  
50 μg/m3  
Not to be exceeded on 
more than 35 days per 
year. 

Limit value,  
40 μg/m3 

 Limit value, 
25 μg/m3 

Source: Antonis S. Manolis and Theodora A. Manolis (2013), European Environment Agency (2016); World Health 
Organization (2021) 
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Figure 3.5 Workflow of spatiotemporal PM concentration prediction. 
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concentration prediction was validated with a new dataset (October 2020 to May 2021) 
using Pearson Correlation Analysis. The expected correlation coefficient value should 
be equal to or more than 0.5, which shows a strong linear relationship between the 
dependent and independent variables (Cohen, 1988). 

Moreover, characteristics of predictive spatiotemporal PM concentration by the 
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using spatial correlation analysis with the Spatial Modeler module under ERDAS 
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classification in winter and summer with standard deviation method and land use data 
in 2019 by LDD were examined using overlay analysis under ESRI ArcMap. 

The schematic workflow of a suitable spatiotemporal model for PM 
concentration prediction is displayed in Figure 3.6. 

 

 
Figure 3.6 Workflow of a suitable spatiotemporal model for PM concentration 
prediction and validation. 
 

The component’s significant output is the suitable model for spatiotemporal 
PM10 and PM2.5 concentration prediction in the rural and urban landscapes in the 
winter and summer seasons and its spatiotemporal distribution characteristic. 
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and PM2.5 concentration prediction. 
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CHAPTER IV 
DATA COLLECTION AND PREPARATION

 
This chapter presents the results of the first component of the research 

methodology focusing on data collection and preparation, particularly an optimum 
method for ground-level PM concentration, meteorological (relative humidity, 
temperature, wind speed, pressure, visibility), and MODIS fire data (brightness 
temperature and fire radiative power) interpolation. Details of each variable's result are 
explained and discussed in the following section. 
 

4.1 Optimum method for monthly mean PM concentration 
interpolation 

The statistical data of the ground-level monthly mean PM10 and PM2.5 
concentration from the PCD and BMA between October 2019 to May 2020, which were 
applied to identify an optimum interpolation method, are summarized in Table 4.1, 
including minimum, maximum, mean, standard deviation (SD) values and the number 
of stations for interpolation. The spatial distribution of PM ground monitoring stations 
is displayed in Figure 4.1. Details of PM ground monitoring stations with geographic 
coordinates are reported in Table 1 in Appendix. 
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Figure 4.1 The spatial distribution of PM ground monitoring stations. 
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Table 4.1 Descriptive statistical data of the monthly mean PM10 and PM2.5 
concentration. 

Month Season 
PM10 concentration (μg/m3) PM2.5 concentration (μg/m3) 

Min. Max. Mean SD. Stations Min. Max. Mean SD. Stations 
Oct Winter 29.84 151.43 51.53 17.17 64 13.66 41.52 25.82 6.59 64 
Nov Winter 41.80 176.23 64.08 18.23 64 20.53 46.33 32.97 6.39 64 
Dec Winter 45.89 179.49 74.07 18.62 64 27.27 54.10 39.29 6.67 64 
Jan Winter 48.23 202.36 78.46 20.81 68 29.77 67.23 43.61 8.07 77 
Feb Winter 50.42 213.11 79.51 20.79 68 19.72 63.23 44.11 7.51 85 
Mar Summer 24.55 121.55 48.49 15.86 68 14.17 50.46 23.54 6.15 91 
Apr Summer 22.64 104.07 43.00 13.02 68 13.65 37.41 21.98 4.90 91 
May Summer 17.74 84.34 37.14 11.25 68 9.15 28.32 16.75 4.17 91 

 
According to the monthly mean basic statistical data, the monthly mean PM 

concentration is low in October. It gradually increases to the highest in February, then 
falls to the lowest in May. The maximum PM10 concentration is 213.11 μg/m3 in 
February, while the maximum PM2.5 concentration is 67.23 μg/m3 in January. In 
contrast, the minimum PM10 and PM2.5 concentrations were 17.74 μg/m3 and 9.15 
μg/m3 in May, respectively. Additionally, the PM concentration is high in the winter 
season and low in the summer season. (See Table 4.1) 

In the cokriging (OCK and SCK) method, the latitude and longitude variables 
were added to be the cokriging variable. The relationship between monthly mean 
PM10 and PM2.5 concentration and cokriging variables is summarized in Table 4.2. 
 
Table 4.2 The Pearson's correlation coefficients between monthly mean PM10 and 
PM2.5 concentration with cokriging variables. 
Variables Oct Nov Dec Jan Feb Mar Apr May 
PM10 LAT 0.16 0.14 0.36** 0.36** 0.34** 0.50** 0.38** 0.32** 
 LONG -0.07 -0.11 -0.14 -0.07 0.07 0.17 0.17 0.15 
PM2.5 LAT 0.13 0.06 0.38** 0.33** 0.27* 0.68** 0.54 0.34** 
 LONG -0.29* -0.40** -0.43** -0.22 -0.10 0.10 0.02 0.04 

Note: *correlation is significant at the 0.05 level (2-tailed), **correlation is significant at the 0.01 level (2-tailed). 

  

 



43 

As a result, the relationship between monthly mean PM10 concentration and 
latitude variable is a very weak positive linear relationship in October and November. 
Also, there is a statistically significant weak to moderate positive correlation (p ≤ 0.01) 
from December to May. The relationship between monthly mean PM10 concentration 
and longitude variable indicates a weak negative linear relationship between October 
and January and a weak positive relationship between February and May.  

Besides, the relationship between monthly mean PM2.5 concentration and 
latitude variable is a very weak positive linear relationship in October and November, 
same as the relationship between PM10 concentration. Additionally, a weak to 
moderate positive correlation is statistically significant (p ≤ 0.01) from December to 
May. Except in February, there is statistically significant (p ≤ 0.05). The relationship 
between monthly mean PM10 concentration and longitude variable indicates a 
negative linear relationship between October to February and a weak positive 
relationship between March and May. 

The cross-validation RMSE for monthly mean PM10 and PM2.5 concentration 
interpolation with seven different methods (IDW, GPI, RBF, OK, OCK, SK, and SCK) is 
summarized in Tables 4.3 and 4.4, respectively. 
 
Table 4.3 The cross-validation RMSE of the seven interpolation methods for mean 
PM10 concentration from October 2019 to May 2020. 

Model Function 
RMSE (μg/m3) 

Oct Nov Dec Jan Feb Mar Apr May Avg. 
IDW Power 1 1 sector 17.55 18.88 17.32 19.97 20.04 14.90 12.39 11.00 16.51 

4 sectors 17.80 19.02 17.74 20.14 20.06 14.82 12.39 11.03 16.63 
4 sectors with 
45-degree 
offset 

17.55 18.78 17.26 19.77 19.83 14.74 12.32 10.90 16.39 

8 sectors 17.66 18.89 17.65 20.04 19.98 14.83 12.41 11.02 16.56 
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Table 4.3 (Continued). 

Model Function 
RMSE (μg/m3) 

Oct Nov Dec Jan Feb Mar Apr May Avg. 
IDW Power 2 1 sector 18.50 20.29 17.35 20.12 20.61 15.51 13.15 11.46 17.12 

4 sectors 18.38 20.07 17.38 20.00 20.35 15.37 13.03 11.40 17.00 
4 sectors with 
45-degree 
offset 

18.22 19.95 17.09 19.78 20.23 15.37 13.02 11.32 16.87 

8 sectors 18.2 19.89 17.23 19.85 20.19 15.35 12.98 11.34 16.88 
GPI Order 1 18.14 19.21 18.64 21.79 22.65 14.41 12.73 11.2 17.35 

Order 2  86.41 101.16 110.32 111.1 114.03 39.31 33.05 28.64 78.00 
Order 3 573.46 611.72 399.28 473.83 468.41 91.11 41.42 20.89 335.02 

RBF Complet
ely 
Regulariz
e spine 

1 sector 17.73 19.34 17.15 20.03 20.15 14.82 12.52 11.04 16.60 
4 sectors 17.98 19.45 17.51 20.21 20.01 14.64 12.52 11.19 16.69 
4 sectors with 
45-degree 
offset 

17.68 19.16 17.08 19.92 19.82 14.51 12.43 11.05 16.46 

8 sectors 17.88 19.36 17.37 19.99 19.80 14.55 12.43 11.19 16.57 
Spline 
with 
tension 

1 sector 17.84 19.55 17.19 20.12 20.03 14.6 12.48 11.11 16.62 
4 sectors 17.94 19.42 17.48 20.11 19.91 14.49 12.38 11.11 16.61 
4 sectors with 
45-degree 
offset 

17.73 19.21 17.09 19.85 19.69 14.43 12.35 11.05 16.43 

8 sectors 17.86 19.31 17.36 19.96 19.77 14.51 12.38 11.16 16.54 
multiqua
dric 

1 sector 21.83 24.29 19.84 24.07 24.92 17.21 15.74 13.39 20.16 
4 sectors 20.59 22.67 18.67 22.51 23.33 16.75 15.23 12.91 19.08 
4 sectors with 
45-degree 
offset 

20.82 22.94 19.04 22.79 23.62 16.78 15.27 12.88 19.27 

8 sectors 20.75 22.84 18.97 22.66 23.46 16.77 15.21 12.92 19.20 
Inverse 
multiqua
dric 

1 sector 17.65 18.97 17.41 20.27 19.92 14.38 11.95 10.77 16.42 
4 sectors 18.06 19.26 18.01 20.54 20.17 14.46 11.96 10.88 16.67 
4 sectors with 
45-degree 
offset 

17.80 19.04 17.36 20.22 19.85 14.35 11.96 10.78 16.42 

8 sectors 17.92 19.00 17.87 20.42 20.12 14.57 12.08 10.96 16.62 
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Table 4.3 (Continued). 

Model Function 
RMSE (μg/m3) 

Oct Nov Dec Jan Feb Mar Apr May Avg. 
RBF Thin 

plate 
spine 

1 sector 60.62 62.86 50.69 63.33 69.36 40.48 38.71 29.79 51.98 
4 sectors 41.23 46.38 36.9 44.84 51.11 31.82 29.52 22.36 38.02 
4 sectors with 
45-degree 
offset 

39.48 43.18 35.23 42.04 46.08 29.08 26.97 20.71 35.35 

8 sectors 37.02 41.38 33.31 40.08 44.21 27.81 25.54 19.92 33.66 
OK* Circular 86.46 101.34 109.86 114.5 117.96 38.39 32.20 28.62 78.67 

Spherical 86.46 101.25 109.81 110.62 117.94 38.5 32.27 28.62 78.18 
Tetraspherical 86.44 101.26 109.84 110.66 117.91 38.49 32.34 28.62 78.20 
Pentasherical 86.43 101.31 109.88 110.70 117.88 38.53 32.33 28.62 78.21 
Exponential 86.48 101.39 109.98 110.81 117.52 38.49 32.33 28.62 78.20 
Gaussian 86.41 101.10 109.62 114.68 118.31 38.60 32.17 28.62 78.69 
Rational Quadratic  86.57 101.53 110.11 110.97 117.66 39.34 32.99 28.62 78.47 
Hole Effect 86.13 100.56 109.69 115.01 118.57 39.58 33.71 28.62 78.98 
K-Bessel 86.50 101.45 109.98 110.81 118.24 38.51 32.32 28.62 78.30 
J-Bessel 85.95 100.25 109.81 115.25 118.89 38.69 33.65 27.90 78.80 
Stable 86.46 101.39 109.96 110.76 118.26 38.49 32.32 28.14 78.22 

OCK* Circular 77.31 94.14 102.32 114.46 113.76 33.9 33.92 27.56 74.67 
Spherical 82.51 97.77 102.37 111.32 115.19 33.91 34.05 28.62 75.72 
Tetraspherical 82.42 97.25 107.63 111.34 113.68 33.95 34.1 28.62 76.12 
Pentasherical 82.50 96.96 103.82 112.3 115.25 33.39 34.18 28.62 75.88 
Exponential 77.75 96.96 101.17 111.09 113.88 34.54 33.92 31.93 75.16 
Gaussian 77.51 91.67 101.1 114.65 113.91 34.11 33.97 27.38 74.29 
Rational Quadratic  77.55 91.75 100.78 91.58 114.83 33.77 34.04 28.56 71.61 
Hole Effect 83.49 94.28 106.49 92.53 114.46 33.89 32.30 27.85 73.16 
K-Bessel 77.22 92.83 101.16 110.8 113.06 34.12 30.73 29.15 73.63 
J-Bessel 82.71 96.77 106.68 103.6 118.88 37.75 30.86 27.61 75.61 
Stable 76.99 91.67 101.10 110.74 113.90 34.11 32.97 27.40 73.61 

SK* Circular 16.88 17.82 17.22 19.98 20.11 15.01 12.74 11.16 16.37 
Spherical 16.93 17.9 17.16 20.09 20.1 15.11 12.71 11.16 16.40 
Tetraspherical 16.92 17.88 17.19 20.17 20.09 15.37 12.73 11.17 16.44 
Pentaspherical 16.95 17.88 17.21 20.17 20.11 15.4 12.76 11.15 16.45 
Exponential 16.92 17.86 17.2 19.88 19.92 15.27 12.69 11.14 16.36 
Gaussian 16.88 17.83 17.75 20.16 20.25 14.79 12.76 11.17 16.45 
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Table 4.3 (Continued). 

Model Function 
RMSE (μg/m3) 

Oct Nov Dec Jan Feb Mar Apr May Avg. 
SK* Rational Quadratic  17.05 17.92 17.34 20.02 19.99 15.38 12.71 11.07 16.44 

Hole Effect 17.18 18.15 17.66 20.19 20.15 16.08 12.40 11.06 16.61 
K-Bessel 16.96 17.91 17.32 20.15 20.18 15.37 12.80 11.11 16.48 
J-Bessel 16.93 17.69 17.62 20.27 20.26 15.57 12.39 11.33 16.51 
Stable 17.00 17.92 17.40 20.16 20.25 15.26 12.74 11.10 16.48 

SCK* Circular 16.86 17.86 17.01 20.24 19.64 13.84 11.92 10.60 16.00 
Spherical 16.87 17.86 16.98 20.24 19.63 13.83 11.88 10.56 15.98 
Tetraspherical 16.87 17.86 16.96 20.24 19.63 13.82 11.84 10.55 15.97 
Pentaspherical 16.87 17.87 16.95 19.32 19.62 13.67 11.78 10.52 15.83 
Exponential 16.88 17.85 16.78 20.21 19.56 13.62 11.85 10.55 15.91 
Gaussian 16.87 17.89 17.06 20.24 19.69 13.96 11.93 11.25 16.11 
Rational Quadratic  16.87 17.85 16.77 20.26 19.55 13.54 11.7 10.48 15.88 
Hole Effect 16.84 17.79 17.08 19.22 19.54 13.46 11.29 10.62 15.73 
K-Bessel 16.84 17.87 16.57 19.34 19.41 13.41 11.85 10.55 15.73 
J-Bessel 16.80 17.87 17.02 19.24 19.75 13.47 11.55 10.41 15.76 
Stable 16.85 17.86 16.59 19.33 19.48 13.38 11.85 10.54 15.74 

Note: * This model calculated new values for the parameters with optimized semivariogram 

 
Table 4.4 The cross-validation RMSE of the seven different interpolation methods for 
mean PM2.5 concentration interpolation from October 2019 to May 2020. 

Model Function 
RMSE (μg/m3) 

Oct Nov Dec Jan Feb Mar Apr May Avg. 
IDW Power 1 1 sector 6.35 6.09 5.81 7.97 7.50 5.56 4.67 4.18 6.02 

4 sectors 6.19 6.00 5.81 7.77 7.42 5.43 4.56 4.16 5.92 
4 sectors with 
45-degree 
offset 

6.15 5.96 5.65 7.75 7.36 5.46 4.57 4.15 5.88 

8 sectors 6.20 6.03 5.85 7.73 7.39 5.46 4.56 4.14 5.92 
Power 2 1 sector 6.77 6.62 5.99 8.57 7.87 5.80 4.94 4.38 6.37 

4 sectors 6.63 6.50 5.92 8.34 7.74 5.67 4.83 4.32 6.24 
4 sectors with 
45-degree 
offset 

6.61 6.49 5.87 8.37 7.74 5.73 4.85 4.31 6.25 

8 sectors 6.62 6.50 5.94 8.31 7.71 5.70 4.82 4.29 6.24 
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Table 4.4 (Continued). 

Model Function 
RMSE (μg/m3) 

Oct Nov Dec Jan Feb Mar Apr May Avg. 
GPI Order 1 6.66 6.39 5.55 7.80 7.58 4.69 4.24 4.07 5.87 

Order 2  8.90 14.43 22.36 21.49 15.87 7.67 5.85 4.58 12.64 
Order 3 109.56 77.93 25.80 52.54 55.78 18.14 8.75 29.74 47.28 

RBF Complet
ely 
Regulariz
e spine 

1 sector 6.63 6.39 5.94 8.37 7.83 5.68 4.88 4.34 6.26 
4 sectors 6.56 6.33 5.99 8.32 7.77 5.50 4.84 4.37 6.21 
4 sectors with 
45-degree 
offset 

6.48 6.26 5.82 8.31 7.79 5.56 4.87 4.36 6.18 

8 sectors 6.52 6.29 5.95 8.32 7.76 5.48 4.82 4.36 6.19 
Spline 
with 
tension 

1 sector 6.69 6.41 5.97 8.35 7.73 5.63 4.88 4.41 6.26 
4 sectors 6.49 6.22 5.91 8.17 7.65 5.40 4.77 4.33 6.12 
4 sectors with 
45-degree 
offset 

6.43 6.18 5.74 8.17 7.66 5.49 4.81 4.33 6.10 

8 sectors 6.44 6.22 5.90 8.18 7.66 5.42 4.76 4.32 6.11 
multiqua
dric 

1 sector 8.18 8.00 7.15 10.23 9.43 6.15 5.55 4.98 7.46 
4 sectors 7.67 7.57 6.76 9.96 9.04 6.09 5.46 4.91 7.18 
4 sectors with 
45-degree 
offset 

7.72 7.59 6.82 9.91 9.03 6.10 5.49 4.94 7.20 

8 sectors 7.69 7.59 6.79 9.86 8.96 6.11 5.49 4.93 7.18 
Inverse 
multiqua
dric 

1 sector 6.37 6.05 5.80 7.91 7.43 5.54 4.63 4.34 6.01 
4 sectors 6.17 5.89 6.07 7.73 7.42 5.43 4.59 4.21 5.94 
4 sectors with 
45-degree 
offset 

6.24 5.97 5.81 7.66 7.35 5.46 4.58 4.19 5.91 

8 sectors 6.24 6.04 6.04 7.82 7.35 5.50 4.59 4.22 5.98 
Thin 
plate 
spine 

1 sector 12.11 16.31 11.99 18.11 16.82 9.16 8.33 7.00 12.48 
4 sectors 11.11 11.60 9.90 15.70 13.51 7.59 6.81 6.28 10.31 
4 sectors with 
45-degree 
offset 

10.35 11.66 9.53 14.11 12.66 7.81 7.02 6.28 9.93 

8 sectors 10.40 10.93 9.22 14.24 12.50 7.88 7.12 6.49 9.85 
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Table 4.4 (Continued). 

Model Function 
RMSE (μg/m3) 

Oct Nov Dec Jan Feb Mar Apr May Avg. 
OK* Circular 8.98 14.40 22.36 21.60 15.95 7.65 5.77 4.74 12.68 

Spherical 8.98 14.40 22.36 21.60 15.95 7.65 5.77 4.75 12.68 
Tetraspherical 8.98 14.40 22.36 21.60 15.95 7.65 5.77 4.73 12.68 
Pentasherical 8.98 14.40 22.36 21.60 15.95 7.65 5.77 4.74 12.68 
Exponential 8.98 14.40 22.36 21.60 16.04 7.65 5.77 4.78 12.70 
Gaussian 8.98 14.40 22.36 21.60 15.95 7.76 5.77 4.75 12.70 
Rational Quadratic  8.98 14.40 22.36 21.60 15.95 7.65 5.77 4.77 12.69 
Hole Effect 8.98 14.40 22.36 21.60 15.95 7.65 5.77 4.79 12.69 
K-Bessel 8.98 14.40 22.36 21.60 16.12 7.75 5.77 4.75 12.72 
J-Bessel 8.98 14.40 22.36 21.60 16.02 7.65 5.77 4.72 12.69 
Stable 8.98 14.38 22.36 21.60 16.01 7.76 5.77 4.75 12.70 

OCK* Circular 8.98 14.40 21.25 21.60 14.11 7.65 5.05 4.50 12.19 
Spherical 8.98 14.40 21.26 21.60 15.61 7.46 5.05 4.50 12.36 
Tetraspherical 8.98 14.40 21.23 21.60 15.85 7.31 5.11 4.49 12.37 
Pentasherical 8.98 14.40 21.26 21.60 14.05 7.50 5.12 4.49 12.18 
Exponential 8.98 14.40 21.20 21.60 14.06 7.62 5.14 4.50 12.19 
Gaussian 8.98 14.25 21.20 19.30 14.14 7.73 4.90 4.45 11.87 
Rational Quadratic  8.98 14.40 21.16 21.60 13.95 7.56 5.31 4.49 12.18 
Hole Effect 8.98 14.40 20.00 21.60 14.52 7.65 5.05 4.45 12.08 
K-Bessel 8.64 14.40 22.11 19.32 14.11 7.64 4.94 4.48 11.96 
J-Bessel 8.81 13.84 22.09 19.12 14.38 7.22 5.09 4.51 11.88 
Stable 8.53 14.40 21.20 19.30 14.14 7.73 4.90 4.44 11.83 

SK* Circular 6.10 5.98 5.53 7.43 7.42 5.67 4.62 4.17 5.87 
Spherical 6.10 6.00 5.59 7.45 7.43 5.68 4.62 4.17 5.88 
Tetraspherical 6.16 6.02 5.60 7.50 7.39 5.70 4.68 4.17 5.90 
Pentaspherical 6.16 6.05 5.62 7.48 7.39 5.71 4.66 4.17 5.91 
Exponential 6.08 6.09 5.62 7.61 7.49 5.67 4.71 4.17 5.93 
Gaussian 6.10 6.01 5.54 7.24 7.36 5.44 4.62 4.17 5.81 
Rational Quadratic  6.10 5.95 5.60 7.42 7.45 5.56 4.72 4.17 5.87 
Hole Effect 6.15 6.15 5.70 7.36 7.61 5.56 4.70 4.16 5.92 
K-Bessel 6.07 6.08 5.53 7.34 7.71 5.45 4.60 4.17 5.87 
J-Bessel 6.24 6.05 5.78 7.48 7.60 5.52 4.68 4.17 5.94 
Stable 6.05 5.94 5.54 7.35 7.42 5.44 4.62 4.17 5.82 
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Table 4.4 (Continued). 

Model Function 
RMSE (μg/m3) 

Oct Nov Dec Jan Feb Mar Apr May Avg. 
SCK* Circular 6.09 5.83 5.74 8.07 7.51 5.81 4.73 4.17 5.99 

Spherical 6.08 5.84 5.75 8.07 7.51 5.80 4.73 4.17 5.99 
Tetraspherical 6.08 5.83 5.86 8.07 7.51 5.80 4.73 4.17 6.01 
Pentaspherical 6.09 5.83 5.76 8.07 7.51 5.80 4.73 4.17 6.00 
Exponential 6.09 5.88 5.93 8.07 7.51 5.76 4.90 4.17 6.04 
Gaussian 6.07 5.82 5.84 7.86 7.51 5.84 4.74 4.17 5.98 
Rational Quadratic  6.11 5.88 5.93 8.07 7.51 5.79 4.90 4.17 6.05 
Hole Effect 6.05 5.81 5.69 7.84 7.29 5.84 4.76 4.00 5.91 
K-Bessel 6.08 5.83 5.30 7.34 7.18 4.56 4.17 3.93 5.55 
J-Bessel 6.07 5.83 5.80 7.82 7.38 5.85 4.79 4.01 5.94 
Stable 6.08 5.82 5.36 7.86 7.18 4.57 4.18 3.93 5.62 

Note: * This model calculated new values for the parameters with optimized semivariogram 

 
As a result (Table 4.3), an average RMSE value of monthly mean PM10 

concentration interpolation using seven different methods with various functions varies 
from 15.73 μg/m3 using the SCK method with the Hole Effect or the K-Bessel function 
to 335.02 μg/m3 using the GPI method with the Order 3 function. So, the SCK method 
with the Hole Effect or the K-Bessel function can be chosen as an optimum method 
for monthly mean PM10 concentration interpolation since both functions can provide 
the least RMSE value.  

In the meantime, an average RMSE value of monthly mean PM2.5 concentration 
interpolation using the same methods with various functions varies from 15.73 μg/m3 
using the SCK method with the K-Bessel to 47.28 μg/m3 using the GPI method with the 
Order 3 function. Therefore, the SCK method with the K-Bessel function is chosen as 
an optimum method for monthly mean PM2.5 concentration interpolation since it can 
provide the least RMSE value.  

Nevertheless, previous research on an optimum interpolation method for 
predicting PM10 and PM2.5 concentration at international and national levels reported 
different methods. Sajjadi, Zolfaghari, Adab, Allahabadi, and Delsouz (2017) selected 
four interpolation methods (IDW, RBF, OK and UK) to identify an optimum method for 
predicting PM10 and PM2.5 in Sabzevar city of Razavi Khorasan province, Iran using 
RMSE, MAE, and MAPE. They found that IDW is the best interpolation method for PM10 
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and PM2.5 concentration prediction. Meanwhile, Vorapracha, Phonprasert, 
Khanaruksombat, and Pijarn (2015) selected three methods (IDW, OK and UK) to 
identify an optimum method for predicting PM10 in the Central Region of Thailand 
using RMSE. They also found that the most optimum method for PM10 prediction was 
IDW. Meanwhile. Wong, Yuan, and Perlin (2004) identified OK as the optimum method 
for PM10 prediction by comparing it with IDW. Likewise, Kumar et al. (2016) reported 
OK as the best interpolation method for PM10 concentration prediction among three 
selected methods (IDW, OK, spline). 

According to the results mentioned above, it can be observed that the number 
of the selected interpolation methods to identify an optimum method for predicting 
PM10 and PM2.5 are less than in the current study. This study examines seven 
interpolation methods with various functions, namely IDW, GPI, RBF, OK, OCK, SK, and 
SCK, using RMSE. As a result, the SCK method, which applies the covariance between 
two or more realizations of cross-correlated random fields (Giraldo, Herrera, and Leiva, 
2020), is the most optimum in this current. 

 

4.2 Optimum method for monthly mean meteorological data 
interpolation 

4.2.1 Relative humidity 

The statistical data of relative humidity from 39 stations from TMD 
between October 2019 to May 2020 for identifying the optimum interpolation method 
are summarized in Table 4.5. Details of relative humidity measurement stations in 
geographic coordinates are reported in Table 2 in Appendix. 
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Table 4.5 Descriptive statistical data of the relative humidity. 
Month Season Min. (%) Max. (%) Mean (%) SD. (%) Stations 

Oct Winter 69.39 83.58 77.14 3.67 39 
Nov Winter 57.15 77.03 69.51 4.58 39 
Dec Winter 54.35 76.13 65.76 5.06 39 
Jan Winter 58.61 77.87 69.32 5.57 39 
Feb Winter 51.62 75.41 64.89 6.29 39 
Mar Summer 55.94 81.35 70.15 6.21 39 
Apr Summer 56.90 82.93 70.70 6.84 39 
May Summer 65.32 85.03 73.82 4.69 39 

 
According to the basic statistical data, the monthly mean relative 

humidity is the highest in October. After that, it gradually decreases to the lowest in 
February, then up to the high again in May. Thus, the maximum value of monthly 
relative humidity is 85.03% in May, while the minimum value of monthly relative 
humidity is 51.62% in February. Additionally, the mean relative humidity in the winter 
and summer seasons is insignificantly different. 

In the cokriging (OCK and SCK) method, the latitude and longitude 
variables were added to be the cokriging variable. The relationship between monthly 
mean relative humidity and cokriging variables is summarized in Table 4.6. 
 

Table 4.6 The Pearson’s correlation coefficients between monthly mean relative 
humidity with cokriging variables. 

Variables Oct Nov Dec Jan Feb Mar Apr May 
RH LAT -0.46** -0.34* -0.44** -0.73** -0.83** -0.86** -0.91** -0.71** 
 LONG 0.28 -0.00 -0.06 0.01 0.05 0.38* 0.38* 0.53** 

Note: *correlation is significant at the 0.05 level (2-tailed), **correlation is significant at the 0.01 level (2-tailed). 

 
The relationship between monthly mean relative humidity and latitude 

variable has a moderate negative correlation from October to December. Additionally, 
January to May indicates strong negative linear relationships with statistically significant 
(p ≤ 0.01). The correlation between relative humidity and longitude variable is 
relatively weak but noteworthy that there are moderate positive correlations with 
statistically significant (p ≤ 0.05) in March and April (p ≤ 0.01) in May. 
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The cross-validation RMSE for monthly mean relative humidity 
interpolation with seven different methods (IDW, GPI, RBF, OK, OCK, SK, and SCK) is 
summarized in Table 4.7. 
 

Table 4.7 The cross-validation RMSE of the seven different interpolation methods for 
mean relative humidity interpolation from October 2019 to May 2020. 

Model Function 
RMSE (%) 

Oct Nov Dec Jan Feb Mar Apr May Avg. 
IDW Power 1 1 sector 3.32 4.56 4.97 4.43 4.04 3.76 3.72 3.24 4.01 

4 sectors 3.22 4.55 4.92 4.56 4.44 4.01 4.08 3.23 4.13 
4 sectors with 
45-degree 
offset 

3.25 4.54 4.84 4.52 4.43 4.15 4.18 3.40 4.16 

8 sectors 3.31 4.56 4.95 4.76 4.82 4.48 4.62 3.48 4.37 
Power 2 1 sector 3.54 4.87 5.33 4.84 4.23 3.76 3.74 3.27 4.20 

4 sectors 3.44 4.80 5.26 4.86 4.36 3.88 3.86 3.22 4.21 
4 sectors with 
45-degree 
offset 

3.46 4.79 5.24 4.85 4.37 3.91 3.90 3.29 4.23 

8 sectors 3.47 4.79 5.27 4.93 4.51 4.06 4.07 3.28 4.30 
GPI Order 1 3.49 3.49 4.63 4.75 3.78 3.32 3.52 3.13 3.76 

Order 2  3.80 3.80 4.54 4.93 3.93 3.42 3.02 2.99 3.80 
Order 3 4.01 4.01 6.77 5.55 4.32 3.98 3.94 3.54 4.52 

RBF Completely 
Regularize 
spine 

1 sector 3.30 4.51 4.97 4.42 3.98 3.58 3.55 3.23 3.94 
4 sectors 3.19 4.43 4.91 4.47 4.11 3.65 3.62 3.19 3.95 
4 sectors 
with 45-
degree 
offset 

3.21 4.44 4.89 4.46 4.14 3.78 3.72 3.25 3.99 

8 sectors 3.20 4.44 4.91 4.49 4.18 3.78 3.73 3.24 4.00 
Spline with 
tension 

1 sector 3.27 4.50 5.07 4.39 4.02 3.73 3.66 3.28 3.99 
4 sectors 3.16 4.41 4.90 4.43 4.11 3.63 3.61 3.18 3.93 
4 sectors 
with 45-
degree 
offset 

3.23 4.45 4.88 4.39 4.13 3.71 3.66 3.25 3.96 

8 sectors 3.18 4.43 4.88 4.46 4.18 3.76 3.71 3.24 3.98 
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Table 4.7 (Continued). 

Model Function 
RMSE (%) 

Oct Nov Dec Jan Feb Mar Apr May Avg. 
RBF multiqua

dric 
1 sector 3.75 5.10 5.63 5.05 4.34 3.41 3.56 3.56 4.30 
4 sectors 3.76 5.07 5.53 4.93 4.22 3.20 3.39 3.56 4.21 
4 sectors with 
45-degree 
offset 

3.71 5.07 5.54 4.95 4.20 3.19 3.39 3.54 4.20 

8 sectors 3.75 5.07 5.53 4.92 4.20 3.18 3.37 3.54 4.20 
Inverse 
multiqua
dric 

1 sector 3.25 4.51 4.97 4.29 3.92 4.09 4.04 3.36 4.05 
4 sectors 3.15 4.53 4.85 4.64 4.77 4.19 4.26 3.29 4.21 
4 sectors with 
45-degree 
offset 

3.25 4.56 4.74 4.42 4.50 4.25 4.30 3.46 4.19 

8 sectors 3.26 4.59 4.91 4.96 5.25 4.56 4.62 3.51 4.46 
Thin 
plate 
spine 

1 sector 6.14 7.36 8.83 9.64 7.21 6.04 6.64 6.40 7.28 
4 sectors 5.23 7.05 7.97 7.59 6.41 4.80 5.36 5.25 6.21 
4 sectors with 
45-degree 
offset 

5.48 7.29 7.91 7.50 6.35 4.82 5.27 5.14 6.22 

8 sectors 5.50 7.35 8.04 7.48 6.40 4.66 5.21 5.15 6.22 
OK* Circular 3.84 4.56 5.00 3.96 3.46 2.90 3.02 3.90 3.83 

Spherical 3.77 4.56 5.00 3.96 3.46 2.90 3.02 3.89 3.82 
Tetraspherical 3.76 4.57 5.00 3.96 3.46 2.90 3.02 3.93 3.83 
Pentasherical 3.67 4.57 5.00 3.96 3.46 2.90 3.02 3.93 3.81 
Exponential 3.77 4.54 5.00 3.96 3.46 2.90 3.02 3.93 3.82 
Gaussian 3.72 4.56 5.00 3.96 3.46 2.90 3.02 3.90 3.82 
Rational Quadratic  3.70 4.61 5.00 3.96 3.46 2.90 3.02 3.93 3.82 
Hole Effect 3.42 4.48 5.00 3.96 3.46 2.90 3.02 3.93 3.77 
K-Bessel 3.78 4.45 5.00 3.96 3.46 2.90 3.02 3.74 3.79 
J-Bessel 3.36 4.71 5.00 3.96 3.46 2.90 3.02 3.93 3.79 
Stable 3.66 4.49 5.00 3.96 3.46 2.90 3.02 3.90 3.80 
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Table 4.7 (Continued). 

Model Function 
RMSE (%) 

Oct Nov Dec Jan Feb Mar Apr May Avg. 
OCK* Circular 3.61 4.56 5.00 3.96 3.46 2.90 3.02 3.78 3.79 

Spherical 3.53 4.56 5.00 3.96 3.46 2.90 3.02 3.83 3.78 
Tetraspherical 3.49 4.52 5.00 3.96 3.46 2.90 3.02 3.82 3.77 
Pentasherical 3.48 4.54 5.00 3.96 3.46 2.90 3.02 3.93 3.79 
Exponential 3.52 4.49 5.00 3.96 3.46 2.90 3.02 3.93 3.79 
Gaussian 3.67 4.56 5.00 3.96 3.46 2.90 3.02 3.82 3.80 
Rational Quadratic  3.53 4.56 5.00 3.96 3.46 2.90 3.02 3.94 3.80 
Hole Effect 3.34 4.47 5.00 3.96 3.46 2.90 3.02 3.10 3.66 
K-Bessel 3.53 4.41 5.00 3.96 3.46 2.90 3.02 3.68 3.75 
J-Bessel 3.26 4.49 5.00 3.96 3.46 2.90 3.02 3.47 3.70 
Stable 3.57 4.47 5.00 3.96 3.46 2.90 3.02 3.19 3.70 

SK* Circular 3.16 4.37 4.75 4.09 3.70 3.29 3.29 3.34 3.75 
Spherical 3.16 4.36 4.76 4.10 3.76 3.35 3.34 3.35 3.77 
Tetraspherical 3.16 4.33 4.77 4.12 3.71 3.40 3.39 3.36 3.78 
Pentaspherical 3.17 4.33 4.74 4.19 3.72 3.43 3.42 3.35 3.79 
Exponential 3.14 4.38 4.77 5.00 3.83 3.53 3.49 3.32 3.93 
Gaussian 3.03 4.27 4.74 3.96 3.51 3.15 3.15 3.46 3.66 
Rational Quadratic  3.16 4.35 4.77 4.22 3.78 3.55 3.53 3.44 3.85 
Hole Effect 3.14 4.38 4.72 4.05 3.54 3.41 3.27 3.43 3.74 
K-Bessel 3.05 4.29 4.73 3.97 3.55 3.15 3.16 3.47 3.67 
J-Bessel 2.97 4.36 4.72 4.03 3.53 3.30 3.33 3.45 3.71 
Stable 3.03 4.29 4.72 3.96 3.51 3.15 3.15 3.46 3.66 

SCK* Circular 3.06 4.28 4.44 3.66 3.20 3.15 2.88 2.94 3.45 
Spherical 3.07 4.29 4.45 3.68 3.18 3.15 2.87 2.93 3.45 
Tetraspherical 3.12 4.27 4.45 3.73 3.17 3.14 2.86 2.94 3.46 
Pentaspherical 3.09 4.27 4.45 3.74 3.16 3.14 2.87 2.95 3.46 
Exponential 3.18 4.36 4.47 5.57 3.14 3.15 2.88 2.97 3.72 
Gaussian 3.08 4.29 4.44 3.67 3.22 3.08 2.90 2.95 3.45 
Rational Quadratic  3.16 4.34 4.52 3.75 3.25 3.12 2.88 2.92 3.49 
Hole Effect 2.82 4.32 4.44 3.88 3.22 3.16 2.95 2.96 3.47 
K-Bessel 3.08 4.29 4.44 3.67 3.22 3.11 2.90 2.96 3.46 
J-Bessel 3.03 4.29 4.43 3.65 3.20 3.10 2.87 2.91 3.44 
Stable 3.06 4.28 4.44 3.67 3.22 3.08 2.90 2.96 3.45 

Note: * This model calculated new values for the parameters with optimized semivariogram 
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As a result (Table 4.7), an average RMSE value of monthly mean relative 
humidity interpolation using seven different methods with various functions varies from 
3.43 % using the SCK method with the J-Bessel function to 7.28% using the RBF method 
with the Thin Plate Spline and 1 Sector function. So, the SCK method with the J-Bessel 
function is selected as an optimum method for monthly mean relative humidity 
interpolation since it provides the least RMSE value. 

4.2.2 Temperature 

The statistical data of temperature from 37 stations between October 
2019 to May 2020 for identifying the optimum interpolation method are summarized 
in Table 4.8. Details of temperature measurement stations in geographic coordinates 
are reported in Table 2 in Appendix. 
 
Table 4.8 Descriptive statistical data of the temperature. 

Month Season Min. (Celsius) Max. (Celsius) Mean (Celsius) SD. (Celsius) Stations 
Oct Winter 26.26 30.95 28.81 0.87 37 
Nov Winter 25.04 30.35 27.77 1.06 37 
Dec Winter 23.58 29.2 26.16 1.24 37 
Jan Winter 25.95 30.41 28.07 0.95 37 
Feb Winter 26.22 30.23 28.3 0.85 37 
Mar Summer 28.37 31.94 30.1 0.81 37 
Apr Summer 28.23 32.92 30.44 1.04 37 
May Summer 28.47 32.91 30.88 0.96 37 

 
According to the basic statistical data, the monthly mean temperature is 

high in October and gradually decreases to the lowest in December, then to the highest 
in May. The maximum value of monthly temperature is 32.92 Celsius in April. In 
contrast, the minimum value of monthly temperature is 23.58 Celsius in December. In 
addition, the mean temperature in the summer season is obviously higher than in the 
winter. 

In the cokriging (OCK and SCK) method, the latitude and longitude 
variables were added to be the cokriging variable. The relationship between monthly 
mean temperature and cokriging variables is summarized in Table 4.9. 
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Table 4.9 The Pearson’s correlation coefficients between monthly mean temperature 
with cokriging variables. 
Variables Oct Nov Dec Jan Feb Mar Apr May 
TEMP LAT -0.01 -0.33* -0.52** -0.25 -0.03 0.64** 0.68** 0.42* 
 LONG -0.34* -0.05 0.08 -0.04 -0.17 -0.31 -0.50** -0.47** 

Note: *correlation is significant at the 0.05 level (2-tailed), **correlation is significant at the 0.01 level (2-tailed). 

 
The relationship between the monthly mean temperature and latitude 

variable is relatively weak from October to February but moderate to strong in March, 
April, and May. Also, the correlation between temperature and longitude variable is 
weak from November to February. There is a statistically significant between 
temperature and latitude variables in November, December, March, April, and May. At 
the same time, a statistically significant between temperature and longitude variable 
occurs in October, April, and May.  

The cross-validation RMSE for monthly mean temperature interpolation 
with seven different methods (IDW, GPI, RBF, OK, OCK, SK, and SCK) is summarized in 
Table 4.10. 

 

Table 4.10 The cross-validation RMSE of the seven interpolation methods for mean 
temperature from October 2019 to May 2020. 

Model Function 
RMSE (Celsius) 

Oct Nov Dec Jan Feb Mar Apr May Avg. 
IDW Power 1 1 sector 0.81 0.96 1.03 0.87 0.82 0.71 0.78 0.82 0.85 

4 sectors 0.80 0.97 1.06 0.87 0.80 0.70 0.79 0.79 0.85 
4 sectors with 
45-degree 
offset 

0.81 0.97 1.06 0.88 0.81 0.72 0.82 0.82 0.86 

8 sectors 0.81 0.98 1.07 0.88 0.81 0.72 0.84 0.82 0.87 
Power 2 1 sector 0.84 0.99 1.06 0.90 0.84 0.75 0.79 0.84 0.88 

4 sectors 0.83 0.99 1.06 0.89 0.82 0.74 0.79 0.82 0.87 
4 sectors with 
45-degree 
offset 

0.83 0.98 1.05 0.89 0.82 0.74 0.80 0.83 0.87 

8 sectors 0.84 0.99 1.06 0.89 0.82 0.74 0.80 0.83 0.87 
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Table 4.10 (Continued). 

Model Function 
RMSE (Celsius) 

Oct Nov Dec Jan Feb Mar Apr May Avg. 
GPI Order 1 0.88 1.07 1.13 0.99 0.91 0.67 0.78 0.89 0.92 

Order 2  0.91 1.03 1.07 0.93 0.86 0.74 0.83 1.00 0.92 
Order 3 1.12 1.85 1.95 1.65 1.56 0.78 0.88 1.03 1.35 

RBF Complet
ely 
Regulariz
e spine 

1 sector 0.81 0.94 0.98 0.85 0.81 0.74 0.79 0.83 0.84 
4 sectors 0.79 0.93 0.98 0.83 0.79 0.72 0.78 0.80 0.83 
4 sectors with 
45-degree 
offset 

0.79 0.93 0.98 0.83 0.79 0.73 0.80 0.81 0.83 

8 sectors 0.79 0.93 0.97 0.83 0.79 0.73 0.80 0.81 0.83 
Spline 
with 
tension 

1 sector 0.80 0.94 0.99 0.84 0.81 0.76 0.81 0.82 0.85 
4 sectors 0.78 0.92 0.98 0.83 0.78 0.72 0.79 0.80 0.83 
4 sectors with 
45-degree 
offset 

0.79 0.93 0.98 0.83 0.79 0.73 0.80 0.81 0.83 

8 sectors 0.79 0.92 0.97 0.83 0.78 0.73 0.80 0.81 0.83 
multiqua
dric 

1 sector 0.96 1.08 1.12 1.00 0.94 0.88 0.88 0.97 0.98 
4 sectors 0.96 1.07 1.10 0.98 0.92 0.86 0.87 0.96 0.97 
4 sectors with 
45-degree 
offset 

0.95 1.08 1.11 0.98 0.92 0.86 0.87 0.96 0.97 

8 sectors 0.95 1.08 1.11 0.98 0.92 0.86 0.87 0.96 0.97 
Inverse 
multiqua
dric 

1 sector 0.79 0.95 1.00 0.85 0.81 0.76 0.84 0.82 0.85 
4 sectors 0.78 0.95 1.02 0.84 0.79 0.71 0.82 0.80 0.84 
4 sectors with 
45-degree 
offset 

0.81 0.97 1.03 0.86 0.82 0.73 0.86 0.84 0.87 

8 sectors 0.81 0.96 1.04 0.85 0.79 0.74 0.86 0.83 0.86 
Thin 
plate 
spine 

1 sector 1.53 1.77 1.87 1.70 1.51 1.48 1.36 1.56 1.60 
4 sectors 1.23 1.47 1.55 1.35 1.23 1.23 1.14 1.30 1.31 
4 sectors with 
45-degree 
offset 

1.28 1.51 1.59 1.39 1.25 1.27 1.17 1.36 1.35 

8 sectors 1.26 1.52 1.60 1.39 1.26 1.26 1.17 1.35 1.35 
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Table 4.10 (Continued). 

Model Function 
RMSE (Celsius) 

Oct Nov Dec Jan Feb Mar Apr May Avg. 
OK* Circular 0.86 0.95 1.02 0.87 0.84 0.73 0.81 0.94 0.88 

Spherical 0.91 0.97 1.03 0.88 0.84 0.75 0.83 0.93 0.89 
Tetraspherical 0.91 0.95 1.02 0.87 0.85 0.75 0.85 0.93 0.89 
Pentasherical 0.93 0.97 1.01 0.89 0.84 0.75 0.78 0.94 0.89 
Exponential 0.85 0.96 1.02 0.87 0.82 0.72 0.83 0.99 0.88 
Gaussian 0.92 0.94 1.02 0.86 0.82 0.73 0.78 0.92 0.87 
Rational Quadratic  0.87 0.95 1.00 0.88 0.86 0.77 0.83 0.97 0.89 
Hole Effect 0.93 0.99 1.03 0.89 0.82 0.82 0.82 0.98 0.91 
K-Bessel 0.91 0.95 1.01 0.86 0.81 0.75 0.82 0.94 0.88 
J-Bessel 0.88 0.99 1.04 0.89 0.86 0.75 0.82 0.97 0.90 
Stable 0.85 0.96 1.01 0.87 0.81 0.73 0.81 0.96 0.88 

OCK* Circular 0.83 0.94 1.00 0.87 0.82 0.71 0.75 0.87 0.85 
Spherical 0.80 0.93 1.01 0.87 0.82 0.71 0.71 0.83 0.84 
Tetraspherical 0.81 0.93 1.00 0.86 0.82 0.70 0.70 0.82 0.83 
Pentasherical 0.80 0.94 1.00 0.88 0.81 0.69 0.73 0.82 0.83 
Exponential 0.78 0.92 1.00 0.86 0.80 0.69 0.75 0.85 0.83 
Gaussian 0.89 0.94 1.01 0.86 0.83 0.72 0.77 0.86 0.86 
Rational Quadratic  0.81 0.93 1.00 0.85 0.82 0.70 0.73 0.84 0.84 
Hole Effect 0.82 0.99 1.02 0.88 0.80 0.74 0.74 0.82 0.85 
K-Bessel 0.83 0.93 1.00 0.85 0.81 0.72 0.75 0.86 0.84 
J-Bessel 0.83 0.96 1.07 0.91 0.81 0.69 0.72 0.81 0.85 
Stable 0.84 0.94 1.00 0.86 0.81 0.72 0.77 0.86 0.85 

SK* Circular 0.78 0.93 1.01 0.84 0.77 0.73 0.79 0.83 0.84 
Spherical 0.78 0.92 1.00 0.83 0.77 0.73 0.79 0.83 0.83 
Tetraspherical 0.78 0.92 1.00 0.83 0.77 0.73 0.79 0.83 0.83 
Pentaspherical 0.78 0.92 1.01 0.83 0.78 0.73 0.79 0.84 0.84 
Exponential 0.77 0.92 1.00 0.83 0.78 0.74 0.80 0.81 0.83 
Gaussian 0.78 0.93 1.02 0.83 0.77 0.71 0.80 0.81 0.83 
Rational Quadratic  0.77 0.93 1.01 0.82 0.77 0.75 0.82 0.82 0.84 
Hole Effect 0.76 0.94 1.02 0.82 0.73 0.71 0.80 0.79 0.82 
K-Bessel 0.77 0.92 1.00 0.83 0.77 0.71 0.80 0.83 0.83 
J-Bessel 0.74 0.93 1.02 0.83 0.76 0.72 0.81 0.81 0.83 
Stable 0.77 0.92 1.01 0.83 0.77 0.71 0.80 0.83 0.83 
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Table 4.10 (Continued). 

Model Function 
RMSE (Celsius) 

Oct Nov Dec Jan Feb Mar Apr May Avg. 
SCK* Circular 0.78 0.94 0.99 0.86 0.81 0.62 0.70 0.78 0.81 

Spherical 0.78 0.94 0.99 0.86 0.80 0.62 0.70 0.78 0.81 
Tetraspherical 0.78 0.95 1.00 0.87 0.81 0.62 0.70 0.78 0.81 
Pentaspherical 0.78 0.95 0.99 0.87 0.81 0.62 0.70 0.78 0.81 
Exponential 0.78 0.95 1.00 0.86 0.81 0.63 0.70 0.79 0.82 
Gaussian 0.78 0.94 1.00 0.86 0.80 0.62 0.71 0.77 0.81 
Rational Quadratic  0.78 0.94 1.01 0.87 0.81 0.62 0.70 0.78 0.81 
Hole Effect 0.74 0.90 0.92 0.82 0.74 0.64 0.76 0.76 0.79 
K-Bessel 0.77 0.92 0.96 0.84 0.78 0.63 0.70 0.77 0.80 
J-Bessel 0.78 0.94 0.99 0.85 0.79 0.63 0.71 0.77 0.81 
Stable 0.78 0.95 0.95 0.85 0.78 0.63 0.71 0.77 0.80 

Note: * This model calculated new values for the parameters with optimized semivariogram 

 
As a result (Table 4.10), an average RMSE value of monthly mean 

temperature interpolation using seven different methods with various functions varies 
from 0.79 Celsius using the SCK method with the Hole Effect function to 1.60 Celsius 
using the RBF method with the Thin Plate Spline and 1 Sector function. Consequently, 
the SCK method with the Hole Effect function is selected as an optimum method for 
monthly mean temperature interpolation since it provides the least RMSE value. 

4.2.3 Wind speed 

The statistical data of wind speed from 40 stations between October 2019 
to May 2020 for identifying optimum interpolation methods are summarized in Table 
4.11. Details of wind speed measurement stations in geographic coordinates are 
reported in Table 2 in Appendix. 
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Table 4.11 Descriptive statistical data of the wind speed. 
Month Season Min. (knot) Max. (knot) Mean (knot) SD. (knot) Stations 

Oct Winter 0.17 6.71 2.13 1.40 40 
Nov Winter 0.50 7.47 2.60 1.52 40 
Dec Winter 0.88 8.23 2.80 1.58 40 
Jan Winter 0.57 6.74 2.27 1.44 40 
Feb Winter 0.77 9.72 2.95 1.76 40 
Mar Summer 0.70 11.39 3.46 2.41 40 
Apr Summer 0.61 9.07 3.13 1.94 40 
May Summer 0.46 9.71 2.88 1.96 40 

 
Referring to the basic statistical data, the minimum value of the wind 

speed is 0.17 knot in October. In contrast, the maximum value of the wind speed is 
11.39 knots in March. The monthly mean wind speed is the lowest in October, 
gradually increasing to the highest in March, then dropdown until May. 

In the cokriging (OCK and SCK) method, the latitude and longitude 
variables were added to be the cokriging variable. The relationship between monthly 
mean wind speed and cokriging variables is summarized in Tables 4.12. 
 
Table 4.12 The Pearson’s correlation coefficients between monthly mean wind speed 
with cokriging variables. 
Variables Oct Nov Dec Jan Feb Mar Apr May 
WS LAT -0.25 -0.22 -0.29 -0.28 -0.16 -0.18 -0.09 -0.16 
 LONG 0.02 0.06 0.07 0.00 -0.03 -0.16 -0.15 -0.12 

Note: *correlation is significant at the 0.05 level (2-tailed), **correlation is significant at the 0.01 level (2-tailed). 

 
The relationship between monthly mean wind speed and latitude 

variable is a relatively weak negative correlation. Likewise, the correlation between 
wind speed and longitude variables is very weak. The relationship between monthly 
mean wind speed and cokriging variables is also statistically insignificant. 

The cross-validation RMSE for monthly mean wind speed interpolation 
with seven different methods (IDW, GPI, RBF, OK, OCK, SK, and SCK) is summarized in 
Table 4.13. 
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Table 4.13 The cross-validation RMSE of the seven interpolation methods for mean 
wind speed from October 2019 to May 2020. 

Model Function 
RMSE (knot) 

Oct Nov Dec Jan Feb Mar Apr May Avg. 
IDW Power 1 1 sector 1.31 1.45 1.48 1.32 1.66 2.23 1.81 1.80 1.63 

4 sectors 1.35 1.49 1.53 1.36 1.71 2.28 1.85 1.83 1.68  
4 sectors with 
45-degree 
offset 

1.35 1.48 1.53 1.36 1.71 2.29 1.87 1.84 1.68 

8 sectors 1.35 1.48 1.52 1.37 1.71 2.31 1.87 1.85 1.68 
Power 2 1 sector 1.29 1.44 1.48 1.29 1.59 2.22 1.79 1.72 1.60 

4 sectors 1.31 1.46 1.50 1.31 1.62 2.24 1.81 1.74 1.62 
4 sectors with 
45-degree 
offset 

1.30 1.46 1.50 1.30 1.62 2.24 1.80 1.74 1.62 

8 sectors 1.30 1.46 1.50 1.31 1.62 2.25 1.81 1.74 1.62 
GPI Order 1 1.44 1.44 1.58 1.61 1.46 1.84 2.47 2.03 1.73 

Order 2  1.48 1.48 1.57 1.59 1.47 1.82 2.40 2.04 1.73 
Order 3 2.36 2.36 2.65 2.71 2.75 3.31 4.33 3.81 3.04 

RBF Complet
ely 
Regulariz
e spine 

1 sector 1.26 1.38 1.42 1.26 1.57 2.17 1.75 1.70 1.56 
4 sectors 1.27 1.40 1.44 1.27 1.58 2.18 1.76 1.69 1.57 
4 sectors with 
45-degree 
offset 

1.27 1.40 1.44 1.27 1.58 2.19 1.77 1.70 1.58 

8 sectors 1.27 1.40 1.44 1.27 1.58 2.20 1.77 1.71 1.58 
Spline 
with 
tension 

1 sector 1.24 1.36 1.40 1.24 1.55 2.12 1.70 1.67 1.54 
4 sectors 1.27 1.40 1.44 1.28 1.58 2.18 1.77 1.71 1.58 
4 sectors with 
45-degree 
offset 

1.27 1.39 1.43 1.27 1.58 2.19 1.77 1.71 1.58 

8 sectors 1.27 1.40 1.44 1.27 1.58 2.20 1.77 1.72 1.58 
multiqua
dric 

1 sector 1.40 1.51 1.56 1.39 1.69 2.45 1.96 1.88 1.73 
4 sectors 1.37 1.47 1.52 1.36 1.65 2.37 1.91 1.83 1.69 
4 sectors with 
45-degree 
offset 

1.37 1.48 1.52 1.36 1.65 2.37 1.91 1.82 1.69 

8 sectors 1.38 1.48 1.52 1.36 1.65 2.37 1.91 1.83 1.69 
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Table 4.13 (Continued). 

Model Function 
RMSE (knot) 

Oct Nov Dec Jan Feb Mar Apr May Avg. 
RBF Inverse 

multiqua
dric 

1 sector 1.25 1.38 1.41 1.25 1.56 2.10 1.70 1.68 1.54 
4 sectors 1.35 1.50 1.52 1.35 1.68 2.28 1.87 1.78 1.67 
4 sectors with 
45-degree 
offset 

1.33 1.47 1.50 1.33 1.66 2.27 1.86 1.77 1.65 

8 sectors 1.34 1.48 1.52 1.35 1.67 2.30 1.88 1.78 1.67 
Thin 
plate 
spine 

1 sector 1.89 2.11 2.12 1.82 2.09 3.16 2.64 2.36 2.27 
4 sectors 1.85 2.07 2.07 1.75 2.03 2.99 2.44 2.26 2.18 
4 sectors with 
45-degree 
offset 

1.87 2.12 2.09 1.78 2.05 2.96 2.44 2.25 2.20 

8 sectors 1.88 2.11 2.08 1.79 2.08 3.02 2.48 2.30 2.22 
OK* Circular 1.49 1.56 1.59 1.51 1.85 2.43 2.04 2.07 1.82 

Spherical 1.49 1.56 1.59 1.51 1.85 2.43 2.04 2.07 1.82 
Tetraspherical 1.49 1.56 1.59 1.51 1.85 2.43 2.04 1.90 1.80 
Pentasherical 1.49 1.56 1.59 1.51 1.85 2.43 2.04 1.89 1.80 
Exponential 1.45 1.56 1.50 1.51 1.68 2.43 1.84 1.81 1.72 
Gaussian 1.49 1.56 1.59 1.51 1.85 2.43 2.04 2.07 1.82 
Rational Quadratic  1.41 1.51 1.55 1.44 1.73 2.43 1.88 1.90 1.73 
Hole Effect 1.49 1.56 1.59 1.51 1.85 2.43 2.04 2.07 1.82 
K-Bessel 1.45 1.46 1.49 1.51 1.85 2.43 1.78 1.82 1.72 
J-Bessel 1.49 1.56 1.59 1.51 1.85 2.43 2.04 1.90 1.80 
Stable 1.43 1.42 1.47 1.32 1.67 2.43 1.82 1.84 1.68 

OCK* Circular 1.49 1.56 1.59 1.51 1.85 2.43 2.04 2.07 1.82 
Spherical 1.49 1.56 1.59 1.51 1.85 2.43 2.04 2.07 1.82 
Tetraspherical 1.49 1.56 1.59 1.51 1.85 2.43 2.04 2.07 1.82 
Pentasherical 1.49 1.56 1.59 1.51 1.85 2.43 2.04 2.07 1.82 
Exponential 1.49 1.44 1.59 1.51 1.85 2.43 2.04 2.07 1.80 
Gaussian 1.49 1.56 1.59 1.51 1.85 2.43 2.04 2.07 1.82 
Rational Quadratic  1.49 1.53 1.60 1.51 1.85 2.43 2.00 2.08 1.81 
Hole Effect 1.49 1.56 1.59 1.51 1.85 2.43 2.04 2.07 1.82 
K-Bessel 1.34 1.44 1.47 1.30 1.66 2.43 1.79 1.78 1.65 
J-Bessel 1.49 1.56 1.59 1.51 1.85 2.17 2.04 1.79 1.75 
Stable 1.39 1.40 1.56 1.30 1.64 2.21 1.77 1.79 1.63 
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Table 4.13 (Continued). 

Model Function 
RMSE (knot) 

Oct Nov Dec Jan Feb Mar Apr May Avg. 
SK* Circular 1.33 1.40 1.47 1.30 1.72 2.36 1.74 1.81 1.64 

Spherical 1.34 1.42 1.49 1.31 1.76 2.36 1.76 1.85 1.66 
Tetraspherical 1.35 1.42 1.56 1.33 1.73 2.36 1.77 1.86 1.67 
Pentaspherical 1.36 1.43 1.56 1.34 1.73 2.37 1.79 1.85 1.68 
Exponential 1.32 1.40 1.54 1.30 1.68 2.30 1.75 1.74 1.63 
Gaussian 1.34 1.41 1.48 1.31 1.72 2.31 1.76 1.77 1.64 
Rational Quadratic  1.36 1.44 1.55 1.34 1.69 2.31 1.78 1.78 1.66 
Hole Effect 1.39 1.49 1.55 1.40 1.76 2.39 1.89 1.91 1.72 
K-Bessel 1.28 1.38 1.47 1.27 1.63 2.23 1.74 1.70 1.59 
J-Bessel 1.36 1.46 1.55 1.42 1.74 2.38 1.91 1.95 1.72 
Stable 1.27 1.38 1.49 1.27 1.60 2.22 1.73 1.68 1.58 

SCK* Circular 1.34 1.43 1.49 1.37 1.73 2.28 1.81 1.75 1.65 
Spherical 1.35 1.44 1.49 1.35 1.75 2.27 1.81 1.80 1.66 
Tetraspherical 1.35 1.44 1.49 1.35 1.71 2.28 1.82 1.79 1.65 
Pentaspherical 1.35 1.45 1.49 1.37 1.71 2.29 1.83 1.83 1.67 
Exponential 1.34 1.44 1.47 1.35 1.64 2.22 1.79 1.70 1.62 
Gaussian 1.35 1.44 1.51 1.35 1.68 2.28 1.88 1.77 1.66 
Rational Quadratic  1.33 1.46 1.49 1.31 1.64 2.22 1.80 1.72 1.62 
Hole Effect 1.31 1.42 1.48 1.29 1.76 2.41 1.76 1.80 1.65 
K-Bessel 1.24 1.42 1.46 1.29 1.61 2.15 1.73 1.69 1.57 
J-Bessel 1.32 1.48 1.51 1.34 1.74 2.28 1.89 1.82 1.67 
Stable 1.24 1.43 1.46 1.24 1.59 2.12 1.73 1.66 1.56 

Note: * This model calculated new values for the parameters with optimized semivariogram 
 

As a result (Table 4.13), an average RMSE value of monthly mean wind 
speed interpolation using seven different methods with various functions varies from 
1.54 knots using the RBF method with the Spline with Tension and 1 Sector to 3.30 
knots using the GPI method with the Order 3 function. Therefore, the RBF method with 
the Spline with Tension and One Sector is chosen as an optimum method for monthly 
mean wind speed interpolation since it provides the least RMSE value. 
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4.2.4 Pressure 

The statistical data of pressure from 40 stations from TMD between 
October 2019 to May 2020 for identifying the optimum interpolation method are 
summarized in Table 4.14. Details of pressure measurement stations in geographic 
coordinates are reported in Table 2 in Appendix. 
 
Table 4.14 Descriptive statistical data of the pressure. 

Month Season Min. (hPa) Max. (hPa) Mean (hPa) SD. (hPa) Stations 
Oct Winter 1009.81 1011.91 1010.39 0.47 40 
Nov Winter 1010.19 1012.80 1011.29 0.60 40 
Dec Winter 1012.01 1014.81 1013.29 0.67 40 
Jan Winter 1011.46 1013.48 1011.99 0.40 40 
Feb Winter 1012.40 1014.62 1012.91 0.38 40 
Mar Summer 1008.91 1011.81 1010.00 0.59 40 
Apr Summer 1009.34 1012.03 1010.21 0.44 40 
May Summer 1006.89 1009.62 1007.84 0.51 40 

 
According to the basic statistical data, the minimum value of the pressure 

is 1,006.89 hectopascal in May. In contrast, the maximum value of the pressure is 
1,014.81 hectopascal in December. Furthermore, mean pressure in winter and summer 
seasons is insignificantly different. 

In the cokriging (OCK and SCK) method, the latitude and longitude 
variables were added to be the cokriging variable. The relationship between monthly 
mean pressure and cokriging variables is summarized in Table 4.15. 
 
Table 4.15 The Pearson’s correlation coefficients between monthly mean pressure 
with cokriging variables. 
Variables Oct Nov Dec Jan Feb Mar Apr May 
P LAT 0.47** 0.71** 0.75** 0.19 0.14 -0.71** -0.53** -0.61** 
 LONG -0.02 -0.15 -0.11 -0.10 0.17 0.19 0.30 0.22 

Note: *correlation is significant at the 0.05 level (2-tailed), **correlation is significant at the 0.01 level (2-tailed). 
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The relationship between monthly mean pressure and latitude variable 
is a moderate to strong correlation with a statistically significant (p ≤ 0.01), except for 
the association in January and February, which is very weak. Besides, the relationship 
between pressure and longitude variable is a pretty weak correlation. Furthermore, the 
relationship between monthly mean pressure and cokriging variables (latitude and 
longitude) is statistically insignificant. 

The cross-validation RMSE for monthly mean pressure interpolation with 
seven different methods (IDW, GPI, RBF, OK, OCK, SK, and SCK) is summarized in Table 
4.16. 
 
Table 4.16 The cross-validation RMSE of the seven interpolation methods for mean 
pressure from October 2019 to May 2020. 

Model Function 
RMSE (hPa) 

Oct Nov Dec Jan Feb Mar Apr May Avg. 
IDW Power 1 1 sector 0.45 0.48 0.50 0.42 0.42 0.47 0.42 0.45 0.45 

4 sectors 0.45 0.49 0.52 0.41 0.40 0.48 0.41 0.44 0.45 
4 sectors with 
45-degree 
offset 

0.44 0.48 0.51 0.41 0.40 0.49 0.41 0.45 0.45 

8 sectors 0.44 0.50 0.54 0.41 0.40 0.50 0.41 0.46 0.46 
Power 2 1 sector 0.46 0.48 0.49 0.44 0.43 0.49 0.43 0.47 0.46 

4 sectors 0.46 0.48 0.49 0.43 0.42 0.49 0.43 0.46 0.46 
4 sectors with 
45-degree 
offset 

0.45 0.47 0.49 0.43 0.41 0.50 0.43 0.47 0.46 

8 sectors 0.45 0.48 0.49 0.43 0.41 0.50 0.43 0.47 0.46 
GPI Order 1 0.43 0.43 0.44 0.46 0.41 0.39 0.45 0.39 0.43 

Order 2  0.45 0.45 0.45 0.45 0.44 0.41 0.52 0.44 0.45 
Order 3 0.52 0.52 0.52 0.52 0.47 0.46 0.59 0.48 0.51 

RBF Complet
ely 
Regulariz
e spine 

1 sector 0.46 0.49 0.51 0.44 0.43 0.49 0.43 0.46 0.46 
4 sectors 0.46 0.49 0.51 0.43 0.42 0.48 0.42 0.46 0.46 
4 sectors with 
45-degree 
offset 

0.45 0.49 0.51 0.43 0.41 0.49 0.42 0.46 0.46 

8 sectors 0.45 0.49 0.51 0.43 0.41 0.49 0.42 0.46 0.46 
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Table 4.16 (Continued). 

Model Function 
RMSE (hPa) 

Oct Nov Dec Jan Feb Mar Apr May Avg. 
RBF Spline 

with 
tension 

1 sector 0.48 0.51 0.53 0.46 0.44 0.50 0.43 0.47 0.48 
4 sectors 0.46 0.49 0.51 0.43 0.42 0.48 0.42 0.45 0.46 
4 sectors with 
45-degree 
offset 

0.45 0.48 0.50 0.42 0.41 0.49 0.42 0.46 0.45 

8 sectors 0.45 0.49 0.51 0.42 0.41 0.49 0.42 0.46 0.46 
multiqua
dric 

1 sector 0.52 0.52 0.53 0.51 0.47 0.57 0.49 0.53 0.52 
4 sectors 0.53 0.54 0.55 0.52 0.48 0.57 0.49 0.53 0.53 
4 sectors with 
45-degree 
offset 

0.54 0.55 0.56 0.52 0.48 0.58 0.49 0.54 0.53 

8 sectors 0.53 0.54 0.56 0.52 0.48 0.57 0.49 0.54 0.53 
Inverse 
multiqua
dric 

1 sector 0.48 0.52 0.54 0.45 0.44 0.50 0.44 0.47 0.48 
4 sectors 0.45 0.50 0.53 0.41 0.40 0.49 0.40 0.44 0.45 
4 sectors with 
45-degree 
offset 

0.44 0.49 0.51 0.40 0.39 0.50 0.41 0.46 0.45 

8 sectors 0.44 0.50 0.52 0.40 0.39 0.51 0.41 0.46 0.45 
Thin 
plate 
spine 

1 sector 0.63 0.61 0.63 0.63 0.57 0.76 0.61 0.68 0.64 
4 sectors 0.63 0.63 0.64 0.64 0.57 0.73 0.61 0.66 0.64 
4 sectors with 
45-degree 
offset 

0.64 0.63 0.65 0.65 0.59 0.77 0.64 0.68 0.66 

8 sectors 0.64 0.63 0.65 0.65 0.58 0.75 0.63 0.66 0.65 
OK* Circular 0.45 0.45 0.46 0.44 0.42 0.53 0.45 0.49 0.46 

Spherical 0.45 0.45 0.46 0.44 0.42 0.53 0.45 0.49 0.46 
Tetraspherical 0.45 0.45 0.46 0.44 0.42 0.53 0.45 0.49 0.46 
Pentasherical 0.45 0.45 0.46 0.44 0.42 0.53 0.45 0.49 0.46 
Exponential 0.45 0.45 0.46 0.44 0.42 0.53 0.45 0.49 0.46 
Gaussian 0.45 0.45 0.46 0.44 0.42 0.53 0.45 0.49 0.46 
Rational Quadratic  0.46 0.45 0.46 0.44 0.42 0.53 0.45 0.49 0.46 
Hole Effect 0.46 0.45 0.46 0.44 0.42 0.53 0.45 0.49 0.46 
K-Bessel 0.45 0.45 0.46 0.44 0.42 0.53 0.45 0.49 0.46 
J-Bessel 0.46 0.45 0.46 0.44 0.42 0.53 0.46 0.49 0.46 
Stable 0.45 0.45 0.46 0.44 0.42 0.53 0.45 0.49 0.46 
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Table 4.16 (Continued). 

Model Function 
RMSE (hPa) 

Oct Nov Dec Jan Feb Mar Apr May Avg. 
OCK* Circular 0.45 0.45 0.46 0.44 0.42 0.49 0.43 0.49 0.45 

Spherical 0.45 0.45 0.46 0.44 0.42 0.49 0.45 0.45 0.45 
Tetraspherical 0.45 0.45 0.46 0.44 0.42 0.50 0.45 0.46 0.45 
Pentasherical 0.45 0.45 0.46 0.44 0.42 0.50 0.44 0.49 0.46 
Exponential 0.45 0.45 0.46 0.44 0.42 0.51 0.45 0.46 0.46 
Gaussian 0.45 0.45 0.46 0.44 0.42 0.50 0.43 0.45 0.45 
Rational Quadratic  0.46 0.45 0.46 0.44 0.42 0.50 0.45 0.46 0.46 
Hole Effect 0.46 0.45 0.46 0.44 0.42 0.50 0.45 0.49 0.46 
K-Bessel 0.45 0.45 0.46 0.44 0.42 0.49 0.44 0.47 0.45 
J-Bessel 0.46 0.45 0.46 0.44 0.42 0.51 0.44 0.46 0.46 
Stable 0.45 0.45 0.46 0.44 0.42 0.50 0.45 0.46 0.45 

SK* Circular 0.45 0.49 0.51 0.40 0.38 0.49 0.42 0.46 0.45 
Spherical 0.45 0.50 0.52 0.40 0.38 0.50 0.42 0.47 0.46 
Tetraspherical 0.45 0.50 0.60 0.40 0.38 0.50 0.42 0.47 0.47 
Pentaspherical 0.45 0.55 0.59 0.40 0.38 0.51 0.42 0.47 0.47 
Exponential 0.44 0.53 0.55 0.40 0.38 0.53 0.43 0.49 0.47 
Gaussian 0.45 0.46 0.48 0.40 0.38 0.47 0.41 0.45 0.44 
Rational Quadratic  0.45 0.55 0.57 0.40 0.38 0.52 0.44 0.49 0.48 
Hole Effect 0.45 0.48 0.49 0.40 0.38 0.48 0.44 0.46 0.45 
K-Bessel 0.44 0.52 0.55 0.40 0.38 0.47 0.44 0.48 0.46 
J-Bessel 0.45 0.49 0.51 0.40 0.38 0.48 0.44 0.46 0.45 
Stable 0.45 0.60 0.54 0.40 0.38 0.47 0.43 0.49 0.47 

SCK* Circular 0.41 0.42 0.44 0.38 0.37 0.42 0.37 0.40 0.40 
Spherical 0.41 0.43 0.44 0.38 0.37 0.42 0.37 0.40 0.40 
Tetraspherical 0.41 0.43 0.44 0.38 0.37 0.44 0.37 0.40 0.41 
Pentaspherical 0.41 0.44 0.45 0.38 0.37 0.45 0.37 0.40 0.41 
Exponential 0.42 0.46 0.50 0.38 0.37 0.46 0.39 0.43 0.43 
Gaussian 0.41 0.42 0.44 0.38 0.37 0.42 0.38 0.44 0.41 
Rational Quadratic  0.43 0.42 0.43 0.38 0.37 0.42 0.39 0.40 0.41 
Hole Effect 0.41 0.43 0.46 0.38 0.37 0.44 0.37 0.41 0.41 
K-Bessel 0.41 0.43 0.44 0.38 0.37 0.42 0.37 0.45 0.41 
J-Bessel 0.41 0.43 0.43 0.38 0.37 0.42 0.37 0.40 0.40 
Stable 0.41 0.42 0.44 0.38 0.37 0.42 0.37 0.40 0.40 

Note: * This model calculated new values for the parameters with optimized semivariogram 
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As a result (Table 4.16), an average RMSE value of monthly mean pressure 
interpolation using seven different methods with various functions varies from 0.40 hPa 
using the SCK method with the Stable function to 0.66 hPa using the RBF method with 
the Thin Plate Spline and the Four Sectors with 45-degree offset function. 
Subsequently, the SCK method with the Stable function is selected as an optimum 
method for monthly mean pressure interpolation since it provides the least RMSE 
value. 

4.2.5 Visibility 

The statistical data of visibility from 41 stations from TMD between 
October 2019 to May 2020 for identifying the optimum interpolation method are 
summarized in Table 4.17. Details of visibility measurement stations in geographic 
coordinates are reported in Table 2 in Appendix.  
 

Table 4.17 Descriptive statistical data of the visibility. 
Month Season Min. (km) Max. (km) Mean (km) SD. (km) Stations 

Oct Winter 6.00 10.80 8.66 1.03 41 
Nov Winter 3.40 10.60 8.34 1.38 41 
Dec Winter 2.60 10.30 8.03 1.45 41 
Jan Winter 2.10 10.40 7.27 1.47 41 
Feb Winter 2.60 11.20 7.48 1.70 41 
Mar Summer 2.90 10.80 8.00 1.67 41 
Apr Summer 3.40 10.80 8.36 1.54 41 
May Summer 4.70 11.50 8.95 1.46 41 

 
According to the basic statistical data, the minimum value is 2.10 km in 

January, and the maximum value is 11.5 km in May. Thus, the monthly mean visibility 
decreases from October until a minimum in January and gradually increases until a 
maximum in May. 

In the cokriging (OCK and SCK) method, the latitude and longitude 
variables were added to be the cokriging variable. The relationship between monthly 
mean visibility and cokriging variables is summarized in Table 4.18. 
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Table 4.18 The Pearson’s correlation coefficients between monthly mean pressure 
with cokriging variables. 
Variables Oct Nov Dec Jan Feb Mar Apr May 
VIS LAT -0.23 -0.06 -0.15 -0.26 -0.29 -0.40* -0.34* -0.17 
 LONG -0.15 0.03 0.08 0.15 -0.07 -0.01 -0.05 -0.35* 

Note: *correlation is significant at the 0.05 level (2-tailed), **correlation is significant at the 0.01 level (2-tailed). 

 
The relationship between monthly mean visibility and latitude variable is 

a relatively weak negative correlation. However, there is a negative correlation with 
statistically significant (p ≤ 0.05) in March and April. The correlation between visibility 
and longitude variable is very weak, too. But there is a negative correlation with 
statistically significant (p ≤ 0.05) only in May. 

The cross-validation RMSE for monthly mean visibility interpolation with 
seven different methods (IDW, GPI, RBF, OK, OCK, SK, and SCK) is summarized in Table 
4.19. 
 
Table 4.19 The cross-validation RMSE of the seven interpolation methods for mean 
visibility interpolation from October 2019 to May 2020. 

Model Function 
RMSE (km) 

Oct Nov Dec Jan Feb Mar Apr May Avg. 
IDW Power 1 1 sector 1.02 1.46 1.49 1.48 1.63 1.55 1.41 1.34 1.42 

4 sectors 1.00 1.41 1.46 1.46 1.64 1.54 1.41 1.35 1.41 
4 sectors with 
45-degree 
offset 

0.99 1.41 1.43 1.45 1.64 1.54 1.40 1.34 1.40 

8 sectors 1.01 1.42 1.46 1.47 1.66 1.58 1.44 1.37 1.43 
Power 2 1 sector 1.08 1.53 1.51 1.51 1.65 1.56 1.40 1.38 1.45 

4 sectors 1.06 1.50 1.49 1.50 1.65 1.55 1.39 1.36 1.44 
4 sectors with 
45-degree 
offset 

1.06 1.49 1.47 1.49 1.65 1.55 1.39 1.36 1.43 

8 sectors 1.06 1.50 1.49 1.50 1.66 1.57 1.41 1.36 1.44 
GPI Order 1 1.05 1.47 1.54 1.52 1.76 1.68 1.61 1.42 1.51 

Order 2  1.01 1.49 1.50 1.48 1.84 1.54 1.35 1.28 1.44 
Order 3 1.00 1.57 1.72 1.65 1.61 1.43 1.24 1.43 1.46 
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Table 4.19 (Continued). 

