# ISOLATION AND CHARACTERIZATION OF ANTIMICROBIAL COMPOUNDS PRODUCED BY *STREPTOMYCES* SP. PKA51 AGAINST ANTIBIOTIC-RESISTANT BACTERIA



A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Microbiology Suranaree University of Technology Academic Year 2021 การแยกและการศึกษาคุณสมบัติของสารต้านจุลชีพที่สร้างโดย เชื้อสเตรปโตมัยซีสสายพันธุ์ PKA51 ต่อเชื้อแบคทีเรียดื้อยาปฏิชีวนะ



วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาจุลชีววิทยา มหาวิทยาลัยเทคโนโลยีสุรนารี ปีการศึกษา 2564

## ISOLATION AND CHARACTERIZATION OF ANTIMICROBIAL COMPOUNDS PRODUCED BY *STREPTOMYCES* SP. PKA51 AGAINST ANTIBIOTIC-RESISTANT BACTERIA

Suranaree University of Technology has approved this thesis submitted in partial fulfillment of the requirements for a Master's Degree.

Thesis Examining Committee

Limphirat Wannisa

(Dr. Wanwisa Limphirat) Chairperson

(Asst. Prof. Dr. Nawarat Nantapong) Member (Thesis advisor)

26.2

(Assoc. Prof. Dr. Nuannoi Chudapongse) Member

eevanoustanapan (Asst. Prof. Dr. Oratai Weeranantanapan)

Member

(Assoc. Prof. Dr. Chatchai Jothityangkoon) Vice Rector for Academic Affairs and Quality Assurance

51518

412P

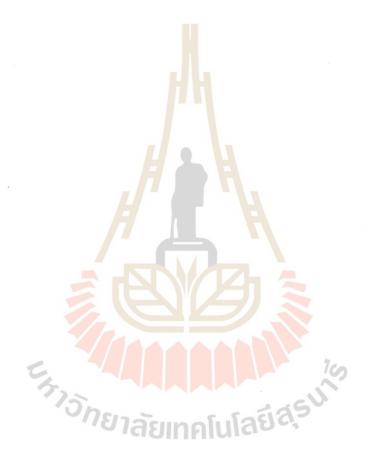
(Prof. Dr. Santi Maensiri) Dean of Institute of Science

พงศกร กันทะ : การแยกและการศึกษาคุณสมบัติของสารต้านจุลชีพที่สร้างโดยเชื้อสเตรปโต มัยซีสสายพันธุ์ PKA51 ต่อเชื้อแบคทีเรียดื้อยาปฏิชีวนะ (ISOLATION AND CHARACTERIZATION OF ANTIMICROBIAL COMPOUNDS PRODUCED BY *STREPTOMYCES* SP. PKA51 AGAINST ANTIBIOTIC-RESISTANT BACTERIA) อาจารย์ที่ปรึกษา : ผู้ช่วยศาสตราจารย์ ดร.นวรัตน์ นันทพงษ์, 98 หน้า.

้คำสำคัญ: สารออกฤทธิ์ทางชีวภาพ, Streptomyces, เชื้อจุลินทรีย์ดื้อยาปฏิชีวนะ

การใช้ยาปฏิชีวนะอย่างแพร่หล<mark>ายทางก</mark>ารแพทย์นำไปสู่การพัฒนาแบคทีเรียที่ดื้อต่อยา ้ปฏิชีวนะ การเกิดขึ้นอย่างรวดเร็วของแบ<mark>ค</mark>ทีเรีย<mark>ท</mark>ี่ดื้อยาปฏิชีวนะเป็นปัญหาด้านสาธารณสุขทั่วโลก เนื่องจากทำให้การรักษาล้มเหลว เกิดการ<mark>เ</mark>จ็บป่วย<mark>แ</mark>ละการเสียชีวิตในมนุษย์ ดังนั้นการค้นหาสารต้าน ้จุลชีพที่มีศักยภาพจากแหล่งธรรมช<mark>าติ</mark>จึงเป็นสิ่ง<mark>สำ</mark>คัญ สารต้านจุลชีพจำนวนมากถูกสร้างโดย เชื้อจุลินทรีย์ โดยเฉพาะอย่างยิ่งจาก streptomycetes แบคทีเรียเส้นใยที่อยู่ในสกุล Streptomyces เป็นที่รู้กันว่าเป็นแหล่งของย<mark>าปฏิ</mark>ชีวนะที่มีศักยภาพ ในปี พ.ศ. 2560 เชื้อ Streptomyces sp. PKA51 ถูกแยกได้จากดินป่าเต็งรังที่มหาวิทยาลัยเทคโนโลยีสุรนารี ประเทศไทย ในการศึกษานี้จาก ผลการวิเคราะห์ลำดับเบสของ 16S rDNA และการวิเคราะห์แผนภูมิสายวิวัฒนาการ พบว่าสามารถ ระบุสายพันธุ์ PKA51 ได้เป็นเชื้อ Streptomyces luteosporeus สายพันธุ์ PKA51 แสดงฤทธิ์ต้าน ้จุลซีพแบบกว้างต่อเชื้อ<mark>แบคทีเรี</mark>ยแกรมบวก เชื้อแบคทีเรียแ<mark>กรมลบ</mark> และเชื้อก่อโรคดื้อยาปฏิชีวนะ ้ดังนั้น จุดมุ่งหมายของการ<mark>ศึกษานี้คือการแยกและระบุลักษณะสา</mark>รประกอบต้านจุลชีพที่ผลิตโดยสาย พันธุ์ PKA51 สารออกฤทธิ์ทางชีวภาพของ PKA51 ถูกทำให้บริสุทธิ์โดยใช้เทคนิคโครมาโทรกราฟี แบบแผ่นบาง (TLC) และ คอลัมน์โครมาโทรกราฟี (CC) จากผล CC พบสารประกอบออกฤทธิ์ทาง ชีวภาพสองชนิดต้านเชื้อ methicillin-resistant *Staphylococcus aureus* (MRSA) DMST20654 จากผลการศึกษา อัลตราไวโอเลตและวิสิเบิลสเปกโทรสโคปี, โครมาโทรกราฟีของเหลว-แมสสเปกโตร เมตรี (LC-MS) และ นิวเคลียร์แมกเนติกเรโซแนนซ์สเปกโตรสโคปี (NMR) พบว่าสารประกอบออก ฤทธิ์ทางชีวภาพทั้ง 2 ชนิด ถูกระบุว่าเป็น thiolutin (C<sub>8</sub>H<sub>8</sub>N<sub>2</sub>O<sub>2</sub>S<sub>2</sub>) และ thiolutin dioxide (C<sub>8</sub>H<sub>8</sub>N<sub>2</sub>O<sub>4</sub>S<sub>2</sub>) ตามลำดับ สารประกอบออกฤทธิ์ทางชีวภาพได้รับการประเมินฤทธิ์ต้านจุลชีพต่อเชื้อ MRSA methicillin-resistant Staphylococcus epidermidis (MRSE) E. coli 2026 ทางคลินิก และ K. pneumoniae 1617 ทางคลินิก จากผลการศึกษาพบว่า thiolutin มีประสิทธิภาพในการ ้ยับยั้งการเจริญของเชื้อ MRSA DMST20654 ได้สูงสุด ที่ค่าความเข้มข้นต่ำสุดในการยับยั้ง (MIC) และความเข้มข้นต่ำสุดในการฆ่าเชื้อแบคทีเรีย (MBC) ที่ 4 และ 8 ไมโครกรัมต่อมิลลิลิตร ตามลำดับ

นอกจากนี้ thiolutin dioxide ยังแสดงศักยภาพสูงสุดในการต้านจุลชีพต่อเชื้อ MRSE โดยมีค่า MIC และ MBC ที่ 4 ไมโครกรัมต่อมิลลิลิตร ตามความรู้ที่ดีที่สุดของเรา นี่เป็นรายงานฉบับแรกที่สามารถ แยกและศึกษาคุณลักษณะของ thiolutin dioxide ที่ได้จากเชื้อ *S. luteosporeus* การค้นพบนี้ นำไปสู่การพัฒนาสารต้านจุลชีพที่มีศักยภาพสำหรับการใช้งานทางเภสัชกรรม




สาขาวิชาปรีคลินิก ปีการศึกษา 2564 PHONGSAKORN GANTA : ISOLATION AND CHARACTERIZATION OF ANTIMICROBIAL COMPOUNDS PRODUCED BY *STREPTOMYCES* SP. PKA51 AGAINST ANTIBIOTIC-RESISTANT BACTERIA. THESIS ADVISOR: ASST. PROF. NAWARAT NANTAPONG, Ph.D. 98 PP.

Keyword: Bioactive compound, Streptomyces, Antibiotic-resistant bacteria

The widespread use of antibiotics in medicine has led to the development of antibiotic-resistant bacteria. The rapid occurrence of antibiotic-resistant bacteria is a global public health concern since it causes treatment failure, morbidity, and mortality in humans. Thus, the discovery of potent antimicrobial compounds from natural sources is required. Several numbers of antimicrobial compounds are produced by microorganisms, especially from streptomycetes. The filamentous bacteria of the genus Streptomyces have been known as potential sources of antibiotics. In 2017, Streptomyces sp. PKA51 was isolated from dry dipterocarp forest soil at Suranaree University of Technology, Thailand. Based on 16S rDNA and phylogenetic tree, the strain PKA51 can be identified as Streptomyce's luteosporeus. The strain PKA51 showed broad-spectrum antimicrobial activity against Gram-positive bacteria, Gram-negative bacteria, and drug-resistant pathogens. The aim of this study was to isolate and identify antimicrobial compounds produced by the strain PKA51. Bioactive compounds of PKA51 were purified by using thin-layer chromatography (TLC), and column chromatography (CC). The CC results revealed two active compounds against methicillin-resistant Staphylococcus aureus (MRSA) DMST20654. Based on UV-Vis spectroscopy, liquid chromatography-mass spectrometry (LC-MS), and nuclear magnetic resonance (NMR) spectroscopy, the two bioactive compounds were identified as thiolutin ( $C_8H_8N_2O_2S_2$ ) and thiolutin dioxide ( $C_8H_8N_2O_4S_2$ ), respectively. Bioactive compounds were examined for antimicrobial activity against MRSA DMST20654, methicillin-resistant Staphylococcus epidermidis (MRSE), clinical isolate Escherichia coli 2026, and clinical isolate Klebsiella pneumonia 1617. The result showed that thiolutin was the most effective against MRSA DMST20654 with minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of 4 and 8

ug·ml<sup>-1</sup>, respectively. Furthermore, thiolutin dioxide exhibited the most potent antimicrobial activity against MRSE with MIC and MBC values of 4 ug·ml<sup>-1</sup>. To our best knowledge, this is the first report on isolation and characterization of thiolutin dioxide from *S. luteosporeus*. This finding leads to the development of potential antimicrobial agents for pharmaceutical applications.



School of Preclinical Sciences Academic Year 2021 Student's Signature Advisor's Signature

angur กัน ทะ

#### ACKNOWLEDGEMENTS

The thesis could not have been accomplished without the support, assistance, and input of numerous people. I wish to express my deep gratitude and appreciation to my thesis advisor, Asst. Prof. Dr. Nawarat Nantapong, who gave me the opportunity to do this wonderful research on the topic "Isolation and characterization of antimicrobial compounds produced by *Streptomyces* sp. PKA51 against antibiotic-resistant bacteria", which also helped me in doing a lot of research and I come to understand about so many new things. I would like to thank my thesis advisor for the support, guidance, patience, motivation, and immense knowledge. She guided and encouraged me to be a professional student and researcher.

Besides my thesis advisor, I would like to sincerely thank thesis committee: Dr. Wanwisa Limphirat, Assoc. Prof. Dr. Nuannoi Chudapongse, and Asst. Prof. Dr. Oratai Weeranantanapan for useful guidance, remarks, and helpful advice throughout the thesis-writing process. I also thank Dr. Yanling Hua for her suggestions and assistance with LC-MS and NMR analysis.

I want to thank the Development and Promotion of Science and Technology Talents Project (DPST) Scholarship for providing funding for this research. I want to thank the Suranaree University of Technology for the contribution of the laboratory and facilities for the development of this research.

Additionally, I want to thank my family and mates: Panjamaphon Chanthasena, Supavadee Kerdtoob, Wannika Pana, and Napatsorn Santapan for all of the excellent discussions and good times we've had in the past three years.

Phongsakorn Ganta

## CONTENTS

## Page

| ABSTRA  | CT IN THAI                                                  | I    |
|---------|-------------------------------------------------------------|------|
| ABSTRA  | CT IN ENGLISH                                               |      |
| ACKNO\  | WLEDGEMENTS                                                 | V    |
|         | VTS                                                         |      |
|         | TABLES                                                      |      |
| LIST OF | FIGURES                                                     | IX   |
| LIST OF | ABBREVIATIONS                                               | XIII |
| CHAPTI  |                                                             |      |
| I       | INTRODUCTION.                                               |      |
|         | 1.1 Background / Problem                                    |      |
|         | 1.2 Research objectives                                     |      |
|         | 1.3 Research hypothesis                                     |      |
|         | 1.4 Scope and limitations of the study                      | 3    |
| II      | LITERATURE REVIEWS                                          |      |
|         | 2.1 Streptomycetes                                          | 4    |
|         | 2.2 Secondary metabolites and antibiotics                   | 8    |
|         | 2.3 A brief history of antibiotics discovery and resistance | 9    |
| III     | MATERIALS AND METHODS                                       | 17   |
|         | 3.1 Materials                                               |      |
|         | 3.1.1 Bacterial strains                                     |      |
|         | 3.1.2 Growth medium                                         |      |
|         | 3.1.3 Antibiotics                                           |      |
|         | 3.1.4 Chemical compounds                                    |      |
|         | 3.1.5 Buffers                                               |      |
|         | 3.1.6 Primer                                                |      |

## CONTENTS (Continued)

| 3.1.7 Cloning vector                                           | 19  |
|----------------------------------------------------------------|-----|
| 3.1.8 Miscellaneous materials                                  | 20  |
| 3.1.9 Instruments and tools                                    | 20  |
| 3.2 Methods                                                    | 21  |
| 3.2.1 Isolation and main <mark>ten</mark> ance of soil isolate | 21  |
| 3.2.2 Identification of the strain PKA51                       | 22  |
| 3.2.2.1 Cultural and morphological identification              | 22  |
| 3.2.2.2 Genomic DNA extraction                                 | 22  |
| 3.2.2.2 16 <mark>5 rR</mark> NA gene amplification             | 23  |
| 3.2.2.4 Preparation of <i>E. coli</i> competent cells          | 24  |
| 3.2.2.5 Construction of recombinant plasmid                    |     |
| containing 16s rRNA gene and transformation                    | 24  |
| 3.2.2.6 DNA sequencing                                         | 25  |
| 3.2.2.7 Phylogenetic tree analysis                             | 26  |
| 3.3 Preparation of crude compound                              |     |
| 3.4 Antimicrobial assay                                        | 26  |
| 3.4.1 Perpendicular cross streak method                        | 26  |
| 3.4.2 Agar well diffusion method                               | 27  |
| 3.4.3 Minimum inhibitory concentration (MIC) and minimum       |     |
| bactericidal concentration (MBC)                               | 28  |
| 3.5 Purification of antimicrobial compounds                    | 29  |
| 3.5.1 Partial purification of bioactive compounds by TLC       | 29  |
| 3.5.2 Detection of bioactive compound by contact bioautograp   | y30 |
| 3.5.3 Column chromatography                                    | 31  |

## CONTENTS (Continued)

| Ρ | а | q   | e |
|---|---|-----|---|
| • | 9 | . > | - |

|      | 3.6 Character   | ization of bioactive compounds                             | 31 |
|------|-----------------|------------------------------------------------------------|----|
|      | 3.6.1           | JV-Visible spectroscopy                                    | 31 |
|      | 3.6.2           | Liquid chromatography – mass spectrometry (LC-MS)          | 31 |
|      | 3.6.31          | Nuclear magnetic resonance (NMR) spectroscopy              | 32 |
|      | 3.7 Statistical | analysis                                                   | 32 |
| IV   | RESULTS         |                                                            | 33 |
|      | 4.1 Prelimina   | ry antibacterial s <mark>creenin</mark> g of soil isolates | 33 |
|      | 4.2 Identificat | ion of soil isola <mark>te</mark> PKA <mark>5</mark> 1     | 35 |
|      | 4.3 Crude cor   | mpounds extraction and antimicrobial activity of           |    |
|      | a crude com     | pounds                                                     | 46 |
|      |                 | n of bioactive compounds of PKA51                          |    |
|      | 4.5 Character   | ization of bioactive compounds                             | 51 |
|      |                 | Bioactive compound 1                                       |    |
|      | 4.5.2           | Bioactive compound 2                                       | 57 |
|      | 4.6 Antimicro   | bial activity of purified bioactive compounds              | 62 |
| V    |                 | AND CONCLUSION                                             |    |
| REFE | RENCES          |                                                            | 70 |
| APPE | NDICES          |                                                            | 81 |
|      | APPENDIX A      | PREPARATION OF CULTURE MEDIUM                              | 82 |
|      | APPENDIX B      | INFORMATION OF CLINICAL ISOLATES                           | 90 |
|      | APPENDIX C      | 16s rRNA NUCLEOTIDE SEQUENCE                               | 91 |
|      | APPENDIX D      | MOBILE PHASE USED IN THIN-LAYER CHROMATOGRAPHY             | 92 |
|      | APPENDIX E      | CHARACTERIZATION OF BIOACTIVE COMPOUNDS                    | 95 |
| CURR | RICULUM VITAE   |                                                            | 98 |

## LIST OF TABLES

| Table |                                                                                            | Page |
|-------|--------------------------------------------------------------------------------------------|------|
| 2.1   | List of antibiotics discovered from various microorganisms                                 | 10   |
| 2.2   | Antibiotics approved by FDA since 2005                                                     | 15   |
| 3.1   | List of instruments used in th <mark>is</mark> study                                       | 20   |
| 3.2   | Compositions of the PCR reaction                                                           | 24   |
| 3.3   | Chemicals used for ligation of 16s rRNA gene                                               | 25   |
| 4.1   | Antimicrobial activity of th <mark>e</mark> strain PKA51                                   | 34   |
| 4.2   | Cultural characteristics of PKA51 on different media                                       | 40   |
| 4.3   | List of hits taxon of PK <mark>A51</mark> from Ez <mark>Bio</mark> Cloud 16S rDNA database | 42   |
| 4.4   | Antimicrobial activity of PKA51 crude extract                                              | 47   |
| 4.5   | <sup>1</sup> H NMR spectra of compound 1 and thiolutin                                     | 56   |
| 4.6   | <sup>13</sup> C NMR spectra of compound 1 and thiolutin                                    | 56   |
| 4.7   | <sup>1</sup> H NMR spectra of compound 2 and thiolutin dioxide                             | 61   |
| 4.8   | <sup>13</sup> C NMR spectra of compound 2 and thiolutin dioxide                            | 61   |
| 4.9   | MIC and MBC of compound 1 and compound 2 extracted from                                    |      |
|       | Streptomyces sp. PKA51 against antibiotic-resistant bacteria                               | 63   |

### LIST OF FIGURES

| Figure |                                                                                     | Page |
|--------|-------------------------------------------------------------------------------------|------|
| 2.1    | The cross-section of a streptomycetes colony showing substrate/                     |      |
|        | vegetative mycelium, aerial mycelium, and conidia, which                            |      |
|        | develops upward from the s <mark>ur</mark> face of colony                           | 4    |
| 2.2    | Ecology and distribution of streptomycetes in environments                          |      |
|        | Streptomycetes live as a symbiosis with other microorganisms                        |      |
|        | and organisms such as coral, sponges, mycorrhiza, plants,                           |      |
|        | insects, and fish scales                                                            | 6    |
| 2.3    | The life cycle of filam <mark>ent</mark> ous <i>Stre<mark>pto</mark>myces</i>       | 7    |
| 2.4    | An overview of th <mark>e an</mark> timicrobial resis <mark>tance</mark> mechanisms | 13   |
| 2.5    | Timeline of antibiotics discovery and resistance                                    | 16   |
| 3.1    | Map and multiple cloning site of pTG19-T PCR cloning vector                         | 19   |
| 3.2    | Description of PCR conditions                                                       | 23   |
| 3.3    | Streaking pattern for preliminary antimicrobial activity by                         |      |
|        | perpendicular cross streak method                                                   | 27   |
| 3.4    | Agar well diffusion method for determination of antimicrobial                       |      |
|        | activity of crude extract PKA51 against test pathogens                              | 28   |
| 3.5    | Contact bioautography for the detection of bioactive compounds                      |      |
|        | inhibited MRSA DMST20654                                                            | 30   |
| 4.1    | Antimicrobial activity of strain PKA51 against test pathogens by                    |      |
|        | perpendicular cross streak method                                                   | 34   |
| 4.2    | Morphological characteristics of the strain PKA51. a: branching                     |      |
|        | mycelium under a light microscope (400×), b: a large number                         |      |
|        | of disposable spores (400×), c: mycelium under a scanning                           |      |
|        | electron microscope (5000×), and d: SEM (10000×)                                    | 35   |

## LIST OF FIGURES (Continued)

| Figure | Pag                                                                                     | зe |
|--------|-----------------------------------------------------------------------------------------|----|
| 4.3    | Colony morphology of PKA51 on various agar media, a: ISP-2,                             |    |
|        | b: ISP-2, c: ISP-3, d: ISP-4, e: ISP-5, f: ISP-6, g: ISP-7, h: ISP-8, i: ISP-9,         |    |
|        | j: Starch casein agar SCA), k: Czapek's agar, and l: Bennet's agar                      | 6  |
| 4.4    | PCR products of 16s rRNA gene on 0.7% (w/v) agarose gel                                 | 1  |
| 4.5    | Neighbor-joining phylogenet <mark>ic t</mark> ree constructed using 16S rRNA gene       |    |
|        | sequences showing the relationships between <i>Streptomyces</i> sp. PKA51               |    |
|        | and other closely related species                                                       | 5  |
| 4.6    | Ethyl acetate crude extra <mark>c</mark> t of <i>Streptomyces</i> sp. PKA51             | 6  |
| 4.7    | The TLC chromatogram of PKA51 crude extract using chloroform and                        |    |
|        | methanol (9.9: 0.1, v/v) as a mobile phase5                                             | 50 |
| 4.8    | Contact bioautogr <mark>aph</mark> y of crude extra <mark>ct</mark> PKA51 on petri dish |    |
|        | seeded with MRSA DMST20654                                                              | 50 |
| 4.9    | Contact bioautography of (a) purified active fraction 1 and                             |    |
|        | (b) purified active fraction 2 against MRSA DMST20654                                   | 51 |
| 4.10   | General chemical structure of pyrrothine core                                           | 52 |
| 4.11   | Chromatogram for liquid chromatography-mass spectrometry                                |    |
|        | (LC-MS) of purified bioactive compound 1 in negative ion polarity                       |    |
|        | mode [M-H] <sup>-</sup> 5                                                               | 54 |
| 4.12   | Nuclear magnetic resonance (NMR) chromatogram of                                        |    |
|        | compound 1 extract from <i>S. luteosporeus</i> PKA51.                                   |    |
|        | (a) <sup>1</sup> H NMR spectrum, (b) <sup>13</sup> C NMR spectrum5                      | 5  |
| 4.13   | Chromatogram for liquid chromatography-mass spectrometry                                |    |
|        | (LC-MS) of purified bioactive compound 2 in negative ion polarity                       |    |
|        | mode [M-H] <sup>-</sup> 5                                                               | 59 |

## LIST OF FIGURES (Continued)

| Figure |                                                                             | Page |
|--------|-----------------------------------------------------------------------------|------|
| 4.12   | Nuclear magnetic resonance (NMR) chromatogram of                            |      |
|        | compound 1 extract from <i>S. luteosporeus</i> PKA51.                       |      |
|        | (a) <sup>1</sup> H NMR spectrum, (b) <sup>13</sup> C NMR spectrum           | 55   |
| 4.13   | Chromatogram for liquid chromatography-mass spectrometry                    |      |
|        | (LC-MS) of purified bioactive compound 2 in negative ion polarity           |      |
|        | mode [M-H] <sup>-</sup>                                                     | 59   |
| 4.14   | Nuclear magnetic resonan <mark>ce (NM</mark> R) chromatogram of             |      |
|        | compound 2 extract from <i>S. luteosporeus</i> PKA51.                       |      |
|        | (a) <sup>1</sup> H NMR spectrum, (b) <sup>13</sup> C NMR spectrum           | 60   |
| 4.15   | Chemical structure of (a) thiolutin, and (b) thiolutin dioxide              |      |
|        | produced by <i>S. luteosporeus</i> PKA51                                    | 62   |
| 5.1    | Chemical structure of dithiolopyrrolone compounds. The $R_1$ , $R_2$ ,      |      |
|        | and R <sub>3</sub> groups for each pyrrothine core will differ in structure | 67   |
|        | ะ<br>รักษาลัยเทคโนโลยีสุรมาร                                                |      |



## LIST OF ABBREVIATIONS

| AIA      | = Actinomycetes isolation agar                                      |
|----------|---------------------------------------------------------------------|
| CFU      | = Colony forming unit                                               |
| cm       | = Centimeter                                                        |
| DI water | = Deionized water                                                   |
| DNA      | = Deoxyribose nucleic <mark>ac</mark> id                            |
| ISP      | = International <i>Streptomyces</i> Project Medium                  |
| MDR      | = Multi-drug resistant                                              |
| MHA      | = Mueller-Hinton Agar                                               |
| MRSA     | = Methicillin- <mark>resi</mark> stant <i>Staphylococcus aureus</i> |
| MRSE     | = Methicillin-resistant <i>Staphylococcus epidermidis</i>           |
| ESBL     | = Extend spectrum beta-lactamase                                    |
| WHO      | = World health organization                                         |
| nm       | = Nanometer                                                         |
| mm       | = Millimeter                                                        |
| PCR      | = Millimeter<br>= Polymerase chain reaction                         |
| rRNA     | = Ribosomal ribonucleic acid                                        |
| °C       | = Degree Celsius                                                    |
| h        | = Hour                                                              |
| g        | = Gram                                                              |
| mg       | = Milligram                                                         |
| min      | = Minute                                                            |

## LIST OF ABBREVIATIONS (Continued)

| AMU | = Atomic mass unit                   |
|-----|--------------------------------------|
| Sec | = Second                             |
| μg  | = Microgram                          |
| μι  | = Microliter                         |
| ml  | = Milliliter                         |
| rpm | = Round per minute                   |
| TBE | = Tris-borate-EDTA                   |
| m/z | = Mass to charge ration              |
| v/v | = Volume by volume                   |
| w/v | = Weight by volume                   |
| OD  | = Optical density                    |
| λ   | = Lambda                             |
| MIC | = Minimum inhibitory concentration   |
| MBC | = Minimum bactericidal concentration |
| MCS | = Multiple cloning site              |
|     | ะ ราวอักยาลัยเทคโนโลยีสุรมา          |

XIV

# CHAPTER I

#### 1.1 Background / Problem

The discovery of penicillin, world's first antibiotic, by Sir Alexander Fleming was reported in early 1928. Since then, several antibiotics have been continuously discovered and developed for the treatment of infectious diseases. However, the widespread use of antibiotics has led to the development of antibiotic-resistant organisms (Chandra and Kumar, 2017; Gaynes, 2017; Gurung et al., 2009; Walsh, 2003). Antibiotic-resistant bacteria such as methicillin-resistant *Staphylococcus aureus* (MRSA), vancomycin-resistant *S. aureus* (VRSA), multidrug-resistant *Mycobacterium* tuberculosis (MDR-MTB) extended-spectrum beta-lactamase (ESBL) (Enterococcus faecium, Escherichia coli, Salmonella enterica, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter sp.), and carbapenem-resistant Enterobacteriaceae are a serious public health concern worldwide. (Li and Webster, 2018; Selvameenal et al., 2009; Walsh, 2003). According to the World Health Organization (WHO), MRSA and ESBL are particularly harmful antibiotic-resistant bacteria due to their high morbidity and fatality rates. As a result, the demand for antimicrobial compounds has grown due to their potential application in the pharmaceutical industry. Antibiotics are the most important category of fermentation products, with the highest demand. In the biotechnological process, microbial fermentation is used the for economic production of antibiotics by submerged-state fermentation (Shyamkumar et al., 2014).

