# STEADY STATE PRIMARY FREQUENCY ESTIMATION FOR MICROGRID TRANSFERRING MODE USING DISTRIBUTED SLACK BUS LOAD FLOW ANALYSIS

NITHIWAT INTHARASOMCHAI

ลัยเทคโนโลยีสุรบา

ร้าวจิทยา



การประเมินความถี่ปฐมภูมิแบบคงตัวสำหรับไมโครกริดที่กำลังถ่ายโอนสถานะ โดยใช้การวิเคราะห์การไหลของกำลังงานไฟฟ้าแบบกระจายบัสสแลค



วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมไฟฟ้า มหาวิทยาลัยเทคโนโลยีสุรนารี ปีการศึกษา 2563

# STEADY STATE PRIMARY FREQUENCY ESTIMATION FOR MICROGRID TRANSFERRING MODE USING DISTRIBUTED SLACK BUS LOAD FLOW ANALYSIS

Suranaree University of Technology has approved this thesis submitted in partial fulfillment of the requirements for a Master's Degree.

Thesis Examining Committee

Tomin XME

(Assoc. Prof. Dr. Nit Petcharaks)

Chairperson

(Assoc. Prof. Dr. Keerati Chayakulkheeree) Member (Thesis Advisor)

Thanatchai Kulworawanichpone)

(Asst. Prof. Dr. Uthen Leeton) Member

ร้าววิทย

(Assoc. Prof. Dr. Chatchai Jothityangkoon) Vice Rector for Academic Affairs and Quality Assurance

(Assoc. Prof. Dr. Pornsiri Jongkol) Dean of Institute of Engineering

นิทิวัฒน์ อินทรสมใจ : การประเมินความถี่ปฐมภูมิแบบคงตัวสำหรับไมโครกริดที่กำลังถ่าย โอนสถานะโดยใช้การวิเคราะห์การไหลของกำลังงานไฟฟ้าแบบกระจายบัสสแลค (STEADY STATE PRIMARY FREQUENCY ESTIMATION FOR MICROGRID TRANSFERRING MODE USING DISTRIBUTED SLACK BUS LOAD FLOW ANALYSIS) อาจารย์ที่ปรึกษา : รองศาสตราจารย์ ดร.กีรติ ชยะกุลคีรี, 70 หน้า

้คำสำคัญ : การถ่ายโอนสถานะของไมโครกริด/การไหลของกำลังไฟฟ้า/ส่วนเบี่ยงเบนความถึ่

วิทยานิพนธ์เล่มนี้ได้เสนอวิธีการตรวจสอบและแนวทางในการปรับปรุงส่วนเบี่ยงเบนความถี่ ของระบบไมโครกริดภายขณะที่ไมโครกริดอยู่ในช่วยการถ่ายโอนโหมดการทำงาน โดยใช้การควบคุม ของแบบจำลองเครื่องกำเนิดไฟฟ้าเสมือนในการปรับปรุงส่วนเบี่ยงเบนความถี่ ผลการวิจัยพบว่าการ วิเคราะห์การไหลของกำลังไฟฟ้าแบบกระจายบัสสแลคที่ถูกนำเสนอสามารถนำมาใช้ในการวิเคราะห์ หาส่วนเบี่ยงเบนความถี่ของไมโครกริดในช่วงขณะที่ถ่ายโอนโหมดได้ นอกจากนี้แบบจำลองเครื่อง กำเนิดไฟฟ้าเสมือน ยังสามารถใช้เพื่อเพิ่มประสิทธิภาพในการควบคุมเบี่ยงเบนความถี่ของไมโครกริด ได้ ในวิทยานิพนธ์นี้วิธีการดังกล่าวถูกนำเสนอภายใต้การคำนวณการไหลของกำลังไฟฟ้าตามแบบของ นิวตัน-ราฟสัน ซึ่งถูกแก้ไขเพื่อให้สามารถหาส่วนเบี่ยงเบนความถี่ในระบบได้ และในขณะเดียวกันก็ใช้ เทคนิคสมการการแกว่งควบคู่ไปด้วยเพื่อสามารถเปรียบเทียบและพิสูจน์ความแม่นยำของวิธีการที่ได้ นำเสนอไป



ลายมือชื่อนักศึกษา หิที่โญน์ อินพณา ลายมือชื่ออาจารย์ที่ปรึกษา\_\_

สาขาวิชา <u>วิศวกรรมไฟฟ้า</u> ปีการศึกษา <u>2563</u> NITHIWAT INTHARASOMCHAI : STEADY STATE PRIMARY FREQUENCY ESTIMATION FOR MICROGRID TRANSFERRING MODE USING DISTRIBUTED SLACK BUS LOAD FLOW ANALYSIS. THESIS ADVISOR : ASSOC. PROF. KEERATI CHAYAKULKHEEREE, Ph.D. 70 PP.

Keyword : Microgrid transferring mode/Frequency deviation/Load flow

This thesis proposes the method to investigate and improve the frequency deviation of microgrid system under transferring mode condition using virtual generator droop control model. The results shown that the proposed DSLF can be used to analyze the frequency deviation of microgrid during transferring mode. In addition, the virtual synchronous generator can be used to enhance the frequency deviation of microgrid under transferring mode.

In the proposed method, Newton-Raphson distributed slack bus load flow (DSLF) was modified to incorporating and generation control equations to find the primary frequency deviation. Meanwhile, the swing equation technique was used to prove the accuracy of DSLF.



School of <u>Electrical Engineering</u> Academic Year <u>2020</u>

Student's Signature Advisor's Signature

#### ACKNOWLEDGMENT

This thesis was successfully completed. The author would like to thank those involved in providing academic advice and operational I would like to thank my family for their encouragement throughout the research. Thank you to thesis advisor Assoc. Prof. Dr. Keerati Chayakulkheeree for giving advice and advice. Something that has always been useful to me. Thank you, School of Electrical Engineering, for always taking care of me. Thank you, Suranaree University of Technology, for giving me the opportunity to study here. Finally, I thank myself for not giving up on the problems that arise.

From now on, I intend to study and research to be an important person in the country's development.