Model Function 
RMSE (km) 

Oct Nov Dec Jan Feb Mar Apr May Avg. 
RBF Complet

ely 
Regulariz
e spine 

1 sector 1.03 1.48 1.48 1.48 1.61 1.52 1.38 1.33 1.41 
4 sectors 1.03 1.47 1.47 1.48 1.62 1.52 1.39 1.34 1.42 
4 sectors with 
45-degree offset 

1.02 1.46 1.45 1.47 1.62 1.52 1.38 1.33 1.41 

8 sectors 1.03 1.47 1.47 1.49 1.63 1.54 1.39 1.33 1.42 
RBF Spline 

with 
tension 

1 sector 1.05 1.50 1.52 1.52 1.65 1.57 1.38 1.36 1.44 
4 sectors 1.02 1.46 1.46 1.48 1.61 1.53 1.39 1.33 1.41 
4 sectors with 
45-degree offset 

1.01 1.45 1.45 1.46 1.61 1.51 1.39 1.31 1.40 

8 sectors 1.02 1.46 1.47 1.48 1.63 1.54 1.39 1.33 1.42 
multiqua
dric 

1 sector 1.23 1.73 1.62 1.63 1.72 1.54 1.40 1.51 1.55 
4 sectors 1.21 1.71 1.58 1.60 1.69 1.53 1.41 1.52 1.53 
4 sectors with 
45-degree offset 

1.22 1.71 1.59 1.60 1.69 1.55 1.43 1.53 1.54 

8 sectors 1.22 1.70 1.58 1.60 1.69 1.53 1.41 1.52 1.53 
Inverse 
multiqua
dric 

1 sector 1.03 1.48 1.52 1.52 1.67 1.60 1.41 1.36 1.45 
4 sectors 0.99 1.40 1.44 1.46 1.64 1.56 1.39 1.32 1.40 
4 sectors with 
45-degree offset 

0.98 1.39 1.42 1.44 1.64 1.53 1.36 1.30 1.38 

8 sectors 1.00 1.39 1.44 1.47 1.66 1.58 1.39 1.32 1.41 
Thin 
plate 
spine 

1 sector 1.73 2.40 2.18 2.19 2.21 1.78 1.43 1.86 1.97 
4 sectors 1.60 2.19 1.98 1.94 1.97 1.66 1.49 1.82 1.83 
4 sectors with 
45-degree offset 

1.57 2.09 1.89 1.89 1.94 1.66 1.52 1.89 1.81 

8 sectors 1.56 2.08 1.88 1.86 1.89 1.62 1.47 1.83 1.77 
OK* Circular 1.03 1.51 1.49 1.54 1.67 1.50 1.37 1.30 1.43 

Spherical 1.03 1.51 1.55 1.54 1.66 1.52 1.33 1.30 1.43 
Tetraspherical 1.03 1.51 1.55 1.54 1.63 1.52 1.33 1.30 1.43 
Pentasherical 1.03 1.51 1.48 1.54 1.66 1.52 1.35 1.30 1.42 
Exponential 1.03 1.51 1.49 1.54 1.65 1.52 1.35 1.30 1.42 
Gaussian 1.03 1.51 1.55 1.54 1.67 1.50 1.35 1.30 1.43 
Rational Quadratic  1.03 1.51 1.48 1.54 1.72 1.52 1.34 1.30 1.43 
Hole Effect 1.03 1.73 1.47 1.62 1.70 1.42 1.35 1.32 1.46 
K-Bessel 1.03 1.51 1.55 1.54 1.65 1.52 1.35 1.30 1.43 
J-Bessel 1.03 1.51 1.45 1.54 1.69 1.43 1.35 1.33 1.42 
Stable 1.03 1.51 1.55 1.54 1.64 1.50 1.35 1.30 1.43 
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Table 4.19 (Continued). 

Model Function 
RMSE (km) 

Oct Nov Dec Jan Feb Mar Apr May Avg. 
OCK* Circular 1.03 1.51 1.55 1.54 1.74 1.52 1.35 1.30 1.44 

Spherical 1.03 1.51 1.55 1.54 1.57 1.52 1.35 1.30 1.42 
Tetraspherical 1.03 1.51 1.55 1.54 1.54 1.52 1.25 1.30 1.41 
Pentasherical 1.03 1.51 1.55 1.54 1.74 1.43 1.25 1.30 1.42 
Exponential 1.03 1.51 1.55 1.54 1.50 1.52 1.22 1.30 1.40 
Gaussian 1.03 1.51 1.55 1.54 1.49 1.52 1.35 1.30 1.41 
Rational Quadratic  1.03 1.51 1.55 1.54 1.50 1.52 1.35 1.27 1.41 
Hole Effect 0.98 1.51 1.45 1.48 1.45 1.27 1.11 1.30 1.32 
K-Bessel 1.03 1.51 1.55 1.54 1.48 1.52 1.20 1.30 1.39 
J-Bessel 1.03 1.51 1.45 1.54 1.48 1.28 1.31 1.30 1.36 
Stable 0.90 1.51 1.47 1.54 1.47 1.52 1.19 1.30 1.36 

SK* Circular 1.01 1.37 1.42 1.45 1.60 1.53 1.38 1.33 1.39 
Spherical 1.01 1.37 1.41 1.46 1.59 1.52 1.38 1.33 1.38 
Tetraspherical 1.01 1.37 1.40 1.46 1.60 1.53 1.38 1.33 1.39 
Pentaspherical 1.01 1.41 1.40 1.45 1.59 1.53 1.38 1.34 1.39 
Exponential 1.00 1.37 1.40 1.45 1.59 1.53 1.39 1.34 1.38 
Gaussian 1.01 1.37 1.40 1.47 1.61 1.51 1.38 1.33 1.39 
Rational Quadratic  1.01 1.40 1.40 1.45 1.59 1.59 1.37 1.34 1.39 
Hole Effect 1.05 1.46 1.43 1.46 1.59 1.50 1.38 1.33 1.40 
K-Bessel 0.98 1.37 1.45 1.45 1.61 1.53 1.38 1.34 1.39 
J-Bessel 1.03 1.45 1.42 1.45 1.60 1.52 1.38 1.35 1.40 
Stable 0.98 1.37 1.43 1.46 1.61 1.51 1.38 1.32 1.38 

SCK* Circular 0.96 1.37 1.44 1.42 1.57 1.49 1.40 1.27 1.37 
Spherical 0.96 1.37 1.40 1.42 1.57 1.49 1.40 1.27 1.36 
Tetraspherical 0.96 1.37 1.40 1.41 1.57 1.49 1.41 1.28 1.36 
Pentaspherical 0.96 1.42 1.39 1.41 1.58 1.49 1.41 1.28 1.37 
Exponential 0.96 1.37 1.39 1.41 1.57 1.50 1.40 1.29 1.36 
Gaussian 0.96 1.37 1.40 1.42 1.56 1.47 1.45 1.30 1.37 
Rational Quadratic  0.96 1.41 1.39 1.40 1.58 1.52 1.40 1.29 1.37 
Hole Effect 0.96 1.45 1.40 1.41 1.56 1.39 1.40 1.17 1.34 
K-Bessel 0.96 1.37 1.47 1.43 1.56 1.49 1.38 1.30 1.37 
J-Bessel 0.96 1.45 1.40 1.40 1.56 1.46 1.35 1.31 1.36 
Stable 0.96 1.37 1.43 1.42 1.56 1.47 1.45 1.30 1.37 

Note: * This model calculated new values for the parameters with optimized semivariogram 
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As a result (Table 4.19), an average RMSE value of monthly mean visibility 
interpolation using seven different methods with various functions varies from 1.32 km 
using the OCK method with the Hole Effect function to 1.97 km using the RBF method 
with the Thin Plate Spline and the One Sector function. So, the OCK method with the 
Hole Effect function is selected as an optimum method for monthly mean visibility 
interpolation since it provides the least RMSE value. The average RMSE values from 
the seven interpolation methods of each monthly mean meteorological data are very 
similar. 

In the meantime, the previous studies on an optimum interpolation 
method for predicting monthly mean meteorological data at international and national 
levels reported different methods. Prasomsup (2017) found that the SCK is the 
optimum method for monthly mean temperature in November, December, February, 
and March, while OCK is optimal in January and April. And Jantakat and Ongsomwang 
(2011) selected OCK for interpolated monthly mean temperature in January, 
November, and December, while they selected Distinctive cokriging (DCK) for February 
to October. At the same time, Ozturk and Kilic (2016) choose the OK for interpolated 
temperature and precipitation in 5-year periods. Like Cao, Hu, and Yu (2009) presented, 
the OK with exponential and spherical is the best interpolation precision.  

Likewise, although Keskin and Özdoğu (2011) presented, OK performs 
better than the interpolation methods for wind speed data. In contrast, this study 
suggests RBF with Spline with Tension functions; the geometry of the search 
neighborhood is an ellipse. Follow the study of Gradka and Kwinta (2018). The RBF is 
conceptually like fitting a rubber membrane through the measured sample values 
while minimizing the surface's total curvature and selecting one function parameter to 
control the surface's smoothness using cross-validation. Also, the RBF represents an 
irregular surface using many linear functions that connect the node with the data point 
and can be alternative to kriging.  

Equally, the other technique can be used to interpolate meteorological 
data. Still, the most commonly used technique is the kriging technique and additions 
of the cross-correlated variables to reduce the estimation error variance (Yalçin, 2005). 
However, Kuo, Huang, and Putra (2021) suggested kriging method was used to 
interpolate the temperature data but must focus on the optimal sample size of 
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sensors. In addition, Deligiorgi and Philippopoulos (2011) reported that the most 
common kriging is simple kriging, which assumes a known constant mean, while 
ordinary kriging takes an unknown constant mean. As well, kriging is also known as the 
best linear unbiased estimator.  

The reasonable supporting reasons for different suitable interpolation 
methods for predicting monthly mean meteorological data are the number of the 
selected interpolation methods and criteria in their studies for identifying an optimum 
method, as earlier mentioned in Section 4.1  
 

4.3 Optimum method for monthly mean MODIS fire data 
interpolation 

4.3.1 Brightness temperature 

The statistical data of brightness temperature from USGS between 
October 2019 to May 2020 for identifying optimum interpolation methods are 
summarized in Table 4.20.  

 
Table 4.20 Descriptive statistical data of the brightness temperature. 

Month Season Min. (Kelvin) Max. (Kelvin) Mean (Kelvin) SD. (Kelvin) Count 
Oct Winter 284.50 305.30 298.29 3.26 209 
Nov Winter 285.60 309.90 300.41 3.89 331 
Dec Winter 283.40 312.00 300.93 4.19 1638 
Jan Winter 279.50 317.70 301.58 5.93 2381 
Feb Winter 269.40 321.30 301.15 7.06 2727 
Mar Summer 271.10 323.60 302.96 6.81 1791 
Apr Summer 275.90 317.00 301.83 6.31 501 
May Summer 278.40 304.70 295.49 6.31 112 

 
According to the basic statistical data, brightness temperature decreases 

from October until a minimum in February and gradually increases until May. 
In the cokriging (OCK and SCK) method, the latitude and longitude 

variables were added to be the cokriging variable. The relationship between monthly 
brightness temperature and cokriging variables is summarized in Table 4.21. 
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Table 4.21 The Pearson’s correlation coefficients between monthly brightness 
temperature with cokriging variables. 
Variables Oct Nov Dec Jan Feb Mar Apr May 
BT LAT 0.28** 0.27** 0.18** 0.14** 0.01 0.09** 0.14** 0.31** 
 LONG -0.06 -0.15** -0.03 -0.01 0.14** 0.14** 0.02 -0.11 

Note: *correlation is significant at the 0.05 level (2-tailed), **correlation is significant at the 0.01 level (2-tailed). 

 
The relationship between monthly brightness temperature and latitude 

variable is relatively weak, positively correlated with statistical significance (p ≤ 0.01), 
except in February. Also, the correlation between brightness temperature and 
longitude variable is a fragile relationship, but there are statistically significant (p ≤ 0.05) 
in December, February, and March. 

The cross-validation RMSE for monthly mean brightness temperature 
interpolation with seven different methods (IDW, GPI, RBF, OK, OCK, SK, and SCK) is 
summarized in Table 4.22. 
 
Table 4.22 The cross-validation RMSE of the seven different interpolation methods of 
brightness temperature from October 2019 to May 2020. 

Model Function 
RMSE (Kelvin) 

Oct Nov Dec Jan Feb Mar Apr May Avg. 
IDW Power 1 1 sector 3.14 3.35 3.64 5.25 5.93 5.96 5.16 4.98 4.68 

4 sectors 3.09 3.31 3.65 5.27 6.00 5.94 5.15 4.98 4.67 
4 sectors with 
45-degree offset 

3.09 3.32 3.65 5.27 5.99 5.94 5.16 4.97 4.67 

8 sectors 3.09 3.33 3.67 5.32 6.08 5.98 5.24 4.95 4.71 
Power 2 1 sector 3.26 3.49 3.68 5.33 5.94 6.16 5.23 5.08 4.77 

4 sectors 3.20 3.41 3.63 5.24 5.86 6.01 5.12 4.98 4.68 
4 sectors with 
45-degree offset 

3.20 3.41 3.63 5.24 5.86 6.01 5.13 4.99 4.68 

8 sectors 3.19 3.39 3.62 5.22 5.85 5.98 5.10 4.92 4.66 
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Table 4.22 (Continued). 

Model Function 
RMSE (Kelvin) 

Oct Nov Dec Jan Feb Mar Apr May Avg. 
GPI Order 1 3.17 3.78 4.13 5.88 6.99 6.73 6.28 6.12 5.39 

Order 2  3.18 3.62 4.04 5.82 6.93 6.52 6.24 6.22 5.32 
Order 3 3.18 3.55 3.96 5.73 6.82 6.48 6.11 6.47 5.29 

RBF Complet
ely 
Regulariz
e spine 

1 sector 3.15 3.37 3.63 5.26 5.94 6.04 5.21 4.85 4.68 
4 sectors 3.12 3.32 3.60 5.22 5.87 5.96 5.13 4.79 4.63 
4 sectors with 
45-degree offset 

3.12 3.32 3.60 5.22 5.87 5.95 5.14 4.77 4.62 

8 sectors 3.12 3.32 3.60 5.22 5.87 5.96 5.14 4.77 4.63 
Spline 
with 
tension 

1 sector 3.18 3.46 3.67 5.39 6.02 6.13 5.35 4.93 4.77 
4 sectors 3.12 3.33 3.62 5.24 5.89 5.97 5.21 4.78 4.65 
4 sectors with 
45-degree offset 

3.11 3.31 3.61 5.24 5.90 5.97 5.20 4.75 4.64 

8 sectors 3.11 3.32 3.61 5.23 5.88 5.96 5.18 4.75 4.63 
multiqua
dric 

1 sector 3.64 3.84 3.83 5.62 6.31 6.63 5.52 5.19 5.07 
4 sectors 3.63 3.78 3.82 5.58 6.22 6.57 5.42 5.03 5.01 
4 sectors with 
45-degree offset 

3.64 3.78 3.82 5.58 6.21 6.57 5.45 5.04 5.01 

8 sectors 3.63 3.77 3.82 5.57 6.21 6.57 5.42 5.02 5.00 
Inverse 
multiqua
dric 

1 sector 3.26 3.52 4.79 5.72 7.71 6.42 5.61 4.92 5.24 
4 sectors 3.14 3.38 4.89 5.57 7.70 6.28 5.45 4.75 5.15 
4 sectors with 
45-degree offset 

3.13 3.35 4.85 5.56 7.70 6.28 5.47 4.73 5.13 

8 sectors 3.12 3.39 4.89 5.55 7.70 6.28 5.43 4.69 5.13 
Thin 
plate 
spine 

1 sector 9.02 6.58 6.00 8.53 8.46 9.21 9.67 12.1
4 

8.70 

4 sectors 7.99 5.64 4.97 7.19 7.68 8.19 6.87 7.86 7.05 
4 sectors with 
45-degree offset 

7.72 5.71 5.00 7.16 7.63 8.22 6.78 8.10 7.04 

8 sectors 7.63 5.57 4.93 7.14 7.61 8.15 6.69 7.62 6.92 
OK* Circular 3.18 3.35 3.59 5.23 5.83 6.09 5.19 4.74 4.65 

Spherical 3.16 3.34 3.60 5.24 5.86 6.09 5.18 4.89 4.67 
Tetraspherical 3.15 3.35 3.59 5.22 5.87 6.00 5.17 4.88 4.65 
Pentasherical 3.15 3.35 3.59 5.23 5.85 6.00 5.18 4.84 4.65 
Exponential 3.15 3.37 3.60 5.22 5.84 6.08 5.21 4.83 4.66 
Gaussian 3.15 3.29 3.56 5.18 5.80 6.04 5.18 4.73 4.62 
Rational Quadratic  3.15 3.34 3.63 5.18 5.79 6.06 5.17 4.78 4.64 
Hole Effect 3.14 3.27 3.59 5.24 5.81 6.06 5.22 4.61 4.62 
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Table 4.22 (Continued). 

Model Function 
RMSE (Kelvin) 

Oct Nov Dec Jan Feb Mar Apr May Avg. 
OK* K-Bessel 3.16 3.33 3.56 5.19 5.87 6.05 5.19 4.78 4.64 

J-Bessel 3.15 3.34 3.62 5.20 5.80 5.98 5.22 4.83 4.64 
Stable 3.15 3.33 3.56 5.18 5.85 6.03 5.21 4.81 4.64 

OCK* Circular 3.21 3.47 3.78 5.51 6.21 6.20 5.54 5.64 4.95 
Spherical 3.20 3.46 3.77 5.51 6.19 6.18 5.63 5.64 4.95 
Tetraspherical 3.21 3.45 3.77 5.51 6.18 6.17 5.63 6.15 5.01 
Pentasherical 3.21 3.45 3.77 5.51 6.17 6.16 5.47 6.14 4.99 
Exponential 3.19 3.47 3.73 5.54 6.09 6.16 5.38 5.43 4.87 
Gaussian 3.22 3.52 3.83 5.51 6.30 6.25 5.70 5.64 5.00 
Rational Quadratic  3.19 3.49 3.78 5.51 6.18 6.17 5.38 5.47 4.90 
Hole Effect 3.20 3.54 3.83 5.51 6.31 6.26 5.74 5.50 4.99 
K-Bessel 3.17 3.42 3.68 5.42 5.87 6.04 5.23 4.95 4.72 
J-Bessel 3.33 3.54 3.83 5.51 6.31 6.26 5.65 5.37 4.98 
Stable 3.16 3.42 3.64 5.35 5.90 6.07 5.18 4.93 4.71 

SK* Circular 3.10 3.35 3.70 5.30 5.98 6.16 5.25 4.85 4.71 
Spherical 3.10 3.37 3.71 5.28 5.96 6.14 5.24 4.84 4.71 
Tetraspherical 3.10 3.37 3.71 5.26 5.93 6.13 5.24 4.83 4.70 
Pentaspherical 3.10 3.37 3.70 5.25 5.92 6.14 5.24 4.82 4.69 
Exponential 3.10 3.37 3.66 5.23 5.86 6.07 5.18 4.83 4.66 
Gaussian 3.09 3.28 3.66 5.26 5.94 6.14 5.23 4.76 4.67 
Rational Quadratic  3.09 3.29 3.69 5.18 5.82 6.05 5.16 4.77 4.63 
Hole Effect 3.13 3.34 3.75 5.33 6.09 6.26 5.32 4.82 4.76 
K-Bessel 3.09 3.29 3.65 5.24 5.86 5.96 5.15 4.77 4.63 
J-Bessel 3.09 3.32 3.67 5.23 5.89 6.15 5.24 4.73 4.67 
Stable 3.09 3.28 3.63 5.22 5.84 6.04 5.15 4.79 4.63 

SCK* Circular 3.01 3.28 3.62 5.28 5.99 6.20 5.23 4.63 4.66 
Spherical 3.01 3.29 3.67 5.28 5.97 6.20 5.22 4.62 4.66 
Tetraspherical 3.01 3.29 3.73 5.27 5.96 6.18 5.22 4.62 4.66 
Pentaspherical 3.02 3.30 3.73 5.26 5.94 6.17 5.22 4.61 4.66 
Exponential 3.04 3.29 3.69 5.22 5.89 6.11 5.17 4.59 4.63 
Gaussian 3.00 3.23 3.60 5.27 5.95 6.16 5.21 4.52 4.62 
Rational Quadratic  3.03 3.25 3.73 5.19 6.10 6.14 5.16 4.55 4.64 
Hole Effect 2.99 3.26 3.74 5.36 6.10 6.27 5.26 4.56 4.69 
K-Bessel 3.00 3.23 3.62 5.21 5.87 5.99 5.16 4.55 4.58 
J-Bessel 3.00 3.27 3.66 5.23 5.96 6.20 5.16 4.56 4.63 
Stable 3.00 3.23 3.61 5.19 5.85 5.95 5.15 4.52 4.56 

Note: * This model calculated new values for the parameters with optimized semivariogram 
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As a result (Table 4.22), an average RMSE value of monthly mean 
brightness temperature interpolation using seven different methods with various 
functions varies from 4.56 Kelvin using the SCK method with the Stable function to 
8.70 Kelvin using the RBF method with the Thin Plate Spline and the One Sector 
function. So, the SCK method with the Stable function is selected as an optimum 
method for monthly mean brightness temperature interpolation since it provides the 
least RMSE value. 

4.3.2 Fire radiative power 
The statistical data of fire radiative power from USGS between October 

2019 to May 2020 for identifying optimum interpolation methods are summarized in 
Table 4.23. 
 
Table 4.23 Descriptive statistical data of the monthly fire radiative power. 

Month Season Min. (MW) Max. (MW) Mean (MW) SD. (MW) Count 
Oct Winter 3.90 44.20 9.59 4.70 209 
Nov Winter 4.20 151.00 14.91 14.35 331 
Dec Winter 3.10 465.40 18.73 22.41 1638 
Jan Winter 3.00 448.70 18.86 22.15 2381 
Feb Winter 2.40 1685.10 22.46 42.11 2727 
Mar Summer 3.60 371.50 23.96 30.02 1791 
Apr Summer 3.90 223.50 22.36 24.07 501 
May Summer 2.70 61.00 15.52 10.62 112 

 
According to the basic statistical data, fire radiative power decreases from 

October until a minimum in February and gradually increases until May.  
In the cokriging (OCK and SCK) method, the latitude and longitude 

variables were added to be the cokriging variable. The relationship between monthly 
fire radiative power and cokriging variables is summarized in Tables 4.24. 
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Table 4.24 The Pearson’s correlation coefficients between monthly fire radiative 
power with cokriging variables. 
Variables Oct Nov Dec Jan Feb Mar Apr May 
FRP LAT -0.04 0.11 0.02 -0.02 -0.07** -0.03 0.01 0.22* 
 LONG 0.12 -0.10 -0.03 0.07** 0.02 -0.03 -0.05 -0.12 

Note: *correlation is significant at the 0.05 level (2-tailed), **correlation is significant at the 0.01 level (2-tailed). 

 
The relationship between monthly fire radiative power and latitude 

variable is a very weak correlation. Same with the correlation between fire radiative 
power and longitude variable. There is a very weak negative correlation, with a 
statistically significant (p ≤ 0.01) in February and a statistically significant (p ≤ 0.05) in 
May between fire radiative power and latitude. But between fire radiative power and 
longitude variable is a weak positive with statistically significant (p ≤ 0.01) only in 
January. 

The cross-validation RMSE for monthly mean fire radiative power 
interpolation with seven different methods (IDW, GPI, RBF, OK, OCK, SK, and SCK) is 
summarized in Table 4.25. 
 

Table 4.25 The cross-validation RMSE of the seven interpolation methods for mean 
fire radiative power interpolation from October 2019 to May 2020. 

Model Function 
RMSE (MW) 

Oct Nov Dec Jan Feb Mar Apr May Avg. 
IDW Power 1 1 sector 4.94 12.15 20.61 21.73 39.86 28.47 22.57 8.72 19.88 

4 sectors 4.83 11.71 20.54 21.27 39.91 28.25 22.14 8.47 19.64 
4 sectors with 
45-degree 
offset 

4.83 11.74 20.58 21.29 39.94 28.23 22.14 8.48 19.65 

8 sectors 4.79 11.62 20.68 21.27 40.01 28.29 22.07 8.41 19.64 
Power 2 1 sector 5.18 12.47 20.80 22.94 42.30 29.79 23.94 9.19 20.83 

4 sectors 5.10 12.30 20.49 22.55 42.03 29.30 23.71 8.97 20.56 
4 sectors with 
45-degree 
offset 

5.10 12.30 20.49 22.56 42.02 29.29 23.70 8.96 20.55 

8 sectors 5.09 12.22 20.42 22.43 41.97 29.20 23.64 8.89 20.48 
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Table 4.25 (Continued). 

Model Function 
RMSE (MW) 

Oct Nov Dec Jan Feb Mar Apr May Avg. 
GPI Order 1 4.74 14.37 22.44 22.12 42.07 30.04 24.19 10.63 21.33 

Order 2  4.80 14.23 22.43 22.13 42.04 29.94 24.11 10.78 21.31 
Order 3 4.84 13.88 22.40 22.12 41.96 29.92 24.16 11.11 21.30 

RBF Complet
ely 
Regulariz
e spine 

1 sector 4.88 11.54 20.32 21.74 39.70 29.18 22.06 8.65 19.76 
4 sectors 4.81 11.38 20.13 21.62 39.52 28.96 21.92 8.51 19.61 
4 sectors with 
45-degree 
offset 

4.81 11.40 20.14 21.63 39.55 28.97 21.92 8.53 19.62 

8 sectors 4.80 11.41 20.14 21.62 39.49 28.96 21.92 8.49 19.60 
Spline 
with 
tension 

1 sector 4.97 11.80 20.32 21.79 39.63 28.98 22.69 8.84 19.88 
4 sectors 4.80 11.40 20.13 21.19 39.45 28.22 21.99 8.52 19.46 
4 sectors with 
45-degree 
offset 

4.82 11.41 20.14 21.21 39.48 28.22 21.98 8.51 19.47 

8 sectors 4.79 11.39 20.14 21.16 39.42 28.17 21.93 8.49 19.44 
multiqua
dric 

1 sector 5.72 12.53 21.58 23.96 44.44 32.23 25.98 9.76 22.03 
4 sectors 5.52 12.13 21.53 23.69 44.27 31.81 25.28 9.93 21.77 
4 sectors with 
45-degree 
offset 

5.55 12.15 21.54 23.70 44.28 31.77 25.32 9.96 21.78 

8 sectors 5.52 12.12 21.54 23.69 44.24 31.79 25.28 9.89 21.76 
Inverse 
multiqua
dric 

1 sector 4.92 11.67 21.95 22.35 42.25 29.37 22.36 8.64 20.44 
4 sectors 4.71 11.09 21.78 21.61 40.96 29.17 21.74 8.14 19.90 
4 sectors with 
45-degree 
offset 

4.72 11.13 21.78 21.62 40.95 29.20 21.75 8.15 19.91 

8 sectors 4.68 11.04 21.64 21.54 40.98 29.29 21.63 8.14 19.87 
Thin 
plate 
spine 

1 sector 12.43 23.35 28.31 42.56 58.95 55.66 78.59 18.71 39.82 
4 sectors 10.05 16.82 26.51 32.14 56.88 41.06 43.43 15.53 30.30 
4 sectors with 
45-degree 
offset 

10.73 17.28 26.49 32.08 57.14 40.82 50.42 15.25 31.28 

8 sectors 10.34 16.40 26.43 31.92 57.17 40.45 42.05 15.27 30.00 

 

  

 



80 

Table 4.25 (Continued). 

Model Function 
RMSE (MW) 

Oct Nov Dec Jan Feb Mar Apr May Avg. 
OK* Circular 4.93 11.39 20.49 21.55 40.16 28.16 23.69 9.39 19.97 

Spherical 4.93 11.36 20.51 21.56 40.16 28.20 23.69 9.43 19.98 
Tetraspherical 4.91 11.38 20.49 21.58 40.16 28.25 23.69 9.37 19.98 
Pentasherical 4.90 11.61 20.49 21.59 40.16 28.27 23.69 9.20 19.99 
Exponential 4.89 11.35 20.34 21.53 40.16 28.45 23.69 9.23 19.96 
Gaussian 4.92 11.39 20.52 21.36 40.16 28.11 23.69 9.10 19.91 
Rational Quadratic  4.93 11.45 20.17 21.62 40.16 28.66 23.69 9.14 19.98 
Hole Effect 4.82 11.57 20.64 21.69 40.32 28.78 21.94 9.38 19.89 
K-Bessel 4.84 11.34 20.39 21.50 40.16 28.16 23.25 9.11 19.84 
J-Bessel 4.93 12.15 20.40 21.60 37.77 28.47 21.32 9.22 19.48 
Stable 4.82 11.30 20.46 21.36 40.16 28.13 23.46 9.13 19.85 

OCK* Circular 4.93 12.23 21.32 21.82 40.16 28.71 23.69 9.81 20.33 
Spherical 4.92 12.23 21.32 21.82 40.16 28.71 23.69 9.68 20.32 
Tetraspherical 4.90 12.23 21.32 21.82 40.16 28.71 23.69 9.64 20.31 
Pentasherical 4.89 12.23 21.32 21.82 40.16 28.71 23.69 9.59 20.30 
Exponential 4.89 12.12 21.32 21.82 40.16 28.71 23.69 9.34 20.26 
Gaussian 4.92 12.23 21.32 21.82 40.16 28.71 23.69 10.29 20.39 
Rational Quadratic  4.92 12.23 21.32 21.82 40.16 28.71 23.69 9.47 20.29 
Hole Effect 4.91 12.23 21.32 21.82 40.16 28.71 23.69 9.72 20.32 
K-Bessel 4.84 11.93 21.17 21.82 40.16 28.71 23.69 9.11 20.18 
J-Bessel 4.93 12.23 21.32 21.82 40.16 28.71 23.69 9.88 20.34 
Stable 4.88 11.90 21.32 21.82 40.16 28.71 23.69 9.13 20.20 

SK* Circular 4.66 11.07 20.36 21.60 39.71 28.40 23.61 8.70 19.76 
Spherical 4.66 11.30 20.36 21.61 39.76 28.46 23.69 8.75 19.82 
Tetraspherical 4.66 11.34 20.36 21.61 39.61 28.54 23.94 8.72 19.85 
Pentaspherical 4.66 11.32 20.35 21.62 40.02 28.69 24.07 8.69 19.93 
Exponential 4.67 11.52 20.19 21.64 39.92 28.53 24.07 8.70 19.91 
Gaussian 4.66 11.29 20.38 21.25 40.10 28.32 23.65 8.73 19.80 
Rational Quadratic  4.66 11.55 20.10 21.67 39.83 28.35 24.07 8.76 19.87 
Hole Effect 4.67 12.12 20.64 21.71 40.48 28.89 22.14 8.74 19.92 
K-Bessel 4.67 11.31 20.21 21.68 40.06 28.34 23.10 8.73 19.76 
J-Bessel 4.69 14.16 20.44 21.76 40.23 28.79 22.09 8.70 20.11 
Stable 4.66 11.26 20.29 21.25 40.10 28.33 23.47 8.73 19.76 

  

 



81 

Table 4.25 (Continued). 

Model Function 
RMSE (MW) 

Oct Nov Dec Jan Feb Mar Apr May Avg. 
SCK* Circular 4.63 11.13 20.36 21.62 39.71 28.55 23.61 8.65 19.78 

Spherical 4.63 11.22 20.36 21.61 39.76 28.59 23.69 8.62 19.81 
Tetraspherical 4.63 11.38 20.36 21.62 39.62 28.59 23.94 8.59 19.84 
Pentaspherical 4.63 11.35 20.35 21.64 40.02 28.71 24.04 8.59 19.92 
Exponential 4.63 11.55 20.19 21.52 39.96 28.21 24.07 8.55 19.84 
Gaussian 4.64 11.32 20.38 21.22 40.10 28.52 23.64 8.67 19.81 
Rational Quadratic  4.64 11.55 20.10 21.70 39.91 28.42 24.07 8.61 19.88 
Hole Effect 4.68 12.14 20.64 21.70 40.48 29.08 22.15 8.59 19.93 
K-Bessel 4.64 11.36 20.21 21.44 40.35 28.52 23.12 8.66 19.79 
J-Bessel 4.64 14.07 20.45 21.76 41.64 28.84 22.15 8.65 20.28 
Stable 4.64 11.33 20.32 21.22 40.10 28.52 23.64 8.67 19.81 

Note: * This model calculated new values for the parameters with optimized semivariogram 
 

As a result (Table 4.25), an average RMSE value of monthly mean fire 
radiative power interpolation using seven different methods with various functions 
varies from 19.44 MW using the RBF method with the Spline with Tension and Eight 
Sectors function to 39.82 MW using the RBF method with the Thin Plate Spline and 
One Sector function. Thus, the RBF method with the Spline with Tension and Eight 
Sector function is an optimum method for monthly mean fire radiative power 
interpolation since it provides the least RMSE value. 

Several methods were used to interpolate MODIS fire data from the 
previous studies. For example, Veraverbeke et al. (2014) used kriging for interpolating 
the MODIS active fire because the kriging is based on local variogram analysis and 
allows an uncertainty analysis by spatially estimating the kriging standard error. Like 
Devkota (2021), Ponomarev, Shvetsov, and Usataya (2018) used kriging to interpolate 
the MODIS fire radiative power data. While, Loboda, Hall, and Baer (2017) used IDW to 
determine the fire spread from MODIS active fire points data.  

Like Section 4.1 and 4.2, the rationale supporting reasons for different 
optimum interpolation methods for predicting monthly mean MODIS fire data are the 
number of the selected interpolation methods and criteria in their studies for 
identifying an optimum method. 
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Summary 
An optimum interpolation method for the selected dependent and 

independent variables based on their corresponding data between October 2019 to 
May 2020 is summarized in Table 4.26 again. These methods will be applied to other 
datasets in this study. On the contrary, appropriate standard tools for Spatial Analyst 
under ArcMap software will be applied with other independent variables, as shown in 
Table 4.27. 
 
Table 4.26 Summary of optimum interpolation method. 

No. Variable Optimum interpolation method 
1 PM10 concentration SCK with K-Bessel function 
2 PM2.5 concentration SCK with K-Bessel function 
3 Relative humidity SCK with J-Bessel function 
4 Temperature SCK with Hole Effect function 
5 Wind speed RBF with Spline with Tension and One Sector 
6 Pressure SCK with Stable function 
7 Visibility OCK with Hole Effect function 
8 Brightness temperature SCK with Stable function 
9 Fire radiative power RBF with Spline with Tension and Eight Sector function 

 
Table 4.27 Summary of the standard tools for other data preparation. 

No. Variable  Data preparation 
1 MODIS AOD Raster Calculator 
2 NDVI Raster Calculator from Landsat 8 OLI data 
3 BUI Raster Calculator from Landsat 8 OLI data 
4 Road density Calculate geometry and field calculator 
5 Factory density Spatial join and field calculator 
6 Elevation Fill (Spatial analysis) from SRTM 
7 Fire hotspot Spatial join and field calculator 
8 Population density Field calculator (Extract from population data at district level)  
9 GPP Field calculator (Extract from population data at district level)  

 
After that, all prepared dependent and independent variables will be further 

applied to identify significant spatiotemporal factors on PM concentration using the 
multicollinearity test and OLS regression analysis. 

 



CHAPTER V 
SIGNIFICANT SPATIOTEMPORAL FACTORS ON  

PM CONCENTRATION
 

This chapter presents the study's first objective to identify significant factors on 
PM10 concentration in the rural landscape and PM2.5 concentration in the urban 
landscape during the winter and summer season and relationships using the 
multicollinearity test and the OLS regression analysis. The main results consist of (1) 
basic information on a dependent variable, (2) basic information on independent 
variables, (3) significant spatiotemporal factors on PM10 concentration in the rural 
landscape, (4) significant spatiotemporal factors on PM2.5 concentration in the urban 
landscape, (5) basic information of daily dependent and independent variables, (6) 
significant daily spatiotemporal factors on PM10 concentration in the rural landscape, 
and (7) significant daily spatiotemporal factors on PM25 concentration in the urban 
landscape, are here described and discussed in detail, 
 

5.1 Basic information of dependent variable 
The dependent variable, represented as dynamic data, includes (1) PM10 

concentration in the rural landscape and (2) PM2.5 concentration in the urban 
landscape. The spatial distribution of monthly mean PM10 and PM2.5 in the rural and 
urban landscapes, which were interpolated using the SCK method with the K-Bessel 
function, is displayed in Figures 5.1 and 5.2. 
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(a) (b) (c) (d) 

(e) (f) (g) (h) 
Figure 5.1 Spatial distribution of monthly mean PM10 concentration during October 
2019 to May 2020: (a) October 2019, (b) November 2019, (c) December 2019, (d) 
January 2020, (e) February 2020, (f) March 2020, (g) April 2020, and (h) May 2020. 
 

The output of PM10 concentration interpolation shows high value in the rural 
landscape, especially in Chaloem Phra Kiat and Phra Phuttabat – Saraburi province. 
Meanwhile, PM10 concentration in the urban landscape is lower than in rural 
landscapes, especially in Samut Sakhon and Nakhon Pathom province.  
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(a) (b) (c) (d) 

(e) (f) (g) (h) 
Figure 5.2 Spatial distribution of monthly mean PM2.5 concentration during October 
2019 to May 2020: (a) October 2019, (b) November 2019, (c) December 2019, (d) 
January 2020, (e) February 2020, (f) March 2020, (g) April 2020, and (h) May 2020. 
 

Primary statistics data of normalized PM concentration in rural and urban 
landscapes are summarized separately in Tables 5.1 and 5.2. 
 
Table 5.1 Descriptive statistic data of PM10 concentration after normalization in rural 
landscape. 

Statistics 
Winter season Summer season 

Oct Nov Dec Jan Feb Mar Apr May 
Minimum -2.30 -1.86 -0.99 -2.08 -1.98 -0.78 -1.97 -0.82 
Maximum 3.72 3.84 5.39 2.87 3.36 5.55 3.28 5.83 
Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
SD. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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Table 5.2 Descriptive statistic data of PM2.5 concentration after normalization in the 
urban landscape. 

Statistics 
Winter season Summer season 

Oct Nov Dec Jan Feb Mar Apr May 
Minimum -2.93 -2.79 -2.40 -2.25 -1.75 -2.46 -2.20 -1.73 
Maximum 1.33 2.00 1.63 1.51 1.82 2.22 2.29 2.31 
Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
SD. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 

5.2 Basic information of independent variable 
The independent variables, which are represented as dynamic and static factors 

on PM concentration in rural and urban landscapes, includes (1) meteorological factor 
(relative humidity, temperature, wind speed, pressure, visibility), (2) biophysical factor 
(MODIS AOD, brightness temperature, fire radiative power, fire hotspot, NDVI, BUI, road 
density, factory density, elevation), and (3) socioeconomic factor (population density, 
GPP). Basic information on independent variables is separately described in the 
following sections. 

5.2.1 Relative humidity 
The spatial distribution of monthly mean relative humidity in the rural 

and urban landscapes, which were interpolated using the SCK method with the K-
Bessel function, is displayed in Figure 5.3. Primary statistics data of normalized relative 
humidity in rural and urban landscapes are summarized separately in Tables 5.3 and 
5.4. 
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(a) (b) (c) (d) 

(e) (f) (g) (h) 
Figure 5.3 Spatial distribution of monthly mean relative humidity during October 2019 
to May 2020: (a) October 2019, (b) November 2019, (c) December 2019, (d) January 
2020, (e) February 2020, (f) March 2020, (g) April 2020, and (h) May 2020. 
 
Table 5.3 Descriptive statistic data of relative humidity after normalization in rural 
landscape. 

Statistics 
Winter season Summer season 

Oct Nov Dec Jan Feb Mar Apr May 
Minimum -1.82 -3.17 -1.62 -1.93 -1.81 -1.77 -2.01 -1.93 
Maximum 1.87 1.02 1.99 1.49 1.70 1.89 1.72 1.46 
Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
SD. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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Table 5.4 Descriptive statistic data of relative humidity after normalization in the urban 
landscape. 

Statistics 
Winter season Summer season 

Oct Nov Dec Jan Feb Mar Apr May 
Minimum -0.86 -1.97 -1.91 -1.74 -2.04 -3.15 -2.68 -2.88 
Maximum 3.26 3.49 2.21 3.22 2.65 1.79 1.88 3.36 
Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
SD. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 
5.2.2 Temperature 

The spatial distribution of monthly mean temperature in the rural and 
urban landscapes, which were interpolated using the SCK method with the Hole Effect 
function, is displayed in Figure 5.4. Primary statistics data of normalized temperature 
in rural and urban landscapes are separately summarized in Tables 5.5 and 5.6, 
respectively. 
 
Table 5.5 Descriptive statistic data of temperature after normalization in rural 
landscape. 

Statistics 
Winter season Summer season 

Oct Nov Dec Jan Feb Mar Apr May 
Minimum -3.39 -3.68 -3.23 -3.46 -3.85 -2.23 -1.74 -2.70 
Maximum 1.93 1.72 1.74 2.18 1.99 2.22 2.09 1.80 
Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
SD. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 
Table 5.6 Descriptive statistic data of temperature after normalization in the urban 
landscape. 

Statistics 
Winter season Summer season 

Oct Nov Dec Jan Feb Mar Apr May 
Minimum -3.17 -2.95 -3.09 -2.97 -2.91 -3.31 -2.00 -3.18 
Maximum 1.08 0.96 0.92 0.95 0.94 1.30 3.01 1.02 
Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
SD. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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(a) (b) (c) (d) 

 
(e) (f) (g) (h) 

Figure 5.4 Spatial distribution of monthly mean temperature during October 2019 to 
May 2020: (a) October 2019, (b) November 2019, (c) December 2019, (d) January 2020, 
(e) February 2020, (f) March 2020, (g) April 2020, and (h) May 2020. 
 

5.2.3 Wind speed 
The spatial distribution of monthly mean wind speed in the rural and 

urban landscape, which were interpolated using the RBF method with Spline with 
Tension and One Sector function, is displayed in Figure 5.5. Primary statistics data of 
normalized wind speed in rural and urban landscapes are summarized separately in 
Tables 5.7 and 5.8. 
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(a) (b) (c) (d) 

(e) (f) (g) (h) 
Figure 5.5 Spatial distribution of monthly mean wind speed during October 2019 to 
May 2020: (a) October 2019, (b) November 2019, (c) December 2019, (d) January 2020, 
(e) February 2020, (f) March 2020, (g) April 2020, and (h) May 2020. 
 
Table 5.7 Descriptive statistic data of wind speed after normalization in rural 
landscape. 

Statistics 
Winter season Summer season 

Oct Nov Dec Jan Feb Mar Apr May 
Minimum -1.55 -1.62 -1.56 -1.55 -1.73 -1.37 -1.44 -1.35 
Maximum 2.15 1.91 1.99 2.53 2.01 2.81 2.96 2.67 
Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
SD. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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Table 5.8 Descriptive statistic data of wind speed after normalization in the urban 
landscape. 

Statistics 
Winter season Summer season 

Oct Nov Dec Jan Feb Mar Apr May 
Minimum -2.73 -2.90 -2.64 -2.93 -2.58 -2.99 -3.08 -3.03 
Maximum 2.02 1.65 1.85 2.13 1.86 1.57 1.69 1.68 
Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
SD. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 
5.2.4 Pressure 

The spatial distribution of monthly mean pressure in the rural and urban 
landscapes, which were interpolated using the SCK method with the Stable function, 
is displayed in Figure 5.6. Primary statistics data of normalized pressure in rural and 
urban landscapes are separately summarized in Tables 5.9 and 5.10, respectively. 
 
Table 5.9 Descriptive statistic data of pressure after normalization in rural landscape. 

Statistics 
Winter season Summer season 

Oct Nov Dec Jan Feb Mar Apr May 
Minimum -1.58 -1.34 -1.38 -1.71 -1.82 -2.29 -2.65 -2.55 
Maximum 2.59 2.41 2.94 2.10 3.18 1.53 1.35 1.46 
Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
SD. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 
Table 5.10 Descriptive statistic data of pressure after normalization in the urban 
landscape. 

Statistics 
Winter season Summer season 

Oct Nov Dec Jan Feb Mar Apr May 
Minimum -1.98 -2.21 -1.30 -2.37 -1.46 -2.54 -4.73 -3.65 
Maximum 1.86 2.25 2.28 2.58 2.16 2.14 2.43 2.42 
Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
SD. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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(a) (b) (c) (d) 

(e) (f) (g) (h) 
Figure 5.6 Spatial distribution of monthly mean pressure during October 2019 to May 
2020: (a) October 2019, (b) November 2019, (c) December 2019, (d) January 2020, (e) 
February 2020, (f) March 2020, (g) April 2020, and (h) May 2020. 
 

5.2.5 Visibility 
The spatial distribution of monthly mean visibility in the rural and urban 

landscapes, which were interpolated using the OCK method with the Hole Effect 
function, is displayed in Figure 5.7. Primary statistics data of normalized visibility in rural 
and urban landscapes are separately summarized in Tables 5.11 and 5.12. 
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(a) (b) (c) (d) 

(e) (f) (g) (h) 
Figure 5.7 Spatial distribution of monthly mean visibility during October 2019 to May 
2020: (a) October 2019, (b) November 2019, (c) December 2019, (d) January 2020, (e) 
February 2020, (f) March 2020, (g) April 2020, and (h) May 2020. 
 

Table 5.11 Descriptive statistic data of visibility after normalization in rural landscape. 

Statistics 
Winter season Summer season 

Oct Nov Dec Jan Feb Mar Apr May 
Minimum -1.58 -1.34 -1.38 -1.71 -1.82 -2.07 -1.93 -1.67 
Maximum 2.59 2.41 2.94 2.10 3.18 3.03 2.68 2.99 
Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
SD. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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Table 5.12 Descriptive statistic data of visibility after normalization in the urban 
landscape. 

Statistics 
Winter season Summer season 

Oct Nov Dec Jan Feb Mar Apr May 
Minimum -4.31 -1.69 -4.31 -2.41 -4.77 -3.35 -4.70 -2.00 
Maximum 1.45 2.39 1.16 1.54 1.20 1.75 1.32 3.29 
Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
SD. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 

5.2.6 MODIS AOD 
The spatial distribution of monthly mean MODIS AOD in the rural and 

urban landscape, constructed using the Raster Calculator function of the ArcMap tool, 
is displayed in Figure 5.8. Primary statistics data of normalized MODIS AOD in rural and 
urban landscapes are separately summarized in Tables 5.13 and 5.14, respectively. 
 

(a) (b) (c) (d) 
Figure 5.8 Spatial distribution of monthly mean MODIS AOD during October 2019 to 
May 2020: (a) October 2019, (b) November 2019, (c) December 2019, (d) January 2020, 
(e) February 2020, (f) March 2020, (g) April 2020, and (h) May 2020. 
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(e) (f) (g) (h) 
Figure 5.8 (Continued). 
 
Table 5.13 Descriptive statistic data of MODIS AOD after normalization in rural 
landscape. 

Statistics 
Winter season Summer season 

Oct Nov Dec Jan Feb Mar Apr May 
Minimum -1.45 -2.28 -2.14 -1.77 -2.32 -0.96 -2.23 -1.74 
Maximum 2.68 2.87 2.55 2.42 2.81 3.98 2.23 2.72 
Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
SD. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 
Table 5.14 Descriptive statistic data of MODIS AOD after normalization in the urban 
landscape. 

Statistics 
Winter season Summer season 

Oct Nov Dec Jan Feb Mar Apr May 
Minimum -1.54 -2.27 2.36 -2.21 -1.65 -2.31 -2.00 -1.91 
Maximum 2.21 2.51 2.36 2.52 3.29 3.10 3.29 2.31 
Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
SD. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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5.2.7 Brightness temperature 
The spatial distribution of monthly mean brightness temperature in the 

rural and urban landscape, which were interpolated using the SCK method with the 
Stable function, is displayed in Figure 5.9. Primary statistics data of normalized 
brightness temperature in rural and urban landscapes are separately summarized in 
Tables 5.15 and 5.16, respectively. 
 
Table 5.15 Descriptive statistic data of brightness temperature after normalization in 
rural landscape. 

Statistics 
Winter season Summer season 

Oct Nov Dec Jan Feb Mar Apr May 
Minimum -3.06 -2.50 -2.83 -2.23 -2.45 -2.79 -3.12 -3.24 
Maximum 2.44 2.58 2.15 2.31 1.92 2.23 2.04 2.95 
Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
SD. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 

(a) (b) (c) (d) 
Figure 5.9 Spatial distribution of monthly mean brightness temperature during October 
2019 to May 2020: (a) October 2019, (b) November 2019, (c) December 2019, (d) 
January 2020, (e) February 2020, (f) March 2020, (g) April 2020, and (h) May 2020. 
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(e) (f) (g) (h) 
Figure 5.9 (Continued). 
 
Table 5.16 Descriptive statistic data of brightness temperature after normalization in 
the urban landscape. 

Statistics 
Winter season Summer season 

Oct Nov Dec Jan Feb Mar Apr May 
Minimum -5.70 -6.37 -3.28 -2.42 -1.67 -1.91 -2.15 -6.05 
Maximum 1.49 0.50 2.23 1.84 2.82 3.10 2.66 1.85 
Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
SD. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 
5.2.8 Fire radiative power 

The spatial distribution of monthly mean fire radiative power in the rural 
and urban landscape, which were interpolated using the RBF method with the Spline 
with Tension and Eight Sector function, is displayed in Figure 5.10. Primary statistics 
data of normalized fire radiative power in rural and urban landscapes are summarized 
separately in Tables 5.17 and 5.18. 
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(a) (b) (c) (d) 

(e) (f) (g) (h) 
Figure 5.10 Spatial distribution of monthly mean fire radiative power during October 
2019 to May 2020: (a) October 2019, (b) November 2019, (c) December 2019, (d) 
January 2020, (e) February 2020, (f) March 2020, (g) April 2020, and (h) May 2020. 
 
Table 5.17 Descriptive statistic data of fire radiative power after normalization in rural 
landscape. 

Statistics 
Winter season Summer season 

Oct Nov Dec Jan Feb Mar Apr May 
Minimum -1.26 -1.80 -2.83 -1.30 -1.50 -0.96 -1.20 -1.55 
Maximum 3.50 3.15 2.15 3.51 3.86 3.98 3.07 3.22 
Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
SD. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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Table 5.18 Descriptive statistic data of fire radiative power after normalization in the 
urban landscape. 

Statistics 
Winter season Summer season 

Oct Nov Dec Jan Feb Mar Apr May 
Minimum -3.45 -2.13 -2.47 -2.42 -1.86 -1.34 -3.12 -1.78 
Maximum 1.67 4.51 3.86 1.93 3.53 3.97 2.09 2.75 
Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
SD. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 
5.2.9 Fire hotspot 

The spatial distribution of monthly fire hotspots in the rural and urban 
landscape, constructed using the Spatial join and field calculator function of the 
ArcMap software, is displayed in Figure 5.11. Primary statistics data of normalized fire 
hotspots in rural and urban landscapes are summarized separately in Tables 5.19 and 
5.20. 
 

(a) (b) (c) (d) 
Figure 5.11 Spatial distribution of monthly fire hotspot during October 2019 to May 
2020: (a) October 2019, (b) November 2019, (c) December 2019, (d) January 2020, (e) 
February 2020, (f) March 2020, (g) April 2020, and (h) May 2020. 
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(e) (f) (g) (h) 
Figure 5.11 (Continued). 
 
Table 5.19 Descriptive statistic data of fire hotspots after normalization in rural 
landscape. 

Statistics 
Winter season Summer season 

Oct Nov Dec Jan Feb Mar Apr May 
Minimum -0.55 -0.66 -1.00 -0.87 -0.72 -0.87 -0.50 -0.52 
Maximum 4.20 4.14 3.22 3.25 5.62 3.93 4.29 4.15 
Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
SD. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 
Table 5.20 Descriptive statistic data of fire hotspots after normalization in the urban 
landscape. 

Statistics 
Winter season Summer season 

Oct Nov Dec Jan Feb Mar Apr May 
Minimum -0.31 -0.20 -0.27 -0.37 -0.37 -0.33 -0.29 -0.36 
Maximum 4.99 7.63 5.87 4.92 6.11 6.41 6.87 5.12 
Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
SD. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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5.2.10 NDVI 
The spatial distribution of monthly NDVI in the rural and urban landscape, 

constructed using the ArcMap tool's Raster Calculator function, is displayed in Figures 
5.12(a) and 5.12(b). Primary statistics data of normalized NDVI in rural and urban 
landscapes are separately summarized in Tables 5.21 and 5.22, respectively. 

5.2.11 BUI 
 The spatial distribution of monthly BUI in the rural and urban landscape, 

constructed using the ArcMap tool's Raster Calculator function, is displayed in Figures 
5.12(c) and 5.12(d). Primary statistics data of normalized BUI in rural and urban 
landscapes are separately summarized in Tables 5.23 and 5.24. 
 

(a) (b) (c) (d) 
Figure 5.12 Spatial distribution of mean NDVI and BUI during winter and summer 
season: (a) NDVI in the winter season, (b) NDVI in the summer season, (c) BUI in the 
winter season, (d) BUI in the summer season. 
 
Table 5.21 Descriptive statistic data of NDVI after normalization in rural landscape. 

Statistics 
Winter season Summer season 

Oct Nov Dec Jan Feb Mar Apr May 
Minimum -2.43 -2.43 -2.43 -2.43 -2.43 -2.27 -2.27 -2.27 
Maximum 2.47 2.47 2.47 2.47 2.47 2.30 2.30 2.30 
Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
SD. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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Table 5.22 Descriptive statistic data of NDVI after normalization in the urban landscape. 

Statistics 
Winter season Summer season 

Oct Nov Dec Jan Feb Mar Apr May 
Minimum -2.45 -2.45 -2.45 -2.45 -2.45 -3.11 -3.11 -3.11 
Maximum 2.40 2.40 2.40 2.40 2.40 2.11 2.11 2.11 
Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
SD. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 
Table 5.23 Descriptive statistic data of BUI after normalization in rural landscape. 

Statistics 
Winter season Summer season 

Oct Nov Dec Jan Feb Mar Apr May 
Minimum -2.44 -2.44 -2.44 -2.44 -2.44 -2.45 -2.45 -2.45 
Maximum 2.02 2.02 2.02 2.02 2.02 2.01 2.01 2.01 
Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
SD. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 
Table 5.24 Descriptive statistic data of BUI after normalization in the urban landscape. 

Statistics 
Winter season Summer season 

Oct Nov Dec Jan Feb Mar Apr May 
Minimum -2.26 -2.26 -2.26 -2.26 -2.26 -2.77 -2.77 -2.77 
Maximum 2.21 2.21 2.21 2.21 2.21 2.40 2.40 2.40 
Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
SD. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 
5.2.12 Road density 

 The spatial distribution of monthly road density in the rural and urban 
landscape, constructed using Calculate geometry and field calculator of ArcMap tool, 
is displayed in Figure 5.13(a). Primary statistics data of normalized road density in rural 
and urban landscapes are separately summarized in Tables 5.25 and 5.26, respectively. 
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5.2.13 Factory density 
 The spatial distribution of monthly factory density in the rural and urban 

landscape, constructed using Spatial join and field calculator of ArcMap tool, is 
displayed in Figure 5.13(b). Primary statistics data of normalized factory density in rural 
and urban landscapes are separately summarized in Tables 5.25 and 5.26, respectively. 

5.2.14 Elevation 
 The spatial distribution of monthly elevation in the rural and urban 

landscape, constructed using Fill (Spatial analysis) from SRTM under ArcMap software, 
is displayed in Figure 5.13(c). Primary statistics data of normalized elevation in rural 
and urban landscapes are separately summarized in Tables 5.25 and 5.26, respectively. 
 

   
(a) (b) (c) 

Figure 5.13 Spatial distribution of static data (a) road density, (b) factory density, and 
(c) elevation. 
 
Table 5.25 Descriptive statistic data of road density, factory density, and elevation 
after normalization in rural landscape. 
Statistics Road density Factory density Elevation 
Minimum -0.82 -0.77 -0.54 
Maximum 4.52 4.45 5.16 
Mean 0.00 0.00 0.00 
SD. 1.00 1.00 1.00 
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Table 5.26 Descriptive statistic data of road density, factory density, and elevation 
after normalization in the urban landscape. 
Statistics Road density Factory density Elevation 
Minimum -1.67 -0.79 -1.67 
Maximum 2.21 3.21 3.29 
Mean 0.00 0.00 0.00 
SD. 1.00 1.00 1.00 

 
5.2.15 Population density 

 The spatial distribution of monthly population density in the rural and 
urban landscape, extracted from population data at the district level and constructed 
using the field calculator function of the ArcMap tool, is displayed in Figure 5.14(a). 
Primary statistics data of normalized population density in rural and urban landscapes 
are separately summarized in Tables 5.27 and 5.28. 

5.2.16 GPP 
The spatial distribution of monthly GPP in the rural and urban landscape, 

extracted from district-level population data and constructed using the field calculator 
function of the ArcMap tool, is displayed in Figure 5.14(b). Primary statistics data of 
normalized GPP in rural and urban landscapes are separately summarized in Tables 
5.27 and 5.28. 
 

  

 

(a) (b)  
Figure 5.14 Spatial distribution of static data (a) population density and (b) GPP. 
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Table 5.27 Descriptive statistic data of population density and GPP after normalization 
in rural landscape. 
Statistics Population density GPP 
Minimum -0.95 -1.35 
Maximum 2.51 1.13 
Mean 0.00 0.00 
SD. 1.00 1.00 

 

Table 5.28 Descriptive statistic data of population density and GPP after normalization 
in urban landscape. 
Statistics Population density GPP 
Minimum -2.06 -1.56 
Maximum 0.63 0.66 
Mean 0.00 0.00 
SD. 1.00 1.00 

 

5.3 Significant spatiotemporal factors on PM10 concentration in rural 
landscape 

All normalized dependent and independent variables in rural landscape in the 
winter season (October 2019 to February 2020) and summer season (March 2020 to 
May 2020) were applied to identify significant spatiotemporal factors using 
multicollinearity test with the VIF values and the OLS regression analysis. The result of 
the multicollinearity test and the OLS regression analysis, including the derived 
equation, its coefficient, and its performance, is separately described and discussed by 
month and season. 

If the VIF value of any factor is above 7.5, such a factor is removed from the 
model to avoid redundancy among explanatory variables (Section 3.2). The results of 
the multicollinearity test performed in the SPSS statistical software are reported in 
Tables 5.29.  
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Table 5.29 Results of multicollinearity test of explanatory variables on PM10 
concentration.  

No. Variable 

The VIF value 
Winter season Summer season 

Oct 
2019 

Nov  
2019 

Dec  
2019 

Jan 
2020 

Feb  
2020 

Mar 
2020 

Apr 
2020 

May 
2020 

1 RH 5.50 4.84 22.76 44.83 22.93 22.23 38.47 15.69 
2 TEMP 2.22 2.95 3.35 2.64 1.83 4.16 23.13 6.06 
3 WS 4.54 3.81 4.01 16.13 5.85 8.43 9.10 8.12 
4 P 2.65 6.46 7.24 63.79 8.65 5.42 2.42 4.96 
5 VIS 3.05 3.90 3.66 9.76 5.03 6.62 3.93 4.51 
6 AOD 4.61 2.49 3.48 6.35 2.63 2.15 3.99 2.47 
7 NDVI 20.14 24.17 22.76 18.97 18.65 18.64 18.70 22.42 
8 BUI 25.74 29.89 24.22 24.66 21.81 16.76 15.52 17.86 
9 RD 12.18 13.25 12.05 11.97 10.92 11.41 15.53 15.58 
10 FD 5.63 5.60 6.94 6.61 6.80 4.77 5.87 4.96 
11 BT 3.47 3.00 3.07 2.87 1.63 7.33 4.32 1.30 
12 FRP 1.92 2.76 2.94 3.34 3.22 2.70 3.62 4.04 
13 FH 1.49 1.63 1.73 1.65 1.54 2.10 1.79 2.05 
14 ELEV 3.50 3.54 4.74 5.58 4.22 4.14 5.73 3.98 
15 POP 11.58 10.21 12.49 13.39 12.44 10.53 13.35 11.23 
16 GPP 5.66 4.50 4.36 4.72 5.02 5.21 5.18 4.62 

Total variables 12 12 11 8 10 10 9 10 

 
As a result, the VIF values show that NDVI, BUI, road density, and population 

density are redundant with PM10 concentration. In addition, other redundant variables 
are cut each month differently. Hence, persistent independent variables with a VIF 
value less than 7.5 were applied for OLS regression analysis. The result of the OLS 
regression analysis in each month of each season are described separately and 
discussed below, particularly model performance and the relationship between PM10 
concentration and their factors. 
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5.3.1 October 2019 in the winter season 
The results of the OLS regression analysis are reported in Table 5.30. The 

model performance showed that AICc is 140.11. The multiple R-squared is 0.67, and 
the adjusted R-squared is 0.59. 
 
Table 5.30 Summary of the OLS regression analysis between PM10 concentration and 
significant factors in October 2019. 

No. Factor Coefficient Std. Error Probability VIF 
 Intercept -0.00 0.08 1.00 -------- 
1 RH 0.17 0.16 0.31 3.82 
2 TEMP 0.38 0.12 0.00* 1.96 
3 WS 0.41 0.16 0.01* 3.67 
4 P 0.19 0.13 0.15 2.35 
5 VIS -0.66 0.14 0.00* 2.61 
6 AOD -0.04 0.15 0.81 3.13 
7 FD 0.05 0.13 0.72 2.47 
8 BT 0.20 0.14 0.18 2.91 
9 FRP -0.20 0.11 0.08 1.73 
10 FH -0.11 0.10 0.29 1.39 
11 ELEV 0.22 0.15 0.15 3.23 
12 GPP 0.06 0.19 0.76 5.03 

Note: an asterisk (*) at the significance level of 0.01. 

 
As a result of OLS regression analysis in Table 5.30, if the probability at 

the confident level of 99% is not considered (ignored), the relationship between PM10 
concentration and selected factors by VIF value can be explained into two types: 
positive and negative. The positive relationship between PM10 concentration and their 
factors occurred with relative humidity, temperature, wind speed, pressure, factory 
density, brightness temperature, elevation, and GPP. This finding indicates that if these 
variables increase, the PM10 concentration increase. In contrast, the negative 
relationship between PM10 concentration and their factors is found with visibility, 
MODIS AOD, fire radiative power, and fire hotspot. So, with the increase of these factors, 
the PM10 concentration decrease.  
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When the probability at the confident level of 99% is considered, the 
significant factors on PM10 concentration in October 2019 are temperature, wind 
speed, and visibility. 

5.3.2 November 2019 in the winter season 
The results of the OLS regression analysis are reported in Table 5.31. The 

model performance showed that AICc is 150.90. The multiple R-squared is 0.60, while 
the adjusted R-squared is 0.50. 
 
Table 5.31 Summary of the OLS regression analysis between PM10 concentration and 
significant factors in November 2019. 

No. Factor Coefficient Std. Error Probability VIF 
 Intercept 0.00 0.09 1.00 -------- 
1 RH -0.21 0.19 0.29 4.52 
2 TEMP 0.13 0.15 0.39 2.77 
3 WS 0.88 0.15 0.00* 2.71 
4 P -0.13 0.22 0.56 5.87 
5 VIS -0.63 0.17 0.00* 3.39 
6 AOD 0.24 0.12 0.05* 1.69 
7 FD -0.20 0.12 0.10 1.72 
8 BT -0.02 0.14 0.90 2.42 
9 FRP 0.07 0.14 0.61 2.44 
10 FH -0.03 0.11 0.76 1.41 
11 ELEV -0.10 0.16 0.54 3.02 
12 GPP -0.24 0.18 0.20 3.99 

Note: an asterisk (*) at the significance level of 0.01. 

 
As a result of OLS regression analysis in Table 5.31, if the probability at 

the confident level of 99% is not considered (ignored), the relationship between PM10 
concentration and selected factors by VIF value can be explained into two types: 
positive and negative. The positive relationship between PM10 concentration and their 
factors occurred with temperature, wind speed, MODIS AOD, and fire radiative power. 
This finding indicates that if these variables increase, the PM10 concentration increase. 
In contrast, the negative relationship between PM10 concentration and their factors is 
found with relative humidity, pressure, visibility, factory density, brightness 
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temperature, fire hotspot, elevation, and GPP. So, with the increase of these factors, 
the PM10 concentration decrease.  

When the probability at the confident level of 99% is considered, the 
significant factors on PM10 concentration in November 2019 are wind speed, visibility, 
and MODIS AOD. 

5.3.3 December 2019 in the winter season 
The results of the OLS regression analysis are reported in Table 5.32. The 

model performance showed that AICc is 166.42. The multiple R-squared is 0.46, while 
the adjusted R-squared is 0.33. 
 
Table 5.32 Summary of the OLS regression analysis between PM10 concentration and 
significant factors in December 2019. 

No. Variable Coefficient Std. Error Probability VIF 
 Intercept 0.00 0.11 1.00 -------- 
1 TEMP 0.34 0.16 0.04* 2.37 
2 WS 0.37 0.18 0.05* 2.84 
3 P -0.03 0.21 0.88 3.99 
4 VIS -0.41 0.19 0.03* 3.13 
5 AOD -0.09 0.16 0.57 2.33 
6 FD 0.07 0.14 0.62 1.80 
7 BT 0.22 0.16 0.17 2.26 
8 FRP 0.29 0.16 0.07 2.18 
9 FH -0.19 0.13 0.16 1.51 
10 ELEV 0.28 0.21 0.19 3.87 
11 GPP 0.04 0.18 0.84 2.86 

Note: an asterisk (*) at the significance level of 0.01. 

 
As a result of OLS regression analysis in Table 5.32, if the probability at 

the confident level of 99% is not considered (ignored), the relationship between PM10 
concentration and selected factors by VIF value can be explained into two types: 
positive and negative. The positive relationship between PM10 concentration and their 
factors occurred with temperature, wind speed, factory density, brightness 
temperature, fire radiative power, elevation, and GPP. This finding indicates that if these 
variables increase, the PM10 concentration increase. In contrast, the negative 
relationship between PM10 concentration and their factors are found with pressure, 
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visibility, MODIS AOD, and fire hotspot. So, with the increase of these factors, the PM10 
concentration decrease.  

When the probability at the confident level of 99% is considered, the 
significant factors on PM10 concentration in December 2019 are temperature, wind 
speed, and visibility. 

5.3.4 January 2020 in the winter season 
The results of the OLS regression analysis are reported in Table 5.33. The 

model performance showed that AICc is 178.47. The multiple R-squared is 0.26, while 
the adjusted R-squared is 0.13. 
 
Table 5.33 Summary of the OLS regression analysis between PM10 concentration and 
significant factors in January 2020. 

No. Factor Coefficient Std. Error Probability VIF 
 Intercept 0.00 0.12 1.00 -------- 
1 TEMP 0.36 0.17 0.04* 2.04 
2 AOD -0.36 0.16 0.02* 1.82 
3 FD -0.13 0.23 0.48 1.87 
4 BT 0.24 0.15 0.08 1.52 
5 FRP 0.26 0.20 0.22 2.81 
6 FH -0.23 0.15 0.06 1.56 
7 ELEV -0.20 0.20 0.41 2.75 
8 GPP -0.16 0.23 0.32 3.53 

Note: an asterisk (*) at the significance level of 0.01. 

 
As a result of OLS regression analysis in Table 5.33, if the probability at 

the confident level of 99% is not considered (ignored), the relationship between PM10 
concentration and selected factors by VIF value can be explained into two types: 
positive and negative. The positive relationship between PM10 concentration and their 
factors occurred with temperature, brightness temperature, and fire radiative power. 
This finding indicates that if these variables increase, the PM10 concentration increase. 
In contrast, the negative relationship between PM10 concentration and their factors is 
found with MODIS AOD, factory density, fire hotspot, elevation, and GPP. So, with the 
increase of these factors, the PM10 concentration decrease.  
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When the probability at the confident level of 99% is considered, the 
significant factors on PM10 concentration in January 2020 are temperature and MODIS 
AOD. 

5.3.5 February 2020 in the winter season 
The results of the OLS regression analysis are reported in Table 5.34. The 

model performance showed that AICc is 159.75. The multiple R-squared is 0.49, while 
the adjusted R-squared is 0.38. 
 
Table 5.34 Summary of the OLS regression analysis between PM10 concentration and 
significant factors in February 2020. 

No. Factor Coefficient Std. Error Probability VIF 
 Intercept 0.00 0.10 1.00 -------- 
1 TEMP -0.04 0.13 0.75 1.66 
2 WS 0.43 0.21 0.04* 4.15 
3 VIS -0.37 0.21 0.08 4.07 
4 AOD 0.08 0.15 0.57 2.05 
5 FD -0.09 0.16 0.60 2.51 
6 BT 0.19 0.11 0.10 1.24 
7 FRP 0.47 0.16 0.00* 2.34 
8 FH -0.07 0.12 0.57 1.42 
9 ELEV -0.05 0.17 0.79 2.77 
10 GPP -0.19 0.16 0.25 2.57 

Note: an asterisk (*) at the significance level of 0.01. 

 
As a result of OLS regression analysis in Table 5.34, if the probability at 

the confident level of 99% is not considered (ignored), the relationship between PM10 
concentration and selected factors by VIF value can be explained into two types: 
positive and negative. The positive relationship between PM10 concentration and their 
factors occurred with wind speed, MODIS AOD, brightness temperature, and fire 
radiative power. This finding indicates that if these variables increase, the PM10 
concentration increase. In contrast, the negative relationship between PM10 
concentration and their factors is found with temperature, visibility, factory density, fire 
hotspot, elevation, and GPP. So, with the increase of these factors, the PM10 
concentration decrease.  
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When the probability at the confident level of 99% is considered, the 
significant factors on PM10 concentration in February 2020 are wind speed and fire 
radiative power. 

5.3.6 March 2020 in the summer season 
The results of the OLS regression analysis are reported in Table 5.35. The 

model performance showed that AICc is 157.49. The multiple R-squared is 0.53, while 
the adjusted R-squared is 0.43. 
 
Table 5.35 Summary of the OLS regression analysis between PM10 concentration and 
significant factors in March 2020. 

No. Factor Coefficient Std. Error Probability VIF 
 Intercept -0.00 0.10 1.00 -------- 
1 TEMP -0.58 0.18 0.00* 3.19 
2 P -0.26 0.17 0.13 2.88 
3 VIS -0.05 0.24 0.82 5.87 
4 AOD 0.34 0.14 0.02* 1.92 
5 FD 0.50 0.16 0.00* 2.57 
6 BT 0.14 0.20 0.48 3.92 
7 FRP -0.17 0.14 0.25 2.06 
8 FH -0.16 0.14 0.25 1.92 
9 ELEV -0.18 0.17 0.28 2.80 
10 GPP 0.14 0.17 0.40 2.93 

Note: an asterisk (*) at the significance level of 0.01. 

 
As a result of OLS regression analysis in Table 5.35, if the probability at 

the confident level of 99% is not considered (ignored), the relationship between PM10 
concentration and selected factors by VIF value can be explained into two types: 
positive and negative. The positive relationship between PM10 concentration and their 
factors occurred with MODIS AOD, NDVI, BUI, factory density, brightness temperature 
and GPP. This finding indicates that if these variables increase, the PM10 concentration 
increase. In contrast, the negative relationship between PM10 concentration and their 
factors is found with temperature, wind speed, pressure, visibility, fire radiative power, 
fire hotspot, and elevation. So, with the increase of these factors, the PM10 
concentration decrease.  
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When the probability at the confident level of 99% is considered, the 
significant factors on PM10 concentration in March 2020 are temperature, MODIS AOD, 
and factory density. 

5.3.7 April 2020 in the summer season 
The results of the OLS regression analysis are reported in Table 5.36. The 

model performance showed that AICc is 160.62. The multiple R-squared is 0.45, while 
the adjusted R-squared is 0.35. 
 
Table 5.36 Summary of the OLS regression analysis between PM10 concentration and 
significant factors in April 2020. 

No. Factor Coefficient Std. Error Probability VIF 
 Intercept -0.00 0.10 1.00 -------- 
1 P 0.07 0.13 0.58 1.60 
2 VIS 0.02 0.15 0.91 2.10 
3 AOD 0.14 0.15 0.35 2.14 
4 FD 0.15 0.14 0.23 1.85 
5 BT 0.65 0.14 0.00* 1.75 
6 FRP -0.22 0.14 0.13 1.78 
7 FH -0.12 0.12 0.34 1.32 
8 ELEV -0.05 0.18 0.79 3.07 
9 GPP 0.15 0.12 0.24 1.37 

Note: an asterisk (*) at the significance level of 0.01. 

 
As a result of OLS regression analysis in Table 5.36, if the probability at 

the confident level of 99% is not considered (ignored), the relationship between PM10 
concentration and selected factors by VIF value can be explained into two types: 
positive and negative. The positive relationship between PM10 concentration and their 
factors occurred with pressure, visibility MODIS AOD, factory density, brightness 
temperature, and GPP. This finding indicates that if these variables increase, the PM10 
concentration increase. In contrast, the negative relationship between PM10 
concentration and their factors is found with fire radiative power, fire hotspot, and 
elevation. So, with the increase of these factors, the PM10 concentration decrease.  

When the probability at the confident level of 99% is considered, the 
significant factor on PM10 concentration in April 2020 is brightness temperature. 
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5.3.8 May 2020 in the summer season 
The results of the OLS regression analysis are reported in Table 5.37. The 

model performance showed AICc is 187.73. The multiple R-squared is 0.18, while the 
adjusted R-squared is 0.02. 
 
Table 5.37 Summary of the OLS regression analysis between PM10 concentration and 
significant factors in May 2020. 

No. Factor Coefficient Std. Error Probability VIF 
 Intercept -0.00 0.13 1.00 -------- 
1 TEMP 0.05 0.25 0.85 3.82 
2 P -0.05 0.22 0.82 2.91 
3 VIS -0.39 0.22 0.04* 3.02 
4 AOD 0.09 0.14 0.53 1.18 
5 FD 0.30 0.16 0.06 1.50 
6 BT 0.19 0.14 0.18 1.10 
7 FRP 0.01 0.18 0.94 1.99 
8 FH 0.01 0.15 0.97 1.34 
9 ELEV 0.21 0.21 0.32 2.57 
10 GPP 0.42 0.26 0.11 3.94 

Note: an asterisk (*) at the significance level of 0.01. 

 
As a result of OLS regression analysis in Table 5.37, if the probability at 

the confident level of 99% is not considered (ignored), the relationship between PM10 
concentration and selected factors by VIF value can be explained into two types: 
positive and negative. The positive relationship between PM10 concentration and their 
factors occurred with temperature, MODIS AOD, factory density, brightness 
temperature, fire radiative power, fire hotspot, elevation, and GPP. This finding 
indicates that if these variables increase, the PM10 concentration increase. In contrast, 
the negative relationship between PM10 concentration and their factors is found with 
pressure and visibility. So, with the increase of these factors, the PM10 concentration 
decrease.  

When the probability at the confident level of 99% is considered, the 
significant factor on PM10 concentration in May 2020 is visibility. 
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Referring to significant spatiotemporal factors on PM10 concentration reported 
in Tables 5.30 to 5.37, the significant factors on PM10 concentration in rural and urban 
landscapes in winter and summer seasons can be summarized with frequency in 
Tables 5.38 and 5.39. 
 

Table 5.38 Frequency of significant factors on PM10 concentration in the winter 
season. 

No. 
Significant 

factor 
October 

2019 
November 

2019 
December 

2019 
January 

2020 
February 

2020 
Frequency 

1 WS Yes Yes Yes  Yes 4 of 5 
2 TEMP Yes  Yes Yes  3 of 5 
3 VIS Yes Yes Yes   3 of 5 
4 AOD  Yes  Yes  2 of 5 
5 FRP     Yes 1 of 5 

 
Table 5.39 Frequency of significant factors on PM10 concentration in the summer 
season. 

No. Significant factor March 2020 April 2020 May 2020 Frequency 
1 FD Yes   2 of 3 
2 TEMP Yes   1 of 3 
3 AOD Yes   1 of 3 
4 BT  Yes  1 of 3 
5 VIS   Yes 1 of 3 
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As reported in Tables 5.38 and 5.39, the number of the significant factors on 
PM10 concentration in winter and summer are five and five factors with their varieties. 
Three common factors on PM10 concentration, namely temperature, visibility, and 
MODIS AOD, are identified in both seasons. Two significant factors on PM10 
concentration are only found in the winter season, including wind speed and fire 
radiative power. On the contrary, two significant factors on PM10 concentration, factory 
density and brightness temperature, are only found in the summer season. 

The significant factors on PM10 concentration in this study are similar to the 
previous study by Harnkijroong and Panich (2013). They reported that PM10 
concentration at the roadside of Bangkok is most relevant to temperature, followed 
by wind speed. And they also found that rainfall did not influence PM10 concentration.  