It has been demonstrated that a wide range of bioactive compounds are isolated from soil microorganisms (Bérdy, 2005). Thus, soil microorganisms have become a major source of novel antimicrobial compounds. A number of antibiotics have been reported from soil microorganisms, 70% from actinobacteria and 30% from filamentous fungi. It has been reported that more than 12,000 commercial antibiotic drugs are produced by the genus *Streptomyces* (Nandhini et al., 2018; Rathod et al., 2018). Therefore, *Streptomyces* spp. are an important natural source of novel antimicrobial compounds (Bunyapaiboonsri et al., 2016; Chandra and Kumar, 2017; Gaynes, 2017).

The members of the genus *Streptomyces* are Gram-positive filamentous bacteria with high C+G content (>55%) in their genome. They produce layers of aerial mycelium with branches. Aerial mycelium can be divided into a long chain of spores through cell division. *Streptomyces* spp. can be found in diverse habitats of soil, freshwater, marine water, and extreme environment (Barka et al., 2015; Gebreyohannes et al., 2013; Hasani et al., 2014; Flärdh and Buttner, 2009). In general, *Streptomyces* spp. have the ability to produce a wide variety of primary and secondary metabolites which are commercially valuable as enzymes, amino acids, bioactive compounds, antibacterial agents, antifungal agents, antiparasitic agents, anticancer compounds, insecticides, pesticides, and herbicides (Al-Dhabi et al., 2016; Thumar et al., 2010).

To address the issue of antibiotic-resistant bacteria, it is critical to search for a novel antibiotic against drug-resistant strains. Thus, the aim of this study is to isolate and identify the antimicrobial compounds of soil isolate *Streptomyces* sp. PKA51. The bioactive compounds of strain PKA51 were purified and characterized. Bioactive agents were also evaluated for antimicrobial activity against antibiotic-resistant bacteria.

## 1.2 Research objectives

1.2.1 To identify a soil isolate, *Streptomyces* sp. PKA51.

1.2.2 To evaluate the antimicrobial activity of crude extract of *Streptomyces* sp. PKA51 against drug-resistant bacteria.

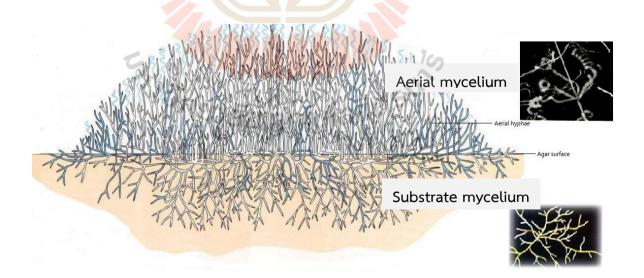
1.2.3 To purify and characterize bioactive compounds of *Streptomyces* sp. PKA51.

1.2.4 To evaluate the antimicrobial activity of purified bioactive compounds.

#### 1.3 Research hypothesis

Purified bioactive compounds of *Streptomyces* sp. PKA51 exhibit antimicrobial activity against tested pathogens.

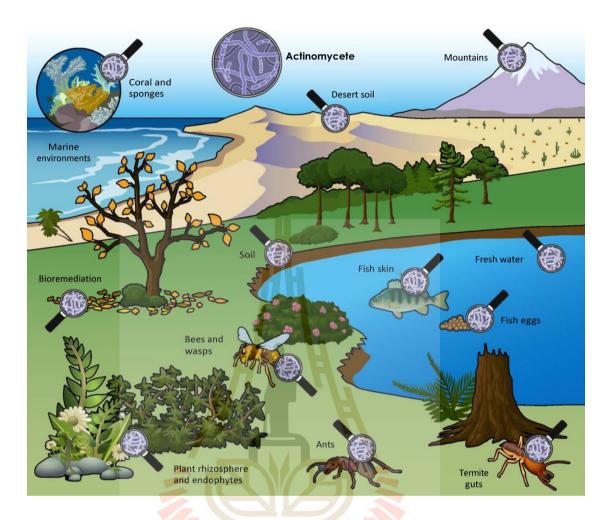
#### 1.4 Scope and limitations of the study

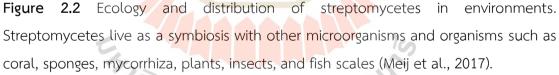

This research involved the identification and evaluation of *Streptomyces* sp. PKA51. The strain PKA51 was isolated from terrestrial soil, Suranaree University of Technology, Nakhon Ratchasima province, Thailand (Khowangklang, 2017). The antimicrobial-producing *Streptomyces* was identified by cultural characteristics and 16s rRNA gene sequence. The *Streptomyces* sp. PKA51 was used for the extraction of crude compound. The antimicrobial activity of crude compound against Gram-positive and Gram-negative pathogens were determined by agar well diffusion and contact bioautography. The crude compounds were purified by thin-layer chromatography and column chromatography. The purified bioactive compounds were characterized by using UV-Visible spectroscopy, liquid chromatography-mass spectrometry (LC-MS), and nuclear magnetic resonance (NMR) spectroscopy. The MIC and MBC of purified bioactive compounds were also investigated.



# CHAPTER II LITERATURE REVIEWS

#### 2.1 Streptomycetes


Streptomycetes are aerobic, chemoorganotrophic, Gram-positive filamentous bacteria with high cytosine and guanine (C + G) content in the genome. Streptomycetes belong to the Phylum: Actinobacteria, Class: Actinobacteria, Order: Streptomycetales, Family: Streptomycetaceae, and Genus: *Streptomyces*. Streptomycete colonies usually grow with substrate mycelial and produce conidia from reproductive structures called aerial mycelial. Aerial mycelium is emerged upward from the surface of the colony into the air (Figure 2.1). They could produce geosmin and siderophore in terrestrial environments. Geosmin is a volatile organic compound which causes earth smell and musty odors in soil (Bhatti et al., 2017; Flärdh and Buttner, 2009; Li et al., 2016; Sharma and Manhas, 2020; Usha Nandhini et al., 2018).




**Figure 2.1** The cross-section of a streptomycetes colony showing substrate/vegetative mycelium, aerial mycelium, and conidia, which develops upward from the surface of a colony (Li et al., 2016).

Streptomycetes can be found in diverse environments, including terrestrial soil, freshwater, marine water, and unexplored habitat (Arifuzzaman et al., 2010; Chandra and Kumar, 2017; Gebreyohannes et al., 2013; Gurung et al., 2009; Kumar et al., 2014). It has been reported that streptomycetes can be found in extreme environments such as Tharban hot spring, Mount Everest, Himalayan region, Egyptian desert, Saudi Arabia desert, Indian saline desert, volcanic cave, the lake of Ghana, and mangrove soil (Al-Dhabi et al., 2016; Gurung et al., 2009; Hozzein et al., 2011; Ser et al., 2015; Nithya et al., 2018; Radhakrishnan et al., 2007; Radhakrishnan et al., 2010; Selim et al., 2021; Tawiah et al., 2012; Thumar et al., 2010). Most of streptomycetes live as a symbiosis with fungi, animals, plants, insects, coral, and sponges (Figure 2.2). The interactions between streptomycetes and other hosts give benefit for the production of secondary metabolites such as, protection from other microorganisms and degradation of the chemical composition of organic compound polymers (lignocellulose). As a result, streptomycetes can survive in nature for a long period (Meij et al., 2017).

The most important characteristic of streptomycetes is the ability to create secondary metabolites with antimicrobial properties. Based on the number of species identified, one of the major genera of actinomycetes is *Streptomyces*. It has been shown that nearly two-thirds of the naturally occurring antimicrobial substances are derived from *Streptomyces* sp. (Kumar et al., 2019; Sharma and Manhas, 2019). *Streptomyces* spp. can grow in various environments. It has the ability to produce an aerial mycelium layer that can differentiate into a chain of spores.





The life cycle of *Streptomyces* begins when environmental conditions are favorable such as carbon source, nitrogen source, temperature, oxygen, pH, and moisture. Spores fall on the appropriate environment and germinate (formation of germ tube). Germ tubes are developed into mycelium by tip elongation and branching, called substrate mycelium. To obtain nutrients, the tip can secrete exo-enzymes to break down the chemical composition of organic compounds (chitin, cellulose, lignocellulose). When nutrients are scarce, autolytic degradation via programmed cell death occurs to provide nutrients for the development of aerial mycelium. Substrate mycelium starts to differentiate into aerial mycelium. The process of sporulation begins at the tips of aerial mycelium. Chromosome segregation, septation, and cell division occur during the formation of reproductive aerial mycelium, resulting in a lengthy chain of spores. Each spore develops into a mature spore containing a single chromosome. To penetrate the surface tension of the agar medium and grow into the air, the mycelium was covered with a hydrophobic sheath. Finally, the reproductive aerial mycelium differentiates to form chains of spores (Figure 2.3) (Flärdh and Buttner, 2009; Hasani et al., 2014; Meij et al., 2017).

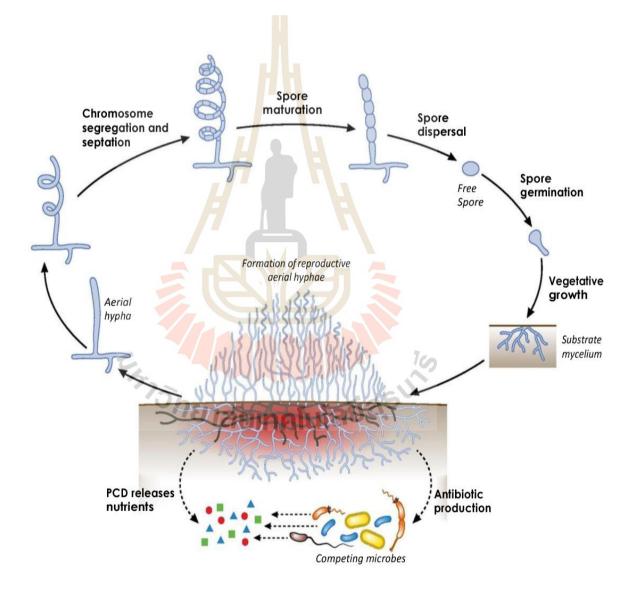



Figure 2.3 The life cycle of filamentous Streptomyces (Meij et al., 2017).

#### 2.2 Secondary metabolites and antibiotics

Secondary metabolites are small organic molecules produced by an organism that does not directly participate in cell growth. The excretion of secondary metabolites is not related to the development of cell growth and reproduction of microorganisms. Most of the microbes such as bacteria, filamentous fungi, unicellular algae, and plankton could produce several types of secondary metabolites. Secondary metabolites derived from microorganisms have various biological properties including bioactive compounds, antibacterial agents, antifungal agents, antiparasitic agents, anticancer compounds, insecticides, pesticides, herbicides, toxic substances, metaltransporting agents, sex hormones, bacterial pigments, immunomodulators, growth factors, and immunosuppressive agents. These substances are usually produced during the late exponential phase and stationary phase of cell growth (Al-Dhabi et al., 2016; Gokulan et al., 2014; Jakubiec-Krzesniak et al., 2018). Secondary metabolites prevent streptomycetes from other microorganisms and increase their survival rate. Secondary metabolites can impede the growth of other microorganisms (Hasani et al., 2014; Meij et al., 2014).

The most unique characteristic of the genus *Streptomyces* is the ability to create antibacterial secondary metabolites. Antimicrobial compounds or antibiotics have been used to prevent infectious diseases in human, livestock, veterinary, and crop production (Chandra and Kumar, 2017; Gebreyohannes et al., 2013). Most *Streptomyces* can produce a wide variety of antibiotics including aminoglycosides (streptomycin), anthracyclines, beta-lactams, glycopeptides, kanamycin, viomycin, macrolides (erythromycin), tetracyclines, chloramphenicol, neomycin, nystatin, ivermectin, amphotericin, rifamycin, polyenes, non-polyenes, and cycloheximide (Basavaraj et al., 2010; El-nagger et al., 2017).

About 22,500 secondary metabolites have been discovered so far (Bérdy, 2005; Radhakrishnan et al., 2010). Approximately, 12,000 substances of antibiotics are produced by actinomycetes especially from the genus *Streptomyces* (70%), nonactinomycete bacteria, and filamentous fungi (30%) (Basavaraj et al., 2010; Hasani et al., 2014; Selvameenal et al., 2009). *Streptomyces* spp. is thought to synthesize over 100,000 different compounds (Arifuzzaman et al., 2010; Al-Dhabi et al., 2016; Dasari et al., 2012; Rathod et al., 2018). It has been reported that less than 0.1% of global soil has been screened for antimicrobial compounds in the last 50 years (Shetty et al., 2014). As a result, several antimicrobial substances are yet unidentified.

#### 2.3 A brief history of antibiotics discovery and resistance

The world's first antibiotic "penicillin" was found in 1928s by Sir Alexander Fleming, a microbiologist at St. Mary's Medical School of London University. On an agar plate, Fleming observed that there have no bacteria growing in the clear zone around the fungus colonies. Fleming noticed that organic substances excreted by fungal colonies might suppress bacterial growth. After that, the fungal colony was isolated and identified as *Penicillium notatum*, later reclassified as *P. rubens* (Houbraken et al., 2011). In 1942s, the bioactive compound was purified and identified as Penicillin. In the 1945s, the purification procedure eventually results in penicillin antibiotic mass production and distribution. Penicillin was introduced into medical used and revolutionized the treatment of infectious diseases caused by Gram-positive pathogens such as staphylococci and streptococci (Streptococcal meningitis) (Aminov, 2014; Chandra and Kumar, 2017; Durand et al., 2019; Gaynes, 2017). The history of antibiotics produced by the genus *Streptomyces* began with the identification of streptothricin and streptomycin between the years 1942 and 1943 (Hasani et al., 2014). During the years 1940-1970, various types of antibiotics were screened for their antimicrobial activities and introduced to clinical use. Several types of antibiotics were discovered from various microorganisms (Table 2.1).

| Antibiotic        | Microorganism/source                              | Discovery year |
|-------------------|---------------------------------------------------|----------------|
| Penicillin        | Penicillium notatum                               | 1929           |
| Griseofulvin      | Penicillium griseojitlvum                         | 1939           |
| Tyrothricin       | Bacillus brevis                                   | 1939           |
| Actinomycin       | Streptomyces fradiae                              | 1940           |
| Streptomycin      | Streptomyces griseus                              | 1944           |
| Antimycin A       | Streptom <mark>yc</mark> es kitazawensis          | 1945           |
| Bacitracin        | Bacillus <mark>sub</mark> tilis                   | 1945           |
| Cephalosporins    | Strept <mark>omyces</mark> clavuligerus           | 1945           |
| Chlortetracycline | Streptomyces aureofaciens                         | 1945           |
| Chloramphenicol   | Streptomyces venezualae                           | 1947           |
| Neomycin          | Str <mark>ept</mark> omyces <mark>fra</mark> diae | 1949           |
| Nystatin          | Streptomyces noursei                              | 1949           |
| Oxytetracycline   | Streptomyces rimosus                              | 1949           |
| Paromomycin       | Streptomyces rimosus                              | 1950           |
| Novobiocin        | Streptomyces niveus                               | 1950           |
| Mytomycin C       | Streptomyces lavendulae                           | 1950           |
| Viomycin          | Streptomyces vinaceus                             | 1951           |
| Tetracyclines     | Streptomyces aureofaciens                         | 1952           |
| Erythromycin      | Streptomyces erythraeus                           | 1952           |
| Spiramycin        | Streptomyces ambofaciens                          | 1952           |
| Amphotricin B     | Streptomyces nodosus                              | 1953           |
| Cycloserine       | Streptomyces garyphalus                           | 1954           |
| Oleandomycin      | Streptomyces antibioticus                         | 1954           |
| Cycloserin        | Streptomyces orchidaccus                          | 1956           |
| Vancomycin        | Streptomyces orientalis                           | 1956           |
| Kanamycin         | Streptomyces kanamyceticus                        | 1957           |
| Rifamycin         | Streptomyces mediterranei1                        | 1957           |
| Polyoxins         | Streptomyces cacaoi                               | 1960           |

 Table 2.1 List of antibiotics produced by various microorganisms.

| Antibiotic             | Microorganism/Source                                     | Discovery year |
|------------------------|----------------------------------------------------------|----------------|
| Spectinomycin          | Streptomyces spectabilis                                 | 1962           |
| Streptogramin          | Streptomyces graminofaciens                              | 1962           |
| Gentamycin             | Micromonospora purpurea                                  | 1963           |
| Lincomycin             | Streptomyces lincolensis                                 | 1964           |
| Candicidin             | Streptomyces griseus                                     | 1965           |
| Tobramycin             | Streptom <mark>yce</mark> s tenebrarius                  | 1965           |
| Clindamycin            | Streptom <mark>yce</mark> s lincolensis                  | 1966           |
| Monensin               | Strepto <mark>myces</mark> cinnamonensis                 | 1967           |
| Actinomycin D          | Strepto <mark>myces</mark> antibioticus                  | 1968           |
| Fosfomycin             | Streptomyces <mark>f</mark> radiae                       | 1969           |
| Ribostamycin           | Stre <mark>pto</mark> myces r <mark>ibo</mark> sidificus | 1970           |
| Bambermycin            | Streptomyces bambergiensis                               | 1974           |
| Clavulanic acid        | Streptomyces clavuligerus                                | 1974           |
| Nikkomycin             | Streptomyces tendae                                      | 1976           |
| Thienamycin            | Streptomyces cattleya                                    | 1976           |
| Lasalocid              | Streptomyces lasaliensis                                 | 1977           |
| Dekamycin              | Streptomyces fradiae                                     | 1977           |
| Avermectic             | Streptomyces avermitilis                                 | 1978           |
| Daptomycin             | Streptomyces roseosporus                                 | 1980           |
| Aureofacin             | Streptomyces oreofaciens                                 | 1981           |
| Oligomycin             | Streptomyces diastachromogenes                           | 1987           |
| Salimomycin            | Streptomyces albus                                       | 1987           |
| Retapamulin            | Fungi                                                    | 2007           |
| Ceftobiprole Medocaril | Fungi                                                    | 2008           |
| Ceftaroline fosamil    | Fungi                                                    | 2010           |

Table 2.1 List of antibiotics produced by various microorganisms (Continued).

Source: Chandra and Kumar, 2017; Hasani et al., 2014; wanbanjob, 2008

Many antibiotics have been introduced to treat various infectious diseases. Millions of people worldwide use antibiotics in agriculture and medicine. According to World Health Organization (WHO), Infectious Disease Society of America, and Centers for Disease Control and Prevention (CDC), the widespread use and misuse of antibiotics has led to the development of antibiotic-resistant bacteria. More than two million people worldwide have been reported to be infected with antibiotic-resistant bacteria. It has been estimated that antibiotic resistance is responsible for 25,000 and 23,000 deaths each year in the USA and EU (Aminov, 2010; Dahal and Chaudhary, 2018; Uzair et al., 2018). The emergence of bacterial resistance to various antibiotics is a serious medical problem that leads to the failure of antibiotic treatment in humans (Gurung et al., 2009). Pathogenic bacteria could resist to antibiotics by four main mechanisms include (1) limiting uptake of a drug by reduced membrane permeability, (2) inactivation of antibiotics, (3) modification of a drug target, and (4) increased efflux pump (figure 2.4) (Aminov, 2010; Blair et al., 2015; Dahal and Chaudhary, 2018; Hasani et al., 2014; Lambert, 2002; Reygaert, 2018). Recently, antibiotic-resistant bacteria such as methicillin-resistant *Staphylococcus aureus* (MRSA), vancomycin-resistant *S. aureus* (VRSA), vancomycin-resistant Enterococci (VRE), multidrug-resistant Mycobacterium *tuberculosis* (MDR-MTB), extended-spectrum beta-lactamase producing bacteria (ESBL) (Enterococcus faecium, Escherichia coli, Klebsiella pneumoniae, Salmonella enterica, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter sp.) are developing resistant to almost all antibiotics (Chanthasena and Nantapong, 2016; Dahal and Chaudhary, 2018; Kaur et al., 2015; Rajivgandhi et al., 2018; Selvameenal et al., 2009). MRSA and ESBL (K. pneumoniae, E. coli, and P. aeruginosa) are considered as dangerous antibiotic-resistant bacteria because they can cause morbidity and mortality in humans and animals (Kemung et al., 2018; Singh et al., 2018).

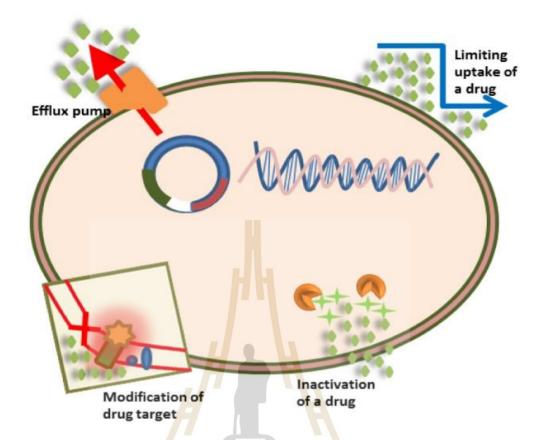



Figure 2.4 An overview of the antimicrobial resistance mechanisms (Reygaert, 2018).

The antibiotic resistance has emerged in the late 1940s when resistance to penicillin (beta-lactam antibiotics) had appeared in *S. aureus*. The penicillinase enzyme (beta-lactamase) produced by the resistance strain degrades the beta-lactam ring, making antibiotics ineffective. In 1950, to address the issue of penicillin-resistant *S. aureus*, penicillinase-stable methicillin was developed for clinical use. Methicillin was then used to treat infectious diseases caused by beta-lactam-resistant *S. aureus*. In 1951, methicillin-resistant *S. aureus* (MRSA) was first isolated in the UK. It has been reported to resist almost all beta-lactams and other antibiotic classes. The PBP2 gene encodes the PBP2 enzyme involved in cell wall formation that has a low binding affinity for beta-lactam antibiotics, reducing the inhibitory effect of antibiotics (Saga and Yamaguchi, 2009). Many cases of MRSA infections have been reported in hospitals around the world and become a significant global public health concern. In 1961, vancomycin was first isolated from *Streptomyces orientalis* and became the most potent antibiotic to treat MRSA infection (Kemung et al., 2018; Walsh, 2003). However,

S. aureus began to develop resistance to vancomycin, resulting in the development of vancomycin-intermediate S. aureus (VISA). VISA was first reported in Japan in the 1990s. On the other hand, vancomycin-resistant enterococci (VRE) were first isolated in the US in 1986. VRE (Enterococcus faecalis and Enterococcus faecium) demonstrated high-level resistance to vancomycin. In the US, VRE has been shown to transfer resistance genes to VISA by horizontal gene transfer (HGT), and vancomycinresistant S. aureus (VRSA) emerged in 1996. Since then, the combination of antibiotics such as guinupristin/dalfopristin, and linezolid/daptomycin were used to treat MRSA, VRE, and VRSA infections (Sharma and Manhas, 2019; Walsh, 2003). Despite the fact that numerous antibiotics were discovered and introduced into clinical use during the twentieth century, only a few antibiotics are currently effective due to an increase in the number of bacteria acquiring antibiotic resistance (Figure 2.5). According to the US Food and Drug Administration (FDA), only nine new antibiotics have been approved for clinical use during the 2000s (Table 2.2). The decreasing number of drugs approved for clinical use suggested that the discovery of antimicrobial agents is urgently needed (Ventola, 2015).