้รัว<sub>วักยา</sub>ลัยเทคโนโลยีสุรุบโ

Nithiwat Intharasomchai

## TABLE OF CONTENTS

| ABSTRACT (TH  | IAI)    |                                                | I    |
|---------------|---------|------------------------------------------------|------|
| ABSTRACT (EN  | IGLISH) |                                                |      |
| ACKNOWLEDG    | MENT .  |                                                | III  |
| TABLE OF COM  | NTENTS  | 5                                              | IV   |
| LIST OF TABLE | ES      |                                                | VI   |
| LIST OF FIGUR | RES     |                                                | VII  |
| SYMBOLS AND   | ) ABBRE | EVIATIONS                                      | VIII |
| CHAPTER       |         |                                                |      |
| I             | INT     | RODUCTION                                      | 1    |
|               | 1.1.    | General Introduction                           | 1    |
|               | 1.2.    | Problem Statement                              | 1    |
|               | 1.3.    | Research objectives                            | 3    |
|               | 1.4.    | Scope and limitations                          | 3    |
|               | 1.5.    | Conception                                     | 3    |
|               | 1.6.    | Research Benefits                              | 3    |
| II            | LITE    | RATURE REVIEW                                  | 4    |
|               | 2.1     | Introduction                                   | 4    |
|               | 2.2     | Load flow                                      | 4    |
|               | 2.3     | Analysis of power systems with swing equations | 7    |
|               | 2.4     | Microgrid (MG)                                 | 10   |
| III           | METH    | IODOLOGY                                       | 15   |
|               | 3.1     | Introduction                                   | 15   |
|               | 3.2     | DSLF for MG Frequency Deviation Analysis       | 15   |
|               | 3.3     | Analysis of power systems with swing equations |      |
| IV            | RESU    | JLT AND DISCUSSION                             | 27   |

# TABLE OF CONTENTS (Continued)

|            | 4.1 | Introduction                                                 | 27 |
|------------|-----|--------------------------------------------------------------|----|
|            | 4.2 | Model and circumstances for simulation                       | 27 |
|            | 4.3 | Frequency Deviation                                          | 32 |
|            |     | In the simulation of Scenario 1                              | 32 |
|            |     | In the simulation of scenario 2                              | 34 |
|            |     | In the simulati <mark>on of S</mark> cenario 3               | 36 |
|            |     | In the simulat <mark>io</mark> n of <mark>S</mark> cenario 4 | 38 |
| V          | CO  | NCLUSION.                                                    | 41 |
|            | 5.1 | Conclusion                                                   | 41 |
|            | 5.2 | Recommendation for future                                    | 41 |
| REFERENCES |     |                                                              | 42 |
|            |     |                                                              |    |



## LIST OF TABLES

### Table

| 2.1 | Summary of DSLF literatures                     | 6  |
|-----|-------------------------------------------------|----|
| 2.2 | Summary of VSG literatures                      | 9  |
| 2.3 | Summary of MG literatures                       | 13 |
| 3.1 | Typical inertia constant of synchronous machine | 21 |
| 4.1 | Participation factor of Scenario 1              | 28 |
| 4.2 | Participation factor of Scenario 2              | 29 |
| 4.3 | Participation factor of Scenario 3              | 31 |
| 4.4 | Participation factor of Scenario 4              | 32 |
| 4.5 | Simulation Results of Scenario 1                | 33 |
| 4.6 | Simulation Results of Scenario 2                | 35 |
| 4.7 | Simulation Results of Scenario 3                | 37 |
| 4.8 | Simulation Results of Scenario 4                | 39 |
|     | ะ<br>รักษาลัยเทคโนโลยีสุรมาร                    |    |

### LIST OF FIGURES

### Figure

| 1.1  | Operation modes of MG                                            | 2  |
|------|------------------------------------------------------------------|----|
| 2.1  | VSG based controller with active and reactive power tracking     | 7  |
| 2.2  | Active power controller of VGS                                   | 8  |
| 2.3  | Droop based control system for the VF inverter                   | 8  |
| 3.1  | Computational procedure of power flow program for finding of the |    |
|      | frequency deviation                                              | 18 |
| 3.2  | Concept of a virtual synchronous generator                       | 19 |
| 4.1  | Modified IEEE radial distribution system 33-bus                  | 27 |
| 4.2  | Scenario 1 MG is receiving electric power                        | 28 |
| 4.3  | Scenario 2 MG is supplying electric power                        | 29 |
| 4.4  | Modified IEEE radial distribution system 69-bus                  | 30 |
| 4.5  | Scenario 3 MG is receiving electric power                        | 30 |
| 4.6  | Scenario 4 MG is supplying electric power                        | 31 |
| 4.7  | Frequency Response of Scenario 1                                 | 34 |
| 4.8  | Frequency Response of Scenario 2                                 | 36 |
| 4.9  | Frequency Response of Scenario 3                                 | 38 |
| 4.10 | Frequency Response of Scenario 4                                 | 40 |

### SYMBOLS AND ABBREVIATIONS

| D                       | =   | damping coefficient                                           |
|-------------------------|-----|---------------------------------------------------------------|
| F                       | =   | actual frequency of system                                    |
| $F_0$                   | =   | schedule frequency of system                                  |
| H                       | =   | inertia constant                                              |
| J                       | =   | rotor of momen <mark>t o</mark> f inertia                     |
| М                       | =   | angular momentum                                              |
| NB                      | =   | number of buses                                               |
| NG                      | =   | number of generator's buses                                   |
| p                       | =   | number of poles on a generator                                |
| P <sub>e</sub>          | =   | electromagnetic active power                                  |
| $P_i$                   | =   | real power at bus i                                           |
| $P_{cal,i}$             | =   | real power flow calculates at bus <i>i</i>                    |
| $P_d$                   | =   | damping powers                                                |
| $P_{D_i}$               | =   | real power demand at bus <i>i</i>                             |
| $P_{G_i}$               | =   | real power generation at bus <i>i</i>                         |
| $P_{G_i^o}$             | =   | schedule of real power generation at bus <i>i</i>             |
| $P_m$                   | = 5 | mechanical active power                                       |
| <b>P</b> <sub>max</sub> | =   | maximum active power transferred                              |
| $Q_{G_i}$               | =   | reactive power generation at bus <i>i</i>                     |
| $Q_{D_i}$               | =   | reactive power demand at bus <i>i</i>                         |
| $Q_{cal,i}$             | =   | reactive power flow calculates at bus i                       |
| $r_i$                   | =   | speed-droop on turbine governor in generating plant connected |
|                         |     | to bus i                                                      |
| S <sub>base</sub>       | =   | system base power                                             |
| ts                      | =   | setting time                                                  |
| $W_k$                   | =   | kinetic energy of the rotating masses                         |
| <i>E</i>                | =   | steady state excitation voltage magnitude                     |