Furthermore, Unal, Toros, Deniz, and Incecik (2011) suggested that PM10 
concentration were associated with wind speed, and high PM10 concentration were 
found in high pressure and low wind speed. Likewise, the most significant 
meteorological factors, including planetary boundary layer height, temperature, wind 
speed, and precipitation influenced by the seasonal dynamics of PM10 concentration, 
were reported by Czernecki et al. (2017).  

In addition, many studies reported the relationship between MODIS AOD and 
PM10 concentration (Ferrero et al., 2019; Grgurić et al., 2014; Kanabkaew, 2013; 
Syafrijon, Marzuki, Emriadi, and Pratama, 2018). Especially, Ferrero et al. (2019) found 
a high relationship and developed high accuracy algorithm to predict ground PM 
concentration based on AOD mixing height and wind speed. At the same time, 
Kanabkaew (2013) reported that the relationship between AOD and hourly PM 
improved accuracy when corrected with meteorological factors, including relative 
humidity and temperature data. 
  

 



117 

5.4 Significant spatiotemporal factors on PM2.5 concentration in the 
urban landscape 

Like PM10 concentration in the rural landscape, all normalized dependent and 
independent variables in the urban landscape in the winter and summer season 
(October 2019 to May 2020) were applied to identify significant spatiotemporal factors 
using the multicollinearity test and the OLS regression analysis. The multicollinearity 
test and the OLS regression analysis, including the derived equation and its coefficient 
and performance, are separately described and discussed by month and season.  

If the VIF value of any factor is above 7.5, such a factor is removed from the 
model to avoid redundancy among explanatory variables (Section 3.2). The results of 
the multicollinearity test performed in the SPSS statistical software are reported in 
Table 5.40. 
 

Table 5.40 Results of multicollinearity test of explanatory variables on PM2.5 
concentration.  

No. Variable 

The VIF value 
Winter season Summer season 

Oct 
2019 

Nov  
2019 

Dec 
2019 

Jan  
2020 

Feb 
2020 

Mar 
2020 

Apr  
2020 

May  
2020 

1 RH 11.88 6.51 15.56 25.58 2.50 20.80 16.97 41.35 
2 TEMP 11.69 9.87 28.18 7.19 9.30 5.47 13.14 9.45 
3 WS 4.03 4.81 4.83 4.94 3.38 6.10 4.46 4.24 
4 P 7.11 8.70 16.09 26.68 6.10 17.24 16.03 38.35 
5 VIS 2.11 1.86 6.65 4.26 1.46 2.19 3.62 6.06 
6 AOD 2.41 2.43 8.33 5.60 2.07 1.50 2.82 2.47 
7 NDVI 42.06 48.43 75.04 73.29 48.76 24.12 32.56 27.57 
8 BUI 76.13 79.61 105.99 110.25 88.86 38.65 49.40 42.13 
9 RD 20.30 15.60 16.47 16.43 17.19 14.29 16.94 13.31 
10 FD 2.88 2.59 2.63 4.12 2.88 2.51 3.55 2.62 
11 BT 2.39 1.56 13.88 8.11 3.55 3.48 2.68 2.96 
12 FRP 4.13 4.28 7.87 5.12 3.55 4.50 6.25 5.90 
13 FH 2.07 1.25 2.42 2.20 1.18 2.10 1.45 1.91 
14 ELEV 5.89 5.29 5.73 5.49 5.83 5.46 6.19 5.11 
15 POP 44.96 38.81 46.98 36.86 37.13 28.17 25.59 30.01 
16 GPP 28.92 30.98 36.30 27.77 25.59 19.19 20.42 18.67 
Total variables 9 9 5 8 10 9 8 8 
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As a result, the VIF value shows that NDVI, BUI, road density, population 
density, and GPP are redundant for PM2.5 concentration models. In addition, other 
redundant variables are cut each month differently. Hence, persist independent 
variables with a VIF value less than 7.5 are applied for OLS regression analysis. The 
result of the OLS regression analysis in each month of each season are described 
separately and discussed below, particularly model performance and the relationship 
between PM2.5 concentration and their factors. 

5.4.1 October 2019 in the winter season 
The results of the OLS regression analysis are reported in Table 5.41. The 

model performance showed that AICc is 114.36. The multiple R-squared is 0.80, and 
the adjusted R-squared is 0.77. 
 
Table 5.41 Summary of the OLS regression analysis between PM2.5 concentration and 
significant factors in October 2019. 

No. Factor Coefficient Std Error Probability VIF 
 Intercept 0.00 0.06 1.00 -------- 
1 WS 0.27 0.09 0.00* 2.33 
2 P 0.20 0.08 0.00* 1.81 
3 VIS 0.23 0.08 0.04* 1.95 
4 AOD 0.67 0.07 0.00* 1.60 
5 FD 0.13 0.08 0.06 1.96 
6 BT -0.17 0.08 0.01* 1.98 
7 FRP -0.20 0.09 0.02* 2.30 
8 FH -0.18 0.08 0.00* 1.92 
9 ELEV 0.42 0.08 0.00* 2.03 

Note: an asterisk (*) at the significance level of 0.01. 

 
As a result of OLS regression analysis in Table 5.41, if the probability at 

the confident level of 99% is not considered (ignored), the relationship between PM2.5 
concentration and selected factors by VIF value can be explained into two types: 
positive and negative. The positive relationship between PM2.5 concentration and their 
factors occurred with wind speed, pressure, visibility, MODIS AOD, factory density, and 
elevation. This finding indicates that if these variables increase, the PM2.5 
concentration increase. In contrast, the negative relationship between PM2.5 
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concentration and their factors is found with brightness temperature, fire radiative 
power, and fire hotspot. So, with the increase of these factors, the PM2.5 concentration 
decrease. 

When the probability at the confident level of 99% is considered, the 
significant factors on PM2.5 concentration in October 2019 are wind speed, pressure, 
visibility, MODIS AOD, brightness temperature, fire radiative power, fire hotspot, and 
elevation. 

5.4.2 November 2019 in the winter season 
The results of the OLS regression analysis are reported in Table 5.42. The 

model performance showed that AICc is 133.92. The multiple R-squared is 0.80, while 
the adjusted R-squared is 0.75. 
 
Table 5.42 Summary of the OLS regression analysis between PM2.5 concentration and 
significant factors in November 2019. 

No. Factor Coefficient Std. Error Probability VIF 
 Intercept 0.00 0.08 1.00 -------- 
1 RH 0.21 0.16 0.19 3.45 
2 WS -0.23 0.16 0.16 3.77 
3 VIS 0.31 0.10 0.00* 1.52 
4 AOD 0.21 0.11 0.07 1.76 
5 FD 0.18 0.10 0.08 1.36 
6 BT 0.09 0.10 0.39 1.49 
7 FRP 0.44 0.12 0.00* 1.89 
8 FH 0.08 0.09 0.38 1.20 
9 ELEV -0.08 0.16 0.61 3.46 

Note: an asterisk (*) at the significance level of 0.01. 

 
As a result of OLS regression analysis in Table 5.42, if the probability at 

the confident level of 99% is not considered (ignored), the relationship between PM2.5 
concentration and selected factors by VIF value can be explained into two types: 
positive and negative. The positive relationship between PM2.5 concentration and their 
factors occurred with relative humidity, visibility, MODIS AOD, factory density, 
brightness temperature, fire radiative power, and fire hotspot. This finding indicates 
that if these variables increase, the PM2.5 concentration increase. In contrast, the 
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negative relationship between PM2.5 concentration and their factors is found with wind 
speed and elevation. So, with the increase of these factors, the PM2.5 concentration 
decrease. 

When the probability at the confident level of 99% is considered, the 
significant factors on PM2.5 concentration in November 2019 are visibility and fire 
radiative power. 

5.4.3 December 2019 in the winter season 
The results of the OLS regression analysis are reported in Table 5.43. The 

model performance showed that AICc is 190.87. The multiple R-squared is 0.32, while 
the adjusted R-squared is 0.27. 
 
Table 5.43 Summary of the OLS regression analysis between PM2.5 concentration and 
significant factors in December 2019. 

No. Factor Coefficient Std. Error Probability VIF 
 Intercept -0.00 0.10 1.00 -------- 
1 WS -0.43 0.14 0.00* 1.86 
2 VIS 0.40 0.16 0.01* 2.41 
3 FD -0.21 0.12 0.09 1.45 
4 FH 0.08 0.13 0.53 1.53 
5 ELEV -0.05 0.17 0.78 2.67 

Note: an asterisk (*) at the significance level of 0.01. 

 
As a result of OLS regression analysis in Table 5.43, if the probability at 

the confident level of 99% is not considered (ignored), the relationship between PM2.5 
concentration and selected factors by VIF value can be explained into two types: 
positive and negative. The positive relationship between PM2.5 concentration and their 
factors occurred with visibility and fire hotspots. This finding indicates that if these 
variables increase, the PM2.5 concentration increase. In contrast, the negative 
relationship between PM2.5 concentration and their factors is found with wind speed, 
factory density, and elevation. So, with the increase of these factors, the PM2.5 
concentration decrease.  
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When the probability at the confident level of 99% is considered, the 
significant factors on PM2.5 concentration in December 2019 are wind speed and 
visibility. 

5.4.4 January 2020 in the winter season 
The results of the OLS regression analysis are reported in Table 5.44. The 

model performance showed that AICc is 194.85. The multiple R-squared is 0.36, while 
the adjusted R-squared is 0.28. 
 

Table 5.44 Summary of the OLS regression analysis between PM2.5 concentration and 
significant factors in January 2020. 

No. Factor Coefficient Std. Error Probability VIF 
 Intercept -0.00 0.10 1.00 -------- 
1 TEMP -0.39 0.15 0.01* 2.20 
2 WS 0.17 0.15 0.25 2.23 
3 VIS 0.30 0.15 0.05* 2.16 
4 AOD -0.46 0.14 0.00* 1.99 
5 FD -0.12 0.14 0.39 1.91 
6 FRP -0.08 0.13 0.53 1.63 
7 FH 0.30 0.12 0.02* 1.50 
8 ELEV 0.48 0.15 0.00* 2.21 

Note: an asterisk (*) at the significance level of 0.01. 

 
As a result of OLS regression analysis in Table 5.44, if the probability at 

the confident level of 99% is not considered (ignored), the relationship between PM2.5 
concentration and selected factors by VIF value can be explained into two types: 
positive and negative. The positive relationship between PM2.5 concentration and their 
factors occurred with wind speed, visibility, fire hotspot, and elevation. This finding 
indicates that if these variables increase, the PM2.5 concentration increase. In contrast, 
the negative relationship between PM2.5 concentration and their factors is found with 
temperature, MODIS AOD, factory density, and fire radiative power. So, with the 
increase of these factors, the PM2.5 concentration decrease.  

When the probability at the confident level of 99% is considered, the 
significant factors for PM2.5 concentration in January 2020 are temperature, visibility, 
MODIS AOD, fire hotspot, and elevation. 
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5.4.5 February 2020 in the winter season 
The results of the OLS regression analysis are reported in Table 5.45. The 

model performance showed that AICc is 137.64. The multiple R-squared is 0.73, while 
the adjusted R-squared is 0.69. 
 

Table 5.45 Summary of the OLS regression analysis between PM2.5 concentration and 
significant factors in February 2020. 

No. Factor Coefficient Std. Error Probability VIF 
 Intercept -0.00 0.07 1.00 -------- 
1 RH -0.52 0.09 0.00* 1.65 
2 WS 0.37 0.10 0.00* 2.41 
3 P 0.30 0.11 0.01* 2.86 
4 VIS 0.05 0.07 0.51 1.27 
5 AOD -0.16 0.09 0.08 1.84 
6 FD -0.07 0.09 0.45 1.69 
7 BT 0.22 0.12 0.06 3.05 
8 FRP -0.64 0.11 0.00* 2.77 
9 FH -0.06 0.07 0.39 1.13 
10 ELEV 0.44 0.12 0.00* 3.40 

Note: an asterisk (*) at the significance level of 0.01. 

 
As a result of OLS regression analysis in Table 5.45, if the probability at 

the confident level of 99% is not considered (ignored), the relationship between PM2.5 
concentration and selected factors by VIF value can be explained into two types: 
positive and negative. The positive relationship between PM2.5 concentration and their 
factors occurred with wind speed, pressure, visibility, brightness temperature, and 
elevation. This finding indicates that if these variables increase, the PM2.5 
concentration increase. In contrast, the negative relationship between PM2.5 
concentration and their factors is found with relative humidity, MODIS AOD, factory 
density, fire radiative power, and fire hotspot. So, with the increase of these factors, 
the PM2.5 concentration decrease.  

When the probability at the confident level of 99% is considered, the 
significant factors on PM2.5 concentration in February 2020 are relative humidity, wind 
speed, pressure, fire radiative power, and elevation. 
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5.4.6 March 2020 in the summer season 
The results of the OLS regression analysis are reported in Table 5.46. The 

model performance showed that AICc is 192.42. The multiple R-squared is 0.40, while 
the adjusted R-squared is 0.32. 
 

Table 5.46 Summary of the OLS regression analysis between PM2.5 concentration and 
significant factors in March 2020. 

No. Factor Coefficient Std. Error Probability VIF 
 Intercept -0.00 0.10 1.00 -------- 
1 TEMP -0.36 0.18 0.05 3.53 
2 WS -0.20 0.15 0.17 2.24 
3 VIS -0.12 0.12 0.34 1.54 
4 AOD -0.07 0.11 0.53 1.15 
5 FD -0.05 0.12 0.71 1.53 
6 BT 0.28 0.15 0.07 2.45 
7 FRP 0.63 0.16 0.00* 2.59 
8 FH 0.12 0.13 0.35 1.70 
9 ELEV -0.23 0.16 0.16 2.75 

Note: an asterisk (*) at the significance level of 0.01. 

 
As a result of OLS regression analysis in Table 5.46, if the probability at 

the confident level of 99% is not considered (ignored), the relationship between PM2.5 
concentration and selected factors by VIF value can be explained into two types: 
positive and negative. The positive relationship between PM2.5 concentration and their 
factors occurred with brightness temperature, fire radiative power, and fire hotspot. 
This finding indicates that if these variables increase, the PM2.5 concentration increase. 
In contrast, the negative relationship between PM2.5 concentration and their factors is 
found with temperature, wind speed, visibility, MODIS AOD, factory density, and 
elevation. So, with the increase of these factors, the PM2.5 concentration decrease.  

When the probability at the confident level of 99% is considered, the 
significant factor on PM2.5 concentration in March 2020 is only fire radiative power. 
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5.4.7 April 2020 in the summer season 
The multiple R-squared is 0.56, while the adjusted R-squared is 0.50. The 

results of the OLS regression analysis are reported in Table 5.47. The model 
performance showed that AICc is 168.59. 
 

Table 5.47 Summary of the OLS regression analysis between PM2.5 concentration and 
significant factors in April 2020. 

No. Factor Coefficient Std. Error Probability VIF 
 Intercept 0.00 0.08 1.00 -------- 
1 WS 0.60 0.13 0.00* 2.54 
2 VIS 0.45 0.11 0.00* 1.59 
3 AOD 0.25 0.10 0.01* 1.30 
4 FD -0.27 0.11 0.01* 1.56 
5 BT -0.29 0.10 0.00* 1.49 
6 FRP -0.44 0.13 0.00* 2.49 
7 FH 0.26 0.09 0.01* 1.15 
8 ELEV 0.10 0.12 0.42 1.95 

Note: an asterisk (*) at the significance level of 0.01. 

 
As a result of OLS regression analysis in Table 5.47, if the probability at 

the confident level of 99% is not considered (ignored), the relationship between PM2.5 
concentration and selected factors by VIF value can be explained into two types: 
positive and negative. The positive relationship between PM2.5 concentration and their 
factors occurred with wind speed, visibility, MODIS AOD, fire hotspot, and elevation. 
This finding indicates that if these variables increase, the PM2.5 concentration increase. 
In contrast, the negative relationship between PM2.5 concentration and their factors is 
found with factory density, brightness temperature, and fire radiative power. So, with 
the increase of these factors, the PM2.5 concentration decrease.  

When the probability at the confident level of 99% is considered, the 
significant factors on PM2.5 concentration in April 2020 are wind speed, visibility, MODIS 
AOD, factory density, brightness temperature, fire radiative power, and fire hotspot. 
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5.4.8 May 2020 in the summer season 
The model performance showed that AICc is 174.99. The multiple R-

squared is 0.51, while the adjusted R-squared is 0.45. The results of the OLS regression 
analysis are reported in Table 5.48. 
 

Table 5.48 Summary of the OLS regression analysis between PM2.5 concentration and 
significant factors in May 2020. 

No. Factor Coefficient Std. Error Probability VIF 
 Intercept -0.00 0.09 1.00 -------- 
1 WS 0.34 0.14 0.00* 2.37 
2 VIS -0.20 0.14 0.01* 2.48 
3 AOD -0.14 0.12 0.19 1.77 
4 FD -0.57 0.11 0.00* 1.54 
5 BT 0.28 0.13 0.02* 2.12 
6 FRP -0.11 0.15 0.35 2.99 
7 FH 0.06 0.11 0.50 1.67 
8 ELEV 0.51 0.12 0.00* 1.92 

Note: an asterisk (*) at the significance level of 0.01. 

 
As a result of OLS regression analysis in Table 5.48, if the probability at 

the confident level of 99% is not considered (ignored), the relationship between PM2.5 
concentration and selected factors by VIF value can be explained into two types: 
positive and negative. The positive relationship between PM2.5 concentration and their 
factors occurred with wind speed, brightness temperature, fire hotspot and elevation. 
This finding indicates that if these variables increase, the PM2.5 concentration increase. 
In contrast, the negative relationship between PM2.5 concentration and their factors is 
found with visibility, MODIS AOD, factory density and fire radiative power. So, with the 
increase of these factors, the PM2.5 concentration decrease.  

When the probability at the confident level of 99% is considered, the 
significant factors on PM2.5 concentration in May 2020 are wind speed, visibility, factory 
density and brightness temperature, and elevation. 

In the case of PM2.5 concentration in the urban landscape (Tables 5.49 and 
5.50), the significant factors on PM2.5 in winter and summer are ten and eight factors. 
Furthermore, many meteorological factors significantly influenced PM2.5 than PM10 
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concentration (Chen et al., 2017). As a result, there are seven common factors on 
PM2.5 concentration in both seasons: wind speed, visibility, brightness temperature, 
fire radiative power, MODIS AOD, fire hotspot, and elevation. Furthermore, it was found 
that three significant factors on PM2.5 concentration are only found in the winter 
season, including relative humidity, temperature, and pressure. In contrast, one 
significant factor in PM2.5 concentration, factory density, is only found in the summer 
season. 
 

Table 5.49 Frequency of significant factors on PM2.5 concentration in the winter 
season. 

No. 
Significant 

factor 
October 

2019 
November 

2019 
December 

2019 
January 

2020 
February 

2020 
Frequency 

1 VIS Yes Yes Yes Yes  4 of 5 
2 WS Yes  Yes  Yes 3 of 5 
3 FRP Yes Yes   Yes 3 of 5 
4 ELEV Yes   Yes Yes 3 of 5 
5 P Yes    Yes 2 of 5 
6 AOD Yes   Yes  2 of 5 
7 FH Yes   Yes  2 of 5 
8 RH     Yes 1 of 5 
9 TEMP    Yes  1 of 5 
10 BT Yes     1 of 5 

 

Table 5.50 Frequency of significant factors on PM2.5 concentration in the summer 
season. 

No. Significant factor March 2020 April 2020 May 2020 Frequency 
1 WS  Yes Yes 2 of 3 
2 VIS  Yes Yes 2 of 3 
3 FD  Yes Yes 2 of 3 
4 BT  Yes Yes 2 of 3 
5 FRP Yes Yes  2 of 3 
6 AOD  Yes  1 of 3 
7 FH  Yes  1 of 3 
8 ELEV   Yes 1 of 3 
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The findings show similar results to the previous study of Guo and Zhang (2014), 
who reported that PM2.5 concentration is most relevant to visibility, followed by the 
wind speed. The least pertinent factors are temperature and relative humidity. 
Likewise, these findings are consistent with the previous work of Chen et al. (2017), 
who showed the strong influence of wind speed on local PM2.5 concentration. They 
also observed strong interactions between wind speed and other meteorological 
factors influencing PM2.5 concentration. While Galindo, Varea, Gil-Moltó, Yubero, and 
Nicolás (2011) found that the winter wind speed is the main effect of the dilution of 
atmospheric aerosols. At the same time, temperature and solar radiation strongly 
influenced coarse particles. That means the meteorological data, solar heating at the 
earth's surface, or active fire data significantly affect PM2.5 concentration. In addition, 
MODIS AOD had a strong correlation with PM2.5 concentration (Gu, 2019; Kong, Xin, 
Zhang, and Wang, 2016). Like Lee, Liu, Coull, Schwartz, and Koutrakis (2011) reported 
and potentially helpful in predicting PM2.5 concentration. And Chudnovsky et al. 
(2014) predicted PM2.5 concentration with MODIS AOD and improved the accuracy 
with land use and meteorological data. However, Chu et al. (2016) suggested using 
higher-resolution AOD data to estimate PM2.5 in a relatively small area more 
accurately. 
 

5.5 Basic information of daily dependent and independent variables 
For daily significant spatiotemporal factors identification, PM10 and PM2.5 

concentration' highest records of specific days were selected to display on the chart 
comparatively. Figure 5.15 shows the maximum record values of PM10 and PM2.5 
concentration from October 2019 to May 2020.  
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(a) (b) 

(c) (d) 

  
(e) (f) 

Figure 5.15 The maximum recorded value of daily PM10 and PM2.5 concentration 
during October 2019 to May 2020: (a) October 2019 (b) November 2019 (c) December 
2019 (d) January 2020 (e) February 2020 (f) March 2020 (g) April 2020 (h) May 2020.  
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(g) (h) 

Figure 5.15 (Continued). 
 

As a result, it can be observed that the maximum record value of PM10 
concentration is 345.17 μg/m3 on 27 February 2020 at Na Phra Lan Police Station, 
Station ID: 24t, in Na Phra Lan, Chaloem Phra Kiat, Saraburi (Figure 15(e)). At the same 
time, the maximum record value of PM2.5 concentration is 136.00 μg/m3 on 10 January 
2020 at Phra Nakhon District Office, Station ID: b92, in Samsen Roadside, Phra Nakhon, 
Bangkok (Figure 15(d)). 

Hence, a specific week for examining daily significant spatiotemporal factors 
was prepared between 24 February and 1 March 2020 for PM10 concentration and 
between 7 and 13 January 2020 for PM2.5 concentration, as shown in Figures 5.16 and 
5.17 and Tables 5.51 and 5.52, respectively. At the same time, significant daily factors 
on PM10 in the rural landscape and PM2.5 in the urban landscape, including relative 
humidity, temperature, wind speed, pressure, brightness temperature, fire radiative 
power, and fire hotspot, were prepared as shown in Figures 5.18 to 5.24 and 
summarized in Tables 5.53 to 5.66, respectively. 
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5.5.1 PM10 concentration 

(a) (b) (c) (d) 
 

(e) (f) (g)  
Figure 5.16 Spatial distribution of daily mean PM10 concentration during 24 February 
to 1 March 2020: (a) 24 February, (b) 25 February, (c) 26 February, (d) 27 February, (e) 
28 February, (f) 29 February, (g) 1 March. 
 
Table 5.51 Descriptive statistic data of daily mean PM10 concentration after 
normalization in the rural landscape. 
 24 Feb 25 Feb 26 Feb 27 Feb 28 Feb 29 Feb 1 Mar 
Minimum -2.19 -1.85 -1.47 -1.23 -1.48 -1.83 -2.01 
Maximum 2.96 2.01 2.45 2.53 2.34 2.21 1.98 
Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
SD. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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5.5.2 PM2.5 concentration 

(a) (b) (c) (d) 
 

(e) (f) (g)  
Figure 5.17 Spatial distribution of daily mean PM2.5 concentration during 7 to 13 
January 2020: (a) 7 January, (b) 8 January, (c) 9 January, (d) 10 January, (e) 11 January, 
(f) 12 January, (g) 13 January. 
 

Table 5.52 Descriptive statistic data of daily mean PM2.5 concentration after 
normalization in the urban landscape. 
 7 Jan 8 Jan 9 Jan 10 Jan 11 Jan 12 Jan 13 Jan 
Minimum -2.48 -2.24 -1.57 -2.25 -2.19 -2.36 -2.16 
Maximum 2.02 2.85 1.59 1.61 2.83 2.18 1.65 
Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
SD. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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5.5.3 Relative humidity 

(a) (b) (c) (d) 

(e) (f) (g) (h) 

(i) (j) (k) (l) 
Figure 5.18 Spatial distribution of daily mean relative humidity during 7 to 13 January 
and 24 February to 1 March 2020: (a) 7 January, (b) 8 January, (c) 9 January, (d) 10 
January, (e) 11 January, (f) 12 January, (g) 13 January, (h) 24 February, (i) 25 February, 
(j) 26 February, (k) 27 February, (l) 28 February, (m) 29 February, (n) 1 March. 
 

 



133 

  

  

(m) (n)   
Figure 5.18 (Continued). 
 
Table 5.53 Descriptive statistic data of daily mean relative humidity after normalization 
in the rural landscape. 
 24 Feb 25 Feb 26 Feb 27 Feb 28 Feb 29 Feb 1 Mar 
Minimum -1.84 -1.71 -2.31 -2.14 -2.40 -2.23 -1.93 
Maximum 1.86 1.91 1.59 1.69 1.54 1.79 2.18 
Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
SD. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 
Table 5.54 Descriptive statistic data of daily mean relative humidity after normalization 
in the urban landscape. 
 7 Jan 8 Jan 9 Jan 10 Jan 11 Jan 12 Jan 13 Jan 
Minimum -1.78 -1.82 -2.66 -2.43 -3.75 -3.78 -2.04 
Maximum 2.80 2.88 2.13 2.44 1.26 1.43 3.30 
Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
SD. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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5.5.4 Temperature 

(a) (b) (c) (d) 

(e) (f) (g) (h) 

(i) (j) (k) (l) 
Figure 5.19 Spatial distribution of daily mean relative humidity during 7 to 13 January 
and 24 February to 1 March 2020: (a) 7 January, (b) 8 January, (c) 9 January, (d) 10 
January, (e) 11 January, (f) 12 January, (g) 13 January, (h) 24 February, (i) 25 February, 
(j) 26 February, (k) 27 February, (l) 28 February, (m) 29 February, (n) 1 March. 
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(m) (n)   
Figure 5.19 (Continued). 
 
Table 5.55 Descriptive statistic data of daily mean temperature after normalization in 
the rural landscape. 
 24 Feb 25 Feb 26 Feb 27 Feb 28 Feb 29 Feb 1 Mar 
Minimum -3.08 -3.10 -3.51 -3.96 -2.82 -1.71 -1.30 
Maximum 1.56 1.41 0.90 1.02 1.23 2.71 2.06 
Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
SD. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 
Table 5.56 Descriptive statistic data of daily mean temperature after normalization in 
the urban landscape. 
 7 Jan 8 Jan 9 Jan 10 Jan 11 Jan 12 Jan 13 Jan 
Minimum -4.00 -3.66 -4.30 -3.92 -3.94 -3.54 -3.97 
Maximum 0.68 0.86 0.82 1.03 1.38 1.19 1.49 
Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
SD. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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5.5.5 Wind speed 

(a) (b) (c) (d) 

(e) (f) (g) (h) 

(i) (j) (k) (l) 
Figure 5.20 Spatial distribution of daily mean wind speed during 7 to 13 January and 
24 February to 1 March 2020: (a) 7 January, (b) 8 January, (c) 9 January, (d) 10 January, 
(e) 11 January, (f) 12 January, (g) 13 January, (h) 24 February, (i) 25 February, (j) 26 
February, (k) 27 February, (l) 28 February, (m) 29 February, (n) 1 March. 
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(m) (n)   
Figure 5.20 (Continued). 
 
Table 5.57 Descriptive statistic data of daily mean wind speed after normalization in 
rural landscape. 
 24 Feb 25 Feb 26 Feb 27 Feb 28 Feb 29 Feb 1 Mar 
Minimum -1.49 -1.14 -1.30 -1.30 -1.58 -2.37 -2.03 
Maximum 2.27 3.28 2.81 2.81 1.75 1.89 3.02 
Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
SD. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 
Table 5.58 Descriptive statistic data of daily mean wind speed after normalization in 
the urban landscape. 
 7 Jan 8 Jan 9 Jan 10 Jan 11 Jan 12 Jan 13 Jan 
Minimum -1.07 -1.98 -2.81 -2.65 -1.28 -1.53 -3.37 
Maximum 2.18 3.08 4.08 2.47 2.05 2.40 1.87 
Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
SD. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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5.5.6 Pressure 

(a) (b) (c) (d) 

(e) (f) (g) (h) 

(i) (j) (k) (l) 
Figure 5.21 Spatial distribution of daily mean pressure during 7 to 13 January and 24 
February to 1 March 2020: (a) 7 January, (b) 8 January, (c) 9 January, (d) 10 January, (e) 
11 January, (f) 12 January, (g) 13 January, (h) 24 February, (i) 25 February, (j) 26 February, 
(k) 27 February, (l) 28 February, (m) 29 February, (n) 1 March. 
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(m) (n)   
Figure 5.21 (Continued). 
 
Table 5.59 Descriptive statistic data of daily mean pressure after normalization in the 
rural landscape. 
 24 Feb 25 Feb 26 Feb 27 Feb 28 Feb 29 Feb 1 Mar 
Minimum -1.28 -1.73 -1.73 -2.10 -2.67 -2.31 -2.19 
Maximum 2.49 2.29 2.06 3.27 1.79 1.80 1.91 
Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
SD. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 
Table 5.60 Descriptive statistic data of daily mean pressure after normalization in the 
urban landscape. 
 7 Jan 8 Jan 9 Jan 10 Jan 11 Jan 12 Jan 13 Jan 
Minimum -2.31 -2.43 -2.25 -3.39 -3.29 -2.94 -2.38 
Maximum 2.62 2.62 1.91 2.42 2.46 2.39 2.34 
Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
SD. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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5.5.7 Brightness temperature 

(a) (b) (c) (d) 

(e) (f) (g) (h) 

(i) (j) (k) (l) 
Figure 5.22 Spatial distribution of daily mean brightness temperature during 7 to 13 
January and 24 February to 1 March 2020: (a) 7 January, (b) 8 January, (c) 9 January, 
(d) 10 January, (e) 11 January, (f) 12 January, (g) 13 January, (h) 24 February, (i) 25 
February, (j) 26 February, (k) 27 February, (l) 28 February, (m) 29 February, (n) 1 March. 
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(m) (n)   
Figure 5.22 (Continued). 
 
Table 5.61 Descriptive statistic data of daily mean brightness temperature after 
normalization in the rural landscape. 
 24 Feb 25 Feb 26 Feb 27 Feb 28 Feb 29 Feb 1 Mar 
Minimum -1.88 -1.17 -1.87 -3.03 -2.14 -1.85 -2.47 
Maximum 2.07 2.43 4.78 1.69 1.80 2.86 2.01 
Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
SD. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 
Table 5.62 Descriptive statistic data of daily mean brightness temperature after 
normalization in the urban landscape. 
 7 Jan 8 Jan 9 Jan 10 Jan 11 Jan 12 Jan 13 Jan 
Minimum -3.40 -1.17 -4.66 -3.48 -1.87 -2.22 -2.19 
Maximum 1.81 2.47 1.59 1.92 3.42 2.59 3.23 
Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
SD. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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5.5.8 Fire radiative power 

(a) (b) (c) (d) 

(e) (f) (g) (h) 

(i) (j) (k) (l) 
Figure 5.23 Spatial distribution of daily mean fire radiative power during 7 to 13 January 
and 24 February to 1 March 2020: (a) 7 January, (b) 8 January, (c) 9 January, (d) 10 
January, (e) 11 January, (f) 12 January, (g) 13 January, (h) 24 February, (i) 25 February, 
(j) 26 February, (k) 27 February, (l) 28 February, (m) 29 February, (n) 1 March. 
 

 



143 

  

  

(m) (n)   
Figure 5.23 (Continued). 
 
Table 5.63 Descriptive statistic data of daily mean fire radiative power after 
normalization in rural landscape. 
 24 Feb 25 Feb 26 Feb 27 Feb 28 Feb 29 Feb 1 Mar 
Minimum -2.45 -1.70 -2.16 -1.23 -1.71 -1.98 -2.05 
Maximum 2.43 2.03 2.72 3.15 2.58 3.77 3.10 
Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
SD. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 
Table 5.64 Descriptive statistic data of daily mean fire radiative power after 
normalization in the urban landscape. 
 7 Jan 8 Jan 9 Jan 10 Jan 11 Jan 12 Jan 13 Jan 
Minimum -2.02 -3.39 -2.13 -2.21 -2.49 -2.22 -2.50 
Maximum 3.65 2.86 2.81 3.00 3.01 2.99 3.04 
Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
SD. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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5.5.9 Fire hotspot 

(a) (b) (c) (d) 

(e) (f) (g) (h) 

(i) (j) (k) (l) 
Figure 5.24 Spatial distribution of daily mean fire hotspot during 7 to 13 January and 
24 February to 1 March 2020: (a) 7 January, (b) 8 January, (c) 9 January, (d) 10 January, 
(e) 11 January, (f) 12 January, (g) 13 January, (h) 24 February, (i) 25 February, (j) 26 
February, (k) 27 February, (l) 28 February, (m) 29 February, (n) 1 March. 
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(m) (n)   
Figure 5.24 (Continued). 
 
Table 5.65 Descriptive statistic data of daily mean fire hotspot after normalization in 
the rural landscape. 
 24 Feb 25 Feb 26 Feb 27 Feb 28 Feb 29 Feb 1 Mar 
Minimum -0.29 -0.35 -0.20 -0.23 -0.13 -0.23 - 
Maximum 6.64 4.35 7.31 6.21 7.62 6.33 - 
Mean 0.00 0.00 0.00 0.00 0.00 0.00 - 
SD. 1.00 1.00 1.00 1.00 1.00 1.00 - 

 
Table 5.66 Descriptive statistic data of daily mean fire hotspot after normalization in 
the urban landscape. 
 7 Jan 8 Jan 9 Jan 10 Jan 11 Jan 12 Jan 13 Jan 
Minimum - - -0.12 - - -0.16 - 
Maximum - - 8.37 - - 7.30 - 
Mean - - 0.00 - - 0.00 - 
SD. - - 1.00 - - 1.00 - 

 
There is no data on fire hotspots in the rural landscape on 1 March 2020. In 

addition, in the urban landscape, there is no data on 7, 8, 10, 11, and 13 January 2020. 
So that the calculation of the fire hotspot data is in the same standard, therefore, use 
the monthly mean variables replacement. 

In addition, the daily MODIS AOD on the selected day lacks coverage in orbit-
scanning gaps and cloud obscuration (Zhang et al., 2017). Therefore, the variables: 
Visibility, MODIS AOD, Fire hotspot, NDVI, BUI, Road density, Factory density, Elevation, 
Population density, and GPP use the monthly mean variables.  
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5.6 Significant daily spatiotemporal factors on PM10 concentration in 
the rural landscape 

The multicollinearity test of daily explanatory variables performed in the SPSS 
statistical software is reported in Table 5.67. In this study, any variable with a VIF value 
above 7.5 is removed from the model to avoid redundancy among explanatory 
variables (Section 3.2). 
 
Table 5.67 Results of multicollinearity test of explanatory variables on daily PM10 
concentration.  

No. Variable 
The VIF value 

24 Feb 25 Feb 26 Feb 27 Feb 28 Feb 29 Feb 1 Mar 
1 RH 25.51 33.25 72.42 76.94 32.38 30.32 48.61 
2 TEMP 14.12 19.04 31.69 14.48 2.93 6.07 10.25 
3 WS 9.12 34.12 23.05 11.28 8.76 5.59 8.18 
4 P 16.68 33.76 39.32 10.28 4.85 12.66 28.71 
5 VIS 5.76 4.81 4.76 4.42 5.88 6.67 5.74 
6 AOD 3.98 3.98 3.00 2.92 2.81 3.32 2.17 
7 NDVI 18.67 16.59 23.43 23.00 20.14 18.52 15.94 
8 BUI 23.03 20.29 30.73 26.94 23.60 21.04 13.17 
9 RD 11.05 11.17 10.68 12.34 11.80 11.18 11.73 
10 FD 6.22 6.90 5.98 6.32 6.33 5.52 4.74 
11 BT 18.24 38.63 2.18 116.60 33.44 3.71 7.94 
12 FRP 6.20 10.93 4.19 15.88 3.61 4.27 8.45 
13 FH 1.82 1.53 1.48 1.52 1.46 1.47 2.18 
14 ELEV 7.83 8.55 8.15 5.31 5.04 5.48 5.41 
15 POP 10.58 12.92 12.48 12.36 12.11 10.52 13.67 
16 GPP 5.43 5.10 4.94 4.03 6.99 4.10 5.39 
Total variables 6 5 7 6 9 10 5 

 
As a result, the VIF values show that relative humidity, NDVI, BUI, road density, 

and population density are redundant for PM10 concentration models. In addition, 
other redundant variables are cut each day differently. Hence, persist independent 
variables with a VIF value less than 7.5 are applied for OLS regression analysis. The 
result of the OLS regression analysis of PM10 concentration in the rural landscape daily 
is separately described and discussed below 
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5.6.1 On 24 February 2020 
The model performance showed that AICc is 154.16. The multiple R-

squared is 0.43, while the adjusted R-squared is 0.37. The results of the OLS regression 
analysis are reported in Table 5.68. 
 
Table 5.68 Summary of the OLS regression analysis between PM10 concentration and 
significant factors on 24 February 2020. 

No. Factor Coefficient Std. Error Probability VIF 
 Intercept 0.00 0.10 1.00 -------- 
1 VIS 0.30 0.19 0.12 3.44 
2 AOD -0.39 0.15 0.01* 2.14 
3 FD 0.71 0.13 0.00* 1.47 
4 FRP -0.35 0.14 0.01* 1.73 
5 FH -0.14 0.14 0.32 1.75 
6 GPP 0.02 0.11 0.87 1.17 

Note: an asterisk (*) at the significance level of 0.01. 

 
As a result of OLS regression analysis in Table 5.68, if the probability at 

the confident level of 99% is not considered (ignored), the relationship between PM10 
concentration and selected factors by VIF value can be explained into two types: 
positive and negative. The positive relationship between PM10 concentration and their 
factors occurred with visibility, factory density, and GPP. This finding indicates that if 
these variables increase, the PM10 concentration increase. In contrast, the negative 
relationship between PM10 concentration and their factors is found with MODIS AOD, 
fire radiative, and fire hotspot. So, with the increase of these factors, the PM10 
concentration decrease.  

When the probability at the confident level of 99% is considered, the 
significant factors on PM10 concentration on 24 February 2020 are MODIS AOD, factory 
density, and fire radiative power. 
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5.6.2 On 25 February 2020 
The model performance showed that AICc is 174.05. The multiple R-

squared is 0.17, while the adjusted R-squared is 0.10. The results of the OLS regression 
analysis are reported in Table 5.69. 
 
Table 5.69 Summary of the OLS regression analysis between PM10 concentration and 
significant factors on 25 February 2020. 

No. Factor Coefficient Std. Error Probability VIF 
 Intercept 0.00 0.12 1.00 -------- 
1 VIS 0.32 0.23 0.17 3.34 
2 AOD 0.03 0.16 0.83 1.58 
3 FD -0.28 0.16 0.09 1.69 
4 FH 0.14 0.13 0.29 1.14 
5 GPP -0.41 0.16 0.01* 1.75 

Note: an asterisk (*) at the significance level of 0.01. 

 
As a result of OLS regression analysis in Table 5.69, if the probability at 

the confident level of 99% is not considered (ignored), the relationship between PM10 
concentration and selected factors by VIF value can be explained into two types: 
positive and negative. The positive relationship between PM10 concentration and their 
factors occurred with visibility, MODIS AOD, and fire hotspots. This finding indicates that 
if these variables increase, the PM10 concentration increase. In contrast, the negative 
relationship between PM10 concentration and their factors is found with factory 
density and GPP. So, with the increase of these factors, the PM10 concentration 
decrease.  

When the probability at the confident level of 99% is considered, the 
significant factor on PM10 concentration on 25 February 2020 is only GPP. 
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5.6.3 On 26 February 2020 
The model performance showed that AICc is 182.05. The multiple R-

squared is 0.14, while the adjusted R-squared is 0.02. The results of the OLS regression 
analysis are reported in Table 5.70. 
 
Table 5.70 Summary of the OLS regression analysis between PM10 concentration and 
significant factors on 26 February 2020. 

No. Factor Coefficient Std. Error Probability VIF 
 Intercept -0.00 0.13 1.00 -------- 
1 VIS 0.28 0.24 0.25 3.47 
2 AOD 0.13 0.17 0.43 1.67 
3 FD -0.22 0.17 0.94 1.17 
4 BT -0.01 0.14 0.13 1.38 
5 FRP 0.23 0.15 0.19 1.71 
6 FH 0.11 0.14 0.11 1.78 
7 GPP -0.28 0.17 0.44 1.24 

Note: an asterisk (*) at the significance level of 0.01. 

 
As a result of OLS regression analysis in Table 5.70, if the probability at 

the confident level of 99% is not considered (ignored), the relationship between PM10 
concentration and selected factors by VIF value can be explained into two types: 
positive and negative. The positive relationship between PM10 concentration and their 
factors occurred with visibility, MODIS AOD, fire radiative power, and fire hotspot. This 
finding indicates that if these variables increase, the PM10 concentration increase. In 
contrast, the negative relationship between PM10 concentration and their factors is 
found with factory density, brightness temperature and GPP. So, with the increase of 
these factors, the PM10 concentration decrease.  

When the probability at the confident level of 99% is considered, no 
significant factors on PM10 concentration on PM10 concentration were found on 26 
February 2020. 
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5.6.4 On 27 February 2020 
The model performance showed that AICc is 184.84. The multiple R-

squared is 0.05, while the adjusted R-squared is -0.05. The results of the OLS regression 
analysis are reported in Table 5.71. 
 
Table 5.71 Summary of the OLS regression analysis between PM10 concentration and 
significant factors on 27 February 2020. 

No. Factor Coefficient Std. Error Probability VIF 
 Intercept -0.00 0.13 1.00 -------- 
1 VIS 0.06 0.25 0.81 3.59 
2 AOD 0.17 0.19 0.37 2.03 
3 FD -0.19 0.18 0.29 1.77 
4 FH 0.00 0.16 0.99 1.37 
5 ELEV 0.02 0.17 0.93 1.62 
6 GPP 0.00 0.19 0.99 1.94 

Note: an asterisk (*) at the significance level of 0.01. 

 
As a result of OLS regression analysis in Table 5.71, if the probability at 

the confident level of 99% is not considered (ignored), the relationship between PM10 
concentration and selected factors by VIF value can be explained into two types: 
positive and negative. The positive relationship between PM10 concentration and their 
factors occurred with visibility, MODIS AOD, fire hotspot, elevation, and GPP. This finding 
indicates that if these variables increase, the PM10 concentration increase. In contrast, 
the negative relationship between PM10 concentration and their factors is found with 
factory density. So, with the increase of these factors, the PM10 concentration 
decrease.  

When the probability at the confident level of 99% is considered, no 
significant factors on PM10 concentration were found on 26 February 2020. 
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5.6.5 On 28 February 2020 
The model performance showed that AICc is 124.98. The multiple R-

squared is 0.70, while the adjusted R-squared is 0.64. The results of the OLS regression 
analysis are reported in Table 5.72. 
 
Table 5.72 Summary of the OLS regression analysis between PM10 concentration and 
significant factors on 28 February 2020. 

No. Factor Coefficient Std. Error Probability VIF 
 Intercept 0.00 0.08 1.00 -------- 
1 TEMP 0.82 0.10 0.00* 1.50 
2 P -0.25 0.13 0.07 2.87 
3 VIS 0.46 0.16 0.00* 3.98 
4 AOD 0.15 0.12 0.22 2.33 
5 FD 0.03 0.11 0.78 2.02 
6 FRP -0.02 0.10 0.83 1.82 
7 FH 0.10 0.09 0.28 1.43 
8 ELEV 0.03 0.10 0.77 1.72 
9 GPP -0.05 0.12 0.69 2.45 

Note: an asterisk (*) at the significance level of 0.01. 

 
As a result of OLS regression analysis in Table 5.72, if the probability at 

the confident level of 99% is not considered (ignored), the relationship between PM10 
concentration and selected factors by VIF value can be explained into two types: 
positive and negative. The positive relationship between PM10 concentration and their 
factors occurred with temperature, visibility, MODIS AOD, factory density, fire hotspot, 
and elevation. This finding indicates that if these variables increase, the PM10 
concentration increase. In contrast, the negative relationship between PM10 
concentration and their factors is found with pressure, fire radiative power, and GPP. 
So, with the increase of these factors, the PM10 concentration decrease.  

When the probability at the confident level of 99% is considered, the 
significant factors on PM10 concentration on 28 February 2020 are temperature and 
visibility. 
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5.6.6 On 29 February 2020 
The model performance showed that AICc is 56.64. The multiple R-

squared is 0.91, while the adjusted R-squared is 0.89. The results of the OLS regression 
analysis are reported in Table 5.73. 
 
Table 5.73 Summary of the OLS regression analysis between PM10 concentration and 
significant factors on 29 February 2020. 

No. Factor Coefficient Std. Error Probability VIF 
 Intercept 0.00 0.04 1.00 -------- 
1 TEMP 0.01 0.08 0.94 3.06 
2 WS 0.69 0.07 0.00* 2.36 
3 VIS -0.39 0.10 0.00* 4.91 
4 AOD -0.10 0.07 0.18 2.80 
5 FD -0.13 0.06 0.04* 2.17 
6 BT 0.30 0.07 0.00* 2.72 
7 FRP -0.61 0.07 0.00* 2.48 
8 FH 0.09 0.05 0.09 1.38 
9 ELEV -0.16 0.06 0.01* 2.13 
10 GPP -0.12 0.08 0.14 3.12 

Note: an asterisk (*) at the significance level of 0.01. 

 
As a result of OLS regression analysis in Table 5.73, if the probability at 

the confident level of 99% is not considered (ignored), the relationship between PM10 
concentration and selected factors by VIF value can be explained into two types: 
positive and negative. The positive relationship between PM10 concentration and their 
factors occurred with temperature, wind speed, brightness temperature, and fire 
hotspot. This finding indicates that if these variables increase, the PM10 concentration 
increase. In contrast, the negative relationship between PM10 concentration and their 
factors is found with visibility, MODIS AOD, factory density, fire radiative power, 
elevation, and GPP. So, with the increase of these factors, the PM10 concentration 
decrease.  

When the probability at the confident level of 99% is considered, the 
significant factors on PM10 concentration on 28 February 2020 are wind speed, 
visibility, factory density, brightness temperature, fire radiative power and elevation. 
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5.6.7 On 1 March 2020 
The model performance showed that AICc is 170.08. The multiple R-

squared is 0.26, while the adjusted R-squared is 0.18. The results of the OLS regression 
analysis are reported in Table 5.74. 
 
Table 5.74 Summary of the OLS regression analysis between PM10 concentration and 
significant factors on 1 March 2020. 

No. Factor Coefficient Std. Error Probability VIF 
 Intercept -0.00 0.12 1.00 -------- 
1 VIS -0.09 0.19 0.65 2.58 
2 AOD 0.43 0.14 0.00* 1.33 
3 FD -0.07 0.17 0.68 2.06 
4 FH -0.22 0.15 0.16 1.70 
5 ELEV -0.12 0.13 0.34 1.18 
6 GPP 0.02 0.17 0.92 2.05 

Note: an asterisk (*) at the significance level of 0.01. 

 
As a result of OLS regression analysis in Table 5.74, if the probability at 

the confident level of 99% is not considered (ignored), the relationship between PM10 
concentration and selected factors by VIF value can be explained into two types: 
positive and negative. The positive relationship between PM10 concentration and their 
factors occurred with MODIS AOD and GPP. This finding indicates that if these variables 
increase, the PM10 concentration increase. In contrast, the negative relationship 
between PM10 concentration and their factors is found with visibility, factory density, 
fire hotspot, and elevation. So, with the increase of these factors, the PM10 
concentration decrease.  

When the probability at the confident level of 99% is considered, the 
significant factors on PM10 concentration on 1 March 2020 is only MODIS AOD. 
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5.7 Significant daily spatiotemporal factors on PM2.5 concentration in 
the urban landscape 

The multicollinearity test of daily explanatory variables performed in the SPSS 
statistical software is reported in Tables 5.75. 
 
Table 5.75 Results of multicollinearity test of explanatory variables on PM2.5 
concentration.  

No. Variable 
The VIF value 

7 Jan 8 Jan 9 Jan 10 Jan 11 Jan 12 Jan 13 Jan 
1 RH 7.90 27.51 17.34 123.57 19.49 15.99 17.51 
2 TEMP 21.06 37.12 12.66 23.35 9.03 94.88 18.51 
3 WS 8.06 5.87 4.75 4.18 4.84 4.42 9.14 
4 P 33.42 50.41 10.96 277.71 33.31 31.28 37.11 
5 VIS 5.00 4.25 2.79 4.32 3.37 5.22 5.34 
6 AOD 5.42 4.77 6.02 4.99 5.20 5.23 5.22 
7 NDVI 65.68 68.78 68.81 77.46 71.44 63.88 66.28 
8 BUI 100.42 103.48 110.88 111.13 108.61 93.81 96.91 
9 RD 16.48 16.53 16.18 16.58 16.59 16.31 17.34 
10 FD 3.84 4.01 3.71 4.05 4.03 3.98 3.62 
11 BT 4.32 7.94 16.15 37.65 15.19 40.33 82.71 
12 FRP 15.67 25.76 2.62 69.82 28.87 5.84 134.32 
13 FH 2.64 3.32 1.86 3.08 2.00 3.39 2.51 
14 ELEV 5.17 4.76 5.86 5.52 5.96 6.05 7.47 
15 POP 44.72 53.92 31.73 34.20 31.06 30.98 26.57 
16 GPP 31.18 32.59 23.32 27.69 23.45 22.30 20.22 
Total variables 6 6 6 6 6 6 5 

 
As a result, the VIF analysis shows that relative humidity, temperature, pressure, 

NDVI, BUI, road density, population density, and GPP are redundant for PM2.5 
concentration models. Additionally, other redundant variables are cut each month 
differently. Hence, persist independent variables with a VIF value less than 7.5 are 
applied for OLS regression analysis. The result of the OLS regression analysis of PM2.5 
concentration in the urban landscape daily is separately described and discussed 
below. 
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5.7.1 On 7 January 2020 
The model performance showed that AICc is 201.22. The multiple R-

squared is 0.25, while the adjusted R-squared is 0.18. The results of the OLS regression 
analysis are reported in Table 5.76. 
 
Table 5.76 Summary of the OLS regression analysis between PM2.5 concentration and 
significant factors on 7 January 2020. 

No. Variable Coefficient Std. Error Probability VIF 
 Intercept -0.00 0.11 1.00 -------- 
1 VIS 0.38 0.16 0.04* 2.08 
2 AOD -0.03 0.13 0.83 1.45 
3 FD 0.15 0.14 0.35 1.78 
4 BT 0.20 0.13 0.01* 1.36 
5 FH 0.04 0.13 0.60 1.53 
6 ELEV -0.45 0.13 0.00* 1.36 

Note: an asterisk (*) at the significance level of 0.01. 

 
As a result of OLS regression analysis in Table 5.76, if the probability at 

the confident level of 99% is not considered (ignored), the relationship between PM2.5 
concentration and selected factors by VIF value can be explained into two types: 
positive and negative. The positive relationship between PM2.5 concentration and their 
factors occurred with visibility, factory density, brightness temperature, and fire 
hotspot. This finding indicates that if these variables increase, the PM2.5 concentration 
increase. In contrast, the negative relationship between PM2.5 concentration and their 
factors is found with MODIS AOD and elevation. So, with the increase of these factors, 
the PM2.5 concentration decrease.  

When the probability at the confident level of 99% is considered, the 
significant factors on PM2.5 concentration on 7 January 2020 are visibility, brightness 
temperature, and elevation. 
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5.7.2 On 8 January 2020 
The model performance showed that AICc is 154.40. The multiple R-

squared is 0.61, while the adjusted R-squared is 0.57. The results of the OLS regression 
analysis are reported in Table 5.77. 
 
Table 5.77 Summary of the OLS regression analysis between PM2.5 concentration and 
significant factors on 8 January 2020. 

No. Variable Coefficient Std. Error Probability VIF 
 Intercept 0.00 0.08 1.00 -------- 
1 WS -0.49 0.10 0.00* 1.69 
2 VIS 0.33 0.11 0.01* 2.07 
3 AOD 0.16 0.11 0.23 1.93 
4 FD -0.46 0.10 0.00* 1.52 
5 FH -0.03 0.09 0.79 1.46 
6 ELEV 0.18 0.09 0.17 1.30 

Note: an asterisk (*) at the significance level of 0.01. 

 
As a result of OLS regression analysis in Table 5.77, if the probability at 

the confident level of 99% is not considered (ignored), the relationship between PM2.5 
concentration and selected factors by VIF value can be explained into two types: 
positive and negative. The positive relationship between PM2.5 concentration and their 
factors occurred with visibility, MODIS AOD, and elevation. This finding indicates that if 
these variables increase, the PM2.5 concentration increase. In contrast, the negative 
relationship between PM2.5 concentration and their factors is found with wind speed, 
factory density, and fire hotspots. So, with the increase of these factors, the PM2.5 
concentration decrease.  

When the probability at the confident level of 99% is considered, the 
significant factors on PM2.5 concentration on 8 January 2020 are wind speed, visibility, 
and factory density. 
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5.7.3 On 9 January 2020 
The model performance showed that AICc is 132.47. The multiple R-

squared is 0.72, while the adjusted R-squared is 0.69. The results of the OLS regression 
analysis are reported in Table 5.78. 
 

Table 5.78 Summary of the OLS regression analysis between PM2.5 concentration and 
significant factors on 9 January 2020. 

No. Variable Coefficient Std. Error Probability VIF 
 Intercept -0.00 0.07 1.00 -------- 
1 WS -0.34 0.09 0.00* 1.85 
2 VIS 0.66 0.10 0.00* 2.31 
3 AOD -0.02 0.10 0.81 2.19 
4 FD -0.14 0.09 0.12 1.69 
5 FRP 0.34 0.08 0.00* 1.57 
6 FH 0.01 0.08 0.94 1.65 
7 ELEV -0.11 0.08 0.25 1.47 

Note: an asterisk (*) at the significance level of 0.01. 

 
As a result of OLS regression analysis in Table 5.78, if the probability at 

the confident level of 99% is not considered (ignored), the relationship between PM2.5 
concentration and selected factors by VIF value can be explained into two types: 
positive and negative. The positive relationship between PM2.5 concentration and their 
factors occurred with visibility, fire radiative power, and fire hotspot. This finding 
indicates that if these variables increase, the PM2.5 concentration increase. In contrast, 
the negative relationship between PM2.5 concentration and their factors is found with 
wind speed, MODIS AOD, factory density, and elevation. So, with the increase of these 
factors, the PM2.5 concentration decrease.  

When the probability at the confident level of 99% is considered, the 
significant factors on PM2.5 concentration on 9 January 2020 are wind speed, visibility, 
and fire radiative power. 
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5.7.4 On 10 January 2020 
The model performance showed that AICc is 87.61. The multiple R-

squared is 0.84, while the adjusted R-squared is 0.83. The results of the OLS regression 
analysis are reported in Table 5.79. 
 
Table 5.79 Summary of the OLS regression analysis between PM2.5 concentration and 
significant factors on 10 January 2020. 

No. Factor Coefficient Std. Error Probability VIF 
 Intercept 0.00 0.05 1.00 -------- 
1 WS -0.43 0.07 0.00* 1.93 
2 VIS 0.70 0.07 0.00* 2.06 
3 AOD 0.01 0.06 0.89 1.68 
4 FD 0.10 0.06 0.09 1.53 
5 FH -0.05 0.06 0.45 1.47 
6 ELEV -0.20 0.07 0.00* 1.85 

Note: an asterisk (*) at the significance level of 0.01. 

 
As a result of OLS regression analysis in Table 5.79, if the probability at 

the confident level of 99% is not considered (ignored), the relationship between PM2.5 
concentration and selected factors by VIF value can be explained into two types: 
positive and negative. The positive relationship between PM2.5 concentration and their 
factors occurred with visibility, MODIS AOD, and factory density. This finding indicates 
that if these variables increase, the PM2.5 concentration increase. In contrast, the 
negative relationship between PM2.5 concentration and their factors is found with wind 
speed, fire hotspots, and elevation. So, with the increase of these factors, the PM2.5 
concentration decrease.  

When the probability at the confident level of 99% is considered, the 
significant factors on PM2.5 concentration on 10 January 2020 are wind speed, visibility, 
and elevation. 
  

 



159 

5.7.5 On 11 January 2020 
The model performance showed that AICc is 175.58. The multiple R-

squared is 0.47, while the adjusted R-squared is 0.42. The results of the OLS regression 
analysis are reported in Table 5.80. 
 
Table 5.80 Summary of the OLS regression analysis between PM2.5 concentration and 
significant factors on 11 January 2020. 

No. Factor Coefficient Std. Error Probability VIF 
 Intercept -0.00 0.09 1.00 -------- 
1 WS -0.59 0.16 0.00* 3.26 
2 VIS 0.15 0.14 0.36 2.32 
3 AOD 0.07 0.12 0.64 1.83 
4 FD -0.57 0.11 0.00* 1.55 
5 FH 0.02 0.11 0.85 1.46 
6 ELEV 0.12 0.12 0.46 1.81 

Note: an asterisk (*) at the significance level of 0.01. 
 

As a result of OLS regression analysis in Table 5.80, if the probability at 
the confident level of 99% is not considered (ignored), the relationship between PM2.5 
concentration and selected factors by VIF value can be explained into two types: 
positive and negative. The positive relationship between PM2.5 concentration and their 
factors occurred with visibility, MODIS AOD, fire hotspot, and elevation. This finding 
indicates that if these variables increase, the PM2.5 concentration increase. In contrast, 
the negative relationship between PM2.5 concentration and their factors is found with 
wind speed and factory density. So, with the increase of these factors, the PM2.5 
concentration decrease.  

When the probability at the confident level of 99% is considered, the 
significant factors on PM2.5 concentration on 11 January 2020 are wind speed and 
factory density 
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5.7.6 On 12 January 2020 
The model performance showed that AICc is 103.86. The multiple R-

squared is 0.81, while the adjusted R-squared is 0.79. The results of the OLS regression 
analysis are reported in Table 5.81. 
 
Table 5.81 Summary of the OLS regression analysis between PM2.5 concentration and 
significant factors on 12 January 2020. 

No. Factor Coefficient Std. Error Probability VIF 
 Intercept -0.00 0.05 1.00 -------- 
1 WS -0.23 0.09 0.00* 2.64 
2 VIS 0.02 0.08 0.82 2.25 
3 AOD -0.05 0.07 0.63 1.73 
4 FD -0.11 0.08 0.08 1.92 
5 FRP -0.76 0.07 0.00* 1.69 
6 FH 0.13 0.07 0.05* 1.47 
7 ELEV 0.12 0.08 0.16 2.40 

Note: an asterisk (*) at the significance level of 0.01. 

 
As a result of OLS regression analysis in Table 5.81, if the probability at 

the confident level of 99% is not considered (ignored), the relationship between PM2.5 
concentration and selected factors by VIF value can be explained into two types: 
positive and negative. The positive relationship between PM2.5 concentration and their 
factors occurred with visibility, fire hotspot, and elevation. This finding indicates that if 
these variables increase, the PM2.5 concentration increase. In contrast, the negative 
relationship between PM2.5 concentration and their factors is found with wind speed, 
MODIS AOD, factory density, and fire radiative power. So, with the increase of these 
factors, the PM2.5 concentration decrease.  

When the probability at the confident level of 99% is considered, the 
significant factors on PM2.5 concentration on 12 January 2020 are wind speed, fire 
radiative power, and fire hotspot. 
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5.7.7 On 13 January 2020 
The model performance showed that AICc is 192.53. The multiple R-

squared is 0.31, while the adjusted R-squared is 0.26. The results of the OLS regression 
analysis are reported in Table 5.82. 
 

Table 5.82 Summary of the OLS regression analysis between PM2.5 concentration and 
significant factors on 13 January 2020. 

No. Variable Coefficient Std. Error Probability VIF 
 Intercept -0.00 0.10 1.00 -------- 
1 VIS 0.32 0.15 0.05 2.06 
2 AOD -0.23 0.12 0.14 1.35 
3 FD -0.27 0.13 0.01* 1.52 
4 FH 0.09 0.12 0.44 1.46 
5 ELEV 0.54 0.12 0.00* 1.30 

Note: an asterisk (*) at the significance level of 0.01. 

 
As a result of OLS regression analysis in Table 5.82, if the probability at 

the confident level of 99% is not considered (ignored), the relationship between PM2.5 
concentration and selected factors by VIF value can be explained into two types: 
positive and negative. The positive relationship between PM2.5 concentration and their 
factors occurred with visibility, fire hotspot, and elevation. This finding indicates that if 
these variables increase, the PM2.5 concentration increase. In contrast, the negative 
relationship between PM2.5 concentration and their factors is found with MODIS AOD 
and factory density. So, with the increase of these factors, the PM2.5 concentration 
decrease.  

When the probability at the confident level of 99% is considered, the 
significant factors on PM2.5 concentration on 13 January 2020 are factory density and 
elevation. 
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Summary 
According to significant spatiotemporal factors reports on PM10 and PM2.5 

concentration in Sections 5.3 and 5.4, the significant factors on PM10 and PM2.5 
concentration in rural and urban landscapes in the winter and summer seasons can 
be summarized with frequency in Tables 5.83 to 5.86. 
 

Table 5.83 Frequency of significant factors on PM10 concentration in the winter 
season. 

No. Significant factor Oct-19 Nov-19 Dec-19 Jan-20 Feb-20 Frequency 
1 WS Yes Yes Yes  Yes 4 of 5 
2 TEMP Yes  Yes Yes  3 of 5 
3 VIS Yes Yes Yes   3 of 5 
4 AOD  Yes  Yes  2 of 5 
5 FRP     Yes 1 of 5 

 
Table 5.84 Frequency of significant factors on PM10 concentration in the summer 
season. 

No. Significant factor Mar-20 Apr-20 May-20 Frequency 
1 FD Yes   2 of 3 
2 TEMP Yes   1 of 3 
3 AOD Yes   1 of 3 
4 BT  Yes  1 of 3 
5 VIS   Yes 1 of 3 

 
Table 5.85 Frequency of significant factors on PM2.5 concentration in the winter 
season. 

No. Significant factor Oct-19 Nov-19 Dec-19 Jan-20 Feb-20 Frequency 
1 VIS Yes Yes Yes Yes  4 of 5 
2 WS Yes  Yes  Yes 3 of 5 
3 FRP Yes Yes   Yes 3 of 5 
4 ELEV Yes   Yes Yes 3 of 5 
5 P Yes    Yes 2 of 5 
6 AOD Yes   Yes  2 of 5 
7 FH Yes   Yes  2 of 5 
8 RH     Yes 1 of 5 
9 TEMP    Yes  1 of 5 
10 BT Yes     1 of 5 
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Table 5.86 Frequency of significant factors on PM2.5 concentration in the summer 
season. 

No. Significant factor Mar-20 Apr-20 May-20 Frequency 
1 WS  Yes Yes 2 of 3 
2 VIS  Yes Yes 2 of 3 
3 FD  Yes Yes 2 of 3 
4 BT  Yes Yes 2 of 3 
5 FRP Yes Yes  2 of 3 
6 AOD  Yes  1 of 3 
7 FH  Yes  1 of 3 
8 ELEV   Yes 1 of 3 

 
In the case of PM10 concentration in the rural landscape (Tables 5.83 and 5.84), 

the number of significant factors on PM10 concentration in winter and summer are five 
and five factors. As a result, three common factors on PM10 concentration, namely 
temperature, visibility, and MODIS AOD, are identified in both seasons. Two significant 
factors on PM10 concentration are only found in the winter season, including wind 
speed and fire radiative power. On the contrary, two significant factors on PM10 
concentration, factory density and brightness temperature, are only found in the 
summer season. 

The significant factors on PM10 concentration in this study are similar to the 
previous study by Harnkijroong and Panich (2013). They reported that PM10 
concentration at the roadside of Bangkok is most relevant to temperature, followed 
by wind speed. And also found that rainfall did not influence PM10 concentration. 
Furthermore, Unal, Toros, Deniz, and Incecik (2011) suggested that PM10 concentration 
are associated with wind speed. Moreover, Czernecki et al. (2017) also suggested that 
the most significant meteorological factors include planetary boundary layer height, 
temperature, wind speed, and precipitation influenced by the seasonal dynamics of 
PM10 concentration. In addition, many studies show the relationship between MODIS 
AOD and PM10 concentration (Ferrero et al., 2019; Grgurić et al., 2014; Kanabkaew, 
2013; Syafrijon, Marzuki, Emriadi, and Pratama, 2018). Ferrero et al. (2019) especially 
report the high relationship and developed a high accuracy algorithm to predict ground 
PM concentration based on AOD mixing height and wind speed. At the same time, 
Kanabkaew (2013) reported that the relationship between AOD and hourly PM 
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improved accuracy when corrected with meteorological factors, including relative 
humidity and temperature data. In contrast, the study of the relationship between 
PM10 concentration and MODIS fire data was incomprehensive. 

In the case of PM2.5 concentration in the urban landscape (Tables 5.85 and 
5.86), the significant factors on PM2.5 in winter and summer are ten and eight factors. 
Furthermore, many meteorological factors significantly influenced PM2.5 than PM10 
concentration (Chen et al., 2017). As a result, there are seven common factors on 
PM2.5 concentration in both seasons: wind speed, visibility, brightness temperature, 
fire radiative power, MODIS AOD, fire hotspot, and elevation. Furthermore, it was found 
that three significant factors on PM2.5 concentration are only found in the winter 
season, including relative humidity, temperature, and pressure. In contrast, one 
significant factor in PM2.5 concentration, factory density, is only found in the summer 
season. 

The findings show similar results to the previous study of Guo and Zhang (2014), 
who reported that PM2.5 concentration is most relevant to visibility, followed by the 
wind speed. The least pertinent factors are temperature and relative humidity. 
Additionally, these findings are consistent with the previous work of Chen et al. (2017), 
who showed the strong influence of wind speed on local PM2.5 concentration. The 
wind speed also strongly interacts with other meteorological factors, influencing PM2.5 
concentration. While Galindo, Varea, Gil-Moltó, Yubero, and Nicolás (2011) found that 
the winter wind speed is the main effect of the dilution of atmospheric aerosols. At 
the same time, temperature and solar radiation strongly influenced coarse particles. 
That means the meteorological data, solar heating at the earth's surface, or active fire 
data significantly affect PM2.5 concentration. In addition, MODIS AOD had a strong 
correlation with PM2.5 concentration (Gu, 2019; Kong, Xin, Zhang, and Wang, 2016). 
Like Lee, Liu, Coull, Schwartz, and Koutrakis (2011) reported and potentially helpful in 
predicting PM2.5 concentration. And Chudnovsky et al. (2014) predicted PM2.5 
concentration with MODIS AOD and improved the accuracy with land use and 
meteorological data. However, Chu et al. (2016) suggested using higher-resolution AOD 
data to estimate PM2.5 in a relatively small area more accurately. 
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Furthermore, the significant factors on daily PM10 and PM2.5 concentration in 
rural and urban landscapes can be summarized with their frequency in Tables 5.87 to 
5.88. 
 

Table 5.87 Frequency of significant daily factors on PM10 concentration. 

No. 
Significant 
factor 

Winter season 
Summer 
season Frequency 

24 Feb 25 Feb 26 Feb 27 Feb 28 Feb 29 Feb 1 Mar 
1 VIS     Yes Yes  2 of 7 
2 AOD Yes      Yes 2 of 7 
3 FD Yes     Yes  2 of 7 
4 FRP Yes     Yes  2 of 7 
5 GPP  Yes      1 of 7 
6 TEMP     Yes   1 of 7 
7 WS      Yes  1 of 7 
8 BT      Yes  1 of 7 
9 ELEV      Yes  1 of 7 

 
Table 5.88 Frequency of significant daily factors on PM2.5 concentration. 

No. 
Significant 
factor 

Winter season 
Frequency 

7 Jan 8 Jan 9 Jan 10 Jan 11 Jan 12 Jan 13 Jan 
1 WS  Yes Yes Yes Yes Yes  5 of 7 
2 VIS Yes Yes Yes Yes    4 of 7 
3 ELEV Yes   Yes   Yes 3 of 7 
4 FD  Yes   Yes  Yes 3 of 7 
5 FRP   Yes   Yes  2 of 7 

 
As a result, there are nine daily factors on PM10 concentration in the rural 

landscape in the winter and summer seasons (Table 5.87). Besides, only one common 
daily factor, MODIS AOD, is found in both seasons. The frequency of daily factors from 
both seasons is relatively low, varying from 1 of 7 to 2 of 7. 

Besides, by comparing the significant daily factors and significant monthly 
factors on PM10 concentration in the winter season, all five monthly significant factors 
on PM10 concentration in the winter season (Table 5.83) are identified as daily 
significant on PM10 concentration, including wind speed, temperature, visibility, MODIS 
AOD, and fire radiative. Likewise, all five monthly significant factors on PM10 
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concentration in the summer season (Table 5.84) are daily significant on PM10 
concentration, including factory density, temperature, MODIS AOD, brightness 
temperature, and visibility. Additionally, only two daily significant factors on PM10 
concentration: GPP and elevation, are not identified in both seasons. 

Besides, by comparing the significant daily factors and significant monthly 
factors on PM2.5 concentration in the winter season, only four monthly significant 
factors on PM2.5 concentration in the winter season (Table 5.85) are identified as daily 
significant on PM2.5 concentration, including visibility, wind speed, fire radiative and 
elevation. Additionally, only one daily significant on PM10 concentration, factory 
density is not identified as a significant monthly factor under this season. Interestingly, 
six-monthly significant factors on PM2.5 concentration, including pressure, MODIS AOD, 
fire hotspot, relative humidity, temperature, and brightness temperature, are not 
significant daily factors on PM2.5 concentration. 

Consequently, the derivation of significant monthly factors on PM10 and PM2.5 
concentration in winter and summer seasons, which cover almost daily significant 
factors, are further applied to predict monthly and seasonally PM10 and PM2.5 
concentration using GWR and MEM models in the next component. This study will 
apply significant monthly factors to predict PM concentration in the corresponding 
month. Meanwhile, all significant monthly factors in each season will be combined 
and applied to predict PM concentration in the corresponding season. The next 
chapter will report the monthly and seasonally PM concentration prediction using GWR 
and MEM. 

 



CHAPTER VI 
PREDICTION OF SPATIOTEMPORAL  

PM CONCENTRATION
 

This chapter presents the study's second objective to predict spatiotemporal 
PM10 and PM2.5 concentration using GWR and MEM models. The significant monthly 
and seasonal factors on PM10 and PM2.5 concentration from Chapter 5 were 
separately applied to predict PM concentration. The standard function of the GWR 
model with the adaptive kernel type and AICc bandwidth was applied to predict PM 
concentration under the ArcMap software environment. At the same time, the MEM 
model with fixed effects intercepts and scaled identity covariance type was applied to 
predict PM concentration under the IBM SPSS Statistics Version 25 (Bruin, 2006; SPSS 
Inc., 2005). Herein, the estimation of the linear mixed model was using the restricted 
maximum likelihood (REML) method. The main results consist of (1) the predictive 
equations and their distribution map for spatiotemporal PM10 concentration in the 
rural landscape using the GWR model, (2) the predictive equations and their 
distribution map for spatiotemporal PM2.5 concentration in the urban landscape using 
the GWR model, (3) the predictive equations and their distribution for spatiotemporal 
PM10 concentration in the rural landscape using the MEM model, and (4) the predictive 
equations and their distribution map for spatiotemporal PM2.5 concentration in the 
urban landscape using the MEM model and (5) comparison of spatiotemporal patterns 
of particulate matter concentration using GWR and MEM models, are here described 
and discussed in detail. 
  

 



168 

6.1 The predictive equations and their distribution map for 
spatiotemporal PM10 concentration in the rural landscape using the 
GWR model 

Under this section, the GWR model with the significant derived factors was 
applied to predict monthly PM10 concentration in winter and summer in the rural 
landscape. The generic equations for PM10 concentration in winter and summer in the 
rural landscape are shown in Equations 6.1 and 6.2. 

y(i,j)=βoi,j+βk1(i,j)TEMP+βk2(i,j)WS+βk3(i,j)VIS+βk4(i,j)FRP+βk5(i,j)AOD+ε(i.j) (6.1) 

y(i,j)=βoi,j+βk1(i,j)TEMP+βk3(i,j)VIS+βk5(i,j)AOD+βk6(i,j)BT+βk7(i,j)FD+ε(i.j) (6.2) 

Where βoi,j denotes intercept value at district i, month j; βk1(i,j) denotes the coefficients 

of temperature; βk2(i,j) denotes the coefficients of wind speed; βk3(i,j) denotes the 

coefficients of visibility; βk4(i,j) denotes the coefficients of fire radiative power; βk5(i,j) 

denotes the coefficients of MODIS AOD; βk6(i,j) denotes the coefficients of brightness 

temperature; βk7(i,j) denotes the coefficients of factory density; ε(i.j) is residual values. 
TEMP, WS, VIS, FRP, AOD, BT, and FD are significant normalization variables. 

The monthly predictive equation of PM10 concentration in winter and summer 
in rural landscapes is systematically reported in a table in the following sections. As a 
result, columns, namely Intercept, Regression coefficient, and Residual, summarize a 
fitting regression equation for every district of sixty districts—columns LocalR2 and 
Predicted (μg/m3) display local R squares and predicted value in microgram per cubic 
meter. Meanwhile, the performance of the GWR model for spatiotemporal PM10 
concentration prediction is reported, including AICc, R-square, and adjusted R-square. 

6.1.1 October 2019 in the winter season 
The result of the GWR model for PM10 concentration prediction in 

October 2019 in the winter season is summarized in Table 6.1. The model performance 
shows that AICc, R-square, and adjusted R-square values are 89.88, 0.93, and 0.88, 
respectively. 
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Table 6.1 The predictive equations of PM10 concentration in October 2019. 

No. District Intercept 
Regression coefficient 

Residual LocalR2 
Predicted 
(μg/m3) WS TEMP VIS 

1 Chaiyo 0.64 0.82 0.75 0.23 0.00 0.85 52.56 
2 Mueang Ang 

Thong 
0.16 0.65 0.35 -0.27 -0.01 0.82 52.40 

3 Pa Mok -0.10 0.45 0.09 -0.47 0.10 0.93 52.10 
4 Pho Thong 1.02 1.05 0.80 0.53 0.09 0.73 52.20 
5 Samko -0.16 0.00 -0.37 -0.21 -0.16 0.21 52.13 
6 Sawaeng Ha 1.20 1.07 0.62 0.58 0.06 0.77 52.15 
7 Wiset Chai Chan -0.20 0.20 -0.26 -0.42 -0.12 0.62 52.14 
8 Ban Mi 0.06 0.34 0.67 0.04 -0.26 0.67 52.77 
9 Chai Badan 0.60 1.51 0.56 -0.46 0.20 0.82 51.79 
10 Khok Charoen 0.41 1.09 0.44 -0.22 -0.06 0.71 51.93 
11 Khok Samrong 0.51 1.56 0.63 -0.56 -0.21 0.85 52.88 
12 Lam Sonthi 0.50 1.37 0.48 -0.49 -0.09 0.80 51.80 
13 Mueang Lop Buri 0.81 1.67 0.90 0.13 -0.28 0.71 53.74 
14 Nong Muang 0.46 0.70 0.52 0.42 -0.04 0.77 52.13 
15 Phatthana 

Nikhom 
0.87 1.51 0.73 -0.13 0.01 0.73 52.94 

16 Sa Bot 0.58 1.40 0.51 -0.22 -0.12 0.89 52.24 
17 Tha Luang 0.69 1.45 0.59 -0.46 0.25 0.77 51.86 
18 Tha Wung 0.61 0.73 0.69 0.15 0.00 0.91 52.79 
19 Khlong Luang -0.86 0.06 -0.28 -0.28 -0.21 0.78 51.66 
20 Lam Luk Ka -0.80 0.17 -0.14 -0.36 0.37 0.67 51.47 
21 Lat Lum Kaeo -0.86 -0.26 -0.12 -0.18 0.47 0.59 50.77 
22 Mueang Pathum 

Thani 
-0.64 -0.09 -0.13 -0.30 -0.37 0.62 50.53 

23 Nong Suea -0.38 0.13 0.32 -0.37 -0.31 0.52 52.35 
24 Sam Khok -0.63 -0.13 -0.10 -0.33 -0.45 0.65 50.94 
25 Thanyaburi -0.80 0.15 -0.17 -0.35 -0.09 0.70 51.69 
26 Ban Phraek 0.37 0.75 0.78 -0.08 0.01 0.93 52.75 
27 Bang Ban -0.36 0.09 -0.13 -0.55 -0.03 0.96 51.87 
28 Bang Pa-In -0.67 -0.21 -0.31 -0.42 0.01 0.96 51.40 
29 Bang Pahan 0.05 0.49 0.36 -0.34 0.08 0.96 52.20 
30 Bang Sai -0.82 -0.24 -0.17 -0.22 -0.22 0.68 51.40 
31 Bang Sai -0.39 0.20 0.03 -0.45 -0.23 0.79 51.41 
32 Lat Bua Luang -1.18 -0.44 -0.20 0.01 -0.04 0.68 51.28 
33 Maha Rat 0.25 0.64 0.53 -0.18 -0.02 0.93 52.58 
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Table 6.1 (Continued). 