Therefore, the emergence and spread of antimicrobial resistance is a global public health concern. Isolation and characterization of a novel antibiotic are required to combat the problem of antibiotic-resistant bacteria.



| Antibiotics                        | Drug class                   | Type of        | Year     |
|------------------------------------|------------------------------|----------------|----------|
|                                    |                              | patients       | approved |
| Tigecycline                        | Tetracycline                 | >18 years      | 2005     |
| (Tygacil, Pfizer)                  |                              |                |          |
| Doripenem                          | Carbapenem                   | Adult patients | 2007     |
| (Doribax. Shionogi)                |                              |                |          |
| Telavancin                         | Glycopeptide                 | Adult patients | 2008     |
| (Vibativ, Theravance<br>Biopharma) |                              |                |          |
| Ceftaroline                        | Cep <mark>hal</mark> osporin | Adult patients | 2010     |
| (Teflaro, Cerexa)                  | H                            |                |          |
| Tedizolid                          | Oxazolidinone                | Adult patients | 2014     |
| (Sivextro, Cubist 🛛 🗧              |                              |                |          |
| Pharmaceuticals)                   |                              |                |          |
| Dalbavancin                        | Glycopeptide                 | Adult patients | 2014     |
| (Dalvance, Durata)                 |                              | S              |          |
| Oritavancin                        | Glycopeptide                 | Adult patients | 2014     |
| (Orbactiv, Medicines)              |                              |                |          |
| Ceftolozane/tazobactam             | Cephalosporin/beta-          | Adult patients | 2014     |
| (Zerbaxa, Cubist                   | lactamase inhibitor          |                |          |
| Pharmaceuticals)                   |                              |                |          |
| Ceftazidime/avibactam              | Cephalosporin/beta-          | Adult patients | 2015     |
| (Avycaz, Cerexa Inc.)              | lactamase inhibitor          |                |          |

Table 2.2 Antibiotics approved by FDA since 2005.

Source: Ventola, 2015

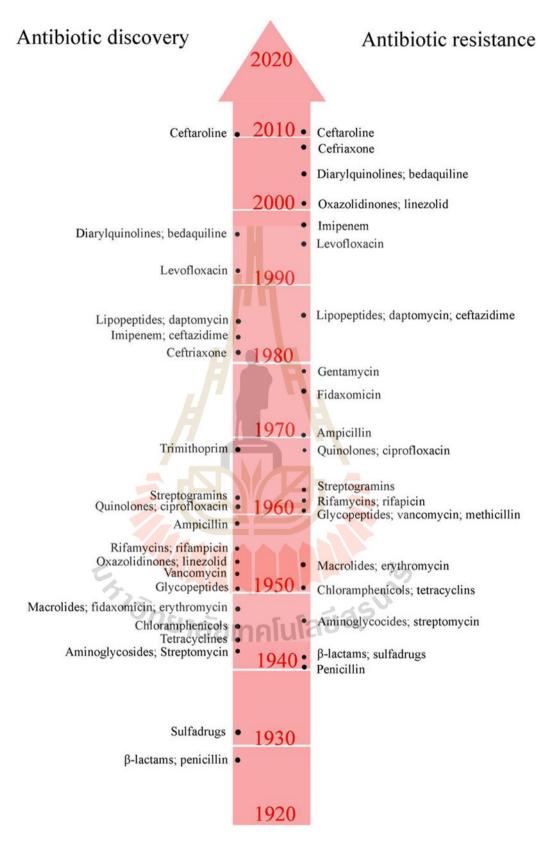



Figure 2.5 Timeline of antibiotics discovery and resistance (Dahal et al., 2018).

# CHAPTER III MATERIALS AND METHODS

#### 3.1 Materials

#### 3.1.1 Bacterial strains

The test pathogens used in this research were Gram-positive bacteria: *Bacillus subtilis* TISTR008, *Bacillus cereus* TISTR684, *Staphylococcus epidermidis* TISTR518, *Staphylococcus aureus* ATCC1466, methicillin-resistant *S. aureus* (MRSA) DMST20654, and methicillin-resistant *S. epidermidis* (MRSE). The test pathogens were Gram-negative bacteria: *Escherichia coli* TISTR780, *Enterobacter aerogenes* TISTR1540, *Serratia marcescens* TISTR1354, *Salmonella* Typhimurium TISTR292, *Proteus mirabilis* TISTR100, *Pseudomonas aeruginosa* TISTR1287, clinical isolate *E. coli* 2026, and clinical isolate *Klebsiella pneumoniae* 1617. These microorganisms were obtained from the American Type Culture Collection (ATCC), Thailand Institute of Scientific and Technological Research (TISTR), Department of Medical Sciences Thailand (DMST), and Suranaree University of Technology hospital. All inoculums of test pathogens were prepared by growing cells in Luria-Bertani (LB) broth or Mueller Hinton broth (MHB) (Himedia, India) at 37 °C for 18-24 h.

#### 3.1.2 Growth medium

In this study, the following growth media were used:

Luria-Bertani (LB) medium, Bennet's agar, Czapek's agar, Starch casein agar (SCA), Mueller-Hinton (MH) medium, International *Streptomyces* Project (ISP) medium including tryptone yeast extract agar (ISP-1), yeast malt agar (ISP-2), oatmeal agar (ISP-3), inorganic salt starch agar (ISP-4), glycerol asparagine agar base (ISP-5), peptone yeast extract iron agar (ISP-6), tyrosine agar (ISP-7), nitrate agar (ISP-8), and carbon utilizing agar (ISP-9). All chemicals and trace elements used are detailed in Appendix A.

#### 3.1.3 Antibiotics

The following antibiotics were used in this study:

- Ampicillin (Bio Basin Inc, Canada)
- Vancomycin (Sigma-Aldrich, Germany)
- Tetracycline (Sigma-Aldrich, United Kingdom)

The stock solution of 512 µg·ml<sup>-1</sup> of vancomycin and tetracycline was prepared by dissolving in sterile DI water. The sterile syringe filter with a 0.20 µm pore size (Corning® I Sigma-Aldrich, Germany) was used for filtration and sterilization of antibiotics. During this research, all antibiotics were stored as dry powders at 2-8 °C.

#### 3.1.4 Chemical compounds

All chemical compounds used in this study were analytical reagent (AR)

grade:

- Acetic acid glacial 99.7% from Loba Chemie, India
- Acetone from Carlo Erba<sup>™</sup>, United Kingdom
- Acetonitrile from RCI Labscan, Ireland
- Benzene from Loba Chemical, India
- Butan-1-ol from Carlo Erba<sup>™</sup>, United Kingdom
- Chloroform from RCI Labscan, Ireland
- Dichloromethane 99.5% from Loba Chemie, India
- Dimethyl sulfoxide from Fisher Scientific, United Kingdom
- Ethyl alcohol 95%, from Fisher Scientific, United Kingdom
- Ethyl acetate, from RCI Labscan, Ireland
- Glycerol 99.5% from Loca Chemie, India
- Iso-amyl alcohol from VWR Chemicals BDH®, France
- Methanol from RCI Labscan, Ireland
- n-Hexane 95% from RCI Scan, Ireland
- Isopropanol from Qrëc, Newzealand

#### 3.1.5 Buffers

- Lysis buffer containing 400 mM Tris-HCl (pH 8.0), 60 mM EDTA (pH 8.0), 150 mM NaCl, 1% (w/v) sodium dodecyl sulfate (SDS).

- 10X TBE buffer (stock solution) for gel electrophoresis containing 108 g Trisborate, 55 g of boric acid, 900 ml of distilled water, 40 ml of 0.5 M EDTA solution (pH 8.3), and adjust final volume to 1,000 ml. - TE buffer containing 10 mM Tris-HCL, 0.1 mM EDTA (pH 8.0)

#### 3.1.6 Primers

The universal primers were used to amplify the 16s rRNA gene of the stain PKA51. The following primers were used:

- 27 Forward, sequence 5'-AGAGTTTGATCCTGGCTCAG-3'
- 1525 Reverse, sequence 5'-AAAGGAGGTGATCCAGCC-3'
- M13 Forward, sequence 5'-GTAAAACGACGGCCAGT-3'
- M13 Reverse, sequence 5<sup>'</sup>-GCGGATAACAATTTCACACAGG-3<sup>'</sup>

#### 3.1.7 Cloning vector

The pTG19-T PCR cloning vector (Vivantis, Malaysia) was used for 16s rRNA gene cloning. The cloning vector was designed for cloning PCR products with single-stranded 3'-dA overhangs. The map and multiple cloning site (MCS) of the pTG19-T PCR cloning vector is shown in Figure 3.1.

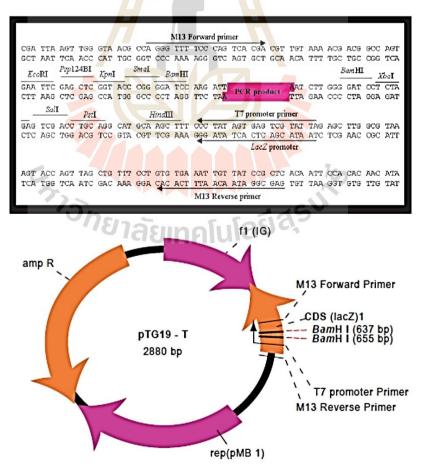



Figure 3.1 Map of pTG19-T PCR cloning vector.

#### 3.1.8 Miscellaneous materials

- GoTaq® Green Master Mix from Promega, USA, was used for PCR amplification.

- Safe-Green<sup>™</sup> nucleic acid stains from Canada, was used for visualization of nucleic acids in agarose gel electrophoresis.

- One MARK B 1,000 bp DNA ladder from Bio-Helix (GeneDirex), Taiwan, was used as a DNA marker.

- 100 bp DNA ladder M from Himedia, India, was used as a DNA marker.

- UltraPure<sup>™</sup> DNase, RNase, Free Distilled Water was purchased from Thermo Fisher Scientific, USA.

- T4 DNA ligase purchased from Vivantis, Malaysia.

- X-gal was purchased from Bio basic, Canada. X-gal solution is added to the agar medium for screening the clones containing recombinant DNA in the blue-white screening technique.

- FavorPrep<sup>™</sup> GEL/PCR purification Minikit was purchased from Favorgen®, Taiwan. It was used for gel or PCR product purification.

- FavorPrep<sup>™</sup> Plasmid extraction kit was purchased from Favorgen®, Taiwan. It was used for plasmid purification.

- TLC Silica gel 60 F<sub>254</sub> from Merck, Germany, was used for the purification of bioactive metabolites.

- Silica gel 60 from Merck, Germany.

#### 3.1.9 Instruments and tools

All the instruments used in this study are listed in Table 3.1.

# Table 3.1 List of instruments used in this study.

| Instruments           | Source                   |  |
|-----------------------|--------------------------|--|
| Autoclave Sterilizers | Tomy, USA                |  |
| Biosafety cabinet     | Esco, Singapore          |  |
| Centrifuge machine    | Hettich, Germany         |  |
| Electronic balance    | Shimadzu, Japan          |  |
| Fume hood             | S.K. powerable, Thailand |  |

| Instruments                 | Source                                         |
|-----------------------------|------------------------------------------------|
| Gel electrophoresis systems | Cleaver scientific, United Kingdom             |
| Heat box                    | Hercuvan, United Kingdom                       |
| Hot air oven                | Memmert, Germany                               |
| Hotplate magnetic stirrer   | IKA, China                                     |
| Incubator shaker            | Appendorf New Burnswick <sup>™</sup> , Germany |
| LC/MS instruments           | Bruker, Germany                                |
| Microcentrifuge             | Denville, Canada                               |
| Microscope                  | Olympus, USA                                   |
| NMR spectrometer            | Bruker, Switzerland                            |
| PCR thermal cycler          | Thermo Fisher Scientific, USA                  |
| pH meter                    | Sartorius, Germany                             |
| Rotary evaporator           | Buchi, Switzerland                             |
| UV/ VIS spectrometer T80+   | Thermo Fisher Scientific, USA                  |
| UV cabinet                  | CAMAG, Germany                                 |
| Vortex mixer                | FinePCR, South Korea                           |

Table 3.1 List of instruments used in this study (Continued).

# 3.2 Methods

# 3.2.1 Isolation and maintenance of soil isolate

The strain PKA51 was isolated from terrestrial soil, Suranaree University of Technology, Nakhon Ratchasima province, Thailand. (Khowangklang, 2017). PKA51 was isolated by serial dilution plate technique using starch casein agar (SCA: soluble starch 10 g; casein 0.3 g; KNO<sub>3</sub> 2.0 g; NaCl 2.0 g; K<sub>2</sub>HPO<sub>4</sub> 2.0 g; MgSO<sub>4</sub>·7H<sub>2</sub>O 0.05 g; CaCO<sub>3</sub> 0.02 g; FeSO<sub>4</sub>·7H<sub>2</sub>O 0.01 g; agar 15 g; H<sub>2</sub>O 1.0 L; pH 7.2) (Dasari et al., 2012). PKA51 is maintained on International *Streptomyces* Project medium no. 2 agar (ISP-2: yeast extract 4.0 g; malt extract 10 g; glucose 4 g; agar 15 g; H<sub>2</sub>O 1.0 L; pH 7.2) at 4 °C during the study. The strain PKA51 was kept as a glycerol stock (40% v/v) at -80 °C for further study.

#### 3.2.2 Identification of the strain PKA51

#### 3.2.2.1 Cultural and morphological identification

The cultural and morphological characteristics of the strain PKA51 were observed on Bennet's agar, Czapek's agar, Starch casein agar (SCA), various types of International *Streptomyces* Project (ISP) medium including tryptone yeast extract agar (ISP-1), yeast malt agar (ISP-2), oatmeal agar (ISP-3), inorganic salt starch agar (ISP-4), glycerol asparagine agar base (ISP-5), peptone yeast extract iron agar (ISP-6), tyrosine agar (ISP-7), nitrate agar (ISP-8), and carbon utilizing agar (ISP-9). The growth, diffusible pigment, aerial, and substrate mycelium colors were observed. Morphological characteristics of branch mycelium were observed under a field emission scanning electron microscope (SEM) (JEOL JSM 7800F model, Japan).

#### 3.2.2.2 Genomic DNA extraction

Molecular identification of the strain PKA51 was performed by 16s rRNA gene analysis. The strain PKA51 was cultured on 10 ml of ISP-2 medium and incubated at 28 °C, 200 rpm for 3 days or until mycelia are formed. The cell pellets and mycelium were harvested by centrifuged at 4 °C, 9000 rpm for 5 min. The genomic DNA was extracted from cell pellets and mycelium by using the modified phenol-chloroform method (Khowangklang, 2017). Five mg of cell pellets were placed in a sterile mortar and mixed with 500 µl of lysis buffer and grinded with glass beads until fine. Then, the mixer was transferred into a new 1.5 ml microcentrifuge tube. Then, 165 µl of 5 M NaCl was added to the mixture and mixed by inverting the tube. The mixer was centrifuged at 4 °C, 13,000 rpm for 10 min. In a new microcentrifuge tube, 400 µl of chloroform and 400 µl of isoamyl alcohol were added to the supernatant. By carefully inverting the tube, the color of the mixer became milky. After that, the mixer was centrifuged at 4 °C, 13,000 rpm for 10 min. The upper layer was transferred into a clean microcentrifuge tube, which was then inverted to mix with an equal volume of chloroform. The sample was centrifuged at 4 °C, 13,000 rpm for 5 min. The supernatant was transferred into a new tube and a two-volume of 95% ethanol was added to precipitate the genomic DNA. The tube was mixed by inverting and centrifuged at 4 °C, 13,000 rpm for 5 min. The supernatant was discarded. After that, DNA pellets were washed three times with 500 µl of 70% ice-cold ethanol and centrifuged at 4 °C, 13,000 rpm for 1 min. The remaining supernatant was discarded. The genomic DNA was dried in a heat box (Hercuvan, UK) at 45 °C and then dissolved in 30  $\mu$ l of TE buffer. Using agarose gel electrophoresis, the genomic DNA was quantified qualitatively. The genomic DNA was stored at -20 °C for further PCR amplification.

#### 3.2.2.3 16S rRNA gene amplification

The genomic DNA was used as a template for amplification of the 16S rRNA gene by using universal primers 27F (5'-AGAGTTTGATCCTGGCTCAG-3') and 1525R (5'-AAGGAGGTGATCCAGCC-3'). The PCR amplification was performed by using a thermal cycler (Px2 Thermo Fisher Scientific, USA). The PCR conditions consist of an initial denaturation at 95 °C for 5 min. Twenty-five cycles of denaturation at 95 °C for 60 s, primer annealing at 55 °C for 30 s, extension at 72 °C for 90 s, and a final extension at 72 °C for 7 min. Figure 3.2 depicts a description of PCR conditions. A total volume of 75  $\mu$ l of PCR mixtures is shown in Table 3.2. The PCR amplification products were validated on agarose gel (0.7%, w/v) in 1X TBE buffer. The amplified fragment length of 1,500 bp was purified from agarose gel by using FavorPrep<sup>TM</sup> GEL/PCR Purification Kit (FAVORGEN, Taiwan).

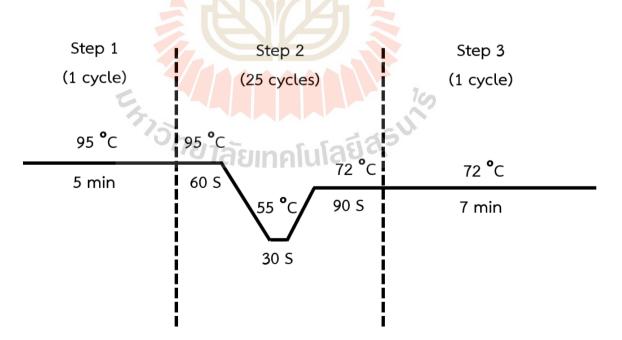



Figure 3.2 Description of PCR conditions.

| Table 3.2 Compositions of | f the PCR reaction. |
|---------------------------|---------------------|
|---------------------------|---------------------|

| Chemicals                                         | Volume (µl) |
|---------------------------------------------------|-------------|
| Genomic DNA template                              | 15          |
| GoTaq® Green Master Mix                           | 37.5        |
| 27 Forward primer (10 μM)                         | 2.5         |
| 1525 Reverse primer (10 μM)                       | 2.5         |
| $UltraPure^TM$ DNase, RNase, Free Distilled Water | 17.5        |
| Total volume                                      | 75          |

#### 3.2.2.4 Preparation of *E. coli* competent cells

Competent cells were prepared from *Escherichia coli* JM109 by using the calcium chloride (CaCl<sub>2</sub>) method. A single colony of *E. coli* JM109 was picked and aseptically transfer into 5 ml of LB broth. The colony was grown at 37 °C, 200 rpm for 24 h. After incubation, 1 ml of the culture was transferred to 500 ml Erlenmeyer flask containing 100 ml of LB broth and incubated at 37 °C, 200 rpm until the OD<sub>600nm</sub> reached 0.3. After that, the bacterial cells were centrifuged at 4 °C, 5000 rpm for 10 min. The cell pellets of *E. coli* JM109 were resuspended in 10 ml of ice-cold MgCl<sub>2</sub> solution (0.1 M) and incubated on ice for 30 min. The tube was centrifuged at 4 °C, 3000 rpm for 5 min, then discarded the supernatant. The cell pellets were then gently resuspended in ice-cold CaCl<sub>2</sub> solution (0.1 M) and incubated on ice for 1 h. The tube was centrifuged at 4 °C, 3000 rpm for 5 min, then discarded the supernatant. The cell pellets were then gently resuspended in ice-cold CaCl<sub>2</sub> solution (0.1 M) and incubated on ice for 1 h. The tube was centrifuged at 4 °C, 3000 rpm for 5 min, then discarded in 2 ml of ice-cold CaCl<sub>2</sub> solution (0.1 M) containing glycerol (15 %, v/v), and incubated on ice for 1 h. After incubation, each 100 µl of *E. coli* JM109 competent cells were immersed in liquid nitrogen and kept at -80 °C.

# 3.2.2.5 Construction of recombinant plasmid containing 16s rRNA gene and transformation

The purified fragment of 16s rRNA gene was ligated to a TA cloning vector (pTG19-T PCR cloning vector, vivantis). A total volume of 10  $\mu$ l of ligation mixtures is shown in Table 3.3. The microcentrifuge tube was incubated at 16 °C for 24 h. After that, the recombinant plasmid was transformed into *E. coli* JM109. One-hundred

milliliters of *E. coli* JM109 competent cells were mixed with ligation mixture and incubated on ice for 1 h. The mixture was heated at 42 °C for 60 sec before being placed on ice for 2 min. One milliliter of LB broth was added to the mixture and incubated for 1 h at 37 °C, 200 rpm. Then 100  $\mu$ l of suspension was spread on LB agar containing ampicillin (100  $\mu$ g·ml<sup>-1</sup>) and X-gal (80  $\mu$ g·ml<sup>-1</sup>). The plate was incubated at 37 °C for 24 h. The recombinant clones were selected by the blue-white colony screening method. This method allows recombinant clones to be distinguished by the color of colony. Transformants of white colonies containing the 16S rRNA of the strain PKA51 were extracted and purified by FavorPrep<sup>TM</sup> Plasmid DNA Extraction Kit (FAVORGEN, Taiwan).

| Chemicals                                        | Volume (µl) |  |
|--------------------------------------------------|-------------|--|
| pTG19-T cloning vector (25 ng·ml <sup>-1</sup> ) | 2           |  |
| Purified PCR product                             | 3           |  |
| Ligase buffer (10X)                              | 1           |  |
| T4 DNA ligase (200 u·µl <sup>-1</sup> )          |             |  |
| Ultrapure nuclease-free water                    | 3           |  |
| Total volume                                     | 10          |  |

| Table 3.3 Chemicals us | ed for ligation | of 16s rRNA gene. |
|------------------------|-----------------|-------------------|
|------------------------|-----------------|-------------------|

#### 3.2.2.6 DNA sequencing

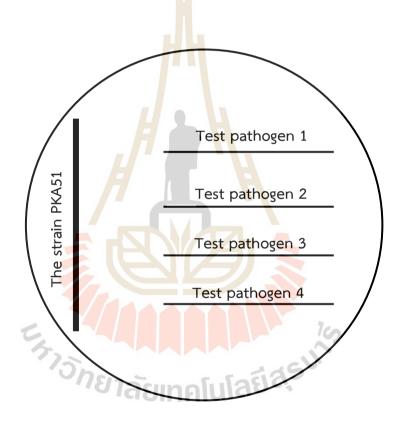
Purified recombinant plasmids were sent for sequencing at ATCG company limited, Thailand. The recombinant plasmid containing the 16S rRNA gene of the strain PKA51 was sequenced by using universal primers M13F (-40) (5'-GTTTTCCCAGTCACGAC-3') and M13R (-40) (5'-CAGGAAACAGCTATGAC-3'). Nucleotide sequence obtained from 16S rRNA gene was compared with other related species maintained in the EzBiocloud database (http://www.ezbiocloud.net) through BLAST search. The nucleotide sequence of the strain PKA51 was deposited in National Center for Biotechnology Information (NCBI) database.

#### 3.2.2.7 Phylogenetic tree analysis

To determine the genetic relationship between the strain PKA51 and closely related species. Multiple sequence alignments of relatively nucleotide sequences from the EzTaxon database were aligned by using ClustalW. The phylogenetic tree was constructed by using Molecular Evolutionary Genetics Analysis (MEGA) software version X. Bootstrap values are the results of 1000 repetitions of the analysis.