## SYMBOLS AND ABBREVIATIONS (Continued)

| $ V_i $           | =   | voltage magnitude at bus i                                |
|-------------------|-----|-----------------------------------------------------------|
| X                 | =   | reactance magnitude of generator bus and infinite bus     |
| $ Y_{i,k} $       | =   | admittance magnitude of bus i and bus k                   |
| $	heta_{\!i,k}$   | =   | admittance angle of bus i and bus k                       |
| $\delta_{_i}$     | =   | angle of voltage at bus i                                 |
| $\delta_m$        | =   | angular displacement                                      |
| $\delta_o$        | =   | power angle be <mark>for</mark> e disturbance             |
| ω <sub>m</sub>    | =   | rotor angular velo <mark>cit</mark> y                     |
| ωs                | =   | electric angul <mark>a</mark> r velo <mark>c</mark> ity   |
| $\alpha_i$        | =   | participation factor of generator connected to bus i      |
| ζ                 | =   | dimension <mark>les</mark> s dampi <mark>ng r</mark> atio |
| τ                 | =   | response time constant                                    |
| $\Delta F$        | =   | steady-state frequency deviation                          |
| $\Delta G$        | =   | static area control error                                 |
| $\Delta P_{G_i}$  | =   | real power generation deviation at bus i                  |
| $\Delta P_i$      | =   | real power deviation at bus i                             |
| $\Delta Q_i$      | =   | reactive power deviation at bus i                         |
| $\Delta \delta_i$ | =   | angle of voltage deviation at bus i                       |
| $\Delta  V_i $    | = 5 | deviation of voltage magnitude at bus i                   |
|                   |     | ว <sup>ักยา</sup> ลัยเทคโนโลยีสุรั                        |

IX

# CHAPTER 1 INTRODUCTION

#### 1.1 General Introduction

Over the past decade, the generation, transmission, and distribution of electrical power grid systems have been continuously developed to enhance the reliability and stability of the end-users. Microgrid (MG) is the new important key of the system that has been studied and developed. An MG is a local power grid with the ability to stabilize the local system when disconnected from the main power grid (MPG). Moreover, if the MPG needs electric power, MG can even supply the electricity to the MPG. Due to the advantage of the MG concept, many research and developments had been introduced in this area. In Thailand, MG is also included in the master plan to study the impacts and approach to application with Thailand in the future.

#### 1.2 Problem Statement

Thailand has the policy to promote energy security and efficiency according to the Energy Master Plan 2015-2035. The objectives of the Energy Master Plan include two main objectives: energy security, and Environment-friendly society. The objectives of the Energy Security Master Plan consist of various elements, including reliability in the supply of energy to meet demand with economic consideration. Distribution of energy sources and types to reduce risks from various factors is also under consideration including energy efficiency management, which will help reduce the burden of energy supply. The master plan also concerns develop knowledge and technology, along with enhancing national security. Therefore, with the high drama in distributed energy resources, many distribution systems have been shifted to the MG structure. Generally, the MG operating mode consists of connected and islanded mode. However, as the microgrid transfers the operating mode, there are consequences for frequency and voltage (primary control) and effect on power changes (secondary control). Most of these effects were analyzed using the transfer function method which is very complicated to analyze with large systems. Over the past decade, many MG related research has been presented. The structure of the MG, which has been described as an MG is a cluster of distributed generations (DGs), energy storage system (ESS), and loads within clearly determine electrical boundaries, which acts as a single controllable entity with respect to the grid, as determine by the MG Exchange Group, an ad hoc group of experts and implementers of MG technology. The operating condition of MG can be divided into different modes as shown in Fig 1.1.



Therefore, this thesis aimed at proposing the methodology for investigating the MG frequency deviation using steady state analysis model. The proposed method is expected to be a benefit in avoiding transfer function parameters determination, especially for large scale MG.

#### 1.3 Research objectives

The objectives of this research are as follow,

1) To be able to find the frequency deviation using the Newton-Raphson load flow method.

2) To compare DSLF method to Swing equation considering speed droop.

3) To mitigate the large frequency deviation problem using virtual generator speed droop is controlled by energy storage system.

#### 1.4 Scope and limitations

In this thesis, DSLF is used for determining the steady state frequency deviation from MG transferring mode. DSLF was proposed to test with two systems as follows:

1) the modified IEEE radial distribution 33-bus test system,

2) the modified IEEE radial distribution 69-bus test system.

Moreover, investigation and reduction steady state frequency deviation was proposed in this thesis. In the proposed method for reduction steady state frequency deviation using virtual generator droop control by energy storage system.

#### 1.5 Conception

Usually, the frequency deviation is determined by using transfer functions which are difficult to obtain the correct parameters under difference condition. Therefore, this thesis proposes a method to determine steady state frequency deviation for frequency deviation of MG in transferring mode. The virtual generation by energy storage system is increased in test system models consequently can be control the speed droop generation resulting mitigate the frequency deviation

#### 1.6 Research Benefits

The proposed method was able to control the steady state frequency deviation arising from MG mode transfer, useful for operation planning. The frequency deviation problem mitigation using virtual generator droop control by energy storage system in case of unplanned MG disconnecting mode is also investigated.

#### CHAPTER 2

#### LITERATURE REVIEW

#### 2.1 Introduction

In this chapter it is responsible for the collection of theories needed to study and related research in the thesis This chapter consists of three topics: load flow, virtual generator, and microgrid and management.

#### 2.2 Load flow

The flow of electrical energy in any electrical system between connected buses is called load flow. Load flow studies are essential for electrical power systems under operating conditions, improvements, and future expansion. Load flow analysis is presented in a variety of formats. In this thesis, analysis is presented in the form distributed slack bus load flow (DSLF).

The process of obtaining normal load flow results differs from that of DSLF, where normal load flow considers only one swing bus, causing the static area control error to be updated only the active power deviation of the generator on the swing bus on a single bus, as  $\Delta P_{G,Swing} = \Delta G$ .

In contrast, the DSLF load flow calculation process considers every bus as a swing bus, where the static area control errors are averaged according to the participation factor in every active power deviation of the generator, as  $\Delta P_{G_i} = \alpha_i \Delta G$ .

In practice, locational marginal prices are usually calculated by assembling their three components as the reference prices, the congestion prices, and the loss prices. Explicit formulas for calculating the three components based on the single-slack power-flow formulation can be found in the literature. Wu (2005) presented the formulas for calculating the three components based on a distributed slack bus load flow formulation.