No. District Intercept 
Regression coefficient 

Residual LocalR2 
Predicted 
(μg/m3) WS TEMP VIS 

34 Nakhon Luang 0.20 0.50 0.54 -0.25 0.09 0.95 52.48 
35 Phachi 0.47 0.06 0.75 -0.42 -0.06 0.78 52.76 
36 Phak Hai -0.38 0.10 -0.26 -0.48 0.10 0.92 51.81 
37 Phra Nakhon Si 

Ayutthaya 
-0.42 -0.02 -0.15 -0.54 0.03 0.92 51.71 

38 Sena -0.46 0.06 -0.02 -0.44 -0.03 0.75 51.48 
39 Tha Ruea 0.78 0.53 1.02 0.20 -0.08 0.83 53.22 
40 Uthai 0.20 -0.01 0.48 -0.50 0.13 0.85 52.20 
41 Wang Noi -0.31 -0.06 0.11 -0.46 -0.18 0.65 52.24 
42 Ban Mo 1.70 0.52 1.63 1.14 0.09 0.79 53.61 
43 Chaloem Phra 

Kiat 
3.87 -1.30 0.91 1.90 1.02 0.53 55.03 

44 Don Phut 0.65 0.76 1.02 0.20 -0.22 0.89 53.19 
45 Kaeng Khoi 4.20 -2.39 0.36 0.53 0.59 0.47 52.99 
46 Muak Lek 0.97 0.71 0.40 -0.85 -0.07 0.67 52.48 
47 Mueang Saraburi 3.45 -1.95 0.63 0.58 0.15 0.33 53.46 
48 Nong Don 0.79 1.23 1.55 0.54 0.05 0.73 53.76 
49 Nong Khae 1.80 -1.32 1.20 -0.59 -0.12 0.58 52.77 
50 Nong Saeng 2.01 -1.09 1.20 0.01 -0.11 0.55 53.27 
51 Phra Phutthabat 1.30 1.16 1.47 0.95 0.58 0.44 54.64 
52 Sao Hai 4.07 -1.78 1.04 1.80 0.48 0.59 53.86 
53 Wang Muang 1.14 0.81 0.57 -0.39 0.41 0.67 52.38 
54 Wihan Daeng 1.99 -1.24 0.76 -0.21 -0.42 0.21 53.01 
55 Bang Rachan 1.01 0.80 0.18 0.30 -0.10 0.72 52.31 
56 In Buri 0.91 0.65 -0.08 0.04 0.00 0.74 52.29 
57 Khai Bang Rachan 1.15 1.03 0.60 0.54 -0.04 0.79 52.32 
58 Mueang Sing Buri 0.86 0.70 0.17 0.17 0.13 0.78 52.37 
59 Phrom Buri 0.84 0.88 0.74 0.39 0.00 0.91 52.62 
60 Tha Chang 1.02 0.98 0.69 0.50 0.07 0.85 52.42 

 
From Table 6.1, the maximum value is 55.03 μg/m3 in Chaloem Phra Kiat 

District, Saraburi province. In contrast, the minimum value is 50.53 μg/m3 in Mueang 
Pathum Thani District, Pathum Thani province. The classification maps of prediction 
values for PM10 concentration using the GWR model according to the Thailand Air 
Quality Index and the U.S. EPA Air Quality Index are displayed in Figure 6.1. 
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As a result, the predicted values of PM10 concentration in October 2019 
are satisfactory at level 2, according to Thailand AQI. Still, according to the EPA AQI, 
they are good at level 1. However, the predicted value in the rural landscape in 
October 2019 from the GWR model is more than the one-day mean of WHO guidelines 
(Table 3.5). 

In addition, a spatial distribution map of PM10 concentration in October 
2019 using the SCK interpolation technique is displayed in Figure 6.2. As a result, the 
high PM10 concentration occur on agricultural land in the central part of the study 
area, particularly in Lob Buri and Saraburi province. 
 

  
(a) (b) 

Figure 6.1 The classification map of PM10 concentration prediction using the GWR 
model in October 2019 according to the (a) Thailand AQI and (b) EPA AQI. 
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Figure 6.2 Spatial distribution of PM10 concentration in October 2019. 
 

6.1.2 November 2019 in the winter season 

The result of the GWR model for PM10 concentration prediction in 
November 2019 in the winter season is summarized in Table 6.2. The model 
performance shows that AICc, R-square, and adjusted R-square values are 91.16, 0.96, 
and 0.91, respectively. 
 
Table 6.2 The predictive equations of PM10 concentration in November 2019. 

No. District Intercept 
Regression coefficient 

Residual LocalR2 
Predicted 
(μg/m3) WS VIS AOD 

1 Chaiyo 0.35 0.57 -0.35 0.01 0.00 0.95 65.22 
2 Mueang Ang Thong 0.31 0.65 -0.47 0.03 0.11 0.91 64.86 
3 Pa Mok 0.24 0.68 -0.75 0.04 0.09 0.80 64.64 
4 Pho Thong 0.43 0.73 -0.42 0.01 0.05 0.93 64.91 
5 Samko 0.53 0.89 -0.52 0.02 0.00 0.93 64.70 
6 Sawaeng Ha 0.52 0.78 -0.37 -0.02 0.06 0.91 64.83 
7 Wiset Chai Chan 0.55 0.95 -0.60 0.03 -0.06 0.91 64.60 
8 Ban Mi 0.53 0.20 0.18 -0.05 -0.11 0.19 65.12 
9 Chai Badan -0.32 0.47 -0.20 -0.04 -0.05 0.69 64.58 
10 Khok Charoen -0.30 0.66 -0.28 -0.04 -0.08 0.58 64.44 
11 Khok Samrong 0.08 0.72 -0.40 0.55 -0.27 0.47 65.41 
12 Lam Sonthi -0.34 0.44 -0.16 -0.04 0.05 0.75 64.22 
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Table 6.2 (Continued). 

No. District Intercept 
Regression coefficient 

Residual LocalR2 
Predicted 
(μg/m3) WS VIS AOD 

13 Mueang Lop Buri 2.41 -0.41 1.61 0.55 -0.03 0.78 66.12 
14 Nong Muang -0.39 0.71 -0.55 -0.01 -0.26 0.55 64.82 
15 Phatthana Nikhom -0.81 0.29 -1.58 1.94 -0.25 0.43 65.82 
16 Sa Bot -0.34 0.77 -0.47 0.02 -0.07 0.58 64.68 
17 Tha Luang -0.23 0.35 -0.31 0.10 -0.33 0.40 65.04 
18 Tha Wung 0.49 0.85 -0.48 0.05 -0.03 0.90 65.48 
19 Khlong Luang -0.31 0.22 -0.86 -0.27 -0.09 0.63 63.86 
20 Lam Luk Ka -0.45 0.15 -0.72 -0.39 -0.02 0.63 64.15 
21 Lat Lum Kaeo -0.82 -0.07 -0.55 -0.01 0.20 0.74 63.48 
22 Mueang Pathum 

Thani 
-0.27 0.14 -0.90 -0.12 -0.28 0.54 63.37 

23 Nong Suea -0.25 0.40 -0.85 -0.28 0.35 0.49 63.96 
24 Sam Khok -0.49 0.06 -0.77 -0.09 -0.18 0.63 63.34 
25 Thanyaburi -0.55 0.16 -0.66 -0.41 0.04 0.64 63.94 
26 Ban Phraek 0.53 0.64 -0.21 -0.07 0.00 0.70 65.47 
27 Bang Ban 0.32 0.76 -1.70 -0.01 0.02 0.96 64.42 
28 Bang Pa-In 0.07 0.72 -1.31 -0.03 -0.29 0.77 64.20 
29 Bang Pahan 0.14 0.52 -0.90 0.07 0.05 0.94 64.84 
30 Bang Sai -0.50 0.07 -0.79 -0.10 -0.05 0.83 63.85 
31 Bang Sai -0.12 0.46 -0.99 -0.03 -0.10 0.85 63.91 
32 Lat Bua Luang -0.66 0.00 -0.67 -0.04 -0.06 0.80 63.78 
33 Maha Rat 0.19 0.53 -0.68 0.06 -0.01 0.84 65.22 
34 Nakhon Luang 0.11 0.62 -0.72 0.11 -0.03 0.92 65.09 
35 Phachi 0.14 0.74 -0.74 0.25 0.04 0.84 65.07 
36 Phak Hai 0.49 1.11 -1.02 0.07 0.11 0.79 64.39 
37 Phra Nakhon Si 

Ayutthaya 
0.37 0.85 -1.72 0.02 -0.02 0.85 64.35 

38 Sena -0.18 0.30 -1.07 -0.07 -0.08 0.88 64.08 
39 Tha Ruea 0.07 0.93 -0.87 0.21 -0.38 0.60 66.05 
40 Uthai 0.03 0.81 -0.82 0.16 0.06 0.88 64.62 
41 Wang Noi -0.19 0.86 -1.02 -0.12 0.01 0.68 64.36 
42 Ban Mo -0.09 1.29 -1.25 0.58 -0.01 0.33 66.38 
43 Chaloem Phra Kiat -0.22 1.79 -2.13 1.26 0.62 0.72 68.23 
44 Don Phut 0.20 0.68 -1.07 0.03 -0.31 0.65 65.97 
45 Kaeng Khoi 5.13 -2.01 -2.28 0.18 0.16 0.78 66.00 
46 Muak Lek 0.48 0.10 -1.10 0.44 -0.38 0.11 65.49 
47 Mueang Saraburi 1.11 0.80 -1.89 0.58 0.26 0.71 65.64 
48 Nong Don -0.38 1.70 -1.62 0.71 0.50 0.27 66.13 
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Table 6.2 (Continued). 

No. District Intercept 
Regression coefficient 

Residual LocalR2 
Predicted 
(μg/m3) WS VIS AOD 

49 Nong Khae 0.58 0.71 -1.24 0.26 0.00 0.85 65.01 
50 Nong Saeng 0.05 1.15 -1.07 0.34 -0.33 0.66 65.91 
51 Phra Phutthabat -1.08 2.31 -2.15 1.58 0.18 0.71 67.85 
52 Sao Hai -0.02 1.54 -1.66 0.90 -0.15 0.62 66.99 
53 Wang Muang 0.28 -0.01 -0.52 1.07 -0.38 0.18 65.88 
54 Wihan Daeng 1.34 0.46 -1.72 0.30 -0.03 0.86 65.02 
55 Bang Rachan 0.84 0.56 0.03 0.02 -0.01 0.85 64.88 
56 In Buri 0.91 0.23 0.35 -0.01 0.02 0.72 64.82 
57 Khai Bang Rachan 0.64 0.69 -0.21 -0.01 0.02 0.90 64.93 
58 Mueang Sing Buri 0.81 0.37 0.18 -0.02 0.05 0.75 65.02 
59 Phrom Buri 0.48 0.66 -0.28 -0.05 -0.01 0.98 65.28 
60 Tha Chang 0.49 0.67 -0.28 -0.04 0.04 0.97 65.08 

 
From Table 6.2, the maximum value is 68.23 μg/m3 in Chaloem Phra Kiat 

District, Saraburi province. In contrast, the minimum value is 63.34 μg/m3 in Sam Khok 
District, Pathum Thani province. The classification maps of prediction values for PM10 
concentration using the GWR according to the Thailand Air Quality Index and the U.S. 
EPA Air Quality Index are displayed in Figure 6.3. 

As a result, the predicted values of PM10 concentration are satisfactory 
at level 2 according to Thailand AQI and moderate at level 2 according to EPA AQI. 
However, the predicted values in rural landscape in November 2019 obtained from 
the GWR model are more than the WHO guideline. 

In addition, a spatial distribution map of PM10 concentration in November 
2019 using the SCK interpolation technique is displayed in Figure 6.4. As a result, the 
high PM10 concentration occur on agricultural land in the central part of the study 
area, particularly Lob Buri and Saraburi province. 
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(a) (b) 

Figure 6.3 The classification map of PM10 concentration prediction using the GWR 
model in November 2019 according to the (a) Thailand AQI and (b) EPA AQI. 
 

 
Figure 6.4 Spatial distribution of PM10 concentration in November 2019. 
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6.1.3 December 2019 in the winter season 

The result of the GWR model for PM10 concentration prediction in 
December 2019 in the winter season is summarized in Table 6.3. The model 
performance shows that AICc, R-square, and adjusted R-square values are 123.24, 0.90, 
and 0.80, respectively. 
 
Table 6.3 The predictive equations of PM10 concentration in December 2019. 

No. District Intercept 
Regression coefficient 

Residual LocalR2 
Predicted 
(μg/m3) TEMP WS VIS 

1 Chaiyo -0.10 0.15 0.30 -0.11 0.00 0.75 74.42 
2 Mueang Ang 

Thong 
-0.13 0.25 0.13 0.05 -0.04 0.91 74.41 

3 Pa Mok -0.08 -0.03 0.03 0.26 -0.01 0.68 74.46 
4 Pho Thong -0.12 -0.01 0.25 -0.04 0.00 0.96 74.23 
5 Samko -0.13 0.03 0.20 -0.02 0.00 0.90 74.15 
6 Sawaeng Ha -0.11 0.00 0.22 -0.02 -0.01 0.96 74.18 
7 Wiset Chai Chan -0.14 0.08 0.14 0.04 0.00 0.81 74.21 
8 Ban Mi -0.14 0.10 0.01 0.13 -0.11 0.29 74.42 
9 Chai Badan -0.13 0.63 1.02 0.16 0.36 0.42 73.53 
10 Khok Charoen -0.37 0.03 0.41 -0.16 0.00 0.26 74.08 
11 Khok Samrong -0.24 0.46 1.21 -0.32 -0.53 0.46 75.17 
12 Lam Sonthi -0.21 0.39 0.81 -0.02 -0.25 0.34 74.47 
13 Mueang Lop Buri -0.88 0.65 2.50 -3.27 -0.34 0.70 75.96 
14 Nong Muang -0.38 -0.01 0.30 -0.16 -0.12 0.16 74.29 
15 Phatthana Nikhom 0.29 1.09 1.44 0.22 -0.18 0.62 75.13 
16 Sa Bot -0.26 0.31 0.66 0.07 -0.11 0.38 74.27 
17 Tha Luang 0.19 0.91 1.05 0.36 0.46 0.49 73.38 
18 Tha Wung 0.06 0.09 0.77 -0.44 0.03 0.84 74.52 
19 Khlong Luang -0.34 -0.06 0.06 -0.20 -0.25 0.52 73.95 
20 Lam Luk Ka -0.37 -0.02 0.13 -0.20 0.19 0.61 74.24 
21 Lat Lum Kaeo -0.27 -0.12 0.05 -0.17 0.10 0.55 73.54 
22 Mueang Pathum 

Thani 
-0.30 -0.07 0.06 -0.20 0.06 0.54 73.39 

23 Nong Suea -0.41 -0.03 0.17 -0.18 -0.08 0.53 74.27 
24 Sam Khok -0.28 -0.15 0.03 -0.16 -0.17 0.52 73.52 
25 Thanyaburi -0.36 -0.03 0.11 -0.20 -0.10 0.58 74.14 
26 Ban Phraek -0.24 1.40 0.12 -0.37 -0.02 0.82 74.72 
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Table 6.3 (Continued). 

No. District Intercept 
Regression coefficient 

Residual LocalR2 
Predicted 
(μg/m3) TEMP WS VIS 

27 Bang Ban 0.11 -1.03 0.08 0.40 -0.02 0.59 74.71 
28 Bang Pa-In 0.01 -0.86 -0.06 0.01 -0.06 0.43 74.46 
29 Bang Pahan -0.19 0.83 -0.04 0.25 -0.10 0.70 74.83 
30 Bang Sai -0.01 -0.62 0.07 0.02 -0.09 0.57 74.22 
31 Bang Sai 0.09 -0.87 0.12 0.29 -0.08 0.72 74.21 
32 Lat Bua Luang -0.09 -0.48 0.09 0.01 0.00 0.61 73.92 
33 Maha Rat -0.31 1.53 0.04 -0.26 -0.06 0.85 74.64 
34 Nakhon Luang -0.22 0.99 -0.07 0.31 -0.08 0.69 74.84 
35 Phachi -0.30 1.43 -0.21 0.43 -0.06 0.59 74.86 
36 Phak Hai -0.02 -0.85 0.02 0.32 0.02 0.68 74.24 
37 Phra Nakhon Si 

Ayutthaya 
0.13 -0.86 0.14 0.23 0.37 0.29 74.84 

38 Sena 0.08 -0.91 0.10 0.27 0.04 0.66 74.12 
39 Tha Ruea -0.35 2.18 -0.39 0.11 0.04 0.63 75.22 
40 Uthai -0.16 0.35 0.06 0.17 0.09 0.32 74.56 
41 Wang Noi -0.31 0.17 -0.06 -0.20 -0.14 0.19 74.55 
42 Ban Mo -0.56 1.97 0.58 -2.62 0.45 0.54 75.67 
43 Chaloem Phra Kiat 1.10 -1.20 1.65 -4.39 1.79 0.43 80.60 
44 Don Phut -0.46 2.46 -0.14 -0.59 0.01 0.86 74.97 
45 Kaeng Khoi 3.78 0.53 -1.94 0.66 -0.36 0.15 76.81 
46 Muak Lek 2.10 0.34 0.12 -0.94 0.08 0.65 74.30 
47 Mueang Saraburi 0.61 0.89 0.03 0.60 -0.24 0.04 77.48 
48 Nong Don -1.04 2.05 1.40 -3.91 -0.14 0.77 76.78 
49 Nong Khae -0.25 1.19 -0.02 0.83 -0.18 0.45 75.02 
50 Nong Saeng -0.29 1.68 -0.17 0.51 -0.76 0.23 76.70 
51 Phra Phutthabat -0.36 -1.28 3.15 -6.15 0.70 0.69 79.22 
52 Sao Hai 0.28 -0.06 1.11 -1.79 0.35 0.13 77.74 
53 Wang Muang 1.61 0.36 0.58 -1.07 -0.02 0.64 74.65 
54 Wihan Daeng -0.26 1.11 0.22 1.08 -0.29 0.34 75.14 
55 Bang Rachan -0.14 0.00 0.10 0.09 0.00 0.86 74.17 
56 In Buri -0.13 0.02 0.11 0.08 0.02 0.55 74.13 
57 Khai Bang Rachan -0.10 0.01 0.22 0.00 0.00 0.96 74.19 
58 Mueang Sing Buri -0.08 0.04 0.24 -0.02 0.02 0.69 74.23 
59 Phrom Buri -0.07 -0.01 0.31 -0.06 -0.01 0.90 74.41 
60 Tha Chang -0.09 0.00 0.25 -0.02 0.00 0.96 74.29 
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From Table 6.3, the maximum value is 80.60 μg/m3 in Chaloem Phra Kiat 
District, Saraburi province. In contrast, the minimum value is 73.38 μg/m3 in Tha Luang 
District, Lop Buri province. The classification maps of prediction values for PM10 
concentration using the GWR model according to the Thailand Air Quality Index and 
the U.S. EPA Air Quality Index are displayed in Figure 6.5. 

As a result, the predicted values of PM10 concentration are satisfactory 
at level 2 based on Thailand AQI and moderate at level 2 according to EPA AQI. 
However, the predicted value in the rural landscape in December 2019 obtained from 
the GWR model is more than the one-day mean of WHO guidelines (Table 5.3). 

In addition, a spatial distribution map of PM10 concentration in December 
2019 using the SCK interpolation technique is displayed in Figure 6.6. As a result, the 
high PM10 concentration occur on agricultural land in the central part of the study 
area, particularly in Saraburi province. 

 

  
(a) (b) 

Figure 6.5 The classification map of PM10 concentration prediction using the GWR 
model in December 2019 according to the (a) Thailand AQI and (b) EPA AQI. 
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Figure 6.6 Spatial distribution of PM10 concentration in December 2019. 
 

6.1.4 January 2020 in the winter season 

The result of the GWR model for PM10 concentration prediction in 
January 2020 in the winter season is summarized in Table 6.4. The model performance 
shows that AICc, R-square, and adjusted R-square values are 106.85, 0.91, and 0.83, 
respectively. 
 
Table 6.4 The predictive equations of PM10 concentration in January 2020. 

No. District Intercept 
Regression coefficient 

Residual LocalR2 
Predicted 
(μg/m3) TEMP AOD 

1 Chaiyo 0.18 1.07 -0.27 0.01 0.25 79.16 
2 Mueang Ang 

Thong 
-0.02 1.33 -0.17 0.03 0.34 79.12 

3 Pa Mok 0.15 0.79 -0.17 -0.04 0.28 79.11 
4 Pho Thong 0.27 0.57 -0.46 -0.12 0.20 79.09 
5 Samko 0.08 -0.59 -0.16 -0.08 0.12 79.02 
6 Sawaeng Ha 0.10 0.00 -0.32 -0.52 0.13 79.07 
7 Wiset Chai Chan 0.63 -1.42 -0.33 -0.16 0.40 79.06 
8 Ban Mi 0.07 0.23 -0.12 -0.07 0.14 79.11 
9 Chai Badan -0.96 0.12 -0.18 -0.29 0.03 78.88 
10 Khok Charoen -0.55 0.46 -0.22 -0.19 0.47 78.95 
11 Khok Samrong -0.04 0.68 -1.22 -0.27 0.64 79.07 
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Table 6.4 (Continued). 

No. District Intercept 
Regression coefficient 

Residual LocalR2 
Predicted 
(μg/m3) TEMP AOD 

12 Lam Sonthi -1.22 0.08 -0.45 -0.74 0.04 78.84 
13 Mueang Lop Buri 1.09 -0.12 -1.87 -0.54 0.48 79.36 
14 Nong Muang -0.41 0.45 0.26 -0.06 0.53 79.03 
15 Phatthana 

Nikhom 
0.71 0.68 -0.79 -0.32 0.59 79.06 

16 Sa Bot -0.42 0.45 -0.31 -0.05 0.56 78.94 
17 Tha Luang -0.84 0.05 0.16 -0.27 0.03 78.88 
18 Tha Wung 0.62 0.20 -0.63 0.01 0.65 79.20 
19 Khlong Luang -0.57 -0.05 0.09 -0.19 0.05 78.96 
20 Lam Luk Ka -0.51 0.05 0.22 -0.25 0.08 78.94 
21 Lat Lum Kaeo -0.66 -0.23 -0.17 -0.31 0.25 78.91 
22 Mueang Pathum 

Thani 
-0.88 -0.04 -0.12 0.20 0.12 78.95 

23 Nong Suea 0.88 0.49 1.22 -0.28 0.28 79.03 
24 Sam Khok -0.75 -0.13 -0.13 0.18 0.18 78.94 
25 Thanyaburi -0.48 0.04 0.24 -0.14 0.10 78.94 
26 Ban Phraek -0.23 1.93 0.00 -0.09 0.85 79.24 
27 Bang Ban 0.32 -2.56 -0.01 0.06 0.84 79.12 
28 Bang Pa-In -0.22 -0.62 0.09 -0.22 0.27 79.05 
29 Bang Pahan 0.27 0.61 -0.08 -0.20 0.14 79.17 
30 Bang Sai -0.24 -0.59 -0.17 -0.22 0.41 78.96 
31 Bang Sai 0.32 -1.90 -0.16 -0.19 0.89 78.96 
32 Lat Bua Luang -0.17 -0.64 -0.25 -0.30 0.44 78.91 
33 Maha Rat 0.05 1.69 -0.18 0.19 0.80 79.15 
34 Nakhon Luang 0.39 0.86 -0.09 -0.17 0.44 79.18 
35 Phachi 0.59 1.17 0.01 -0.03 0.59 79.16 
36 Phak Hai 0.52 -2.22 -0.18 -0.09 0.73 79.05 
37 Phra Nakhon Si 

Ayutthaya 
0.04 -1.53 0.19 0.45 0.36 79.15 

38 Sena 0.17 -1.39 -0.18 -0.01 0.71 78.94 
39 Tha Ruea 0.27 1.71 -0.30 -0.16 0.79 79.32 
40 Uthai 0.51 0.60 0.22 0.26 0.21 79.10 
41 Wang Noi 0.05 -0.52 0.43 -0.10 0.25 79.07 
42 Ban Mo 0.25 1.79 -0.39 0.08 0.66 79.40 
43 Chaloem Phra 

Kiat 
2.00 0.56 0.14 0.74 0.20 79.52 

44 Don Phut 0.15 1.67 -0.22 0.01 0.90 79.27 
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Table 6.4 (Continued). 

No. District Intercept 
Regression coefficient 

Residual LocalR2 
Predicted 
(μg/m3) TEMP AOD 

45 Kaeng Khoi 2.00 0.69 0.39 0.05 0.41 79.30 
46 Muak Lek 2.03 0.90 0.45 0.04 0.81 78.90 
47 Mueang Saraburi 1.44 0.70 0.11 0.70 0.11 79.41 
48 Nong Don 0.55 1.20 -0.43 -0.12 0.54 79.44 
49 Nong Khae -0.77 0.53 -1.21 -0.70 0.44 79.29 
50 Nong Saeng 0.42 1.83 -0.24 -0.43 0.59 79.35 
51 Phra Phutthabat 1.91 -0.23 -0.29 0.49 0.07 79.45 
52 Sao Hai 1.10 1.30 -0.09 0.42 0.23 79.50 
53 Wang Muang 1.98 0.87 0.39 0.54 0.83 78.86 
54 Wihan Daeng -0.89 0.13 -1.43 -0.26 0.28 79.22 
55 Bang Rachan 0.16 0.14 -0.40 -0.14 0.10 79.08 
56 In Buri 0.23 0.23 -0.40 -0.05 0.16 79.09 
57 Khai Bang Rachan 0.17 0.08 -0.41 -0.21 0.12 79.08 
58 Mueang Sing Buri 0.33 0.28 -0.51 0.32 0.22 79.06 
59 Phrom Buri 0.53 0.28 -0.65 0.06 0.28 79.15 
60 Tha Chang 0.49 0.18 -0.70 0.12 0.24 79.10 

 
From Table 6.4, the maximum value is 79.52 μg/m3 in Chaloem Phra Kiat 

District, Saraburi province. In contrast, the minimum value is 78.84 μg/m3 in Lam Sonthi 
District, Lop Buri province. The classification maps of prediction values for PM10 
concentration using the GWR model according to the Thailand Air Quality Index and 
the U.S. EPA Air Quality Index are displayed in Figure 6.7. 

As a result, the predicted values of PM10 concentration are satisfactory 
at level 2 based on Thailand AQI and moderate at level 2 according to EPA AQI. 
However, the predicted value in the rural landscape in January 2020 taken from the 
GWR model is more than the one-day mean of WHO guidelines. See Table 5.3. 

In addition, a spatial distribution map of PM10 concentration in January 
2020 using the SCK interpolation technique is displayed in Figure 6.8. As a result, the 
high PM10 concentration occur on agricultural land in the central part of the study 
area, particularly in Saraburi province. 

 



182 

  
(a) (b) 

Figure 6.7 The classification map of PM10 concentration prediction using the GWR 
model in January 2020 according to the (a) Thailand AQI and (b) EPA AQI. 
 

 
Figure 6.8 Spatial distribution of PM10 concentration in January 2020. 
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6.1.5 February 2020 in the winter season 

The result of the GWR model for PM10 concentration prediction in 
February 2020 in the winter season is summarized in Table 6.5. The model 
performance shows that AICc, R-square, and adjusted R-square values are 78.45, 0.92, 
and 0.87, respectively. 
 
Table 6.5 The predictive equations of PM10 concentration in February 2020. 

No. District Intercept 
Regression coefficient 

Residual LocalR2 
Predicted 
(μg/m3) WS FRP 

1 Chaiyo 0.25 0.11 0.29 0.01 0.93 82.18 
2 Mueang Ang Thong 0.31 0.28 0.26 0.04 0.93 81.81 
3 Pa Mok 0.25 0.43 0.11 -0.01 0.65 81.62 
4 Pho Thong 0.20 0.05 0.44 0.04 0.86 81.44 
5 Samko 0.33 0.08 0.60 -0.19 0.84 80.85 
6 Sawaeng Ha 0.16 -0.10 0.65 0.07 0.87 81.27 
7 Wiset Chai Chan 0.30 0.21 0.42 0.07 0.77 80.99 
8 Ban Mi 0.49 0.18 0.58 -0.13 0.91 81.96 
9 Chai Badan -0.44 0.56 -0.05 -0.28 0.21 81.27 
10 Khok Charoen -0.34 0.04 0.08 -0.38 0.02 81.19 
11 Khok Samrong 0.65 0.40 0.75 0.13 0.85 81.73 
12 Lam Sonthi -0.55 0.60 -0.07 -0.48 0.27 81.01 
13 Mueang Lop Buri 0.98 1.10 0.27 0.03 0.68 83.30 
14 Nong Muang -0.07 -0.14 0.35 0.00 0.22 81.01 
15 Phatthana Nikhom 0.39 0.72 0.72 -0.11 0.32 82.70 
16 Sa Bot -0.20 0.21 0.11 -0.14 0.08 81.26 
17 Tha Luang -0.36 0.73 0.14 -0.50 0.20 81.93 
18 Tha Wung 1.00 0.81 -0.05 0.04 0.86 82.39 
19 Khlong Luang -1.08 0.17 0.34 -0.07 0.16 80.32 
20 Lam Luk Ka -1.02 0.18 0.35 0.08 0.17 80.94 
21 Lat Lum Kaeo -1.31 -0.16 0.46 -0.26 0.39 79.07 
22 Mueang Pathum 

Thani 
-1.35 0.10 0.37 -0.51 0.30 79.88 

23 Nong Suea -0.44 0.01 0.24 0.27 0.24 81.08 
24 Sam Khok -1.34 -0.04 0.38 -0.34 0.33 79.79 
25 Thanyaburi -1.01 0.17 0.34 0.15 0.15 80.54 
26 Ban Phraek 0.35 0.26 0.33 -0.21 0.82 83.00 
27 Bang Ban -0.05 0.77 -0.27 0.28 0.34 80.83 
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Table 6.5 (Continued). 

No. District Intercept 
Regression coefficient 

Residual LocalR2 
Predicted 
(μg/m3) WS FRP 

28 Bang Pa-In -0.78 0.23 0.11 -0.34 0.12 80.90 
29 Bang Pahan 0.19 0.40 0.12 0.11 0.59 81.87 
30 Bang Sai -1.24 -0.36 0.52 -0.02 0.44 79.81 
31 Bang Sai -1.21 -0.81 0.69 -0.31 0.13 80.28 
32 Lat Bua Luang -1.27 -0.42 0.55 -0.37 0.43 79.62 
33 Maha Rat 0.32 0.29 0.28 -0.01 0.88 82.41 
34 Nakhon Luang 0.16 0.39 0.20 0.01 0.61 82.32 
35 Phachi -0.07 0.58 0.30 -0.21 0.45 82.89 
36 Phak Hai -0.09 0.36 0.04 0.11 0.14 80.83 
37 Phra Nakhon Si 

Ayutthaya 
-0.13 0.76 -0.41 0.20 0.57 80.97 

38 Sena -1.07 -0.47 0.49 -0.21 0.12 80.25 
39 Tha Ruea 0.26 0.24 0.53 -0.15 0.52 83.51 
40 Uthai -0.13 0.89 -0.48 -0.04 0.74 82.13 
41 Wang Noi -0.68 0.47 0.15 0.00 0.15 81.48 
42 Ban Mo 0.70 0.35 0.30 -0.07 0.09 84.24 
43 Chaloem Phra Kiat 3.38 -0.94 -0.65 0.87 0.26 85.79 
44 Don Phut 0.30 0.28 0.41 -0.21 0.74 83.40 
45 Kaeng Khoi 4.94 -3.17 -0.05 0.22 0.37 83.53 
46 Muak Lek -0.19 0.96 0.57 -0.45 0.24 82.60 
47 Mueang Saraburi 3.10 -1.29 -0.29 0.24 0.22 83.71 
48 Nong Don 1.00 0.59 0.06 0.25 0.18 83.79 
49 Nong Khae -1.32 2.04 -0.14 -0.38 0.40 83.17 
50 Nong Saeng 0.18 0.59 0.26 -0.15 0.11 83.53 
51 Phra Phutthabat 2.43 0.39 -0.78 0.86 0.29 84.60 
52 Sao Hai 2.78 -0.77 -0.49 0.54 0.13 84.13 
53 Wang Muang 0.40 0.61 0.69 0.21 0.28 82.12 
54 Wihan Daeng -1.66 2.53 -0.22 -0.11 0.27 82.77 
55 Bang Rachan 0.23 -0.01 0.54 -0.01 0.88 81.44 
56 In Buri 0.25 -0.02 0.57 -0.02 0.93 81.49 
57 Khai Bang Rachan 0.22 0.00 0.53 -0.01 0.87 81.55 
58 Mueang Sing Buri 0.28 0.04 0.48 0.09 0.90 81.71 
59 Phrom Buri 0.26 0.07 0.35 0.05 0.90 82.11 
60 Tha Chang 0.22 0.03 0.44 0.07 0.88 81.81 
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From Table 6.5, the maximum value is 85.79 μg/m3 in Chaloem Phra Kiat 
District, Saraburi province. In contrast, the minimum value is 79.07 μg/m3 in Lat Lum 
Kaeo District, Pathum Thani province. The classification maps of prediction values for 
PM10 concentration using the GWR model according to the Thailand Air Quality Index 
and the U.S. EPA Air Quality Index are displayed in Figure 6.9. 

Most predicted PM10 concentration are moderate at levels 3 of Thailand 
AQI and 2 of EPA AQI. However, the predicted value in rural landscape in February 
2020 from the GWR model is more than the one-day mean of WHO guidelines. See 
Table 5.3. 

In addition, a spatial distribution map of PM10 concentration in February 
2020 using the SCK interpolation technique is displayed in Figure 6.10. As a result, the 
high PM10 concentration occur on agricultural land in the central part of the study 
area, particularly in Saraburi province. 
 

  
(a) (b) 

Figure 6.9 The classification map of PM10 concentration prediction using the GWR 
model in February 2020 according to the (a) Thailand AQI and (b) EPA AQI. 
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Figure 6.10 Spatial distribution of PM10 concentration in February 2020. 
 

6.1.6 March 2020 in the summer season 

The result of the GWR model for PM10 concentration prediction in March 
2020 in the summer season is summarized in Table 6.6. The model performance shows 
that AICc, R-square, and adjusted R-square values are 119.61, 0.81, and 0.72, 
respectively. 
 
Table 6.6 The predictive equations of PM10 concentration in March 2020. 

No. District Intercept 
Regression coefficient 

Residual LocalR2 
Predicted 
(μg/m3) TEMP AOD FD 

1 Chaiyo -0.01 -0.30 0.18 0.07 -0.17 0.48 48.69 
2 Mueang Ang Thong 0.00 -0.33 0.18 0.11 -0.19 0.54 48.73 
3 Pa Mok 0.03 -0.55 0.23 0.12 -0.21 0.58 48.88 
4 Pho Thong -0.09 -0.26 0.13 0.05 -0.01 0.53 48.55 
5 Samko -0.12 -0.27 0.10 0.07 0.06 0.50 48.49 
6 Sawaeng Ha -0.18 -0.20 0.09 0.04 -0.05 0.46 48.54 
7 Wiset Chai Chan -0.04 -0.33 0.14 0.09 -0.07 0.52 48.61 
8 Ban Mi 0.46 -0.55 0.31 0.40 0.37 0.52 48.33 
9 Chai Badan 1.43 -0.14 0.15 2.53 0.06 0.87 48.46 
10 Khok Charoen 0.84 -0.28 0.07 1.61 -0.35 0.55 48.70 
11 Khok Samrong 1.11 -0.54 0.28 1.61 0.24 0.74 48.43 
12 Lam Sonthi 1.42 -0.13 0.13 2.54 -0.02 0.87 48.50 
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Table 6.6 (Continued). 

No. District Intercept 
Regression coefficient 

Residual LocalR2 
Predicted 
(μg/m3) TEMP AOD FD 

13 Mueang Lop Buri 1.06 -0.77 0.38 1.43 -0.25 0.78 49.09 
14 Nong Muang 0.51 -0.34 0.15 1.00 0.01 0.42 48.49 
15 Phatthana Nikhom 1.35 -0.10 0.29 2.35 -0.01 0.85 48.74 
16 Sa Bot 1.17 -0.30 0.11 2.05 0.11 0.70 48.43 
17 Tha Luang 1.40 -0.09 0.21 2.47 0.06 0.88 48.47 
18 Tha Wung 0.21 -0.44 0.27 0.17 0.10 0.47 48.57 
19 Khlong Luang -0.26 -0.31 0.20 -0.02 -0.15 0.15 48.64 
20 Lam Luk Ka -0.25 -0.27 0.19 -0.02 0.51 0.15 48.68 
21 Lat Lum Kaeo -0.32 -0.61 0.13 -0.05 -0.29 0.25 48.56 
22 Mueang Pathum 

Thani 
-0.32 -0.46 0.14 -0.03 -0.11 0.18 48.55 

23 Nong Suea -0.03 -0.06 0.32 -0.03 -0.22 0.33 48.73 
24 Sam Khok -0.31 -0.51 0.17 -0.04 -0.68 0.21 48.76 
25 Thanyaburi -0.24 -0.26 0.19 -0.02 0.21 0.15 48.59 
26 Ban Phraek 0.04 -0.32 0.28 0.19 -0.27 0.44 48.82 
27 Bang Ban -0.02 -0.55 0.28 0.16 0.43 0.52 48.76 
28 Bang Pa-In -0.18 -0.38 0.30 -0.03 0.25 0.24 48.75 
29 Bang Pahan 0.01 -0.50 0.34 0.22 0.10 0.61 48.85 
30 Bang Sai -0.26 -0.66 0.22 -0.06 -0.02 0.30 48.61 
31 Bang Sai -0.15 -0.95 0.11 -0.06 -0.23 0.44 48.73 
32 Lat Bua Luang -0.28 -0.81 0.14 -0.08 -0.13 0.34 48.55 
33 Maha Rat 0.03 -0.39 0.27 0.17 -0.49 0.53 48.95 
34 Nakhon Luang 0.00 -0.37 0.42 0.27 -0.03 0.55 48.85 
35 Phachi 0.00 -0.34 0.51 0.45 0.28 0.47 48.59 
36 Phak Hai 0.00 -0.54 0.18 0.11 0.04 0.55 48.61 
37 Phra Nakhon Si 

Ayutthaya 
0.01 -0.26 0.37 0.20 0.72 0.44 49.35 

38 Sena -0.18 -0.81 0.16 -0.06 -0.04 0.38 48.63 
39 Tha Ruea 0.00 -0.64 0.60 0.64 -0.40 0.55 49.08 
40 Uthai 0.11 0.01 0.43 0.13 -0.13 0.50 48.99 
41 Wang Noi 0.00 -0.05 0.36 -0.03 -0.46 0.33 49.00 
42 Ban Mo 0.19 -0.57 0.68 1.04 -0.40 0.62 49.43 
43 Chaloem Phra Kiat 0.74 -0.14 0.52 1.85 1.24 0.66 51.32 
44 Don Phut 0.13 -0.56 0.52 0.48 -0.04 0.56 48.77 
45 Kaeng Khoi 0.58 -0.16 0.49 1.61 0.08 0.63 49.12 
46 Muak Lek 1.13 -0.05 0.36 2.04 0.05 0.79 48.55 
47 Mueang Saraburi 0.43 -0.18 0.51 1.48 -1.33 0.56 50.17 
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Table 6.6 (Continued). 

No. District Intercept 
Regression coefficient 

Residual LocalR2 
Predicted 
(μg/m3) TEMP AOD FD 

48 Nong Don 0.40 -0.54 0.68 1.23 0.29 0.68 49.07 
49 Nong Khae -0.08 -0.35 0.56 0.33 -0.94 0.43 49.25 
50 Nong Saeng 0.16 -0.32 0.57 0.99 0.54 0.51 48.59 
51 Phra Phutthabat 0.78 -0.24 0.56 1.96 1.73 0.72 49.77 
52 Sao Hai 0.49 -0.18 0.57 1.57 -0.10 0.59 49.98 
53 Wang Muang 1.21 -0.05 0.35 2.13 0.06 0.81 48.60 
54 Wihan Daeng -0.12 -0.39 0.59 0.36 0.32 0.42 48.48 
55 Bang Rachan -0.16 -0.20 0.11 0.02 -0.22 0.39 48.63 
56 In Buri 0.03 -0.32 0.19 0.06 0.02 0.39 48.50 
57 Khai Bang Rachan -0.14 -0.22 0.11 0.03 -0.13 0.45 48.59 
58 Mueang Sing Buri 0.07 -0.35 0.20 0.07 -0.03 0.42 48.56 
59 Phrom Buri 0.04 -0.34 0.20 0.07 0.09 0.44 48.52 
60 Tha Chang -0.04 -0.28 0.16 0.04 0.15 0.44 48.45 

 
From Table 6.6, the maximum value is 51.32 μg/m3 in Chaloem Phra Kiat 

District, Saraburi province. In contrast, the minimum value is 48.33 μg/m3 in Ban Mi 
District, Lop Buri province. The classification maps of prediction values for PM10 
concentration using the GWR model according to the Thailand Air Quality Index and 
the U.S. EPA Air Quality Index are displayed in Figure 6.11. 

As a result, most predicted PM10 concentration are excellent at level 1 
of Thailand AQI and good at level 1 of the EPA AQI. However, the predicted value in 
the rural landscape in March 2020 from the GWR model is higher than the one-day 
mean of WHO guidelines. See Table 5.3. 

In addition, a spatial distribution map of PM10 concentration in March 
2020 using the SCK interpolation technique is displayed in Figure 6.12. As a result, the 
high PM10 concentration occur on agricultural land in the central part of the study 
area, particularly in Saraburi province. 
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(a) (b) 

Figure 6.11 The classification map of PM10 concentration prediction using the GWR 
model in March 2020 according to the (a) Thailand AQI and (b) EPA AQI. 
 

 
Figure 6.12 Spatial distribution of PM10 concentration in March 2020. 
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6.1.7 April 2020 in the summer season 

The result of the GWR model for PM10 concentration prediction in April 
2020 in the summer season is summarized in Table 6.7. The model performance shows 
that AICc, R-square, and adjusted R-square values are 64.75, 0.93, and 0.89, 
respectively. 
 
Table 6.7 The predictive equations of PM10 concentration in April 2020. 

No. District Intercept 
Regression coefficient 

Residual LocalR2 
Predicted 
(μg/m3) BT 

1 Chaiyo 0.12 0.24 0.03 0.45 44.01 
2 Mueang Ang Thong 0.09 0.20 0.10 0.21 43.89 
3 Pa Mok 0.03 0.19 0.07 0.11 43.96 
4 Pho Thong -0.13 0.12 -0.02 0.11 43.84 
5 Samko -0.51 -0.12 -0.19 0.12 43.74 
6 Sawaeng Ha -0.29 0.06 -0.05 0.08 43.78 
7 Wiset Chai Chan -0.56 -0.23 -0.01 0.28 43.70 
8 Ban Mi -0.02 -0.14 -0.01 0.09 43.84 
9 Chai Badan -0.91 0.43 -0.11 0.43 43.52 
10 Khok Charoen -0.88 0.39 -0.31 0.32 43.62 
11 Khok Samrong -0.05 0.04 0.00 0.00 44.01 
12 Lam Sonthi -0.94 0.40 0.00 0.55 43.21 
13 Mueang Lop Buri 0.66 0.37 -0.04 0.03 44.55 
14 Nong Muang -0.69 0.25 -0.03 0.14 43.64 
15 Phatthana Nikhom -0.24 0.54 -0.16 0.01 44.21 
16 Sa Bot -0.78 0.40 -0.06 0.17 43.65 
17 Tha Luang -0.87 0.46 -0.53 0.19 43.85 
18 Tha Wung -0.04 -0.01 0.01 0.00 43.99 
19 Khlong Luang 0.57 1.02 0.54 0.72 43.85 
20 Lam Luk Ka 0.71 1.02 0.54 0.73 44.09 
21 Lat Lum Kaeo -0.54 0.54 0.26 0.57 42.65 
22 Mueang Pathum 

Thani 
0.27 0.86 0.01 0.71 42.99 

23 Nong Suea 0.52 0.26 -0.02 0.12 44.29 
24 Sam Khok -0.02 0.77 -0.55 0.66 43.20 
25 Thanyaburi 0.70 1.03 -0.37 0.71 44.43 
26 Ban Phraek 0.38 0.48 -0.05 0.63 44.22 
27 Bang Ban 0.01 1.01 -0.31 0.59 44.03 
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Table 6.7 (Continued). 

No. District Intercept 
Regression coefficient 

Residual LocalR2 
Predicted 
(μg/m3) BT 

28 Bang Pa-In 0.26 1.25 -0.25 0.73 44.16 
29 Bang Pahan 0.30 0.49 -0.04 0.58 44.25 
30 Bang Sai -0.22 0.83 -0.42 0.75 43.39 
31 Bang Sai -0.38 0.88 -0.22 0.73 43.27 
32 Lat Bua Luang -0.60 0.56 -0.08 0.68 43.00 
33 Maha Rat 0.37 0.46 -0.17 0.73 44.23 
34 Nakhon Luang 0.33 0.83 -0.13 0.65 44.56 
35 Phachi 0.62 0.58 -0.10 0.21 44.54 
36 Phak Hai -0.34 0.32 -0.10 0.09 43.75 
37 Phra Nakhon Si 

Ayutthaya 
0.09 1.30 0.06 0.78 44.37 

38 Sena -0.26 0.93 -0.30 0.75 43.39 
39 Tha Ruea 0.44 1.11 -0.14 0.27 44.68 
40 Uthai 0.52 0.52 0.11 0.24 44.43 
41 Wang Noi 0.52 0.56 0.26 0.30 44.30 
42 Ban Mo 0.28 1.80 0.00 0.67 44.79 
43 Chaloem Phra Kiat 0.14 2.28 0.50 0.68 45.73 
44 Don Phut 0.49 0.75 -0.16 0.60 44.51 
45 Kaeng Khoi 0.39 1.32 -0.67 0.25 44.97 
46 Muak Lek 0.53 -0.39 -0.64 0.01 44.09 
47 Mueang Saraburi 0.35 1.84 -0.10 0.63 44.68 
48 Nong Don 0.37 1.69 0.32 0.78 44.58 
49 Nong Khae 0.60 0.84 0.01 0.49 44.32 
50 Nong Saeng 0.46 1.44 0.08 0.50 44.57 
51 Phra Phutthabat 0.15 2.25 -0.27 0.81 45.74 
52 Sao Hai 0.15 2.32 0.29 0.80 44.97 
53 Wang Muang 1.09 -0.69 -0.46 0.01 44.22 
54 Wihan Daeng 0.58 0.86 -0.25 0.44 44.48 
55 Bang Rachan -0.32 0.01 -0.13 0.01 43.83 
56 In Buri -0.29 -0.01 -0.17 0.00 43.83 
57 Khai Bang Rachan -0.30 0.04 -0.06 0.07 43.83 
58 Mueang Sing Buri -0.25 -0.01 0.03 0.00 43.86 
59 Phrom Buri -0.13 0.06 0.12 0.09 43.94 
60 Tha Chang -0.19 0.07 0.02 0.14 43.89 
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From Table 6.7, the maximum value is 45.74 μg/m3 in Phra Phutthabat 
District, Saraburi province. In contrast, the minimum value is 42.65 μg/m3 in Lat Lum 
Kaeo District, Pathum Thani province. The classification maps of prediction values for 
PM10 concentration using the GWR model according to the Thailand Air Quality Index 
and the U.S. EPA Air Quality Index are displayed in Figure 6.13. 

As a result, the predicted values of PM10 concentration are excellent at 
level 1 of Thailand AQI and good at level 1 of the EPA AQI. In addition, the predicted 
value in rural landscape in April 2020 from the GWR model is less than the one-day 
mean of WHO guidelines. See Table 5.3. 

In addition, a spatial distribution map of PM10 concentration in April 2020 
using the SCK interpolation technique is displayed in Figure 6.14. As a result, the high 
PM10 concentration occur on agricultural land in the central part of the study area, 
particularly in Saraburi province. 
 

  
(a) (b) 

Figure 6.13 The classification map of PM10 concentration prediction using the GWR 
model in April 2020 according to the (a) Thailand AQI and (b) EPA AQI. 
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Figure 6.14 Spatial distribution of PM10 concentration in April 2020. 
 

6.1.8 May 2020 in the summer season 

The result of the GWR model for PM10 concentration prediction in May 
2020 in the summer season is summarized in Table 6.8. The model performance shows 
that AICc, R-square, and adjusted R-square values are 154.74, 0.62, and 0.45, 
respectively. 
 
Table 6.8 The predictive equations of PM10 concentration in May 2020. 

No. District Intercept 
Regression coefficient 

Residual LocalR2 
Predicted 
(μg/m3) VIS 

1 Chaiyo -0.28 0.09 -0.02 0.53 37.17 
2 Mueang Ang Thong -0.24 0.20 -0.09 0.27 37.23 
3 Pa Mok -0.12 0.71 -0.20 0.14 37.39 
4 Pho Thong -0.32 0.06 -0.01 0.50 37.15 
5 Samko -0.34 0.06 -0.01 0.48 37.15 
6 Sawaeng Ha -0.36 0.02 -0.01 0.42 37.14 
7 Wiset Chai Chan -0.31 0.11 -0.05 0.29 37.18 
8 Ban Mi -0.26 0.08 -0.02 0.10 37.15 
9 Chai Badan -0.28 -0.07 -0.10 0.02 37.20 
10 Khok Charoen -0.38 -0.02 -0.02 0.04 37.14 
11 Khok Samrong -0.06 0.18 -0.14 0.01 37.24 
12 Lam Sonthi -0.34 -0.03 0.02 0.03 37.12 
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Table 6.8 (Continued). 

No. District Intercept 
Regression coefficient 

Residual LocalR2 
Predicted 
(μg/m3) VIS 

13 Mueang Lop Buri 2.31 2.27 -0.24 0.30 37.47 
14 Nong Muang -0.38 -0.02 -0.03 0.03 37.15 
15 Phatthana Nikhom 0.35 -0.37 -0.56 0.00 37.70 
16 Sa Bot -0.36 -0.05 -0.06 0.02 37.17 
17 Tha Luang -0.14 -0.16 -0.24 0.02 37.29 
18 Tha Wung -0.20 0.13 0.00 0.21 37.15 
19 Khlong Luang 0.38 -0.46 -0.33 0.22 37.20 
20 Lam Luk Ka 0.11 -0.21 0.91 0.05 37.25 
21 Lat Lum Kaeo 0.43 -0.56 0.20 0.52 36.95 
22 Mueang Pathum 

Thani 
0.43 -0.52 -0.07 0.35 36.92 

23 Nong Suea -0.26 0.11 -0.18 0.03 37.29 
24 Sam Khok 0.45 -0.57 -0.15 0.52 37.01 
25 Thanyaburi 0.14 -0.24 0.13 0.06 37.25 
26 Ban Phraek -0.19 0.09 -0.07 0.02 37.24 
27 Bang Ban 0.43 -0.37 0.00 0.01 37.55 
28 Bang Pa-In 1.07 -1.18 -0.16 0.35 37.56 
29 Bang Pahan 0.02 1.92 -0.07 0.33 37.54 
30 Bang Sai 0.94 -0.94 -0.34 0.45 37.45 
31 Bang Sai 0.06 -0.28 -0.03 0.07 37.26 
32 Lat Bua Luang 0.47 -0.59 0.00 0.41 37.15 
33 Maha Rat -0.10 0.30 -0.14 0.13 37.31 
34 Nakhon Luang 0.19 1.44 -0.10 0.25 37.55 
35 Phachi 0.17 -0.10 -0.26 0.00 37.48 
36 Phak Hai -0.21 0.17 -0.17 0.04 37.29 
37 Phra Nakhon Si 

Ayutthaya 
0.56 -0.23 1.73 0.00 37.67 

38 Sena 0.51 -0.70 -0.20 0.20 37.35 
39 Tha Ruea 0.08 -0.93 -0.28 0.11 37.57 
40 Uthai 0.13 0.46 -0.04 0.03 37.52 
41 Wang Noi 0.30 -0.52 -0.26 0.14 37.38 
42 Ban Mo -0.11 -2.61 -0.44 0.14 38.00 
43 Chaloem Phra Kiat 0.17 -5.64 3.19 0.19 39.00 
44 Don Phut -0.07 -0.23 -0.16 0.03 37.38 
45 Kaeng Khoi 0.18 -2.85 -1.69 0.11 38.48 
46 Muak Lek -0.01 -0.84 -0.77 0.02 37.63 
47 Mueang Saraburi 0.01 -4.64 -0.44 0.31 37.54 
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Table 6.8 (Continued). 

No. District Intercept 
Regression coefficient 

Residual LocalR2 
Predicted 
(μg/m3) VIS 

48 Nong Don 0.44 -0.42 -0.38 0.01 37.79 
49 Nong Khae -0.01 -0.65 -0.26 0.15 37.34 
50 Nong Saeng 0.03 -3.34 -0.26 0.32 37.51 
51 Phra Phutthabat 1.80 0.13 1.36 0.00 38.44 
52 Sao Hai -0.24 -6.02 0.46 0.35 38.18 
53 Wang Muang 0.23 -0.80 -0.91 0.01 37.78 
54 Wihan Daeng 0.07 -0.90 -0.39 0.13 37.39 
55 Bang Rachan -0.37 0.02 0.00 0.25 37.14 
56 In Buri -0.33 0.05 0.00 0.14 37.13 
57 Khai Bang Rachan -0.36 0.03 -0.01 0.39 37.14 
58 Mueang Sing Buri -0.33 0.05 0.00 0.17 37.14 
59 Phrom Buri -0.31 0.06 0.00 0.52 37.14 
60 Tha Chang -0.34 0.04 0.00 0.45 37.14 

 
From Table 6.8, the maximum value is 39.00 μg/m3 in Chaloem Phra Kiat 

District, Saraburi province. In contrast, the minimum value is 36.92 μg/m3 in Mueang 
Pathum Thani District, Pathum Thani province. The classification maps of prediction 
values for PM10 concentration using the GWR model according to the Thailand Air 
Quality Index and the U.S. EPA Air Quality Index are displayed in Figure 6.15. 

As a result, the predicted values of PM10 concentration are excellent at 
level 1 of Thailand AQI and good at level 1 of the EPA AQI. In addition, the predicted 
value in rural landscape in May 2020 from the GWR model is less than the one-day 
mean of WHO guidelines. See Table 5.3. 

In addition, a spatial distribution map of PM10 concentration in May 2020 
using the SCK interpolation technique is displayed in Figure 6.16. As a result, the high 
PM10 concentration occur on agricultural land in the central part of the study area, 
particularly in Saraburi province. 
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(a) (b) 

Figure 6.15 The classification map of PM10 concentration prediction using the GWR 
model in May 2020 according to the (a) Thailand AQI and (b) EPA AQI. 
 

 
Figure 6.16 Spatial distribution of PM10 concentration in May 2020. 
  

 



197 

6.1.9 Winter season 

The result of the GWR model for PM10 concentration prediction in the 
winter season (October to February) is summarized in Table 6.9. The model 
performance shows that AICc, R-square, and adjusted R-square values are 132.89, 0.70, 
and 0.61, respectively. 
 
Table 6.9 The predictive equations of PM10 concentration in the winter season. 

No
. 

District Intercept 
Regression coefficient 

Residual 
Local 

R2 
Predicted 
(μg/m3) TEMP WS VIS FRP AOD 

1 Chaiyo 0.23 0.68 0.62 -0.46 0.25 -0.04 0.20 0.66 70.51 
2 Mueang Ang 

Thong 
0.16 0.68 0.58 -0.60 0.32 -0.02 0.05 0.71 70.49 

3 Pa Mok 0.12 0.54 0.53 -0.74 0.38 0.02 -0.04 0.70 70.45 
4 Pho Thong 0.22 0.57 0.66 -0.52 0.23 -0.03 0.09 0.68 70.32 
5 Samko 0.17 0.39 0.70 -0.66 0.23 0.01 -0.21 0.70 70.30 
6 Sawaeng Ha 0.25 0.42 0.71 -0.50 0.17 -0.03 0.02 0.65 70.30 
7 Wiset Chai 

Chan 
0.15 0.43 0.64 -0.67 0.27 0.01 -0.17 0.73 70.36 

8 Ban Mi 0.62 0.46 0.49 0.23 0.10 0.03 -0.35 0.51 70.89 
9 Chai Badan 0.46 0.48 1.07 -0.27 -0.14 0.15 0.10 0.53 69.95 
10 Khok Charoen 0.51 0.44 0.89 -0.17 -0.05 0.21 -0.45 0.51 70.43 
11 Khok 

Samrong 
0.61 0.49 0.69 0.10 0.04 0.08 -0.68 0.51 71.32 

12 Lam Sonthi 0.44 0.46 1.12 -0.33 -0.17 0.17 -0.39 0.54 70.21 
13 Mueang Lop 

Buri 
0.58 0.48 0.62 0.05 0.15 -0.03 -0.24 0.50 71.77 

14 Nong Muang 0.56 0.45 0.75 -0.03 0.00 0.17 -0.68 0.50 70.86 
15 Phatthana 

Nikhom 
0.45 0.52 0.94 -0.09 -0.06 -0.04 0.14 0.46 70.83 

16 Sa Bot 0.52 0.46 0.88 -0.14 -0.05 0.16 -0.35 0.51 70.53 
17 Tha Luang 0.37 0.49 1.11 -0.31 -0.15 0.05 0.13 0.49 70.04 
18 Tha Wung 0.41 0.48 0.66 -0.24 0.16 -0.03 0.08 0.57 70.81 
19 Khlong Luang 0.14 0.40 0.23 -0.89 0.40 -0.06 0.00 0.65 69.58 
20 Lam Luk Ka 0.19 0.42 0.17 -0.91 0.38 -0.11 0.15 0.66 69.94 
21 Lat Lum Kaeo 0.03 0.27 0.31 -0.82 0.37 0.04 -0.05 0.69 69.28 
22 Mueang 

Pathum Thani 
0.07 0.33 0.27 -0.85 0.39 0.00 -0.46 0.67 69.44 
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Table 6.9 (Continued). 
No
. 

District Intercept 
Regression coefficient 

Residual 
Local 

R2 
Predicted 
(μg/m3) TEMP WS VIS FRP AOD 

23 Nong Suea 0.24 0.40 0.20 -0.93 0.40 -0.12 -0.51 0.61 70.72 
24 Sam Khok 0.07 0.34 0.30 -0.86 0.39 0.01 0.02 0.66 69.01 
25 Thanyaburi 0.17 0.41 0.19 -0.91 0.39 -0.10 -0.31 0.65 70.18 
26 Ban Phraek 0.22 0.75 0.59 -0.47 0.27 -0.05 -0.03 0.63 70.99 
27 Bang Ban 0.08 0.39 0.42 -0.82 0.40 0.04 0.54 0.68 69.72 
28 Bang Pa-In 0.10 0.41 0.31 -0.88 0.41 -0.02 -0.28 0.64 70.10 
29 Bang Pahan 0.13 0.61 0.46 -0.77 0.41 -0.02 0.27 0.65 70.32 
30 Bang Sai 0.06 0.34 0.33 -0.85 0.39 0.02 0.11 0.67 69.44 
31 Bang Sai 0.02 0.24 0.44 -0.79 0.35 0.09 0.03 0.71 69.52 
32 Lat Bua 

Luang 
0.00 0.23 0.34 -0.79 0.36 0.07 0.24 0.71 69.10 

33 Maha Rat 0.16 0.80 0.54 -0.57 0.34 -0.04 0.09 0.66 70.69 
34 Nakhon 

Luang 
0.15 0.63 0.41 -0.80 0.42 -0.07 0.33 0.60 70.42 

35 Phachi 0.21 0.66 0.30 -0.85 0.42 -0.16 -0.36 0.54 71.23 
36 Phak Hai 0.09 0.31 0.55 -0.73 0.32 0.05 0.04 0.74 70.10 
37 Phra Nakhon 

Si Ayutthaya 
0.10 0.44 0.37 -0.87 0.41 -0.01 0.36 0.64 70.04 

38 Sena 0.02 0.25 0.38 -0.79 0.37 0.08 0.18 0.71 69.51 
39 Tha Ruea 0.22 0.71 0.46 -0.64 0.36 -0.13 -0.30 0.52 71.64 
40 Uthai 0.18 0.54 0.27 -0.91 0.43 -0.11 -0.34 0.60 70.94 
41 Wang Noi 0.19 0.48 0.22 -0.92 0.41 -0.11 -0.64 0.62 70.92 
42 Ban Mo 0.29 0.54 0.61 -0.55 0.28 -0.12 -0.03 0.48 72.03 
43 Chaloem 

Phra Kiat 
0.35 0.38 0.72 -0.51 0.19 -0.21 2.99 0.34 71.94 

44 Don Phut 0.21 0.87 0.53 -0.45 0.31 -0.07 -0.17 0.61 71.37 
45 Kaeng Khoi 0.30 0.24 0.64 -0.98 0.30 -0.20 0.38 0.33 71.44 
46 Muak Lek 0.22 0.45 1.07 -0.42 -0.06 -0.10 -0.24 0.40 70.80 
47 Mueang 

Saraburi 
0.34 0.25 0.50 -0.99 0.37 -0.22 -0.15 0.37 72.21 

48 Nong Don 0.35 0.51 0.70 -0.41 0.21 -0.08 0.08 0.50 72.04 
49 Nong Khae 0.31 0.34 0.30 -0.96 0.40 -0.16 -0.70 0.51 71.54 
50 Nong Saeng 0.30 0.46 0.40 -0.88 0.39 -0.19 -0.09 0.44 71.45 
51 Phra 

Phutthabat 
0.42 0.44 0.73 -0.31 0.18 -0.14 1.34 0.40 72.43 

52 Sao Hai 0.33 0.34 0.59 -0.78 0.33 -0.20 0.71 0.37 72.07 
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Table 6.9 (Continued). 
No
. 

District Intercept 
Regression coefficient 

Residual 
Local 

R2 
Predicted 
(μg/m3) TEMP WS VIS FRP AOD 

53 Wang Muang 0.31 0.48 0.98 -0.25 -0.05 -0.12 0.39 0.40 70.46 
54 Wihan Daeng 0.38 0.24 0.29 -1.01 0.39 -0.19 -1.04 0.47 71.88 
55 Bang Rachan 0.33 0.37 0.67 -0.32 0.12 -0.04 0.13 0.57 70.21 
56 In Buri 0.46 0.39 0.51 0.01 0.10 -0.03 0.42 0.52 69.94 
57 Khai Bang 

Rachan 
0.29 0.41 0.70 -0.42 0.15 -0.04 0.00 0.61 70.40 

58 Mueang Sing 
Buri 

0.40 0.42 0.64 -0.20 0.12 -0.03 0.27 0.55 70.28 

59 Phrom Buri 0.32 0.51 0.68 -0.37 0.17 -0.04 0.18 0.60 70.54 
60 Tha Chang 0.30 0.49 0.68 -0.40 0.17 -0.04 0.17 0.62 70.41 

 
From Table 6.9, the maximum value is 72.43 μg/m3 in Phra Phutthabat 

District, Saraburi province. In contrast, the minimum value is 69.01 μg/m3 in Sam Khok 
District, Pathum Thani province. The classification maps of prediction values for PM10 
concentration using the GWR model according to the Thailand Air Quality Index and 
the U.S. EPA Air Quality Index are displayed in Figure 6.17. 

As a result, the predicted values of PM10 concentration are satisfactory 
at level 2 of Thailand AQI and moderate at level 2 of the EPA AQI. However, the 
predicted value in rural landscape in the winter season from the GWR model is more 
than the one-day mean of WHO guidelines. See Table 5.3. 

In addition, a spatial distribution map of PM10 concentration in the winter 
season using the SCK interpolation technique is displayed in Figure 6.18. As a result, 
the high PM10 concentration occur on agricultural land in the central part of the study 
area, particularly Lob Buri and Saraburi province. 
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(a) (b) 

Figure 6.17 The classification map of PM10 concentration prediction using the GWR 
model in the winter season according to the (a) Thailand AQI and (b) EPA AQI. 
 

 
Figure 6.18 Spatial distribution of PM10 concentration in the winter season. 
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6.1.10 Summer season 

 The result of the GWR model for PM10 concentration prediction in the 
summer season (March to May) is summarized in Table 6.10. The model performance 
shows that AICc, R-square, and adjusted R-square values are 120.34, 0.79, and 0.70, 
respectively. 
 
Table 6.10 The predictive equations of PM10 concentration in the summer season. 

No. District Intercept 
Regression coefficient 

Residual
Local 

R2 
Predicted 
(μg/m3) TEMP VIS AOD BT FD 

1 Chaiyo 0.48 -0.34 0.40 0.14 0.45 0.35 0.03 0.54 43.24 
2 Mueang Ang 

Thong 
0.35 -0.25 0.26 0.17 0.55 0.29 0.10 0.57 43.19 

3 Pa Mok 0.29 -0.13 0.17 0.17 0.66 0.25 -0.03 0.66 43.36 
4 Pho Thong 0.39 -0.37 0.29 0.16 0.42 0.29 0.31 0.54 42.99 
5 Samko 0.19 -0.34 0.10 0.16 0.41 0.18 0.05 0.58 43.07 
6 Sawaeng Ha 0.38 -0.41 0.28 0.13 0.35 0.22 0.32 0.53 42.95 
7 Wiset Chai 

Chan 
0.19 -0.29 0.10 0.17 0.46 0.19 -0.22 0.63 43.26 

8 Ban Mi 0.70 -0.50 0.31 0.22 0.26 0.79 0.43 0.53 42.93 
9 Chai Badan 0.88 -0.19 -0.02 0.23 0.16 1.82 -0.04 0.67 43.05 
10 Khok 

Charoen 
0.76 -0.40 -0.13 0.27 0.16 1.46 -0.14 0.60 43.10 

11 Khok 
Samrong 

0.77 -0.35 0.10 0.30 0.24 1.46 0.14 0.60 43.17 

12 Lam Sonthi 0.94 -0.20 -0.07 0.20 0.11 1.89 0.04 0.69 42.93 
13 Mueang Lop 

Buri 
0.80 -0.21 0.78 0.22 0.34 1.21 -0.14 0.59 43.68 

14 Nong Muang 0.69 -0.47 -0.08 0.30 0.20 1.24 0.55 0.55 42.78 
15 Phatthana 

Nikhom 
0.87 0.02 0.26 0.24 0.26 1.90 0.23 0.66 43.28 

16 Sa Bot 0.78 -0.34 -0.06 0.28 0.19 1.55 -0.02 0.62 43.10 
17 Tha Luang 0.96 -0.09 0.04 0.20 0.16 1.99 -0.14 0.70 43.13 
18 Tha Wung 0.73 -0.51 0.56 0.07 0.38 0.41 -0.17 0.57 43.36 
19 Khlong 

Luang 
0.21 -0.13 0.07 0.13 0.69 0.08 0.41 0.62 43.01 

20 Lam Luk Ka 0.26 -0.07 0.09 0.12 0.73 0.09 0.46 0.57 43.47 
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Table 6.10 (Continued). 

No. District Intercept 
Regression coefficient 

Residual 
Local 

R2 
Predicted 
(μg/m3) TEMP VIS AOD BT FD 

21 Lat Lum 
Kaeo 

0.08 -0.29 -0.01 0.17 0.57 0.05 0.20 0.76 42.64 

22 Mueang 
Pathum 
Thani 

0.10 -0.25 0.02 0.16 0.60 0.05 -0.36 0.71 42.99 

23 Nong Suea 0.40 0.08 0.13 0.07 0.84 0.15 0.08 0.52 43.31 
24 Sam Khok 0.10 -0.26 0.01 0.16 0.60 0.06 -0.47 0.72 42.98 
25 Thanyaburi 0.26 -0.07 0.09 0.12 0.73 0.09 -0.07 0.58 43.45 
26 Ban Phraek 0.55 -0.25 0.53 0.12 0.53 0.44 -0.09 0.55 43.40 
27 Bang Ban 0.20 -0.16 0.06 0.15 0.67 0.14 -0.15 0.76 43.55 
28 Bang Pa-In 0.21 -0.14 0.06 0.12 0.70 0.09 0.43 0.65 43.21 
29 Bang Pahan 0.39 0.04 0.29 0.16 0.77 0.35 -0.22 0.63 43.67 
30 Bang Sai 0.14 -0.23 0.02 0.15 0.63 0.07 -0.25 0.73 43.13 
31 Bang Sai 0.11 -0.27 -0.01 0.16 0.59 0.08 -0.21 0.78 43.11 
32 Lat Bua 

Luang 
0.09 -0.29 -0.02 0.17 0.57 0.06 0.16 0.79 42.76 

33 Maha Rat 0.47 -0.11 0.43 0.15 0.64 0.41 -0.06 0.57 43.37 
34 Nakhon 

Luang 
0.49 0.19 0.38 0.12 0.88 0.44 -0.44 0.57 43.85 

35 Phachi 0.57 0.32 0.29 0.04 1.03 0.43 -0.34 0.50 43.71 
36 Phak Hai 0.17 -0.23 0.05 0.17 0.59 0.15 -0.06 0.73 43.21 
37 Phra 

Nakhon Si 
Ayutthaya 

0.23 -0.11 0.07 0.13 0.72 0.14 0.48 0.67 44.03 

38 Sena 0.12 -0.26 -0.01 0.16 0.60 0.09 -0.08 0.79 43.05 
39 Tha Ruea 0.63 0.33 0.62 0.10 0.91 0.74 -0.33 0.54 43.80 
40 Uthai 0.43 0.12 0.17 0.06 0.90 0.22 -0.08 0.53 43.68 
41 Wang Noi 0.36 0.03 0.13 0.08 0.83 0.15 0.42 0.55 43.23 
42 Ban Mo 0.65 0.22 0.80 0.13 0.74 0.93 0.23 0.53 43.78 
43 Chaloem 

Phra Kiat 
0.68 0.36 0.54 0.23 0.64 1.49 1.71 0.55 45.38 

44 Don Phut 0.60 -0.03 0.64 0.12 0.68 0.59 0.03 0.55 43.46 
45 Kaeng Khoi 0.62 0.39 -0.09 0.18 0.92 1.17 0.00 0.49 43.73 
46 Muak Lek 0.80 0.10 0.22 0.22 0.33 1.88 -0.14 0.66 43.22 
47 Mueang 

Saraburi 
0.63 0.49 0.05 0.11 1.08 0.90 -1.26 0.48 44.48 
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Table 6.10 (Continued). 

No. District Intercept 
Regression coefficient 

Residual 
Local 

R2 
Predicted 
(μg/m3) TEMP VIS AOD BT FD 

48 Nong Don 0.69 -0.04 0.88 0.15 0.48 0.94 0.44 0.54 43.61 
49 Nong Khae 0.69 0.44 0.18 -0.04 1.07 0.42 -0.54 0.46 43.71 
50 Nong Saeng 0.66 0.47 0.31 0.03 1.10 0.68 -0.37 0.49 43.84 
51 Phra 

Phutthabat 
0.70 0.24 0.91 0.24 0.52 1.46 1.94 0.56 44.11 

52 Sao Hai 0.65 0.45 0.46 0.16 0.91 1.11 0.14 0.52 44.43 
53 Wang 

Muang 
0.80 0.12 0.30 0.23 0.34 1.86 0.17 0.65 43.17 

54 Wihan 
Daeng 

0.75 0.53 0.05 0.00 1.05 0.51 -0.37 0.45 43.59 

55 Bang 
Rachan 

0.52 -0.49 0.35 0.10 0.32 0.21 -0.14 0.53 43.21 

56 In Buri 0.63 -0.53 0.38 0.13 0.28 0.38 -0.17 0.53 43.22 
57 Khai Bang 

Rachan 
0.46 -0.45 0.33 0.10 0.33 0.19 0.00 0.53 43.15 

58 Mueang Sing 
Buri 

0.66 -0.53 0.44 0.09 0.34 0.33 -0.44 0.55 43.43 

59 Phrom Buri 0.61 -0.47 0.47 0.08 0.38 0.30 0.03 0.55 43.23 
60 Tha Chang 0.53 -0.45 0.40 0.10 0.36 0.25 0.15 0.54 43.11 

 
From Table 6.10, the maximum value is 45.38 μg/m3 in Chaloem Phra 

Kiat District, Saraburi province. In contrast, the minimum value is 42.64 μg/m3 in Lat 
Lum Kaeo District, Pathum Thani province. The classification maps of prediction values 
for PM10 concentration using the GWR model according to the Thailand Air Quality 
Index and the U.S. EPA Air Quality Index are displayed in Figure 6.19. 

As a result, the predicted values of PM10 concentration are excellent at 
level 1 of Thailand AQI and good at level 1 of the EPA AQI. In addition, the predicted 
value in rural landscape in the summer season from the GWR model is less than the 
one-day mean of WHO guidelines. See Table 5.3. 

In addition, a spatial distribution map of PM10 concentration in the 
summer season using the SCK interpolation technique is displayed in Figure 6.20. As a 
result, the high PM10 concentration occur on agricultural land in the central part of 
the study area, particularly in Saraburi province. 
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(a) (b) 

Figure 6.19 The classification map of PM10 concentration prediction using the GWR 
model in the summer season according to the (a) Thailand AQI and (b) EPA AQI. 
 

 
Figure 6.20 Spatial distribution of PM10 concentration in the summer season. 
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6.2 The predictive equations and their distribution map for 
spatiotemporal PM2.5 concentration in the urban landscape using the 
GWR model 

Under this section, the GWR model with the significant derived factors was 
applied to predict the urban landscape's monthly PM2.5 concentration in winter and 
summer. The generic equations for PM2.5 concentration in winter and summer in urban 
landscapes are shown in Equations 6.3 and 6.4. 

yሺi,jሻ=βoi,j + βk1ሺi,jሻRH + βk2ሺi,jሻTEMP + βk3ሺi,jሻWS + βk4ሺi,jሻP + βk5ሺi,jሻVIS +  

 βk6ሺi,jሻBT + βk7(i,j)FRP + βk8(i,j)FH + βk9(i,j)AOD + βk10(i,j)ELEV + ε(i.j) 

(6.3) 

y(i,j) = βoi,j + βk3(i,j)WS + βk5(i,j)VIS + βk6(i,j)BT + βk7(i,j)FRP + βk8(i,j)FH + 
βk9(i,j)AOD + βk11(i,j)FD + βk10(i,j)ELEV + ε(i.j) 

(6.4) 

Where βoi,j denotes intercept value at district i, month j; βk1(i,j) denotes the coefficients 

of relative humidity; βk2(i,j) denotes the coefficients of temperature; βk3(i,j) denotes the 

coefficients of wind speed; βk4(i,j) denotes the coefficients of pressure; βk5(i,j) denotes 

the coefficients of visibility; βk6(i,j) denotes the coefficients of brightness temperature; 

βk7(i,j) denotes the coefficients of fire radiative power; βk8(i,j) denotes the coefficients 

of fire hotspot; βk9(i,j) denotes the coefficients of MODIS AOD; βk10(i,j) denotes the 

coefficients of elevation; βk11(i,j) denotes the coefficients of factory density; and  ε(i.j) 
is residual values. RH, TEMP, WS, P, VIS, BT, FRP, FH, AOD, ELEV, and FD are significant 
normalized variables. 

The monthly predictive equation of PM2.5 concentration in winter and summer 
in urban landscapes is systematically reported in a tabular form in the following 
sections. As a result, columns, namely Intercept, Regression coefficient, and Residual, 
summarize a fitting regression equation for every district of seventy-two districts—
columns LocalR2 and Predicted (μg/m3) display local R squares and predicted value in 
microgram per cubic meter. Meanwhile, the performance of the GWR model for 
spatiotemporal PM10 concentration prediction is reported, including AICc, R-square, 
and adjusted R-square. 
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6.2.1 October 2019 in the winter season 

The result of the GWR model for PM2.5 concentration prediction in 
October 2019 in the winter season is summarized in Table 6.11. The model 
performance shows that AICc, R-square, and adjusted R-square values are 73.70, 0.91, 
and 0.88, respectively. 
 