### 3.3 Preparation of crude compound

The crude extract was prepared by submerged state fermentation. Soil isolate PKA51 was inoculated into ISP-2 broth and incubated at 28 °C, 200 rpm for 3 days. Then, the seed culture was transferred into a 1,000 ml Erlenmeyer flask containing 400 ml of MHB medium and incubated at 28 °C, 200 rpm, for 5 days. After incubation, the fermented broth was centrifuged at 4 °C, 9,000 rpm for 5 min. Then, the culture medium was filtrated to remove bacterial cells by Whatman No.1 filter paper (Whatman<sup>TM</sup>, GE Healthcare, UK). The cell pellets were collected and air-dried in a hot air oven (Memmert, Germany) at 65 °C for 3 days. The cell-free supernatant containing antimicrobial compounds was collected and extracted with an equal volume of ethyl acetate (1:1, v/v). The mixture of ethyl acetate and cell-free supernatant were shaken at 28 °C, 250 rpm for 1 h. The ethyl acetate phase was collected by a separatory funnel. After that, the organic solvent phase was evaporated under reduced pressure to dryness. Cell dry weight was used to calculate the yield of a crude compound by the following formula:

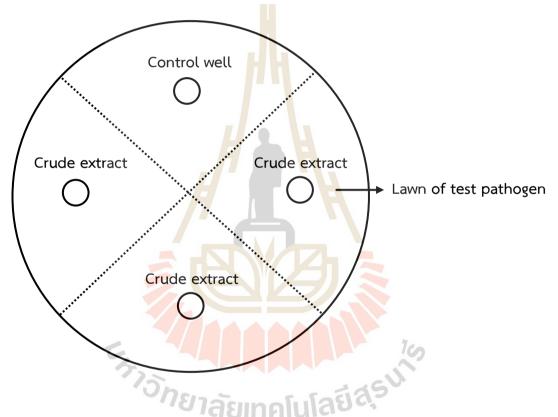

Yield = (mg of crude compound) / (g of cell dry weight)

The crude compound was used to test antimicrobial activities by agar well diffusion. Bioactive compounds were purified by thin-layer chromatography (TLC) and column chromatography.

# 3.4 Antimicrobial assay

#### 3.4.1 Perpendicular cross streak method

The antimicrobial activity of the strain PKA51 was tested preliminarily by using the perpendicular cross streak method (Figure 3.3) against bacterial pathogens (AlDhabi et al., 2016; Singh et al., 2016). The test pathogens were prepared in sterile 0.85% normal saline solution (NSS) and adjusted the turbidity to 0.5 McFarland standard. The strain PKA51 was inoculated in a straight line on Mueller Hinton Agar (MHA) (Hi-media, India). The plates were incubated at 28 °C for 5 days. After incubation, test pathogens were streaked perpendicular to the PKA51 colony. The plates were incubated at 37 °C for 24 h. The antimicrobial activity of PKA51 was observed by the inhibition zone. The susceptibility of the microorganism to the antimicrobial agent is recorded by the area of inhibited bacterial growth.




**Figure 3.3** Streaking pattern for preliminary antimicrobial activity by perpendicular cross streak method.

#### 3.4.2 Agar well diffusion method

The antimicrobial activity of PKA51 crude extract was determined by the agar well diffusion method (Figure 3.4). The bacteria inoculum was prepared with normal saline solution (0.85%, w/v) and compared to the turbidity with the 0.5 McFarland standard. Then, Mueller Hinton agar was swabbed by the cotton swab of test

pathogens. Agar plugs were removed by using a sterile toothpick. One hundred microliters of a crude extract (1.0 mg·well<sup>-1</sup>) and ethyl acetate (negative control) were loaded into the well. The plates were left for 1 h to allow the crude compound to diffuse into the medium. The plates were incubated at 37 °C for 24 h or until the bacteria grows. The antimicrobial activity of crude compounds was observed by measuring the diameter of the inhibition zone (mm).

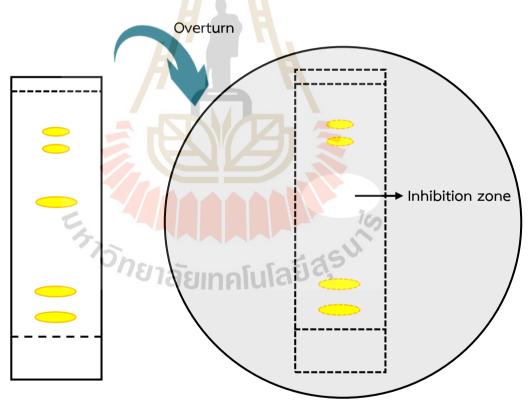


**Figure 3.4** Agar well diffusion method for determination of antimicrobial activity of crude extract PKA51 against test pathogens.

# 3.4.3 Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC)

The broth microdilution method on 96-well plates was used to determine the minimum inhibitory concentration (MIC) of purified bioactive compounds against antibiotic-resistant bacteria (CLSI, 2012; Hussain et al., 2018; Sharma and Manhas, 2019). Each pathogen was streaked onto Mueller Hinton Agar (MHA) and incubated at 37 °C

for 20-24 h. After incubation, the bacteria inoculum was prepared by adjusting the turbidity in Mueller Hinton Broth (MHB) until the  $OD_{625nm}$  reached 0.08-0.13 (1  $\times$  10<sup>8</sup> CFU·ml<sup>-1</sup>). Then, the final inoculum (turbidity  $5 \times 10^5$  CFU·ml<sup>-1</sup>) was prepared by transferring 100 µl of bacterial suspension into 9.9 ml of MHB. The stock solution (1 mg·ml<sup>-1</sup>) of bioactive compound was prepared in 1% dimethyl sulfoxide (DMSO) diluted with MHB. The different concentrations of bioactive compound and standard drugs (vancomycin, and tetracycline) were made by serial two-fold dilution method (256, 128, 64, 32, 16, 8, 4, 2, 1, 0.5, 0.25, 0.125, 0.0625 and 0.03125 µg·ml<sup>-1</sup>). Each well was inoculated with 100 µl of an inoculum. Growth control well consisted of 100 µl of test pathogen and 100 µl of MHB, negative control consisted of 100 µl of test pathogen and 1% DMSO in MHB, and sterility control contained MHB only. The plate was incubated at 37 °C for 20-24 h. After incubation, optical density (OD<sub>600nm</sub>) was measured by using a microplate reader (Thermo Scientific MULTISCAN GO). The MIC value is the lowest concentration of bioactive agent that inhibits visible bacterial growth. Further, minimum bactericidal concentration (MBC) was determined by sub-spotting the last clear MIC culture samples onto the MHA plate. Inoculated plates were incubated at 37 °C for 24 h (Nithya et al., 2018; Rajivgandhi et al., 2018). After incubation, the concentration which show no bacterial growth was defined as the MBC value.


# 3.5 Purification of antimicrobial compounds

# 3.5.1 Partial purification of bioactive compounds by TLC

Thin-layer chromatography is used for the separation of mixture compounds using silica gel coated onto an aluminum sheet. The crude compound was applied to the bottom edge of TLC plates (Merck, TLC Silica gel 60 F254). The spot was left to dryness. Then, the chromatogram was immersed and developed in a developing chamber using chloroform and methanol (9.9: 0.1, v/v) as a mobile phase. When the solvent reaches 0.5 cm from the top of the plate, the TLC plate was removed from the developing chamber. After that, the chromatogram was left to dry and visualized under UV light ( $\lambda_{254nm}$ ). The location of bioactive compounds was indicated by the contact bioautography technique (Taddei et al., 2006).

#### 3.5.2 Detection of bioactive compound by contact bioautography

The antimicrobial activity of bioactive compounds was determined by contact bioautography assay (Figure 3.5). The developed chromatogram was sterile by exposure under UV for 30 min. The chromatogram was placed onto the medium agar seeded with a suspension of MRSA DMST20654 (turbidity equal to 0.5 McFarland standard). The chromatogram was left for 30 min to allow the compounds to diffuse into medium agar. Then, the chromatogram was removed from the agar plate. The plate was incubated at 37 °C for 24 h or until the bacteria grow. After incubation, the position of a clear zone on the agar plate indicates bioactive compounds. The bioactive bands in TLC showing inhibition zone were scraped and redissolved in ethyl acetate (Kumar and Jadeja, 2018). The partial purified bioactive compounds were further purified by column chromatography.



Inoculated agar plate

**Figure 3.5** Contact bioautography for the detection of bioactive compounds inhibited MRSA DMST20654.

#### 3.5.3 Column chromatography

Purification of bioactive compounds was conducted by column chromatography. The silica gel slurry was prepared by mixing silica powder (60-120 mesh size) with dichloromethane (DCM). A glass column was packed with silica gel slurry up to the two-third level of the column. After that, partial purified bioactive compounds were subjected to column chromatography (35.0 × 1.0 cm) using silica gel as a stationary phase. Then, column was pre-eluted with n-hexane followed by stepwise of chloroform and n-hexane (v/v; 50:50, 60:40, 70:30, 80:20, 90:10, 100:0). The purity of all fractions was screened by using TLC under UV light ( $\lambda_{254nm}$ ). The collected fractions showing single bands (similar Rf value) were tested for antimicrobial activity against MRSA DMST20654 by contact bioautography. Fractions showing antimicrobial activity were collected for further study. The chemical structure of bioactive compounds was elucidated by spectroscopic analysis.

#### 3.6 Characterization of bioactive compounds

The purified bioactive compounds were characterized by using spectroscopic analysis which includes UV-Visible spectroscopy, Liquid chromatography-mass spectrometry (LC-MS), and Nuclear magnetic resonance (NMR) spectroscopy.

### 3.6.1 UV-Visible spectroscopy

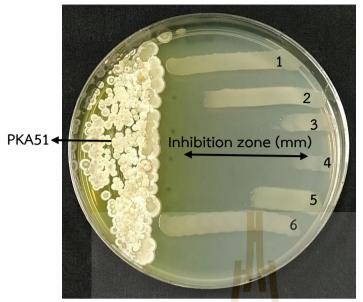
Ultraviolet and visible (UV-Vis) absorption spectra of the bioactive compounds were recorded by a UV-Visible spectrophotometer (T80<sup>+</sup>, Shimadzu). The UV-Vis absorption spectra were scanned in a wavelength between 200-800 nm. The absorption spectra of UV light and visible light can be absorbed by chromophores such as aromatic rings, dienes, polyenes, conjugated ketones, or some bioactive ingredients (El-Naggar et al., 2017). The maximal wavelength of UV light absorption by a chemical compound resulted in a distinct spectrum.

#### 3.6.2 Liquid chromatography-mass spectrometry (LC-MS)

Mass spectrums of the bioactive compounds were performed by liquid chromatography-mass spectrometry (LC-MS). The Dionex Ultimate 3000 UHPLC system (Dionex, USA) coupled with electrospray ionization (ESI) tandem mass spectrometer (micrOTOF-Q II) (Bruker, Germany) was used for this analysis. The injection volume for all samples was 10 µl. The column Zorbax SB-C18 (250 mm × 4.6 mm, 3.5 Micron (Agilent Technologies, USA)) was used for separation and thermostated at 35 °C. The mobile phase included deionized water containing 0.1 % formic acid as solvent A, and acetonitrile containing 0.1 % formic acid as solvent B, with a flow rate of 0.8 ml/min. The gradient elution was performed as followed: starting with 20 % solvent B and holding until 5 min, increasing to 40 % solvent B at 20 min, then increasing to 80% solvent B at 40 min and holding for 3 min, reducing to 20 % solvent B in 2 min and holding until the run ending at 50 min. The eluted components were ionized by an electrospray ionization (ESI) source and were detected in the mass scanning mode, in the range of 50 m/z to 1,500 m/z at negative ion polarity. A 10 mM sodium formate was used as an external standard for accurate mass calibration and injected into the ESI source before each sample by a syringe pump at a flow rate of 60 µl/min. The nebulizer gas (Nitrogen gas) was 2 Bar, drying gas was 8 L/min, dry heater temperature was 180 °C, and capillary voltage was 4.5 kV. The mass spectrum peak was identified by matching mass spectra with MassBank databases (https://massbank.eu/MassBank and https://mona.fiehnlab.ucdavis.edu). The LC-QTOF data were collected and processed by Compass 1.3 software (Bruker, Germany). The molecular formula was predicted based on accurate mass.

#### 3.6.3 Nuclear magnetic resonance (NMR) spectroscopy

The chemical structure was elucidated by using nuclear magnetic resonance (NMR) spectroscopy. The <sup>1</sup>H-, <sup>13</sup>C-NMR, and 2D spectra were measured in dimethyl sulfoxide (DMSO<sub>d6</sub>) on a 500 MHz NMR Bruker spectrometer equipped with a CPP BBO 500 CryoProbe.


# 3.7 Statistical analysis

The results were statistically analyzed and presented as means  $\pm$  standard deviation (SD) for triplicate samples.

# CHAPTER IV RESULTS

### 4.1 Preliminary antibacterial screening of soil isolates

The strain PKA51 used in this study was kindly received from Miss Phimpha Khowangklang. This strain was isolated from terrestrial soil in Suranaree University of Technology, Nakhon Ratchasima province (Khowangklang, 2017). In this study, soil isolate PKA51 was evaluated for antibacterial activity against *B. subtilis* TISTR008, *B.* cereus TISTR684, S. epidermidis TISTR518, S. aureus ATCC1466, E. coli TISTR780, S. Typhimurium TISTR292, E. aerogenes TISTR1540, S. marcescens TISTR1540, P. mirabilis TISTR100, methicillin-resistant S. oureus DMST20654 (MRSA), clinical isolate methicillinresistant *S. epidermidis* (MRSE), clinical isolate *K. pneumoniae* 1617, and clinical isolate *E. coli* 2026 (Figure 4.1). The results obtained from the perpendicular cross streak method showed that the strain PKA51 could produce diffusible substances with broadspectrum antimicrobial activity against Gram-positive, Gram-negative, and antibioticresistant bacteria. Strain PKA51 effectively inhibited the growth of almost all species of test pathogens except *E. aerogenes* TISTR1540, *S. marcescens* TISTR1354, and clinical isolate K. pneumoniae 1617. The results of the preliminary antimicrobial activity screen were summarized in Table 4.1. The result also showed that strain PKA51 exhibited strong antibacterial activity against antibiotic-resistant bacteria including MRSA DMST20654, clinical isolate MRSE, and clinical isolate E. coli 2026. Therefore, soil isolate PKA51 was selected for further study.



- 1: A. baumannii
- 2: K. pneumoniae 1617
- 3: MRSA DMST20654
- 4: Clinical isolate MRSE
- 5: Clinical isolate *E. coli* 2026
- 6: P. aeruginosa N90PS

Figure 4.1 Antimicrobial activity of strain PKA51 against test pathogens by perpendicular cross streak method.

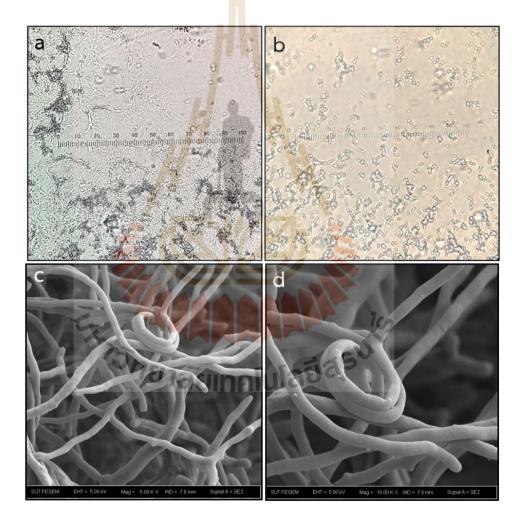
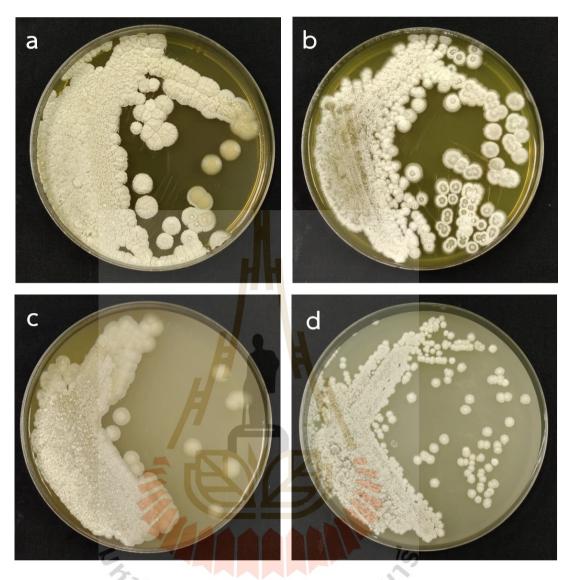

|                                   | Test pathogens                             | Inhibition zone (mm) |
|-----------------------------------|--------------------------------------------|----------------------|
| Û.                                | B. subtilis TISTR008                       | 41.67 ± 3.78         |
| Gram-Positive                     | B. cereus TISTR684                         | 40.00 ± 0.00         |
| am-P                              | S. epidermidis TISTR518                    | 41.00 ± 2.82         |
| Gr                                | S. aureus ATCC1466                         | 39.33 ± 0.47         |
|                                   | E. coli TISTR780                           | 28.33 ± 2.36         |
| ative                             | S. Typhimurium TISTR292                    | 30.67 ± 0.94         |
| Gram-Negative                     | E. aerogenes TISTR1540                     |                      |
| Gram                              | S. marcescens TISTR1354                    | 3.33 ± 2.36          |
| P. mirabilis TISTR100             |                                            | 37.00 ± 1.41         |
| eria                              | S. aureus DMST20654 (MRSA)                 | 41.67 ± 1.89         |
| iotic-<br>bact                    | Clinical isolate MRSE                      | 42.00 ± 0.00         |
| Antibiotic-<br>resistant bacteria | Clinical isolate <i>K. pneumoniae</i> 1617 | $12.00 \pm 0.00$     |
| resis                             | Clinical isolate <i>E. coli</i> 2026       | $30.00 \pm 0.00$     |

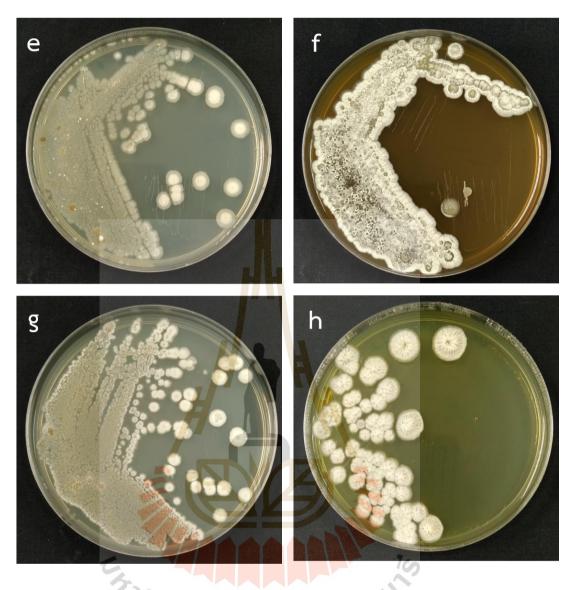
Table 4.1 Antimicrobial activity of the strain PKA51.

Data are means  $\pm$  standard deviation (n = 3)

# 4.2 Identification of soil isolate PKA51


The species identification of the strain PKA51 is based on cultural, and morphological characteristics. The strain PKA51 was cultured on ISP-2 agar and incubated at 28 °C for 14 days. After incubation, the morphology of aerial mycelium was observed under a light microscope (400X). The microscopic images showed branching mycelium and a large number of disposable spores (Figure 4.2a - 4.2b). The mycelium has a smooth surface visualized under a field emission scanning electron microscope (SEM) (Figure 4.2c – 4.2d).




**Figure 4.2** Morphological characteristics of the strain PKA51. a: branching mycelium under a light microscope (400 $\times$ ), b: a large number of disposable spores (400 $\times$ ), c: mycelium under a scanning electron microscope (5000 $\times$ ), and d; SEM (10000 $\times$ ).

Colony morphology of PKA51 were observed after 14 days of cultivation on several media (ISP-1 to ISP-9, SCA, Czapek's agar, Bennet's agar) (Figure 4.3). Abundant growth was observed on the ISP-1 to ISP-8 and Bennet's agar while moderate growth was observed on ISP-9 and SCA. The strain PKA51 exhibited poor growth on czapek's agar. The color of colonies was white on ISP-1, ISP-2, ISP-4, ISP-6, ISP-8, ISP-9, czapek's agar, and bennet's agar. The color of colonies was grey on ISP-3. The color of colonies was pale grey on ISP-5, ISP-7, and SCA. The strain PKA51 could produce diffusible pigment diffuse into surrounding medium on all media but non-diffusible pigment on czapek's agar. The colors of diffusible pigment on various media ranged from bright yellow to mild yellow to black. The result of cultural characteristics and diffusible pigments are shown in Table 4.2.



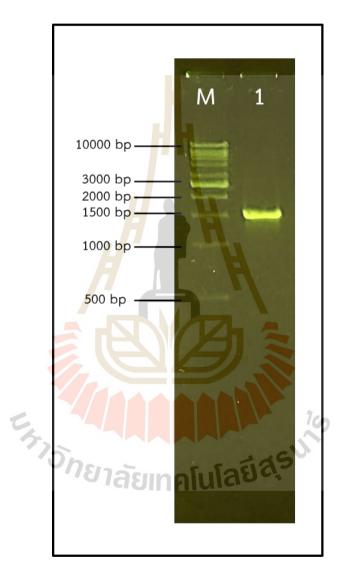



**Figure 4.3** Colony morphology of PKA51 on various agar media, a: International *Streptomyces* Project no. 1 (ISP-1), b: ISP-2, c: ISP-3, d: ISP-4, e: ISP-5, f: ISP-6, g: ISP-7, h: ISP-8, i: ISP-9, j: Starch casein agar SCA), k: Czapek's agar, and l: Bennet's agar.



**Figure 4.3** Colony morphology of PKA51 on various agar media, a: International *Streptomyces* Project no. 1 (ISP-1), b: ISP-2, c: ISP-3, d: ISP-4, e: ISP-5, f: ISP-6, g: ISP-7, h: ISP-8, i: ISP-9, j: Starch casein agar SCA), k: Czapek's agar, and l: Bennet's agar (Continued).




**Figure 4.3** Colony morphology of PKA51 on various agar media, a: International *Streptomyces* Project no. 1 (ISP-1), b: ISP-2, c: ISP-3, d: ISP-4, e: ISP-5, f: ISP-6, g: ISP-7, h: ISP-8, i: ISP-9, j: Starch casein agar SCA), k: Czapek's agar, and l: Bennet's agar (Continued).

| Medium           | Growth   | Colony morphology                    | Diffusible pigment |
|------------------|----------|--------------------------------------|--------------------|
| ISP-1            | Abundant | Circular, Convex, White colonies     | Strong yellow      |
| ISP-2            | Abundant | Irregular, Convex, White colonies    | Strong yellow      |
| ISP-3            | Abundant | Circular, Flat, Grey colonies        | Yellow             |
| ISP-4            | Abundant | Circular, Raised, White colonies     | Yellow             |
| ISP-5            | Abundant | Circular, Raised, Pale grey colonies | Light yellow       |
| ISP-6            | Abundant | Irregular, Convex, White colonies    | Black              |
| ISP-7            | Abundant | Circular, Raised, Pale grey colonies | Light yellow       |
| ISP-8            | Abundant | Circular, Convex, White colonies     | Strong yellow      |
| ISP-9            | Moderate | Circular, Umbonate, White colonies   | Light yellow       |
| SCA              | Moderate | Circular, Flat, Pale grey colonies   | Yellow             |
| Czapek's<br>agar | Slight   | Irregular, Flat, White colonies      | -                  |
| Bennet's<br>agar | Abundant | Circular, Convex, White colonies     | Strong yellow      |

Table 4.2 Cultural characteristics of PKA51 on different media.

-: Non-diffusible pigment produced by colonies.

The species-level of strain PKA51 was identified by 16s rRNA gene sequence analysis. The 16s rRNA gene was amplified by using universal primers 27F and 1525 R. The amplified fragments (1481 bp) (Figure 4.4) were then cloned into a pTG19-T cloning vector and sequenced. A full-length 16s rRNA sequence was sequenced by using M13F and M13R primers. The nucleotide sequence of the 16S rRNA gene of PKA51 was deposited into the NCBI database with the accession number ID MZ497354. Molecular identification based on 16S rRNA gene analysis was performed by comparing to the reference sequences of the EzTaxon database (https://www.ezbiocloud.net). The results revealed that the 16S rRNA gene of the strain PKA51 was classified as a member of the genus *Streptomyces*. The sequence of the 16S rRNA gene was blasted and aligned with top hit strains from the EzBioCloud database. List of 30 hits taxon of PKA51 from the EzBioCloud 16S rDNA database is shown in Table 4.3.



**Figure 4.4** PCR products of 16s rRNA gene on 0.7% (w/v) agarose gel, lane M: 1 kb DNA ladder (GeneDirex, Taiwan), lane 1: purified PCR product of PKA51 (1481 bp).

| No. | Top hit taxon                                      | Accession No. | %<br>Similarity |
|-----|----------------------------------------------------|---------------|-----------------|
| 1   | Streptomyces luteosporeus NBRC 14657 <sup>™</sup>  | AB184607      | 99.93           |
| 2   | Streptomyces alboverticillatus                     | AB249978      | 98.62           |
| 3   | Streptomyces abikoensis NBRC 13860 $^{T}$          | AB184537      | 98.61           |
| 4   | Streptomyces hiroshimensis NBRC 3839 <sup>⊤</sup>  | AB184802      | 98.54           |
| 5   | Streptomyces morookaense LMG 20074 <sup>⊤</sup>    | AJ781349      | 98.41           |
| 6   | Streptomyces griseocarneus JCM 4580 <sup>™</sup>   | MT760576      | 98.39           |
| 7   | Streptomyces lilacinus NRRL B-1968 <sup>T</sup>    | JNXU01001020  | 98.34           |
| 8   | Streptomyces pseud <mark>oec</mark> hinosporeus    | AB184100      | 98.27           |
|     | NBRC 12518 <sup>T</sup>                            |               |                 |
| 9   | Streptomyces thioluteus LMG 20253 <sup>™</sup>     | AJ781360      | 98.27           |
| 10  | Streptomyces cinnamoneus NBRC 12852 <sup>T</sup>   | AB184850      | 98.27           |
| 11  | Streptomyces mobaraensis NBRC 13819 <sup>T</sup>   | AORZ01000256  | 98.20           |
| 12  | Streptomyces tirandamycinicus HNM0039 <sup>™</sup> | CP029188      | 98.19           |
| 13  | Streptomyces mashuensis DSM 40221 <sup>T</sup>     | X79323        | 98.13           |
| 14  | Streptomyces roseifaciens $MBT76^{T}$              | MG947385      | 98.13           |
| 15  | Streptomyces lacticiproducens $GIMN4.001^{	op}$    | GQ184344      | 98.03           |

Table 4.3 List of hits taxon of PKA51 from EzBioCloud 16S rDNA database.