In the enhancement, Chayakulkheeree (2007) proposed method for assessing the proper scheduling of actual power generation in a power system consisting of regulated and deregulated subsystems. A new approach has been developed using a distributed slack bus model. Reducing fuel costs is an objective function for each generator subsystem participating in economic delivery in a deregulated market. Kabir et al. (2014) reported the development of a slack bus integration method in Jacobians for Studying the NR load flow, this method involves constructing a loss equation, and then formulating a condition for the condition to be incorporated into the elements of the Jacobian matrix. Ping Yan (2001) presented a methodology for evaluating optimization of fuel cost for active power of generator in power system using distributed slack bus load flow base on participation factor.

DSLF can be applied to a variety of purposes and is commonly used to simulate a competitive power market. The advantage of DSPF is its ability to compute the frequency deviation when the ACE is treated as fixed value. For this reason, DSLF is a suitable tool for this thesis. To determine the frequency deviation occurring in the system. A comparison of the relevant researches are shown in Table 2.1.



| Proposed           | Method | Objective                                         | Model system                | Significant finding                 |  |
|--------------------|--------|---------------------------------------------------|-----------------------------|-------------------------------------|--|
| Yan, 2001.         | DSLF   | Presents the formulas for                         | Modified IEEE 30-Bus system | DSLF is worked to calculating the   |  |
|                    |        | calculating the components                        |                             | three components.                   |  |
|                    |        | • The reference prices                            |                             |                                     |  |
|                    |        | The congestion prices                             |                             |                                     |  |
|                    |        | The loss price                                    |                             |                                     |  |
| Chayakulkheeree,   | DSLF   | Minimize fuel cost in the e <mark>con</mark> omic | Modified IEEE 30-Bus system | 26.6 percent cost reduction         |  |
| 2007.              |        | dispatch in deregulated market.                   |                             |                                     |  |
|                    |        | • OPF                                             |                             |                                     |  |
| Kabir et al, 2014. | DSLF   | Using distributed slack bus load                  | 6-Bus system                | The new technique is also applied   |  |
|                    |        | flow method considering slack                     | IEEE 30-Bus system          | to a case of loss distributed among |  |
|                    |        | bus into the Jacobians for N-R                    | IEEE 57-Bus system          | different generator buses.          |  |
|                    |        | load flow study.                                  |                             |                                     |  |
|                    |        | Shar                                              | E SosiaSV                   |                                     |  |
| Wu et al, 2005.    | DSLF   | This letter presents the formulas                 | None                        | The formulas can be used to         |  |
|                    |        | for the LMP decomposition using                   |                             | calculate the LMPs by assembling    |  |
|                    |        | a distributed-slack power-flow                    |                             | their components.                   |  |
|                    |        | formulation                                       |                             |                                     |  |

### Table 2.1 Summary of DSLF literatures

#### 2.3 Analysis of power systems with swing equations

Synchronous generators can inject sufficient energy into the power system to maintain the energy balance in the system. However, inertia in synchronous generators suppresses sudden deviation of frequency and stabilizes. The distributed generator is static and does not have a rotating part to store kinetic energy, and the moment of grid inertia is reduced and significantly affects the stability of the system. Consequently, swing equations are commonly used in power analysis by simulating synchronous generators.

Thomas et al (2018) presented the concept of analysis based on the swing equation of a synchronous generator. Leng and Polmai (2019) proposed for Reduce the lacking the grid-forming ability and inertia of DG. Two case studies have been conducted, such as power sharing and transient loading. The results show that VSG provides better performance compared to the modulated drop control when large load shifts are used. Palacio R. et al (2017) used VSG based controller with active and reactive power tracking is shown in fig 2.1.



Figure 2.1 VSG based controller with active and reactive power tracking

All measurements are inputs references for this controller. Using droop laws and solving the swing equation.

Zhang et al (2018) have presented a very interesting VSG is applied to the power electronic converters to mimic the rotating mass and damping property of a conventional synchronous generator. The block diagram of the traditional frequency control and the virtual inertia control of the VSG is shown in fig 2.2.



Figure 2.2 Active power controller of VGS

Mansour et al (2016) presented in a different way to control droop by adding Voltage/Frequency inverter system under variable load. Droop based control system for the VF inverter as shown in fig 2.3.



Figure 2.3 Droop based control system for the VF inverter

10

Many control schemes were applied to the inverter to allow the inverter to act like a VSG. The VSG design included reduction characteristics, swing equations, and synchronous generators damping properties. Some of the studies involving speed droop control are compared in Table 2.2. 
 Table 2.2 Analysis of power systems with swing equations

| Proposed          | Strategy       | Objective                                  | Significant finding                                      |
|-------------------|----------------|--------------------------------------------|----------------------------------------------------------|
| Thomas et al,     | • VSG          | Analyzes the equivalency                   | Also, a simplified stability analysis based on the swing |
| 2018.             |                | between the VSG and droop                  | equation of a synchronous generator or VSG can be        |
|                   |                | control in MGs.                            | applied to the p- $\omega$ droop controllers.            |
| Leng et al, 2019. | Modified droop | Investigate the p <mark>erf</mark> ormance | Both methods have the same accuracy for power-           |
|                   | control        | of modified <mark>dro</mark> op control    | sharing. While there is load transition, the VSG has a   |
|                   | • VSG          | with VSG control.                          | better performance with small frequency deviation        |
|                   |                |                                            | compare to modified droop control.                       |
| Mansour et al,    | • Droop based  | One DG unit is controlled to               | MG system transition from grid-connected to islanded     |
| 2016.             | Control        | set the voltage and frequency              | mode without the need to wait for the islanding          |
|                   |                | of the MG.                                 | detection signal.                                        |
| Palacio R. et al, | • VSG          | This paper presents a virtual              | Resulting confirm a similar behavior with synchronous    |
| 2017.             |                | synchronous generator (VSG)                | generators.                                              |
|                   |                | based topology for microgrids              |                                                          |
|                   |                | applications.                              |                                                          |