Table 6.11 The predictive equations of PM2.5 concentration in October 2019. 

No. District Intercept 
Regression coefficient Resi- 

dual 
Local 
R2 

Predicted 
(μg/m3) WS P VIS BT FRP AOD FH ELEV 

1 Bang Bon 0.28 0.27 0.19 -0.29 0.06 -0.12 0.42 -0.11 0.41 -0.39 0.86 28.38 
2 Bang Kapi -0.03 0.36 0.04 0.17 -0.22 -0.29 0.66 -0.21 0.52 -0.15 0.80 26.40 
3 Bang Khae 0.28 0.32 0.17 -0.27 0.08 -0.13 0.41 -0.11 0.41 0.00 0.85 28.04 
4 Bang Khen 0.00 0.35 -0.03 0.11 -0.23 -0.33 0.61 -0.22 0.51 -0.43 0.78 27.30 
5 Bang Kho 

Laem 
0.19 0.17 0.17 -0.22 -0.11 -0.19 0.50 -0.27 0.40 -0.03 0.84 27.63 

6 Bang Khun 
Thian 

0.14 0.18 0.23 -0.32 0.02 -0.13 0.42 -0.64 0.38 0.16 0.88 27.81 

7 Bang Na 0.02 0.30 0.14 0.15 -0.19 -0.25 0.68 -0.24 0.47 0.16 0.83 26.41 
8 Bang Phlat 0.22 0.30 0.06 -0.25 -0.03 -0.21 0.44 -0.15 0.41 0.45 0.83 27.49 
9 Bang Rak 0.16 0.18 0.14 -0.18 -0.14 -0.20 0.52 -0.27 0.41 -0.29 0.83 27.77 
10 Bang Sue 0.16 0.26 0.01 -0.21 -0.13 -0.24 0.48 -0.22 0.41 0.69 0.81 27.06 
11 Bangkok 

Noi 
0.26 0.30 0.11 -0.27 0.03 -0.18 0.42 -0.10 0.41 0.01 0.84 27.92 

12 Bangkok Yai 0.27 0.26 0.15 -0.29 0.03 -0.17 0.42 -0.10 0.40 0.18 0.85 27.74 
13 Bueng Kum -0.04 0.39 0.01 0.19 -0.22 -0.31 0.66 -0.20 0.53 -0.32 0.80 26.55 
14 Chatuchak 0.09 0.27 0.00 -0.09 -0.19 -0.27 0.54 -0.24 0.45 0.81 0.80 26.81 
15 Chom 

Thong 
0.27 0.22 0.19 -0.30 0.03 -0.15 0.43 -0.12 0.39 0.24 0.86 27.94 

16 Din Daeng 0.11 0.22 0.07 -0.12 -0.18 -0.24 0.55 -0.26 0.43 -0.11 0.81 27.36 
17 Don 

Mueang 
0.06 0.30 -0.08 0.01 -0.22 -0.34 0.55 -0.22 0.47 -0.12 0.77 27.19 

18 Dusit 0.18 0.25 0.07 -0.22 -0.10 -0.22 0.48 -0.21 0.41 -0.01 0.82 27.75 
19 Huai 

Khwang 
0.09 0.22 0.07 -0.09 -0.20 -0.24 0.56 -0.26 0.43 0.17 0.81 26.82 

20 Khan Na 
Yao 

-0.06 0.42 0.01 0.24 -0.22 -0.32 0.67 -0.19 0.55 -0.82 0.80 26.85 

21 Khlong 
Sam Wa 

-0.07 0.43 0.02 0.30 -0.22 -0.34 0.68 -0.17 0.56 -0.30 0.80 26.43 
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Table 6.11 (Continued). 

No. District Intercept 
Regression coefficient Resi- 

dual 
Local 
R2 

Predicted 
(μg/m3) WS P VIS BT FRP AOD FH ELEV 

22 Khlong San 0.21 0.20 0.15 -0.24 -0.07 -0.18 0.48 -0.22 0.40 0.31 0.84 27.68 
23 Khlong Toei 0.15 0.13 0.16 -0.16 -0.17 -0.22 0.54 -0.29 0.39 -0.30 0.83 26.97 
24 Lak Si 0.09 0.29 -0.06 -0.07 -0.20 -0.31 0.53 -0.23 0.45 0.18 0.78 27.09 
25 Lat Krabang -0.12 0.47 0.04 0.36 -0.20 -0.30 0.73 -0.14 0.57 0.31 0.83 25.60 
26 Lat Phrao 0.02 0.32 -0.02 0.04 -0.22 -0.30 0.60 -0.23 0.49 0.00 0.79 26.88 
27 Min Buri -0.10 0.46 0.02 0.33 -0.21 -0.32 0.71 -0.16 0.57 -0.29 0.82 26.22 
28 Nong Chok -0.12 0.47 0.02 0.37 -0.21 -0.33 0.71 -0.14 0.58 -0.45 0.82 25.97 
29 Nong 

Khaem 
0.27 0.36 0.18 -0.28 0.16 -0.10 0.37 -0.26 0.40 -0.03 0.86 28.09 

30 Pathum 
Wan 

0.16 0.18 0.13 -0.19 -0.14 -0.21 0.52 -0.26 0.40 -0.24 0.83 27.72 

31 Phasi 
Charoen 

0.28 0.29 0.16 -0.28 0.06 -0.15 0.42 -0.08 0.41 -0.14 0.85 28.17 

32 Phaya Thai 0.15 0.22 0.06 -0.19 -0.15 -0.23 0.51 -0.24 0.41 0.27 0.82 27.27 
33 Phra 

Khanong 
0.04 0.26 0.13 0.09 -0.20 -0.25 0.65 -0.25 0.46 0.28 0.82 26.36 

34 Phra 
Nakhon 

0.22 0.25 0.11 -0.25 -0.05 -0.19 0.46 -0.18 0.41 0.10 0.84 27.84 

35 Pom Prap 
Sattru Phai 

0.20 0.22 0.11 -0.24 -0.08 -0.20 0.48 -0.21 0.40 0.14 0.83 27.78 

36 Prawet -0.07 0.41 0.07 0.28 -0.20 -0.28 0.72 -0.18 0.54 0.34 0.83 26.04 
37 Rat Burana 0.21 0.16 0.20 -0.24 -0.08 -0.18 0.48 -0.27 0.39 -0.37 0.85 27.84 
38 Ratchathe

wi 
0.16 0.20 0.10 -0.19 -0.14 -0.21 0.51 -0.25 0.41 -0.50 0.83 27.76 

39 Sai Mai -0.01 0.36 -0.03 0.16 -0.23 -0.35 0.62 -0.20 0.52 0.11 0.78 26.69 
40 Samphant

hawong 
0.20 0.21 0.13 -0.23 -0.08 -0.19 0.48 -0.22 0.40 -0.02 0.84 27.87 

41 Saphan 
Sung 

-0.07 0.43 0.04 0.28 -0.21 -0.30 0.70 -0.18 0.55 0.29 0.81 26.01 

42 Sathon 0.16 0.17 0.15 -0.18 -0.15 -0.20 0.53 -0.28 0.40 -0.16 0.84 27.49 
43 Suan Luang 0.00 0.31 0.08 0.13 -0.21 -0.27 0.66 -0.23 0.49 0.44 0.81 26.11 
44 Taling Chan 0.25 0.32 0.12 -0.25 0.02 -0.17 0.44 -0.12 0.41 0.18 0.84 27.88 
45 Thawi 

Watthana 
0.30 0.41 0.15 -0.24 0.16 -0.11 0.38 -0.13 0.40 0.18 0.84 27.66 

46 Thon Buri 0.25 0.22 0.17 -0.28 -0.01 -0.17 0.45 -0.16 0.40 0.20 0.85 27.91 
47 Thung 

Khru 
0.20 0.14 0.23 -0.24 -0.08 -0.17 0.48 -0.34 0.38 0.19 0.86 27.42 

48 Vadhana 0.13 0.15 0.13 -0.13 -0.19 -0.22 0.55 -0.28 0.40 -0.47 0.83 27.09 
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Table 6.11 (Continued). 

No. District Intercept 
Regression coefficient Resi- 

dual 
Local 
R2 

Predicted 
(μg/m3) WS P VIS BT FRP AOD FH ELEV 

49 Wang 
Thonglang 

0.03 0.29 0.04 0.04 -0.22 -0.27 0.61 -0.24 0.48 -0.34 0.80 26.73 

50 Yan Nawa 0.17 0.14 0.18 -0.19 -0.14 -0.20 0.52 -0.30 0.39 0.10 0.84 27.10 
51 Bang Len 0.37 0.37 0.11 -0.15 0.16 0.03 0.42 -0.11 0.26 -0.06 0.83 26.73 
52 Don Tum 0.38 0.37 0.13 -0.18 0.21 0.06 0.37 -0.15 0.26 0.08 0.85 26.86 
53 Kamphaen

g Saen 
0.40 0.37 0.12 -0.16 0.21 0.08 0.36 -0.14 0.23 -0.30 0.86 26.87 

54 Mueang 
Nakhon 
Pathom 

0.38 0.37 0.16 -0.22 0.25 0.08 0.32 -0.21 0.28 0.32 0.87 26.91 

55 Nakhon 
Chai Si 

0.35 0.38 0.16 -0.22 0.23 0.03 0.34 -0.20 0.32 0.13 0.86 27.19 

56 Phuttham
onthon 

0.33 0.39 0.14 -0.21 0.17 -0.07 0.37 -0.17 0.37 -0.16 0.85 27.51 

57 Sam Phran 0.31 0.37 0.17 -0.26 0.22 -0.04 0.33 -0.27 0.37 0.07 0.87 27.55 
58 Bang Bua 

Thong 
0.26 0.34 0.04 -0.19 0.00 -0.19 0.45 -0.13 0.39 -0.30 0.80 27.48 

59 Bang Kruai 0.26 0.36 0.09 -0.23 0.04 -0.18 0.43 -0.11 0.42 0.37 0.83 27.51 
60 Bang Yai 0.30 0.41 0.10 -0.20 0.11 -0.14 0.41 -0.09 0.40 -0.03 0.82 27.62 
61 Mueang 

Nonthabur
i 

0.20 0.30 -0.02 -0.22 -0.09 -0.25 0.46 -0.17 0.41 0.45 0.80 27.22 

62 Pak Kret 0.18 0.27 -0.10 -0.20 -0.15 -0.29 0.47 -0.20 0.40 0.18 0.78 27.28 
63 Sai Noi 0.32 0.37 0.08 -0.17 0.09 -0.07 0.45 -0.10 0.33 -0.01 0.81 26.87 
64 Bang Bo -0.12 0.47 0.07 0.40 -0.18 -0.26 0.78 -0.12 0.56 -0.37 0.86 25.33 
65 Bang Phli -0.09 0.44 0.08 0.35 -0.18 -0.26 0.77 -0.15 0.54 -0.45 0.85 26.25 
66 Bang Sao 

Thong 
-0.12 0.46 0.06 0.38 -0.19 -0.27 0.77 -0.13 0.56 -0.03 0.85 25.59 

67 Mueang 
Samut 
Prakan 

-0.04 0.39 0.14 0.29 -0.16 -0.24 0.75 -0.19 0.51 -0.20 0.85 26.42 

68 Phra 
Pradaeng 

0.17 0.12 0.22 -0.15 -0.15 -0.20 0.54 -0.33 0.38 -0.09 0.85 27.05 

69 Phra 
Samut 
Chedi 

0.10 0.16 0.24 -0.13 -0.05 -0.17 0.55 -0.46 0.39 0.13 0.86 27.09 

70 Ban Phaeo 0.29 0.36 0.20 -0.27 0.16 -0.03 0.34 -0.32 0.38 -0.09 0.86 27.53 
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Table 6.11 (Continued). 

No. District Intercept 
Regression coefficient Resi-

dual 
Local 
R2 

Predicted 
(μg/m3) WS P VIS BT FRP AOD FH ELEV 

71 Krathum 
Baen 

0.26 0.35 0.19 -0.28 0.17 -0.09 0.35 -0.32 0.40 0.00 0.87 27.89 

72 Mueang 
Samut 
Sakhon 

0.21 0.25 0.21 -0.31 0.06 -0.11 0.41 -0.38 0.40 -0.08 0.87 27.83 

 
From Table 6.11, the maximum value is 28.38 μg/m3 in Bang Bon District, 

Bangkok. In contrast, the minimum value is 25.33 μg/m3 in Bang Bo District, Samut 
Prakan province. The classification maps of predicted values for PM2.5 concentration 
using the GWR model according to the Thailand Air Quality Index and the U.S. EPA Air 
Quality Index are displayed in Figure 6.21. 

As a result, the predicted n values of PM2.5 concentration are satisfactory 
at level 2 of Thailand AQI and moderate at level 2 of the EPA AQI. However, the 
predicted value in an urban landscape in October 2019 from the GWR model is more 
than the one-day mean of WHO guidelines. See Table 5.3. 

In addition, a spatial distribution map of PM2.5 concentration in October 
2019 using the SCK interpolation technique is displayed in Figure 6.22. As a result, the 
high PM2.5 concentration occur in urban areas in the central part of the study area, 
particularly Bangkok Metropolitan. 
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(a) (b) 
Figure 6.21 The classification map of PM2.5 concentration prediction using the GWR 
model in October 2019 according to the (a) Thailand AQI and (b) EPA AQI. 
 

 
Figure 6.22 Spatial distribution of PM2.5 concentration in October 2019. 
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6.2.2 November 2019 in the winter season 

The result of the GWR model for PM2.5 concentration prediction in 
November 2019 in the winter season is summarized in Table 6.12. The model 
performance shows that AICc, R-square, and adjusted R-square values are 10.54, 0.97, 
and 0.95, respectively. 
 
Table 6.12 The predictive equations of PM2.5 concentration in November 2019. 

No. District Intercept 
Regression coefficient 

Residual 
Local 

R2 
Predicted 
(μg/m3) VIS FRP 

1 Bang Bon 0.76 0.32 0.56 0.15 0.61 35.24 
2 Bang Kapi -0.79 -0.16 0.75 -0.17 0.61 33.54 
3 Bang Khae 0.82 0.22 0.13 0.00 0.50 35.22 
4 Bang Khen -0.70 0.01 0.40 -0.03 0.69 33.77 
5 Bang Kho Laem 0.28 -0.09 -0.15 0.09 0.03 34.56 
6 Bang Khun Thian 0.68 0.42 1.51 0.25 0.47 34.72 
7 Bang Na -0.30 -0.04 1.02 0.00 0.35 33.58 
8 Bang Phlat 0.09 -0.41 0.22 0.14 0.47 34.47 
9 Bang Rak 0.13 -0.25 -0.07 -0.09 0.21 34.52 
10 Bang Sue -0.09 -0.50 0.27 -0.13 0.57 34.55 
11 Bangkok Noi 0.38 -0.18 -0.01 0.01 0.13 34.65 
12 Bangkok Yai 0.45 -0.07 -0.15 0.08 0.04 34.66 
13 Bueng Kum -0.79 -0.06 0.59 -0.13 0.78 33.54 
14 Chatuchak -0.48 -0.34 0.45 -0.03 0.58 34.10 
15 Chom Thong 0.56 0.14 0.06 0.15 0.13 34.85 
16 Din Daeng -0.37 -0.40 0.51 -0.21 0.35 33.96 
17 Don Mueang -0.49 -0.52 0.28 0.09 0.63 34.12 
18 Dusit -0.01 -0.40 0.23 0.18 0.44 34.21 
19 Huai Khwang -0.55 -0.36 0.72 -0.14 0.31 33.74 
20 Khan Na Yao -0.76 0.02 0.50 -0.01 0.81 33.45 
21 Khlong Sam Wa -0.73 0.12 0.42 0.16 0.88 33.27 
22 Khlong San 0.29 -0.14 -0.16 0.23 0.10 34.57 
23 Khlong Toei -0.28 -0.33 0.55 -0.06 0.16 34.08 
24 Lak Si -0.37 -0.55 0.26 0.19 0.57 34.21 
25 Lat Krabang -0.77 -0.11 0.71 -0.02 0.79 32.83 
26 Lat Phrao -0.80 -0.13 0.70 -0.08 0.81 33.76 
27 Min Buri -0.78 0.09 0.44 0.13 0.83 32.90 
28 Nong Chok -0.74 0.05 0.53 0.07 0.83 32.74 
29 Nong Khaem 0.89 0.23 0.09 0.04 0.56 35.32 
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Table 6.12 (Continued). 

No. District Intercept 
Regression coefficient 

Residual 
Local 

R2 
Predicted 
(μg/m3) VIS FRP 

30 Pathum Wan -0.02 -0.38 0.17 -0.06 0.35 34.07 
31 Phasi Charoen 0.66 0.13 -0.08 0.22 0.15 34.79 
32 Phaya Thai -0.19 -0.44 0.35 -0.12 0.41 34.11 
33 Phra Khanong -0.44 -0.11 0.79 -0.29 0.23 33.71 
34 Phra Nakhon 0.22 -0.27 0.00 0.25 0.25 34.41 
35 Pom Prap Sattru Phai 0.14 -0.29 0.03 0.20 0.25 34.17 
36 Prawet -0.67 -0.12 0.82 0.00 0.63 33.15 
37 Rat Burana 0.39 0.01 0.11 0.10 0.00 34.53 
38 Ratchathewi -0.09 -0.43 0.28 -0.06 0.39 33.98 
39 Sai Mai -0.68 0.06 0.36 0.18 0.72 33.66 
40 Samphanthawong 0.21 -0.23 -0.06 -0.34 0.18 34.62 
41 Saphan Sung -0.80 0.01 0.49 -0.11 0.75 33.19 
42 Sathon 0.10 -0.24 -0.10 0.02 0.18 34.49 
43 Suan Luang -0.64 -0.18 0.81 -0.19 0.34 33.60 
44 Taling Chan 0.66 0.00 -0.02 0.26 0.00 34.77 
45 Thawi Watthana 0.96 0.12 -0.07 0.08 0.30 34.99 
46 Thon Buri 0.42 -0.04 -0.16 0.34 0.03 34.61 
47 Thung Khru 0.52 0.24 1.10 0.16 0.15 34.47 
48 Vadhana -0.46 -0.38 0.81 -0.15 0.20 33.95 
49 Wang Thonglang -0.77 -0.23 0.82 -0.18 0.54 33.63 
50 Yan Nawa 0.08 -0.14 0.06 -0.01 0.05 34.32 
51 Bang Len 0.84 0.49 -0.06 -0.13 0.64 34.34 
52 Don Tum 0.82 0.44 -0.02 0.00 0.74 34.59 
53 Kamphaeng Saen 0.79 0.46 -0.02 -0.23 0.78 34.48 
54 Mueang Nakhon 

Pathom 
0.85 0.41 0.03 -0.25 0.79 35.31 

55 Nakhon Chai Si 0.95 0.33 -0.02 0.11 0.67 35.16 
56 Phutthamonthon 1.07 0.17 -0.15 -0.04 0.59 35.17 
57 Sam Phran 1.10 0.23 0.05 0.21 0.61 35.41 
58 Bang Bua Thong 0.59 -0.27 -0.06 -0.01 0.18 34.65 
59 Bang Kruai 0.67 -0.10 0.03 0.24 0.05 34.88 
60 Bang Yai 0.95 0.00 -0.13 0.20 0.23 34.93 
61 Mueang Nonthaburi 0.14 -0.67 0.09 0.29 0.63 34.78 
62 Pak Kret -0.11 -0.92 0.15 -0.14 0.64 34.61 
63 Sai Noi 0.94 0.49 -0.11 -0.32 0.35 34.61 
64 Bang Bo -0.61 -0.24 1.01 -0.18 0.89 32.05 
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Table 6.12 (Continued). 

No. District Intercept 
Regression coefficient 

Residual 
Local 

R2 
Predicted 
(μg/m3) VIS FRP 

65 Bang Phli -0.55 -0.17 1.03 -0.09 0.87 32.84 
66 Bang Sao Thong -0.65 -0.24 0.98 -0.01 0.88 32.43 
67 Mueang Samut Prakan -0.02 0.02 1.52 -0.42 0.64 33.25 
68 Phra Pradaeng 0.19 0.10 0.86 -0.26 0.10 34.14 
69 Phra Samut Chedi 1.01 0.62 3.57 -0.60 0.53 34.07 
70 Ban Phaeo 1.08 0.26 0.27 0.16 0.59 35.77 
71 Krathum Baen 1.01 0.24 0.12 0.21 0.51 35.45 
72 Mueang Samut Sakhon 0.65 0.43 0.84 -0.13 0.50 35.63 

 
From Table 6.12, the maximum value is 35.77 μg/m3 in Ban Phaeo District, 

Samut Sakhon province. In contrast, the minimum value is 32.05 μg/m3 in Bang Bo 
District, Samut Prakan province. The classification maps of predicted values for PM2.5 
concentration using the GWR model according to the Thailand Air Quality Index and 
the U.S. EPA Air Quality Index are displayed in Figure 6.23. 

As a result, the predicted values of PM2.5 concentration are satisfactory 
at level 2 of Thailand AQI, but they are moderate and unhealthy for sensitive groups 
at levels 2 and 3 of EPA AQI. However, the predicted value in an urban landscape in 
November 2019 from the GWR model is more than the one-day mean of WHO 
guidelines. See Table 5.3. 

In addition, a spatial distribution map of PM2.5 concentration in 
November 2019 using the SCK interpolation technique is displayed in Figure 6.24. As a 
result, the high PM2.5 concentration occur in urban areas in the western part of the 
study area, particularly in Nakhon Pathom and Samut Sakhon province. 
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(a) (b) 
Figure 6.23 The classification map of PM2.5 concentration prediction using the GWR 
model in November 2019 according to the (a) Thailand AQI and (b) EPA AQI. 
 

 
Figure 6.24 Spatial distribution of PM2.5 concentration in November 2019. 
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6.2.3 December 2019 in the winter season 

The result of the GWR model for PM2.5 concentration prediction in 
December 2019 in the winter season is summarized in Table 6.13. The model 
performance shows that AICc, R-square, and adjusted R-square values are 24.44, 0.97, 
and 0.95, respectively. 
 
Table 6.13 The predictive equations of PM2.5 concentration in December 2019. 

No. District Intercept 
Regression coefficient 

Residual 
Local 

R2 
Predicted 
(μg/m3) WS VIS 

1 Bang Bon 1.20 -0.85 -0.93 0.10 0.50 40.00 
2 Bang Kapi -1.13 0.25 1.34 -0.25 0.57 39.53 
3 Bang Khae 0.93 -0.38 -0.44 0.05 0.31 40.11 
4 Bang Khen -0.87 1.01 1.41 -0.13 0.50 39.90 
5 Bang Kho Laem -1.09 0.49 1.34 -0.23 0.20 39.87 
6 Bang Khun Thian 1.54 -1.31 -1.77 0.08 0.62 39.76 
7 Bang Na -1.32 -0.12 0.53 -0.11 0.77 39.31 
8 Bang Phlat 0.73 0.59 0.07 0.13 0.67 40.17 
9 Bang Rak 0.21 0.53 0.30 0.00 0.34 39.85 
10 Bang Sue 0.58 0.60 0.13 0.10 0.44 40.13 
11 Bangkok Noi 0.81 0.28 -0.17 0.18 0.35 40.14 
12 Bangkok Yai 0.31 0.48 0.29 0.01 0.33 40.09 
13 Bueng Kum -1.00 0.51 1.26 -0.20 0.48 39.59 
14 Chatuchak 0.17 0.41 0.21 0.09 0.15 40.01 
15 Chom Thong 0.69 -0.10 -0.57 0.02 0.05 39.98 
16 Din Daeng -0.22 0.64 1.03 -0.08 0.40 39.81 
17 Don Mueang 0.22 0.11 0.67 0.39 0.12 40.04 
18 Dusit 0.61 0.74 0.24 0.20 0.68 40.06 
19 Huai Khwang -1.15 0.32 1.91 0.04 0.45 39.61 
20 Khan Na Yao -0.99 0.64 0.91 -0.21 0.49 39.51 
21 Khlong Sam Wa -0.83 0.52 0.63 0.00 0.61 39.32 
22 Khlong San -0.04 0.49 0.52 0.02 0.27 39.97 
23 Khlong Toei -1.26 0.01 0.97 -0.16 0.52 39.51 
24 Lak Si 0.42 0.12 0.06 0.35 0.01 40.08 
25 Lat Krabang -0.98 -0.21 0.26 0.02 0.86 39.03 
26 Lat Phrao -1.10 0.67 2.09 -0.14 0.48 39.82 
27 Min Buri -0.88 0.01 0.40 -0.09 0.62 39.21 
28 Nong Chok -0.68 -0.11 0.42 0.07 0.70 38.98 
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Table 6.13 (Continued). 

No. District Intercept 
Regression coefficient 

Residual 
Local 

R2 
Predicted 
(μg/m3) WS VIS 

29 Nong Khaem 0.99 -0.53 -0.38 0.04 0.68 40.13 
30 Pathum Wan 0.40 0.71 0.34 0.24 0.54 39.74 
31 Phasi Charoen 0.29 0.37 0.27 0.10 0.11 40.11 
32 Phaya Thai 0.30 0.80 0.61 0.03 0.50 39.94 
33 Phra Khanong -1.32 -0.08 0.77 -0.07 0.64 39.34 
34 Phra Nakhon 0.84 0.58 -0.11 0.13 0.68 40.09 
35 Pom Prap Sattru Phai 0.78 0.61 -0.06 0.15 0.64 40.01 
36 Prawet -1.19 -0.05 0.41 -0.09 0.69 39.24 
37 Rat Burana -1.61 0.53 1.81 -0.24 0.15 39.83 
38 Ratchathewi 0.41 0.81 0.49 0.27 0.65 39.81 
39 Sai Mai -0.79 1.03 1.19 0.17 0.59 39.77 
40 Samphanthawong 0.77 0.56 -0.12 0.12 0.53 39.98 
41 Saphan Sung -1.01 0.06 0.48 -0.17 0.56 39.33 
42 Sathon -0.62 0.37 0.86 -0.22 0.33 39.80 
43 Suan Luang -1.27 0.11 1.19 -0.10 0.62 39.38 
44 Taling Chan 0.90 -0.10 -0.31 -0.05 0.30 40.13 
45 Thawi Watthana 0.90 -0.30 -0.25 0.08 0.81 40.23 
46 Thon Buri -0.49 0.64 1.01 0.02 0.26 40.01 
47 Thung Khru -0.51 -0.02 0.26 -0.19 0.05 39.66 
48 Vadhana -1.14 0.15 1.21 0.00 0.49 39.46 
49 Wang Thonglang -1.38 0.30 2.22 -0.36 0.57 39.71 
50 Yan Nawa -1.58 0.08 1.37 -0.50 0.38 39.73 
51 Bang Len 0.94 -0.24 0.02 0.07 0.65 40.49 
52 Don Tum 1.00 -0.23 0.07 0.16 0.61 40.51 
53 Kamphaeng Saen 1.03 -0.21 0.09 -0.25 0.51 40.52 
54 Mueang Nakhon Pathom 1.03 -0.24 0.14 0.08 0.71 40.52 
55 Nakhon Chai Si 0.94 -0.25 -0.01 -0.21 0.78 40.42 
56 Phutthamonthon 0.89 -0.14 -0.20 0.06 0.76 40.31 
57 Sam Phran 0.88 -0.22 -0.16 0.10 0.70 40.28 
58 Bang Bua Thong 0.90 -0.16 -0.10 -0.07 0.81 40.37 
59 Bang Kruai 0.91 -0.19 -0.28 -0.01 0.64 40.22 
60 Bang Yai 0.89 -0.17 -0.16 0.06 0.77 40.30 
61 Mueang Nonthaburi 0.81 0.23 -0.18 -0.04 0.29 40.24 
62 Pak Kret 0.79 -0.07 -0.19 0.18 0.06 40.19 
63 Sai Noi 0.89 -0.26 -0.01 -0.02 0.89 40.45 
64 Bang Bo -1.18 -0.20 0.20 -0.02 0.97 38.76 
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Table 6.13 (Continued). 

No. District Intercept 
Regression coefficient 

Residual 
Local 

R2 
Predicted 
(μg/m3) WS VIS 

65 Bang Phli -1.24 -0.18 0.19 0.01 0.96 39.03 
66 Bang Sao Thong -1.17 -0.20 0.21 -0.03 0.95 38.88 
67 Mueang Samut Prakan -1.25 -0.08 0.36 -0.19 0.71 39.19 
68 Phra Pradaeng -1.50 0.10 1.17 -0.36 0.51 39.52 
69 Phra Samut Chedi -0.88 0.04 0.51 -0.25 0.12 39.46 
70 Ban Phaeo 0.95 -0.31 -0.02 0.11 0.74 40.20 
71 Krathum Baen 0.92 -0.43 -0.25 0.03 0.78 40.23 
72 Mueang Samut Sakhon 1.04 -0.81 -0.77 0.12 0.71 40.02 

 
From Table 6.13, the maximum value is 40.52 μg/m3 in Kamphaeng Saen 

District, Nakhon Pathom province. In contrast, the minimum value is 38.76 μg/m3 in 
Bang Bo District, Samut Prakan province. The classification maps of predicted values 
for PM2.5 concentration using the GWR model according to the Thailand Air Quality 
Index and the U.S. EPA Air Quality Index are displayed in Figure 6.25. 

As a result, the predicted values of PM2.5 concentration are moderate at 
level 3 of Thailand AQI and unhealthy for sensitive groups at level 3 of EPA AQI. On 
the contrary, the predicted value in an urban landscape in December 2019 from the 
GWR model is more than the one-day mean of WHO guidelines. See Table 5.3. 

In addition, a spatial distribution map of PM2.5 concentration in 
December 2019 using the SCK interpolation technique is displayed in Figure 6.26. As a 
result, the high PM2.5 concentration occur in urban areas in the northwestern part of 
the study area, particularly in Nakhon Pathom and Nonthaburi province. 
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(a) (b) 
Figure 6.25 The classification map of PM2.5 concentration prediction using the GWR 
model in December 2019 according to the (a) Thailand AQI and (b) EPA AQI. 
 

 
Figure 6.26 Spatial distribution of PM2.5 concentration in December 2019. 
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6.2.4 January 2020 in the winter season 

The result of the GWR model for PM2.5 concentration prediction in 
January 2020 in the winter season is summarized in Table 6.14. The model 
performance shows that AICc, R-square, and adjusted R-square values are 177.81, 0.58, 
and 0.46, respectively. 
 
Table 6.14 The predictive equations of PM2.5 concentration in January 2020. 

No. District Intercept 
Regression coefficient 

Residual 
Local 

R2 
Predicted 
(μg/m3) TEMP VIS AOD FH ELEV 

1 Bang Bon -0.44 -0.12 0.54 -0.52 0.44 0.43 -0.99 0.38 43.53 
2 Bang Kapi 0.38 -1.04 0.55 -0.56 0.13 0.31 -0.05 0.42 43.67 
3 Bang Khae -0.43 0.08 0.60 -0.69 0.51 0.36 -1.05 0.40 43.57 
4 Bang Khen 0.35 -0.84 0.55 -0.59 0.09 0.25 0.92 0.41 43.69 
5 Bang Kho Laem -0.52 0.29 0.59 -0.73 0.44 0.28 0.63 0.41 43.59 
6 Bang Khun Thian -0.40 -0.17 0.50 -0.44 0.56 0.44 -0.10 0.40 43.36 
7 Bang Na 0.12 -0.75 0.51 -0.64 0.34 0.38 -1.17 0.40 43.62 
8 Bang Phlat -0.27 0.01 0.60 -0.95 0.39 0.31 0.35 0.37 43.72 
9 Bang Rak -0.42 0.18 0.61 -0.82 0.42 0.29 -0.49 0.38 43.71 
10 Bang Sue 0.04 -0.49 0.57 -0.89 0.30 0.36 -0.01 0.36 43.57 
11 Bangkok Noi -0.43 0.29 0.62 -0.91 0.45 0.27 0.80 0.41 43.74 
12 Bangkok Yai -0.50 0.37 0.62 -0.83 0.50 0.27 0.87 0.42 43.63 
13 Bueng Kum 0.38 -0.95 0.56 -0.54 0.08 0.26 1.04 0.42 43.70 
14 Chatuchak 0.32 -0.88 0.55 -0.72 0.23 0.34 -0.77 0.38 43.69 
15 Chom Thong -0.46 0.16 0.58 -0.66 0.53 0.33 -1.40 0.41 43.53 
16 Din Daeng 0.14 -0.70 0.56 -0.78 0.28 0.38 -0.27 0.36 43.50 
17 Don Mueang 0.33 -0.74 0.53 -0.66 0.18 0.26 0.11 0.39 43.81 
18 Dusit -0.14 -0.22 0.59 -0.91 0.36 0.34 0.71 0.36 43.58 
19 Huai Khwang 0.29 -0.96 0.56 -0.69 0.19 0.37 -0.64 0.38 43.52 
20 Khan Na Yao 0.39 -0.89 0.57 -0.51 0.07 0.21 0.35 0.43 43.76 
21 Khlong Sam Wa 0.37 -0.74 0.57 -0.51 0.10 0.16 -0.22 0.41 43.76 
22 Khlong San -0.57 0.46 0.62 -0.81 0.50 0.25 0.99 0.41 43.67 
23 Khlong Toei 0.01 -0.51 0.54 -0.74 0.38 0.37 0.58 0.37 43.44 
24 Lak Si 0.30 -0.79 0.53 -0.72 0.22 0.31 0.13 0.39 43.82 
25 Lat Krabang 0.25 -0.73 0.55 -0.57 0.21 0.25 -0.04 0.43 43.77 
26 Lat Phrao 0.41 -1.01 0.56 -0.58 0.09 0.29 1.53 0.42 43.53 
27 Min Buri 0.35 -0.79 0.57 -0.51 0.15 0.20 -0.42 0.42 43.81 
28 Nong Chok 0.34 -0.68 0.58 -0.51 0.16 0.16 -0.87 0.41 43.82 
29 Nong Khaem -0.40 -0.14 0.54 -0.57 0.44 0.44 -0.43 0.36 43.53 
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Table 6.14 (Continued). 

No. District Intercept 
Regression coefficient 

Residual 
Local 

R2 
Predicted 
(μg/m3) TEMP VIS AOD FH ELEV 

30 Pathum Wan -0.20 -0.15 0.59 -0.83 0.40 0.33 -0.02 0.36 43.62 
31 Phasi Charoen -0.49 0.27 0.62 -0.76 0.53 0.30 -1.20 0.43 43.61 
32 Phaya Thai 0.09 -0.60 0.58 -0.83 0.31 0.37 -0.32 0.35 43.60 
33 Phra Khanong 0.18 -0.83 0.53 -0.65 0.31 0.38 -0.73 0.39 43.55 
34 Phra Nakhon -0.43 0.27 0.63 -0.90 0.46 0.28 0.19 0.39 43.77 
35 Pom Prap Sattru 

Phai 
-0.37 0.16 0.62 -0.88 0.44 0.29 0.02 0.38 43.73 

36 Prawet 0.29 -0.96 0.53 -0.56 0.22 0.34 -0.10 0.44 43.53 
37 Rat Burana -0.51 0.21 0.57 -0.65 0.47 0.31 -0.77 0.41 43.53 
38 Ratchathewi -0.08 -0.34 0.59 -0.84 0.37 0.35 0.20 0.35 43.60 
39 Sai Mai 0.39 -0.78 0.56 -0.55 0.07 0.18 0.22 0.41 43.73 
40 Samphanthawong -0.48 0.35 0.63 -0.86 0.48 0.27 -0.08 0.39 43.67 
41 Saphan Sung 0.33 -0.90 0.55 -0.54 0.16 0.27 1.15 0.43 43.66 
42 Sathon -0.41 0.15 0.59 -0.78 0.41 0.29 -0.09 0.38 43.66 
43 Suan Luang 0.38 -1.12 0.54 -0.58 0.20 0.37 -0.75 0.42 43.53 
44 Taling Chan -0.55 0.48 0.68 -0.97 0.49 0.25 0.17 0.46 43.69 
45 Thawi Watthana -0.34 0.11 0.59 -0.82 0.52 0.33 -0.78 0.40 43.58 
46 Thon Buri -0.58 0.45 0.62 -0.77 0.54 0.26 0.10 0.43 43.67 
47 Thung Khru -0.42 0.00 0.52 -0.56 0.49 0.36 -1.50 0.40 43.51 
48 Vadhana 0.12 -0.71 0.54 -0.72 0.32 0.38 -0.95 0.37 43.63 
49 Wang Thonglang 0.43 -1.13 0.56 -0.58 0.11 0.33 -0.20 0.42 43.58 
50 Yan Nawa -0.40 0.11 0.57 -0.72 0.45 0.30 0.17 0.38 43.63 
51 Bang Len 0.28 0.09 -0.09 -0.06 0.30 0.07 0.65 0.18 43.65 
52 Don Tum 0.11 -0.02 0.02 -0.08 0.35 0.16 -0.21 0.17 43.62 
53 Kamphaeng Saen 0.12 0.00 0.04 -0.03 0.35 0.09 -0.29 0.16 43.72 
54 Mueang Nakhon 

Pathom 
-0.09 -0.18 0.17 -0.16 0.36 0.29 0.08 0.20 43.78 

55 Nakhon Chai Si -0.03 -0.18 0.10 -0.24 0.37 0.37 -0.77 0.20 43.71 
56 Phutthamonthon -0.03 -0.11 0.17 -0.43 0.42 0.39 0.18 0.23 43.58 
57 Sam Phran -0.24 -0.33 0.30 -0.35 0.37 0.53 -0.16 0.27 43.60 
58 Bang Bua Thong 0.18 -0.25 0.26 -0.60 0.32 0.24 -0.30 0.22 43.83 
59 Bang Kruai -0.42 0.36 0.66 -1.06 0.48 0.26 0.23 0.45 43.68 
60 Bang Yai -0.12 0.01 0.42 -0.79 0.46 0.31 0.78 0.33 43.63 
61 Mueang 

Nonthaburi 
0.00 -0.36 0.56 -0.95 0.34 0.35 -0.04 0.36 43.69 

62 Pak Kret 0.20 -0.63 0.51 -0.83 0.30 0.34 0.04 0.37 43.76 
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Table 6.14 (Continued). 

No. District Intercept 
Regression coefficient 

Residual 
Local 

R2 
Predicted 
(μg/m3) TEMP VIS AOD FH ELEV 

63 Sai Noi 0.28 -0.02 -0.02 -0.23 0.28 0.12 0.44 0.15 43.72 
64 Bang Bo 0.14 -0.69 0.52 -0.58 0.27 0.30 -0.04 0.47 43.63 
65 Bang Phli 0.17 -0.82 0.51 -0.57 0.27 0.34 0.01 0.45 43.51 
66 Bang Sao Thong 0.18 -0.73 0.53 -0.58 0.26 0.30 0.38 0.46 43.65 
67 Mueang Samut 

Prakan 
-0.03 -0.58 0.47 -0.58 0.37 0.37 0.36 0.42 43.40 

68 Phra Pradaeng -0.42 0.11 0.55 -0.64 0.51 0.31 0.43 0.40 43.44 
69 Phra Samut Chedi -0.36 -0.14 0.48 -0.48 0.55 0.39 0.27 0.41 43.27 
70 Ban Phaeo -0.46 -0.45 0.42 -0.26 0.25 0.59 1.01 0.36 43.70 
71 Krathum Baen -0.43 -0.37 0.48 -0.40 0.33 0.56 -0.89 0.33 43.66 
72 Mueang Samut 

Sakhon 
-0.52 -0.40 0.46 -0.33 0.16 0.55 0.93 0.38 43.57 

 
From Table 6.14, the maximum value is 43.83 μg/m3 in Bang Bua Thong 

District, Nonthaburi province. In contrast, the minimum value is 43.27 μg/m3 in Phra 
Samut Chedi District, Samut Prakan province. The classification maps of predicted 
values for PM2.5 concentration using the GWR model according to the Thailand Air 
Quality Index and the U.S. EPA Air Quality Index are displayed in Figure 6.27. 

Thus, the predicted values of PM2.5 concentration are moderate at level 
3 of Thailand AQI and unhealthy for sensitive groups at level 3 of EPA AQI. Meanwhile, 
the predicted value in an urban landscape in January 2020 from the GWR model is 
more than the one-day mean of WHO guidelines. See Table 5.3. 

In addition, a spatial distribution map of PM2.5 concentration in January 
2020 using the SCK interpolation technique is displayed in Figure 6.28. As a result, the 
high PM2.5 concentration occur in urban areas in the northern part of the study area, 
particularly Bangkok Metropolitan and Nonthaburi province. 
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(a) (b) 
Figure 6.27 The classification map of PM2.5 concentration prediction using the GWR 
model in January 2020 according to the (a) Thailand AQI and (b) EPA AQI. 
 

 
Figure 6.28 Spatial distribution of PM2.5 concentration in January 2020. 
  

 



223 

6.2.5 February 2020 in the winter season 

The result of the GWR model for PM2.5 concentration prediction in 
February 2020 in the winter season is summarized in Table 6.15. The model 
performance shows that AICc, R-square, and adjusted R-square values are 82.82, 0.92, 
and 0.88, respectively. 
 
Table 6.15 The predictive equations of PM2.5 concentration in February 2020. 

No. District Intercept 
Regression coefficient 

Residual 
Local 

R2 
Predicted 
(μg/m3) RH WS P FRP ELEV 

1 Bang Bon -0.24 -1.08 0.22 0.09 -2.25 0.25 -0.78 0.81 44.09 
2 Bang Kapi 0.12 -0.35 0.43 0.40 -0.35 0.14 0.44 0.81 44.13 
3 Bang Khae -0.72 -0.93 0.48 -0.41 -2.99 0.31 -0.11 0.81 44.22 
4 Bang Khen 0.96 0.65 0.88 0.51 -0.59 0.01 0.05 0.90 44.29 
5 Bang Kho Laem 0.20 -1.28 0.64 0.12 -1.16 0.26 -0.14 0.68 44.06 
6 Bang Khun Thian 0.52 -1.49 0.31 0.51 -1.10 0.21 -0.16 0.77 44.01 
7 Bang Na -0.03 -0.84 0.31 0.44 -0.29 0.26 -0.10 0.71 43.98 
8 Bang Phlat -0.30 -0.55 0.65 -0.31 -2.11 0.19 0.08 0.74 44.23 
9 Bang Rak 0.33 -0.78 0.50 0.54 -0.83 0.28 -0.52 0.63 44.14 
10 Bang Sue 0.65 0.36 0.85 0.53 -0.64 0.21 0.03 0.82 44.22 
11 Bangkok Noi -0.78 -0.88 0.56 -0.70 -3.14 0.19 0.29 0.77 44.26 
12 Bangkok Yai -0.52 -1.05 0.53 -0.45 -2.72 0.19 0.69 0.75 44.20 
13 Bueng Kum 0.35 0.00 0.70 0.27 -0.47 0.11 0.33 0.86 44.21 
14 Chatuchak 1.02 0.68 0.77 0.91 -0.31 0.15 -0.12 0.87 44.21 
15 Chom Thong -0.04 -1.46 0.65 -0.20 -2.11 0.22 0.04 0.79 44.08 
16 Din Daeng 1.09 0.48 0.54 1.39 -0.10 0.24 -0.43 0.71 44.09 
17 Don Mueang 1.03 0.69 0.82 0.63 -0.59 -0.01 -0.16 0.91 44.37 
18 Dusit 0.20 -0.27 0.69 0.24 -1.10 0.24 0.13 0.69 44.17 
19 Huai Khwang 0.74 0.15 0.45 1.08 -0.26 0.21 -0.12 0.71 44.08 
20 Khan Na Yao 0.11 -0.20 0.75 0.06 -0.45 0.14 0.16 0.87 44.22 
21 Khlong Sam Wa -0.51 -0.69 0.88 -0.38 -0.26 0.34 0.02 0.86 44.24 
22 Khlong San 0.09 -1.06 0.54 0.14 -1.54 0.23 0.38 0.68 44.12 
23 Khlong Toei 0.35 -0.57 0.38 0.79 -0.33 0.30 0.38 0.62 44.00 
24 Lak Si 1.20 0.87 0.77 0.94 -0.40 0.06 0.22 0.92 44.30 
25 Lat Krabang -1.23 -1.41 0.59 -0.59 -0.05 0.47 0.05 0.85 44.05 
26 Lat Phrao 1.09 0.78 0.82 0.77 -0.46 0.05 -0.23 0.89 44.21 
27 Min Buri -1.69 -1.80 0.64 -0.85 0.12 0.57 0.20 0.87 44.15 
28 Nong Chok -1.46 -1.54 0.75 -0.77 0.05 0.60 -0.31 0.88 44.15 
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Table 6.15 (Continued). 

No. District Intercept 
Regression coefficient 

Residual 
Local 

R2 
Predicted 
(μg/m3) RH WS P FRP ELEV 

29 Nong Khaem -0.56 -0.81 0.28 -0.11 -2.52 0.35 -0.43 0.79 44.22 
30 Pathum Wan 0.44 -0.53 0.48 0.74 -0.63 0.28 -0.19 0.62 44.11 
31 Phasi Charoen -0.76 -1.07 0.61 -0.68 -3.16 0.23 0.55 0.81 44.18 
32 Phaya Thai 0.77 0.30 0.73 0.87 -0.34 0.25 -0.53 0.71 44.13 
33 Phra Khanong 0.10 -0.66 0.26 0.65 -0.24 0.25 0.15 0.69 44.00 
34 Phra Nakhon -0.16 -0.75 0.51 -0.03 -1.97 0.21 0.38 0.70 44.20 
35 Pom Prap Sattru 

Phai 
0.15 -0.64 0.55 0.31 -1.24 0.25 0.23 0.65 44.19 

36 Prawet -0.43 -1.03 0.26 0.04 -0.33 0.14 -0.11 0.83 44.03 
37 Rat Burana 0.35 -1.58 0.67 0.11 -1.22 0.24 -0.61 0.72 44.05 
38 Ratchathewi 0.51 -0.28 0.52 0.80 -0.54 0.28 -0.24 0.63 44.11 
39 Sai Mai 0.87 0.57 0.94 0.34 -0.63 -0.03 0.15 0.90 44.32 
40 Samphanthawong 0.12 -0.79 0.54 0.26 -1.28 0.25 0.56 0.66 44.15 
41 Saphan Sung -0.76 -1.20 0.30 -0.20 -0.22 0.15 0.30 0.86 44.10 
42 Sathon 0.39 -0.87 0.48 0.62 -0.71 0.28 0.03 0.63 44.05 
43 Suan Luang 0.11 -0.51 0.23 0.66 -0.23 0.19 0.39 0.75 44.05 
44 Taling Chan -1.22 -0.89 0.68 -1.13 -3.93 0.22 -0.09 0.83 44.30 
45 Thawi Watthana -0.99 -0.69 0.50 -0.70 -3.34 0.30 -0.02 0.77 44.31 
46 Thon Buri -0.11 -1.20 0.60 -0.16 -1.88 0.22 0.34 0.71 44.13 
47 Thung Khru 0.66 -1.84 0.69 0.27 -1.03 0.22 -0.33 0.77 44.00 
48 Vadhana 0.45 -0.33 0.34 0.94 -0.24 0.27 -0.01 0.64 44.05 
49 Wang Thonglang 0.72 0.20 0.46 0.92 -0.33 0.13 0.11 0.79 44.12 
50 Yan Nawa 0.32 -1.08 0.51 0.46 -0.67 0.29 -0.15 0.64 44.01 
51 Bang Len 0.73 -0.21 0.34 -0.08 -0.35 -0.04 -0.10 0.47 44.25 
52 Don Tum 0.60 -0.28 0.28 -0.02 -0.34 0.03 0.03 0.35 44.23 
53 Kamphaeng Saen 0.57 -0.27 0.28 -0.02 -0.36 0.01 -0.15 0.38 44.24 
54 Mueang Nakhon 

Pathom 
0.22 -0.44 0.34 0.22 -0.56 0.32 0.07 0.46 44.21 

55 Nakhon Chai Si 0.25 -0.50 0.46 0.21 -0.76 0.55 0.23 0.47 44.20 
56 Phutthamonthon -0.11 -0.51 0.56 -0.12 -1.55 0.43 -0.01 0.49 44.23 
57 Sam Phran 0.05 -0.83 0.47 0.53 -1.01 0.88 0.26 0.69 44.21 
58 Bang Bua Thong -0.11 -0.34 0.79 -0.24 -1.77 0.22 0.01 0.76 44.28 
59 Bang Kruai -1.04 -0.78 0.72 -1.03 -3.53 0.20 -0.09 0.82 44.29 
60 Bang Yai -0.76 -0.59 0.71 -0.84 -3.01 0.19 0.31 0.74 44.24 
61 Mueang 

Nonthaburi 
0.12 -0.04 0.84 0.04 -1.55 0.22 -0.17 0.88 44.29 
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Table 6.15 (Continued). 

No. District Intercept 
Regression coefficient 

Residual 
Local 

R2 
Predicted 
(μg/m3) RH WS P FRP ELEV 

62 Pak Kret 0.75 0.40 0.72 0.66 -0.60 0.15 0.18 0.90 44.28 
63 Sai Noi 0.56 -0.22 0.51 -0.10 -0.64 -0.08 0.01 0.60 44.25 
64 Bang Bo -0.82 -1.00 0.43 -0.25 -0.16 0.41 0.00 0.78 43.98 
65 Bang Phli -0.52 -1.11 0.30 -0.07 -0.35 0.18 0.06 0.81 43.99 
66 Bang Sao Thong -0.92 -1.17 0.42 -0.34 -0.17 0.34 -0.29 0.81 44.03 
67 Mueang Samut 

Prakan 
-0.21 -0.97 0.37 0.16 -0.41 0.25 0.08 0.68 43.97 

68 Phra Pradaeng 0.30 -1.32 0.54 0.34 -0.65 0.28 -0.31 0.68 43.99 
69 Phra Samut Chedi 0.60 -1.60 0.59 0.45 -0.67 0.28 0.16 0.72 43.97 
70 Ban Phaeo 0.32 -1.00 0.33 0.77 -0.54 0.80 0.34 0.75 44.10 
71 Krathum Baen -0.22 -0.78 0.27 0.32 -1.56 0.61 0.13 0.76 44.12 
72 Mueang Samut 

Sakhon 
-0.29 -0.82 0.00 0.23 -1.89 0.29 0.09 0.79 44.01 

 
From Table 6.15, the maximum value is 44.37 μg/m3 in Don Mueang 

District, Bangkok. In contrast, the minimum value is 43.97 μg/m3 in Phra Samut Chedi 
District, Samut Prakan province. The classification maps of predicted values for PM2.5 
concentration using the GWR model according to the Thailand Air Quality Index and 
the U.S. EPA Air Quality Index are displayed in Figure 6.29. 

Thus, the predicted values of PM2.5 concentration are moderate at level 
3 of Thailand AQI and unhealthy for sensitive groups at level 3 of EPA AQI. In contrast, 
the predicted value in an urban landscape in February 2020 from the GWR model is 
more than the one-day mean of WHO guidelines. See Table 5.3. 

In addition, a spatial distribution map of PM2.5 concentration in February 
2020 using the SCK interpolation technique is displayed in Figure 6.30. As a result, the 
high PM2.5 concentration occur in urban areas in the northern part of the study area, 
mainly in Bangkok Metropolitan and Nonthaburi province. 
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(a) (b) 
Figure 6.29 The classification map of PM2.5 concentration prediction using the GWR 
model in February 2020 according to the (a) Thailand AQI and (b) EPA AQI. 
 

 
Figure 6.30 Spatial distribution of PM2.5 concentration in February 2020. 
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6.2.6 March 2020 in the summer season 

The result of the GWR model for PM2.5 concentration prediction in March 
2020 in the summer season is summarized in Table 6.16. The model performance 
shows that AICc, R-square, and adjusted R-square values are 114.63, 0.92, and 0.85, 
respectively. 
 
Table 6.16 The predictive equations of PM2.5 concentration in March 2020. 

No. District Intercept 
Regression coefficient 

Residual LocalR2 
Predicted 
(μg/m3) FRP 

1 Bang Bon -0.45 -0.43 0.40 0.03 23.31 
2 Bang Kapi 0.42 0.30 0.71 0.02 23.51 
3 Bang Khae -0.96 -0.77 -0.20 0.21 23.25 
4 Bang Khen -0.02 0.68 0.41 0.58 23.73 
5 Bang Kho Laem 0.46 6.26 0.11 0.92 23.13 
6 Bang Khun Thian -0.62 -1.18 0.72 0.11 23.29 
7 Bang Na -0.28 0.89 0.21 0.12 23.20 
8 Bang Phlat -1.18 -1.12 -0.55 0.18 22.90 
9 Bang Rak 0.18 -2.34 0.51 0.24 23.38 
10 Bang Sue -3.04 1.85 -0.09 0.68 23.09 
11 Bangkok Noi -0.91 -2.08 -0.23 0.38 23.09 
12 Bangkok Yai -0.43 -0.68 0.30 0.04 23.26 
13 Bueng Kum 0.50 0.32 0.47 0.07 23.57 
14 Chatuchak -2.93 1.91 -0.17 0.72 23.26 
15 Chom Thong 0.13 3.81 -0.12 0.40 23.08 
16 Din Daeng -0.49 -2.02 -0.16 0.20 22.86 
17 Don Mueang -0.13 0.66 -0.25 0.62 24.04 
18 Dusit -0.92 -1.90 -0.34 0.34 22.83 
19 Huai Khwang -0.14 -1.83 0.33 0.17 23.05 
20 Khan Na Yao 0.57 0.39 -0.38 0.24 23.62 
21 Khlong Sam Wa 0.90 0.34 0.13 0.49 23.67 
22 Khlong San -0.07 0.79 0.16 0.04 23.32 
23 Khlong Toei -0.45 -0.28 -0.04 0.01 23.23 
24 Lak Si -1.21 1.02 0.49 0.71 23.72 
25 Lat Krabang 0.54 -0.29 -0.03 0.37 23.60 
26 Lat Phrao -0.36 0.67 -0.21 0.14 23.48 
27 Min Buri 0.82 0.05 -0.09 0.01 23.58 
28 Nong Chok 1.10 -0.04 0.37 0.01 23.67 
29 Nong Khaem -1.07 -1.10 -0.06 0.19 23.33 
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Table 6.16 (Continued). 

No. District Intercept 
Regression coefficient 

Residual LocalR2 
Predicted 
(μg/m3) FRP 

30 Pathum Wan 0.41 -5.28 0.05 0.84 23.22 
31 Phasi Charoen -0.58 0.20 0.00 0.01 23.17 
32 Phaya Thai -1.48 -0.69 -0.53 0.05 22.82 
33 Phra Khanong -0.32 0.89 -0.38 0.13 23.22 
34 Phra Nakhon -0.19 -3.98 -0.35 0.49 23.16 
35 Pom Prap Sattru Phai 0.25 -5.08 0.09 0.72 23.21 
36 Prawet 0.20 0.85 0.22 0.14 23.35 
37 Rat Burana 0.50 6.42 -0.32 0.79 22.95 
38 Ratchathewi 0.23 -4.24 -0.30 0.90 23.01 
39 Sai Mai 0.49 0.50 0.17 0.63 23.88 
40 Samphanthawong 0.02 -2.81 0.52 0.27 23.33 
41 Saphan Sung 0.55 0.40 -0.15 0.19 23.51 
42 Sathon 0.03 1.78 0.13 0.18 23.35 
43 Suan Luang -0.15 1.13 0.34 0.20 23.34 
44 Taling Chan -1.05 -0.81 -0.22 0.23 23.15 
45 Thawi Watthana -0.73 -0.35 -0.16 0.08 23.22 
46 Thon Buri 0.32 4.12 0.00 0.78 23.22 
47 Thung Khru -1.36 -1.07 -0.02 0.02 23.05 
48 Vadhana -0.46 -0.86 -0.02 0.21 23.20 
49 Wang Thonglang -0.01 -0.08 0.11 0.00 23.34 
50 Yan Nawa 0.02 3.40 0.01 0.63 23.20 
51 Bang Len 0.44 -0.25 0.05 0.29 23.55 
52 Don Tum 0.41 -0.25 0.01 0.09 23.56 
53 Kamphaeng Saen 0.64 -0.10 0.25 0.01 23.57 
54 Mueang Nakhon Pathom -0.09 -0.60 -0.03 0.25 23.56 
55 Nakhon Chai Si -0.42 -0.80 -0.04 0.59 23.52 
56 Phutthamonthon -0.30 -0.52 0.12 0.19 23.40 
57 Sam Phran -0.95 -1.27 0.10 0.47 23.44 
58 Bang Bua Thong 0.31 0.07 0.17 0.02 23.45 
59 Bang Kruai -0.80 -0.22 0.11 0.03 23.14 
60 Bang Yai -0.15 0.03 0.35 0.00 23.31 
61 Mueang Nonthaburi -2.10 1.45 0.45 0.68 23.21 
62 Pak Kret -1.18 0.96 0.04 0.80 23.57 
63 Sai Noi 0.45 -0.18 0.05 0.21 23.52 
64 Bang Bo 0.49 -0.21 -0.23 0.06 23.56 
65 Bang Phli -0.06 -0.93 0.31 0.46 23.54 
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Table 6.16 (Continued). 

No. District Intercept 
Regression coefficient 

Residual LocalR2 
Predicted 
(μg/m3) FRP 

66 Bang Sao Thong 0.42 -0.32 0.03 0.18 23.57 
67 Mueang Samut Prakan -1.27 -3.09 0.24 0.67 23.47 
68 Phra Pradaeng -0.25 2.30 0.14 0.40 23.03 
69 Phra Samut Chedi -1.63 -3.06 -0.03 0.27 23.33 
70 Ban Phaeo -0.44 -0.80 0.02 0.44 23.47 
71 Krathum Baen -0.66 -0.93 0.20 0.12 23.39 
72 Mueang Samut Sakhon 0.34 0.23 0.02 0.04 23.39 

 
From Table 6.16, the maximum value is 24.04 μg/m3 in Don Mueang 

District, Bangkok. In contrast, the minimum value is 22.82 μg/m3 in Phaya Thai District, 
Bangkok. The classification maps of predicted values for PM2.5 concentration using the 
GWR model according to the Thailand Air Quality Index and the U.S. EPA Air Quality 
Index are displayed in Figure 6.31. 

Thus, the predicted values of PM2.5 concentration are excellent at level 
1 of Thailand AQI and moderate at level 2 of EPA AQI. However, the predicted value 
in an urban landscape in March 2020 from the GWR model is more than the one-day 
mean of WHO guidelines. See Table 5.3. 

In addition, a spatial distribution map of PM2.5 concentration in March 
2020 using the SCK interpolation technique is displayed in Figure 6.32. As a result, the 
high PM2.5 concentration occur in urban areas in the northern part of the study area, 
mainly in Bangkok Metropolitan. 
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(a) (b) 
Figure 6.31 The classification map of PM2.5 concentration prediction using the GWR 
model in March 2020 according to the (a) Thailand AQI and (b) EPA AQI. 
 

 
Figure 6.32 Spatial distribution of PM2.5 concentration in March 2020. 
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6.2.7 April 2020 in the summer season 

The result of the GWR model for PM2.5 concentration prediction in April 
2020 in the summer season is summarized in Table 6.17. The model performance 
shows that AICc, R-square, and adjusted R-square values are 162.63, 0.70, and 0.60, 
respectively. 
 
Table 6.17 The predictive equations of PM2.5 concentration in April 2020. 

No. District Intercept
Regression coefficient 

Residual 
Local

R2 
Predicted 
(μg/m3) WS VS BT FRP AOD FH FD 

1 Bang Bon -0.41 0.08 0.11 0.01 -0.08 0.07 0.34 -0.12 0.60 0.13 21.71 
2 Bang Kapi -0.23 0.73 0.49 -0.23 -0.12 0.33 0.21 -0.09 0.62 0.64 22.31 
3 Bang Khae -0.39 0.08 0.15 -0.06 -0.20 0.05 0.34 -0.11 0.03 0.11 21.72 
4 Bang Khen -0.09 0.86 0.46 -0.19 -0.20 0.34 0.21 -0.10 1.05 0.67 22.25 
5 Bang Kho 

Laem 
-0.38 0.49 0.19 -0.20 0.15 0.15 0.21 -0.05 -0.68 0.37 21.71 

6 Bang Khun 
Thian 

-0.38 0.27 0.06 -0.02 0.14 0.10 0.28 -0.11 0.52 0.23 21.83 

7 Bang Na -0.39 0.55 0.35 -0.29 0.07 0.26 0.21 -0.05 -0.20 0.58 21.94 
8 Bang Phlat -0.19 0.75 0.31 -0.37 -0.13 0.29 0.23 -0.03 -0.84 0.47 21.69 
9 Bang Rak -0.35 0.57 0.26 -0.31 0.07 0.19 0.21 -0.03 0.96 0.42 21.64 
10 Bang Sue -0.15 0.84 0.39 -0.40 -0.19 0.35 0.23 -0.03 -0.04 0.58 21.75 
11 Bangkok Noi -0.23 0.63 0.24 -0.30 -0.07 0.23 0.23 -0.05 -0.37 0.37 21.80 
12 Bangkok Yai -0.31 0.53 0.20 -0.24 0.02 0.17 0.22 -0.05 0.63 0.32 21.73 
13 Bueng Kum -0.15 0.81 0.47 -0.13 -0.14 0.32 0.20 -0.11 0.65 0.66 22.21 
14 Chatuchak -0.16 0.86 0.42 -0.37 -0.18 0.36 0.22 -0.03 0.08 0.63 21.84 
15 Chom 

Thong 
-0.36 0.40 0.13 -0.12 0.12 0.13 0.23 -0.08 -0.59 0.27 21.69 

16 Din Daeng -0.22 0.76 0.39 -0.38 -0.13 0.32 0.23 -0.03 -0.90 0.58 21.83 
17 Don Mueang -0.03 0.88 0.45 -0.32 -0.32 0.37 0.24 -0.08 0.22 0.68 22.43 
18 Dusit -0.21 0.76 0.34 -0.39 -0.11 0.29 0.23 -0.03 -1.32 0.50 21.90 
19 Huai 

Khwang 
-0.24 0.74 0.42 -0.36 -0.12 0.32 0.22 -0.04 0.18 0.59 21.82 

20 Khan Na 
Yao 

-0.11 0.81 0.45 -0.06 -0.13 0.31 0.19 -0.15 -0.62 0.66 22.42 

21 Khlong Sam 
Wa 

-0.04 0.82 0.40 0.03 -0.13 0.28 0.18 -0.19 -0.32 0.67 22.46 

22 Khlong San -0.33 0.56 0.22 -0.26 0.07 0.18 0.21 -0.05 0.34 0.38 21.70 
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Table 6.17 (Continued). 

No. District Intercept
Regression coefficient 

Residual 
Local

R2 
Predicted 
(μg/m3) WS VS BT FRP AOD FH FD 

23 Khlong Toei -0.31 0.63 0.35 -0.33 -0.01 0.25 0.21 -0.05 0.33 0.54 21.62 
24 Lak Si -0.09 0.90 0.43 -0.36 -0.25 0.38 0.23 -0.04 0.58 0.66 22.23 
25 Lat Krabang -0.12 0.69 0.38 -0.02 -0.09 0.30 0.19 -0.21 0.27 0.64 22.17 
26 Lat Phrao -0.16 0.85 0.45 -0.27 -0.17 0.35 0.21 -0.06 -0.14 0.66 22.26 
27 Min Buri -0.07 0.79 0.35 0.08 -0.05 0.28 0.17 -0.21 -0.40 0.66 22.37 
28 Nong Chok -0.01 0.81 0.31 0.15 -0.04 0.24 0.15 -0.25 0.59 0.67 22.17 
29 Nong 

Khaem 
-0.40 0.00 0.14 -0.02 -0.27 0.04 0.37 -0.12 0.26 0.13 21.73 

30 Pathum 
Wan 

-0.29 0.65 0.31 -0.35 -0.01 0.24 0.22 -0.03 0.73 0.48 21.61 

31 Phasi 
Charoen 

-0.31 0.41 0.17 -0.17 -0.02 0.13 0.25 -0.08 -0.02 0.24 21.74 

32 Phaya Thai -0.20 0.77 0.36 -0.37 -0.13 0.32 0.23 -0.04 -1.27 0.56 21.82 
33 Phra 

Khanong 
-0.37 0.58 0.41 -0.33 0.00 0.27 0.22 -0.05 -0.61 0.58 21.96 

34 Phra Nakhon -0.28 0.64 0.27 -0.33 -0.02 0.22 0.22 -0.03 -0.29 0.40 21.79 
35 Pom Prap 

Sattru Phai 
-0.29 0.64 0.28 -0.34 -0.01 0.22 0.22 -0.03 0.61 0.43 21.72 

36 Prawet -0.28 0.62 0.42 -0.24 -0.06 0.33 0.22 -0.11 -0.24 0.62 22.20 
37 Rat Burana -0.42 0.41 0.13 -0.12 0.22 0.12 0.21 -0.06 -1.53 0.33 21.72 
38 Ratchathewi -0.25 0.71 0.34 -0.37 -0.07 0.28 0.22 -0.03 -0.38 0.52 21.74 
39 Sai Mai -0.04 0.88 0.44 -0.12 -0.21 0.32 0.20 -0.12 0.67 0.69 22.36 
40 Samphantha

wong 
-0.31 0.60 0.26 -0.31 0.03 0.20 0.21 -0.03 0.89 0.40 21.71 

41 Saphan 
Sung 

-0.18 0.72 0.44 -0.12 -0.11 0.33 0.20 -0.15 -0.58 0.64 22.28 

42 Sathon -0.36 0.55 0.25 -0.29 0.09 0.18 0.21 -0.03 0.49 0.43 21.63 
43 Suan Luang -0.33 0.64 0.48 -0.33 -0.07 0.31 0.22 -0.06 0.23 0.61 22.03 
44 Taling Chan -0.22 0.53 0.24 -0.27 -0.18 0.20 0.26 -0.07 -0.42 0.28 21.77 
45 Thawi 

Watthana 
-0.28 0.24 0.23 -0.19 -0.39 0.10 0.35 -0.10 -0.06 0.16 21.72 

46 Thon Buri -0.36 0.47 0.18 -0.20 0.10 0.14 0.21 -0.05 0.14 0.31 21.70 
47 Thung Khru -0.44 0.36 0.07 -0.05 0.27 0.12 0.22 -0.07 -0.89 0.31 21.80 
48 Vadhana -0.29 0.67 0.39 -0.33 -0.05 0.28 0.21 -0.05 0.05 0.57 21.74 
49 Wang 

Thonglang 
-0.24 0.77 0.48 -0.33 -0.13 0.34 0.22 -0.04 0.60 0.63 22.02 

50 Yan Nawa -0.40 0.50 0.22 -0.24 0.15 0.17 0.21 -0.04 -0.59 0.43 21.68 

  

 



233 

Table 6.17 (Continued). 

No. District Intercept 
Regression coefficient 

Residual 
Local

R2 
Predicted 
(μg/m3) WS VS BT FRP AOD FH FD 

51 Bang Len 0.00 0.71 0.33 -0.30 -0.71 0.34 0.40 -0.06 0.00 0.52 21.96 
52 Don Tum -0.19 0.42 0.19 -0.19 -0.51 0.18 0.36 -0.07 -0.06 0.43 21.96 
53 Kamphaeng 

Saen 
-0.14 0.47 0.21 -0.21 -0.53 0.20 0.37 -0.08 -0.07 0.47 22.04 

54 Mueang 
Nakhon 
Pathom 

-0.35 0.16 0.09 -0.07 -0.34 0.07 0.32 -0.09 -0.02 0.40 21.93 

55 Nakhon Chai 
Si 

-0.35 0.18 0.10 -0.09 -0.37 0.08 0.33 -0.08 0.21 0.33 21.86 

56 Phutthamon
thon 

-0.31 0.27 0.16 -0.17 -0.47 0.11 0.35 -0.06 0.17 0.25 21.80 

57 Sam Phran -0.47 -0.01 0.04 0.03 -0.29 0.04 0.34 -0.09 0.20 0.26 21.81 
58 Bang Bua 

Thong 
0.09 0.76 0.54 -0.39 -0.75 0.39 0.37 -0.12 0.01 0.54 21.88 

59 Bang Kruai -0.09 0.64 0.34 -0.34 -0.38 0.28 0.30 -0.09 -0.37 0.37 21.76 
60 Bang Yai -0.06 0.58 0.39 -0.32 -0.61 0.28 0.36 -0.10 0.29 0.35 21.77 
61 Mueang 

Nonthaburi 
-0.05 0.84 0.42 -0.42 -0.36 0.37 0.27 -0.05 -0.31 0.57 21.87 

62 Pak Kret 0.00 0.85 0.46 -0.43 -0.42 0.39 0.27 -0.07 -0.20 0.64 22.01 
63 Sai Noi 0.07 0.77 0.43 -0.35 -0.76 0.39 0.39 -0.08 0.34 0.55 21.85 
64 Bang Bo -0.19 0.55 0.37 -0.13 -0.07 0.32 0.21 -0.22 0.14 0.62 21.98 
65 Bang Phli -0.30 0.55 0.37 -0.21 -0.01 0.33 0.22 -0.13 -0.07 0.62 22.25 
66 Bang Sao 

Thong 
-0.20 0.59 0.39 -0.14 -0.08 0.32 0.21 -0.19 -0.48 0.62 22.30 

67 Mueang 
Samut 
Prakan 

-0.42 0.48 0.21 -0.20 0.20 0.23 0.20 -0.07 0.31 0.59 22.03 

68 Phra 
Pradaeng 

-0.42 0.46 0.18 -0.19 0.21 0.16 0.21 -0.05 -0.96 0.45 21.82 

69 Phra Samut 
Chedi 

-0.42 0.38 0.04 -0.04 0.30 0.12 0.24 -0.09 -0.25 0.37 21.94 

70 Ban Phaeo -0.48 -0.07 0.03 0.10 -0.24 0.06 0.37 -0.11 0.14 0.30 21.86 
71 Krathum 

Baen 
-0.48 -0.10 0.06 0.09 -0.28 0.05 0.40 -0.11 0.33 0.20 21.78 

72 Mueang 
Samut 
Sakhon 

-0.37 0.05 0.10 0.03 -0.15 0.08 0.41 -0.14 0.00 0.16 21.86 
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From Table 6.17, the maximum value is 22.46 μg/m3 in Khlong Sam Wa 
District, Bangkok. In contrast, the minimum value is 21.61 μg/m3 in Pathum Wan District, 
Bangkok. The classification maps of predicted values for PM2.5 concentration using the 
GWR model according to the Thailand Air Quality Index and the U.S. EPA Air Quality 
Index are displayed in Figure 6.33. 

As a result, the predicted values of PM2.5 concentration are excellent at 
level 1 of Thailand AQI and moderate at level 2 of EPA AQI. On the contrary, the 
predicted value in an urban landscape in April 2020 from the GWR model is more than 
the one-day mean of WHO guidelines. See Table 5.3. 

In addition, a spatial distribution map of PM2.5 concentration in April 2020 
using the SCK interpolation technique is displayed in Figure 6.34. As a result, the high 
PM2.5 concentration occur in urban areas in the northern part of the study area, mainly 
in Bangkok Metropolitan. 
 

(a) (b) 
Figure 6.33 The classification map of PM2.5 concentration prediction using the GWR 
model in April 2020 according to the (a) Thailand AQI and (b) EPA AQI. 
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Figure 6.34 Spatial distribution of PM2.5 concentration in April 2020. 
 

6.2.8 May 2020 in the summer season 

The result of the GWR model for PM2.5 concentration prediction in May 
2020 in the summer season is summarized in Table 6.18. The model performance 
shows that AICc, R-square, and adjusted R-square values are 90.38, 0.93, and 0.88, 
respectively. 
 
Table 6.18 The predictive equations of PM2.5 concentration in May 2020. 

No. District Intercept 
Regression coefficient 

Residual 
Local

R2 
Predicted
(μg/m3) WS VIS BT FD ELEV 

1 Bang Bon -0.63 0.19 -0.05 0.32 -0.33 0.42 0.17 0.61 16.69 
2 Bang Kapi 0.68 1.29 1.04 1.23 -0.35 0.15 0.06 0.86 16.77 
3 Bang Khae -0.19 0.14 -0.42 0.08 -0.40 0.25 -0.09 0.67 16.73 
4 Bang Khen 0.96 1.52 0.98 0.21 -0.21 0.18 0.29 0.82 16.83 
5 Bang Kho Laem -0.56 0.36 -0.16 0.66 -0.35 0.40 -0.04 0.49 16.69 
6 Bang Khun Thian -1.00 0.28 0.13 0.38 -0.23 0.50 -0.06 0.59 16.71 
7 Bang Na -0.48 0.37 -0.11 0.25 -0.45 0.40 -0.49 0.46 16.71 
8 Bang Phlat 0.52 0.77 0.05 -0.93 -0.39 0.15 0.38 0.47 16.77 
9 Bang Rak -0.24 0.55 0.15 1.08 -0.42 0.30 -0.61 0.49 16.75 
10 Bang Sue 1.04 1.09 0.30 -1.22 -0.25 -0.04 0.52 0.65 16.78 
11 Bangkok Noi 0.12 0.53 -0.18 -0.28 -0.41 0.24 -0.16 0.45 16.77 
12 Bangkok Yai -0.15 0.49 -0.29 0.01 -0.41 0.34 0.19 0.48 16.73 
13 Bueng Kum 0.84 1.61 1.07 0.37 -0.28 0.36 0.10 0.81 16.80 
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Table 6.18 (Continued). 

No. District Intercept 
Regression coefficient 

Residual 
Local

R2 
Predicted
(μg/m3) WS VIS BT FD ELEV 

14 Chatuchak 0.91 1.22 0.61 0.71 -0.16 -0.08 0.08 0.82 16.81 
15 Chom Thong -0.62 0.50 -0.35 0.33 -0.30 0.47 -0.14 0.58 16.70 
16 Din Daeng 0.15 1.05 0.72 4.32 -0.32 -0.01 0.44 0.73 16.77 
17 Don Mueang 1.01 1.18 0.55 0.27 -0.18 0.03 -0.05 0.77 16.85 
18 Dusit 1.69 0.94 0.24 -7.74 -0.41 0.10 0.04 0.56 16.78 
19 Huai Khwang 0.59 1.10 0.88 1.58 -0.30 -0.01 0.08 0.76 16.77 
20 Khan Na Yao 0.84 1.69 1.09 0.22 -0.34 0.52 -0.03 0.82 16.80 
21 Khlong Sam Wa 0.53 1.14 0.46 0.08 -0.93 0.92 0.09 0.77 16.80 
22 Khlong San -0.51 0.44 -0.02 1.79 -0.38 0.33 0.06 0.48 16.71 
23 Khlong Toei -0.07 0.63 0.37 0.84 -0.47 0.26 0.27 0.56 16.71 
24 Lak Si 1.02 1.12 0.37 0.19 -0.12 -0.04 0.42 0.80 16.83 
25 Lat Krabang -0.19 0.46 -0.24 0.07 -1.71 1.44 -0.05 0.59 16.76 
26 Lat Phrao 0.88 1.46 0.94 0.66 -0.15 0.11 0.22 0.84 16.80 
27 Min Buri 0.18 0.80 0.30 0.20 -1.60 1.05 0.16 0.64 16.77 
28 Nong Chok -0.08 0.60 -0.28 0.04 -1.86 1.73 0.11 0.71 16.77 
29 Nong Khaem -0.19 -0.21 -0.23 0.07 -0.42 0.18 -0.16 0.70 16.73 
30 Pathum Wan 0.00 0.71 0.32 1.22 -0.44 0.23 -0.69 0.53 16.77 
31 Phasi Charoen -0.29 0.49 -0.48 0.17 -0.38 0.39 -0.20 0.57 16.74 
32 Phaya Thai 0.25 1.05 0.59 3.42 -0.32 0.00 0.24 0.67 16.78 
33 Phra Khanong -0.12 0.61 0.23 0.66 -0.53 0.33 -0.53 0.57 16.73 
34 Phra Nakhon 0.58 0.69 0.09 -2.80 -0.43 0.23 -0.51 0.49 16.78 
35 Pom Prap Sattru 

Phai 
-0.02 0.67 0.27 1.09 -0.42 0.22 0.87 0.49 16.72 

36 Prawet 0.02 0.75 0.34 0.37 -0.76 0.50 -0.44 0.57 16.74 
37 Rat Burana -0.75 0.32 -0.21 0.48 -0.28 0.44 -0.31 0.54 16.69 
38 Ratchathewi -0.07 0.86 0.47 3.55 -0.41 0.12 0.09 0.58 16.76 
39 Sai Mai 0.96 1.47 0.93 0.17 -0.27 0.28 -0.02 0.81 16.84 
40 Samphanthawong -0.24 0.57 0.09 1.57 -0.42 0.27 -0.14 0.48 16.74 
41 Saphan Sung 0.62 1.37 1.03 0.53 -0.78 0.47 -0.09 0.74 16.77 
42 Sathon -0.33 0.47 0.03 0.79 -0.41 0.34 -0.02 0.48 16.71 
43 Suan Luang 0.32 0.97 0.66 1.02 -0.55 0.25 -0.10 0.72 16.74 
44 Taling Chan 0.08 0.28 -0.54 -0.06 -0.41 0.21 -0.35 0.49 16.78 
45 Thawi Watthana 0.09 -0.11 -0.48 -0.05 -0.41 0.12 0.03 0.68 16.76 
46 Thon Buri -0.41 0.44 -0.25 0.53 -0.37 0.38 -0.27 0.50 16.72 
47 Thung Khru -1.00 0.29 -0.05 0.24 -0.19 0.44 -0.34 0.60 16.70 
48 Vadhana 0.22 0.86 0.56 1.02 -0.48 0.20 0.07 0.63 16.74 
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Table 6.18 (Continued). 