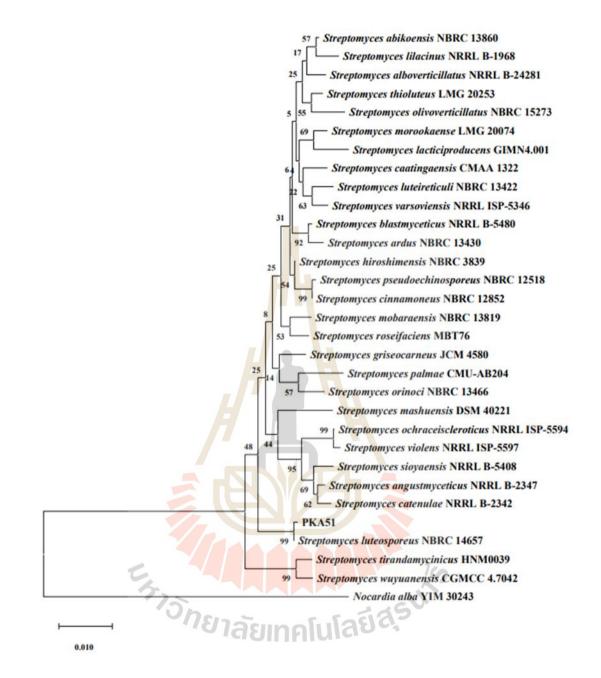

| No. | Top hit taxon Accession No.                                                           |              | %          |
|-----|---------------------------------------------------------------------------------------|--------------|------------|
|     |                                                                                       |              | Similarity |
| 16  | Streptomyces wuyuanensis CGMCC 4.7042 <sup><math>T</math></sup>                       | jgi.1085054  | 97.99      |
| 17  | Streptomyces palmae $CMU-AB204^{T}$                                                   | LC073309     | 97.93      |
| 18  | Streptomyces blastmyceticus NRRL B-5480 <sup>™</sup>                                  | AY999802     | 97.92      |
| 19  | Streptomyces caatingaensis CMAA 1322 <sup>⊤</sup>                                     | LFXA01000004 | 97.86      |
| 20  | Streptomyces orinoci NBRC 13466 <sup>T</sup>                                          | AB184866     | 97.85      |
| 21  | Streptomyces ardus NBRC 13430 <sup>™</sup>                                            | AB184864     | 97.84      |
| 22  | Streptomyces olivovertic <mark>illa</mark> tus NBR <mark>C 15</mark> 273 <sup>™</sup> | AB184636     | 97.84      |
| 23  | Streptomyces ochraceiscleroticus NRRL                                                 | JOAX01000062 | 97.79      |
|     | ISP-5594 <sup>™</sup>                                                                 |              |            |
| 24  | Streptomyces angustmyceticus NRRL B-2347 <sup>™</sup>                                 | MUAY01000275 | 97.79      |
| 25  | Streptomyces luteireticuli NBRC 13422 <sup>™</sup>                                    | AB249969     | 97.79      |
| 26  | Streptomyces varsoviensis NRRL ISP-5346 <sup>T</sup>                                  | JOBF01000056 | 97.72      |
| 27  | Streptomyces sioyaensis NRRL B-5408 <sup>™</sup>                                      | DQ026654     | 97.65      |
| 28  | Streptomyces catenulae NRRL B-2342 <sup><math>T</math></sup>                          | JODY01000075 | 97.65      |
| 29  | Streptomyces violens NRRL ISP-5597 <sup><math>T</math></sup>                          | JOBH01000039 | 97.65      |
| 30  | Streptomyces sparsogenes $ATCC 25498^{T}$                                             | MAXF01000077 | 97.65      |

 Table 4.3 List of hits taxon of PKA51 from EzBioCloud 16S rDNA database (Continued).

According to 30 top hit taxa from the EzBioCloud 16s rDNA database exhibited that the strain PKA51 belongs to the genus *Streptomyces*. The strain PKA51 exhibited the highest sequence similarity to *Streptomyces luteosporeus* NBRC 14657<sup>T</sup> (99.93 % similarity). Therefore, PKA51 can be classified as *S. luteosporeus*.

Furthermore, the phylogenetic relationship between the isolate PKA51 and other closely related species was studied in the EzTaxon database (Figure 4.5). *Nocardia alba* YIM 30243 was used as an outgroup. The nodes are indicated to construct a majority phylogenetic tree. The phylogenetic tree of strain PKA51 based on the neighbor-joining algorithm formed a distinct monophyletic clade with *S. luteosporeus* NBRC14657<sup>T</sup>. The phylogenetic tree's confidence was validated using the bootstrap value (1,000 replications of analysis). The strain PKA51 shares a common ancestor with *S. luteosporeus* NBRC14657<sup>T</sup> and can be identified as *S. luteosporeus* PKA51.





**Figure 4.5** Neighbor-joining phylogenetic tree constructed using 16S rRNA gene sequences showing the relationships between *Streptomyces* sp. PKA51 and other closely related species. The numbers at the nodes represent bootstrap values of the tree topology's confidence (1,000 repetitions of analysis). The scale bar indicates 0.010 substitutions per nucleotide position.

# 4.3 Crude compounds extraction and antimicrobial activity of a crude compounds

It has been reported that the optimum culture condition for antimicrobial production of the strain PKA51 is at 28 °C, 200 rpm for 3 days in MHB medium (Khowangklang, 2017). As a result, the condition used in this work was based on Khowangklang's earlier published condition.

The strain PKA51 was inoculated on ISP-2 broth for 3 days. Then, 40 ml of PKA51 inoculum was transferred and cultivated in 1,000 ml Erlenmeyer flasks containing 400 ml of MHB medium. Following the incubation, the cell-free supernatant was collected, and used for the extraction of a crude compound with ethyl acetate. Cell pellets and mycelium were harvested and dried at 65 °C for 3 days to obtain cell-dry weight. The characteristics of the crude compound of PKA51 were semi-solid with yellow-colored (Figure 4.6). The ratio of crude extract to cell dry weight (mg·g<sup>-1</sup>) was used to calculate the yield. The following formula was used to calculate the yield of the crude compound:

Yield = Crude compound (mg) / The dry weight of cell pellets and mycelium (g) The crude compound yield was  $36.25 \pm 8.04 \text{ mg} \cdot \text{g}^{-1}$ .



Figure 4.6 Ethyl acetate crude extract of Streptomyces sp. PKA51.

An evaluation of the antimicrobial activity of crude extract PKA51 was performed by the agar well diffusion method (Table 4.4). Although PKA51 crude extract displayed broad-spectrum antimicrobial activity against Gram-positive, Gram-negative, and antibiotic-resistant bacteria, its antibacterial activity against Gram-positive bacteria was the most potent. The maximum inhibition zone was observed against clinical isolate MRSE ( $35.00 \pm 1.00 \text{ mm}$ ), *B. subtilis* TISTR008 ( $34.00 \pm 0.00 \text{ mm}$ ), *B. cereus* TISTR684 ( $32.00 \pm 1.73 \text{ mm}$ ), *S. epidermidis* TISTR518 ( $30.67 \pm 1.52 \text{ mm}$ ), *S. aureus* ATCC1466 ( $28.67 \pm 2.89 \text{ mm}$ ), MRSA DMST20654 ( $28.43 \pm 0.58 \text{ mm}$ ), and *E.coli* TISTR780 ( $28.00 \pm 1.83 \text{ mm}$ ) While moderate to weak inhibition activity was observed from *E. coli* TISTR780, *S.* Typhimurium TISTR292, *E. aerogenes* TISTR1540, clinical isolate *K. pneumoniae* 1617, clinical isolate *E. coli* 2026, and *S. marcescens* TISTR1354 (inhibition zone range of  $13.86 \pm 0.11$  to  $9.67 \pm 0.58 \text{ mm}$ ). These results revealed that Grampositive bacteria were more susceptible to PKA51 crude compounds than Gramnegative bacteria.



|                                  | Test pathogens                       | Inhibition zone (mm) |
|----------------------------------|--------------------------------------|----------------------|
| teria                            | B. subtilis TISTR008                 | 34.00 ± 0.00         |
| Gram-Positive bacteria           | <i>B. cereus</i> TISTR684            | 32.00 ± 1.73         |
| -Positiv                         | S. epidermidis TISTR518              | 30.67 ± 1.52         |
| Gram                             | S. aureus ATCC1466                   | 28.67 ± 2.89         |
| ص<br>م                           | E. coli TISTR780                     | 28.00 ± 1.73         |
| Gram-Negative bacteria           | <i>S</i> . Typhimurium TISTR292      | 13.86 ± 0.11         |
| gative                           | E. aerogenes TISTR1540               | 12.67 ± 0.58         |
| m-Neg                            | S. marcescens TISTR1354              | 9.67 ± 0.58          |
| Gra                              | P. mirabilis TISTR100                | 33.67 ± 1.15         |
| t                                | S. aureus DMST20654 (MRSA)           | 28.34 ± 0.58         |
| Antibiotic-resistant<br>bacteria | Clinical isolate MRSE                | 35.00 ± 1.00         |
| biotic-resi<br>bacteria          | Clinical isolate K. pneumoniae 1617  | 11.67 ± 0.58         |
| Anti                             | Clinical isolate <i>E. coli</i> 2026 | $10.00 \pm 0.00$     |

 Table 4.4 Antimicrobial activity of PKA51 crude extract.

Data are means  $\pm$  standard deviation (n = 3)

#### 4.4 Purification of bioactive compounds of PKA51

The partial purification of bioactive compounds presenting in the crude extract was conducted by thin-layer chromatography (TLC). The crude compound was applied to the bottom edge of TLC plates. Among various solvent systems, chloroform and methanol were given the best separation on chromatograms. Thus, the TLC plates were immersed and developed in a developing chamber by using chloroform and methanol (9.9: 0.1, v/v) as a solvent system. Then, the chromatogram was left to dry and visualized under UV light ( $\lambda_{254 \text{ nm}}$ ) (Figure 4.7).

Then, contact bioautography was used to locate bioactive compounds using MRSA DMST20654 as a tested pathogen. The results demonstrated an inhibition zone of crude PKA51 in the R<sub>f</sub> values ranging from 0.35 to 0.40 against MRSA DMST20654 (Figure 4.8). In order to identify bioactive compounds, the active zone was scraped and redissolved in ethyl acetate before column chromatography purification. Partially purified bioactive compounds were subjected to silica column chromatography and eluted with chloroform: n-hexane as an eluent.

All fractions were collected from column chromatography. The fractions were tested for their antibacterial activities against MRSA DMST20654 by contact bioautography. The active fraction was collected and defined as active fraction 1 and active fraction 2. The result indicated that  $R_f$  values of active fractions 1 and 2 were 0.40 and 0.36, respectively (Figure 4.9). On the other hand, the physical properties of the bioactive compounds were yellowish and needle-like crystals.

Moreover, the chemical structure of bioactive compounds which presents in the active fractions 1 and 2 were further characterized and identified by spectral analysis including UV-VIS spectroscopy, LC-MS, and NMR spectroscopy.

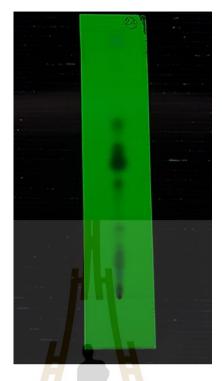
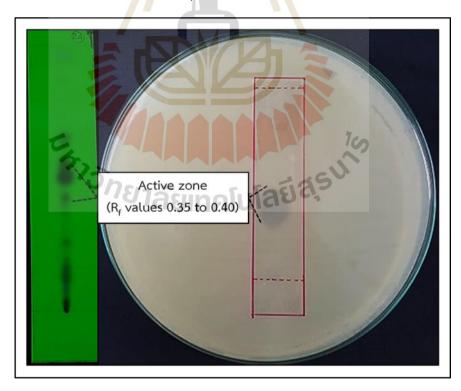
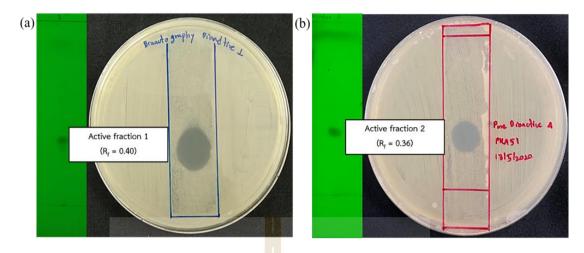
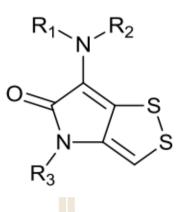





Figure 4.7 The TLC chromatogram of PKA51 crude extract using chloroform and methanol (9.9: 0.1, v/v) as a mobile phase.



**Figure 4.8** Contact bioautography of crude extract PKA51 on petri dish seeded with MRSA DMST20654.




**Figure 4.9** Contact bioautography of (a) purified active fraction 1 and (b) purified active fraction 2 against MRSA DMST20654.

# 4.5 Characterization of bioactive compounds

# 4.5.1 Bioactive compound 1

#### UV-VIS spectroscopy

UV-Vis absorption spectra of the bioactive compound present in the active fraction 1 were recorded by a UV-Visible spectrophotometer (T80+, Shimadzu). The UV-visible absorption spectra of purified bioactive compound 1 were scanned (200-800 nm). Ethyl acetate was used as a blank control. The UV absorption spectra of compound 1 showed maximum peaks at 311 and 391 nm indicating the presence of the pyrrothine core, a core scaffold of dithiolopyrrolone (DTP) compounds (Figure 4.10). It has been reported that pyrrothine derivatives are classified by their different *N-acyl* groups (Li et al., 2014; Merrouche et al., 2019).



**Figure 4.10** General chemical structure of pyrrothine core. Various pyrrothine derivatives are characterized by their different *N*-acyl groups ( $R_1$ ,  $R_2$ , and  $R_3$  groups).

### Liquid chromatography-mass spectrometry (LC-MS) analysis

The mass spectrum of the purified bioactive compound 1 was determined by LC-MS analysis. The mass spectrum peak was identified by matching mass spectra with the MassBank database (https://massbank.eu/MassBank and https://mona.fiehnlab.ucdavis.edu). According to the HPLC-MS chromatogram, purified bioactive compound 1 exhibited one major peak at the retention time of 11.6 min. The MS chromatogram also showed five minor peaks at the retention time of 14.9, 18.9, 19.6, 38.6, and 41.5 min (Figure 4.11a). These minor peaks show the low intensity and could be identified as fragmentations of impurities. Therefore, purified bioactive compound 1 was detected at a retention time of 11.6 min and had an exact mass of 226.9965 *m/z* at negative mode (Figure 4.11b).

On the basis of exact mass, the smart formula search manual software was used for predicting molecular formulas from mass spectrometry. The chemical constituents of carbon (C), hydrogen (H) oxygen (O), and nitrogen (N) were calculated by atomic mass fundamentally. Seven molecular formulas of exact mass 266.9965 m/z [M-H]<sup>-</sup> were C<sub>5</sub>H<sub>3</sub>N<sub>6</sub>O<sub>3</sub>S, C<sub>4</sub>H<sub>7</sub>N<sub>2</sub>O<sub>2</sub>O<sub>7</sub>S, C<sub>4</sub>H<sub>3</sub>N<sub>8</sub>S<sub>2</sub>, C<sub>8</sub>H<sub>7</sub>N<sub>2</sub>O<sub>2</sub>S<sub>2</sub>, C<sub>16</sub>H<sub>3</sub>S, C<sub>5</sub>H<sub>11</sub>N<sub>2</sub>O<sub>2</sub>S<sub>3</sub>, and C<sub>13</sub>H<sub>7</sub>S<sub>2</sub>. The smart formula search result of an MS peak at 226.9965 m/z is shown in Appendix E. Additionally, NMR analysis was used to confirm the chemical structure of purified bioactive molecule 1.

#### Nuclear magnetic resonance (NMR) analysis

The NMR spectroscopic technique is a sophisticated characterization method for confirming the chemical structures of a substance. The purified bioactive compound 1 had been tested <sup>1</sup>H and <sup>13</sup>C NMR. The <sup>1</sup>H NMR spectrum of purified bioactive compound 1 was 7.32 (1H, s at position H-3), 3.25 (3H, s at position N (4)-CH<sub>3</sub>), 9.95 (1H, s at position C (6)-NH), and 2.02 (3H, s at position CO-CH<sub>3</sub>) (Figure 4.12a). The <sup>13</sup>C NMR spectrum of purified bioactive compound 1 was 110.85 ppm, 132.40 ppm, 27.51 ppm, 166.16 ppm, 114.79 ppm, 135.98 ppm, 168.83 ppm, and 22.35 ppm (Figure 4.12b). The <sup>1</sup>H and <sup>13</sup>C NMR spectrum was compared with published data described by Lamari et al. (2002). Therefore, bioactive compound 1 produced by PKA51 might be identified as thiolutin. The comparison of <sup>1</sup>H and <sup>13</sup>C NMR spectra of compound 1 and thiolutin are summarized in Tables 4.5-4.6. The results showed that they were consistent, thus compound 1 was identified as thiolutin (C<sub>8</sub>H<sub>8</sub>N<sub>2</sub>O<sub>2</sub>S<sub>2</sub>). The chemical structure of thiolutin was shown in Figure 4.15a.



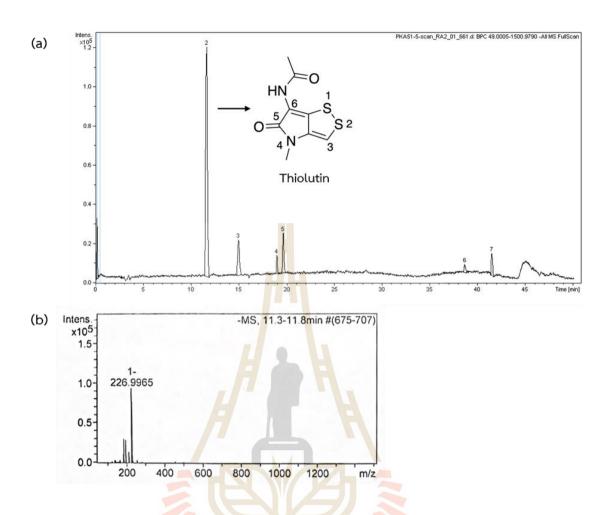
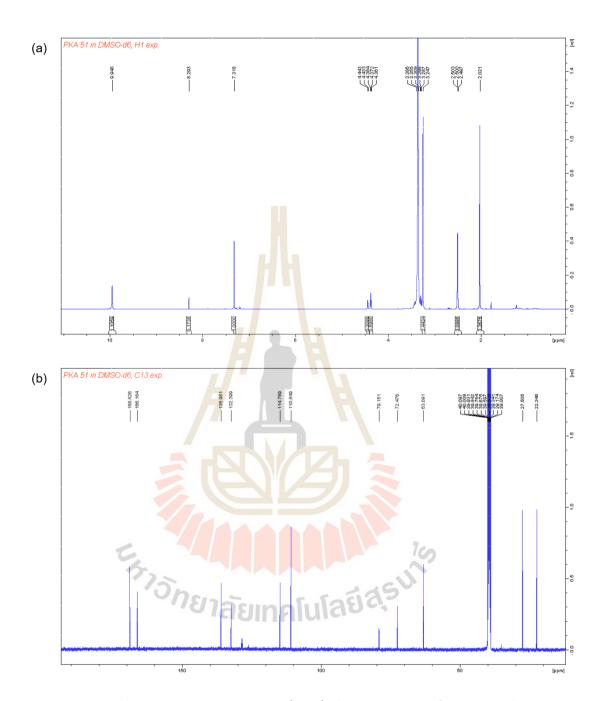




Figure 4.11 Chromatogram for liquid chromatography-mass spectrometry (LC-MS) of purified bioactive compound 1 in negative ion polarity mode  $[M-H]^-$ . (a) HPLC-MS chromatogram of purified bioactive compound 1. (b) Mass spectrum of peak at a retention time of 11.6 min from purified bioactive compound 1 (226.9965 m/z at negative mode)



**Figure 4.12** Nuclear magnetic resonance (NMR) chromatogram of compound 1 extract from *S. luteosporeus* PKA51. (a) <sup>1</sup>H NMR spectrum, (b) <sup>13</sup>C NMR spectrum.

|                       | Compound 1   | Thiolutin    |
|-----------------------|--------------|--------------|
| Position              | δH (ppm)     | δH (ppm)     |
| H-3                   | 7.32 (1H, s) | 7.30 (1H, s) |
| N (4)-CH <sub>3</sub> | 3.25 (3H, s) | 3.20 (3H, s) |
| C (6)-NH              | 9.95 (1H, s) | 9.95 (1H, s) |
| CO-CH <sub>3</sub>    | 2.02 (3H, s) | 2.50 (3H, s) |
|                       |              |              |

 Table 4.5 <sup>1</sup>H NMR spectra of compound 1 and thiolutin.

 Table 4.6 <sup>13</sup>C NMR spectra of compound 1 and thiolutin.

| Position              | Compound 1      | Thiolutin      |
|-----------------------|-----------------|----------------|
|                       | δC (ppm)        | δC (ppm)       |
| 3                     | 110.85          | 112.1          |
| 3a                    | 132.40          | 133.6          |
| N (4)-CH <sub>3</sub> | 27.51           | 27.8           |
| 5                     | 166.16          | 167.3          |
| 5<br>6<br>6           | aun 114.79 au a | 167.3<br>115.9 |
| ба                    | 135.98          | 137.1          |
| Amino moiety          | 168.83          | 170.0          |
|                       | 22.35           | 23.5           |

#### 4.5.2 Bioactive compound 2

#### UV-VIS spectroscopy

UV-Vis absorption spectra of the bioactive compound present in the active fraction 2 were recorded by determining maximum absorbance wavelengths. The bioactive compound 2 of PKA51 exhibited maximum UV absorption peaks at 313 and 385 nm, which was the characteristic of the pyrrothine core. The second antimicrobial compound also showed a UV-Vis spectrum similar to compound 1 at 311 and 391nm indicating the presence of the pyrrothine core (Li et al., 2014; Merrouche et al., 2019).

### Liquid chromatography-mass spectrometry (LC-MS) analysis

Purified bioactive compound 2 derived from *S. luteosporeus* PKA51 was subjected to LC-MS analysis for chemical structure elucidation. The exact mass (m/z) and fragmentation peaks of MS spectrum peaks were used to identify purified bioactive compound 2. According to the HPLC-MS chromatogram. Purified bioactive compound 2 exhibited 1 major peak at the retention time of 13.3 min. The MS chromatogram also showed 2 minor peaks at the retention time of 26.6 and 29.8 min (Figure 4.13a). Therefore, purified bioactive compound 2 was detected at a retention time of 13.3 min and had an exact mass of 258.9848 m/z at negative ion mode (Figure 4.13b).

The elemental composition of C, H, O, N, and S of purified bioactive compound 2 was predicted using the smart formula search manual software based on their accurate mass. Nine molecular formulas of exact mass 258.9848 m/z [M-H]<sup>-</sup> were C<sub>4</sub>H<sub>3</sub>N<sub>8</sub>O<sub>2</sub>S<sub>2</sub>, C<sub>8</sub>H<sub>7</sub>N<sub>2</sub>O<sub>4</sub>S<sub>2</sub>, C<sub>4</sub>H<sub>7</sub>N<sub>2</sub>O<sub>9</sub>S, C<sub>11</sub>H<sub>3</sub>N<sub>2</sub>O<sub>4</sub>S, C<sub>9</sub>H<sub>3</sub>N<sub>6</sub>S<sub>2</sub>, C<sub>3</sub>H<sub>7</sub>N<sub>4</sub>O<sub>6</sub>S<sub>2</sub>, C<sub>5</sub>H<sub>11</sub>N<sub>2</sub>O<sub>4</sub>S<sub>3</sub>, C<sub>16</sub>H<sub>3</sub>O<sub>2</sub>S, and C<sub>4</sub>H<sub>11</sub>N<sub>4</sub>OS<sub>4</sub>. The table of smart formula search manual software of an MS peak at 258.9848 m/z is shown in Appendix E. Furthermore, NMR analysis was used to confirm the chemical structure of purified bioactive compound 2.