 Table 2.2 Analysis of power systems with swing equations (Continued)

| Proposed            | Strategy      | Objective                                   | Significant finding                                          |  |  |
|---------------------|---------------|---------------------------------------------|--------------------------------------------------------------|--|--|
| Zhang et al, 2018.  | • VSG         | Accurate small-signal model                 | The decoupling of the active power and reactive power        |  |  |
|                     |               | of a multiple parallel VSG                  | was realized well. It implies that the enhanced VSG          |  |  |
|                     |               | system was established                      | control can track the load transition rapidly and            |  |  |
|                     |               |                                             | accurately without oscillation.                              |  |  |
| Nogami et al, 2018. | • VSG model-  | Improve the s <mark>tab</mark> ility of the | The simulation results show that the proposed control is     |  |  |
|                     | based control | power system                                | more effective for the system stability improvement than     |  |  |
|                     | PV            |                                             | the constant power control of the PV.                        |  |  |
| Yue Hao and Hua     | • VSG         | to solve the low inertia                    | the proposed method can effectively improve the safety       |  |  |
| Li, 2019.           |               | problem and damping effect                  | and stability and has good practicability.                   |  |  |
|                     |               | brought by the large-scale                  |                                                              |  |  |
|                     |               | integration of Distributed                  | 100                                                          |  |  |
|                     |               | Generators (DGs) into the grid.             |                                                              |  |  |
| Vikash et al, 2020. | • VSG         | for supporting the system                   | The VSG incorporates the swing equation of the               |  |  |
|                     |               | stability by giving the similar             | ar traditional SG to include the property of virtual inertia |  |  |
|                     |               | characteristics of the SG.                  | using which the rate of change of frequency of the           |  |  |
|                     |               |                                             | system is reduced.                                           |  |  |

#### 2.4 Microgrid (MG)

In common practice an MG can operate while connected to a MV network. When a preplanned or unplanned event like holding or occurring fault occurs in the MV network it is possible to cause the islanding state in the MG. In this Paper the operation of the MV network in the islanding mode and how to control the MG by using the controlling structure are investigated. In this paper the conventional droop method has been described and a new controlling method for controlling the MG are also proposed which in the first method the AC power theory for the controlling of the MG. For comparing these two methods with the controlling method, which is proposed in reference, these three methods have been simulated with PSCAD/EMTDC software. (Yasser R. K. and Mohammad H. K., 2018).

In the recent years, there has been a growing interest in the concept of MGs to integrate distributed generation systems and to provide higher reliability for critical loads. Several MG demonstrations projects have been implemented to investigate further and advance this emerging concept. This article provides a detailed review of MG systems. It describes different architectures, including AC, DC, and hybrid systems. Various MG components, including sources, converters, and loads, are illustrated. MG management and controls are discussed, and a modified natural droop control is described in detail. Both physical layers and standard protocols are explained for communication in the MG structure. The unique protection complexities have been raised and discussed in the presence of distributed generations and bidirectional power flow. A demonstration of a military MG system at Fort Sill is illustrated, and the experiment of a typical MG operation scenario is provided. (Qiang F., Adel N., Ashishkumar S., Abedalsalam B. A., Luke W., and Vijay B., 2015).

Renewable resources can be used for the energy scarcity facing now. For the optimum usage of renewable resources, system called MG. It can be operated in two modes. In the normal condition the MG is connected to the utility grid. Current control is given during this mode to give preset power. In this mode, when there is any fault or maintenance in the main grid the MG is islanded either to prevent spreading of fault to the MG or to prevent accidents. When the intentional islanding is done, the control is given to maintain the voltage. Thus, constant control is given to the loads during this

mode. Depending on the generation of MG side the intelligent load shedding is implemented. The critical loads are maintained without any power quality issues. Simulation is performed using MATLAB \ Simulink software. Simulation of controls during different modes, islanding detection algorithm and intelligent load shedding is given here (Megha Prakash.M. and Jasmy P., 2016).

Droop control is often used for smooth switching of MG. In this paper, a new robust droop control strategy is proposed by designing a compensatory sliding mode controller to enhance the system stability. The load angle-voltage is used for droop control variable, and state space equations are established based on the droop control structure. In addition, a compensatory nonlinear controller is designed via sliding mode control method to mitigate the frequency chattering phenomenon caused by switching of MG operation states, so that system stability and response rapidity are guaranteed. In the end, the simulation results obtained from Matlab/Simulink platform show the validity of the proposed scheme (M. Yang, X. Hongliang, B. Chunyan, W. Shengyi, Z. Han, J. Yuanwei, 2016)

MG has two operating modes, that is the state of being integrated in external grid and the state of island operation and can switch freely between the two states. the method to improve the en\ergy storage model is proposed, and its improved results are validated by simulation experiments, the results show that the new improved storage model is more consistent with theoretical expectations and realities than the original model. (Z. Xiaobo and Z. Baohui, 2014)

้<sup>วั</sup>กยาลัยเทคโนโลยีส์<sup>5</sup>

| Proposed        | Topic              | Objective                                                 | Significant finding                                       |  |  |  |
|-----------------|--------------------|-----------------------------------------------------------|-----------------------------------------------------------|--|--|--|
| RahmatiKukandeh | MG Control In      | this paper regards the evaluation,                        | In this paper we have investigate and simulated           |  |  |  |
| et al, 2018.    | Islanding And      | through numerical simulation, of                          | some approaches for controlling MG as follows:            |  |  |  |
|                 | Connected Mode     | the inverter-fed MG behavior under                        | A full description of the Droop controlling               |  |  |  |
|                 |                    | islanded operation and connected                          | method                                                    |  |  |  |
|                 |                    | operation for di <mark>ffer</mark> ent lo <mark>ad</mark> | <ul> <li>Applying the AC power theory as a new</li> </ul> |  |  |  |
|                 |                    | conditions and using different                            | approach to control                                       |  |  |  |
|                 |                    | control strategi <mark>es w</mark> ith limiter for        | Simulating the Droop controlling method and               |  |  |  |
|                 |                    | power.                                                    | two new controlling methods and comparing them            |  |  |  |
| Qiang Fu et al, | Architectures,     | This paper provides a detailed                            | The operating nature of MGs is much different             |  |  |  |
| 2015.           | Controls,          | review of MG systems. It describes                        | from conventional distribution systems for several        |  |  |  |
|                 | Protection,        | different architectures, including                        | reasons, including high penetration of DGs,               |  |  |  |
|                 | and                | AC, DC, and hybrid systems                                | renewable sources, power electronics-based                |  |  |  |
|                 | Demonstration      | 775hsuzz 5.5                                              | components, and energy storage.                           |  |  |  |
| Megha Prakash.M | Control of MG for  | This article describes the controls in                    | the control schemes are capable of                        |  |  |  |
| et al, 2016.    | Different Modes of | each MG operating mode.                                   | maintaining the voltages and currents among               |  |  |  |
|                 | Operation          |                                                           | permissible levels throughout grid connected and          |  |  |  |
|                 |                    |                                                           | islanding operation modes.                                |  |  |  |