No. District Intercept 
Regression coefficient 

Residual 
Local

R2 
Predicted 
(μg/m3) WS VIS BT FD ELEV 

49 Wang Thonglang 0.68 1.25 0.99 1.37 -0.29 0.05 -0.12 0.82 16.79 
50 Yan Nawa -0.58 0.30 -0.08 0.56 -0.35 0.38 -0.23 0.49 16.70 
51 Bang Len 0.40 0.14 -0.31 -0.12 -0.31 0.15 -0.10 0.46 16.77 
52 Don Tum 0.03 0.04 -0.22 -0.04 -0.50 0.10 -0.04 0.61 16.76 
53 Kamphaeng Saen 0.01 0.04 -0.20 -0.03 -0.50 0.07 -0.14 0.58 16.77 
54 Mueang Nakhon 

Pathom 
-0.19 -0.05 -0.17 0.05 -0.50 0.07 0.19 0.79 16.75 

55 Nakhon Chai Si -0.04 -0.03 -0.23 -0.01 -0.53 0.24 0.06 0.82 16.75 
56 Phutthamonthon 0.10 -0.11 -0.35 -0.07 -0.46 0.28 -0.04 0.75 16.76 
57 Sam Phran -0.12 -0.16 -0.20 0.06 -0.45 0.25 0.09 0.87 16.74 
58 Bang Bua Thong 0.51 0.45 -0.92 -0.10 -0.20 0.22 -0.09 0.63 16.78 
59 Bang Kruai 0.26 0.16 -0.63 -0.13 -0.35 0.12 0.00 0.42 16.78 
60 Bang Yai 0.28 0.12 -0.70 -0.10 -0.33 0.18 -0.05 0.52 16.77 
61 Mueang 

Nonthaburi 
0.89 0.87 -0.15 -0.71 -0.21 -0.03 -0.23 0.58 16.81 

62 Pak Kret 0.94 0.85 -0.21 -0.18 -0.12 -0.02 0.20 0.76 16.80 
63 Sai Noi 0.56 0.20 -0.53 -0.16 -0.31 0.35 0.06 0.58 16.77 
64 Bang Bo -0.46 0.16 -0.39 0.01 -0.99 0.93 -0.13 0.54 16.73 
65 Bang Phli -0.56 0.20 -0.26 0.08 -0.63 0.57 0.09 0.48 16.71 
66 Bang Sao Thong -0.42 0.22 -0.35 0.03 -1.10 1.01 -0.60 0.53 16.75 
67 Mueang Samut 

Prakan 
-0.85 0.14 -0.25 0.04 -0.35 0.34 0.07 0.49 16.70 

68 Phra Pradaeng -0.78 0.19 -0.18 0.24 -0.29 0.40 -0.43 0.51 16.70 
69 Phra Samut Chedi -1.05 0.20 0.10 0.03 -0.20 0.41 0.16 0.52 16.70 
70 Ban Phaeo -0.29 -0.17 -0.11 0.17 -0.41 0.29 0.04 0.86 16.74 
71 Krathum Baen -0.22 -0.27 -0.14 0.10 -0.42 0.27 0.01 0.82 16.73 
72 Mueang Samut 

Sakhon 
-0.75 -0.01 0.10 0.38 -0.31 0.41 -0.07 0.65 16.73 

 
From Table 6.18, the maximum value is 16.85 μg/m3 in Don Mueang 

District, Bangkok. In contrast, the minimum value is 16.69 μg/m3 in Bang Bon District, 
Bangkok. The classification maps of predicted values for PM2.5 concentration using the 
GWR model according to the Thailand Air Quality Index and the U.S. EPA Air Quality 
Index are displayed in Figure 6.35. 

Thus, the predicted values of PM2.5 concentration are excellent at level 
1 of Thailand AQI and moderate at level 2 of EPA AQI. In contrast, the predicted value 
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in an urban landscape in May 2020 from the GWR model is more than the one-day 
mean of WHO guidelines. See Table 5.3. 

In addition, a spatial distribution map of PM2.5 concentration in May 2020 
using the SCK interpolation technique is displayed in Figure 6.36. As a result, the high 
PM2.5 concentration occur in urban areas in the northern part of the study area, mainly 
in Bangkok Metropolitan. 
 

(a) (b) 
Figure 6.35 The classification map of PM2.5 concentration prediction using the GWR 
model in May 2020 according to the (a) Thailand AQI and (b) EPA AQI. 
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Figure 6.36 Spatial distribution of PM10 concentration in May 2020. 
 

6.2.9 Winter season 

The result of the GWR model for PM2.5 concentration prediction in the 
winter season (October to February) is summarized in Table 6.19. The model 
performance shows that AICc, R-square, and adjusted R-square values are 79.58, 0.91, 
and 0.88, respectively. 
 
Table 6.19 The predictive equations of PM2.5 concentration in the winter season. 

No. District 
Inter
cept 

Regression coefficient Resi-
dual 

Local
R2 

Predicted 
(μg/m3) RH TEMP WS P VIS BT FRP FH AOD ELEV 

1 Bang Bon 0.49 0.28 -0.47 0.33 -0.31 -0.71 -0.63 -0.74 -0.11 0.00 0.22 -0.14 0.77 38.23 

2 Bang Kapi -0.09 1.20 2.42 0.08 1.94 -0.16 -0.05 -0.58 -0.03 -0.07 0.29 -0.19 0.74 37.46 

3 Bang Khae 0.45 0.48 -0.21 0.34 -0.18 -0.74 -0.63 -0.71 -0.12 -0.06 0.21 0.26 0.76 38.10 

4 Bang Khen -0.08 1.48 2.82 0.18 2.18 -0.28 -0.08 -0.51 -0.04 -0.08 0.26 -0.07 0.79 37.77 

5 Bang Kho 
Laem 

0.32 0.56 0.66 0.04 0.57 -0.54 -0.34 -0.93 -0.15 -0.07 0.17 0.06 0.75 37.93 

6 Bang 
Khun 
Thian 

0.43 0.25 -0.21 0.18 -0.04 -0.54 -0.52 -0.86 -0.15 0.01 0.21 -0.08 0.76 38.03 

7 Bang Na -0.02 0.88 1.78 0.04 1.52 -0.06 -0.04 -0.68 -0.04 -0.04 0.31 0.09 0.71 37.32 

8 Bang 
Phlat 

0.27 0.91 0.82 0.20 0.59 -0.60 -0.50 -0.71 -0.16 -0.12 0.18 0.58 0.76 37.90 

9 Bang Rak 0.29 0.66 0.86 0.05 0.69 -0.57 -0.34 -0.89 -0.15 -0.09 0.17 -0.46 0.75 38.09 

10 Bang Sue 0.18 1.13 1.33 0.20 1.00 -0.52 -0.42 -0.64 -0.14 -0.14 0.20 0.03 0.76 37.98 
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Table 6.19 (Continued). 

No. District 
Inter
cept 

Regression coefficient Resi-
dual 

Local
R2 

Predicted 
(μg/m3) RH TEMP WS P VIS BT FRP FH AOD ELEV 

11 Bangkok 
Noi 

0.33 0.74 0.45 0.22 0.30 -0.67 -0.54 -0.75 -0.16 -0.10 0.18 0.12 0.77 38.15 

12 Bangkok 
Yai 

0.33 0.67 0.47 0.17 0.35 -0.63 -0.50 -0.80 -0.16 -0.09 0.18 -0.06 0.76 38.17 

13 Bueng 
Kum 

-0.11 1.30 2.63 0.10 2.08 -0.19 -0.05 -0.54 -0.03 -0.07 0.29 -0.30 0.76 37.59 

14 Chatuchak 0.07 1.24 2.03 0.20 1.47 -0.49 -0.27 -0.63 -0.10 -0.11 0.20 0.05 0.79 37.84 

15 Chom 
Thong 

0.35 0.56 0.32 0.14 0.29 -0.58 -0.48 -0.84 -0.16 -0.07 0.18 0.46 0.75 37.91 

16 Din Daeng 0.10 1.06 1.79 0.10 1.36 -0.43 -0.24 -0.72 -0.10 -0.10 0.21 -0.19 0.75 37.74 

17 Don 
Mueang 

0.03 1.66 2.73 0.32 2.03 -0.41 -0.19 -0.47 -0.07 -0.10 0.22 -0.10 0.85 37.98 

18 Dusit 0.22 0.95 1.07 0.16 0.81 -0.54 -0.43 -0.72 -0.15 -0.12 0.19 0.34 0.75 37.90 

19 Huai 
Khwang 

0.02 1.12 2.10 0.08 1.65 -0.30 -0.14 -0.69 -0.07 -0.10 0.24 -0.27 0.73 37.64 

20 Khan Na 
Yao 

-0.13 1.32 2.70 0.11 2.14 -0.17 -0.03 -0.51 -0.02 -0.06 0.30 -0.25 0.77 37.53 

21 Khlong 
Sam Wa 

-0.17 1.39 2.88 0.13 2.28 -0.17 -0.01 -0.45 -0.01 -0.05 0.31 0.01 0.80 37.38 

22 Khlong 
San 

0.31 0.66 0.68 0.09 0.55 -0.58 -0.40 -0.86 -0.16 -0.09 0.17 0.30 0.75 38.01 

23 Khlong 
Toei 

0.07 0.91 1.77 0.02 1.45 -0.24 -0.11 -0.78 -0.08 -0.08 0.24 -0.42 0.71 37.72 

24 Lak Si 0.07 1.48 2.26 0.27 1.67 -0.45 -0.28 -0.52 -0.09 -0.12 0.22 0.10 0.81 37.96 

25 Lat 
Krabang 

-0.16 1.15 2.34 0.09 1.93 -0.07 -0.03 -0.45 0.00 -0.03 0.34 0.35 0.78 36.96 

26 Lat Phrao -0.05 1.35 2.56 0.14 1.97 -0.29 -0.11 -0.57 -0.05 -0.09 0.25 -0.23 0.76 37.75 

27 Min Buri -0.16 1.25 2.59 0.09 2.09 -0.12 -0.02 -0.46 0.00 -0.04 0.32 -0.10 0.78 37.26 

28 Nong 
Chok 

-0.20 1.28 2.71 0.10 2.17 -0.12 -0.01 -0.41 0.00 -0.03 0.33 -0.18 0.80 37.12 

29 Nong 
Khaem 

0.45 0.51 -0.19 0.41 -0.14 -0.72 -0.60 -0.61 -0.10 -0.06 0.26 0.38 0.72 38.09 

30 Pathum 
Wan 

0.25 0.74 1.06 0.06 0.82 -0.56 -0.32 -0.87 -0.14 -0.09 0.17 -0.26 0.75 37.93 

31 Phasi 
Charoen 

0.36 0.63 0.19 0.23 0.14 -0.65 -0.58 -0.76 -0.16 -0.09 0.19 0.26 0.76 38.07 

32 Phaya 
Thai 

0.17 0.99 1.45 0.14 1.07 -0.53 -0.33 -0.74 -0.12 -0.11 0.19 -0.16 0.76 37.88 

33 Phra 
Khanong 

-0.02 0.95 1.93 0.04 1.61 -0.10 -0.05 -0.68 -0.04 -0.06 0.30 0.03 0.71 37.34 

34 Phra 
Nakhon 

0.27 0.81 0.78 0.15 0.59 -0.57 -0.46 -0.77 -0.16 -0.11 0.18 0.46 0.75 37.96 

35 Pom Prap 
Sattru Phai 

0.27 0.80 0.87 0.12 0.67 -0.56 -0.42 -0.80 -0.15 -0.11 0.18 0.21 0.75 37.97 
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Table 6.19 (Continued). 

No. District 
Inter
cept 

Regression coefficient Resi-
dual 

Local
R2 

Predicted 
(μg/m3) RH TEMP WS P VIS BT FRP FH AOD ELEV 

36 Prawet -0.10 1.04 2.09 0.07 1.74 -0.06 -0.04 -0.56 -0.02 -0.04 0.33 0.34 0.74 37.10 

37 Rat 
Burana 

0.34 0.48 0.53 0.03 0.49 -0.51 -0.34 -0.95 -0.16 -0.06 0.17 0.12 0.74 37.81 

38 Ratchathe
wi 

0.22 0.84 1.21 0.09 0.92 -0.55 -0.32 -0.82 -0.13 -0.10 0.18 -0.30 0.76 37.91 

39 Sai Mai -0.09 1.58 3.00 0.20 2.33 -0.26 -0.06 -0.46 -0.03 -0.08 0.27 0.07 0.81 37.68 

40 Samphant
hawong 

0.28 0.74 0.79 0.11 0.62 -0.57 -0.41 -0.82 -0.15 -0.10 0.17 0.01 0.75 38.02 

41 Saphan 
Sung 

-0.13 1.19 2.43 0.08 1.97 -0.11 -0.03 -0.52 -0.01 -0.05 0.32 0.40 0.76 37.15 

42 Sathon 0.28 0.64 0.92 0.03 0.75 -0.52 -0.30 -0.91 -0.14 -0.08 0.17 -0.38 0.74 38.01 

43 Suan 
Luang 

-0.06 1.07 2.16 0.05 1.77 -0.12 -0.05 -0.63 -0.03 -0.06 0.30 0.05 0.73 37.33 

44 Taling 
Chan 

0.38 0.72 0.24 0.30 0.10 -0.74 -0.60 -0.71 -0.14 -0.11 0.18 -0.18 0.77 38.29 

45 Thawi 
Watthana 

0.39 0.89 0.34 0.40 0.16 -0.72 -0.59 -0.59 -0.12 -0.18 0.22 0.12 0.72 38.13 

46 Thon Buri 0.33 0.62 0.52 0.12 0.42 -0.59 -0.45 -0.85 -0.16 -0.08 0.17 0.33 0.75 38.03 

47 Thung 
Khru 

0.27 0.47 0.77 -0.02 0.76 -0.30 -0.20 -0.96 -0.14 -0.05 0.21 0.09 0.71 37.76 

48 Vadhana 0.03 1.01 1.97 0.04 1.59 -0.22 -0.10 -0.73 -0.07 -0.08 0.25 -0.51 0.71 37.71 

49 Wang 
Thonglang 

-0.05 1.21 2.37 0.09 1.87 -0.23 -0.08 -0.62 -0.05 -0.09 0.27 -0.48 0.74 37.63 

50 Yan Nawa 0.20 0.69 1.23 -0.01 1.05 -0.33 -0.18 -0.91 -0.12 -0.08 0.21 0.28 0.71 37.62 

51 Bang Len 0.28 1.70 1.62 0.30 1.14 -0.54 -0.47 -0.47 -0.15 -0.39 0.15 -0.03 0.74 37.90 

52 Don Tum 0.32 1.61 1.48 0.26 1.05 -0.51 -0.39 -0.44 -0.16 -0.45 0.16 -0.08 0.65 38.01 

53 Kamphae
ng Saen 

0.32 1.62 1.50 0.25 1.06 -0.50 -0.39 -0.43 -0.16 -0.46 0.15 -0.14 0.67 37.90 

54 Mueang 
Nakhon 
Pathom 

0.32 1.46 1.33 0.26 1.00 -0.48 -0.31 -0.42 -0.15 -0.46 0.24 0.07 0.57 38.13 

55 Nakhon 
Chai Si 

0.32 1.45 1.27 0.30 0.93 -0.54 -0.36 -0.43 -0.15 -0.42 0.23 0.27 0.60 38.03 

56 Phuttham
onthon 

0.33 1.36 1.07 0.35 0.74 -0.63 -0.46 -0.45 -0.15 -0.34 0.22 -0.03 0.66 38.15 

57 Sam 
Phran 

0.34 1.15 0.84 0.36 0.66 -0.57 -0.36 -0.42 -0.13 -0.32 0.31 0.21 0.58 38.18 

58 Bang Bua 
Thong 

0.30 1.59 1.44 0.36 1.02 -0.62 -0.52 -0.45 -0.15 -0.25 0.17 0.15 0.82 38.00 

59 Bang Kruai 0.35 0.98 0.58 0.35 0.32 -0.73 -0.58 -0.63 -0.13 -0.17 0.18 0.41 0.77 38.06 

60 Bang Yai 0.31 1.32 1.00 0.37 0.65 -0.68 -0.54 -0.50 -0.14 -0.26 0.21 0.46 0.75 38.03 

61 Mueang 
Nonthaburi 

0.26 1.19 1.15 0.32 0.76 -0.68 -0.49 -0.58 -0.13 -0.15 0.18 0.20 0.81 38.07 
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Table 6.19 (Continued). 

No. District 
Inter
cept 

Regression coefficient Resi-
dual 

Local
R2 

Predicted 
(μg/m3) RH TEMP WS P VIS BT FRP FH AOD ELEV 

62 Pak Kret 0.18 1.58 1.99 0.37 1.42 -0.56 -0.36 -0.48 -0.10 -0.14 0.19 -0.02 0.86 38.06 

63 Sai Noi 0.29 1.68 1.59 0.33 1.13 -0.57 -0.49 -0.46 -0.15 -0.32 0.16 -0.14 0.79 37.99 

64 Bang Bo -0.15 0.93 1.78 0.10 1.55 0.04 -0.06 -0.44 0.00 0.02 0.38 -0.44 0.77 36.84 

65 Bang Phli -0.11 0.90 1.77 0.08 1.53 0.03 -0.05 -0.53 -0.01 0.00 0.36 -0.01 0.75 37.05 

66 Bang Sao 
Thong 

-0.15 0.98 1.92 0.09 1.65 0.01 -0.05 -0.46 0.00 0.00 0.36 0.01 0.77 36.91 

67 Mueang 
Samut 
Prakan 

-0.03 0.67 1.34 0.06 1.23 0.07 -0.04 -0.66 -0.03 0.02 0.35 -0.72 0.73 37.43 

68 Phra 
Pradaeng 

0.12 0.69 1.40 -0.03 1.25 -0.15 -0.07 -0.87 -0.09 -0.06 0.26 -0.19 0.70 37.62 

69 Phra 
Samut 
Chedi 

0.22 0.27 0.70 -0.04 0.79 -0.05 -0.04 -1.00 -0.12 0.02 0.27 -1.06 0.71 37.89 

70 Ban 
Phaeo 

0.32 1.05 0.86 0.36 0.76 -0.47 -0.29 -0.43 -0.12 -0.30 0.37 0.26 0.55 38.22 

71 Krathum 
Baen 

0.43 0.62 -0.01 0.47 0.05 -0.67 -0.49 -0.44 -0.10 -0.10 0.34 0.32 0.65 38.16 

72 Mueang 
Samut 
Sakhon 

0.50 0.18 -0.54 0.43 -0.28 -0.64 -0.60 -0.63 -0.08 0.05 0.30 -0.05 0.74 38.24 

 
From Table 6.19, the maximum value is 38.29 μg/m3 in Taling Chan 

District, Bangkok. In contrast, the minimum value is 36.84 μg/m3 in Bang Bo District, 
Samut Prakan province. The classification maps of predicted values for PM2.5 
concentration using the GWR model according to the Thailand Air Quality Index and 
the U.S. EPA Air Quality Index are displayed in Figure 6.37. 

Thus, the predicted values of PM2.5 concentration are moderate at level 
3 of Thailand AQI and unhealthy for sensitive groups at level 3 of EPA AQI. However, 
the predicted value in an urban landscape in the winter season from the GWR model 
is more than the one-day mean of WHO guidelines. See Table 5.3. 

In addition, a spatial distribution map of PM2.5 concentration in the winter 
season using the SCK interpolation technique is displayed in Figure 6.38. As a result, 
the high PM2.5 concentration occur in urban areas in the western part of the study 
area, particularly in Nakhon Pathom and Samut Sakhon province. 
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(a) (b) 
Figure 6.37 The classification map of PM2.5 concentration prediction using the GWR 
model winter season according to the (a) Thailand AQI and (b) EPA AQI. 
 

 
Figure 6.38 Spatial distribution of PM2.5 concentration in the winter season. 
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6.2.10 Summer season 

 The result of the GWR model for PM2.5 concentration prediction in the 
summer season (March to May) is summarized in Table 6.20. The model performance 
shows that AICc, R-square, and adjusted R-square values are 181.86, 0.65, and 0.51, 
respectively. 
 
Table 6.20 The predictive equations of PM2.5 concentration in the summer season. 

No. District Intercept 
Regression coefficient 

Residual 
Local 

R2 
Predicted 
(μg/m3) VIS WS BT FRP FH AOD FD ELEV 

1 Bang Bon -0.48 0.28 0.23 0.21 0.03 0.27 -0.22 -0.12 0.16 0.43 0.18 20.58 

2 Bang Kapi -0.40 0.29 1.05 0.13 0.29 0.19 0.15 -0.06 0.32 0.87 0.55 20.82 

3 Bang Khae -0.62 0.13 0.07 0.36 0.32 0.10 -0.23 -0.07 0.10 -0.16 0.17 20.58 

4 Bang Khen -0.19 0.00 0.91 0.21 0.33 0.15 0.23 -0.06 0.09 0.77 0.59 20.93 

5 Bang Kho 
Laem 

-0.57 0.36 0.63 0.08 0.29 0.26 -0.09 -0.06 0.29 -0.18 0.29 20.49 

6 Bang Khun 
Thian 

-0.41 0.43 0.39 0.10 -0.19 0.45 -0.23 -0.14 0.26 0.46 0.23 20.64 

7 Bang Na -0.49 0.36 0.86 0.01 0.25 0.27 0.03 -0.09 0.35 -0.13 0.44 20.64 

8 Bang Phlat -0.69 -0.07 0.37 0.29 0.88 0.01 0.02 0.02 0.07 -1.35 0.38 20.58 

9 Bang Rak -0.66 0.29 0.66 0.10 0.47 0.18 -0.03 -0.02 0.28 0.69 0.33 20.59 

10 Bang Sue -0.57 -0.02 0.56 0.17 0.73 0.05 0.13 0.00 0.07 -0.67 0.46 20.66 

11 Bangkok Noi -0.69 -0.03 0.30 0.34 0.82 0.02 -0.05 0.00 0.09 -0.26 0.30 20.54 

12 Bangkok Yai -0.62 0.11 0.41 0.25 0.60 0.11 -0.07 -0.03 0.15 0.76 0.27 20.52 

13 Bueng Kum -0.27 0.16 1.03 0.21 0.28 0.17 0.19 -0.06 0.23 0.47 0.59 20.87 

14 Chatuchak -0.46 0.07 0.78 0.08 0.53 0.10 0.18 -0.03 0.13 -0.59 0.52 20.74 

15 Chom Thong -0.51 0.30 0.44 0.17 0.23 0.26 -0.16 -0.09 0.21 -0.59 0.21 20.53 

16 Din Daeng -0.55 0.18 0.82 0.03 0.51 0.14 0.13 -0.03 0.23 -1.26 0.47 20.63 

17 Don Mueang -0.12 -0.15 0.69 0.13 0.37 0.15 0.29 -0.06 -0.08 0.01 0.55 21.10 

18 Dusit -0.62 0.04 0.57 0.15 0.70 0.08 0.07 0.00 0.13 -1.41 0.41 20.61 

19 Huai Khwang -0.55 0.25 0.91 0.03 0.45 0.16 0.13 -0.03 0.28 0.03 0.50 20.59 

20 Khan Na Yao -0.20 0.12 1.00 0.24 0.26 0.16 0.19 -0.09 0.19 -0.48 0.59 20.94 

21 Khlong Sam 
Wa 

-0.09 0.07 0.94 0.26 0.24 0.14 0.16 -0.14 0.12 0.29 0.60 20.90 

22 Khlong San -0.62 0.23 0.56 0.15 0.47 0.18 -0.06 -0.04 0.23 0.56 0.29 20.52 

23 Khlong Toei -0.59 0.36 0.88 0.00 0.38 0.21 0.05 -0.05 0.34 0.97 0.44 20.37 

24 Lak Si -0.29 -0.06 0.70 0.10 0.48 0.11 0.25 -0.03 -0.01 0.74 0.54 20.89 

25 Lat Krabang -0.14 0.12 0.91 0.18 0.22 0.15 0.09 -0.20 0.20 0.29 0.55 20.81 

26 Lat Phrao -0.35 0.11 0.93 0.13 0.38 0.15 0.20 -0.05 0.18 -0.64 0.55 20.94 

27 Min Buri -0.15 0.13 0.97 0.22 0.22 0.15 0.13 -0.16 0.19 0.02 0.58 20.86 

28 Nong Chok -0.07 0.11 0.93 0.24 0.20 0.13 0.11 -0.20 0.15 1.23 0.58 20.73 

29 Nong Khaem -0.59 0.14 0.03 0.32 0.14 0.12 -0.23 -0.08 0.10 -0.30 0.20 20.67 
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Table 6.20 (Continued). 

No. District Intercept 
Regression coefficient 

Residual 
Local 

R2 
Predicted 
(μg/m3) VIS WS BT FRP FH AOD FD ELEV 

30 Pathum Wan -0.65 0.25 0.72 0.06 0.53 0.16 0.03 -0.01 0.27 0.29 0.38 20.54 

31 Phasi 
Charoen 

-0.59 0.12 0.28 0.31 0.52 0.11 -0.14 -0.06 0.12 0.07 0.21 20.53 

32 Phaya Thai -0.56 0.12 0.73 0.06 0.58 0.12 0.12 -0.02 0.18 -1.74 0.45 20.64 

33 Phra 
Khanong 

-0.52 0.36 0.93 0.02 0.30 0.25 0.06 -0.07 0.36 -0.23 0.47 20.58 

34 Phra Nakhon -0.67 0.06 0.46 0.25 0.72 0.07 -0.02 0.00 0.15 -0.24 0.33 20.55 

35 Pom Prap 
Sattru Phai 

-0.65 0.12 0.56 0.17 0.65 0.11 0.01 -0.01 0.19 0.20 0.35 20.59 

36 Prawet -0.33 0.15 0.90 0.09 0.29 0.21 0.11 -0.13 0.26 0.15 0.50 20.73 

37 Rat Burana -0.52 0.45 0.59 0.08 0.10 0.33 -0.16 -0.10 0.30 -1.44 0.26 20.55 

38 Ratchathewi -0.61 0.18 0.72 0.06 0.57 0.14 0.08 -0.02 0.22 -0.73 0.42 20.58 

39 Sai Mai -0.08 -0.08 0.85 0.25 0.31 0.14 0.25 -0.08 0.01 0.26 0.60 21.06 

40 Samphantha
wong 

-0.64 0.15 0.56 0.16 0.59 0.13 -0.01 -0.02 0.20 0.93 0.33 20.55 

41 Saphan Sung -0.25 0.17 0.99 0.18 0.25 0.18 0.14 -0.12 0.25 -0.03 0.55 20.79 

42 Sathon -0.64 0.37 0.69 0.05 0.37 0.22 -0.05 -0.03 0.31 0.76 0.33 20.48 

43 Suan Luang -0.46 0.29 0.97 0.06 0.31 0.22 0.11 -0.08 0.33 0.71 0.50 20.62 

44 Taling Chan -0.64 -0.07 0.11 0.37 0.80 0.01 -0.09 -0.02 0.00 -0.03 0.25 20.50 

45 Thawi 
Watthana 

-0.63 -0.05 -0.16 0.34 0.50 0.04 -0.19 -0.03 -0.05 -0.60 0.16 20.66 

46 Thon Buri -0.57 0.21 0.50 0.17 0.44 0.18 -0.08 -0.06 0.20 0.10 0.26 20.54 

47 Thung Khru -0.46 0.57 0.56 0.06 -0.15 0.44 -0.24 -0.13 0.34 -0.84 0.28 20.59 

48 Vadhana -0.57 0.32 0.92 0.01 0.40 0.20 0.08 -0.05 0.33 0.22 0.47 20.52 

49 Wang 
Thonglang 

-0.44 0.23 0.96 0.07 0.37 0.18 0.14 -0.06 0.27 0.32 0.52 20.72 

50 Yan Nawa -0.60 0.44 0.74 0.02 0.26 0.27 -0.07 -0.06 0.34 0.04 0.34 20.46 

51 Bang Len -0.01 0.17 -0.29 -0.06 0.16 0.06 0.16 -0.22 -0.26 0.00 0.24 20.76 

52 Don Tum -0.27 0.06 -0.32 0.02 0.08 -0.02 0.01 -0.15 -0.17 -0.06 0.31 20.77 

53 Kamphaeng 
Saen 

-0.22 0.07 -0.33 0.00 0.08 -0.04 0.05 -0.17 -0.17 0.28 0.34 20.75 

54 Mueang 
Nakhon 
Pathom 

-0.47 -0.02 -0.24 0.10 -0.08 -0.08 -0.08 -0.11 -0.09 -0.13 0.42 20.77 

55 Nakhon Chai 
Si 

-0.48 -0.01 -0.28 0.12 0.00 -0.03 -0.11 -0.08 -0.13 -0.13 0.34 20.75 

56 Phutthamon
thon 

-0.48 0.00 -0.33 0.15 0.22 0.06 -0.14 -0.05 -0.18 0.07 0.20 20.67 

57 Sam Phran -0.56 0.01 -0.17 0.21 -0.04 0.03 -0.16 -0.08 -0.02 0.01 0.32 20.69 

58 Bang Bua 
Thong 

-0.16 -0.12 -0.22 0.09 0.53 0.14 0.21 -0.06 -0.38 0.47 0.27 20.63 

59 Bang Kruai -0.61 -0.19 -0.05 0.34 0.88 0.02 -0.04 0.00 -0.12 -0.57 0.26 20.64 

60 Bang Yai -0.48 -0.17 -0.32 0.22 0.65 0.09 -0.02 -0.01 -0.25 0.07 0.17 20.67 
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Table 6.20 (Continued). 

No. District Intercept 
Regression coefficient 

Residual 
Local 

R2 
Predicted 
(μg/m3) VIS WS BT FRP FH AOD FD ELEV 

61 Mueang 
Nonthaburi 

-0.50 -0.22 0.29 0.14 0.79 0.06 0.18 0.01 -0.10 -0.28 0.42 20.69 

62 Pak Kret -0.28 -0.21 0.41 0.02 0.58 0.12 0.29 -0.02 -0.17 0.21 0.48 20.75 

63 Sai Noi 0.07 0.17 -0.26 -0.04 0.25 0.11 0.23 -0.15 -0.42 0.30 0.24 20.69 

64 Bang Bo -0.15 0.06 0.78 0.09 0.24 0.16 0.01 -0.25 0.18 0.25 0.50 20.70 

65 Bang Phli -0.25 0.08 0.79 0.06 0.28 0.19 0.05 -0.19 0.21 -0.09 0.48 20.87 

66 Bang Sao 
Thong 

-0.16 0.07 0.82 0.10 0.25 0.16 0.04 -0.23 0.19 -0.58 0.51 20.93 

67 Mueang 
Samut 
Prakan 

-0.35 0.10 0.66 -0.01 0.26 0.24 0.01 -0.16 0.21 0.29 0.42 20.73 

68 Phra 
Pradaeng 

-0.54 0.52 0.78 0.01 0.14 0.32 -0.10 -0.09 0.37 -0.46 0.37 20.52 

69 Phra Samut 
Chedi 

-0.44 0.56 0.60 0.03 -0.16 0.43 -0.21 -0.14 0.35 0.15 0.34 20.60 

70 Ban Phaeo -0.60 0.00 -0.05 0.23 -0.22 0.01 -0.13 -0.10 0.08 0.11 0.42 20.68 

71 Krathum 
Baen 

-0.62 0.06 -0.03 0.29 -0.09 0.06 -0.19 -0.08 0.11 0.00 0.32 20.68 

72 Mueang 
Samut 
Sakhon 

-0.43 0.27 0.22 0.14 -0.23 0.38 -0.20 -0.13 0.19 -0.20 0.24 20.70 

 
From Table 6.20, the maximum value is 21.10 μg/m3 in Don Mueang 

District, Bangkok. In contrast, the minimum value is 20.37 μg/m3 in Khlong Toei District, 
Bangkok. The classification maps of predicted values for PM2.5 concentration using the 
GWR model according to the Thailand Air Quality Index and the U.S. EPA Air Quality 
Index are displayed in Figure 6.39. 

Thus, the predicted values of PM2.5 concentration are excellent at level 
1 of Thailand AQI and moderate at level 2 of EPA AQI. In contrast, the predicted value 
in an urban landscape in the summer season from the GWR model is more than the 
one-day mean of WHO guidelines. See Table 5.3. 

In addition, a spatial distribution map of PM2.5 concentration in the 
summer season using the SCK interpolation technique is displayed in Figure 6.40. As a 
result, the high PM2.5 concentration occur in urban areas in the northern part of the 
study area, mainly in Bangkok Metropolitan. 
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(a) (b) 
Figure 6.39 The classification map of PM2.5 concentration prediction using the GWR 
model summer season according to the (a) Thailand AQI and (b) EPA AQI. 
 

 
Figure 6.40 Spatial distribution of PM10 concentration in the summer season. 
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6.3 The predictive equations and their distribution map for 
spatiotemporal PM10 concentration in the rural landscape using the 
MEM model 

Under this section, the MEM model with the significant derived factors was 
applied to predict the rural landscape's PM10 concentration in winter and summer. 
The model structure for PM10 concentration in the winter and summer is shown in 
Equations 6.5 and 6.6. 

PM10i,j=μ+β1TEMPi,j+β2WSi,j+β3VISi,j+β4FRPi.j+β5AODi,j+ε (6.5) 

Where PM10i,j is the averaged PM10 concentration at district i on month j in the winter 

season; μ is the fixed intercept; β1- β5 are coefficients of fixed effect for independent 

variables; TEMPi,j, WSi,j, VISi,j, FRPi.j, AODi,j are temperature, wind speed, visibility, fire 
radiative power, MODIS AOD at district i on month j, respectively and ε is the residual 
error. 

PM10i,j=μ+β1TEMPi,j+β2VISi,j+β3AODi,j+β4BTi.j+β5FDi,j+ε (6.6) 

Where PM10i,j is the averaged PM10 concentration at district i on month j in the 

summer season; μ is the fixed intercept; β1-β5  are coefficients of fixed effect for 

independent variables; TEMPi,j, VISi,j, AODi,j, BTi.j, FDi,j are temperature, visibility, MODIS 
AOD, brightness temperature, factory density at district i on month j, respectively and 

ε is the residual error. 

The summary of the predicted PM10 concentration (in microgram per cubic 
meter) in each month and season by the district in a rural landscape using the MEM 
model is reported in Table 6.21. 
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Table 6.21 The predictive value of PM10 concentration in each month and season 
using the MEM model. 

No. DISTRICT PROVINCE OCT NOV DEC JAN FEB MAR APR MAY 
WIN 
TER 

SUM
MER 

1 Chaiyo Ang Thong 52.68 65.12 74.42 79.12 82.03 48.62 43.94 37.29 70.61 43.21 
2 Mueang 

Ang Thong 
Ang Thong 52.60 64.80 74.37 79.10 81.68 48.60 43.74 37.28 70.53 43.25 

3 Pa Mok Ang Thong 52.22 64.43 74.42 79.08 81.47 48.71 43.89 37.32 70.33 43.36 
4 Pho Thong Ang Thong 52.45 64.78 74.19 79.07 81.28 48.41 43.69 37.28 70.39 43.12 
5 Samko Ang Thong 52.33 64.49 74.11 79.03 80.61 48.32 43.74 37.28 70.24 43.19 
6 Sawaeng 

Ha 
Ang Thong 52.25 64.81 74.19 79.03 81.14 48.40 43.62 37.28 70.40 43.09 

7 Wiset Chai 
Chan 

Ang Thong 52.33 64.45 74.23 79.05 80.94 48.49 43.83 37.27 70.31 43.30 

8 Ban Mi Lop Buri 52.52 65.36 74.46 79.10 81.58 48.48 44.26 37.29 70.98 43.30 
9 Chai Badan Lop Buri 51.98 64.61 73.82 78.91 81.55 48.35 43.77 37.25 70.08 43.10 
10 Khok 

Charoen 
Lop Buri 52.09 64.48 74.29 78.99 80.97 48.77 43.81 37.25 70.46 43.18 

11 Khok 
Samrong 

Lop Buri 52.61 65.47 74.81 79.07 81.56 48.51 44.18 37.29 70.95 43.33 

12 Lam 
Sonthi 

Lop Buri 51.64 63.50 74.14 78.88 80.84 48.62 43.47 37.19 69.86 42.90 

13 Mueang 
Lop Buri 

Lop Buri 53.17 65.94 75.39 79.21 82.79 48.96 44.36 37.37 71.28 43.47 

14 Nong 
Muang 

Lop Buri 52.33 65.02 74.59 79.06 80.84 48.50 43.87 37.27 70.77 43.04 

15 Phatthana 
Nikhom 

Lop Buri 52.72 65.75 74.87 79.00 82.06 48.79 44.23 37.38 70.94 43.45 

16 Sa Bot Lop Buri 52.35 64.77 74.41 78.99 80.99 48.47 43.90 37.26 70.50 43.22 
17 Tha Luang Lop Buri 51.86 65.14 73.81 78.89 81.55 48.48 43.98 37.26 70.08 43.19 
18 Tha Wung Lop Buri 52.73 65.38 74.51 79.15 82.20 48.62 44.09 37.30 70.72 43.33 
19 Khlong 

Luang 
Pathum 
Thani 

51.87 64.01 73.95 79.04 81.05 48.69 43.97 37.15 69.83 43.26 

20 Lam Luk 
Ka 

Pathum 
Thani 

51.90 64.46 75.05 79.02 81.67 48.94 44.13 37.55 70.45 43.61 

21 Lat Lum 
Kaeo 

Pathum 
Thani 

50.94 63.84 73.61 79.04 79.88 48.64 42.91 37.18 69.18 42.69 
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Table 6.21 (Continued). 

No. DISTRICT PROVINCE OCT NOV DEC JAN FEB MAR APR MAY 
WIN 
TER 

SUM
MER 

22 Mueang 
Pathum 
Thani 

Pathum 
Thani 

50.68 63.90 73.98 79.14 80.50 48.78 43.14 37.08 69.40 43.06 

23 Nong Suea Pathum 
Thani 

52.73 64.26 74.68 79.04 81.66 48.69 44.10 37.25 70.56 43.41 

24 Sam Khok Pathum 
Thani 

50.87 63.48 73.47 79.10 80.65 48.75 43.17 37.11 69.11 42.83 

25 Thanyaburi Pathum 
Thani 

52.01 64.36 74.63 79.04 81.30 48.79 44.10 37.32 70.38 43.68 

26 Ban Phraek Phra 
Nakhon Si 
Ayutthaya 

52.87 65.43 74.79 79.16 82.71 48.78 44.08 37.30 70.91 43.31 

27 Bang Ban Phra 
Nakhon Si 
Ayutthaya 

51.85 64.32 74.31 79.10 81.47 48.85 43.93 37.46 69.94 43.47 

28 Bang Pa-In Phra 
Nakhon Si 
Ayutthaya 

51.36 64.11 74.20 79.06 81.65 48.86 44.01 37.41 69.80 43.30 

29 Bang 
Pahan 

Phra 
Nakhon Si 
Ayutthaya 

52.34 64.80 74.64 79.12 81.67 48.89 44.15 37.44 70.42 43.55 

30 Bang Sai Phra 
Nakhon Si 
Ayutthaya 

51.30 64.04 73.95 79.00 80.55 48.64 43.42 37.29 69.57 42.99 

31 Bang Sai Phra 
Nakhon Si 
Ayutthaya 

51.30 64.04 73.95 79.00 80.55 48.62 43.42 37.29 69.57 42.95 

32 Lat Bua 
Luang 

Phra 
Nakhon Si 
Ayutthaya 

51.13 63.74 73.78 78.98 80.02 48.71 43.18 37.23 69.25 42.76 

33 Maha Rat Phra 
Nakhon Si 
Ayutthaya 

52.75 65.34 74.73 79.12 82.22 48.87 44.06 37.30 70.89 43.47 

34 Nakhon 
Luang 

Phra 
Nakhon Si 
Ayutthaya 

52.67 65.01 75.05 79.13 82.00 48.83 44.36 37.43 70.66 43.60 
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Table 6.21 (Continued). 

No. DISTRICT PROVINCE OCT NOV DEC JAN FEB MAR APR MAY 
WIN 
TER 

SUM
MER 

35 Phachi Phra 
Nakhon Si 
Ayutthaya 

53.01 65.02 75.40 79.13 82.46 48.74 44.31 37.35 71.06 43.60 

36 Phak Hai Phra 
Nakhon Si 
Ayutthaya 

51.98 64.59 74.23 79.03 80.86 48.53 43.81 37.27 70.21 43.16 

37 Phra 
Nakhon Si 
Ayutthaya 

Phra 
Nakhon Si 
Ayutthaya 

51.65 64.23 74.80 79.16 81.79 49.56 44.27 38.05 70.07 44.11 

38 Sena Phra 
Nakhon Si 
Ayutthaya 

51.48 64.05 74.03 78.99 80.48 48.65 43.48 37.28 69.63 43.03 

39 Tha Ruea Phra 
Nakhon Si 
Ayutthaya 

53.28 65.73 75.73 79.22 82.96 48.91 44.40 37.40 71.36 43.64 

40 Uthai Phra 
Nakhon Si 
Ayutthaya 

52.54 64.59 75.19 79.12 82.16 48.99 44.31 37.43 70.81 43.76 

41 Wang Noi Phra 
Nakhon Si 
Ayutthaya 

52.53 64.30 74.85 79.08 81.99 48.96 44.22 37.28 70.62 43.50 

42 Ban Mo Saraburi 53.62 66.13 76.18 79.28 83.64 49.17 44.49 37.57 71.67 43.67 
43 Chaloem 

Phra Kiat 
Saraburi 54.50 67.46 79.97 79.39 84.59 50.81 45.22 39.18 73.26 45.22 

44 Don Phut Saraburi 53.11 65.78 75.31 79.19 82.97 48.80 44.29 37.33 71.22 43.44 
45 Kaeng Khoi Saraburi 53.22 66.01 76.06 79.19 83.28 49.31 44.43 37.43 71.63 43.91 
46 Muak Lek Saraburi 52.13 65.70 74.60 78.91 81.56 48.81 44.03 37.28 70.47 43.35 
47 Mueang 

Saraburi 
Saraburi 53.39 65.64 76.94 79.36 83.54 49.48 44.39 37.33 71.97 44.00 

48 Nong Don Saraburi 53.74 66.16 76.10 79.29 83.61 49.17 44.45 37.48 71.74 43.68 
49 Nong Khae Saraburi 52.91 64.97 75.73 79.15 82.54 48.94 44.15 37.28 71.23 43.64 
50 Nong 

Saeng 
Saraburi 53.22 65.53 75.91 79.21 82.94 48.84 44.37 37.37 71.41 43.64 

51 Phra 
Phutthabat 

Saraburi 54.23 66.98 78.22 79.36 84.34 50.02 44.98 38.34 72.68 44.39 

52 Sao Hai Saraburi 53.85 66.33 77.44 79.38 83.83 49.80 44.69 37.93 72.19 44.38 
53 Wang 

Muang 
Saraburi 52.33 65.93 74.65 78.94 81.72 48.88 44.16 37.31 70.72 43.37 
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Table 6.21 (Continued). 

No. DISTRICT PROVINCE OCT NOV DEC JAN FEB MAR APR MAY 
WIN 
TER 

SUM
MER 

54 Wihan 
Daeng 

Saraburi 52.63 65.05 75.91 79.17 83.68 48.68 44.21 37.26 71.49 43.52 

55 Bang 
Rachan 

Sing Buri 52.05 65.07 74.04 79.05 81.22 48.65 43.91 37.30 70.38 43.29 

56 In Buri Sing Buri 51.99 65.07 74.05 79.05 81.26 48.56 44.17 37.30 70.40 43.32 
57 Khai Bang 

Rachan 
Sing Buri 52.20 65.06 74.22 79.06 81.32 48.53 43.83 37.29 70.52 43.19 

58 Mueang 
Sing Buri 

Sing Buri 52.34 65.06 74.15 79.08 81.54 48.58 44.26 37.30 70.45 43.36 

59 Phrom Buri Sing Buri 52.58 65.20 74.40 79.13 81.94 48.51 44.04 37.29 70.56 43.14 
60 Tha Chang Sing Buri 52.41 65.08 74.29 79.10 81.64 48.37 43.91 37.29 70.51 42.98 

 
The monthly predictive equation for PM10 concentration in the rural landscape 

using the MEM model with the significant derived factors in winter and summer is 
systematically reported in two table forms in the following sections. The first table 
shows the intercept’s value of the parameter associated with the rural area in each 
month (columns 1 and 2) and the standard error of the sample mean, degree of 
freedom to determine the observed significance level (columns 3 to 5) and the 
smallest and largest value that exceeds the lower and upper bound fall outside the 
confidence interval range (columns 6 and 7). Meanwhile, the second table shows 
parameter estimates associated with a covariance matrix in column 2 and the standard 
error of a parameter estimate associated with a covariance matrix in column 3. Besides, 
the performance of the MEM model for PM10 concentration is reported, including AIC, 
AICc, and BIC. 
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6.3.1 October 2019 in the winter season 

The MEM model results are shown in Tables 6.22 and Table 6.23. The 
model performance shows that AIC, AICc, and BIC values are 140.62, 140.84, and 
144.67, respectively. 
 
Table 6.22 Estimates of Fixed Effects in October 2019. 

Parameter Estimate St. Error df Sig. 
95% Confidence Interval 

Lower Bound Upper Bound 
Intercept 0.00 0.09 56.00 1.00 -0.18 0.18 
Wind speed 0.40 0.10 56.00 0.00 0.20 0.61 
Temperature 0.19 0.10 56.00 0.06 -0.01 0.40 
Visibility -0.74 0.10 56.00 0.00 -0.93 -0.54 

 
Table 6.23 Estimates of covariance parameters in October 2019. 
Parameter Estimate Std. Error 
Residual 0.25 0.10 
Intercept [subject = ID_district]  Variance 0.25 0.00 

 
From Table 6.21, the maximum value is 54.50 μg/m3 in Chaloem Phra 

Kiat District, Pathum Thani province. In contrast, the minimum value is 50.68 μg/m3 in 
Mueang Pathum Thani District, Pathum Thani province. The classification maps of 
predicted values for PM10 concentration using the MEM model according to the 
Thailand Air Quality Index and the U.S. EPA Air Quality Index are displayed in Figure 
6.41. 

Thus, the predicted values of PM10 concentration are satisfactory at level 
2 of Thailand AQI and good at level 1 of EPA AQI. Additionally, the predicted value in 
the rural landscape in October 2019 from the MEM model is more than the one-day 
mean of WHO guidelines. See Table 5.3. 

In addition, a spatial distribution map of PM10 concentration in October 
2019 using the SCK interpolation technique is displayed in Figure 6.42. As a result, the 
high PM10 concentration occur on agricultural land in the central part of the study 
area, particularly in Saraburi province. 
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(a) (b) 

Figure 6.41 The classification map of PM10 concentration prediction using the MEM 
model in October 2019 according to the (a) Thailand AQI and (b) EPA AQI. 
 

 
Figure 6.42 Spatial distribution of PM10 concentration in October 2019. 
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6.3.2 November 2019 in the winter season 

The MEM model results are shown in Table 6.24 and Table 6.25. The 
model performance shows that AIC, AICc, and BIC values are 140.77, 140.99, and 
144.82, respectively. 
 
Table 6.24 Estimates of Fixed Effects in November 2019. 

Parameter Estimate St. Error df Sig. 
95% Confidence Interval 

Lower Bound Upper Bound 
Intercept 0.00 0.09 56.00 1.00 -0.18 0.18 
Wind speed 0.77 0.12 56.00 .00 0.54 1.00 
Visibility -0.82 0.12 56.00 .00 -1.06 -0.59 
MODIS AOD 0.22 0.09 56.00 .02 0.03 0.41 

 
Table 6.25 Estimates of covariance parameters in November 2019. 
Parameter Estimate Std. Error 
Residual 0.25 0.10 
Intercept [subject = ID_district] Variance 0.25 0.00 

 
From Table 6.21, the maximum value is 67.46 μg/m3 in Chaloem Phra 

Kiat District, Saraburi province. At the same time, the minimum value is 63.48 μg/m3 in 
Sam Khok District, Pathum Thani province. The classification maps of prediction values 
for PM10 concentration using the MEM model according to the Thailand Air Quality 
Index and the U.S. EPA Air Quality Index are displayed in Figure 6.43. 

Thus, the predicted values of PM10 concentration are satisfactory at level 
2 of Thailand AQI and moderate at level 2 of EPA AQI. The predicted value in the MEM 
model's rural landscape in November 2019 is more than the one-day mean of WHO 
guidelines. See Table 5.3. 

In addition, a spatial distribution map of PM10 concentration in November 
2019 using the SCK interpolation technique is displayed in Figure 6.44. As a result, the 
high PM10 concentration occur on agricultural land in the central part of the study 
area, particularly in Saraburi province. 
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(a) (b) 

Figure 6.43 The classification map of PM10 concentration prediction using the MEM 
model in November 2019 according to the (a) Thailand AQI and (b) EPA AQI. 
 

 
Figure 6.44 Spatial distribution of PM10 concentration in November 2019. 
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6.3.3 December 2019 in the winter season 

The MEM model results are shown in Table 6.26 and Table 6.27. The 
model performance shows that AIC, AICc, and BIC values are 158.40, 158.62, and 
162.45, respectively. 
 
Table 6.26 Estimates of Fixed Effects in December 2019. 

Parameter Estimate St. Error df Sig. 
95% Confidence Interval 

Lower Bound Upper Bound 
Intercept 0.00 0.11 56.00 1.00 -0.22 0.22 
Wind speed 0.60 0.12 56.00 0.00 0.36 0.85 
Temperature 0.22 0.11 56.00 0.05 0.00 0.44 
Visibility -0.34 0.12 56.00 0.01 -0.59 -0.10 

 
Table 6.27 Estimates of covariance parameters in December 2019. 
Parameter Estimate Std. Error 
Residual 0.35 0.13 
Intercept  [subject = ID_district] Variance 0.35 0.00 

 
From Table 6.21, the maximum value is 79.97 μg/m3 in Chaloem Phra 

Kiat District, Pathum Thani province. In contrast, the minimum value is 73.47 μg/m3 in 
Sam Khok District, Pathum Thani province. The classification maps of prediction values 
for PM10 concentration using the MEM model according to the Thailand Air Quality 
Index and the U.S. EPA Air Quality Index are displayed in Figure 6.45. 

Thus, most predicted PM10 concentration are satisfactory at level 2 of 
Thailand AQI and moderate at level 2 of EPA AQI. However, the predicted value in the 
rural landscape in December 2019 from the MEM model is more than the one-day 
mean of WHO guidelines. See Table 5.3. 

In addition, a spatial distribution map of PM10 concentration in December 
2019 using the SCK interpolation technique is displayed in Figure 6.46. As a result, the 
high PM10 concentration occur on agricultural land in the central part of the study 
area, particularly in Saraburi province. 
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(a) (b) 

Figure 6.45 The classification map of PM10 concentration prediction using the MEM 
model in December 2019 according to the (a) Thailand AQI and (b) EPA AQI. 
 

 
Figure 6.46 Spatial distribution of PM10 concentration in December 2019. 
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6.3.4 January 2020 in the winter season 

The MEM model results are shown in Table 6.28 and Table 6.29. The 
model performance shows AIC, AICc, and BIC values are 172.84, 173.06 and 176.92, 
respectively. 
 
Table 6.28 Estimates of Fixed Effects in January 2020. 

Parameter Estimate St. Error df Sig. 
95% Confidence Interval 

Lower Bound Upper Bound 
Intercept 0.00 0.12 57.00 1.00 -0.25 0.25 
Temperature 0.31 0.12 57.00 0.02 0.06 0.56 
MODIS AOD -0.17 0.12 57.00 0.17 -0.42 0.08 

 
Table 6.29 Estimates of covariance parameters in January 2020. 
Parameter Estimate Std. Error 
Residual 0.46 0.17 
Intercept [subject = ID_district] Variance 0.46 0.00 

 
From Table 6.21, the maximum value is 79.39 μg/m3 in Chaloem Phra 

Kiat District, Saraburi province. In contrast, the minimum value is 78.88 μg/m3 in Lam 
Sonthi District, Lop Buri province. The classification maps of prediction values for PM10 
concentration using the MEM model according to the Thailand Air Quality Index and 
the U.S. EPA Air Quality Index are displayed in Figure 6.47. 

Thus, the predicted values of PM10 concentration are satisfactory at level 
2 of Thailand AQI and moderate at level 2 of EPA AQI. The predicted value in the rural 
landscape in January 2020 from the MEM model is more than the one-day mean of 
WHO guidelines. See Table 5.3. 

In addition, a spatial distribution map of PM10 concentration in January 
2020 using the SCK interpolation technique is displayed in Figure 6.48. As a result, the 
high PM10 concentration occur on agricultural land in the central part of the study 
area, particularly in Saraburi province. 
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(a) (b) 

Figure 6.47 The classification map of PM10 concentration prediction using the MEM 
model in January 2020 according to the (a) Thailand AQI and (b) EPA AQI. 
 

 
Figure 6.48 Spatial distribution of PM10 concentration in January 2020. 
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6.3.5 February 2020 in the winter season 

The MEM model results are shown in Table 6.30 and Table 6.31. The 
model performance shows that AIC, AICc, and BIC values are 163.70, 163.92, and 
167.78, respectively. 
 
Table 6.30 Estimates of Fixed Effects in February 2020. 

Parameter Estimate St. Error df Sig. 
95% Confidence Interval 

Lower Bound Upper Bound 
Intercept 0.00 0.11 57.00 1.00 -0.23 0.23 
Wind speed 0.07 0.14 57.00 0.60 -0.20 0.34 
Fire radiative power 0.45 0.14 57.00 0.00 0.18 0.72 

 
Table 6.31 Estimates of covariance parameters in February 2020. 
Parameter Estimate Std. Error 
Residual 0.39 0.15 
Intercept  [subject = ID_district] Variance 0.39 0.00 

 
From Table 6.21, the maximum value is 84.59 μg/m3 in Chaloem Phra 

Kiat District, Saraburi province. In contrast, the minimum value is 79.88 μg/m3 in Lat 
Lum Kaeo District, Pathum Thani province. The classification maps of prediction values 
for PM10 concentration using the MEM model according to the Thailand Air Quality 
Index and the U.S. EPA Air Quality Index are displayed in Figure 6.49. 

Thus, the predicted values of PM10 concentration are satisfactory and 
moderate at levels 2 and 3 of Thailand AQI standard and moderate at level 2 of EPA 
AQI standard. The predicted value in the rural landscape in February 2020 from the 
MEM model is more than the one-day mean of WHO guidelines. See Table 5.3. 

In addition, a spatial distribution map of PM10 concentration in February 
2020 using the SCK interpolation technique is displayed in Figure 6.50. As a result, the 
high PM10 concentration occur on agricultural land in the central part of the study 
area, particularly in Saraburi province. 
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(a) (b) 

Figure 6.49 The classification map of PM10 concentration prediction using the MEM 
model in February 2019 according to the (a) Thailand AQI and (b) EPA AQI. 
 

 
Figure 6.50 Spatial distribution of PM10 concentration in February 2020. 
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6.3.6 March 2020 in the summer season 

The MEM model results are shown in Table 6.32 and Table 6.33. The 
model performance shows that AIC, AICc, and BIC values are 157.09, 157.31, and 
161.14, respectively. 
 
Table 6.32 Estimates of Fixed Effects in March 2020. 

Parameter Estimate St. Error df Sig. 
95% Confidence Interval 

Lower Bound Upper Bound 
Intercept 0.00 0.11 56.00 1.00 -0.21 0.21 
Temperature -0.33 0.11 56.00 0.00 -0.55 -0.11 
MODIS AOD 0.43 0.11 56.00 0.00 0.21 0.65 
Factory density 0.09 0.11 56.00 0.41 -0.13 0.31 

 
Table 6.33 Estimates of covariance parameters in March 2020. 
Parameter Estimate Std. Error 
Residual 0.34 0.13 
Intercept  [subject = ID_district] Variance 0.34 0.00 

 
From Table 6.21, the maximum value is 50.81 μg/m3 in Chaloem Phra 

Kiat District, Saraburi province. In contrast, the minimum value is 48.32 μg/m3 in Samko 
District, Ang Thong province. The classification maps of prediction values for PM10 
concentration using the MEM model according to the Thailand Air Quality Index and 
the U.S. EPA Air Quality Index are displayed in Figure 6.51. 

Thus, the predicted values of PM10 concentration are excellent at level 
1, satisfactory at level 2 of Thailand AQI, and good at level 1of EPA AQI. In addition, 
the predicted value in rural landscape in March 2020 from the MEM model is more 
than the one-day mean of WHO guidelines. See Table 5.3. 

In addition, a spatial distribution map of PM10 concentration in March 
2020 using the SCK interpolation technique is displayed in Figure 6.52. As a result, the 
high PM10 concentration occur on agricultural land in the central part of the study 
area, particularly in Saraburi province. 
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(a) (b) 

Figure 6.51 The classification map of PM10 concentration prediction using the MEM 
model in March 2020 according to the (a) Thailand AQI and (b) EPA AQI. 
 

 
Figure 6.52 Spatial distribution of PM10 concentration in March 2020. 
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6.3.7 April 2020 in the summer season 

The MEM model results are shown in Table 6.34 and Table 6.35. The 
model performance shows that AIC, AICc, and BIC values are 159.16, 159.37, and 
163.28, respectively. 
 
Table 6.34 Estimates of Fixed Effects in April 2020. 

Parameter Estimate St. Error df Sig. 
95% Confidence Interval 

Lower Bound Upper Bound 
Intercept 0.00 0.11 58.00 1.00 -0.22 0.22 
Brightness temperature 0.52 0.11 58.00 0.00 0.30 0.75 

 
Table 6.35 Estimates of covariance parameters in April 2020. 
Parameter Estimate Std. Error 
Residual 0.37 0.14 
Intercept  [subject = ID_district] Variance 0.37 0.00 

 
From Table 6.21, the maximum value is 45.22 μg/m3 in Chaloem Phra 

Kiat District, Pathum Thani province. In contrast, the minimum value is 42.91 μg/m3 in 
Lat Lum Kaeo District, Pathum Thani province. The classification maps of prediction 
values for PM10 concentration using the MEM model according to the Thailand Air 
Quality Index and the U.S. EPA Air Quality Index are displayed in Figure 6.53. 

Thus, the predicted values of PM10 concentration are excellent at level 
1 of Thailand AQI and good at level 1 of EPA AQI. On the other hand, the predicted 
value in rural landscape in April 2020 from the MEM model is less than the one-day 
mean of WHO guidelines. See Table 5.3. 

In addition, a spatial distribution map of PM10 concentration in April 2020 
using the SCK interpolation technique is displayed in Figure 6.54. As a result, the high 
PM10 concentration occur on agricultural land in the central part of the study area, 
particularly in Saraburi province. 
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(a) (b) 

Figure 6.53 The classification map of PM10 concentration prediction using the MEM 
model in April 2020 according to the (a) Thailand AQI and (b) EPA AQI. 
 

 
Figure 6.54 Spatial distribution of PM10 concentration in April 2020. 
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6.3.8 May 2020 in the summer season 

The MEM model results are shown in Table 6.36 and Table 6.37. The 
model performance shows that AIC, AICc, and BIC values are 177.40, 177.62, and 
181.52, respectively. 
 
Table 6.36 Estimates of Fixed Effects in May 2020. 

Parameter Estimate St. Error df Sig. 
95% Confidence Interval 

Lower Bound Upper Bound 
Intercept 0.00 0.13 58.00 1.00 -0.26 0.26 
Visibility -0.08 0.13 58.00 0.55 -0.34 0.18 

 
Table 6.37 Estimates of covariance parameters in May 2020. 
Parameter Estimate Std. Error 
Residual 0.51 0.19 
Intercept  [subject = ID_district] Variance 0.51 0.00 

 
From Table 6.21, the maximum value is 39.18 μg/m3 in Chaloem Phra 

Kiat District, Saraburi province. In contrast, the minimum value is 37.08 μg/m3 in 
Mueang Pathum Thani District, Pathum Thani province. The classification maps of 
prediction values for PM10 concentration using the MEM model according to the 
Thailand Air Quality Index and the U.S. EPA Air Quality Index are displayed in Figure 
6.55. 

Thus, the predicted values of PM10 concentration are excellent at level 
1 of Thailand AQI and good at level 1 of EPA AQI. On the other hand, the predicted 
value in rural landscape in May 2020 from the MEM model is less than the one-day 
mean of WHO guidelines. See Table 5.3. 

In addition, a spatial distribution map of PM10 concentration in May 2020 
using the SCK interpolation technique is displayed in Figure 6.56. As a result, the high 
PM10 concentration occur on agricultural land in the central part of the study area, 
particularly in Saraburi province. 
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(a) (b) 

Figure 6.55 The classification map of PM10 concentration prediction using the MEM 
model in May 2020 according to the (a) Thailand AQI and (b) EPA AQI. 
 

 
Figure 6.56 Spatial distribution of PM10 concentration in May 2020. 
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6.3.9 Winter season 

The result of the MEM model for PM10 concentration prediction in the 
winter season (October to February) is summarized in Table 6.38 and Table 6.39. The 
model performance shows that AIC, AICc, and BIC values are 151.00, 151.24, and 
154.98, respectively. 
 
Table 6.38 Estimates of Fixed Effects in the winter season. 

Parameter Estimate St. Error df Sig. 
95% Confidence Interval 

Lower Bound Upper Bound 
Intercept 0.00 0.10 54.00 1.00 -.20 0.20 
Temperature 0.17 0.11 54.00 .14 -0.05 0.39 
Wind speed 0.79 0.17 54.00 .00 0.45 1.13 
Visibility -0.83 0.15 54.00 .00 -1.13 -0.53 
Fire radiative power 0.14 0.14 54.00 .32 -0.14 0.41 
MODIS AOD 0.16 0.13 54.00 .24 -0.11 0.42 

 
Table 6.39 Estimates of covariance parameters in the winter season. 
Parameter Estimate Std. Error 
Residual 0.29 0.11 
Intercept  [subject = ID_district] Variance 0.29 0.00 

 
From Table 6.21, the maximum value is 73.26 μg/m3 in Chaloem Phra 

Kiat  District, Saraburi province. In contrast, the minimum value is 69.11 μg/m3 in Sam 
Khok District, Pathum Thani province. The classification maps of prediction values for 
PM10 concentration using the MEM model according to the Thailand Air Quality Index 
and the U.S. EPA Air Quality Index are displayed in Figure 6.57. 

Thus, the predicted values of PM10 concentration are satisfactory at level 
2 of Thailand AQI and moderate at level 2 of EPA AQI. Meanwhile, the predicted value 
in rural landscape in the winter season from the MEM model is more than the one-
day mean of WHO guidelines. See Table 5.3. 

In addition, a spatial distribution map of PM10 concentration in the winter 
season using the SCK interpolation technique is displayed in Figure 6.58. As a result, 
the high PM10 concentration occur on agricultural land in the central part of the study 
area, particularly in Saraburi province. 
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(a) (b) 

Figure 6.57 The classification map of PM10 concentration prediction using the MEM 
model in the winter season according to the (a) Thailand AQI and (b) EPA AQI. 
 

 
Figure 6.58 Spatial distribution of PM10 concentration in the winter season. 
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6.3.10 Summer season 

 The result of the MEM model for PM10 concentration prediction in the 
summer season (March to May) is summarized in Table 6.40 and Table 6.41. The model 
performance shows that AIC, AICc, and BIC values are 158.46, 158.70, and 162.44, 
respectively. 
 
Table 6.40 Estimates of Fixed Effects in the summer season. 

Parameter Estimate St. Error df Sig. 
95% Confidence Interval 

Lower Bound Upper Bound 
Intercept 0.00 0.11 54.00 1.00 -0.21 0.21 
Temperature -0.32 0.13 54.00 0.01 -0.58 -0.07 
Visibility -0.26 0.15 54.00 0.09 -0.57 0.05 
MODIS AOD 0.39 0.11 54.00 0.00 0.16 0.61 
Brightness temperature 0.42 0.12 54.00 0.00 0.18 0.67 
Factory density 0.31 0.13 54.00 0.03 0.04 0.58 

 
Table 6.41 Estimates of covariance parameters in the summer season. 
Parameter Estimate Std. Error 
Residual 0.33 0.13 
Intercept  [subject = ID_district] Variance 0.33 0.00 

 
From Table 6.21, the maximum value is 45.22 μg/m3 in Chaloem Phra 

Kiat District, Saraburi province. In contrast, the minimum value is 42.69 μg/m3 in Lat 
Lum Kaeo District, Pathum Thani province.  

The classification maps of prediction values for PM10 concentration using 
the MEM model according to the Thailand Air Quality Index and the U.S. EPA Air Quality 
Index are displayed in Figure 6.59. 

Thus, the predicted values of PM10 concentration are excellent at level 
1 of Thailand AQI and good at level 1 of EPA AQI. Additionally, the predicted value in 
rural landscape in the summer season from the MEM model is less than the one-day 
mean of WHO guidelines. See Table 5.3. 

In addition, a spatial distribution map of PM10 concentration in the 
summer season using the SCK interpolation technique is displayed in Figure 6.60. As a 
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result, the high PM10 concentration occur on agricultural land in the central part of 
the study area, particularly in Saraburi province. 
 

(a) (b) 
Figure 6.59 The classification map of PM10 concentration prediction using the MEM 
model in the summer season according to the (a) Thailand AQI and (b) EPA AQI. 
 

 
Figure 6.60 Spatial distribution of PM10 concentration in the summer season. 
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6.4 The predictive equations and their distribution map for 
spatiotemporal PM2.5 concentration in the urban landscape using the 
MEM model 

Under this section, the MEM model with the significant derived factors was 
applied to predict the urban landscape's monthly PM2.5 concentration in winter and 
summer. The model structure for PM2.5 concentration in the winter and summer is 
shown in Equations 6.7 and 6.8. 

PM2.5i,j=μ+β1RHi,j+β2TEMPi,j+β3WSi,j+β4Pi.j+β5VISi,j+β6BTi,j + 
                      β7FRPi,j+β8FHi,j+β9AODi,j+β10ELEVi,j+ε 

(6.7) 

Where PM2.5i,j is the averaged PM2.5 concentration at district i on month j in the winter 

season; μ is the fixed intercept; β1- β10 are coefficients of fixed effect for independent 

variables; RHi,j , TEMPi,j, WSi,j, Pi.j, VISi,j, BTi,j, FRPi,j, FHi,j, AODi,j, ELEVi,j are relative humidity, 
temperature, wind speed, pressure, visibility, brightness temperature, fire radiative 
power, fire hotspot, MODIS AOD, elevation at district i on month j, respectively and ε 
is the residual error. 

PM2.5i,j=μ+β1VISi,j+β2WSi,j+β3BTi,j+β4FRPi.j+β5FHi,j+β6AODi,j + 
                     β7FDi,j+β8ELEVi,j+ε 

(6.8) 

Where PM2.5i,j is the averaged PM2.5 concentration at district i on month j in the 

summer season; μ is the fixed intercept; β1 - β8 are coefficients of fixed effect for 

independent variables; VISi,j, WSi,j, BTi,j, FRPi.j, FHi,j, AODi,j, FDi,j , ELEVi,j are visibility, wind 
speed, brightness temperature, fire radiative power, fire hotspot, MODIS AOD, factory 
density, and elevation at district i on month j, respectively and ε is the residual error. 

The monthly predictive equation for PM2.5 concentration in the urban 
landscape using the MEM model with the significant derived factors in winter and 
summer is systematically reported in two tabular forms in the following sections. The 
first table shows the intercept’s value of the parameter associated with the rural area 
in each month (columns 1 and 2) and the standard error of the sample mean, degree 
of freedom to determine the observed significance level (columns 3 to 5) and the 
smallest and largest value that exceeds the lower and upper bound fall outside the 
confidence interval range (columns 6 and 7). Meanwhile, the second table shows 
parameter estimates associated with a covariance matrix in column 2 and the standard 
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error of a parameter estimate associated with a covariance matrix in column 3. Besides, 
the performance of the MEM model for PM2.5 concentration in the urban landscape 
is reported, including AIC, AICc, and BIC. 

The summary of PM2.5 concentration in micrograms per cubic meter using the 
MEM model in an urban landscape is shown in Table 6.42. 
 
Table 6.42 The prediction value of PM2.5 concentration in each month and season 
using the MEM model. 

No. DISTRICT PROVINCE OCT NOV DEC JAN FEB MAR APR MAY 
WIN 
TER 

SUM
MER 

1 Bang Bon Bangkok 28.16 35.09 39.84 43.49 44.07 23.37 21.76 16.69 38.14 20.61 
2 Bang Kapi Bangkok 26.40 33.73 39.63 43.67 44.15 23.54 22.35 16.77 37.47 20.90 
3 Bang Khae Bangkok 27.99 34.99 39.93 43.51 44.19 23.26 21.71 16.74 38.06 20.59 
4 Bang Khen Bangkok 27.09 34.03 39.77 43.74 44.30 23.64 22.34 16.82 37.79 20.92 
5 Bang Kho 

Laem 
Bangkok 

27.64 34.26 39.88 43.63 44.06 23.26 21.60 16.69 37.87 20.47 
6 Bang Khun 

Thian 
Bangkok 

27.76 34.76 39.68 43.37 44.04 23.41 22.00 16.72 38.14 20.73 
7 Bang Na Bangkok 26.47 33.82 39.58 43.55 43.98 23.30 21.90 16.71 37.38 20.64 
8 Bang Phlat Bangkok 27.73 34.57 40.08 43.71 44.21 23.06 21.58 16.77 38.04 20.47 
9 Bang Rak Bangkok 27.58 34.20 40.00 43.68 44.13 23.44 21.79 16.75 38.06 20.63 
10 Bang Sue Bangkok 27.29 34.46 40.02 43.58 44.21 23.24 21.74 16.77 37.97 20.57 
11 Bangkok Noi Bangkok 27.71 34.41 40.08 43.77 44.24 23.19 21.79 16.77 38.09 20.56 
12 Bangkok Yai Bangkok 27.66 34.28 40.02 43.69 44.21 23.35 21.83 16.73 38.02 20.58 
13 Bueng Kum Bangkok 26.49 33.84 39.63 43.77 44.23 23.55 22.23 16.79 37.56 20.86 
14 Chatuchak Bangkok 27.10 34.34 39.97 43.62 44.21 23.31 21.87 16.79 37.88 20.67 
15 Chom 

Thong 
Bangkok 

27.95 34.80 39.91 43.43 44.10 23.19 21.59 16.70 37.98 20.48 
16 Din Daeng Bangkok 27.41 34.17 39.91 43.51 44.10 23.10 21.70 16.77 37.73 20.52 
17 Don 

Mueang 
Bangkok 

27.06 34.41 39.92 43.78 44.36 23.75 22.39 16.82 37.93 20.95 
18 Dusit Bangkok 27.88 34.50 40.06 43.64 44.18 23.06 21.73 16.78 37.97 20.52 
19 Huai 

Khwang 
Bangkok 

26.95 34.06 39.82 43.49 44.08 23.26 21.86 16.77 37.60 20.64 
20 Khan Na 

Yao 
Bangkok 

26.58 33.78 39.55 43.77 44.22 23.45 22.26 16.79 37.51 20.81 
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Table 6.42 (Continued). 

No. DISTRICT PROVINCE OCT NOV DEC JAN FEB MAR APR MAY 
WIN 
TER 

SUM
MER 

21 Khlong 
Sam Wa 

Bangkok 26.31 33.68 39.44 43.71 44.27 23.55 22.34 16.78 37.40 20.88 

22 Khlong San Bangkok 27.69 34.37 40.00 43.72 44.14 23.36 21.75 16.72 38.00 20.56 
23 Khlong Toei Bangkok 26.89 34.04 39.84 43.51 44.04 23.29 21.69 16.73 37.64 20.58 
24 Lak Si Bangkok 27.06 34.54 40.00 43.78 44.31 23.66 22.28 16.82 37.98 20.89 
25 Lat Krabang Bangkok 25.79 33.02 39.21 43.75 44.03 23.45 22.23 16.77 36.97 20.81 
26 Lat Phrao Bangkok 26.95 34.06 39.79 43.65 44.20 23.42 22.23 16.79 37.72 20.88 
27 Min Buri Bangkok 26.22 33.11 39.34 43.75 44.16 23.44 22.32 16.78 37.24 20.82 
28 Nong Chok Bangkok 26.01 33.05 39.25 43.74 44.20 23.54 22.22 16.78 37.14 20.88 
29 Nong 

Khaem 
Bangkok 28.08 35.07 39.90 43.54 44.18 23.31 21.71 16.73 38.14 20.63 

30 Pathum 
Wan 

Bangkok 27.69 34.23 40.03 43.63 44.12 23.30 21.77 16.78 37.97 20.64 

31 Phasi 
Charoen 

Bangkok 28.08 34.62 39.99 43.52 44.20 23.26 21.76 16.74 38.00 20.57 

32 Phaya Thai Bangkok 27.43 34.32 39.98 43.59 44.12 23.03 21.67 16.79 37.87 20.50 
33 Phra 

Khanong 
Bangkok 26.48 33.69 39.63 43.52 44.00 23.23 21.85 16.73 37.38 20.60 

34 Phra 
Nakhon 

Bangkok 27.86 34.47 40.08 43.75 44.21 23.21 21.81 16.77 38.08 20.59 

35 Pom Prap 
Sattru Phai 

Bangkok 27.85 34.44 40.07 43.72 44.20 23.30 21.75 16.73 38.10 20.52 

36 Prawet Bangkok 26.18 33.39 39.44 43.54 43.99 23.38 22.13 16.74 37.18 20.75 
37 Rat Burana Bangkok 27.73 34.40 39.81 43.47 44.03 23.10 21.50 16.68 37.82 20.39 
38 Ratchathe

wi 
Bangkok 27.69 34.21 40.02 43.63 44.12 23.15 21.71 16.77 37.91 20.54 

39 Sai Mai Bangkok 26.69 34.02 39.74 43.71 44.34 23.71 22.38 16.82 37.71 20.95 
40 Samphant

hawong 
Bangkok 27.78 34.12 40.05 43.66 44.19 23.42 21.85 16.74 38.00 20.63 

41 Saphan 
Sung 

Bangkok 26.18 33.26 39.46 43.74 44.09 23.42 22.17 16.77 37.22 20.78 

42 Sathon Bangkok 27.38 34.22 39.94 43.64 44.08 23.37 21.69 16.72 37.92 20.56 
43 Suan Luang Bangkok 26.28 33.63 39.62 43.49 44.06 23.40 22.03 16.75 37.36 20.72 
44 Taling Chan Bangkok 27.78 34.51 39.98 43.68 44.24 23.21 21.73 16.77 38.07 20.58 
45 Thawi 

Watthana 
Bangkok 27.75 34.61 40.03 43.54 44.25 23.25 21.71 16.77 38.05 20.65 
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Table 6.42 (Continued). 