### Nuclear magnetic resonance (NMR) analysis

The purified bioactive compound 2 was tested <sup>1</sup>H and <sup>13</sup>C NMR. The <sup>1</sup>H NMR spectrum of compound 2 was 7.54 (1H, s at position H-3), 3.10 (3H, s at position N (4)-CH<sub>3</sub>), 10.66 (1H, s at position C (6)-NH), and 2.09 (3H, s at position CO-CH<sub>3</sub>) (Figure 4.14a). The <sup>13</sup>C NMR spectrum of purified bioactive compound 2 was 109.63 ppm, 145.57 ppm, 27.93 ppm, 165.35 ppm, 123.09 ppm, 114.12 ppm, 170.59 ppm, and 22.60 ppm (Figure 4.14b). The <sup>1</sup>H and <sup>13</sup>C NMR spectrum was compared with the published patent no. EP1372640B1 described by Claudia et al., (2002). Therefore, bioactive compound 2 produced by PKA51 might be identified as thiolutin dioxide. The comparison of <sup>1</sup>H and <sup>13</sup>C NMR spectra of compound 2 and thiolutin dioxide are listed in Tables 4.7-4.8. The results showed that they were consistent and confirmed bioactive compound 2 as thiolutin dioxide (C<sub>8</sub>H<sub>8</sub>N<sub>2</sub>O<sub>4</sub>S<sub>2</sub>). The chemical structure of thiolutin dioxide was shown in Figure 4.15b.



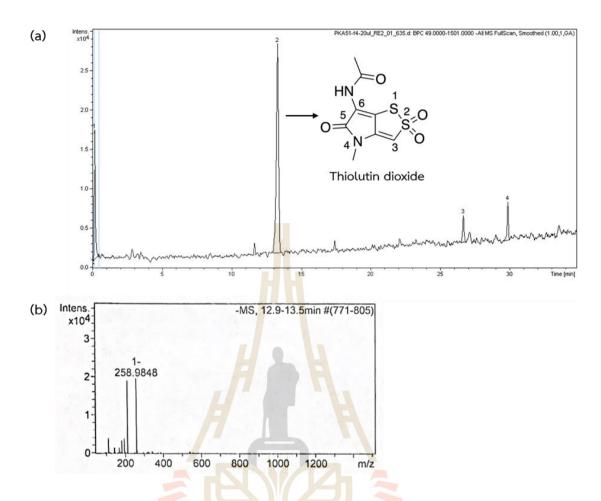
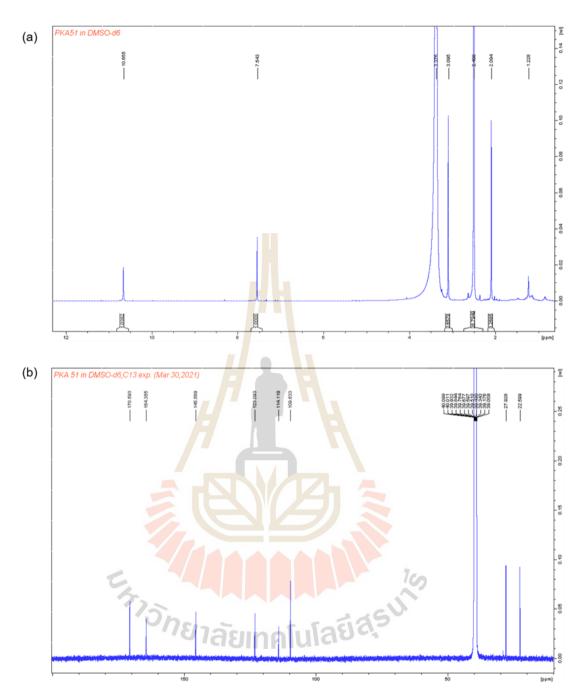
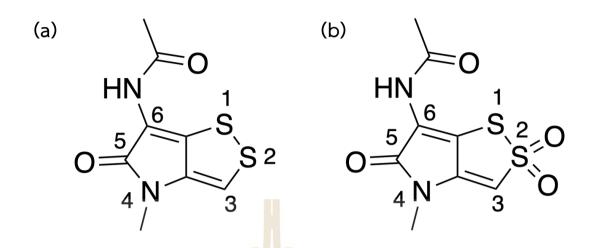




Figure 4.13 Chromatogram for liquid chromatography-mass spectrometry (LC-MS) of purified bioactive compound 2 in negative ion polarity mode  $[M-H]^-$ . (a) HPLC-MS chromatogram of purified bioactive compound 2. (b) Mass spectrum of peak at a retention time of 13.3 min from purified bioactive compound 2 (258.9848 m/z at negative mode.




**Figure 4.14** Nuclear magnetic resonance (NMR) chromatogram of compound 2 extract from *S. luteosporeus* PKA51. (a) <sup>1</sup>H NMR spectrum, (b) <sup>13</sup>C NMR spectrum.

| Desition              | Compound 2    | Thiolutin dioxide |
|-----------------------|---------------|-------------------|
| Position              | δH (ppm)      | δH (ppm)          |
| H-3                   | 7.54 (1H, s)  | 7.55              |
| N (4)-CH <sub>3</sub> | 3.10 (3H, s)  | 3.10              |
| C (6)-NH              | 10.66 (1H, s) | 10.65             |
| CO-CH <sub>3</sub>    | 2.09 (3H, s)  | 2.10              |
|                       |               |                   |

 Table 4.7 <sup>1</sup>H NMR spectra of compound 2 and thiolutin dioxide.

 Table 4.8 <sup>13</sup>C NMR spectra of compound 2 and thiolutin dioxide.

| Position              | Compound 2 | Thiolutin dioxide |
|-----------------------|------------|-------------------|
| Position              | δC (ppm)   | δC (ppm)          |
| 3                     | 109.63     | 109.58            |
| 3a                    | 145.57     | 145.48            |
| N (4)-CH <sub>3</sub> | 27.93      | 27.85             |
| 5                     | 165.35     | 164.27            |
| 5<br>6                | 123.09 au  | 164.27            |
| ба                    | 114.12     | 114.05            |
| Amino moiety          | 170.59     | 170.46            |
|                       | 22.60      | 22.51             |



**Figure 4.15** Chemical structure of (a) thiolutin, and (b) thiolutin dioxide produced by *S. luteosporeus* PKA51.

## 4.6 Antimicrobial activity of purified bioactive compounds

The MIC values of purified bioactive compounds were determined by the broth microdilution method using 96-well plates against antibiotic-resistant bacteria. Compound 1 (thiolutin) was active against MRSA, MRSE, clinical isolate *E. coli*, and clinical isolate *K. pneumoniae* with MIC values 2, 4, 32, and 128  $\mu$ g·ml<sup>-1</sup>, respectively. MIC values of compound 2 (thiolutin dioxide) against MRSA, MRSE, clinical isolate *E. coli*, and clinical isolate *K. pneumoniae* were 8, 4, 32, and 64  $\mu$ g·ml<sup>-1</sup>, respectively. Furthermore, MBC of compound 1 and compound 2 were examined by plating aliquot assay (Nithya et al., 2018; Rajivgandhi et al., 2018). The MBC values of compound 1 and compound 2 against MRSE were 8 and 4  $\mu$ g·ml<sup>-1</sup>. While the MBC values of compound 2 were >256  $\mu$ g·ml<sup>-1</sup> for MRSA, clinical isolate *E. coli*, and tetracycline). The antimicrobial activity of compound 1 and compound 2 were summarized in Table 4.9.

 Table 4.9 MIC and MBC of compound 1 and compound 2 extracted from *Streptomyces* sp. PKA51 against antibiotic-resistant bacteria.

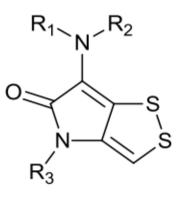
| Antibiotic-resistant                 |     |     | ry concentration (μg·ml <sup>-1</sup> )<br>(MIC) |                      | Minimum bactericidal concentration<br>(MBC) |      | ion (µg∙ml⁻¹) |                      |
|--------------------------------------|-----|-----|--------------------------------------------------|----------------------|---------------------------------------------|------|---------------|----------------------|
| bacteria                             | VAN | тс  | Thiolutin                                        | Thiolutin<br>dioxide | VAN                                         | тс   | Thiolutin     | Thiolutin<br>dioxide |
| MRSA DMST20654                       | 2   | ND  | 2                                                | 8                    | 2                                           | ND   | >256          | >256                 |
| Clinical isolate MRSE                | 4   | ND  |                                                  | 3                    | 8                                           | ND   | 8             | 4                    |
| Clinical isolate <i>E. coli</i> 2026 | 256 | 64  | 32                                               | 32 16                | 256                                         | >256 | >256          | 256                  |
| Clinical isolate                     |     |     | <sup>ุ่ก</sup> ยาลัยเทคโเ                        |                      |                                             |      |               |                      |
| K. pneumoniae 1617                   | 256 | 256 | 128                                              | 64                   | >256                                        | >256 | >256          | >256                 |

Each value is a mean of n = 3 experiments., ND = Not determined, VAN = Vancomycin, TC = Tetracycline

# CHAPTER V DISCUSSION AND CONCLUSION

The genus *Streptomyces* from terrestrial soil is a potential biological source of bioactive metabolites. They are known to produce a wide variety of substances such as antimicrobial compounds, antifungals, antivirals, herbicides, pesticides, and antitumor agents. (Al-Dhabi et al., 2016; Bérdy, 2005; Dahal and Chaudhary, 2018; Procópio et al., 2012; and Quinn et al., 2020). The diversity of bioactive metabolites from the genus *Streptomyces* is driven by evolution and natural selection (Hibbing et al., 2010). In bacteria communities, the genus Streptomyces has evolved various strategies to disrupt and kill other microorganisms including the production of antimicrobial agents and protein toxins. They compete for resources and space within their communities by defending and attacking other bacteria. (Meij et al., 2017; Hussain et al., 2018). This phenomenon resulted in the synthesis of various metabolites. Several Streptomyces sp. are frequently distributed in various habitats such as the Tharban hot spring, Mount Everest, Himalayan region, Egyptian desert, Saudi Arabia desert, Indian saline desert, volcanic cave, the lake of Ghana, and mangrove soil. The Streptomyces spp. can produce a variety of bioactive compounds and contribute to the development of novel antimicrobial agents (Al-Dhabi et al., 2016; Gurung et al., 2009; Hozzein et al., 2011; Ser et al., 2015; Nithya et al., 2018; Radhakrishnan et al., 2010; Selim et al., 2021; Tawiah et al., 2012; Thumar et al., 2010).

In 2017, Khowangklang (2017) isolated 77 strains of actinobacteria from dry dipterocarp soil in Suranaree University of Technology, Nakhon Ratchasima province. The antimicrobial test has shown that 6 soil isolates (PKA2, PKA20, PKA45, PKA50, PKA51, and PKA62) had antimicrobial activity against test pathogens (*S. aureus* TISTR2466, MRSA DMST20654, *S. epidermidis* TISTR518, *B. subtilis* TISTR008, *B. cereus* TISTR687, *S.* Typhimurium TISTR292, and *P. mirabilis* TISTR100) (Khowangklang, 2017).


Strain PKA51 was picked for this study since the strain showed highantimicrobial activity against Gram-positive and Gram-negative bacteria. The colony morphology of PKA51 is rough-surfaced and covered by a web of aerial mycelium. They could produce earthy smell and soil odors. These earthy odors are caused by the production of geosmin and siderophore, which are mostly generated by the genus *Streptomyces* (Flärdh and Buttner, 2009; Hasani et al., 2014). Based on the results of 16S rDNA and phylogenetic tree analysis, PKA51 exhibited the highest sequence similarity with *Streptomyces luteosporeus* NBRC 14657<sup>T</sup> (99.93 % similarity). Therefore, PKA51 can be classified as *S. luteosporeus* (Basonym: *Streptoverticillium album*).

*S. album* was first discovered by Locci and co-workers in 1969. It was isolated from plant rhizosphere soil in Kuala Lumpur, Malaysia (Locci et al., 1969; Ting et al., 2009). In 1990, Witt and Stackebrandt studied the taxonomic relationship between *Streptoverticillium album* and *Streptomyces luteosporeus*. These two species shared chemotaxonomic and 16S rRNA gene sequence. Therefore, the *Streptoverticillium album* was reclassified as *Streptomyces luteosporeus* (Euzéby, 1997; Witt and Stackebrandt, 1990).

It has been reported that the antibacterial activity of *S. luteosporeus, S. luteosporeus* was active against Gram-positive bacteria (*S. aureus*) while antibacterial activity against Gram-negative bacteria (*K. pneumoniae, E. coli*) was weak (Gayathri et al., 2011; Ting et al., 2009). In this study, the antimicrobial activity of *S. luteosporeus* PKA51 was evaluated against Gram-positive bacteria and Gram-negative bacteria. PKA51 exhibited broad-spectrum antimicrobials against Gram-positive bacteria (*B. subtilis* TISTR008, *B. cereus* TISTR684, *S. epidermidis* TISTR518, *S. aureus* ATCC1466, MRSA DMST20654, and clinical isolate MRSE) and Gram-negative bacteria (*E. coli* TISTR780, *S.* Typhimurium TISTR292, *E. aerogenes* TISTR1540, *S. marcescens* TISTR1354, *P. mirabilis* TISTR100, clinical isolate *K. pneumoniae* 1617, and clinical isolate *E. coli* 2026). *S. luteosporeus* is known as a producer of thiolutin (acetopyrrothine), quinaldopeptin, and indolmycin antibiotics (BacDive, 2019; Toda et al., 1990; Celmer and Solomons, 1955).

In the present study, bioactive compounds from *Streptomyces* sp. PKA51 were purified and characterized by using LC-MS and NMR spectroscopy. The results revealed that PKA51 produced two bioactive compounds which were designated as compound 1 and compound 2. Both compounds exhibited a maximum absorbance in a range of 385 - 391 nm indicating the presence of pyrrothine core, a nucleus aromatic in bioactive compounds (Li et al., 2014; Merrouche et al., 2018; Qin et al., 2014). Based on HPLC-MS, compound 1 was detected at a retention time of 11.6 min and had an exact mass of 226.9965 m/z [M-H]<sup>-</sup> which matched C<sub>8</sub>H<sub>7</sub>N<sub>2</sub>O<sub>2</sub>S<sub>2</sub>. Compound 2 was detected at a retention time of 13.3 min and its exact mass was 258.9848 m/z [M-H]<sup>-</sup> and matched C<sub>8</sub>H<sub>7</sub>N<sub>2</sub>O<sub>4</sub>S<sub>2</sub>. The chemical structure of bioactive compound 1 was thiolutin which was similar to the previous report by Celmer and Solomons, (1955); Lamari et al. (2002). While compound 2 was identified as N-(4-methyl-2,2-dioxido-5-oxo-4,5-dihydro- [1,2] dithiolo[4,3-b] pyrrol-6-yl) acetamide), a thiolutin dioxide derivative.

Thiolutin and thiolutin dioxide have been characterized as antibiotics belonging to the dithiolopyrrolone (DTP) group. The chemical structure of DTP was characterized by a distinct bridged bicyclic, which contains a disulfide between two-end thiols (Figure 5.1). The conjugation of two end-thiols and the presence of the pyrrothine core in these molecules are responsible for the yellow color and maximum absorbance at 388 nm ( $\lambda_{388}$ ). DTPs are grouped into 3 subfamilies including thiolutin type (*N*-methyl, *N*-acylpyrrothine derivatives), holomycin type (*N*-acylpyrrothine derivatives), and thiomarinol type. Many DTP members have been isolated from several microorganisms, such as *Streptomyces* sp., *Xenorhabdus bovienii, Alteromonas rava,* and *Saccharothrix* sp. (Celmer and Solomons., 1955; Li et al., 2014; Qin et al., 2013; *Z*hai et al., 2016).

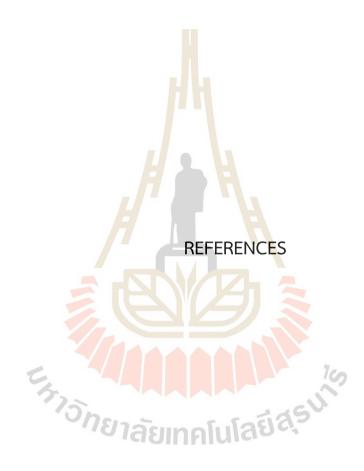


**Figure 5.1** Chemical structure of dithiolopyrrolone compounds. The  $R_1$ ,  $R_2$ , and  $R_3$  groups for each pyrrothine core will differ in structure.

It has been shown that mode of action of thiolutin is to block DNA-dependent RNA-polymerase, resulting in the inhibition of RNA synthesis (Oliva et al., 2001). Thiolutin acts as a direct RNA synthesis inhibitor in the process of RNA elongation in bacteria and yeast (*Saccharomyces cerevisiae*) (Khanchatourians and Tipper, 1974; Oliva et al., 2001; Villain-Guillot et al., 2007). In the current study, MIC values of thiolutin derived from PKA51 against drug-resistant pathogens were determined by using the broth microdilution method. Thiolutin produced by PKA51 exhibited a strong inhibitory effect against MRSA DMST20654, clinical isolate MRSE, and clinical isolate *E. coli* 2026 with MIC values 2, 4, 32 µg·ml<sup>-1</sup>, respectively. While the MIC value of thiolutin against clinical isolate *K. pneumoniae* 1617 was 128 µg·ml<sup>-1</sup>.

It has been reported the antibacterial activity of commercial thiolutin isolated from *Streptomyces albus* is active against *S. epidermidis*. The MIC and MBC values of commercial thiolutin against *S. epidermidis* were 6.25 and 12.5  $\mu$ g·ml<sup>-1</sup>, respectively. (Villain-Guillot et al., 2007). It should be noted that the MIC and MBC values of thiolutin from *S. luteosporeus* PKA51 against *S. epidermidis* were lower than commercial thiolutin (*S. albus*). Moreover, it has been discovered that thiolutin has anti-angiogenic properties by inhibiting a focal adhesion kinase involved in tumor malignancy. Thiolutin has strong anti-angiogenesis on human cancer cell lines, lung-H460 (IC<sub>50</sub> ≈ 190 nM), and breast-LCC6 (IC<sub>50</sub> ≈ 220 nM). Therefore, thiolutin was defined as an antitumor with moderates cytotoxic to noncancerous cells (Fu and Macmillan, 2015; Li et al., 2007; Minamiguchi et al., 2001; Toda et al., 1990).

Thiolutin dioxide is a known substance. The semi-synthesis process of thiolutin dioxide was described by Schachtner in 1999. Thiolutin dioxide was synthesized by oxidizing thiolutin with meta-chlorperbenzoic acid (mCPBA) (Schachtner et al., 1999). However, the semi-synthetic compound had several disadvantages, including byproduct formation, chemical hazards, and toxic substances. Compared to the semisynthetic process, the biological synthesis of thiolutin dioxide from PKA51 is naturally occurring, environmentally safe, and chemical-free (Usman et al., 2018). In 2002, it has been shown that thiolutin dioxide can be isolated from *Nocardiopsis* sp. ST100692 (DSM13834) (Claudia et al., 2002). In 2014, it was reported that there are around 27 naturally occurring DTP compounds including aureothricin, thiolutin, holomycin, isobutyropyrrothine, butanolypyrrothine, senecioylpyrrothine, tigloylpyrrothine, propanoylholothine, VD-844, xenorhabdin no. 1 - 13, and thiomarinol A-G (Li et al., 2014; Qin et al., 2013). Since 2014, there have been no reports of thiolutin dioxide derived from microorganisms (Li et al., 2014). However, in 2020 Zhou and co-workers reported the hypothesis of thiolutin dioxide's biosynthesis route from thiolutin. This hypothesis has been proposed by the conversion of holomycin to thiolutin. They suggested that the oxidation reaction of thiosulphate (-RSO<sub>2</sub>SR'-) to thiolutin results in the conversion of thiolutin to thiolutin dioxide (Li and Walsh, 2010; Zhou et al., 2020). As a result, thiolutin dioxide was synthesized from thiolutin and rarely produced by microorganisms.


In this study, the ratio of bioactive compound to cell dry weight (mg·g<sup>-1</sup>) was used to calculate the yield. The obtained yield of thiolutin and thiolutin dioxide from PKA51 were 2.98 and 1.36 mg·g<sup>-1</sup>, respectively. Thus, PKA51 is a potential candidate for the production of thiolutin dioxide due to its shorter fermentation period.

To date, there has been no report on the antibacterial activity of thiolutin dioxide against drug-resistant pathogens. In this study, the antibacterial activity of thiolutin dioxide was first evaluated. The results showed that thiolutin dioxide was the most effective against clinical isolate MRSE (MIC = 4  $\mu$ g·ml<sup>-1</sup>). While the highest MIC value was observed against clinical isolate *K. pneumonia* 1617 (MIC = 64  $\mu$ g·ml<sup>-1</sup>). In

addition, the results showed Gram-positive bacteria (MRSA and MRSE) have more susceptible to thiolutin dioxide than Gram-negative bacteria (*E. coli* and *K. pneumoniae*).

To best knowledge, there has only been one report of naturally-occurring thiolutin dioxide from *Norcardiopsis* sp. ST100692 (Claudia et al., 2002). This is the first report on isolation and characterization of thiolutin dioxide from *S. luteosporeus*. Thiolutin dioxide showed strong antibacterial activity against antibiotic-resistant pathogens. Therefore, thiolutin dioxide from *S. luteosporeus* PKA51 may be a promising antibacterial drug candidate for pharmaceutical applications.





## REFERENCES

- Al-dhabi, N. A., Esmail, G. A., Duraipandiyan, V., Valan arasu, M., and Salem-bekhit, M.
   M. (2016). Isolation, identification and screening of antimicrobial thermophilic
   Streptomyces sp. Al-Dhabi-1 isolated from Tharban hot spring, Saudi Arabia.
   Extremophiles. 20(1).
- Aminov, R. I. (2010). A brief history of the antibiotic era: lessons learned and challenges for the future. *Frontiers in Microbiology. 1*(134), 1-7.
- Arasu, M. V., Duraipandiyan, V., Agastian, P., and Ignacimuthu, S. (2009). In vitro antimicrobial activity of *Streptomyces* spp. ERI-3 isolated from Western Ghats rock soil (India). *Journal de Mycologie Médicale. 19*(1), 22-28.
- Arifuzzaman, M., Khatun, M., and Rahman, H. (2010). Isolation and screening of actinomycetes from Sundarbans soil for antibacterial activity. *African Journal of Biotechnology*. *9*(29), 4615-4619.
- Barka essaid, A., Vatsa, P., Sanchez, L., Gaveau-vaillant, N., Jacquard, C., Klenk, H.-P., Clémin, C., Ouhdouch, Y., and Wezel, G. P. V. Taxonomy, Physiology, and Natural Products of Actinobacteria. *Microbiology and Molecular Biology Reviews. 80*(1), 1-43.
- Bauer, A. (1966). Antibiotic susceptibility testing by a standardized single disc method. American Journal of Clinical Pathology. 45, 149-158.
- Basavaraj, N. K., Chandrashekhara, S., Shamarez, A. M., Goudanavar, P. S., and Manvi, F. V. (2010). *Tropical Journal of Pharmaceutical Research.* 9(3), 231-236.
- Bhatti, A. A., Haq, S., and Bhat, R. A. (2017). Actinomycetes benefaction role in soil and plant health. *Microbial pathogenesis.* 111, 458-467.

Berdy, J. (2005). Bioactive microbial metabolites. *The Journal of antibiotics*. 58(1): 1-26.

Blair, J. M. A., Webber, M. A., Baylay, A. J., Ogbolu, D. O., and Piddock, L. J. V. (2015). Molecular mechanisms of antibiotic resistance. *Nature Reviews Microbiology*. 13(1), 42-51.

- Bunyapaiboonsri, T., Lapanun, S., Supothina, S., Rachtawee, P., Chunhametha, S., Suriyachadkun, C., Boonruangprapa, T., Auncharoen, P., Chutrakul, C., and Vichai, V. (2016). Polycyclic tetrahydroxanthones from *Streptomyces chrestomyceticus* BCC 24770. *Tetrahedron.* 72(5), 775-778.
- Chandra, N., and Kumar, S. (2017). Antibiotics producing soil microorganisms. Antibiotics and Antibiotics Resistance Genes in Soils: Monitoring, *Toxicity, Risk Assessment and Management. 9*, 1-18.
- Chanthasena, P., and Nantapong, N. (2016). Biodiversity of antimicrobial-producing actinomycetes strains isolated from dry dipterocarp forest soil in northeast Thailand. *Brazilian Archives of Biology and Technology. 59*, 1-11.
- Claudia, E., Michael, K., and Joachim, W. (2002). Use of thiolutin dioxide and its derivatives in the manufacture of a medicament for the treatment of cns disorders (EP. Patent No. 1372640B1).
- Celmer, W. D., and Solomons, I. (1955). The structures of thiolutin and aureothricin, antibiotics containing a unique pyrrolinonodithiole nucleus. *Journal of the American Chemical Society.* 77(10), 2861-2865.
- Chandra, N., and Kumar, S. (2017). Antibiotics producing soil microorganisms. *Antibiotics and Antibiotics Resistance Genes in Soils: Monitoring, Toxicity, Risk Assessment and Management. 9*, 1-18.
- Dahal, R. H., and Chaudhary, D. K. (2018). Microbial infections and antimicrobial resistance in Nepal: current trends and recommendations. *The open microbiology journal.* 12, 230-242.
- Dasari, V. R. R. K., Muthyala, M. K. K., Nikku, M. Y., and Donthireddy, S. R. R. (2012). Novel Pyridinium compound from marine actinomycete, *Amycolatopsis alba* var. nov.
  DVR D4 showing antimicrobial and cytotoxic activities in vitro. *Microbiological Research. 167*(6), 346-351.
- Durand, G. A., Raoult, D., and Dubourg, G. (2019). Antibiotic discovery: history, methods and perspectives. *International Journal of Antimicrobial Agents*. *534*, 371-382.
- El-Naggar, N. E.-A., El-Bindary, A. A.-A., Abdel-Mogib, M., and Nour, N. S. (2017). In vitro activity, extraction, separation and structure elucidation of antibiotic produced by *Streptomyces anulatus* NEAE-94 active against multidrug-resistant

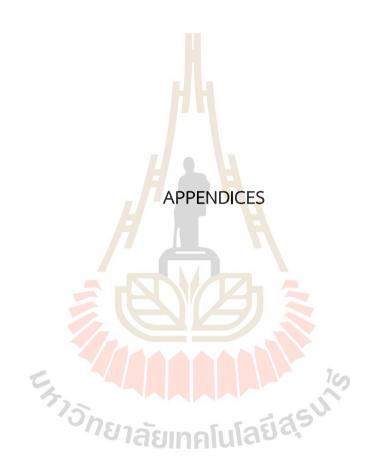
Staphylococcus aureus. Biotechnology & Biotechnological Equipment. 31(2), 418-430.