 Table 2.3 Summary of MG literatures.

| Proposed         | Topic                   | Objective                           | Significant finding                                  |  |  |  |
|------------------|-------------------------|-------------------------------------|------------------------------------------------------|--|--|--|
| Megha            | Control of MG for       | This article describes the controls | The control schemes are capable of maintaining       |  |  |  |
| Prakash.M et al, | Different Modes of      | in each MG operating mode.          | the voltages and currents among permissible          |  |  |  |
| 2016.            | Operation               |                                     | levels throughout grid connected and islanding       |  |  |  |
|                  |                         |                                     | operation modes.                                     |  |  |  |
| MI Yang et al,   | Study on Smooth         | Design nonlinear compensation       | In this paper, angle-voltage droop control is        |  |  |  |
| 2016.            | Switching of MG         | controller, and the compensation    | adopted, and a compensatory controller is            |  |  |  |
|                  | Operation States Using  | signal is attached to the voltage   | designed using SMC algorithm. Through the            |  |  |  |
|                  | Sliding                 | signal generated by the voltage     | validation of simulating, the stability of system is |  |  |  |
|                  | Mode Control            | control.                            | improved, and smooth switching is achieved by        |  |  |  |
|                  |                         |                                     | the proposed scheme.                                 |  |  |  |
| Xiaobo et al,    | Improved MG energy      | The method to improve the           | Both methods have the same accuracy for              |  |  |  |
| 2019.            | storage device model in | energy storage model is proposed,   | power-sharing. While there is load transition, the   |  |  |  |
|                  | MG mode switching       | and its improved results are        | VSG has a better performance with small              |  |  |  |
|                  | process                 | validated by simulation             | frequency deviation compared to modified             |  |  |  |
|                  |                         | experiments.                        | droop control.                                       |  |  |  |

 Table 2.3 Summary of MG literatures (Continued)

### CHAPTER 3

#### METHODOLOGY

#### 3.1 Introduction

In this section presented, the method related to finding the frequency deviation calculated from the load flow was presented in 3.2 and 3.3 presented the theory of VSG simulation that aim to mitigate the effect on the system frequency when the microgrid is operating mode transfer.

#### 3.2 DSLF for MG Frequency Deviation Analysis

In this thesis, the Newton-Raphson Power Flow (NRPF) technique (T. Wu et al, 2005, Yan, 2001 and Chayakulkheeree, 2007) was used to incorporating generation frequency control characteristic. Bus power injections including active and reactive power for every bus can be expressed as,

$$\Delta P_i = (P_{G_i} - P_{D_i}) - P_{cal,i}, i = 1, ..., NB,$$
(3.2.1)

$$\Delta Q_i = (Q_{G_i} - Q_{D_i}) - Q_{cal,i}, i = 1, ..., NB,$$
(3.2.2)

$$P_{cal,i} = \sum_{k=1}^{NB} |V_i| |V_k| |Y_{i,k}| \cos(\theta_{i,k} + \delta_k - \delta_i) , \ i = 1, ..., NB,$$
(3.2.3)

$$Q_{cal,i} = -\sum_{k=1}^{NB} |V_i| |V_k| |Y_{i,k}| \sin(\theta_{i,k} + \delta_k - \delta_i), \ i = 1, ..., NB.$$
(3.2.4)

From the above equation can be formatted in to the Jacobian matrix can be expressed as,

$$\begin{bmatrix} \Delta P_{1} \\ \partial A_{2} \\ \vdots \\ \Delta P_{2} \\ \vdots \\ \Delta Q_{2} \\ \vdots \\ \Delta Q_{NB} \end{bmatrix} = \begin{bmatrix} \frac{\partial P_{1}}{\partial \delta_{1}} & \frac{\partial P_{1}}{\partial \delta_{2}} & \cdots & \frac{\partial P_{1}}{\partial \delta_{NB}} & \frac{\partial P_{1}}{\partial |V_{1}|} & \frac{\partial P_{1}}{\partial |V_{2}|} & \cdots & \frac{\partial P_{1}}{\partial |V_{NB}|} \\ \frac{\partial P_{2}}{\partial \delta_{1}} & \frac{\partial P_{2}}{\partial \delta_{2}} & \cdots & \frac{\partial P_{2}}{\partial \delta_{NB}} & \frac{\partial P_{2}}{\partial |V_{1}|} & \frac{\partial P_{2}}{\partial |V_{2}|} & \cdots & \frac{\partial P_{2}}{\partial |V_{NB}|} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \frac{\partial P_{NB}}{\partial \delta_{1}} & \frac{\partial P_{NB}}{\partial \delta_{2}} & \cdots & \frac{\partial P_{NB}}{\partial \delta_{NB}} & \frac{\partial P_{NB}}{\partial |V_{1}|} & \frac{\partial P_{1}}{\partial |V_{2}|} & \cdots & \frac{\partial P_{NB}}{\partial |V_{NB}|} \\ \frac{\partial Q_{1}}{\partial \delta_{1}} & \frac{\partial Q_{1}}{\partial \delta_{2}} & \cdots & \frac{\partial Q_{1}}{\partial \delta_{NB}} & \frac{\partial Q_{1}}{\partial |V_{1}|} & \frac{\partial Q_{1}}{\partial |V_{2}|} & \cdots & \frac{\partial Q_{1}}{\partial |V_{NB}|} \\ \frac{\partial Q_{2}}{\partial \delta_{1}} & \frac{\partial Q_{2}}{\partial \delta_{2}} & \cdots & \frac{\partial Q_{2}}{\partial \delta_{NB}} & \frac{\partial Q_{2}}{\partial |V_{1}|} & \frac{\partial Q_{2}}{\partial |V_{2}|} & \cdots & \frac{\partial Q_{2}}{\partial |V_{NB}|} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \frac{\partial Q_{NB}}{\partial \delta_{1}} & \frac{\partial Q_{NB}}{\partial \delta_{2}} & \cdots & \frac{\partial Q_{NB}}{\partial \delta_{NB}} & \frac{\partial Q_{NB}}{\partial |V_{1}|} & \frac{\partial Q_{NB}}{\partial |V_{2}|} & \cdots & \frac{\partial Q_{NB}}{\partial |V_{NB}|} \end{bmatrix}$$
(3.2.5)