No. DISTRICT PROVINCE OCT NOV DEC JAN FEB MAR APR MAY 
WIN 
TER 

SUM
MER 

46 Thon Buri Bangkok 27.96 34.45 39.99 43.66 44.15 23.28 21.73 16.72 38.02 20.54 
47 Thung Khru Bangkok 27.49 34.55 39.65 43.40 44.01 23.19 21.75 16.72 37.84 20.58 
48 Vadhana Bangkok 26.98 33.94 39.80 43.58 44.07 23.28 21.77 16.76 37.64 20.61 
49 Wang 

Thonglang 
Bangkok 26.70 34.01 39.74 43.58 44.14 23.38 22.05 16.77 37.56 20.74 

50 Yan Nawa Bangkok 27.10 34.20 39.79 43.63 44.02 23.27 21.59 16.70 37.72 20.50 
51 Bang Len Nakhon 

Pathom 
26.53 33.82 40.31 43.63 44.26 23.44 21.90 16.76 37.94 20.69 

52 Don Tum Nakhon 
Pathom 

26.85 34.11 40.40 43.62 44.22 23.43 21.94 16.75 37.99 20.72 

53 Kamphaeng 
Saen 

Nakhon 
Pathom 

27.03 33.98 40.33 43.68 44.24 23.47 22.00 16.77 37.85 20.69 

54 Mueang 
Nakhon 
Pathom 

Nakhon 
Pathom 

27.15 34.82 40.38 43.80 44.20 23.42 21.95 16.75 38.18 20.70 

55 Nakhon 
Chai Si 

Nakhon 
Pathom 

27.24 34.76 40.19 43.67 44.20 23.41 21.90 16.75 38.08 20.71 

56 Phuttham
onthon 

Nakhon 
Pathom 

27.41 34.46 40.10 43.62 44.22 23.38 21.82 16.76 38.07 20.67 

57 Sam Phran Nakhon 
Pathom 

27.60 35.10 40.07 43.61 44.20 23.39 21.84 16.74 38.20 20.69 

58 Bang Bua 
Thong 

Nonthab
uri 

27.25 34.80 40.14 43.77 44.28 23.43 21.87 16.77 37.93 20.67 

59 Bang Kruai Nonthab
uri 

27.60 34.67 40.03 43.68 44.25 23.26 21.72 16.77 38.08 20.60 

60 Bang Yai Nonthab
uri 

27.62 34.69 40.14 43.69 44.25 23.38 21.82 16.76 38.06 20.66 

61 Mueang 
Nonthaburi 

Nonthab
uri 

27.24 34.89 40.00 43.66 44.26 23.37 21.84 16.79 38.05 20.66 

62 Pak Kret Nonthab
uri 

27.14 35.07 40.08 43.72 44.30 23.52 21.97 16.79 38.00 20.74 

63 Sai Noi Nonthab
uri 

26.52 34.27 40.25 43.72 44.27 23.43 21.86 16.77 38.01 20.69 

64 Bang Bo Samut 
Prakan 

25.45 32.64 38.93 43.64 44.02 23.40 22.01 16.75 36.84 20.71 

65 Bang Phli Samut 
Prakan 

26.09 33.31 39.21 43.53 43.98 23.47 22.22 16.71 37.05 20.87 
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Table 6.42 (Continued). 

No. DISTRICT PROVINCE OCT NOV DEC JAN FEB MAR APR MAY 
WIN 
TER 

SUM
MER 

66 Bang Sao 
Thong 

Samut 
Prakan 

25.69 32.87 39.04 43.68 44.02 23.44 22.30 16.75 36.94 20.88 

67 Mueang 
Samut 
Prakan 

Samut 
Prakan 

26.33 33.60 39.30 43.45 43.99 23.44 22.12 16.70 37.32 20.77 

68 Phra 
Pradaeng 

Samut 
Prakan 

27.03 34.13 39.63 43.48 43.99 23.20 21.71 16.70 37.60 20.54 

69 Phra 
Samut 
Chedi 

Samut 
Prakan 

27.12 34.00 39.41 43.30 44.02 23.33 22.01 16.72 37.85 20.70 

70 Ban Phaeo Samut 
Sakhon 

27.70 35.54 40.00 43.78 44.11 23.39 21.93 16.73 38.31 20.72 

71 Krathum 
Baen 

Samut 
Sakhon 

28.05 35.19 39.96 43.64 44.13 23.38 21.76 16.72 38.23 20.68 

72 Mueang 
Samut 
Sakhon 

Samut 
Sakhon 

27.73 35.27 39.81 43.66 44.05 23.35 21.87 16.72 38.32 20.70 

 
6.4.1 October 2019 in the winter season 

The MEM model results are shown in Table 6.43 and Table 6.44. The 
model performance shows that AIC, AICc, and BIC values are 127.83, 128.03, and 
132.11, respectively. 
 
Table 6.43 Estimates of Fixed Effects in October 2019. 

Parameter Estimate St. Error df Sig. 
95% Confidence Interval 

Lower Bound Upper Bound 
Intercept 0.00 0.06 63.00 1.00 -0.11 0.11 
Wind speed 0.27 0.09 63.00 0.00 0.09 0.44 
Pressure 0.15 0.07 63.00 0.04 0.01 0.29 
Visibility 0.21 0.08 63.00 0.01 0.05 0.37 
Brightness temperature -0.17 0.08 63.00 0.04 -0.33 -0.01 
Fire radiative power -0.18 0.09 63.00 0.04 -0.36 -0.01 
MODIS AOD 0.71 0.07 63.00 0.00 0.58 0.85 
Fire hotspot -0.18 0.08 63.00 0.03 -0.34 -0.02 
Elevation 0.46 0.08 63.00 0.00 0.31 0.62 
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Table 6.44 Estimates of covariance parameters in October 2019. 
Parameter Estimate Std. Error 
Residual 0.12 0.04 
Intercept  [subject = ID_district] Variance 0.12 0.00 

 
From Table 6.42, the maximum value is 28.16 μg/m3 in Bang Bon, 

Bangkok. In contrast, the minimum value is 25.45 μg/m3 in Bang Bo District, Samut 
Prakan province. The classification maps of prediction values for PM2.5 concentration 
using the MEM model according to the Thailand Air Quality Index and the U.S. EPA Air 
Quality Index are displayed in Figure 6.61.  

Thus, predicted values of PM2.5 concentration are satisfactory at level 2 
of Thailand AQI and moderate at level 2 of EPA AQI. On the other hand, the predicted 
value in an urban landscape in October 2019 from the MEM model is more than the 
one-day mean of WHO guidelines. See Table 5.3. 

In addition, a spatial distribution map of PM2.5 concentration in October 
2019 using the SCK interpolation technique is displayed in Figure 6.62. As a result, the 
high PM2.5 concentration occur in urban areas in the central part of the study area, 
particularly in Bangkok Metropolitan and Samut Sakhon province. 

 

(a) (b) 
Figure 6.61 The classification map of PM2.5 concentration prediction using the MEM 
model in October 2019 according to the (a) Thailand AQI and (b) EPA AQI. 
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Figure 6.62 Spatial distribution of PM2.5 concentration in October 2019. 

 
6.4.2 November 2019 in the winter season 

The MEM model results are shown in Table 6.45 and Table 6.46. The 
model performance shows that AIC, AICc, and BIC values are 187.15, 187.33, and 
191.62, respectively. 
 
Table 6.45 Estimates of Fixed Effects in November 2019. 

Parameter Estimate St. Error df Sig. 
95% Confidence Interval 

Lower Bound Upper Bound 
Intercept 0.00 0.10 69.00 1.00 -0.20 0.20 
Visibility 0.40 0.10 69.00 0.00 0.20 0.60 

Fire radiative power 0.37 0.10 69.00 0.00 0.17 0.57 

 
Table 6.46 Estimates of covariance parameters in November 2019. 
Parameter Estimate Std. Error 
Residual 0.35 0.12 
Intercept  [subject = ID_district] Variance 0.35 0.00 

 
From Table 6.42, the maximum value is 35.54 μg/m3 in Ban Phaeo District, 

Samut Sakhon province. In contrast, the minimum value is 32.64 μg/m3 in Bang Bo 
District, Samut Sakhon province. The classification maps of prediction values for PM2.5 
concentration using the MEM model according to the Thailand Air Quality Index and 
the U.S. EPA Air Quality Index are displayed in Figure 6.63. 
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Thus, the predicted values of PM2.5 concentration are satisfactory at 
level 2 of Thailand AQI and moderate at level 2 and unhealthy for sensitive groups at 
level 3 of EPA AQI. On the other hand, the predicted value in an urban landscape in 
November 2019 from the MEM model is more than the one-day mean of WHO 
guidelines. See Table 5.3. 

In addition, a spatial distribution map of PM2.5 concentration in 
November 2019 using the SCK interpolation technique is displayed in Figure 6.64. As a 
result, the high PM2.5 concentration occur in urban areas in the western part of the 
study area, mainly in Samut Sakhon province and Bangkok Metropolitan. 

 

(a) (b) 
Figure 6.63 The classification map of PM2.5 concentration prediction using the MEM 
model in November 2019 according to the (a) Thailand AQI and (b) EPA AQI. 
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Figure 6.64 Spatial distribution of PM2.5 concentration in November 2019. 

 
6.4.3 December 2019 in the winter season 

The MEM model results are shown in Table 6.47 and Table 6.48. The 
model performance shows that AIC, AICc, and BIC values are 191.28, 191.46, and 
195.75, respectively. 
 
Table 6.47 Estimates of Fixed Effects in December 2019. 

Parameter Estimate St. Error df Sig. 
95% Confidence Interval 

Lower Bound Upper Bound 
Intercept 0.00 0.10 69.00 1.00 -0.20 0.20 
Wind speed -0.43 0.11 69.00 0.00 -0.64 -0.22 
Visibility 0.22 0.11 69.00 0.04 0.01 0.43 

 
Table 6.48 Estimates of covariance parameters in December 2019. 
Parameter Estimate Std. Error 
Residual 0.37 0.13 
Intercept  [subject = ID_district] Variance 0.37 0.00 

 
From Table 6.42, the maximum value is 40.40 μg/m3 in Don Tum District, 

Nakhon Pathom province. In contrast, the minimum value is 38.93 μg/m3 in Bang Bo 
District, Samut Prakan province. The classification maps of prediction values for PM2.5 
concentration using the MEM model according to the Thailand Air Quality Index and 
the U.S. EPA Air Quality Index are displayed in Figure 6.65. 
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Thus, the predicted values of PM2.5 concentration are moderate at level 
3 of Thailand AQI and unhealthy for sensitive groups at level 3 of EPA AQI. On the 
other hand, the predicted value in an urban landscape in December 2019 from the 
MEM model is more than the one-day mean of WHO guidelines. See Table 5.3. 

In addition, a spatial distribution map of PM2.5 concentration in 
December 2019 using the SCK interpolation technique is displayed in Figure 6.66. As a 
result, the high PM2.5 concentration occur in urban areas in the central and western 
parts of the study area, mainly in Bangkok Metropolitan and Samut Sakhon province. 

 

(a) (b) 
Figure 6.65 The classification map of PM2.5 concentration prediction using the MEM 
model in December 2019 according to the (a) Thailand AQI and (b) EPA AQI. 
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Figure 6.66 Spatial distribution of PM2.5 concentration in December 2019. 
 

6.4.4 January 2020 in the winter season 

The MEM model results are shown in Table 6.49 and Table 6.50. The 
model performance shows that AIC, AICc, and BIC values are 194.09, 194.28, and 
198.47, respectively. 
 
Table 6.49 Estimates of Fixed Effects in January 2020. 

Parameter Estimate St. Error df Sig. 
95% Confidence Interval 

Lower Bound Upper Bound 
Intercept 0.00 0.10 66.00 1.00 -0.20 0.20 
Temperature -0.43 0.12 66.00 0.00 -0.66 -0.19 
Visibility 0.29 0.14 66.00 0.04 0.02 0.56 
MODIS AOD -0.57 0.12 66.00 0.00 -0.81 -0.32 
Fire hotspot 0.28 0.12 66.00 0.03 0.03 0.52 
Elevation 0.38 0.11 66.00 0.00 0.15 0.61 

 
Table 6.50 Estimates of covariance parameters in January 2020. 
Parameter Estimate Std. Error 
Residual 0.36 0.13 
Intercept  [subject = ID_district] Variance 0.36 0.00 
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From Table 6.42, the maximum value is 43.80 μg/m3 in Mueang Nakhon 
Pathom District, Samut Prakan province. In contrast, the minimum value is 43.30 μg/m3 
in Phra Samut Chedi District, Samut Prakan province. The classification maps of 
prediction values for PM2.5 concentration using the MEM model according to the 
Thailand Air Quality Index and the U.S. EPA Air Quality Index are displayed in Figure 
6.67. 

Thus, the predicted values of PM2.5 concentration are moderate at level 
3 of Thailand AQI and unhealthy for sensitive groups at level 3 of EPA AQI. On the 
other hand, the predicted value in an urban landscape in January 2020 from the MEM 
model is more than the one-day mean of WHO guidelines. See Table 5.3. 

In addition, a spatial distribution map of PM2.5 concentration in January 
2020 using the SCK interpolation technique is displayed in Figure 6.68. As a result, the 
high PM2.5 concentration occur in urban areas in the central and western parts of the 
study area, mainly in Bangkok Metropolitan and Samut Sakhon province. 

 

(a) (b) 
Figure 6.67 The classification map of PM2.5 concentration prediction using the MEM 
model in January 2020 according to the (a) Thailand AQI and (b) EPA AQI. 
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Figure 6.68 Spatial distribution of PM2.5 concentration in January 2020. 

 
6.4.5 February 2020 in the winter season 

The result of the MEM model is shown in Tables 6.51 and 6.52. The model 
performance shows that AIC, AICc, and BIC values are 141.76, 141.95, and 146.14, 
respectively. 
 
Table 6.51 Estimates of Fixed Effects in February 2020. 

Parameter Estimate St. Error df Sig. 
95% Confidence Interval 

Lower Bound Upper Bound 
Intercept 0.00 0.07 66.00 1.00 -0.13 0.13 
Relative humidity -0.59 0.07 66.00 0.00 -0.73 -0.44 
Wind speed 0.32 0.10 66.00 0.00 0.13 0.52 
Pressure 0.29 0.09 66.00 0.00 0.11 0.48 
Fire radiative power -0.54 0.09 66.00 0.00 -0.73 -0.36 
Elevation 0.33 0.10 66.00 0.00 0.13 0.53 

 
Table 6.52 Estimates of covariance parameters in February 2020. 
Parameter Estimate Std. Error 
Residual 0.16 0.06 
Intercept  [subject = ID_district] Variance 0.16 0.00 
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From Table 6.42, the maximum value is 44.36 μg/m3 in Don Mueang 
District, Bangkok. In contrast, the minimum value is 43.98 μg/m3 in Bang Na District, 
Bangkok. The classification maps of prediction values for PM2.5 concentration using 
the MEM model according to the Thailand Air Quality Index and the U.S. EPA Air Quality 
Index are displayed in Figure 6.69. 

Thus, the predicted values of PM2.5 concentration are moderate at level 
3 of Thailand AQI and unhealthy for sensitive groups at level 3 of EPA AQI. On the 
other hand, the predicted value in an urban landscape in February 2020 from the MEM 
model is still more than the one-day mean of WHO guidelines. See Table 5.3. 

In addition, a spatial distribution map of PM2.5 concentration in February 
2020 using the SCK interpolation technique is displayed in Figure 6.70. As a result, the 
high PM2.5 concentration occur in urban areas in the central and western parts of the 
study area, mainly in Bangkok Metropolitan and Samut Sakhon province. 

 

(a) (b) 
Figure 6.69 The classification map of PM2.5 concentration prediction using the MEM 
model in February 2020 according to the (a) Thailand AQI and (b) EPA AQI. 
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Figure 6.70 Spatial distribution of PM2.5 concentration in February 2020. 

 
6.4.6 March 2020 in the summer season 

The MEM model results are shown in Table 6.53 and Table 6.54. The 
model performance shows that AIC, AICc, and BIC values are 210.44, 210.62, and 
214.94, respectively. 

 
Table 6.53 Estimates of Fixed Effects in March 2020. 

Parameter Estimate St. Error df Sig. 
95% Confidence Interval 

Lower Bound Upper Bound 
Intercept 0.00 0.12 70.00 1.00 -0.23 0.23 
Fire radiative power 0.16 0.12 70.00 0.19 -0.08 0.39 

 
Table 6.54 Estimates of covariance parameters in March 2020. 
Parameter Estimate Std. Error 
Residual 0.49 0.17 
Intercept  [subject = ID_district] UN (1,1) 0.49 0.00 

 
From Table 6.42, the maximum value is 23.75 μg/m3 in Don Mueang 

District, Bangkok. In contrast, the minimum value is 23.03 μg/m3 in Phaya Thai District, 
Bangkok. The classification maps of prediction values for PM2.5 concentration using 
the MEM model according to the Thailand Air Quality Index and the U.S. EPA Air Quality 
Index are displayed in Figure 6.71. 
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Thus, the predicted values of PM2.5 concentration are excellent at level 
1 of Thailand AQI but moderate at level 2 of EPA AQI. Additionally, the predicted value 
in an urban landscape in March 2020 from the MEM model is more than the one-day 
mean of WHO guidelines. See Table 5.3. 

In addition, a spatial distribution map of PM2.5 concentration in March 
2020 using the SCK interpolation technique is displayed in Figure 6.72. As a result, the 
high PM2.5 concentration occur in urban areas in the northern part of the study area, 
mainly in Bangkok Metropolitan. 

 

(a) (b) 
Figure 6.71 The classification map of PM2.5 concentration prediction using the MEM 
model in March 2020 according to the (a) Thailand AQI and (b) EPA AQI. 
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Figure 6.72 Spatial distribution of PM2.5 concentration in March 2020. 

 
6.4.7 April 2020 in the summer season 

The MEM model results are shown in Table 6.55 and Table 6.56. The 
model performance shows that AIC, AICc, and BIC values are 175.16, 175.35, and 
179.54, respectively. 
 
Table 6.55 Estimates of Fixed Effects in April 2020. 

Parameter Estimate St. Error df Sig. 
95% Confidence Interval 

Lower Bound Upper Bound 
Intercept 0.00 0.08 64.00 1.00 -0.17 0.17 
Wind speed 0.54 0.11 64.00 0.00 0.31 0.76 
Visibility 0.45 0.11 64.00 0.00 0.24 0.66 
Brightness temperature -0.29 0.10 64.00 0.01 -0.50 -0.09 
Fire radiative power -0.41 0.13 64.00 0.00 -0.66 -0.15 
MODIS AOD 0.24 0.10 64.00 0.01 0.05 0.43 
Fire hotspot 0.25 0.09 64.00 0.01 0.07 0.42 
Factory density -0.24 0.10 64.00 0.02 -0.43 -0.04 

 
  

 



290 

Table 6.56 Estimates of covariance parameters in April 2020. 
Parameter Estimate Std. Error 
Residual 0.25 0.09 
Intercept  [subject = ID_district] Variance 0.25 0.00 

 
From Table 6.42, the maximum value is 22.39 μg/m3 in Don Mueang 

District, Bangkok. In contrast, the minimum value is 21.50 μg/m3 in Rat Burana District, 
Bangkok. The classification maps of prediction values for PM2.5 concentration using 
the MEM model presented according to the Thailand Air Quality Index and the U.S. 
EPA Air Quality Index are displayed in Figure 6.73. 

Thus, the predicted values of PM2.5 concentration are excellent at level 
1 of Thailand AQI but moderate at level 2 of EPA AQI. However, the predicted value 
in an urban landscape in April 2020 from the MEM model is more than the one-day 
mean of WHO guidelines. See Table 5.3. 

In addition, a spatial distribution map of PM2.5 concentration in April 2020 
using the SCK interpolation technique is displayed in Figure 6.74. As a result, the high 
PM2.5 concentration occur in urban areas in the northern part of the study area, mainly 
in Bangkok Metropolitan. 

 

(a) (b) 
Figure 6.73 The classification map of PM2.5 concentration prediction using the MEM 
model in April 2020 according to the (a) Thailand AQI and (b) EPA AQI. 
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Figure 6.74 Spatial distribution of PM2.5 concentration in April 2020. 
 

6.4.8 May 2020 in the summer season 

The MEM model results are shown in Table 6.57 and Table 6.58. The 
model performance shows that AIC, AICc, and BIC values are 175.16, 175.35, and 
179.54, respectively. 
 
Table 6.57 Estimates of Fixed Effects in May 2020. 

Parameter Estimate St. Error df Sig. 
95% Confidence Interval 

Lower Bound Upper Bound 
Intercept 0.00 0.09 66.00 1.00 -0.17 0.17 
Wind speed 0.24 0.11 66.00 0.03 0.02 0.46 
Visibility -0.29 0.09 66.00 0.00 -0.47 -0.11 
Brightness temperature 0.21 0.09 66.00 0.02 0.03 0.40 
Factory density -0.62 0.10 66.00 0.00 -0.82 -0.43 
Elevation 0.48 0.11 66.00 0.00 0.25 0.70 

 
Table 6.58 Estimates of covariance parameters in May 2020. 
Parameter Estimate Std. Error 
Residual 0.27 0.09 
Intercept  [subject = ID_district] Variance 0.27 0.00 
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From Table 6.42, the maximum value is 16.82 μg/m3 in Don Mueang 
District, Bangkok. In contrast, the minimum value is 16.68 μg/m3 in Rat Burana District, 
Bangkok. The classification maps of prediction values for PM2.5 concentration using 
the MEM model according to the Thailand Air Quality Index and the U.S. EPA Air Quality 
Index are displayed in Figure 6.75. 

Thus, the predicted values of PM2.5 concentration are excellent at level 
1 of Thailand AQI and moderate at level 2 of EPA AQI. However, the predicted value 
in an urban landscape in May 2020 from the MEM model is more than the one-day 
mean of WHO guidelines. See Table 5.3. 

In addition, a spatial distribution map of PM2.5 concentration in May 2020 
using the SCK interpolation technique is displayed in Figure 6.76. As a result, the high 
PM2.5 concentration occur in urban areas in the northern part of the study area, mainly 
in Bangkok Metropolitan. 
 

(a) (b) 
Figure 6.75 The classification map of PM2.5 concentration prediction using the MEM 
model in May 2020 according to the (a) Thailand AQI and (b) EPA AQI. 
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Figure 6.76 Spatial distribution of PM2.5 concentration in May 2020. 

 
6.4.9 Winter season 

The result of the MEM model for PM2.5 concentration prediction in the 
winter season (October to February) is summarized in Table 6.59 and Table 6.60. The 
model performance shows that AIC, AICc, and BIC values are 143.14, 143.34, and 
147.36, respectively. 

 
Table 6.59 Estimates of Fixed Effects in the winter season. 

Parameter Estimate St. Error df Sig. 
95% Confidence Interval 

Lower Bound Upper Bound 
Intercept 0.00 0.06 61.00 1.00 -0.13 0.13 
Relative humidity 1.25 0.28 61.00 0.00 0.70 1.81 
Temperature 1.81 0.33 61.00 0.00 1.16 2.46 
Wind speed 0.10 0.11 61.00 0.34 -0.11 0.32 
Pressure 1.62 0.28 61.00 0.00 1.06 2.18 
Visibility 0.00 0.10 61.00 0.96 -0.19 0.20 
Brightness temperature -0.19 0.11 61.00 0.11 -0.42 0.04 
Fire radiative power -0.47 0.13 61.00 0.00 -0.73 -0.22 
Fire hotspot -0.06 0.08 61.00 0.45 -0.22 0.10 
MODIS AOD -0.15 0.17 61.00 0.40 -0.49 0.20 
Elevation 0.35 0.12 61.00 0.01 0.11 0.59 
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Table 6.60 Estimates of covariance parameters in the winter season. 
Parameter Estimate Std. Error 
Residual 0.15 0.05 
Intercept  [subject = ID_district] Variance 0.15 0.00 

 
From Table 6.42, the maximum value is 38.32 μg/m3 in Mueang Samut 

Sakhon District, Samut Sakhon province. In contrast, the minimum value is 36.84 μg/m3 
in Bang Bo District, Samut Prakan province. The classification maps of prediction values 
for PM2.5 concentration using the MEM model according to the Thailand Air Quality 
Index and the U.S. EPA Air Quality Index are displayed in Figure 6.77. 

Thus, the predicted values of PM2.5 concentration are moderate at level 
3 of Thailand AQI and unhealthy for sensitive groups at level 3 of EPA AQI. The 
predicted value in an urban landscape using the MEM model in the winter is more 
than the one-day mean of WHO guidelines. See Table 5.3. 

In addition, a spatial distribution map of PM2.5 concentration in the winter 
season using the SCK interpolation technique is displayed in Figure 6.78. As a result, 
the high PM2.5 concentration occur in urban areas in the western part of the study 
area, mainly in Nakhon Pathom and Samut Sakhon province. 
 

(a) (b) 
Figure 6.77 The classification map of PM2.5 concentration prediction using the MEM 
model in the winter season according to the (a) Thailand AQI and (b) EPA AQI. 
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Figure 6.78 Spatial distribution of PM2.5 concentration in the winter season. 

 
6.4.10 Summer season 

 The result of the MEM model for PM2.5 concentration prediction in the 
summer season (March to May) is summarized in Tables 6.61 and 6.62. The model 
performance shows that AIC, AICc, and BIC values are 204.10, 204.30 and 208.38, 
respectively. 
 
Table 6.61 Estimates of Fixed Effects in the summer season. 

Parameter Estimate St. Error df Sig. 
95% Confidence Interval 

Lower Bound Upper Bound 
Intercept .00 .10 63.00 1.00 -.21 .21 
Visibility .14 .12 63.00 .24 -.10 .38 
Wind speed .16 .18 63.00 .38 -.21 .53 
Brightness temperature .01 .12 63.00 .91 -.22 .24 
Fire radiative power .07 .16 63.00 .65 -.25 .40 
Fire hotspot .25 .12 63.00 .05 .00 .49 
MODIS AOD .04 .12 63.00 .72 -.19 .28 
Factory density -.35 .12 63.00 .01 -.59 -.11 
Elevation -.01 .17 63.00 .94 -.36 .33 

 
Table 6.62 Estimates of covariance parameters in the summer season. 
Parameter Estimate Std. Error 
Residual 0.39 0.14 
Intercept  [subject = ID_district] Variance 0.39 0.00 
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From Table 6.42, the maximum value is 20.95 μg/m3 in Sai Mai District, 
Bangkok. In contrast, the minimum value is 20.39 μg/m3 in Rat Burana District, Bangkok. 
The classification maps of prediction values for PM2.5 concentration using the MEM 
model according to the Thailand Air Quality Index and the U.S. EPA Air Quality Index 
are displayed in Figure 6.79. 

Thus, the predicted values of PM2.5 concentration are excellent at level 
1 of Thailand AQI and moderate at level 2 of EPA AQI. Additionally, the predicted value 
in an urban landscape in the summer season from the MEM model is more than the 
one-day mean of WHO guidelines. See Table 5.3. 

In addition, a spatial distribution map of PM2.5 concentration in the 
summer season using the SCK interpolation technique is displayed in Figure 6.80. As a 
result, the high PM2.5 concentration occur in urban areas in the northern part of the 
study area, mainly in Bangkok Metropolitan. 
 

(a) (b) 
Figure 6.79 The classification map of PM2.5 concentration prediction using the MEM 
model in the summer season according to the (a) Thailand AQI and (b) EPA AQI. 
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Figure 6.80 Spatial distribution of PM2.5 concentration in the summer season. 
 

6.5 Comparison of spatiotemporal patterns of PM concentration using 
GWR and MEM models 

The spatiotemporal patterns of PM10 and PM2.5 concentration using the GWR 
model as a local model and MEM model as a global model are summarized in terms 
of similarity/dissimilarity based on the derived results in Sections 6.1 to 6.4. 

6.5.1 Monthly air quality index classification 

Overall monthly AQI classification according to Thailand and US EPA 
standards of PM10 and PM2.5 concentration using the GWR and MEM models is 
summarized in Table 6.63 and Table 6.64, respectively. 

As a result, in Tables 6.63 to 6.64, it can be observed that monthly AQI 
classifications according to Thailand and US EPA standards are similar. The 
interpretation of each AQI class from two standards should see the quantitative 
information in corresponding tables because the number of AQI classes and the 
quantity of PM10 and PM2.5 concentration are slightly different. Nevertheless, as a 
local model, the GWR model can provide the predictive equation for each district. 
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Table 6.63 Comparison of monthly AQI classification according to Thailand and US 
EPA standards of PM10 concentration using GWR and MEM model. 

Month 
AQI Classification by GWR model AQI Classification by MEM model 

Compare 
Thailand US EPA Thailand US EPA 

October Satisfactory Good Satisfactory Good Similarity 
November Satisfactory Moderate Satisfactory Moderate Similarity 
December Satisfactory Moderate Satisfactory Moderate Similarity 
January Satisfactory Moderate Satisfactory Moderate Similarity 
February Moderate Moderate Moderate Moderate Similarity 
March Excellent Good Excellent Good Similarity 
April Excellent Good Excellent Good Similarity 
May Excellent Good Excellent Good Similarity 

 
Table 6.64 Comparison of monthly AQI classification according to Thailand and US 
EPA standards of PM2.5 concentration using GWR and MEM model. 

Month 
GWR model MEM model 

Compare 
Thailand US EPA Thailand US EPA 

October Satisfactory Moderate Satisfactory Moderate Similarity 
November Satisfactory Moderate Satisfactory Moderate Similarity 
December Moderate Unhealthy for 

sensitive group 
Moderate Unhealthy for 

sensitive group 
Similarity 

January Moderate Unhealthy for 
sensitive group 

Moderate Unhealthy for 
sensitive group 

Similarity 

February Moderate Unhealthy for 
sensitive group 

Moderate Unhealthy for 
sensitive group 

Similarity 

March Excellent Moderate Excellent Moderate Similarity 
April Excellent Moderate Excellent Moderate Similarity 
May Excellent Moderate Excellent Moderate Similarity 

 
6.5.2 Seasonally air quality index classification 

According to Thailand and US EPA standards of PM10 and PM2.5 
concentration using the GWR and MEM models, seasonally, AQI classification is 
summarized in Table 6.65. 
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Table 6.65 Comparison of seasonally AQI classification according to Thailand and US 
EPA standards of PM10 and PM2.5 concentration using GWR and MEM model. 

Season 
GWR model MEM model 

Comparison 
Thailand US EPA Thailand US EPA 

PM10 concentration 
Winter Satisfactory Moderate Satisfactory Moderate Similarity 
Summer Excellent Good Excellent Good Similarity 

PM2.5 concentration 
Winter Moderate Unhealthy for 

sensitive group 
Moderate Unhealthy for 

sensitive group 
Similarity 

Summer Excellent Moderate Excellent Moderate Similarity 

 
As a result, in Table 6.65, it can be observed that seasonally AQI 

classifications according to Thailand and US EPA standards are similar. As mentioned 
in Section 6.5.1, the interpretation of each AQI class from two standards should see 
the quantitative information in corresponding tables because the number of AQI 
classes and the quantity of PM10 and PM2.5 concentration are slightly different. 
Nevertheless, the GWR model, as a local model, can provide the predictive equation 
for each district. 

 



CHAPTER VII 
SUITABLE SPATIOTEMPORAL MODEL FOR  

PM CONCENTRATION PREDICTION AND VALIDATION
 

This chapter presents the study's third objective to evaluate a suitable model 
for predicting spatiotemporal PM10 and PM2.5 concentration between GWR and MEM 
models and validation. The reported AICc values from Chapter 6 were used to 
determine how well a model fits the data generated, compare different possible 
models, and decide which model best works for the data (Bevans, 2021). The lower 
AICc values indicate a better fit model. At the same time, the Pearson correlation 
analysis was used to measure how strong a relationship is between the derived 
patterns of PM concentration based on the existing dataset (October 2019 to May 2020) 
and the new dataset (October 2020 to May 2021) for suitable model validation. The 
value -1 and 1 of the Pearson correlation indicates a strong relationship. Additionally, 
spatial correlation analysis was applied to characterize the relationship between 
predictive PM concentration and their significant factors. The main results of this 
chapter consist of (1) a suitable model for spatiotemporal PM concentration prediction, 
(2) validation of a suitable model for spatiotemporal PM concentration prediction and 
(3) specific characteristics of predictive spatiotemporal PM concentration. 
 

7.1 Suitable model for spatiotemporal PM concentration prediction 
Suitable models for predicting spatiotemporal PM10 and PM2.5 concentration 

are summarized separately and discussed in the following section. 
7.1.1 Suitable models for spatiotemporal PM10 concentration prediction 

The AICc values of PM10 concentration prediction on sixty districts in rural 
landscapes in the winter and summer compared between the GWR and MEM model 
are summarized in Table 7.1 and Table 7.2, respectively. As shown in a table, column 
one displays the month in each season; column two indicates the sum of the districts 
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in each landscape for the model calculation; and columns three and four display the 
AICc value of the GWR and MEM model, respectively. 
 
Table 7.1 Monthly and seasonally AICc value and the average for two competing 
models for PM10 concentration prediction in the winter season. 

Month N GWR model MEM model 
October 60 89.88 140.84 

November 60 91.16 140.99 
December 60 123.24 158.62 
January 60 106.85 173.06 
February 60 78.45 163.92 
Average  60 97.92 155.49 

Winter season 60 132.89 151.24 

 
Table 7.2 Monthly and seasonally AICc value and the average for two competing 
models for PM10 concentration prediction in the summer season. 

Month N GWR model MEM model 
March 60 119.61 157.31 
April 60 64.75 159.37 
May 60 154.74 177.62 

Average  60 113.03 164.77 
Summer season 60 120.34 158.70 

 
As a result, Table 7.1 and Table 7.2 show that the average AICc value of 

PM10 concentration in winter and summer using the GWR model is lower than the 
MEM model. So, the GWR model is suitable for spatiotemporal PM10 concentration 
prediction in both seasons. 

7.1.2 Suitable models for spatiotemporal PM2.5 concentration prediction 
The AICc values of PM2.5 concentration prediction on seventy-two 

districts in urban landscapes in the winter and summer compared to GWR and MEM 
models are reported in Table 7.3 and Table 7.4, respectively. 
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Table 7.3 Monthly and seasonally AICc value and the average for two competing 
models for PM2.5 concentration prediction in the winter season. 

Month N GWR model MEM model 
October 72 73.70 128.03 

November 72 10.54 187.33 
December 72 24.44 191.46 
January 72 177.81 194.28 
February 72 82.82 141.95 
Average 72 73.86 168.61 

Winter season 72 79.58 143.34 

 
Table 7.4 Monthly and seasonally AICc value and the average for two competing 
models for PM2.5 concentration prediction in the summer season. 

Month N GWR model MEM model 
March 72 114.63 210.62 
April 72 162.63 174.03 
May 72 90.38 175.35 

Average 72 122.55 186.67 
Summer season 72 181.86 204.30 

 
As a result, in Table 7.3 and Table 7.4, the average AICc value of PM2.5 

concentration in winter and summer using the GWR model is lower than in the MEM 
model. So, the GWR model is suitable for spatiotemporal PM2.5 concentration 
prediction in both seasons. 

In summary, it can be concluded that the GWR model is suitable for monthly 
PM10 and PM2.5 concentration in the rural and urban landscape in the winter and 
summer seasons. This finding is consistent with many previous studies. Chu et al. (2016) 
concluded that GWR was suitable for PM2.5 concentration prediction at a regional 
scale. Like, Wei et al. (2019) suggested that the GWR model could provide a better 
spatiotemporal PM2.5 concentration prediction than the MEM model. Also, Gu (2019) 
stated that the GWR generated the best performance compared with the MEM (Mixed 
linear regression) model. 
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7.2 Validation of a suitable model for spatiotemporal PM 
concentration prediction 

Under this section, a newly collected and prepared dataset in the winter and 
summer seasons (between October 2020 and May 2021) was reapplied to validate the 
spatiotemporal PM10 and PM2.5 concentration prediction using the GWR a suitable 
model. 

7.2.1 Validation of PM10 concentration prediction 

Using the GWR as a suitable model, the predictive value of monthly PM10 
concentration in the winter season at the centroid of each district from the existing 
dataset (October 2019 to February 2020) and the new dataset (October 2020 to 
February 2021) was extracted as a summary in Table 7.5 and Table 7.6. The result of 
spatial correlation analysis between the predictive value of monthly PM10 
concentration in the winter season from the existing dataset and the new dataset is 
summarized in Table 7.7.  
 

Table 7.5 The predictive value of monthly PM10 concentration in the winter season 
at the centroid of each district from the existing dataset (October 2019 to February 
2020). 

No. District October November December January February 
1 Chaiyo 52.56 65.22 74.42 79.16 82.18 
2 Mueang Ang Thong 52.40 64.86 74.41 79.12 81.81 
3 Pa Mok 52.10 64.64 74.46 79.11 81.62 
4 Pho Thong 52.20 64.91 74.23 79.09 81.44 
5 Samko 52.13 64.70 74.15 79.02 80.85 
6 Sawaeng Ha 52.15 64.83 74.18 79.07 81.27 
7 Wiset Chai Chan 52.14 64.60 74.21 79.06 80.99 
8 Ban Mi 52.77 65.12 74.42 79.11 81.96 
9 Chai Badan 51.79 64.58 73.53 78.88 81.27 
10 Khok Charoen 51.93 64.44 74.08 78.95 81.19 
11 Khok Samrong 52.88 65.41 75.17 79.07 81.73 
12 Lam Sonthi 51.80 64.22 74.47 78.84 81.01 
13 Mueang Lop Buri 53.74 66.12 75.96 79.36 83.30 
14 Nong Muang 52.13 64.82 74.29 79.03 81.01 
15 Phatthana Nikhom 52.94 65.82 75.13 79.06 82.70 
16 Sa Bot 52.24 64.68 74.27 78.94 81.26 

 



304 

Table 7.5 (Continued). 
No. District October November December January February 
17 Tha Luang 51.86 65.04 73.38 78.88 81.93 
18 Tha Wung 52.79 65.48 74.52 79.20 82.39 
19 Khlong Luang 51.66 63.86 73.95 78.96 80.32 
20 Lam Luk Ka 51.47 64.15 74.24 78.94 80.94 
21 Lat Lum Kaeo 50.77 63.48 73.54 78.91 79.07 
22 Mueang Pathum Thani 50.53 63.37 73.39 78.95 79.88 
23 Nong Suea 52.35 63.96 74.27 79.03 81.08 
24 Sam Khok 50.94 63.34 73.52 78.94 79.79 
25 Thanyaburi 51.69 63.94 74.14 78.94 80.54 
26 Ban Phraek 52.75 65.47 74.72 79.24 83.00 
27 Bang Ban 51.87 64.42 74.71 79.12 80.83 
28 Bang Pa-In 51.40 64.20 74.46 79.05 80.90 
29 Bang Pahan 52.20 64.84 74.83 79.17 81.87 
30 Bang Sai 51.40 63.85 74.22 78.96 79.81 
31 Bang Sai 51.41 63.91 74.21 78.96 80.28 
32 Lat Bua Luang 51.28 63.78 73.92 78.91 79.62 
33 Maha Rat 52.58 65.22 74.64 79.15 82.41 
34 Nakhon Luang 52.48 65.09 74.84 79.18 82.32 
35 Phachi 52.76 65.07 74.86 79.16 82.89 
36 Phak Hai 51.81 64.39 74.24 79.05 80.83 
37 Phra Nakhon Si Ayutthaya 51.71 64.35 74.84 79.15 80.97 
38 Sena 51.48 64.08 74.12 78.94 80.25 
39 Tha Ruea 53.22 66.05 75.22 79.32 83.51 
40 Uthai 52.20 64.62 74.56 79.10 82.13 
41 Wang Noi 52.24 64.36 74.55 79.07 81.48 
42 Ban Mo 53.61 66.38 75.67 79.40 84.24 
43 Chaloem Phra Kiat 55.03 68.23 80.60 79.52 85.79 
44 Don Phut 53.19 65.97 74.97 79.27 83.40 
45 Kaeng Khoi 52.99 66.00 76.81 79.30 83.53 
46 Muak Lek 52.48 65.49 74.30 78.90 82.60 
47 Mueang Saraburi 53.46 65.64 77.48 79.41 83.71 
48 Nong Don 53.76 66.13 76.78 79.44 83.79 
49 Nong Khae 52.77 65.01 75.02 79.29 83.17 
50 Nong Saeng 53.27 65.91 76.70 79.35 83.53 
51 Phra Phutthabat 54.64 67.85 79.22 79.45 84.60 
52 Sao Hai 53.86 66.99 77.74 79.50 84.13 
53 Wang Muang 52.38 65.88 74.65 78.86 82.12 
54 Wihan Daeng 53.01 65.02 75.14 79.22 82.77 
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Table 7.5 (Continued). 
No. District October November December January February 
55 Bang Rachan 52.31 64.88 74.17 79.08 81.44 
56 In Buri 52.29 64.82 74.13 79.09 81.49 
57 Khai Bang Rachan 52.32 64.93 74.19 79.08 81.55 
58 Mueang Sing Buri 52.37 65.02 74.23 79.06 81.71 
59 Phrom Buri 52.62 65.28 74.41 79.15 82.11 
60 Tha Chang 52.42 65.08 74.29 79.10 81.81 

 

Table 7.6 The predictive value of monthly PM10 concentration in the summer season 
at the centroid of each district from the new dataset (October 2020 to February 2021). 
No. District October November December January February 
1 Chaiyo 42.16 55.78 65.98 78.48 80.07 
2 Mueang Ang Thong 42.09 55.79 65.85 78.25 80.06 
3 Pa Mok 42.03 55.74 65.80 78.35 80.15 
4 Pho Thong 41.94 55.73 65.69 78.16 79.61 
5 Samko 41.69 55.74 65.45 78.06 79.29 
6 Sawaeng Ha 41.86 55.77 65.47 78.08 79.42 
7 Wiset Chai Chan 41.77 55.77 65.72 78.11 79.45 
8 Ban Mi 41.90 55.78 65.52 78.45 79.57 
9 Chai Badan 41.52 55.78 65.28 78.00 79.09 
10 Khok Charoen 41.53 55.75 65.49 77.87 78.78 
11 Khok Samrong 42.08 55.80 65.62 78.53 79.51 
12 Lam Sonthi 41.61 55.80 65.69 77.87 78.71 
13 Mueang Lop Buri 42.59 55.84 65.96 79.01 80.67 
14 Nong Muang 41.71 55.78 65.30 78.08 78.58 
15 Phatthana Nikhom 42.54 55.83 65.67 78.81 79.89 
16 Sa Bot 41.56 55.74 65.34 77.98 78.88 
17 Tha Luang 41.87 55.75 65.23 78.17 79.00 
18 Tha Wung 42.20 55.84 65.85 78.32 80.09 
19 Khlong Luang 41.45 55.71 65.62 77.83 78.79 
20 Lam Luk Ka 41.87 55.75 65.51 77.83 79.51 
21 Lat Lum Kaeo 40.85 55.72 65.68 76.36 77.68 
22 Mueang Pathum Thani 40.51 55.74 65.38 76.75 78.33 
23 Nong Suea 41.96 55.72 65.62 77.73 79.92 
24 Sam Khok 40.90 55.72 65.75 76.62 78.05 
25 Thanyaburi 41.68 55.76 65.33 77.87 79.55 
26 Ban Phraek 42.28 55.83 65.87 78.54 80.35 
27 Bang Ban 41.92 55.74 65.92 78.07 80.00 
28 Bang Pa-In 41.86 55.78 65.85 78.08 79.93 

 



306 

Table 7.6 (Continued). 
No. District October November December January February 
29 Bang Pahan 41.95 55.79 65.51 78.67 80.32 
30 Bang Sai 41.27 55.72 65.48 77.48 78.84 
31 Bang Sai 41.40 55.73 65.37 77.46 78.48 
32 Lat Bua Luang 41.46 55.75 65.31 77.41 78.34 
33 Maha Rat 42.26 55.78 65.59 78.79 80.34 
34 Nakhon Luang 42.24 55.81 65.82 78.78 80.55 
35 Phachi 42.36 55.82 66.08 79.06 80.63 
36 Phak Hai 41.66 55.76 65.50 78.04 79.45 
37 Phra Nakhon Si Ayutthaya 41.93 55.74 66.11 78.79 80.02 
38 Sena 41.51 55.73 65.64 77.79 79.06 
39 Tha Ruea 42.48 55.83 65.77 79.08 81.01 
40 Uthai 42.03 55.76 65.89 78.74 80.36 
41 Wang Noi 41.74 55.78 65.44 78.25 79.79 
42 Ban Mo 42.55 55.87 65.79 79.27 81.03 
43 Chaloem Phra Kiat 43.08 55.95 66.70 79.69 82.23 
44 Don Phut 42.41 55.81 66.01 78.78 80.80 
45 Kaeng Khoi 42.16 55.85 66.27 78.60 80.80 
46 Muak Lek 42.04 55.82 65.29 77.95 79.62 
47 Mueang Saraburi 42.71 55.80 66.38 79.21 81.15 
48 Nong Don 42.53 55.84 66.27 79.29 80.89 
49 Nong Khae 42.25 55.82 65.60 78.79 80.40 
50 Nong Saeng 42.66 55.82 66.10 79.21 80.92 
51 Phra Phutthabat 42.87 55.93 66.49 79.71 81.92 
52 Sao Hai 42.94 55.86 66.30 79.35 81.47 
53 Wang Muang 42.43 55.81 65.60 78.84 80.15 
54 Wihan Daeng 41.92 55.79 65.81 78.73 80.11 
55 Bang Rachan 41.92 55.75 65.29 78.14 79.38 
56 In Buri 41.97 55.75 65.33 78.07 79.42 
57 Khai Bang Rachan 41.94 55.83 65.43 78.31 79.46 
58 Mueang Sing Buri 42.06 55.75 65.57 78.33 79.61 
59 Phrom Buri 42.18 55.75 65.75 78.57 79.93 
60 Tha Chang 42.09 55.82 65.65 78.27 79.72 
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Table 7.7 The correlation coefficient value for PM10 concentration in the winter 
season between the existing and new datasets. 

Month Number of samples Correlation coefficient Sig. 
October 60 0.91** 0.00 

November 60 0.89** 0.00 
December 60 0.83** 0.00 
January 60 0.81** 0.00 
February 60 0.91** 0.00 

Average 0.87 0.00 
**Correlation is significant at the 0.01 level (2-tailed). 

 
According to Table 7.7, the average correlation coefficient value of PM10 

concentration in the winter season (October to February) is 0.87. This result indicates 
that the rural landscape's predictive PM10 concentration in the winter season from 
two datasets using a suitable model (GWR) provides a very strong positive correlation. 

In the meantime, the predictive value of monthly PM10 concentration in 
the summer season at the centroid of each district from the existing dataset (March 
2019 to May 2020) and the new dataset (March 2020 to May 2021) was extracted as a 
summary in Table 7.8 and Table 7.9. The result of spatial correlation analysis between 
the predictive value of monthly PM10 concentration in the summer season from the 
existing dataset and the new dataset is summarized in Table 7.10. 
 
Table 7.8 The predictive value of monthly PM10 concentration in the summer season 
at the centroid of each district from the existing dataset (March 2019 to May 2020). 

No. District March April May 
1 Chaiyo 48.69 44.01 37.17 
2 Mueang Ang Thong 48.73 43.89 37.23 
3 Pa Mok 48.88 43.96 37.39 
4 Pho Thong 48.55 43.84 37.15 
5 Samko 48.49 43.74 37.15 
6 Sawaeng Ha 48.54 43.78 37.14 
7 Wiset Chai Chan 48.61 43.70 37.18 
8 Ban Mi 48.33 43.84 37.15 
9 Chai Badan 48.46 43.52 37.20 
10 Khok Charoen 48.70 43.62 37.14 
11 Khok Samrong 48.43 44.01 37.24 
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Table 7.8 (Continued). 
No. District March April May 
12 Lam Sonthi 48.50 43.21 37.12 
13 Mueang Lop Buri 49.09 44.55 37.47 
14 Nong Muang 48.49 43.64 37.15 
15 Phatthana Nikhom 48.74 44.21 37.70 
16 Sa Bot 48.43 43.65 37.17 
17 Tha Luang 48.47 43.85 37.29 
18 Tha Wung 48.57 43.99 37.15 
19 Khlong Luang 48.64 43.85 37.20 
20 Lam Luk Ka 48.68 44.09 37.25 
21 Lat Lum Kaeo 48.56 42.65 36.95 
22 Mueang Pathum Thani 48.55 42.99 36.92 
23 Nong Suea 48.73 44.29 37.29 
24 Sam Khok 48.76 43.20 37.01 
25 Thanyaburi 48.59 44.43 37.25 
26 Ban Phraek 48.82 44.22 37.24 
27 Bang Ban 48.76 44.03 37.55 
28 Bang Pa-In 48.75 44.16 37.56 
29 Bang Pahan 48.85 44.25 37.54 
30 Bang Sai 48.61 43.39 37.45 
31 Bang Sai 48.73 43.27 37.26 
32 Lat Bua Luang 48.55 43.00 37.15 
33 Maha Rat 48.95 44.23 37.31 
34 Nakhon Luang 48.85 44.56 37.55 
35 Phachi 48.59 44.54 37.48 
36 Phak Hai 48.61 43.75 37.29 
37 Phra Nakhon Si Ayutthaya 49.35 44.37 37.67 
38 Sena 48.63 43.39 37.35 
39 Tha Ruea 49.08 44.68 37.57 
40 Uthai 48.99 44.43 37.52 
41 Wang Noi 49.00 44.30 37.38 
42 Ban Mo 49.43 44.79 38.00 
43 Chaloem Phra Kiat 51.32 45.73 39.00 
44 Don Phut 48.77 44.51 37.38 
45 Kaeng Khoi 49.12 44.97 38.48 
46 Muak Lek 48.55 44.09 37.63 
47 Mueang Saraburi 50.17 44.68 37.54 
48 Nong Don 49.07 44.58 37.79 
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Table 7.8 (Continued). 
No. District March April May 
49 Nong Khae 49.25 44.32 37.34 
50 Nong Saeng 48.59 44.57 37.51 
51 Phra Phutthabat 49.77 45.74 38.44 
52 Sao Hai 49.98 44.97 38.18 
53 Wang Muang 48.60 44.22 37.78 
54 Wihan Daeng 48.48 44.48 37.39 
55 Bang Rachan 48.63 43.83 37.14 
56 In Buri 48.50 43.83 37.13 
57 Khai Bang Rachan 48.59 43.83 37.14 
58 Mueang Sing Buri 48.56 43.86 37.14 
59 Phrom Buri 48.52 43.94 37.14 
60 Tha Chang 48.45 43.89 37.14 

 
Table 7.9 The predictive value of monthly PM10 concentration in the summer season 
at the centroid of each district from the new dataset (March 2020 to May 2021). 

No. District March April May 
1 Chaiyo 57.06 42.93 34.46 
2 Mueang Ang Thong 57.08 42.88 34.43 
3 Pa Mok 57.10 42.85 34.46 
4 Pho Thong 57.02 42.67 34.47 
5 Samko 56.92 42.57 34.43 
6 Sawaeng Ha 56.99 42.70 34.47 
7 Wiset Chai Chan 56.97 42.62 34.42 
8 Ban Mi 57.18 42.99 34.42 
9 Chai Badan 56.98 42.54 34.44 
10 Khok Charoen 57.02 42.62 34.46 
11 Khok Samrong 57.14 43.06 34.45 
12 Lam Sonthi 56.88 42.43 34.45 
13 Mueang Lop Buri 57.27 43.50 34.45 
14 Nong Muang 57.04 42.74 34.47 
15 Phatthana Nikhom 57.07 43.06 34.46 
16 Sa Bot 57.02 42.71 34.44 
17 Tha Luang 56.92 42.52 34.44 
18 Tha Wung 57.10 43.00 34.46 
19 Khlong Luang 56.88 42.94 34.44 
20 Lam Luk Ka 56.83 43.39 34.43 
21 Lat Lum Kaeo 56.74 41.83 34.41 
22 Mueang Pathum Thani 56.77 42.34 34.40 
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Table 7.9 (Continued). 
No. District March April May 
23 Nong Suea 57.05 43.34 34.46 
24 Sam Khok 56.93 42.04 34.42 
25 Thanyaburi 56.84 43.05 34.44 
26 Ban Phraek 57.09 43.09 34.44 
27 Bang Ban 56.95 42.49 34.44 
28 Bang Pa-In 56.97 42.92 34.45 
29 Bang Pahan 57.06 43.13 34.48 
30 Bang Sai 56.90 42.22 34.45 
31 Bang Sai 56.87 42.17 34.47 
32 Lat Bua Luang 56.84 41.90 34.43 
33 Maha Rat 57.09 43.08 34.46 
34 Nakhon Luang 57.12 43.33 34.46 
35 Phachi 57.16 43.46 34.44 
36 Phak Hai 56.91 42.47 34.43 
37 Phra Nakhon Si Ayutthaya 57.08 43.11 34.45 
38 Sena 56.88 42.21 34.44 
39 Tha Ruea 57.22 43.49 34.48 
40 Uthai 57.07 43.36 34.47 
41 Wang Noi 57.06 43.46 34.47 
42 Ban Mo 57.23 43.64 34.48 
43 Chaloem Phra Kiat 57.71 44.13 34.55 
44 Don Phut 57.15 43.28 34.47 
45 Kaeng Khoi 57.12 43.74 34.49 
46 Muak Lek 56.93 42.88 34.44 
47 Mueang Saraburi 57.41 43.78 34.48 
48 Nong Don 57.25 43.60 34.47 
49 Nong Khae 57.17 43.52 34.43 
50 Nong Saeng 57.28 43.60 34.48 
51 Phra Phutthabat 57.42 43.96 34.50 
52 Sao Hai 57.34 43.93 34.51 
53 Wang Muang 56.95 42.95 34.46 
54 Wihan Daeng 57.18 43.52 34.43 
55 Bang Rachan 57.03 42.70 34.45 
56 In Buri 57.13 42.85 34.47 
57 Khai Bang Rachan 57.05 42.75 34.45 
58 Mueang Sing Buri 57.09 42.83 34.42 
59 Phrom Buri 57.07 42.85 34.43 
60 Tha Chang 57.06 42.80 34.43 
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Table 7.10 The correlation coefficient value for PM10 concentration between the 
existing and new datasets in the summer season. 

Month Number of samples Correlation coefficient Sig. 
March 60 0.75** 0.00 
April 60 0.94** 0.00 
May 60 0.76** 0.00 

Average 0.82 0.00 
**Correlation is significant at the 0.01 level (2-tailed). 

 

According to Table 7.10, the average correlation coefficient value of PM10 
concentration in the summer season (March to May) is 0.82. This result indicates that 
the predictive PM10 concentration in the summer in rural landscapes from two 
datasets using a suitable model (GWR) provides a very strong positive correlation. 
 
Summary 

As a reported result in section 7.2.1, it can be concluded that the predicted 
PM10 concentration in two seasons in the rural landscape using the GWR model can 
be accepted in the current study. The correlation coefficient values for PM10 
concentration in the winter season between the existing dataset and the new dataset 
vary from 0.81 to 0.91, with an average value of 0.87. Similarly, the correlation 
coefficient values between the existing dataset and the new dataset in the summer 
season vary from 0.75 to 0.94, with an average value of 0.82. These values show a very 
strong positive relationship, as suggested by Chowdhury, Debsarkar, and Chakrabarty 
(2015). Additionally, these findings imply that the identified monthly significant factors 
on PM10 concentration in two seasons from the existing dataset can be managed to 
mitigate PM10 concentration in rural landscapes. For example, fire radiative power due 
to burning activity as a significant factor on PM10 concentration in February should be 
reduced by setting up a schedule for agricultural debris burnt. 
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7.2.2 Validation of PM2.5 concentration prediction 
Like PM10 concentration prediction, the predictive value of monthly 

PM2.5 concentration in the winter season at the centroid of each district from the 
existing dataset (October 2019 to February 2020) and the new dataset (October 2020 
to February 2021) was extracted using the GWR model, as a summary in Table 7.11 
and Table 7.12. The result of spatial correlation analysis between the predictive value 
of monthly PM2.5 concentration in the winter season from the existing dataset and 
the new dataset is summarized in Table 7.13.  
 
Table 7.11 The predictive value of monthly PM2.5 concentration in the winter season 
at the centroid of each district from the existing dataset (October 2019 to February 
2020). 

No District October November December January February 
1 Bang Bon 28.38 35.24 40.00 43.53 44.09 
2 Bang Kapi 26.40 33.54 39.53 43.67 44.13 
3 Bang Khae 28.04 35.22 40.11 43.57 44.22 
4 Bang Khen 27.30 33.77 39.90 43.69 44.29 
5 Bang Kho Laem 27.63 34.56 39.87 43.59 44.06 
6 Bang Khun Thian 27.81 34.72 39.76 43.36 44.01 
7 Bang Na 26.41 33.58 39.31 43.62 43.98 
8 Bang Phlat 27.49 34.47 40.17 43.72 44.23 
9 Bang Rak 27.77 34.52 39.85 43.71 44.14 
10 Bang Sue 27.06 34.55 40.13 43.57 44.22 
11 Bangkok Noi 27.92 34.65 40.14 43.74 44.26 
12 Bangkok Yai 27.74 34.66 40.09 43.63 44.20 
13 Bueng Kum 26.55 33.54 39.59 43.70 44.21 
14 Chatuchak 26.81 34.10 40.01 43.69 44.21 
15 Chom Thong 27.94 34.85 39.98 43.53 44.08 
16 Din Daeng 27.36 33.96 39.81 43.50 44.09 
17 Don Mueang 27.19 34.12 40.04 43.81 44.37 
18 Dusit 27.75 34.21 40.06 43.58 44.17 
19 Huai Khwang 26.82 33.74 39.61 43.52 44.08 
20 Khan Na Yao 26.85 33.45 39.51 43.76 44.22 
21 Khlong Sam Wa 26.43 33.27 39.32 43.76 44.24 
22 Khlong San 27.68 34.57 39.97 43.67 44.12 
23 Khlong Toei 26.97 34.08 39.51 43.44 44.00 
24 Lak Si 27.09 34.21 40.08 43.82 44.30 
25 Lat Krabang 25.60 32.83 39.03 43.77 44.05 
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Table 7.11 (Continued). 
No District October November December January February 
26 Lat Phrao 26.88 33.76 39.82 43.53 44.21 
27 Min Buri 26.22 32.90 39.21 43.81 44.15 
28 Nong Chok 25.97 32.74 38.98 43.82 44.15 
29 Nong Khaem 28.09 35.32 40.13 43.53 44.22 
30 Pathum Wan 27.72 34.07 39.74 43.62 44.11 
31 Phasi Charoen 28.17 34.79 40.11 43.61 44.18 
32 Phaya Thai 27.27 34.11 39.94 43.60 44.13 
33 Phra Khanong 26.36 33.71 39.34 43.55 44.00 
34 Phra Nakhon 27.84 34.41 40.09 43.77 44.20 
35 Pom Prap Sattru Phai 27.78 34.17 40.01 43.73 44.19 
36 Prawet 26.04 33.15 39.24 43.53 44.03 
37 Rat Burana 27.84 34.53 39.83 43.53 44.05 
38 Ratchathewi 27.76 33.98 39.81 43.60 44.11 
39 Sai Mai 26.69 33.66 39.77 43.73 44.32 
40 Samphanthawong 27.87 34.62 39.98 43.67 44.15 
41 Saphan Sung 26.01 33.19 39.33 43.66 44.10 
42 Sathon 27.49 34.49 39.80 43.66 44.05 
43 Suan Luang 26.11 33.60 39.38 43.53 44.05 
44 Taling Chan 27.88 34.77 40.13 43.69 44.30 
45 Thawi Watthana 27.66 34.99 40.23 43.58 44.31 
46 Thon Buri 27.91 34.61 40.01 43.67 44.13 
47 Thung Khru 27.42 34.47 39.66 43.51 44.00 
48 Vadhana 27.09 33.95 39.46 43.63 44.05 
49 Wang Thonglang 26.73 33.63 39.71 43.58 44.12 
50 Yan Nawa 27.10 34.32 39.73 43.63 44.01 
51 Bang Len 26.73 34.34 40.49 43.65 44.25 
52 Don Tum 26.86 34.59 40.51 43.62 44.23 
53 Kamphaeng Saen 26.87 34.48 40.52 43.72 44.24 
54 Mueang Nakhon Pathom 26.91 35.31 40.52 43.78 44.21 
55 Nakhon Chai Si 27.19 35.16 40.42 43.71 44.20 
56 Phutthamonthon 27.51 35.17 40.31 43.58 44.23 
57 Sam Phran 27.55 35.41 40.28 43.60 44.21 
58 Bang Bua Thong 27.48 34.65 40.37 43.83 44.28 
59 Bang Kruai 27.51 34.88 40.22 43.68 44.29 
60 Bang Yai 27.62 34.93 40.30 43.63 44.24 
61 Mueang Nonthaburi 27.22 34.78 40.24 43.69 44.29 
62 Pak Kret 27.28 34.61 40.19 43.76 44.28 
63 Sai Noi 26.87 34.61 40.45 43.72 44.25 
64 Bang Bo 25.33 32.05 38.76 43.63 43.98 
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Table 7.11 (Continued). 
No District October November December January February 
65 Bang Phli 26.25 32.84 39.03 43.51 43.99 
66 Bang Sao Thong 25.59 32.43 38.88 43.65 44.03 
67 Mueang Samut Prakan 26.42 33.25 39.19 43.40 43.97 
68 Phra Pradaeng 27.05 34.14 39.52 43.44 43.99 
69 Phra Samut Chedi 27.09 34.07 39.46 43.27 43.97 
70 Ban Phaeo 27.53 35.77 40.20 43.70 44.10 
71 Krathum Baen 27.89 35.45 40.23 43.66 44.12 
72 Mueang Samut Sakhon 27.83 35.63 40.02 43.57 44.01 

 

Table 7.12 The predictive value of monthly PM2.5 concentration in the winter season 
at the centroid of each district from the new dataset (October 2020 to February 2021). 

No. District October November December January February 
1 Bang Bon 21.93 31.18 38.92 44.85 45.04 
2 Bang Kapi 19.80 27.81 34.05 44.65 45.67 
3 Bang Khae 21.39 31.17 39.07 44.47 45.54 
4 Bang Khen 20.04 27.79 34.16 44.97 45.82 
5 Bang Kho Laem 21.13 29.37 36.10 44.50 45.44 
6 Bang Khun Thian 20.44 30.17 37.45 44.44 45.30 
7 Bang Na 20.43 28.38 34.52 45.00 44.73 
8 Bang Phlat 20.53 29.59 36.07 45.28 45.58 
9 Bang Rak 21.44 29.26 35.78 44.97 45.41 
10 Bang Sue 20.07 28.93 35.13 44.70 45.55 
11 Bangkok Noi 20.92 29.73 37.25 44.91 45.60 
12 Bangkok Yai 21.06 29.58 37.15 45.08 45.34 
13 Bueng Kum 19.42 27.83 34.02 44.70 45.49 
14 Chatuchak 19.82 27.98 34.54 45.05 45.41 
15 Chom Thong 21.19 30.12 37.60 44.78 45.40 
16 Din Daeng 20.33 28.21 34.84 44.54 45.59 
17 Don Mueang 19.53 28.07 34.21 45.41 46.55 
18 Dusit 20.47 29.38 35.69 44.64 45.91 
19 Huai Khwang 20.18 28.27 34.61 44.53 45.15 
20 Khan Na Yao 19.32 27.79 33.91 44.87 45.24 
21 Khlong Sam Wa 19.36 27.47 33.80 45.17 45.81 
22 Khlong San 21.14 29.37 36.35 44.69 45.55 
23 Khlong Toei 20.52 28.34 34.98 44.75 45.31 
24 Lak Si 19.47 28.08 34.47 45.49 46.08 
25 Lat Krabang 19.44 27.14 32.78 44.98 45.28 
26 Lat Phrao 19.43 27.83 34.17 44.46 45.76 
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Table 7.12 (Continued). 
No. District October November December January February 
27 Min Buri 19.45 27.24 33.40 45.43 45.59 
28 Nong Chok 19.73 27.33 33.51 45.51 45.61 
29 Nong Khaem 21.33 31.20 39.33 44.44 45.53 
30 Pathum Wan 21.17 28.82 35.23 44.99 45.33 
31 Phasi Charoen 21.28 30.00 38.10 44.85 45.69 
32 Phaya Thai 20.39 28.32 35.11 44.56 45.72 
33 Phra Khanong 20.28 28.28 34.54 44.60 45.09 
34 Phra Nakhon 20.85 29.45 36.27 44.82 45.54 
35 Pom Prap Sattru Phai 21.06 29.35 35.63 45.02 45.42 
36 Prawet 19.98 27.72 33.83 44.66 45.36 
37 Rat Burana 21.14 29.52 36.50 44.76 45.39 
38 Ratchathewi 20.80 28.80 35.41 44.89 45.80 
39 Sai Mai 19.26 27.98 34.12 45.17 46.05 
40 Samphanthawong 21.13 29.35 36.42 44.92 45.86 
41 Saphan Sung 19.49 27.40 33.66 44.80 45.58 
42 Sathon 21.28 29.03 35.36 44.75 45.53 
43 Suan Luang 20.05 27.93 34.20 44.82 45.32 
44 Taling Chan 20.85 30.23 37.80 45.10 46.09 
45 Thawi Watthana 20.58 30.62 38.29 44.69 46.37 
46 Thon Buri 21.21 29.53 36.85 45.05 45.61 
47 Thung Khru 20.73 29.68 36.69 44.83 45.39 
48 Vadhana 20.86 28.20 34.71 44.72 45.44 
49 Wang Thonglang 19.89 28.16 34.34 44.73 45.67 
50 Yan Nawa 21.20 28.75 35.08 44.61 45.34 
51 Bang Len 19.35 29.05 35.20 44.87 45.61 
52 Don Tum 19.44 29.35 35.41 44.58 45.51 
53 Kamphaeng Saen 20.25 29.00 35.08 44.73 45.52 
54 Mueang Nakhon Pathom 19.83 30.29 36.73 45.20 45.32 
55 Nakhon Chai Si 20.26 30.32 37.55 44.87 45.56 
56 Phutthamonthon 20.55 30.41 37.44 44.55 45.63 
57 Sam Phran 20.63 31.03 38.44 44.96 45.57 
58 Bang Bua Thong 20.32 29.51 36.08 45.57 45.75 
59 Bang Kruai 20.15 29.88 37.41 44.73 45.91 
60 Bang Yai 19.65 30.05 37.11 44.83 45.60 
61 Mueang Nonthaburi 19.70 28.81 35.84 44.90 45.83 
62 Pak Kret 19.46 28.32 34.76 45.14 45.59 
63 Sai Noi 19.57 29.53 36.01 45.03 45.43 
64 Bang Bo 19.18 27.01 32.98 44.91 45.08 
65 Bang Phli 20.35 27.69 33.19 44.57 44.93 
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Table 7.12 (Continued). 
No. District October November December January February 
66 Bang Sao Thong 19.87 26.90 32.57 44.73 45.48 
67 Mueang Samut Prakan 20.06 28.47 34.67 44.59 44.87 
68 Phra Pradaeng 20.97 28.78 35.57 44.62 44.88 
69 Phra Samut Chedi 20.54 29.28 36.24 44.13 44.61 
70 Ban Phaeo 19.80 30.69 37.57 44.80 45.31 
71 Krathum Baen 20.82 31.05 38.71 45.12 45.46 
72 Mueang Samut Sakhon 20.11 30.81 38.82 44.90 45.36 

 

Table 7.13 The correlation coefficient value for PM2.5 concentration in the winter 
between the existing and new datasets. 

Month Number of samples Correlation coefficient Sig. 
October 72 0.71** 0.00 

November 72 0.92** 0.00 
December 72 0.67** 0.00 
January 72 0.78** 0.00 
February 72 0.76** 0.00 

Average 0.77 0.00 
**Correlation is significant at the 0.01 level (2-tailed). 

 
According to Table 7.13, the average correlation coefficient value of 

PM2.5 concentration in the winter season (October to February) is 0.77. This result 
indicates that the predictive PM2.5 concentration in the winter season in the urban 
landscape of the two datasets provides a strong positive correlation. 

Meanwhile, the predictive value of monthly PM2.5 concentration in the 
summer season at the centroid of each district from the existing dataset (March 2019 
to May 2020) and the new dataset (March 2020 to May 2021) was extracted as a 
summary in Table 7.14 and Table 7.15. The result of spatial correlation analysis 
between the predictive value of monthly PM2.5 concentration in the summer season 
from the existing dataset and the new dataset is summarized in Table 7.16. 
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Table 7.14 The predictive value of monthly PM2.5 concentration in the summer 
season at the centroid of each district from the existing dataset (March 2019 to May 
2020). 

No. District March April May 
1 Bang Bon 23.31 21.71 16.69 
2 Bang Kapi 23.51 22.31 16.77 
3 Bang Khae 23.25 21.72 16.73 
4 Bang Khen 23.73 22.25 16.83 
5 Bang Kho Laem 23.13 21.71 16.69 
6 Bang Khun Thian 23.29 21.83 16.71 
7 Bang Na 23.20 21.94 16.71 
8 Bang Phlat 22.90 21.69 16.77 
9 Bang Rak 23.38 21.64 16.75 
10 Bang Sue 23.09 21.75 16.78 
11 Bangkok Noi 23.09 21.80 16.77 
12 Bangkok Yai 23.26 21.73 16.73 
13 Bueng Kum 23.57 22.21 16.80 
14 Chatuchak 23.26 21.84 16.81 
15 Chom Thong 23.08 21.69 16.70 
16 Din Daeng 22.86 21.83 16.77 
17 Don Mueang 24.04 22.43 16.85 
18 Dusit 22.83 21.90 16.78 
19 Huai Khwang 23.05 21.82 16.77 
20 Khan Na Yao 23.62 22.42 16.80 
21 Khlong Sam Wa 23.67 22.46 16.80 
22 Khlong San 23.32 21.70 16.71 
23 Khlong Toei 23.23 21.62 16.71 
24 Lak Si 23.72 22.23 16.83 
25 Lat Krabang 23.60 22.17 16.76 
26 Lat Phrao 23.48 22.26 16.80 
27 Min Buri 23.58 22.37 16.77 
28 Nong Chok 23.67 22.17 16.77 
29 Nong Khaem 23.33 21.73 16.73 
30 Pathum Wan 23.22 21.61 16.77 
31 Phasi Charoen 23.17 21.74 16.74 
32 Phaya Thai 22.82 21.82 16.78 
33 Phra Khanong 23.22 21.96 16.73 
34 Phra Nakhon 23.16 21.79 16.78 
35 Pom Prap Sattru Phai 23.21 21.72 16.72 
36 Prawet 23.35 22.20 16.74 
37 Rat Burana 22.95 21.72 16.69 
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Table 7.14 (Continued). 
No. District March April May 
38 Ratchathewi 23.01 21.74 16.76 
39 Sai Mai 23.88 22.36 16.84 
40 Samphanthawong 23.33 21.71 16.74 
41 Saphan Sung 23.51 22.28 16.77 
42 Sathon 23.35 21.63 16.71 
43 Suan Luang 23.34 22.03 16.74 
44 Taling Chan 23.15 21.77 16.78 
45 Thawi Watthana 23.22 21.72 16.76 
46 Thon Buri 23.22 21.70 16.72 
47 Thung Khru 23.05 21.80 16.70 
48 Vadhana 23.20 21.74 16.74 
49 Wang Thonglang 23.34 22.02 16.79 
50 Yan Nawa 23.20 21.68 16.70 
51 Bang Len 23.55 21.96 16.77 
52 Don Tum 23.56 21.96 16.76 
53 Kamphaeng Saen 23.57 22.04 16.77 
54 Mueang Nakhon Pathom 23.56 21.93 16.75 
55 Nakhon Chai Si 23.52 21.86 16.75 
56 Phutthamonthon 23.40 21.80 16.76 
57 Sam Phran 23.44 21.81 16.74 
58 Bang Bua Thong 23.45 21.88 16.78 
59 Bang Kruai 23.14 21.76 16.78 
60 Bang Yai 23.31 21.77 16.77 
61 Mueang Nonthaburi 23.21 21.87 16.81 
62 Pak Kret 23.57 22.01 16.80 
63 Sai Noi 23.52 21.85 16.77 
64 Bang Bo 23.56 21.98 16.73 
65 Bang Phli 23.54 22.25 16.71 
66 Bang Sao Thong 23.57 22.30 16.75 
67 Mueang Samut Prakan 23.47 22.03 16.70 
68 Phra Pradaeng 23.03 21.82 16.70 
69 Phra Samut Chedi 23.33 21.94 16.70 
70 Ban Phaeo 23.47 21.86 16.74 
71 Krathum Baen 23.39 21.78 16.73 
72 Mueang Samut Sakhon 23.39 21.86 16.73 
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Table 7.15 The predictive value of monthly PM2.5 concentration in the summer 
season at the centroid of each district from the new dataset (March 2020 to May 2021). 

No. District March April May 
1 Bang Bon 28.47 22.02 16.11 
2 Bang Kapi 28.67 22.27 16.16 
3 Bang Khae 28.50 22.00 16.13 
4 Bang Khen 28.81 22.17 16.19 
5 Bang Kho Laem 28.36 21.93 16.09 
6 Bang Khun Thian 28.50 22.13 16.11 
7 Bang Na 28.52 22.12 16.12 
8 Bang Phlat 28.54 22.02 16.13 
9 Bang Rak 28.41 22.05 16.11 
10 Bang Sue 28.69 22.09 16.14 
11 Bangkok Noi 28.51 22.18 16.13 
12 Bangkok Yai 28.47 22.03 16.10 
13 Bueng Kum 28.73 22.23 16.17 
14 Chatuchak 28.71 22.19 16.16 
15 Chom Thong 28.39 22.01 16.10 
16 Din Daeng 28.59 22.15 16.13 
17 Don Mueang 28.87 22.26 16.20 
18 Dusit 28.57 22.13 16.14 
19 Huai Khwang 28.60 22.06 16.14 
20 Khan Na Yao 28.73 22.29 16.18 
21 Khlong Sam Wa 28.81 22.36 16.18 
22 Khlong San 28.39 22.02 16.10 
23 Khlong Toei 28.48 21.97 16.10 
24 Lak Si 28.81 22.13 16.18 
25 Lat Krabang 28.67 22.18 16.17 
26 Lat Phrao 28.75 22.23 16.17 
27 Min Buri 28.75 22.21 16.17 
28 Nong Chok 28.80 22.15 16.18 
29 Nong Khaem 28.50 22.08 16.13 
30 Pathum Wan 28.46 21.90 16.12 
31 Phasi Charoen 28.46 21.99 16.12 
32 Phaya Thai 28.58 22.10 16.14 
33 Phra Khanong 28.53 22.17 16.12 
34 Phra Nakhon 28.47 22.07 16.13 
35 Pom Prap Sattru Phai 28.47 21.93 16.10 
36 Prawet 28.61 22.22 16.15 
37 Rat Burana 28.36 21.99 16.09 
38 Ratchathewi 28.55 22.06 16.13 
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Table 7.15 (Continued). 
No. District March April May 
39 Sai Mai 28.84 22.23 16.19 
40 Samphanthawong 28.43 22.10 16.11 
41 Saphan Sung 28.66 22.25 16.17 
42 Sathon 28.41 22.01 16.09 
43 Suan Luang 28.58 22.11 16.14 
44 Taling Chan 28.57 22.10 16.14 
45 Thawi Watthana 28.60 22.10 16.14 
46 Thon Buri 28.40 22.02 16.10 
47 Thung Khru 28.48 22.07 16.11 
48 Vadhana 28.54 22.02 16.12 
49 Wang Thonglang 28.66 22.22 16.15 
50 Yan Nawa 28.39 22.02 16.10 
51 Bang Len 28.71 22.09 16.17 
52 Don Tum 28.70 22.03 16.16 
53 Kamphaeng Saen 28.70 22.20 16.15 
54 Mueang Nakhon Pathom 28.66 22.09 16.13 
55 Nakhon Chai Si 28.66 21.96 16.13 
56 Phutthamonthon 28.65 21.95 16.15 
57 Sam Phran 28.59 22.03 16.13 
58 Bang Bua Thong 28.72 22.04 16.16 
59 Bang Kruai 28.64 22.11 16.15 
60 Bang Yai 28.70 22.00 16.15 
61 Mueang Nonthaburi 28.70 22.11 16.16 
62 Pak Kret 28.81 22.08 16.17 
63 Sai Noi 28.72 22.09 16.16 
64 Bang Bo 28.64 22.09 16.15 
65 Bang Phli 28.62 22.12 16.15 
66 Bang Sao Thong 28.64 22.19 16.17 
67 Mueang Samut Prakan 28.52 22.04 16.12 
68 Phra Pradaeng 28.43 22.05 16.10 
69 Phra Samut Chedi 28.49 22.06 16.11 
70 Ban Phaeo 28.56 22.00 16.12 
71 Krathum Baen 28.54 22.09 16.13 
72 Mueang Samut Sakhon 28.54 22.19 16.12 
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Table 7.16 The correlation coefficient value for PM2.5 concentration between the 
existing and new datasets in the summer season. 

Month Number of samples Correlation coefficient Sig. 
March 72 0.67** 0.00 
April 72 0.81** 0.00 
May 72 0.84** 0.00 

Average 0.77 0.00 
**Correlation is significant at the 0.01 level (2-tailed). 

 
According to Table 7.16, the average correlation coefficient value of 

PM2.5 concentration in the summer season (March to May) is 0.77. This result indicates 
that the predictive PM2.5 concentration in the summer in the urban landscape from 
the two datasets provides a strong positive correlation. 
 