- Euzéby, J. P. (1997). List of Bacterial Names with Standing in Nomenclature: a folder available on the Internet. *International Journal of Systematic and Evolutionary Microbiology.* 47(2), 590-592.
- Flärdh, K., and Buttner, M. J. (2009). *Streptomyces* morphogenetics: dissecting differentiation in a filamentous bacterium. *Nature Reviews Microbiology.* 7(1), 36-49.
- Fu, P., and Macmillan, J. B. (2015). Thiasporines A–C, thiazine and thiazole derivatives from a marine-derived Actinomycetospora chlora. Journal of natural products. 78(3), 548-551.
- Gayathri, A., Madhanraj, P., and Panneerselvam, A. (2011). Diversity, Antibacterial Activity and Molecular Characterization of Actinomycetes Isolated From Salt Pan Region of Kodiakarai, Nagapattinam DT. *Asian Journal of Pharmacy and Technology. 1*(3), 79-81.
- Gaynes, R. (2017). The Discovery of Penicillin—New Insights After More Than 75 Years of Clinical Use. *Emerging Infectious Diseases*. *23*(5), 849-853.
- Gebreyohannes, G., Moges, F., Sahile, S., and Raja, N. (2013). Isolation and characterization of potential antibiotic producing actinomycetes from water and sediments of Lake Tana, Ethiopia. *Asian Pacific Journal of Tropical Biomedicine. 3*(6), 426-435.
- Gokulan, K., Khare, S., and Cerniglia, C. (2014) Metabolic pathways / Production of secondary metabolites of bacteria. In C. A. Batt & M. L. Tortorello (Eds.), *Encyclopedia of Food Microbiology (Second Edition) (pp. 561-569)*. Oxford: Academic Press.
- Gurung, T. D., Sherpa, C., Agrawal, V. P., and Lekhak, B. (2009). Isolation and characterization of antibacterial actinomycetes from soil samples of Kalapatthar, Mount Everest Region. *Nepal Journal of science and Technology. 10*, 173-182.

- Hasani, A., Kariminik, A., and Issazadeh, K. (2014). Streptomycetes: characteristics and their antimicrobial activities. *International Journal of Advanced Biological and Biomedical Research (IJABBR).* 1, 63-75.
- Hibbing, M. E., Fuqua, C., Parsek, M. R., and Peterson, S. B. (2010). Bacterial competition: surviving and thriving in the microbial jungle. *Nature Reviews Microbiology.* 8(1), 15-25.
- Houbraken, J., Frisvad, J. C., and Samson, R. A. (2011). Flemming's penicillin producing strain is not Penicillium chrysogenum but *P. rubens. IMA Fungus. 2*(1), 87-95.
- Hozzein, W. N., Rabie, W., and Ali, M. I. A. (2011). Screening the Egyptian desert actinomycetes as candidates for new antimicrobial compounds and identification of a new desert *Streptomyces* strain. *African Journal of Biotechnology. 10*(12), 2295-2301.
- Hussain, A., Rather, M. A., Dar, M. S., Dangroo, N., Aga, M. A., Shah, A. M., Qayum, A., Shah, A. M., Ahmad, Z., and Hassan, Q. P. (2018). *Streptomyces puniceus* strain AS13., Production, characterization and evaluation of bioactive metabolites: A new face of dinactin as an antitumor antibiotic. *Microbiological Research. 207*, 196-202.
- Jakubiec-Krzesniak, K., Rajnisz-Mateusiak, A., Guspiel, A., Ziemska, J., and Solecka, J. (2018). Secondary metabolites of actinomycetes and their antibacterial, antifungal and antiviral properties. *Polish journal of microbiology.* 67(3), 259-272.
- Kaur, H., Onsare, J. G., Sharma, V., and Arora, D. S. (2015). Isolation, purification and characterization of novel antimicrobial compound 7-methoxy-2, 2-dimethyl-4octa-4', 6'-dienyl-2 H-napthalene-1-one from *Penicillium* sp. and its cytotoxicity studies. *AMB Express. 5*(1), 1-13.
- Kemung, H. M., Tan, L. T.-H., Khan, T. M., Chan, K.-G., Pusparajah, P., Goh, B.-H., and Lee, L.-H. (2018). *Streptomyces* as a prominent resource of future anti-MRSA drugs. *Frontiers in microbiology.* 9(2221), 1- 26.
- Khachatourians, G., and Tipper, D. J. (1974). In vivo effect of thiolutin on cell growth and macromolecular synthesis in *Escherichia coli*. *Antimicrobial Agents and Chemotherapy. 6*(3), 304-310.

- Khowangklang, P. (2017). *Isolation of antimicrobial-producing microorganisms from soil.* M.Sc. Suranaree University of Technology, Thailand.
- Kumar, P., Kundu, A., Kumar, M., Solanki, R., and Kapur, M. K. (2019). Exploitation of potential bioactive compounds from two soil derived actinomycetes, *Streptomyces* sp. strain 196 and RI.24. *Microbiological Research. 229*(126312), 1-11.
- Kumar, P. S., Duraipandiyan, V., and Ignacimuthu, S. (2014). Isolation, screening and partial purification of antimicrobial antibiotics from soil *Streptomyces* sp. SCA 7. *The Kaohsiung Journal of Medical Sciences.* 30(9), 435-446.
- Kumar, R. R., and Jadeja, V. J. (2018). Characterization and partial purification of an antibacterial agent from halophilic actinomycetes *Kocuria* sp. strain rsk4. *BioImpacts: BI. 8*(4), 253-261.
- Lambert, P. (2002). Mechanisms of antibiotic resistance in *Pseudomonas aeruginosa*. Journal of the royal society of medicine. 95(41), 22-26.
- Lamari, L., Zitouni, A., Boudjella, H., Badji, B., Sabaou, N., Lebrihi, A., Germain, P., Seguin,
   E., and Tillequin, F. (2002). New Dithiolopyrrolone Antibiotics from
   Saccharothrix sp. SA 233 I. Taxonomy, Fermentation, Isolation and Biological
   Activities. The Journal of antibiotics. 55(8), 696-701.
- Li, B., Lyle, M. P., Chen, G., Li, J., Hu, K., Tang, L., Alaoui-jamali, M. A., and Webster, J. (2007). Substituted 6-amino-4H-[1, 2] dithiolo [4, 3-b] pyrrol-5-ones: synthesis, structure–activity relationships, and cytotoxic activity on selected human cancer cell lines. *Bioorganic & medicinal chemistry.* 15(13), 4601-4608.
- Li, B., Walsh, C. T. (2010). Identification of the gene cluster for the dithiolopyrrolone antibiotic holomycin in *Streptomyces clavuligerus*. *Proceedings of the National Academy of Sciences, 107*(46), 19731-19735.
- Li, B., and Webster, T. J. (2018). Bacteria antibiotic resistance: new challenges and opportunities for implant-associated orthopedic infections. *Journal of Orthopaedic Research. 36*(1), 22-32.
- Li, B., Wever, W. J., Walsh, C. T., and Bowers, A. A. (2014). Dithiolopyrrolones: biosynthesis, synthesis, and activity of a unique class of disulfide-containing antibiotics. *Natural product reports. 31*(7), 905-923.

- Li, Q., Chen, X., Jiang, Y., and Jiang, C. (2016). Morphological identification of actinobacteria. *Actinobacteria-basics and biotechnological applications.* 59-86.
- Locci R. (1969). The Integrated Taxonomic Information System. *International Journal* of Systematic and Evolutionary Microbiology. 30, 407
- Merrouche, R., Yekkour, A., Coppel, Y., Bouras, N., Lamari, L., Zitouni, A., Mathier, F., Lebrihi, a., and Sabaou, N. (2019). Effective biosynthesis of benzoyl-pyrrothine dithiolopyrrolone antibiotic by cinnamic acid-precursor addition in culture of *Saccharothrix algeriensis* NRRL B-24137. *Letters in applied microbiology. 68*(2), 165-172.
- Merrouche, R., Yekkour, A., Coppel, Y., Bouras, N., Zitouni, A., Lebrihi, A., Mathieu, F., and Sabaou, N. (2019). A new dithiolopyrrolone antibiotic triggered by a long fermentation of *Saccharothrix algeriensis* NRRL B-24137 in sorbic acidamended medium. *Letters in applied microbiology. 69*(4), 294-301.
- Minamiguchi, K., Kumagai, H., Masuda, T., Kawada, M., Ishizuka, M., and Takeuchi, T. (2001). Thiolutin, an inhibitor of HUVEC adhesion to vitronectin, reduces paxillin in HUVECs and suppresses tumor cell-induced angiogenesis. *International journal of cancer. 93*(3), 307-316.
- Nandhini, S. U., Sudha, S., Jeslin, V. A., and Manisha, S. (2018). Isolation, identification and extraction of antimicrobial compounds produced by *Streptomyces* sps from terrestrial soil. *Biocatalysis and Agricultural Biotechnology.* 15, 317-321.
- Nithya, K., Muthukumar, C., Biswas, B., Alharbi, N. S., Kadaikunnan, S., Khaled, J. M., and Dhanasekaran, D. (2018). Desert actinobacteria as a source of bioactive compounds production with a special emphasis on Pyridine-2, 5-diacetamide a new pyridine alkaloid produced by *Streptomyces* sp. DA3-7. *Microbiological Research. 207*, 116-133.
- Oliva, B., O'Neill, A., Wilson, J. M., O'Hanlon, P. J., and Chopra, I. (2001). Antimicrobial properties and mode of action of the pyrrothine holomycin. *Antimicrobial Agents and Chemotherapy.* 45(2), 532-539.
- Poggi, M., Barroso, R., Costa-Filho, A. J., Barbosa de Barros, H., Pavan, F., Queico Leite, C., Gambino, D., and Helvecia Torre, M. (2013). New isoniazid complexes,


promising agents against *Mycobacterium tuberculosis*. Journal of the Mexican Chemical Society. 57(3), 198-204.

- Procópio, R. E. D. L., Silva, I. R. D., Martins, M. K., Azevedo, J. L. D., and Araújo, J. M. D. (2012). Antibiotics produced by *Streptomyces*. *Brazilian Journal of Infectious Diseases*. *16*(5), 466-471.
- Qin, Z., Huang, S., Yu, Y., and Deng, H. (2013). Dithiolopyrrolone natural products: isolation, synthesis and biosynthesis. *Marine Drugs.* 11(10), 3970-3997.
- Quinn, G. A., Banat, A. M., Abdelhameed, A. M., and Banat, I. M. (2020). *Streptomyces* from traditional medicine: Sources of new innovations in antibiotic discovery. *Journal of Medical Microbiology*. *69*(8), 1040-1048.
- Radhakrishnan, M., Suganya, S., Balagurunathan, R., and Kumar, V. (2010). Preliminary screening for antibacterial and antimycobacterial activity of actinomycetes from less explored ecosystems. *World Journal of Microbiology and Biotechnology.* 26(3), 561-566.
- Rajivgandhi, G., Muneeswaran, T., Maruthupandy, M., Ramakritinan, C. M., Saravanan, K., Ravikumar, V., and Manoharan, N. (2018). Antibacterial and anticancer potential of marine endophytic actinomycetes *Streptomyces coeruleorubidus* GRG 4 (KY457708) compound against colistin resistant uropathogens and A549 lung cancer cells. *Microbial pathogenesis. 125*, 325-335.
- Rathod, B. B., Korasapati, R., Sripadi, P., and Reddy Shetty, P. (2018). Novel actinomycin group compound from newly isolated *Streptomyces* sp. RAB12: isolation, characterization, and evaluation of antimicrobial potential. *Applied Microbiology and Biotechnology*. *102*(3), 1241-1250.
- Reygaert, W. C. (2018). An overview of the antimicrobial resistance mechanisms of bacteria. *AIMS Microbiology. 4*(3), 482-501.
- Saga, T., and Yamaguchi, K. (2009). History of antimicrobial agents and resistant bacteria. Japan Medical Association Journal. 52(2), 103-108.
- Schachtner, J. E., Zoukas, T., Stachel, H. D., Polborn, K., and Nöth, H. (1999). Fused 1,
  2-dithioles. IV. Synthesis and reactions of 1, 2-dithiole s-oxides. *Journal of heterocyclic chemistry*. *36*(1), 161-175.

- Selim, M. S. M., Abdelhamid, S. A., and Mohamed, S. S. (2021). Secondary metabolites and biodiversity of actinomycetes. *Journal of Genetic Engineering and Biotechnology. 19*(1), 1-13.
- Selvameenal, L., Radhakrishnan, M., and Balagurunathan, R. (2009). Antibiotic pigment from desert soil actinomycetes; biological activity, purification and chemical screening. *Indian journal of pharmaceutical sciences*. 71(5), 499.
- Ser, H.-L., Ab Mutalib, N.-S., Yin, W.-F., Chan, K.-G., Goh, B.-H., and Lee, L.-H. (2015).
   Evaluation of antioxidative and cytotoxic activities of *Streptomyces pluripotens* MUSC 137 isolated from mangrove soil in Malaysia. *Frontiers in microbiology.* 6(1398), 1-11.
- Sharma, M., and Manhas, R. K. (2019). Purification and characterization of actinomycins from *Streptomyces* strain M7 active against methicillin resistant *Staphylococcus aureus* and vancomycin resistant *Enterococcus*. *BMC microbiology*. *19*(1), 1-14.
- Sharma, M., and Manhas, R. K. (2020). Purification and characterization of salvianolic acid B from *Streptomyces* sp. M4 possessing antifungal activity against fungal phytopathogens. *Microbiological Research.* 237(126478), 1-14.
- Shetty, P. R., Buddana, S. K., Tatipamula, V. B., Naga, Y. V. V., and Ahmad, J. (2014). Production of polypeptide antibiotic from *Streptomyces parvulus* and its antibacterial activity. *Brazilian Journal of Microbiology.* 45, 303-312.
- Shyamkumar, R., Moorthy, I. M. G., Ponmurugan, K., and Baskar, R. (2014). Production of L-glutamic Acid with *Corynebacterium glutamicum* (NCIM 2168) and *Pseudomonas reptilivora* (NCIM 2598): A Study on Immobilization and Reusability. *Avicenna journal of medical biotechnology.* 6(3), 163-168.
- Singh, V., Haque, S., Khare, S., Tiwari, A. K., Katiyar, D., Banerjee, B., Kumari, K., and Tripathi, C. K. M. (2018). Isolation and purification of antibacterial compound from *Streptomyces levis* collected from soil sample of north India. *Plos one. 13*(7), 1-10.
- Taddei, A., Valderrama, M., Giarrizzo, J., Rey, M., and Castelli, C. (2006). Chemical screening: a simple approach to visualizing *Streptomyces* diversity for drug discovery and further research. *Research in Microbiology.* 157, 291-297.

- Tawiah, A. A., Gbedema, S. Y., Adu, F., Boamah, V. E., and Annan, K. (2012). Antibiotic producing microorganisms from river Wiwi, Lake Bosomtwe and the Gulf of Guinea at Doakor Sea beach, Ghana. *BMC microbiology*. *12*(1), 1-8.
- Thumar, J. T., Dhulia, K., and Singh, S. P. (2010). Isolation and partial purification of an antimicrobial agent from halotolerant alkaliphilic *Streptomyces aburaviensis* strain Kut-8. *World Journal of Microbiology and Biotechnology. 26*(11), 2081-2087.
- Ting, A. S. Y., Tan, S. H., and Wai, M. K. (2009). Isolation and characterization of Actinobacteria with antibacterial activity from soil and rhizosphere soil. *Australian Journal of Basic and Applied Sciences. 3*(4), 4053-4059.
- Toda, S., Sugawara, K., Nlshiyama, Y., Ohbayashi, M., Ohkusa, N., Yamamoto, H., Konishi, M., and Oki, T. (1990). Quinaldopeptin, a novel antibiotic of the quinomycin family. *The Journal of antibiotics.* 43(7), 796-808.
- Usha nandhini, S., Sudha, S., Anusha Jeslin, V., and Manisha, S. (2018). Isolation, identification and extraction of antimicrobial compounds produced by *Streptomyces* sps from terrestrial soil. *Biocatalysis and Agricultural Biotechnology.* 15, 317-321.
- Usman, A. I., Abdul, A. A., and Noqta, O. A. (2018). Application of green synthesis of gold nanoparticles: a review. *Jurnal Teknologi.* 81(1), 171-182.
- Uzair, B., Menaa, F., Khan, B. A., Mohammad, F. V., Ahmad, V. U., Djeribi, R., and Menaa,
  B. (2018). Isolation, purification, structural elucidation and antimicrobial activities of kocumarin, a novel antibiotic isolated from actinobacterium *Kocuria marina* CMG S2 associated with the brown seaweed *Pelvetia canaliculata*. *Microbiological Research. 206*, 186-197.
- Van der Meij, A., Worsley, S. F., Hutchings, M. I., and Van wezel, G. P. (2017). Chemical ecology of antibiotic production by actinomycetes. *FEMS microbiology reviews. 41*(3), 392-416.
- V Ventola, C. L. (2015). The antibiotic resistance crisis: part 2: management strategies and new agents. *Pharmacy and Therapeutics. 40*(5), 344.

- Villain-Guillot, P., Gualtieri, M., Bastide, L.,and Leonetti, J.-P. (2007). In vitro activities of different inhibitors of bacterial transcription against *Staphylococcus epidermidis* biofilm. *Antimicrobial Agents and Chemotherapy. 51*(9), 3117-3121.
- Vu, H.-N. T., Nguyen, D. T., Nguyen, H. Q., Chu, H. H., Chu, S. K., Chau, M. V., and Phi, Q.-T. (2018). Antimicrobial and Cytotoxic Properties of Bioactive Metabolites Produced by *Streptomyces cavourensis* YBQ59 Isolated from Cinnamomum cassia Prels in Yen Bai Province of Vietnam. *Current Microbiology.* 75(10), 1247-1255.
- Walsh, C. (2003). Where will new antibiotics come from?. *Nature Reviews Microbiology. 1*(1), 65-70.
- Wanbanjob, G. (2008). Investigation of bioactive compounds from endophytic Actinomycetes. M.Sc. Silpakorn University, Thailand.
- Witt, D., and Stackebrandt, E. (1990). Unification of the genera Streptoverticillum and Streptomyces, and amendation of Streptomyces Waksman and Henrici 1943, 339AL. Systematic and applied microbiology. 13(4), 361-371.
- Zhai, Y., Bai, S., Liu, J., Yang, L., Han, L., Huang, X., and He, J. (2016). Identification of an unusual type II thioesterase in the dithiolopyrrolone antibiotics biosynthetic pathway. *Biochemical and Biophysical Research Communications*. 473(1), 329-335.
- Zhou, W., Liang, H., Qin, X., Cao, D., Zhu, X., Ju, J., Shen, B., Duan, Y., and Huang, Y. (2020). The isolation of pyrroloformamide congeners and characterization of their biosynthetic gene cluster. *Journal of natural products*, 83(2), 202-209.



# APPENDIX A

# PREPARATION OF CULTURE MEDIUM

# 1. Tryptone yeast extract agar (ISP medium no.1)

|    | Ingredients                        | g·l⁻¹             |
|----|------------------------------------|-------------------|
|    | Tryptone                           | 5.0               |
|    | Yeast extract                      | 3.0               |
|    | Agar                               | 15.0              |
|    | Final pH (25 °C)                   | 7.0 ± 0.2         |
| 2. | Yeast malt agar (ISP medium no. 2) |                   |
|    | Ingredients                        | g·l <sup>-1</sup> |
|    | Peptone                            | 5.0               |
|    | Yeast extract                      | 3.0               |
|    | Malt extract                       | 3.0               |
|    | Dextrose                           | 10.0              |
|    | Agar                               | 15.0 350          |
|    | Final pH (25 °C)                   | 6.2 ± 0.2         |
| 3. | Oat meal agar (ISP medium no. 3)   |                   |
|    | Ingredients                        | g.l <sup>-1</sup> |
|    | Oat meal                           | 20                |
|    | Agar                               | 18                |

Trace salts

| $FeSO_4 \times 7H_2O$                 | 0.001     |
|---------------------------------------|-----------|
| $MnCl_2 \times 4H_2O$                 | 0.001     |
| ZnSO <sub>4</sub> x 7H <sub>2</sub> O | 0.001     |
| DI water                              | 1,000 ml  |
| Final pH (25 °C)                      | 7.3 ± 0.2 |

\_

4. Inorganic salt starch agar (ISP medium no. 4)

|                                                            | . 1               |
|------------------------------------------------------------|-------------------|
| ingredients                                                | g·l <sup>-1</sup> |
| Starch soluble                                             | 10.0              |
| K <sub>2</sub> HPO <sub>4</sub>                            | 1.0               |
| MgSO <sub>4</sub> × 7H <sub>2</sub> O                      | 1.0               |
| NaCl                                                       | 1.0               |
| $(NH_4)_2SO_4$                                             | 2.0               |
| CaCO <sub>3</sub>                                          | 2.0               |
| FeSO <sub>4</sub> x 7H <sub>2</sub> O                      | 0.001             |
| MnCl <sub>2</sub> x 4H <sub>2</sub> O                      | 0.001             |
| MnCl <sub>2</sub> x $4H_2O$<br>ZnSO <sub>4</sub> x $7H_2O$ | 0.001             |
| Agar                                                       | 20                |
| DI water                                                   | 1,000 ml          |
| Final pH (25 °C)                                           | 7.2 ± 0.2         |
| Glycerol asparagine agar base (ISP m                       | edium no. 5)      |
| Ingredients                                                | g·l <sup>-1</sup> |
|                                                            |                   |

5.

| K <sub>2</sub> HPO <sub>4</sub>                                                                                                                                                                    | 1.0                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Trace salt solution (ml)                                                                                                                                                                           | 1.0                                                           |
| Agar                                                                                                                                                                                               | 20.0                                                          |
| 1 ml of Trace salt solution contains                                                                                                                                                               | -                                                             |
| $FeSO_4 \times 7H_2O$                                                                                                                                                                              | 0.001                                                         |
| MnCl <sub>2</sub> x 4H <sub>2</sub> O                                                                                                                                                              | 0.001                                                         |
| ZnSO <sub>4</sub> x 7H <sub>2</sub> O                                                                                                                                                              | 0.001                                                         |
| Glycerol                                                                                                                                                                                           | 10 ml                                                         |
| DI water                                                                                                                                                                                           | 1,000 ml                                                      |
| Final pH (25 °C)                                                                                                                                                                                   | 7.4 ± 0.2                                                     |
|                                                                                                                                                                                                    |                                                               |
| Peptone yeast extract iron agar (ISP                                                                                                                                                               | m <mark>edi</mark> um no.6)                                   |
| Peptone yeast extract iron agar (ISP<br>Ingredients                                                                                                                                                | m <mark>edium no.6)</mark><br>g·l <sup>-1</sup>               |
|                                                                                                                                                                                                    |                                                               |
| Ingredients                                                                                                                                                                                        | g·l <sup>-1</sup>                                             |
| Ingredients<br>Peptone                                                                                                                                                                             | g·l <sup>-1</sup>                                             |
| Ingredients<br>Peptone<br>Proteose peptone<br>Yeast extract<br>$C_6H_8FeNO_7$                                                                                                                      | g.l <sup>-1</sup><br>15.0<br>5.0<br>1.0<br>0.5                |
| Ingredients<br>Peptone<br>Proteose peptone<br>Yeast extract                                                                                                                                        | g.l <sup>-1</sup><br>15.0<br>5.0<br>1.0<br>0.5                |
| Ingredients<br>Peptone<br>Proteose peptone<br>Yeast extract<br>C <sub>6</sub> H <sub>8</sub> FeNO <sub>7</sub>                                                                                     | g.l <sup>-1</sup><br>15.0<br>5.0<br>1.0<br>0.5                |
| Ingredients<br>Peptone<br>Proteose peptone<br>Yeast extract<br>C <sub>6</sub> H <sub>8</sub> FeNO <sub>7</sub><br>K <sub>2</sub> HPO <sub>4</sub>                                                  | g·l <sup>-1</sup><br>15.0<br>5.0<br>1.0<br>0.5<br>1.0         |
| Ingredients<br>Peptone<br>Proteose peptone<br>Yeast extract<br>C <sub>6</sub> H <sub>8</sub> FeNO <sub>7</sub><br>K <sub>2</sub> HPO <sub>4</sub><br>Na <sub>2</sub> O <sub>3</sub> S <sub>2</sub> | g·l <sup>-1</sup><br>15.0<br>5.0<br>1.0<br>0.5<br>1.0<br>0.08 |