The generator's prime mover responses and AGC action (A. J. Wood, B. F. Wollengerg, G. B. Sheblé (Eds.), 2014) are included as primary and secondary controls. Active power generation at a bus considered as,

$$\sum_{i=1}^{NG} P_{G_i} = \sum_{i=1}^{NG} P_{G_i^o} + \sum_{i=1}^{NG} \Delta P_{G_i} , i = 1, ..., NB,$$
(3.2.6)  
$$\Delta P_{G_i} = -\frac{1}{r_i} \Delta F + \alpha_i \Delta G , i = 1, ..., NB,$$
(3.2.7)  
$$\sum_{i=1}^{NG} \alpha_i = 1.00 , i = 1, ..., NB,$$
(3.2.8)

$$\Delta F = F - F_0. \tag{3.2.9}$$

Assuming bus one as reference for the purpose of frequency deviation calculations of the system, the linearized equations for Newton-Raphson is corrected from Eq. (3.2.5).

Therefore, this concept can be find the  $\Delta F$  in primary responsewhen there is sudden change of generation or load so, that is also a simpler and more convenient method than using transfer function. The linearized equations for Newton-Raphson is corrected can be expressed as,

$$\begin{bmatrix} \Delta P_{1} \\ \partial P_{2} \\ \vdots \\ \Delta P_{2} \\ \vdots \\ \Delta Q_{1} \\ \partial Q_{2} \\ \vdots \\ \Delta Q_{NB} \end{bmatrix} = \begin{bmatrix} \frac{\partial P_{1}}{\partial F} & \frac{\partial P_{1}}{\partial \delta_{2}} & \cdots & \frac{\partial P_{1}}{\partial \delta_{NB}} & \frac{\partial P_{1}}{\partial |V_{1}|} & \frac{\partial P_{1}}{\partial |V_{2}|} & \cdots & \frac{\partial P_{1}}{\partial |V_{NB}|} \\ \frac{\partial P_{2}}{\partial F} & \frac{\partial P_{2}}{\partial \delta_{2}} & \cdots & \frac{\partial P_{2}}{\partial \delta_{NB}} & \frac{\partial P_{2}}{\partial |V_{1}|} & \frac{\partial P_{2}}{\partial |V_{2}|} & \cdots & \frac{\partial P_{2}}{\partial |V_{NB}|} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \frac{\partial P_{NB}}{\partial F} & \frac{\partial P_{NB}}{\partial \delta_{2}} & \cdots & \frac{\partial P_{NB}}{\partial \delta_{NB}} & \frac{\partial P_{NB}}{\partial |V_{1}|} & \frac{\partial P_{NB}}{\partial |V_{2}|} & \cdots & \frac{\partial P_{NB}}{\partial |V_{NB}|} \\ 0 & \frac{\partial Q_{1}}{\partial \delta_{2}} & \cdots & \frac{\partial Q_{1}}{\partial \delta_{NB}} & \frac{\partial Q_{1}}{\partial |V_{1}|} & \frac{\partial Q_{1}}{\partial |V_{2}|} & \cdots & \frac{\partial Q_{1}}{\partial |V_{NB}|} \\ 0 & \frac{\partial Q_{2}}{\partial \delta_{2}} & \cdots & \frac{\partial Q_{2}}{\partial \delta_{NB}} & \frac{\partial Q_{2}}{\partial |V_{1}|} & \frac{\partial Q_{2}}{\partial |V_{2}|} & \cdots & \frac{\partial Q_{2}}{\partial |V_{NB}|} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \frac{\partial Q_{NB}}{\partial \delta_{2}} & \cdots & \frac{\partial Q_{NB}}{\partial \delta_{NB}} & \frac{\partial Q_{NB}}{\partial |V_{1}|} & \frac{\partial Q_{NB}}{\partial |V_{2}|} & \cdots & \frac{\partial Q_{NB}}{\partial |V_{NB}|} \end{bmatrix}$$

$$(3.2.10)$$

The Newton Raphson iteration process is repeated until the  $\Delta P_i$  and  $\Delta Q_i$  in Eq. (3.2.10) for all buses fall within the specified tolerance range. The sequence of operation of such replication processes is shown in Fig. 3.1.



Figure 3.1 Computational procedure of power flow program for finding of the frequency deviation.

### 3.3 Analysis of power systems with swing equations

A similar study found that most of the studies used swing equations for simulations VSG increase to the MG system to help support the system to be stable.

• VSG Modeling

As there are several VSG control algorithms for the inverter, they can be divided into two types: high-order and low-order models. However, higher order model is more complex than can be realized under the order, so the model has been widely used in recent literature.

The current research is focused on a second-order model of a synchronous generator consisting of mechanical and electrical components. The rotor inertia and damping characteristics of a synchronous generator are reflected by the mechanical rotation equation, known as the oscillation equation.



Figure 3.2 Concept of a virtual synchronous generator.

The VSG concept consists of a power source, an inverter and a controller. Shown as Fig 3.2 but the most important thing is Mathematical model in the inverter controller.

Frequency Response with Swing Equation

Mathematical modeling is an important part of analyzing the operating behavior of power systems. The swing equation is an algorithm for controlling the model according to different situations.

As mentioned at the beginning, the swing equation (Zhang et al, 2018.) can be represented as,

$$J\omega_m \frac{d^2\delta_m}{dt^2} = P_m - P_e, \qquad (3.3.1)$$

where  $J\omega$ m is called the moment of inertia (M),

$$M = J\omega_m, \tag{3.3.2}$$

Swing equation in terms of electrical power angle  $(\delta)$  is shown as the following equation,

$$\delta = \frac{p}{2} \delta_m, \tag{3.3.3}$$

$$\omega_m = \frac{2}{p} \omega_s, \tag{3.3.4}$$

from Eq. (3.3.2) and Eq. (3.3.3), the swing equation shown in Eq. (3.3.1) shall be changed as follows,

$$\frac{2M}{p}\frac{d^2\delta}{dt^2} = P_m - P_e.$$
(3.3.5)