Summary 

As a reported result above in section 7.3.2, it can be concluded that the 
predicted PM2.5 concentration in two seasons urban landscape using the GWR model 
can be accepted in the current study as the expected correlation coefficient value 
should be equal to or more than 0.5. The correlation coefficient values between the 
existing dataset and the new dataset in the winter season vary from 0.67 to 0.92, with 
an average value of 0.77. Similarly, the correlation coefficient values between the 
existing dataset and the new dataset in the summer season vary from 0.67 to 0.84, 
with an average value of 0.77. These values show a very strong positive relationship, 
as suggested by Chowdhury, Debsarkar, and Chakrabarty (2015).  

Additionally, these findings imply that the identified monthly significant factors 
on PM2.5 concentration in two seasons from the existing dataset can be managed to 
mitigate PM2.5 concentration in the urban landscape. For example, brightness 
temperature, fire radiative power, and fire hotspots as significant factors on PM2.5 
concentration in October should be reduced burning activities in the agricultural area, 
particularly in Nakhon Pathom province.  
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7.3 Specific characteristics of predictive spatiotemporal PM 
concentration 

Two essential characteristics of predictive spatiotemporal PM concentration by 
the GWR model, as a suitable model, were summarized in this section. Firstly, the 
relationship between PM10 and PM2.5 concentration and significant monthly factors 
was described and discussed based on spatial correlation analysis (pixel by pixel) using 
the Spatial Modeler module under ERDAS Imagine software. Secondly, the relationship 
between PM10 and PM2.5 concentration in winter and summer seasons and land use 
data in 2019 by LDD was described and discussed based on overlay analysis under 
ESRI ArcMap. 

7.3.1 Relationship between monthly PM10 concentration and their factors 
7.3.1.1 October 2019 in the winter season  

The result of spatial correlation analysis between PM10 
concentration in October 2019 and their significant factors: temperature, wind speed, 
and visibility (see detail in Table 5.30) is reported in Table 7.17. 
 
Table 7.17 Pearson correlation matrix among significant factors and PM10 
concentration in October 2019. 

Variables PM10 Temperature Wind speed Visibility 
PM10 1.00 0.11 0.16 -0.55 

Temperature 0.11 1.00 -0.42 -0.06 
Wind speed 0.16 -0.42 1.00 0.22 

Visibility -0.55 -0.06 0.22 1.00 

 
From Table 7.17, PM10 concentration in October 2019 shows a 

higher relationship with visibility than temperature and wind speed, but it depicts a 
negative direction. As a result, if PM10 concentration increases, visibility tends to 
decrease due to the effect of PM concentration. This finding shows a consistent linear 
relationship, as mentioned in Table 3.2.  

In contrast, temperature and wind speed positively correlate with 
PM10 concentration. As a result, if temperature and wind speed, as an influencer on 
PM concentration, increase, PM10 concentration increases. This finding does not show 
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a consistent linear relationship, as stated in Table 3.2. In fact, if temperature and wind 
speed increase, PM concentration will decrease. The scatterplot between PM10 
concentration and temperature or wind speed is displayed in Figure 7.1. As a result, it 
indicates that the relationship between PM10 concentration and temperature or wind 
speed in October 2019 is non-linear form. 
 

  
(a) TEMP (b) WS 

Figure 7.1 Scatterplot between PM10 concentration in October 2019 and (a) 
temperature or (b) wind speed. 
 

Moreover, the spatial distribution map of PM10 concentration and 
significant factors (temperature, wind speed and visibility) is displayed in Figure 7.2. The 
spatial distribution map of PM10 concentration in October 2019 shows that high PM10 
concentration occur in the central part of the study area, particularly in Mueang Lop 
Buri, Phatthana Nikhom District - Lob Buri province and Chaloem Phra Kiat, Phra 
Phutthabat District– Saraburi province. At the same time, the low PM10 concentration 
occurs in the south of the study area, particularly in Mueang Pathum Thani and Lat 
Lum Kaeo District, Pathum Thani province. 
  

 



324 

(a) (b) 

(c) (d) 
Figure 7.2 Spatial distribution map of (a) PM10 concentration (b) temperature (c) wind 
speed and (d) visibility. 
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7.3.1.2 November 2019 in the winter season  
The result of spatial correlation analysis between PM10 

concentration in November 2019 and their significant factors: wind speed, visibility, and 
MODIS AOD (see detail in Table 5.31) is reported in Table 7.18. 
 
Table 7.18 Pearson correlation matrix among significant factors and PM10 
concentration in November 2019. 

Variables PM10 Wind speed Visibility MODIS AOD 
PM10 1.00 0.39 -0.31 -0.21 

Wind speed 0.39 1.00 0.44 -0.12 
Visibility -0.31 0.44 1.00 0.14 

MODIS AOD -0.21 -0.12 0.14 1.00 

 
From Table 7.18, PM10 concentration in November 2019 shows a 

positive relationship with wind speed, while it negatively shows a relationship with 
visibility and MODIS AOD. As a result, if PM10 concentration increases, visibility and 
MODIS AOD, as the effect of PM10 concentration, tend to decrease. As expected, this 
finding shows a consistent linear relationship (Table 3.2). In opposite, when wind speed 
increases, PM10 concentration also increase. This finding does not show a consistent 
linear relationship as expected in Table 3.2. Basically, wind speed, influencers on PM 
concentration, increase, and PM10 concentration should decrease. The scatterplot 
between PM10 concentration and wind speed is displayed in Figure 7.3. As a result, 
the relationship between PM10 concentration and wind speed in November 2019 
shows a non-linear form. 
 

 
Figure 7.3 Scatterplot between PM10 concentration and wind speed in November 
2019. 
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Moreover, the spatial distribution map of PM10 concentration and 
significant factors (wind speed, visibility, and MODIS AOD) are displayed in Figure 7.4. 
The spatial distribution map of PM10 concentration in November 2019 shows the high 
PM10 concentration occurs in the central part of the study area, particularly Chaloem 
Phra Kiat, Phra Phutthabat District– Saraburi province. At the same time, the low PM10 
concentration occurs in the south of the study area, particularly in Sam Khok District - 
Pathum Thani province. The trend of the spatial distribution in November 2019 is like 
October 2019. 
 

(a) (b) 
Figure 7.4 Spatial distribution map of (a) PM10 concentration (b) wind speed (c) 
visibility and (d) MODIS AOD.  
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(c) (d) 
Figure 7.4 (Continued). 
 

7.3.1.3 December 2019 in the winter season  
The result of spatial correlation analysis between PM10 

concentration in December 2019 and their significant factors: temperature, wind speed, 
and visibility (see detail in Table 5.32) is reported in Table7.19. 
 
Table 7.19 Pearson correlation matrix among significant factors and PM10 
concentration in December 2019. 

Variables PM10 Temperature Wind speed Visibility 
PM10 1.00 0.32 0.38 -0.21 

Temperature 0.32 1.00 -0.30 -0.47 
Wind speed 0.38 -0.30 1.00 0.49 

Visibility -0.21 -0.47 0.49 1.00 

 
As of October 2019, PM10 concentration in December 2019 shows 

a positive relationship with wind speed and temperature. In contrast, it shows a 
negative relationship with visibility. As a result, if PM10 concentration increases, 
visibility, as the effect of PM10 concentration, tends to decrease. This finding shows 
expected results (Table 3.2). On the contrary, when temperature and wind speed 
increase, the PM10 concentration also increase. This finding does not show a consistent 
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linear relationship as expected in Table 3.2. Basically, if temperature and wind speed, 
as influencers on PM concentration, increase, PM10 should decrease. The scatterplots 
between PM10 concentration and temperature or wind speed are displayed in Figure 
7.5. As a result, the relationship between PM10 concentration and temperature or wind 
speed in December 2019 is non-linear form. 

 

  
(a) (b) 

Figure 7.5 Scatterplot between PM10 concentration and (a) temperature or (b) wind 
speed. 
 

Moreover, the spatial distribution map of PM10 concentration and 
significant factors (temperature, wind speed, and visibility) are displayed in Figure 7.6. 
The spatial distribution map of PM10 concentration in December 2019 shows the high 
PM10 concentration occurs in the central part of the study area, particularly Chaloem 
Phra Kiat, Phra Phutthabat District– Saraburi province. At the same time, the low PM10 
concentration occurs in the north and south of the study area, particularly in Tha Luang 
District - Lop Buri province and Mueang Pathum Thani District, Pathum Thani province. 
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(a) (b) 

(c) (d) 
Figure 7.6 Spatial distribution map of (a) PM10 concentration (b) temperature (c) wind 
speed and (d) visibility.  
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7.3.1.4 January 2020 in the winter season  
The result of spatial correlation analysis between PM10 

concentration in January 2020 and their significant factors: temperature and MODIS 
AOD (see detail in Table 5.33) is reported in Table 7.20. 

 
Table 7.20 Pearson correlation matrix among significant factors and PM10 
concentration in January 2020. 

Variables PM10 Temperature MODIS AOD 
PM10 1.00 0.46 -0.12 

Temperature 0.46 1.00 0.07 
MODIS AOD -0.12 0.07 1.00 

 
From Table 7.20, PM10 concentration in January 2020 shows a 

negative relationship with MODIS AOD but a positive relationship with temperature. As 
a result, if PM10 concentration increase, MODIS AOD, as the effect of PM10 
concentration, tends to decrease. This finding shows a consistent linear relationship, 
as mentioned in Table 3.2. In contrast, when temperature increases, PM10 
concentration trends to increase. As expected, this finding does not show a consistent 
linear relationship (Table 3.2) as the influencer on PM concentration, temperature 
increases, and PM10 concentration should decrease. The scatterplot between PM10 
concentration and temperature is displayed in Figure 7.7. As a result, the relationship 
between PM10 concentration and temperature is non-linear form. 

 

 
Figure 7.7 Scatterplots between PM10 concentration in January 2020 and temperature. 
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Moreover, the spatial distribution map of PM10 concentration and 
significant factors (temperature and MODIS AOD) are displayed in Figure 7.8. The spatial 
distribution map of PM10 concentration in January 2019 shows the high PM10 
concentration in the central part of the study area, particularly Chaloem Phra Kiat, Sao 
Hai District– Saraburi province. At the same time, the low PM10 concentration occurs 
in the south of the study area, particularly Lam Sonthi - Lop Buri and Wang Muang 
District - Saraburi province. 
 

(a) (b) 
Figure 7.8 Spatial distribution map of (a) PM10 concentration (b) temperature and (c) 
MODIS AOD.  
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(c)  
Figure 7.8 (Continued). 
 

7.3.1.5 February 2020 in the winter season  
The result of spatial correlation analysis between PM10 

concentration in February 2020 and their significant factors: wind speed and fire 
radiative power (see detail in Table 5.34) is reported in Table7.21. 
 
Table 7.21 Pearson correlation matrix among significant factors and PM10 
concentration in February 2020. 

Variables PM10 Wind speed Fire radiative power 
PM10 1.00 0.39 0.31 

Wind speed 0.39 1.00 0.30 
Fire radiative power 0.31 0.30 1.00 

 
From Table 7.21, PM10 concentration in February 2020 shows a 

positive relationship with wind speed and fire radiative power. As a result, if fire 
radiative power increase, PM10 concentration increase. This finding shows a consistent 
linear relationship, as mentioned in Table 3.2. However, when wind speed increases, 
the PM10 concentration also increase. This finding does not show a consistent linear 
relationship as expected (Table 3.2). Basically, if wind speed, as the influencer on PM 
concentration, increases, PM10 concentration will decrease. The scatterplot between 

 



333 

PM10 concentration and wind speed is displayed in Figure 7.9. As a result, the 
relationship between PM10 concentration and wind speed is a non-linear form. 
 

 
Figure 7.9 Scatterplots between PM10 concentration and wind speed in February 2020. 
 

Moreover, the spatial distribution map of PM10 concentration and 
significant factors (wind speed and fire radiative power) is displayed in Figure 7.10. The 
spatial distribution map of PM10 concentration in February 2020 shows the high PM10 
concentration occurs in the central part of the study area, particularly Chaloem Phra 
Kiat, Phra Phutthabat District– Saraburi province. At the same time, the low PM10 
concentration occurs in the south of the study area, particularly Lat Lum Kaeo District, 
Pathum Thani province and Lat Bua Luang - Phra Nakhon Si Ayutthaya province. 
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(a) (b) 
 

(c)  
Figure 7.10 Spatial distribution map of (a) PM10 concentration, (b) wind speed and (c) 
fire radiative power. 
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7.3.1.6 March 2020 in the summer season  
The result of spatial correlation analysis between PM10 

concentration in March 2020 and their significant factors: temperature, MODIS AOD, 
and factory density (see detail in Table 5.35) are reported in Table7.22. 
 
Table 7.22 Pearson correlation matrix among significant factors and PM10 
concentration in March 2020. 

Variables PM10 Temperature MODIS AOD Factory density 
PM10 1.00 -0.47 0.27 0.17 

Temperature -0.47 1.00 -0.10 -0.12 
MODIS AOD 0.27 -0.10 1.00 0.03 

Factory density 0.17 -0.12 0.03 1.00 

 
From Table 7.22, PM10 concentration in March 2020 shows a 

negative relationship with temperature but a positive relationship with MODIS AOD and 
factory density. As a result, if factory density, as a source of PM concentration, increase, 
PM10 concentration will increase. Likewise, if temperature, as the influencer on PM 
concentration, increase, PM10 concentration should decrease. These findings show a 
consistent linear relationship, as mentioned in Table 3.2. On the contrary, PM10 
concentration increases, MODIS AOD, as the effect of PM10 concentration, will increase. 
This phenomenon does not show a consistent linear relationship (Table 3.2). The 
scatterplot between PM10 concentration and MODIS AOD in March 2020, as shown in 
Figure 7.11, shows a non-linear form. 

 

 
Figure 7.11 Scatterplots between PM10 concentration and MODIS AOD in March 2020. 
 

 



336 

Moreover, the spatial distribution map of PM10 concentration and 
significant factors (temperature, MODIS AOD, and factory density) is displayed in Figure 
7.12. The spatial distribution map of PM10 concentration in March 2020 shows the high 
PM10 concentration in the central part of the study area, particularly Chaloem Phra 
Kiat, Mueang Saraburi District– Saraburi province. At the same time, the low PM10 
concentration occurs in the north of the study area, particularly in Ban Mi and Khok 
Samrong District, Lop Buri province. 
 

(a) (b) 
Figure 7.12 Spatial distribution map of (a) PM10 concentration (b) temperature (c) 
MODIS AOD and (d) factory density. 
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(c) (d) 
Figure 7.12 (Continued). 
 

7.3.1.7 April 2020 in the summer season  
The result of spatial correlation analysis between PM10 

concentration in April 2020 and their significant factors: brightness temperature (see 
detail in Table 5.36) is reported in Table 7.23. 
 
Table 7.23 Pearson correlation matrix among significant factors and PM10 
concentration in April 2020. 

Variables PM10 Brightness temperature 
PM10 1.00 0.46 

Brightness temperature 0.46 1.00 

 
From Table 7.23, it can be observed that PM10 concentration in 

April 2020 shows a positive relationship with brightness temperature. This finding shows 
a consistent linear relationship, as expected. Because if brightness temperature, as the 
source of PM10 concentration, increases, PM10 concentration should increase.  

Moreover, the spatial distribution map of PM10 concentration and 
significant factors (brightness temperature) is displayed in Figure 7.13. The spatial 
distribution map of PM10 concentration in April 2020 shows the high PM10 

 



338 

concentration occurs in the central part of the study area, particularly Phra Phutthabat 
and Chaloem Phra Kiat District– Saraburi province. At the same time, the low PM10 
concentration occurs in the south of the study area, particularly Lat Lum Kaeo and 
Mueang Pathum Thani District - Pathum Thani province. 
 

(a) (b) 
Figure 7.13 Spatial distribution map of (a) PM10 concentration and (b) brightness 
temperature. 
 

7.3.1.8 May 2020 in the summer season  
The result of spatial correlation analysis between PM10 

concentration in May 2020 and their significant factors: visibility (see detail in Table 
5.37) is reported in Table 7.24. 

 
Table 7.24 Pearson correlation matrix among significant factor and PM10 concentration 
in May 2020. 

Variables PM10 Visibility 
PM10 1.00 -0.22 

Visibility -0.22 1.00 
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From Table 7.12, it can be observed that PM10 concentration in 
May 2020 shows a negative relationship with visibility. As a result, if PM10 concentration 
increases, visibility, as the effect of PM10 concentration, tends to decrease. This finding 
indicates a consistent linear relationship (Table 3.2). 

Moreover, the spatial distribution map of PM10 concentration and 
significant factor (visibility) is displayed in Figure 7.14. The spatial distribution map of 
PM10 concentration in May 2020 shows the high PM10 concentration in the central 
part of the study area, particularly Chaloem Phra Kiat and Kaeng Khoi District– Saraburi 
province. At the same time, the low PM10 concentration occurs in the south of the 
study area, particularly in Mueang Pathum Thani and Lat Lum Kaeo District, Pathum 
Thani province. 
 

(a) (b) 
Figure 7.14 Spatial distribution map of (a) PM10 concentration and (b) visibility. 
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Summary 

According to significant factors (Tables 7.17 to 7.24), the relationship between 
PM10 concentration and significant monthly factors is summarized in Table 7.25 again. 
As a result, it can be observed that the relationship between temperature and wind 
speed, as the influencer of PM concentration, is a non-linear form. On the contrary, 
the relationship between visibility and MOD AOD, as the effect of PM concentration, is 
linear. Likewise, the relationship between fire radiative power, factory density, and 
brightness temperature as a source of PM concentration is a linear form. 
 

Table 7.25 Summary of the relationship between PM10 concentration and their 

significant monthly factors. 
Month TEMP WS VIS AOD FRP FD BT 

October No No Yes N. a. N. a. N. a. N. a. 
November N. a. No Yes Yes N. a. N. a. N. a. 
December No No Yes N. a. N. a. N. a. N. a. 
January No N. a. N. a. Yes N. a. N. a. N. a. 
February N. a. No N. a. N. a. Yes N. a. N. a. 
March Yes N. a. N. a. No N. a. Yes N. a. 
April N. a. N. a. N. a. N. a. N. a. N. a. Yes 
May N. a. N. a. Yes N. a. N. a. N. a. N. a. 

Note: 1. Yes represents a linear relationship between PM10 concentration and specific significant factor 
 2. No represents a non-linear relationship between PM10 concentration and specific significant factor 

3. N.a. represents not applied in spatial correlation analysis. 
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7.3.2 Relationship between monthly PM2.5 concentration and their factors 
7.3.2.1 October 2019 in the winter season  

The result of spatial correlation analysis between PM2.5 
concentration in October 2019 and their significant factors: wind speed, pressure, 
visibility, MODIS AOD, brightness temperature, fire radiative power, fire hotspot, and 
elevation (see detail in Table 5.41) is reported in Table 7.26. 
 

Table 7.26 Pearson correlation matrix among significant factors and PM2.5 
concentration in October 2019. 

Variables PM2.5 WS P VIS AOD BT FRP FH ELEV 
PM2.5 1.00 -0.30 0.30 0.49 0.63 0.22 -0.18 -0.50 0.20 

WS -0.30 1.00 -0.43 -0.17 0.01 -0.10 0.54 0.02 -0.47 
P 0.30 -0.43 1.00 0.04 0.02 -0.10 -0.06 0.16 0.17 

VIS 0.49 -0.17 0.04 1.00 0.15 0.35 0.00 -0.53 0.24 
AOD 0.63 0.01 0.02 0.15 1.00 -0.07 0.01 -0.27 -0.10 
BT 0.22 -0.10 -0.10 0.35 -0.07 1.00 -0.10 -0.28 0.05 
FRP -0.18 0.54 -0.06 0.00 0.01 -0.10 1.00 0.07 -0.38 
FH -0.50 0.02 0.16 -0.53 -0.27 -0.28 0.07 1.00 -0.16 

ELEV 0.20 -0.47 0.17 0.24 -0.10 0.05 -0.38 -0.16 1.00 

 
From Table 7.26, PM2.5 concentration in October 2019 shows a 

negative relationship with wind speed, fire radiative power, and fire hotspot. In contrast, 
it positively correlates with pressure, visibility, MODIS AOD, brightness temperature, and 
elevation. As a result, if wind speed, as the influencer of PM2.5 concentration, increase, 
PM2.5 concentration should decrease. Meanwhile, if pressure, as the influencer of 
PM2.5 concentration, increase, PM2.5 concentration should increase. In addition, 
brightness temperature, as a source of PM2.5 concentration increase, will increase 
PM2.5 concentration. These findings show a consistent linear relationship, as 
mentioned in Table 3.2. 

On the contrary, as mentioned, PM2.5 concentration increases, 
visibility and MODIS AOD, as the effect of PM concentration, decrease. This finding does 
not show a consistent linear relationship (Table 3.2). Similarly, this phenomenon occurs 
with fire radiative power and fire hotspot, as a source of PM concentration, do not 
show a consistent linear relationship with PM2.5 concentration, as expected. Also, 

 



342 

elevation, as the influencer of PM concentration, does not show a consistent linear 
relationship with PM2.5 concentration, as expected. The scatterplots between PM2.5 
concentration and visibility, MODIS AOD, fire radiative power, fire hotspots, and 
elevation are displayed in Figure 7.15. As a result, the relationships between PM2.5 
concentration and visibility, MODIS AOD, fire radiative power, fire hotspots, or elevation 
are non-linear. 
 

  
(a (b) 

  
(c) (d) 

 

 

(e)  
Figure 7.15 Scatterplots between PM2.5 concentration in October 2019 and (a) 
visibility, (b) MODIS AOD, (c) fire radiative power, (d) fire hotspots, and (e) elevation. 
 

Moreover, the spatial distribution map of PM2.5 concentration and 
significant factors (wind speed, pressure, visibility, brightness temperature, fire radiative 
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power, MODIS AOD, fire hotspot, and elevation) is displayed in Figure 7.16. The spatial 
distribution map of PM2.5 concentration in October 2019 shows the high PM2.5 
concentration in the central part of the study area, particularly Bang Bon and Phasi 
Charoen District – Bangkok province. At the same time, the low PM2.5 concentration 
occurs in the east of the study area, particularly in Bang Bo and Bang Sao Thong District 
- Samut Prakan province. 
 

(a) (b) 

  
(c) (d) 

Figure 7.16 Spatial distribution map of (a) PM2.5 concentration (b) wind speed, (c) 
pressure, (d) visibility, (e) MODIS AOD, (f) brightness temperature, (g) fire radiative power, 
(h) fire hotspot, and (i) elevation. 
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(e) (f) 

  
(g) (h) 

 

 

(i)  
Figure 7.16 (Continued). 
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7.3.2.2 November 2019 in the winter season  
The result of spatial correlation analysis between PM2.5 

concentration in November 2019 and their significant factors: visibility and fire radiative 
power (see detail in Table 5.42) is reported in Table 7.27. 
 
Table 7.27 Pearson correlation matrix among significant factors and PM2.5 
concentration in November 2019. 

Variables PM2.5 Visibility Fire radiative power 
PM2.5 1.00 0.40 0.32 

Visibility 0.40 1.00 0.27 
Fire radiative power 0.32 0.27 1.00 

 
From Table 7.27, PM2.5 concentration in November 2019 shows a 

positive relationship with visibility and fire radiative power factor. As a result, as a 
source of PM2.5 concentration, fire radiative power increases, and PM2.5 concentration 
will increase. This finding shows a consistent linear relationship, as expected.  

Conversely, as mentioned above, if PM2.5 concentration 
increases, visibility, as the effect of PM concentration, increases. This finding does not 
show a consistent linear relationship as expected (Table 3.2). The scatterplots between 
PM2.5 concentration and visibility in Figure 7.17 shows a non-linear form. 
 

 
Figure 7.17 Scatterplots between PM2.5 concentration and visibility. 
 

Moreover, the spatial distribution map of PM2.5 concentration and 
significant factors (visibility and fire radiative power) is displayed in Figure 7.18. The 
spatial distribution map of PM2.5 concentration in November 2019 shows the high 
PM2.5 concentration in the west part of the study area, particularly Bang Bon and Phasi 
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Charoen District – Bangkok province. At the same time, the low PM2.5 concentration 
occurs in the east of the study area, particularly in Bang Bo and Bang Sao Thong District 
- Samut Prakan province. 
 

  
(a) (b) 

 

 

(c)  
Figure 7.18 Spatial distribution map of (a) PM2.5 concentration (b) visibility and (c) fire 
radiative power. 
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7.3.2.3 December 2019 in the winter season  
The result of spatial correlation analysis between PM2.5 

concentration in December 2019 and their significant factors: wind speed and visibility 
(see detail in Table 5.43) is reported in Table 7.28. 
 
Table 7.28 Pearson correlation matrix among significant factors and PM2.5 
concentration in December 2019. 

Variables PM2.5 Wind speed Visibility 
PM2.5 1.00 -0.69 0.37 

Wind speed -0.69 1.00 -0.05 
Visibility 0.37 -0.05 1.00 

 
From Table 7.28, PM2.5 concentration in December 2019 shows a 

negative relationship with wind speed. As a result, if wind speed, as the influencer of 
PM concentration, increase, PM2.5 will decrease. This finding does show a consistent 
linear relationship, as expected. 

In contrast, the PM2.5 concentration in December 2019 positively 
correlates with visibility. As a result, PM2.5 concentration increases, visibility, the effect 
of PM concentration, will increase. This finding does not show a consistent linear 
relationship, as expected. The scatterplots between PM2.5 concentration and visibility 
in Figure 7.19 does not show a linear form.  

 

 
Figure 7.19 Scatterplots between PM2.5 concentration in December 2019 and visibility. 
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Moreover, the spatial distribution map of PM2.5 concentration and 
significant factors (wind speed and visibility) is displayed in Figure 7.20. The spatial 
distribution map of PM2.5 concentration in December 2019 shows the high PM2.5 
concentration in the west part of the study area, particularly Kamphaeng Saen and 
Mueang Nakhon Pathom District – Nakhon Pathom province. At the same time, the 
low PM2.5 concentration occurs in the east of the study area, particularly in Bang Bo 
and Bang Sao Thong District - Samut Prakan province. 
 

  
(a) (b) 

 

 

(c)  
Figure 7.20 Spatial distribution map of (a) PM2.5 concentration, (b) wind speed and (c) 
visibility. 
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7.3.2.4 January 2020 in the winter season  
The result of spatial correlation analysis between PM2.5 

concentration in January 2020 and their significant factors: temperature, visibility, 
MODIS AOD, fire hotspot, and elevation (see detail in Table 5.44) is reported in Table 
7.29. 
 
Table 7.29 Pearson correlation matrix among significant factors and PM2.5 
concentration in January 2020. 

Variables PM2.5 TEMP VIS AOD FH ELEV 
PM2.5 1.00 -0.41 -0.17 -0.28 0.16 0.22 
TEMP -0.41 1.00 0.04 -0.37 -0.11 -0.29 
VIS -0.17 0.04 1.00 0.04 -0.53 -0.10 

AOD -0.28 -0.37 0.04 1.00 -0.06 0.10 
FH 0.16 -0.11 -0.53 -0.06 1.00 -0.06 

ELEV 0.22 -0.29 -0.10 0.10 -0.06 1.00 

 
From Table 7.29, temperature, visibility, MODIS AOD, and fire 

hotspot show a consistent linear relationship with PM2.5 concentration. In fact, as the 
influence of PM concentration increases, PM2.5 concentration will decrease. 
Meanwhile, visibility and MODIS AOD, as the effect of PM concentration, will decrease 
when PM2.5 increases. Also, fire hotspots, as a source of PM concentration, increase, 
PM2.5 will increase 

On the contrary, elevation positively correlated with PM2.5 in 
January 2020. These finding does not show a consistent linear relationship as expected. 
In fact, if elevation, as the influencer of PM2.5 concentration, increase, PM2.5 will 
decrease. The scatterplot between PM2.5 concentration and elevation is displayed in 
Figure 7.21. As a result, the relationship between PM10 concentration and the 
elevation shows a non-linear form.  
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Figure 7.21 Scatterplots between PM2.5 concentration and elevation. 
 

Moreover, the spatial distribution map of PM2.5 concentration and 
significant factors (wind speed and visibility) is displayed in Figure 7.22. The spatial 
distribution map of PM2.5 concentration in January 2020 shows the high PM2.5 
concentration in the west part of the study area, particularly Bang Bua Thong District 
– Nonthaburi province and Nong Chok District – Bangkok province. At the same time, 
the low PM2.5 concentration occurs in the east of the study area, particularly Phra 
Samut Chedi District - Samut Prakan province and Bang Khun Thian – Bangkok province. 
 

  
(a) (b) 

Figure 7.22 Spatial distribution map of (a) PM2.5 concentration (b) temperature, (c) 
visibility, (d) MODIS AOD, (e) fire hotspot, and (f) elevation. 
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(c) (d) 

  
(e) (f) 

Figure 7.22 (Continued). 
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7.3.2.5 February 2020 in the winter season  
The result of spatial correlation analysis between PM2.5 

concentration in February 2020 and their significant factors: relative humidity, wind 
speed, pressure, fire radiative power, and elevation (see detail in Table 5.45) is reported 
in Table 7.30. 
 

Table 7.30 Pearson correlation matrix among significant factors and PM2.5 
concentration in February 2020. 

Variables PM2.5 RH WS P FRP ELEV 
PM2.5 1.00 -0.48 -0.53 0.30 -0.57 0.30 

RH -0.48 1.00 0.34 0.20 0.00 -0.19 
WS -0.53 0.34 1.00 0.13 0.71 -0.49 
P 0.30 0.20 0.13 1.00 -0.13 -1.05 

FRP -0.57 0.00 0.71 -0.13 1.00 -0.35 
ELEV 0.30 -0.19 -0.49 -1.05 -0.35 1.00 

 

From Table 7.30, wind speed and pressure showed a consistent 
linear relationship with PM2.5 concentration in February 2020. In fact, wind speed and 
pressure, as the influencer of PM concentration, show a negative and positive 
relationship with PM2.5 concentration, respectively. 

On the contrary, as the PM concentration influencer, relative 
humidity and elevation show a negative and positive relationship with PM2.5 
concentration, respectively. These results do not show a consistent linear relationship 
with PM2.5 concentration in February 2020, as mentioned in Table 3.2. Likewise, fire 
radiative power negatively affected PM2.5 concentration in February 2020. As a result, 
it does not show a consistent linear relationship with PM2.5 concentration, as 
expected. The scatterplots between PM2.5 concentration and relative humidity, fire 
radiative power, and elevation, as shown in Figure 7.23, shows a non-linear form. 
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(a) (b) 

 

 

(c)  
Figure 7.23 Scatterplots between PM2.5 concentration and (a) relative humidity, (b) 
fire radiative power, and (c) elevation. 
 

Moreover, the spatial distribution map of PM2.5 concentration and 
significant factors (wind speed and visibility) is displayed in Figure 7.24. The spatial 
distribution map of PM2.5 concentration in February 2020 shows the high PM2.5 
concentration in the north of the study area, particularly Don Mueang and Sai Mai 
District – Bangkok province. At the same time, the low PM2.5 concentration occurs in 
the south of the study area, particularly in Phra Samut Chedi and Mueang Samut Prakan 
District - Samut Prakan province. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 7.24 Spatial distribution map of (a) PM2.5 concentration (b) relative humidity, 
(c) wind speed, (d) pressure, (e) fire radiative power, and (f) elevation. 
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7.3.2.6 March 2020 in the summer season  
The result of spatial correlation analysis between PM2.5 

concentration in March 2020 and its significant factor: fire radiative power (see detail 
in Table 5.46) is reported in Table 7.31. 
 
Table 7.31 Pearson correlation matrix among significant factors and PM2.5 
concentration in March 2020. 

Variables PM2.5 FRP 
PM2.5 1.00 0.40 
FRP 0.40 1.00 

 
As a result, in Table 7.31, fire radiative power,.as a source of PM 

concentration, positively correlates with PM2.5 concentration. This finding indicates a 
consistent linear relationship, as expected. 

Moreover, the spatial distribution map of PM2.5 concentration and 
significant factor (fire radiative power) is displayed in Figure 7.25. The spatial distribution 
map of PM2.5 concentration and fire radiative power in March 2020 shows the high 
value in the same area, particularly Don Mueang and Sai Mai District – Bangkok 
province. At the same time, the low PM2.5 concentration occurs in the south of the 
study area, mainly Phaya Thai and Dusit District - Bangkok province. 
 

  
(a) (b) 

Figure 7.25 Spatial distribution map of (a) PM2.5 concentration and (b) fire radiative 
power. 
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7.3.2.7 April 2020 in the summer season  
The result of spatial correlation analysis between PM2.5 

concentration in April 2020 and its significant factor: wind speed, visibility, brightness 
temperature, fire radiative power, MODIS AOD, fire hotspot, and factory density (see 
detail in Table 5.47) is reported in Table 7.32. 
 
Table 7.32 Pearson correlation matrix among significant factors and PM2.5 
concentration in April 2020. 

Variables PM2.5 WS VIS BT FRP AOD FH FD 
PM2.5 1.00 0.29 0.10 -0.34 0.20 0.25 0.40 -0.24 

WS 0.29 1.00 -0.12 0.30 0.77 0.21 0.13 0.23 
VIS 0.10 -0.12 1.00 0.20 0.14 -0.18 -0.28 0.14 
BT -0.34 0.30 0.20 1.00 0.08 -0.01 -0.21 0.19 
FRP 0.20 0.77 0.14 0.08 1.00 0.11 0.04 0.31 
AOD 0.25 0.21 -0.18 -0.01 0.11 1.00 0.14 -0.10 
FH 0.40 0.13 -0.28 -0.21 0.04 0.14 1.00 -0.16 
FD -0.24 0.23 0.14 0.19 0.31 -0.10 -0.16 1.00 

 
From Table 7.32, PM2.5 concentration in April 2020 shows a 

positive relationship with wind speed, visibility, fire radiative power, MODIS AOD, and 
fire hotspot. In contrast, it shows a negative effect on brightness temperature and 
factory density. As a result, if fire radiative power and fire hotspots, as the source of 
PM2.5 concentration, increase, PM2.5 concentration should decrease. These findings 
show a consistent linear relationship, as mentioned in Table 3.2. 

On the contrary, as mentioned, PM2.5 concentration increases, 
visibility and MODIS AOD, as the effect of PM concentration, increase. This finding does 
not show a consistent linear relationship (Table 3.2). Similarly, this phenomenon occurs 
with brightness temperature and factory density, as a source of PM concentration, 
show a positive relationship with PM2.5 concentration. Likewise, wind speed, as the 
influencer of PM concentration, positively correlates with PM2.5 concentration. These 
do not show a consistent linear relationship with PM2.5 concentration. The scatterplots 
between PM2.5 concentration and wind speed, visibility, brightness temperature, 
MODIS AOD, and factory density, as shown in Figure 7.26, show a non-linear form. 
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(a) (b) 

  
(c) (d) 

 

 

(e)  
Figure 7.26 Scatterplots between PM2.5 concentration in April 2020 and (a) wind 
speed, (b) visibility, (c) brightness temperature, (d) MODIS AOD, and (e) factory density. 
 

Moreover, the spatial distribution map of PM2.5 concentration and 
significant factors (wind speed, visibility, brightness temperature, fire radiative power, 
MODIS AOD, fire hotspot, factory density) are displayed in Figure 7.27. The spatial 
distribution map of PM2.5 concentration and fire radiative power in April 2020 shows 
the high value in the same area, particularly Khlong Sam Wa and Don Mueang District 
– Bangkok province. At the same time, the low PM2.5 concentration occurs in the 
south of the study area, mainly Pathum Wan and Khlong Toei District - Bangkok 
province. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 7.27 Spatial distribution map of (a) PM2.5 concentration and (b) wind speed, (c) 
visibility, (d) brightness temperature, (e) fire radiative power, (f) MODIS AOD, (g) fire 
hotspot, (h) factory density. 
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(g) (h) 

Figure 7.27 (Continued). 
 

7.3.2.8 May 2020 in the summer season  
The significant factors for PM2.5 concentration in May 2020 are 

wind speed, visibility, brightness temperature, factory density, and elevation (see detail 
in Table 5.48). At the same time, the correlation coefficient values between these 
variables and PM2.5 concentration are reported in Table 7.33. 
 

Table 7.33 Pearson correlation matrix among significant factors and PM2.5 
concentration in May 2020. 

Variables PM2.5 WS VIS BT FD ELEV 
PM2.5 1.00 -0.37 -0.59 0.18 -0.32 0.23 

WS -0.37 1.00 -0.10 -0.24 0.23 -0.49 
VIS -0.59 -0.10 1.00 0.05 0.05 0.08 
BT 0.18 -0.24 0.05 1.00 -0.07 0.08 
FD -0.32 0.23 0.05 -0.07 1.00 0.04 

ELEV 0.23 -0.49 0.08 0.08 0.04 1.00 

 
From Table 7.33, PM2.5 concentration in May 2020 shows a 

negative relationship with wind speed, visibility, and factory density. However, at the 
same time, it shows a positive relationship between brightness temperature and 
elevation. As a result, if PM2.5 concentration increases, wind speed and visibility, as 
the influence and the effect of PM2.5 concentration, respectively, tend to decrease. 
Likewise, when brightness temperature, as a source of PM2.5 concentration, increases, 
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PM2.5 concentration increases. This finding shows a consistent linear relationship, as 
expected.  

On the contrary, when factory density increase, PM10 
concentration decrease. As elevation increases, PM10 concentration increases. These 
findings do not show a consistent linear relationship as expected. In fact, if factory 
density, as a source factor on PM2.5 concentration, increase, PM2.5 will increase. 
Likewise, if elevation, as the influencer of PM2.5 concentration, increases, PM2.5 
concentration will decrease. The scatterplots between PM2.5 concentration and 
factory density and elevation are displayed in Figure 7.28. As a result, the relationship 
between PM10 concentration and factory density and elevation is a non-linear form.  
 

  
(a) (b) 

Figure 7.28 Scatterplots between PM2.5 concentration in May 2020 and (a) factory 
density and (b) elevation. 
 

Moreover, the spatial distribution map of PM2.5 concentration and 
significant factors (wind speed, visibility, brightness temperature, factory density, and 
elevation) is displayed in Figure 7.29. The spatial distribution map of PM2.5 
concentration in May 2020 shows the high PM2.5 concentration in the central part of 
the study area, particularly Don Mueang and Sai Mai District – Bangkok province. At the 
same time, the low PM10 concentration occurs in the east of the study area, 
particularly Bang Bon and Bang Kho Laem District - Bangkok province. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 7.29 Spatial distribution map of (a) PM2.5 concentration (b) wind speed, (c) 
visibility, (d) brightness temperature, (e) factory density and (f) elevation. 
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Summary 
According to significant factors (Tables 7.26 to 7.33), the relationship between 

PM2.5 concentration and significant monthly factors is summarized in Table 7.34 again. 
As a result, it can be observed that the relationship between temperature, wind speed, 
relative humidity and pressure, as the influencer of PM concentration, is primarily 
linear. On the contrary, the relationship between visibility and MOD AOD, as the effect 
of PM concentration, is non-linear. Likewise, the relationship between fire radiative 
power, brightness temperature, fire hot spot, factory density, and elevation as a source 
of PM concentration is non-linear. The relationship between elevation and PM2.5 
concentration in all identified months shows a non-linear form since elevation 
variations as static data in the urban landscape are small. 
 
Table 7.34 Summary of the relationship between PM2.5 concentration and their 
significant monthly factors. 

Month 
Influencer of PM concentration 

Effect of PM  
concentration 

Source of PM concentration 

TEMP WS RH P VIS AOD FRP BT FH FD ELEV 

October N. a Yes N. a Yes No No No Yes No N. a No 
November N. a N. a N. a N. a No N. a Yes N. a N. a N. a N. a 
December N. a Yes N. a N. a No N. a N. a N. a N. a N. a N. a 
January Yes N. a N. a N. a Yes Yes N. a N. a Yes N. a No 
February N. a Yes No Yes N. a N. a No N. a N. a N. a No 
March N. a N. a N. a N. a N. a N. a Yes N. a N. a N. a N. a 
April N. a No N. a N. a No No Yes No Yes No N. a 
May N. a Yes N. a N. a Yes N. a N. a Yes N. a No No 

Note: 1. Yes represents a linear relationship between PM2,5 concentration and specific significant factor 
 2. No represents a non-linear relationship between PM2,5 concentration and specific significant factor 

3. N.a. represents not applied in spatial correlation analysis. 
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7.3.3 Relationship between seasonal PM concentration and land use data 
The relationship between seasonal PM 10 and PM2.5 concentration in 

winter and summer and land use data in 2019 of LDD were described and discussed 
in the following sections. 

7.3.3.1 PM 10 concentration classification and land use data 
PM10 concentration classification in winter and summer seasons 

using the standard deviation method with one standard deviation interval size for 
identifying the relationship with land use types in 2019 is displayed in Figure 7.30.  
 

(a) (b) 
Figure 7.30 Spatial distribution of PM10 concentration classification in (a) winter and 
(b) summer. 
 

The result of overlay analysis between PM10 classification in 
winter and summer and land use in 2019 was reported in Tables 7.35 and 7.36, 
respectively.  
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Table 7.35 Area of PM10 concentration classification in winter in each land use type. 
PM10 classification 

in winter 
Area of land use type in sq. km 

Urban Agriculture Forest Waterbody Miscellaneous Total 

Class 1: 69.15-69.69 μg/m3 366.59 895.68 0.07 64.42 76.47 1,403.22 
Class 2: 69.70-70.30 μg/m3 490.29 2,567.34 200.16 145.74 144.72 3,548.25 
Class 3: 70.31-70.91 μg/m3 516.41 3,632.65 831.53 308.26 139.96 5,428.81 
Class 4: 70.92-71.52 μg/m3 289.86 1,921.11 557.67 60.53 84.80 2,913.98 
Class 5: 71.53-72.12 μg/m3 347.15 1,405.40 365.28 53.41 130.11 2,301.35 
Class 6: 72.13-72.26 μg/m3 35.20 155.08 20.34 2.67 18.10 231.39 
Total 2,045.49 10,577.26 1,975.05 635.04 594.16 15,827.00 

 
From Table 7.35, the most dominant PM10 concentration in 

winter is Class 3, with a value between 70.31 and 70.91 μg/m3. The least dominant 
class is Class 6, with a PM10 concentration between 72.13 and 72.26 μg/m3. 

At the same time, the major land use type, agriculture, which 
covers an area of about 66.83% of the total land, is located in Class 2 (69.70-70.30 
μg/m3) and Class 3 (70.31-70.91 μg/m3) and cover area about 5,560 sq. km or about 
53% of total agriculture area. On the contrary, minor land use type, miscellaneous 
land, which covers an area of about 3.75% of the total land, is located in Class 2 
(69.70-70.30 μg/m3) and Class 3 (70.31-70.91 μg/m3) and cover area about 225 sq. km 
or about 38% of total miscellaneous land. 
 
Table 7.36 Area of PM10 concentration classification in summer in each land use type. 

PM10 classification 
in summer 

Area of land use type in sq. km 

Urban Agriculture Forest Waterbody Miscellaneous Total 

Class 1: 42.52-42.70 μg/m3 31.69 193.46 9.26 7.19 7.05 248.65 
Class 2: 42.71-43.09 μg/m3 566.41 3,528.33 416.45 277.14 137.62 4,925.95 
Class 3: 43.10-43.46 μg/m3 736.48 4,285.34 1,080.38 234.93 224.66 6,561.79 
Class 4: 43.47-43.85 μg/m3 399.27 1,598.90 203.88 71.35 103.37 2,376.78 
Class 5: 43.86-44.22 μg/m3 181.56 495.48 104.98 29.08 43.17 854.28 
Class 6: 44.23-45.51 μg/m3 130.07 475.74 160.10 15.34 78.29 859.54 
Total 2,045.49 10,577.26 1,975.05 635.04 594.17 15,827.00 
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On the contrary, the most dominant PM10 concentration in 
summer is Class 3, with a value between 43.10 and 43.46 μg/m3. The least dominant 
class is Class 1, with a PM10 concentration between 42.52 and 42.70 μg/m3. See detail 
in Table 7.36. 

At the same time, the major land use type, agriculture, which 
covers an area of about 66.83% of the total land, is located in Class 2 (42.71-43.09 
μg/m3) and Class 3 (43.10-43.46 μg/m3) and cover area about 7,814 sq. km or about 
74% of total agriculture area. On the contrary, minor land use type, miscellaneous 
land, which covers an area of about 3.75% of the total land, is located in Class 2 
(42.71-43.09 μg/m3) and Class 3 (43.10-43.46 μg/m3) and cover area about 362.28 sq. 
km or about 38% of total miscellaneous land.  

The percentage of each LULC type in each PM10 concentration 
class in winter and summer are reported in Figures 7.31 and 7.32, respectively. 

 

 
Figure 7.31 Percentage of each LULC type in each PM10 concentration class in the 
winter season. 
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Figure 7.32 percentage of each LULC type in each PM10 concentration class in the 
summer season. 
 

These findings indicate the significance of agriculture on PM10 
concentration in the winter and summer seasons. 

7.3.3.2 PM2.5 concentration classification and land use data 
PM2.5 concentration classification in winter and summer seasons 

using the standard deviation method with one standard deviation interval size for 
identifying the relationship with land use types in 2019 is displayed in Figure 7.33.  

The result of overlay analysis between PM2.5 classification in 
winter and summer and land use in 2019 was reported in Tables 7.37 and 7.38, 
respectively.  
  

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Class 1: 42.52-42.70 mg per cu. m

Class 2: 42.71-43.09 mg per cu. m

Class 3: 43.10-43.46 mg per cu. m

Class 4: 43.47-43.85 mg per cu. m

Class 5: 43.86-44.22 mg per cu. m

Class 6: 44.23-45.51 mg per cu. m
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(a) (b) 

Figure 7.33 Spatial distribution of PM2.5 concentration classification in (a) winter and 
(b) summer. 
 
Table 7.37 Area of PM2.5 concentration classification in winter in each land use type. 

PM2.5 classification 
in winter 

Area of land use type in sq. km 

Urban Agriculture Forest Waterbody Miscellaneous Total 

Class 1: 37.07-37.08 μg/m3 6.89 34.76 0.00 1.39 1.28 44.33 
Class 2: 37.09-37.38 μg/m3 461.35 419.62 4.75 33.07 73.34 992.13 
Class 3: 37.39-37.68 μg/m3 404.93 132.35 8.16 29.29 30.19 604.92 
Class 4: 37.69-37.99 μg/m3 493.71 370.21 10.33 60.58 43.15 977.98 
Class 5: 38.00-38.24 μg/m3 1,065.17 2,059.76 33.88 128.99 272.84 3,560.63 
Total 2,432.06 3,016.70 57.12 253.32 420.80 6,180.00 

 
As a result, the most dominant PM2.5 concentration in winter is 

Class 5, with a value between 37.69 and 37.99 μg/m3. The least dominant class is Class 
1, with a PM2.5 concentration between 37.07 and 37.08 μg/m3. See detail in Table 
7.37. 

At the same time, the major land use type, agriculture, which 
covers an area of about 48.80 % of the total land, is located in Class 5 (38.00-38.24 
μg/m3) and Class 2 (37.09-37.38 μg/m3) and cover area about 2,479.38 sq. km or about 
82.20% of total agriculture area. On the contrary, minor land use type, forest land, 
which covers an area of about 0.92% of the total land, is located in Class 5 (38.00-
38.24 μg/m3) and Class 2 (37.09-37.38 μg/m3) and cover area about 38.63 sq. km or 
about 67.63% of total forest land. 
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Table 7.38 Area of PM2.5 concentration classification in summer in each land use type. 
PM2.5 classification 

in summer 
Area of land use type in sq. km 

Urban Agriculture Forest Waterbody Miscellaneous Total 

Class 1: 20.53-20.59 μg/m3 344.90 99.63 10.93 28.31 29.47 513.23 
Class 2: 20.60-20.67 μg/m3 666.08 801.18 40.01 82.37 133.29 1,722.93 
Class 3: 20.68-20.75 μg/m3 637.89 1,276.03 6.18 81.36 146.16 2,147.61 
Class 4: 20.76-20.83 μg/m3 445.26 746.66 0.00 48.06 80.21 1,320.19 
Class 5: 20.84-20.96 μg/m3 337.93 93.21 0.00 13.22 31.67 476.03 
Total 2,432.06 3,016.70 57.12 253.32 420.80 6,180.00 

 
On the contrary, the most dominant PM2.5 concentration in 

summer is Class 3, with a value between 20.68 and 20.75 μg/m3. The least dominant 
class is Class 5, with a PM2.5 concentration between 20.84 and 20.96 μg/m3. See detail 
in Table 7.38. 

At the same time, the major land use type, agriculture, which 
covers an area of about 48.80 % of the total land, is located in Class 3 (20.68-20.75 
μg/m3) and Class 2 (20.60-20.67 μg/m3) and cover area about 2,077 sq. km or about 
68.86% of total agriculture area. On the contrary, minor land use type, forest land, 
which covers an area of about 0.92% of the total land, is located in Class 2 (20.60-
20.67 μg/m3) and Class 1 (20.53-20.59 μg/m3) and cover area about 51 sq. km or about 
89.19% of total forest land. 

Meanwhile, the percentage of each LULC type in each PM2.5 
concentration class in winter and summer are reported in Figures 7.34 to 7.35, 
respectively. 
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Figure 7.34 Percentage of each LULC type in each PM2.5 concentration class in the 
winter season. 
 

Figure 7.35 Percentage of each LULC type in each PM2.5 concentration class in the 
summer season. 

 
These findings indicate the significance of urban and agriculture 

on PM2.5 concentration in the winter and summer seasons. 
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CHAPTER VIII 
CONCLUSION AND RECOMMENDATIONS

 
This chapter first presents the conclusion of four main results, which were 

reported in detail according to the research objectives in four chapters, including (1) 
data collection and preparation, (2) significant spatiotemporal factors on PM 
concentration, (3) prediction of spatiotemporal particulate matter concentration, and 
(4) suitable spatiotemporal model for pm concentration prediction and validation. 
Then, some recommendations are suggested for future research and development. 
 

8.1 Conclusion 
8.1.1 Data collection and preparation 

Standard interpolation methods were selected to identify an optimum 
method for the selected dependent and independent variables between October 
2019 and May 2020. As a result, the SCK with the J-Bessel function was optimum for 
ground-level PM concentration. The SCK with J-Bessel function was optimum for 
relative humidity. The SCK with the Hole Effect function was optimum for temperature. 
The RBF with Spline with Tension and One Sector was optimum for wind speed. The 
SCK with Stable function was optimum for pressure. The OCK with the Hole Effect 
function was optimum for visibility. The SCK with Stable function and RBF with Spline 
with Tension and Eight Sector function was optimum for brightness temperature and 
fire radiative power 

Meanwhile, the remaining independent variables, including MODIS AOD, 
NDVI, BUI, road density, factory density, elevation fire hotspot, population density, and 
GPP, were prepared by spatial analysts. 

After that, mean and standard deviation values at the district level of all 
dependent and independent variables were extracted using the zonal statistics 
analysis. Then, all prepared variables were normalized using the Z-score method for 
significant spatiotemporal factors on PM concentration. 
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8.1.2 Significant spatiotemporal factors on PM concentration 
The dependent and independent variables on PM10 concentration in the 

rural landscape and PM2.5 concentration in the urban landscape in the winter season 
(October 2019 to February 2020) and summer season (March 2020 to May 2020) were 
applied to identify significant spatiotemporal factors using multicollinearity test and 
the ordinary least squares (OLS) regression. 

As a result, the OLS regression equations on PM10 concentration in each 
month in the winter showed the AICc from 140.10 to 178.47, with an average of 159.13, 
while the adjusted R-squared varied from 0.13 to 0.59, with an average of 0.39. On the 
contrary, the OLS regression equations on PM10 concentration in each month in the 
summer showed the AICc from 157.49 to 187.73, with an average of 168.61, while the 
adjusted R-squared varied from 0.20 to 0.43, with an average of 0.27. The significant 
factors on PM10 concentration in winter and summer were five and five. Additionally, 
three common factors on PM10 concentration, namely temperature, visibility, and 
MODIS AOD, were identified in both seasons. Two significant factors on PM10 
concentration were only found in the winter season, including wind speed and fire 
radiative power. On the contrary, two significant factors on PM10 concentration, factory 
density and brightness temperature, were only found in the summer season. 

Meanwhile, the OLS regression equations on PM2.5 concentration in each 
month in the winter showed the AICc from 114.36 to 194.85, with an average of 154.33, 
while the adjusted R-squared varied from 0.27 to 0.77, with an average of 0.55. On the 
contrary, the OLS regression equations on PM2.5 concentration in each month in the 
summer showed the AICc from 168.59 to 192.42, with an average of 178.67, while the 
adjusted R-squared varied from 0.32 to 0.50, with an average of 0.42. There were seven 
common factors on PM2.5 concentration in both seasons: wind speed, visibility, 
brightness temperature, fire radiative power, MODIS AOD, fire hotspot, and elevation. 
Furthermore, it was found that three significant factors on PM2.5 concentration were 
only found in the winter season, including relative humidity, temperature, and 
pressure. In contrast, one significant factor in PM2.5 concentration, factory density, was 
only found in the summer season. 
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8.1.3 Prediction of spatiotemporal PM concentration 
The significant factors on PM10 and PM2.5 concentration were separately 

applied to predict monthly concentration using the GWR and MEM models. 
As a result, the PM10 concentration predictions using the GWR model in 

the winter showed a value from 50.53 to 85.79 mg/m3, with an average of 70.64 mg/m3. 
The maximum value was in February. Monthly Thailand AQI classifications were 
satisfactory to moderate, while US EPA AQI classifications were good to moderate. In 
contrast, the PM10 concentration predictions using the GWR model in the summer 
showed a value from 36.92 to 51.32 mg/m3, with an average of 43.43 mg/m3. The 
maximum value was in March. According to Thailand and US EPA standards, monthly 
AQI classifications were excellent and good, respectively. 

Meanwhile, the PM10 concentration predictions using the MEM model in 
the winter showed a value from 50.68 to 84.59 mg/m3, with an average of 70.63 mg/m3. 
The maximum value was in February. Monthly Thailand AQI classifications were 
satisfactory to moderate, while US EPA AQI classifications were good to moderate. In 
contrast, the PM10 concentration predictions using the MEM model in the summer 
showed a value between 37.08 to 50.81 mg/m3, with an average of 43.40 mg/m3. The 
maximum value was in March. According to Thailand and US EPA standards, monthly 
AQI classifications were excellent and good, respectively. 

In the meantime, PM2.5 concentration predictions using the GWR model 
in the winter showed a value from 25.33 to 44.37 mg/m3, with an average of 37.80 
mg/m3. The maximum value was in February. Monthly Thailand AQI classifications were 
satisfactory to moderate, while the US EPA AQI classifications were moderate to 
unhealthy for the sensitive group. In contrast, PM2.5 concentration prediction using the 
GWR model in the summer showed a value from 16.69 to 24.04 mg/m3, with an average 
of 20.67 mg/m3. The maximum value was in March. According to Thailand and US EPA 
standards, monthly AQI classifications were excellent and moderate, respectively. 

Meanwhile, PM2.5 concentration prediction using the MEM model in the 
winter showed a value from 25.45 to 44.36 mg/m3, with an average of 37.80 mg/m3. 
The maximum value was in February. Monthly Thailand AQI classifications were 
satisfactory to moderate, while US EPA AQI classifications were moderate to unhealthy 
for the sensitive group. In contrast, PM2.5 concentration prediction using the MEM 
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model in the summer showed a value from 16.68 to 23.75 mg/m3, with an average of 
20.67 mg/m3. The maximum value was in March. According to Thailand and US EPA 
standards, monthly AQI classifications were excellent and moderate, respectively. 

8.1.4 Suitable spatiotemporal model for PM concentration prediction and 
validation 

The reported AICc values from spatiotemporal PM10 and PM2.5 
concentration prediction between GWR and MEM models were used to determine a 
suitable model for PM concentration prediction. The average AICc values of PM10 
concentration prediction in rural landscapes using the GWR model in the winter and 
summer seasons were 97.92 and 113.03, respectively. On the contrary, average AICc 
values of PM10 concentration prediction in rural landscapes using the MEM model 
were 155.49 and 164.77. The result showed that the average AICc value of the GWR 
model was lower than the MEM. Thus, the GWR model was suitable for spatiotemporal 
PM10 concentration prediction in both seasons. In the meantime, the average AICc 
values of PM2.5 concentration prediction in urban landscapes using the GWR model in 
the winter and summer seasons were 73.86 and 122.55, respectively. At the same time, 
the average AICc values of PM2.5 concentration prediction in urban landscapes using 
the MEM model were 168.61 and 186.67. Therefore, the GWR model was also suitable 
for spatiotemporal PM2.5 concentration prediction in both seasons. 

The spatial distribution map of PM10 concentration showed the high 
frequency of the high PM10 concentration that occurred in the central part of the rural 
landscape, particularly northern parts of Saraburi and the south of Lop Buri province. 
At the same time, the low PM10 concentration occurred in the south of the study area, 
mainly in Pathum Thani province and the south of Phra Nakhon Si Ayutthaya province. 
It can be observed that the most dominant factors on PM10 concentration based on 
spatial correlation analysis were consistent with the derived result using OLS regression 
analysis. 

The spatial distribution map of PM2.5 concentration showed the high 
frequency of the high PM2.5 concentration occurring in the western part of the urban 
landscape, particularly Nakhon Pathom, Samut Sakhon, Nonthaburi, and the west side 
of Bangkok. At the same time, the low PM2.5 concentration occurred in the east part 
of the study area, particularly Samut Prakan and the east side of Bangkok. It can be 
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observed that the most dominant factors on PM2.5 concentration based on spatial 
correlation analysis were consistent with the derived result using OLS regression 
analysis. 

Moreover, the GWR model as a suitable model was reapplied to a newly 
collected and prepared dataset in the winter and summer seasons (between October 
2020 and May 2021) to validate the prediction of spatiotemporal PM10 and PM2.5 
concentration using Pearson correlation analysis. As a result, the correlation coefficient 
values for PM10 concentration in the winter season between the existing dataset and 
the new dataset varied from 0.81 to 0.91, with an average value of 0.87. Similarly, the 
correlation coefficient values for PM10 concentration in the summer season between 
the existing dataset and the new dataset varied from 0.75 to 0.94, with an average 
value of 0.82. So, the predicted PM10 concentration with the same significant monthly 
factors in two seasons in the rural landscape using the GWR model could be accepted 
in the current study. Likewise, the correlation coefficient values for PM2.5 
concentration in the winter season between the existing dataset and the new dataset 
varied from 0.67 to 0.92, with an average value of 0.77. 

Similarly, the correlation coefficient values for PM2.5 concentration in the 
summer season between the existing dataset and the new dataset varied from 0.67 to 
0.84, with an average value of 0.77. Thus, the predicted PM2.5 concentration with the 
same significant monthly factors in two seasons in the rural landscape using the GWR 
model can be accepted in the current study. The predicted PM2.5 concentration with 
the same significant monthly factors in two seasons in the urban landscape using the 
GWR model could be accepted in this study. 
 

8.2 Recommendations 
Many objectives were explored in this study, including significant 

spatiotemporal factors for identifying spatiotemporal PM concentration predictions and 
predicting suitable spatiotemporal models for PM concentration in the winter and 
summer seasons that are separate in rural and urban landscapes. Therefore, the 
possible expected recommendations and implications could be made for further 
studies as the following. 
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(1) The predicted PM concentration using the GWR model in this study is the 
critical data source for the effect of PM on human health. So, PM exposure to human 
health regarding diseases such as tuberculosis, allergy, diabetes, and respiratory disease 
should be investigated based on the predicted PM data and the existing database of 
the Department of Disease Control, Ministry of Public Health. For example, Xing, Xu, 
Shi, and Lian (2016) reported smog levels have increased throughout China, resulting 
in the deterioration of air quality, raising worldwide concerns. PM2.5 can deeply 
penetrate into the lung, irritate and corrode the alveolar wall, and consequently impair 
lung function. Especially the elderly and those with pre-existing cardiopulmonary 
problems should be more cautious of PM2.5 pollution and minimize outdoor PM2.5 
exposure. Polichetti, Cocco, Spinali, Trimarco, and Nunziat (2009) reported health 
effects to depend not only on the level of PM concentration in the air but also on its 
particular internal composition. The effect of PM produced by tobacco smoke can give 
rise to cardiovascular injury.  

(2) This study predicted the PM concentration using the GWR and MEM models 
with a linear regression algorithm. However, all significant factors do not correlate 
perfectly with PM concentration (Filonchyk, Yan, and Li, 2018; Mahmoud, 2012). Thus, 
non-linear regression algorithms that include exponential, logarithmic, logistic, machine 
learning, land use regression (LUR) models, etc., should be examined to predict PM 
concentration. For example, Zaman, Kanniah, Kaskaoutis, and Latif (2021) applied 
machine learning models (random forest and support vector regression) to predict 
PM2.5 concentration nationally in Malaysia by combining satellite aerosol retrievals 
with ground-based pollutants and meteorological factors. The model provided a 
satisfactory prediction of PM2.5 concentration across Malaysia and allowed continuous 
monitoring of the pollution levels in remote areas without measurement networks. 
Moreover, Yang, Chen, and Liang (2017) used the LUR model to explore the effect of 
land use on PM2.5 in urban areas. The model indicates the dominant factor was the 
traffic conditions, and land use can significantly affect the PM2.5 levels. 

(3) Data from light scattering or beta ray instruments should be considered for 
data verification. The previous study by Panta, Wimonthanasit, Chaithanu, Sampattagul, 
and Yawootti (2018) studied suitable devices for measuring airborne PM; the result 
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showed a high correlation between the light scattering device and the Beta Ray device 
as certified by the Pollution Control Department. 

(4) This study used MODIS (Moderate Resolution Imaging Spectroradiometer 
from Terra and Aqua MAIAC AOD data product at 1 km spatial resolution. However, 
many satellite sensors have been used to measure AOD. They calibrated and validated, 
such as VIIRS (Visible Infrared Imaging Radiometer) from Suomi-NPP and AHI (Advanced 
Himawari Imager) from Himawari-8. Besides, Aerosol Robotic Network (AERONET) 
established by NASA and PHOTONS can provide an accurate ground measurement of 
AOD (Wang et al., 2020). In addition, AERONET and MODIS AOD are very similar and can 
be used instead in the case of missing data (Nisantzi et al., 2012; Segura, Estellés, 
Utrillas, and Martínez-Lozano, 2017). 
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APPENDIX 
THE GEOGRAPHICAL COORDINATES OF MONITORING STATIONS 

 
Table 1 The PM concentration monitoring stations. 

No. Station_ID Station_Name Latitude Longitude PM10 PM2.5 
1 02t Bansomdejchaopraya Rajabhat 

University 
13.7330 100.4882 ⚫ ⚫ 

2 03t Highway NO.3902 km.13 +600 13.6365 100.4143 ⚫ ⚫ 

3 05t Thai Meteorological Department 13.6661 100.6057 ⚫ ⚫ 

4 08t Prabadang Rehabiltation Center 13.664 100.5434 ⚫ ⚫ 

5 10t National Housing Authority Klongchan 13.7795 100.6457 ⚫ ⚫ 

6 11t National Housing Huaykwang 13.7755 100.5692 ⚫ ⚫ 

7 12t Nonsi Witthaya School 13.7080 100.5473 ⚫ ⚫ 

8 13t EGAT 13.8072 100.5063 ⚫ ⚫ 

9 14t Highway District 13.7055 100.3157 ⚫ ⚫ 

10 16t South Bangkok Power Plant 13.618 100.5562 ⚫ ⚫ 

11 17t Residence for Dept. of Mineral 
Resources 

13.6522 100.5318 ⚫ ⚫ 

12 18t City Hall, Samut Prakan 13.5992 100.5973 ⚫ ⚫ 

13 19t National Housing Authority Bangplee 13.5703 100.7859 ⚫ ⚫ 

14 20t Bangkok University Rangsit Campus 14.0375 100.6051 ⚫ ⚫ 

15 21t Ayutthaya Witthayalai School 14.3522 100.5654 ⚫ ⚫ 

16 22t Sukhothai Thammathirat Open 
University 

13.9079 100.5356 ⚫ ⚫ 

17 24t Na Phralan Police Station 14.6858 100.8720 ⚫ ⚫ 

18 25t Khao Noi Fire Station 14.5263 100.9261 ⚫ ⚫ 

19 26t Environmental Office 8 Ratchaburi 13.5326 99.8149 ⚫ ⚫ 

20 27t Samut Sakhon Wittayalai School 13.5505 100.2643 ⚫ ⚫ 

21 28t Pluakdaeng District Health Office 12.9738 101.2128 ⚫ ⚫ 

22 29t Health Promotion Hospital Maptaput 12.7086 101.1661 ⚫ ⚫ 

23 30t Agricultural Office 12.6715 101.2759 ⚫ ⚫ 

24 31t Field Crop Research Center, Rayong 12.7351 101.1356 ⚫ ⚫ 

25 32t Laem Chabang Municipal Stadium 13.1192 100.9186 ⚫ ⚫ 

26 33t Health Promotion Hospital Bankhaohin 13.0546 101.0981 ⚫ ⚫ 
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Table 1 (Continued). 
No. Station_ID Station_Name Latitude Longitude PM10 PM2.5 
27 34t Environment Agency Section 13, 

Chonburi 
13.3551 100.9778 ⚫ ⚫ 

28 41t Nakhon Sawan Irrigation Project 15.6863 100.1105 ⚫ ⚫ 

29 46t Hydrogeological Group Water Resources 
Regional Office4 khon kaen 

16.4453 102.8353 ⚫ ⚫ 

30 50t Chulalongkorn Hospital 13.7300 100.5364 ⚫ ⚫ 

31 52t Thonburi Power Sub-Station 13.7276 100.4866 ⚫ ⚫ 

32 53t Chokchai Police Station 13.7954 100.5929 ⚫ ⚫ 

33 54t National Housing Authority Dindaeng 13.7626 100.5504 ⚫ ⚫ 

34 59t The Government Public Relations 
Department 

13.7831 100.5405 ⚫ ⚫ 

35 60t Municipality Office Tungsadao 13.5886 101.2864 ⚫ ⚫ 

36 61t Bodindecha Sing Singhaseni School 13.7696 100.6146 ⚫ ⚫ 

37 71t Sriaranyothai Kindergarten 13.6921 102.5021 ⚫ ⚫ 

38 74t Government Complex, Rayong 12.7063 101.181 ⚫ ⚫ 

39 77t Bu Yai Bai Hall Station 13.9342 101.587 ⚫ ⚫ 

40 79t Kanchanaburi Meteorological Station 14.0224 99.5361 ⚫ ⚫ 

41 81t Water reservoir 13.8321 100.0580 ⚫ ⚫ 

42 bkp56t Din Dang, Bangkok 13.7619 100.5586 ⚫ ⚫ 

43 bkp57t Phra Kanong District Office 13.6915 100.6146 ⚫ ⚫ 

44 bkp58t Rat Burana District Office 13.6821 100.5061 ⚫ ⚫ 

45 bkp59t Ratchathewi District Office 13.7591 100.5346 ⚫ ⚫ 

46 bkp60t Dusit District Office 13.7767 100.5210 ⚫ ⚫ 

47 bkp61t National Economic and Social 
Development Council Office 

13.7563 100.5143 ⚫ ⚫ 

48 bkp62t Odeon Circus 13.7371 100.5127  ⚫ 

49 bkp63t Army Apartment Sam Sen 13.7836 100.5345  ⚫ 

50 bkp64t Wang Thonglang District Office 13.7790 100.6223  ⚫ 

51 bkp65t Samyan Mitrtown 13.7331 100.5283  ⚫ 

52 bkp66t Bangrak Lovely Plaza 13.7261 100.5281  ⚫ 

53 bkp67t Sathon District Office 13.7078 100.5268  ⚫ 

54 bkp68t Thanon Tok Intersection 13.6973 100.4972  ⚫ 

55 bkp69t Bank of Ayuthaya Head Office Yan 
Nawa 

13.6792 100.5469  ⚫ 

56 bkp70t Soi Sukhumwit 63 Roadside Wattana 13.7221 100.5846 ⚫ ⚫ 

57 bkp71t Suan Luang District Office 13.7311 100.6517 ⚫ ⚫ 

58 bkp72t Big C Supercenter Bang Na 13.6680 100.6353 ⚫ ⚫ 

59 bkp73t Kasertsart University 13.8399 100.5756  ⚫ 

60 bkp74t Don Mueng District Office 13.9110 100.5949 ⚫ ⚫ 
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Table 1 (Continued). 
No. Station_ID Station_Name Latitude Longitude PM10 PM2.5 
61 bkp75kp Sai Mai District Office 13.8960 100.6606 ⚫ ⚫ 

62 bkp76t Bang Kapi District Office 13.7665 100.6478  ⚫ 

63 bkp77t Suan Sayam-Ram Intra Intersection 13.7994 100.6825 ⚫ ⚫ 

64 bkp78t Lat Krabang Hospital 13.7221 100.7841  ⚫ 

65 bkp79t Chaloem Phrakiat Rama 9 Park Min Buri 13.8136 100.7321 ⚫ ⚫ 

66 bkp80t Nong Chok District Office 13.8554 100.8627 ⚫ ⚫ 

67 bkp81t Seacon Square 13.6956 100.6476 ⚫ ⚫ 

68 bkp82t Mahaisawan Intersection 13.7052 100.4847  ⚫ 

69 bkp83t Library under King Taksin Bridge 13.7197 100.5088  ⚫ 

70 bkp84t Tha phra Intersection 13.7294 100.4744 ⚫ ⚫ 

71 bkp85t Bangkok Noi Train Police Station 13.7596 100.4811  ⚫ 

72 bkp86t Phutthamonthon 1 - 
Borommaratchachonnani Intersection 

13.7808 100.4267 ⚫ ⚫ 

73 bkp87t Thon Buri Market Sanam Luang 2 13.7463 100.3551 ⚫ ⚫ 

74 bkp88t Siam University 13.7187 100.4539  ⚫ 

75 bkp89t Ma Charean Roadside, Petcha Kasem 8 13.7056 100.3432 ⚫ ⚫ 

76 bkp90t Bang Bon 5 Market 13.6392 100.3730 ⚫ ⚫ 

77 bkp91t King Mongkut's University of 
Technology Thonburi 

13.6510 100.4967 ⚫ ⚫ 

78 bkp92t Phra Nakhon District Office 13.7642 100.4991  ⚫ 

79 bkp93t Huai Khwang District Office 13.7768 100.5795 ⚫ ⚫ 

80 bkp94t Khlong Toei District Office 13.7085 100.5837  ⚫ 

81 bkp95t Bang Sue District Office 13.8096 100.5379  ⚫ 

82 bkp96t Ladphrao District Office 13.8036 100.6075 ⚫ ⚫ 

83 bkp97t Lak Si District Office 13.8874 100.5792  ⚫ 

84 bkp98t Bang Khen District Office 13.8736 100.5958  ⚫ 

85 bkp99t Saphan Sung District Office 13.7689 100.6857 ⚫ ⚫ 

86 bkp100t Bueng Kum District Office 13.7852 100.6692  ⚫ 

87 bkp101t Khlong Sam Wa District Office 13.8599 100.7040 ⚫ ⚫ 

88 bkp102t Chomthong District Office 13.6778 100.4839 ⚫ ⚫ 

89 bkp103t Bang Phlat District Office 13.7940 100.5050  ⚫ 

90 bkp104t Bang Khae District Office 13.6963 100.4090 ⚫ ⚫ 

91 bkp105t Bang Khun Thian District Office 13.6599 100.4359 ⚫ ⚫ 

Sum of stations for PM concentrations interpolation method 68 91 
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Table 2 The meteorological stations. 
No. Station_ID Station_Name Latitude Longitude RH TEMP WS P VIS 
1 400201 Station Nakhon Sawan 15.6718 100.1324 ⚫ ⚫ ⚫ ⚫ ⚫ 

2 400301 Takfa Agromet 15.3494 100.5303 ⚫ ⚫ ⚫ ⚫ ⚫ 

3 402301 Chainat Agromet 15.1500 100.1833 ⚫ ⚫ ⚫ ⚫ ⚫ 

4 415301 Ayutthaya Agromet 14.5347 100.7250 ⚫  ⚫ ⚫ ⚫ 

5 417201 Nakorn Nayok 14.36222 101.39278   ⚫ ⚫ ⚫ 

6 419301 Pathum Thani Agromet 14.1000 100.6167 ⚫  ⚫ ⚫ ⚫ 

7 423301 Chachoengsao Agromet 13.5156 101.4583 ⚫ ⚫ ⚫ ⚫ ⚫ 

8 424301 Station Ratchaburi  13.4893 99.7924 ⚫ ⚫ ⚫ ⚫ ⚫ 

9 425201 Station Suphan Buri 14.4744 100.1389 ⚫ ⚫ ⚫ ⚫ ⚫ 

10 425301 U Thong Agromet 14.3036 99.8647 ⚫ ⚫ ⚫ ⚫ ⚫ 

11 426201 Station Lop Buri 14.7997 100.6450 ⚫ ⚫ ⚫ ⚫ ⚫ 

12 426401 Station Bua Chum 15.2667 101.1874 ⚫ ⚫ ⚫ ⚫ ⚫ 

13 429201 Station Pilot Station, 
Samut Prakan 

13.3939 100.5994 ⚫ ⚫ ⚫ ⚫ ⚫ 

14 429301 Samutprakan Agromet 13.5167 100.7617 ⚫ ⚫ ⚫ ⚫ ⚫ 

15 429601 Station Suvarnabhumi 
Airport 

13.6864 100.7675 ⚫ ⚫ ⚫ ⚫ ⚫ 

16 430201 Station Prachin Buri 14.0584 101.3693 ⚫ ⚫ ⚫ ⚫ ⚫ 

17 430401 Station Kabin Buri 13.9833 101.7072 ⚫ ⚫ ⚫ ⚫ ⚫ 

18 431201 Station Nakhon 
Ratchasima 

14.9683 102.0860 ⚫ ⚫ ⚫ ⚫ ⚫ 

19 431301 Pakchong Agromet 14.6439 101.3319 ⚫ ⚫ ⚫ ⚫ ⚫ 

20 431401 Station Chok Chai 14.7189 102.1686 ⚫ ⚫ ⚫ ⚫ ⚫ 

21 438201 Samut Songkram 13.40778 100.03222     ⚫ 

22 440201 Station Aranya Prathet 13.7000 102.5833 ⚫ ⚫ ⚫ ⚫ ⚫ 

23 440401 Station Sa Kaew 13.7889 102.0347 ⚫ ⚫ ⚫ ⚫ ⚫ 

24 450201 Station Kanchanaburi 14.0225 99.5358 ⚫ ⚫ ⚫ ⚫ ⚫ 

25 450401 Station Thong Phaphum 14.7422 98.6364 ⚫ ⚫ ⚫ ⚫ ⚫ 

26 451301 Nakornpathom Agromet 14.0117 99.9700 ⚫ ⚫ ⚫ ⚫ ⚫ 

27 455201 Station Bangkok 
Metropolis 

13.7264 100.5600 ⚫ ⚫ ⚫ ⚫ ⚫ 

28 455203 Station Bangkok Port 
Khlong Toei 

13.7069 100.5681 ⚫ ⚫ ⚫ ⚫ ⚫ 

29 455301 Bangna Agromet 13.6664 100.6061 ⚫ ⚫ ⚫ ⚫ ⚫ 

30 455601 Station Don Muang 
Airport 

13.9192 100.6050 ⚫ ⚫ ⚫ ⚫ ⚫ 

31 459201 Station Chon Buri 13.3667 100.9833 ⚫ ⚫ ⚫ ⚫ ⚫ 

32 459202 Station Ko Sichang 13.1617 100.8019 ⚫ ⚫ ⚫ ⚫ ⚫ 

  

 



394 

Table 2 (Continued). 
No. Station_ID Station_Name Latitude Longitude RH TEMP WS P VIS 
33 459203 Station Phatthaya 12.9200 100.8694 ⚫ ⚫ ⚫ ⚫ ⚫ 

34 459204 Station Sattahip 12.6833 100.9833 ⚫ ⚫ ⚫ ⚫ ⚫ 

35 459205 Station Laem Chabang 13.0769 100.8758 ⚫ ⚫ ⚫ ⚫ ⚫ 

36 465201 Station Phetchaburi 12.9994 100.0606 ⚫ ⚫ ⚫ ⚫ ⚫ 

37 478201 Station Rayong 12.6322 101.3436 ⚫ ⚫ ⚫ ⚫ ⚫ 

38 478301 Huai Pong Agromet 12.7333 101.1333 ⚫ ⚫ ⚫ ⚫ ⚫ 

39 480201 Station Chanthaburi 12.6167 102.1133 ⚫ ⚫ ⚫ ⚫ ⚫ 

40 480301 Phliu Agromet 12.5086 102.1731 ⚫ ⚫ ⚫ ⚫ ⚫ 

41 501201 Station Khlong Yai 11.7667 102.8833 ⚫ ⚫ ⚫ ⚫ ⚫ 

Sum of stations for Meteorological data interpolation method 39 37 40 40 41 
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