6.

| 7. | Tyrosine agar (ISP medium no.7) |  |
|----|---------------------------------|--|
| •• |                                 |  |

g·l<sup>-1</sup> Ingredients L-Asparagine 1.0 L-Tyrosine 0.5 K<sub>2</sub>HPO<sub>4</sub> 0.5  $MgSO_4 \times 7H_2O$ 0.5 NaCl 0.5 Trace salt solution (ml) 1.0 Agar 20.0 Trace salt solution containing  $FeSO_4 \times 7H_2O$ 1.360 mg  $CuCl_2 \times 2H_2O$ 0.027 mg CoCl<sub>2</sub> x 6H<sub>2</sub>O 0.040 mg 0.025 mg  $Na_2MoO_4 \times 2H_2O$ ZnCl<sub>2</sub> 0.020 mg 2.850 mg H<sub>3</sub>BO<sub>3</sub> 1.800 mg  $MnCl_2 \times 4H_2O$  $Na_2C_4H_4O_6$ 1.770 mg Glycerol 15 ml DI water 1,000 ml Final pH (25 °C) 7.3 ± 0.1

# 8. Nitrate agar (ISP medium no.8)

| Ingredients                                     | g·l⁻¹             |
|-------------------------------------------------|-------------------|
| Peptone                                         | 5.0               |
| HM peptone B (Meat extract B)                   | 3.0               |
| KNO3                                            | 1.0               |
| Agar                                            | 12.0              |
| DI water                                        | 1,000 ml          |
| Final pH (25 °C)                                | 6.8 ± 0.2         |
| Carbon utilizing agar (ISP medium no            | o.9)              |
| Ingredients                                     | g·l <sup>-1</sup> |
| (NH <sub>2</sub> ) <sub>2</sub> SO <sub>4</sub> | 2.64              |
| КН2РО4                                          | 2.38              |
|                                                 |                   |

9.

| Ingredients                                          | g·l <sup>-1</sup> |  |  |  |  |
|------------------------------------------------------|-------------------|--|--|--|--|
| (NH <sub>2</sub> ) <sub>2</sub> SO <sub>4</sub>      | 2.64              |  |  |  |  |
| кн2ро4                                               | 2.38              |  |  |  |  |
| K <sub>2</sub> HO <sub>4</sub> P × 3H <sub>2</sub> O | 5.65              |  |  |  |  |
| MgSO <sub>4</sub> x 7H <sub>2</sub> O                | 1.0               |  |  |  |  |
| CuSO <sub>4</sub> x 5H <sub>2</sub> O                | 0.0065            |  |  |  |  |
| $FeSO_4 \times 7H_2O$                                | 0.0011            |  |  |  |  |
| MnCl2 x 4H20 ABIA BIA A                              | 0.0079            |  |  |  |  |
| $ZnSO_4 \times 7H_2O$                                | 0.0015            |  |  |  |  |
| Agar                                                 | 15                |  |  |  |  |
| Starch soluble (10%, w/v)                            | 100 ml            |  |  |  |  |
| DI water                                             | 1,000 ml          |  |  |  |  |
| Final pH (25 °C)                                     | 7.0 ± 0.2         |  |  |  |  |

# 10. Bennet's agar

| Ingredients                                     | g·l⁻¹             |
|-------------------------------------------------|-------------------|
| Yeast extract                                   | 1.0               |
| Beef extract                                    | 1.0               |
| Casein enzymatic hydrolysate                    | 2.0               |
| Dextrose                                        | 10.0              |
| Agar                                            | 15.0              |
| DI water                                        | 1,000 ml          |
| Final pH (25 °C)                                | 7.3 ± 0.2         |
| 11. Czapek's agar                               |                   |
| Ingredients                                     | g·l <sup>-1</sup> |
| C <sub>12</sub> H <sub>22</sub> O <sub>11</sub> | 30.0              |
| NaNO <sub>2</sub>                               | 2.0               |
| K <sub>2</sub> HPO <sub>4</sub>                 | 1.0               |
| MgSO <sub>4</sub>                               | 0.5               |
| Kcl                                             | 0.5               |
| Kcl<br>FeSO₄                                    | 0.01              |
| Agar                                            | 15.0              |
| DI water                                        | 1,000 ml          |
| Final pH (25 °C)                                | 7.3 ± 0.2         |

# 12. Starch casein agar (SCA)

| Ingredients                           | g·l <sup>-1</sup> |
|---------------------------------------|-------------------|
| Starch soluble                        | 10.0              |
| Casein acid hydrolysate               | 0.3               |
| KNO3                                  | 2.0               |
| $MgSO_4 \times 7H_2O$                 | 0.05              |
| K <sub>2</sub> HPO <sub>4</sub>       | 2.0               |
| NaCl                                  | 2.0               |
| CaCO <sub>3</sub>                     | 0.02              |
| FeSO <sub>4</sub> x 7H <sub>2</sub> O | 0.01              |
| Agar                                  | 15.0              |
| DI water                              | 1,000 ml          |
| Final pH (25 °C)                      | 7.3 ± 0.2         |
| 13. Mueller Hinton broth (MHB)        |                   |
| Ingredients                           | g·l <sup>-1</sup> |
| Beef extract                          | 300.0             |
| Casein acid hydrolysate               | 17.5              |
| Starch                                | 1.5               |
| DI water                              | 1,000 ml          |
| Final pH (25 °C)                      | 7.3 ± 0.1         |

Mueller Hinton broth was purchased from Himedia®, India.

## 14. Luria Bertani (LB) broth

| Ingredients      | g·l⁻¹     |
|------------------|-----------|
| Tryptone         | 10.0      |
| Yeast extract    | 5.0       |
| nAcL             | 10.0      |
| DI water         | 1,000 ml  |
| Final pH (25 °C) | 7.5 ± 0.2 |

LB agar was prepared by adding 15.0 g of agar into 1000 ml of LB broth. The sterilization of all-culture media was sterilized by autoclaving at 121 °C, 15 lbs. pressure for 15 min.



# APPENDIX B

## INFORMATION OF CLINICAL ISOLATES

| Strains            | Source  | Susceptible   | Drug resistant           |
|--------------------|---------|---------------|--------------------------|
| K. pneumoniae 1617 | Sputum  | Gentamycin    | Ampicillin               |
|                    |         |               | Amikacin                 |
|                    |         |               | Amocxicillin-Clavulanate |
|                    |         |               | Piperacillin-Tazabactam  |
|                    |         |               | Cefoxitin                |
|                    |         | •             | Cefazolin                |
|                    |         |               | Ceftriaxone              |
|                    |         |               | Ceftazidime              |
|                    |         |               | Cefepime                 |
|                    |         |               | Sulfamethoxazole         |
|                    |         |               | Ciprofloxacin            |
|                    |         |               | Levofloxacin             |
|                    |         |               | Imipenem                 |
| C,                 |         |               | Ertapenem                |
| 715                | in .    |               | Meropenem                |
| E. coli 2026       | Urine C | Gentamycin    | Ampicillin               |
|                    |         | Amikacin      | Cefazolin                |
|                    |         | Amocxicillin- | Ceftriaxone              |
|                    |         | Clavulanate   | Ciprofloxacin            |
|                    |         | Piperacillin- | Levofloxacin             |
|                    |         | Tazabactam    | Cefepime                 |
|                    |         | Cefoxitin     |                          |
|                    |         | Imipenem      |                          |
|                    |         | Ertapenem     |                          |
|                    |         | Meropenem     |                          |

# APPENDIX C 16s rRNA NUCLEOTIDE SEQUENCE

## Streptomyces sp. PKA51 (1481 bp)

GACGAACGCTGGCGCGCGCGCTCAACACACGCAAGTCGAACGATGAACCTCCTTCGGGAGGGGA TTAGTGGCGAACGGGTGAGTAACACGTGGGCAATCTGCCCTGCACTCTGGGACAAGCCCTGGA AACGGGGTCTAATACCGGATATGACCTTCGAAGGCATCTTTGAAGGTGGAAAGCTCCGGCGGTG CAGGATGAGCCCGCGGCCTATCAGCTGGTTGGTGGGGTGATGGCCTACCAAGGCGACGACGGG TAGCCGGCCTGAGAGGGCGACCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGA GGCAGCAGTGGGGAATATTGCACAATGGGCGAAAGCCTGATGCAGCGACGCCGCGTGAGGGAT GACGGCCTTCGGGTTGTAAACCTCTTTCAGCAGGGAAGAAGCGAGAGTGACGGTACCTGCAGA AGAAGCGCCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGCGCAAGCGTTGTCCGG AATTATTGGGCGTAAAGAGCTCGTAGGCGGCTTGTCGCGTCGGATGTGAAAGCCCGGGGCTTAA CCCCGGGTCTGCATTCGATACGGGCAGGCTAGAGTTCGGTAGGGGAGATCGGAATTCCTGGTG TAGCGGTGAAATGCGCAGATATCAGGAGGAAGACACCGGTGGCGAAGGCGGATCTCTGGGCCGAT ACTGACGCTGAGGAGCGAAGCGTGGGGAGCGAACAGGATTAGATACCCTGGTAGTCCACGCC GTAAACGTTGGGCACTAGGTGTGGGCCACATTCCACGTGGTCCGTGCCGCAGCTAACGCATTAA GTGCCCCGCCTGGGGAGTACGGCCGCAAGGCTAAAACTCAAAGGAATTGACGGGGGCCCGCAC AAGCAGCGGAGCATGTGGCTTAATTCGACGCAACGCGAAGAACCTTACCAAGGCTTGACATACA CCGGAAAGCATCAGAGATGGTGCCCCCCTTGTGGTCGGTGTGCAGGTGGTGCATGGCTGTCGTC AGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGTCCTGTGTTGCCA GCATGCCCTTCGGGGTGATGGGGGACTCACAGGAGACTGCCGGGGTCAACTCGGAGGAAGGTGG GGACGACGTCAAGTCATCATGCCCCTTATGTCTTGGGCTGCACACGTGCTACAATGGCCGGTAC AATGAGCTGCGATACCGCGAGGTGGAGCGAATCTCAAAAAGCCGGTCTCAGTTCGGATTGGGGT CTGCAACTCGACCCCATGAAGTTGGAGTTGCTAGTAATCGCAGATCGGCATTGCTGCGGTGAAT GGCCCAACCCTTGTGGAGGGAGCCGTCGAAGGTGGGACTGGCGATTGGGACGAAGTCGTAACA AGGTAGCCGTACCGGAAGGTGC

## APPENDIX D

## MOBILE PHASE USED IN THIN-LAYER CHROMATOGRAPHY

| No. | Solvent systems                                         | Composition (v/v) |  |  |  |
|-----|---------------------------------------------------------|-------------------|--|--|--|
| 1   | Hexane: Chloroform                                      | 40: 60            |  |  |  |
| 2   | Hexane: Chloroform                                      | 50: 50            |  |  |  |
| 3   | Hexane: Chloroform                                      | 60: 40            |  |  |  |
| 4   | Butanol: Acetic acid <mark>:</mark> Wate <mark>r</mark> | 70: 20: 10        |  |  |  |
| 5   | Butanol: Acetic acid: Water                             | 60: 30: 10        |  |  |  |
| 6   | Chloroform: Me <mark>tha</mark> nol                     | 60: 40            |  |  |  |
| 7   | Chloroform: Methanol                                    | 50: 50            |  |  |  |
| 8   | Chloroform: Methanol                                    | 70: 30            |  |  |  |
| 9   | Chloroform: Methanol                                    | 30: 70            |  |  |  |
| 10  | Chloroform: Methanol                                    | 80: 20            |  |  |  |
| 11  | Chloroform: Methanol                                    | 20: 80            |  |  |  |
| 12  | Chloroform: Methanol                                    | 10: 90            |  |  |  |
| 13  | Chloroform: Methanol                                    | 90: 10            |  |  |  |
| 14  | Chloroform: Methanol                                    | 75: 25            |  |  |  |
| 15  | Chloroform: Methanol<br>Chloroform: Methanol            | 95: 5             |  |  |  |
| 16  | Methanol: Hexane                                        | 90: 10            |  |  |  |
| 17  | Chloroform: Hexane                                      | 90: 10            |  |  |  |
| 18  | Chloroform: Hexane                                      | 80: 20            |  |  |  |
| 19  | Chloroform: Methanol                                    | 98: 2             |  |  |  |
| 20  | Chloroform: Hexane 95: 5                                |                   |  |  |  |
| 21  | Chloroform: Hexane                                      | 98: 2             |  |  |  |
| 22  | Chloroform: Hexane: Methanol                            | 90: 5: 5          |  |  |  |
| 23  | Chloroform: Hexane: Methanol                            | 95: 2.5: 2.5      |  |  |  |
| 24  | Chloroform: Methanol                                    | 99: 1             |  |  |  |

 Table 1D List of various solvent systems tried for TLC analysis of crude extract PKA51.

| No. | Solvent systems                         | Composition (v/v) |
|-----|-----------------------------------------|-------------------|
| 25  | Chloroform                              | 100               |
| 26  | Chloroform: Methanol                    | 40: 60            |
| 27  | Methanol                                | 100               |
| 28  | Chloroform: Methanol                    | 96: 4             |
| 29  | Methanol: Water                         | 70: 30            |
| 30  | Methanol: Water                         | 60: 40            |
| 31  | Methanol: Water                         | 50: 50            |
| 32  | Butanol: Methanol: Water                | 60: 10: 30        |
| 33  | Butanol: Methanol: Water                | 60: 20: 20        |
| 34  | Butanol: Metha <mark>nol</mark> : Water | 60: 30: 10        |
| 35  | Hexane: Eth <mark>yl a</mark> cetate    | 80: 20            |
| 36  | Hexane: Ethyl acetate                   | 50: 50            |
| 37  | Hexane: Ethyl acetate                   | 25: 75            |
| 38  | Butanol: Acetic acid: Water             | 50: 25: 25        |
| 39  | Butanol: Acetic acid: Water             | 40: 30: 30        |
| 40  | Butanol: Acetic acid: Water             | 40: 10: 50        |
| 41  | Methanol: Hexane                        | 60: 40            |
| 42  | Methanol: Hexane<br>Methanol: Hexane    | 50: 50            |
| 43  | Methanol: Hexane                        | 40: 60            |
| 44  | Chloroform: Dichloromethane: Water      | 33: 33: 33        |
| 45  | Hexane: Chloroform: Water               | 40: 30: 30        |
| 46  | Hexane: Chloroform: Water               | 65: 25: 10        |
| 47  | Hexane: Isopropanol                     | 80: 20            |
| 48  | Hexane: Isopropanol                     | 90: 10            |
| 49  | Hexane: Isopropanol                     | 70: 30            |
| 50  | Hexane: Isopropanol                     | 60: 40            |
| 51  | Benzene: Acetic acid: Water             | 40: 10: 50        |
| 52  | Acetonitrile: Water                     | 92.5: 7.5         |

**Table 1D** List of various solvent systems tried for TLC analysis of crude extract PKA51(Continued).

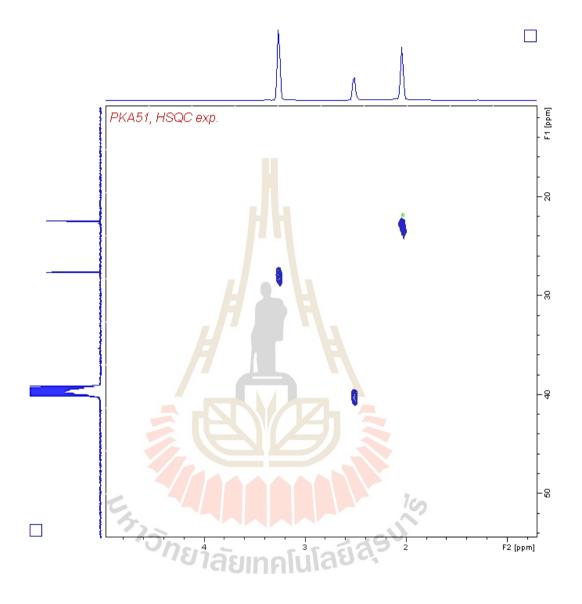
| No. | Solvent systems         | Composition  |  |  |
|-----|-------------------------|--------------|--|--|
| 53  | Acetonitrile: Water     | 60: 40       |  |  |
| 54  | Acetonitrile: Water     | 50: 50       |  |  |
| 55  | Acetonitrile: Water     | 40: 60       |  |  |
| 56  | Ethyl acetate: Methanol | 83.33: 16.67 |  |  |
| 57  | Hexane: Acetone         | 70: 30       |  |  |
| 58  | Hexane: Acetone         | 50: 50       |  |  |

**Table 1D** List of various solvent systems tried for TLC analysis of crude extract PKA51(Continued).



## APPENDIX E

## CHARACTERIZATION OF BIOACTIVE COMPOUNDS


Smart formula search manually software: the prediction of molecular formula in mass spectra peak 226.9965 m/z (negative ion mode).

| SmartF   | ormula      | <u>Man</u> ually |               |               |                      |              |               |              |            |                    |          | ? 🔀      |
|----------|-------------|------------------|---------------|---------------|----------------------|--------------|---------------|--------------|------------|--------------------|----------|----------|
| Min      | ¢₂s₁        |                  |               |               |                      |              |               |              |            |                    |          | Generate |
| Max      | C 2-n, 9    | 1.5              |               |               | _                    |              |               |              |            |                    |          |          |
| Note: fo | · · · ·     |                  | ents C, H, N, | and O are     | considered           | implicitly.  |               |              |            |                    |          | Help     |
| Measure  | _           | 226.9965         | Tolera        |               | mD                   |              | rge -1        | *            |            |                    |          |          |
| Meas.    | .m/z #      | Formula          |               | Score         | m/z                  | err [mDa]    | err [ppm]     | mSigma       | rdb        | e <sup></sup> Conf | N-Rule   |          |
| 226.     | .9965 1     |                  |               | 41.04         | 226,9993             | 2.8          | 12.2          | 30.8         | 7.5        | even               | ok       |          |
|          | 2           |                  |               | 100.00        | 226.9979             | 1.4          | 6.3           | 37.0         | 2.5        | even               | ok       |          |
|          | 3           | C4H3N<br>C8H7N   |               | 9.71<br>84.40 | 226.9928<br>226.9954 | -3.8<br>-1.1 | -16.5<br>-4.7 | 46.8<br>50.8 | 7.5<br>6.5 | even<br>even       | ok<br>ok | I        |
|          | 5           |                  |               |               | 226.9961             | -0.4         | -1.8          | 58.9         | 15.5       | even               | ok       |          |
|          | 6           |                  | V2O2S3        | 23.31         | 226.9988             | 2.3          | 10.1          | 63.6         | 1.5        | even               | ok       |          |
|          | 7           | C13H7:           | 52            | 12.90         | 226.9995             | 3.0          | 13.0          | 64.0         | 10.5       | even               | ok       |          |
| Auto     | pmatically  | locate mono      | isotopic peak | < Maxim       | um number            | of formulas  |               | as           | J<br>J     | 2                  |          |          |
| Chec     | ck rings pl | us double bo     | onds          | Minimu        | m -0.5               | Maxii        | mum 40        |              |            |                    |          |          |
|          |             |                  |               |               | n configura          |              | even          | *            |            |                    |          |          |
| 🗹 Filter | r H/⊂ eler  | nent ratio       | Minimum H/    | C 0           |                      | Maximum      | H/C 3         |              |            |                    |          |          |
| 🗹 Estin  | nate carb   | on number        |               | 🗹 Ger         | nerate imme          | diately      |               |              |            |                    |          |          |
|          |             |                  |               |               |                      |              | Show Patt     | ern          |            |                    |          | د        |

Smart formula search manually software: the prediction of molecular formula in mass spectra peak 258.9848 m/z (negative ion mode).

| SmartF                                                | ormuli                                                                | a Ma   | nually             |            |         |           |         |            |              |              |             |                    | ? 🗙      |
|-------------------------------------------------------|-----------------------------------------------------------------------|--------|--------------------|------------|---------|-----------|---------|------------|--------------|--------------|-------------|--------------------|----------|
| Min<br>Max                                            | C₃S₁                                                                  |        |                    |            |         |           |         |            |              |              |             |                    | Generate |
|                                                       | C 3-n,                                                                | S 1-n  | ì                  |            |         |           |         |            |              |              |             |                    | Help     |
| Note: fo                                              | orm < 2                                                               | 000 tł | he elements (      | Ξ, Η, Ν, a | and O a | re consid | dered i | mplicitly. |              |              |             |                    |          |
| Measure                                               | ed m/z                                                                | 258    | .9848              | Tolera     | nce     | 1         | mDa     | 🖌 🔽 Cha    | rge -1       | *            |             |                    |          |
| Meas.                                                 | m/z                                                                   | #   F  | Formula            | [          | Score   | •         | m/z     | err [mDa]  | err [ppm]    | mSigma       | rdb         | e <sup></sup> Conf | N-Rule   |
| 258.                                                  | .9848                                                                 | 1 ⊂    | 4H3N8O2            | 252        | 35.05   |           | _       | -2.2       | -8.6         | 11.9         | 7.5         | even               | ok       |
|                                                       | - C                                                                   |        | 8H7N2O             |            | 100.00  |           |         | 0.5        | 1.8          | 15.7         | 6.5         | even               | ok.      |
|                                                       |                                                                       |        | 4H7N2O9            |            | 15.14   |           |         | 3.0        | 11.4         | 21.0         | 2.5         | even               | ok       |
|                                                       |                                                                       |        | 11 H 3 N 2 O       |            | 15.84   |           |         | -2.9       | -11.2        | 21.3         | 11.5        | even               | ok       |
|                                                       |                                                                       |        | 9H3N652            |            | 37.50   |           |         | 1.8        | 6.9          | 24.3         | 11.5        | even               | ok       |
|                                                       |                                                                       |        | 3H7N4O6            |            | 7.56    |           |         | -3.6       | -13.7        | 24.7         | 2.5         | even               | ok       |
|                                                       |                                                                       |        | 5H11N2O            |            | 4.64    |           |         | 3.8        | 14.8         | 32.4         | 1.5         | even               | ok       |
|                                                       |                                                                       |        | 16H3O25<br>4H11N4O |            | 35.58   | 258.9     |         | 1.1        | 4.3<br>-10.4 | 43.9<br>49.3 | 15.5<br>1.5 | even<br>even       | ok<br>ok |
|                                                       |                                                                       |        |                    |            |         |           |         |            |              |              |             |                    |          |
|                                                       | Automatically locate monoisotopic peak Maximum number of formulas 500 |        |                    |            |         |           |         |            |              |              |             |                    |          |
| Check rings plus double bonds Minimum -0,5 Maximum 40 |                                                                       |        |                    |            |         |           |         |            |              |              |             |                    |          |
| <b>Filter</b>                                         | Electron configuration even                                           |        |                    |            |         |           |         |            |              |              |             |                    |          |
| 🗹 Estim                                               | nate car                                                              | bon n  | umber              |            | •       | ienerate  | ímmec   | liately    | Show Patt    | ern          |             |                    |          |
|                                                       |                                                                       |        |                    |            |         |           |         |            |              |              |             |                    | <b>,</b> |

Two-dimensional NMR spectroscopy (Heteronuclear Single Quantum Coherence; HSQC) of purified bioactive compound 2 (thiolutin dioxide).



# CIRRICULUM VITAE

| Name:            | Mr Phongsakorn Ganta                                                   |  |  |  |  |  |
|------------------|------------------------------------------------------------------------|--|--|--|--|--|
| Date of Birth:   | May 12, 1997                                                           |  |  |  |  |  |
| Place of Birth:  | Nakhon Ratchasima, Thailand                                            |  |  |  |  |  |
| Education:       |                                                                        |  |  |  |  |  |
| 2019 - Present   | M.Sc. Can <mark>di</mark> date (Microbiology), School of Preclinical   |  |  |  |  |  |
|                  | Science <mark>s, Insti</mark> tute of Science, Suranaree University of |  |  |  |  |  |
|                  | Technology, Nakhon Ratchasima, Thailand                                |  |  |  |  |  |
| 2015 - 2018      | B.Sc. First class honors (Biology), Suranaree University of            |  |  |  |  |  |
|                  | Tec <mark>hno</mark> logy, T <mark>hail</mark> and                     |  |  |  |  |  |
| Scholarship:     |                                                                        |  |  |  |  |  |
| 2019 - Present   | Development and Promotion of Science and                               |  |  |  |  |  |
|                  | Technology Talent Project (DPST), Royal Thai                           |  |  |  |  |  |
|                  | government                                                             |  |  |  |  |  |
| 2015 - 2018      | His Majesty the King's 84 <sup>th</sup> Birthday Anniversary,          |  |  |  |  |  |
|                  | Suranaree University of Technology                                     |  |  |  |  |  |
| E trisne         | ขาลัยเทคโนโลยีส <sup>ุรม</sup> าร                                      |  |  |  |  |  |
| <sup>ro</sup> ne | <sup>ก</sup> ลัยเทคโนโลยีส์ <sup>5</sup> ั                             |  |  |  |  |  |