M is related to the kinetic energy of the rotating mass (Wk), using the following equation,

$$M = \frac{2W_k}{\omega_m},\tag{3.3.6}$$

the swing equation is solved according to the  $W_k$  relationship can be expressed as,

$$\frac{2W_k}{\omega_s}\frac{d^2\delta}{dt^2} = P_m - P_e, \qquad (3.3.7)$$

The Eq. (3.3.7) when converted to P.U. form is shown as the following equation,

$$\frac{1}{S_{base}} \frac{2W_k}{\omega_s} \frac{d^2 \delta}{dt^2} = P_{m,pu.} - P_{e,pu.}, \qquad (3.3.8)$$

$$H = \frac{W_k}{S_{base}}.$$
(3.3.9)

The inertia constant (*H*) has a characteristic value or a range of values for each class of machines. Table 3.1 shows some typical inertia constants. Inertia constant can be represented as following equation,

| Table 3.1 | Typical | inertia | cons | tant | of sy | /nchro | onous | mach | ine |
|-----------|---------|---------|------|------|-------|--------|-------|------|-----|
|           |         |         |      |      |       |        |       |      |     |
|           |         |         |      |      |       |        |       |      |     |

| Type of machine             | Inertia constant H |
|-----------------------------|--------------------|
|                             | [MJ/MVA]           |
| Turbine generator:          |                    |
| Condensing 1800 rpm         | 9-6                |
| Condensing 3600 rpm         | 7-4                |
| Noncondensing 3600 rpm      | 4-3                |
| Waterwheel generator:       |                    |
| Slow speed < 200 rpm        | 2-3                |
| High speed > 200 rpm        | 2-4                |
| Synchronous condenser:      |                    |
| Large                       | 1.25               |
| Small                       | 1.00               |
| Synchronous motor with load | 2.00               |

For the convenience of using equations to calculate it is important to keep the equation formatting compact.

Electrical power output can be expanded as follows:

$$P_e = \frac{|E'||V|}{|X|} \sin \delta, \qquad (3.3.10)$$

$$P_{\max} = \frac{|E'||V|}{|X|},$$
(3.3.11)

from Eq. (3.3.11), the equation of Electrical power output diversifies form as follows,

$$P_e = P_{\max} \sin \delta. \tag{3.3.12}$$

The complete swing equation before the disturbance can be expressed as,

$$\frac{H}{\pi F_0} \frac{d^2 \delta}{dt^2} = P_{m,pu.} - P_{\max,pu.} \sin \delta.$$
(3.3.13)

But in case the system is disturbed, what will happen to the oscillation equation is that it causes the power angle deviation,

$$\delta = \delta_0 + \Delta \delta. \tag{3.3.14}$$

The impact of disturbances affects the swing equation,

$$\frac{H}{\pi F_0} \frac{d^2 \delta_0}{dt^2} + \frac{H}{\pi F_0} \frac{d^2 \Delta \delta}{dt^2} = P_{m,pu} - P_{\max,pu} (sin \delta_0 cos \Delta \delta + cos \delta_0 sin \Delta \delta)$$
(3.3.15)

Since this is a small interference, assuming that  $\Delta \delta$  is very small, then  $\cos \Delta \delta \approx 1$  and  $\sin \Delta \delta \approx \Delta \delta$ 

$$\frac{H}{\pi F_0} \frac{d^2 \delta_0}{dt^2} + \frac{H}{\pi F_0} \frac{d^2 \Delta \delta}{dt^2} = P_{m,pu} - P_{\max,pu} \sin \delta_0 + P_{\max,pu} \cos \delta_0 \times \Delta \delta$$
(3.3.16)

Compare the pre-disturbance Eq. (3.3.13) swing equation with the postdisturbance Eq. (3.3.16) swing equation to obtain the swing equation in terms of the change in power angle can be expressed as,

$$\frac{H}{\pi F_0} \frac{d^2 \Delta \delta}{dt^2} + P_{\max, pu.} \cos \delta_0 \times \Delta \delta = 0, \qquad (3.3.17)$$

$$P_s = P_{\max, pu.} \cos \delta_0, \tag{3.3.18}$$

and designated power variation due to small interference is  $\Delta$ P

$$\frac{H}{\pi F_0} \frac{d^2 \Delta \delta}{dt^2} + P_s \times \Delta \delta = \Delta P.$$
(3.3.19)

The swing equation Eq. (3.3.19) is also required in terms of damping power and speed droop. The equation of damping power and speed droop is shown below,

$$P_d = D \frac{d\Delta\delta}{dt},\tag{3.3.20}$$

$$\Delta P_G = -\frac{1}{2\pi r} \frac{d\Delta\delta}{dt}.$$
(3.3.21)

The swing equation with terms of damping power Eq. (3.3.20) and speed droop Eq. (3.3.21) can be represented as follows

$$\frac{d^2\Delta\delta}{dt^2} + \left(\frac{\pi F_0}{H}D - \frac{F_0}{2Hr}\right)\frac{d\Delta\delta}{dt} + \frac{\pi F_0}{H}P_S\Delta\delta = \frac{\pi F_0}{H}\Delta P.$$
(3.3.22)

The natural frequency of oscillation,

$$\omega_n = \sqrt{\frac{\pi F_0}{H} P_s}, \qquad (3.3.23)$$

the dimensionless damping ratio,

$$\zeta = \frac{D}{2} \sqrt{\frac{\pi F_0}{HP_s}}.$$
(3.3.24)

The result of improving the oscillation equations with  $\omega$ n and  $\zeta$  is shown as the following equation,

$$\frac{d^2\Delta\delta}{dt^2} + (2\zeta\omega_n - \frac{F_0}{2Hr})\frac{d\Delta\delta}{dt} + \omega_n^2\Delta\delta = \Delta u, \qquad (3.3.25)$$

$$\Delta u = \frac{\pi F_0}{H} \Delta P. \tag{3.3.26}$$

Once the oscillation Eq. (3.3.25) is obtained, the next step is to solve the differential equation problem. From Eq (3.3.25),
where 
$$X1 = \Delta \delta$$
  $X2 = \Delta \omega$ 

then 
$$\dot{X}_1 = X_2$$
  $\dot{X}_2 = -(2\zeta \omega_n - \frac{F_0}{2Hr})X_2 - \omega_n^2 X_1 + \Delta u$ 

Then arrange it in the form State Equation (  $\dot{\textbf{X}}(t){=}A\textbf{x}(t){+}B\textbf{\Delta}\textbf{u}(t)$  )

$$\begin{bmatrix} \bullet \\ x_1 \\ \bullet \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\omega_n^2 & -(2\zeta\omega_n - \frac{F_0}{2Hr}) \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \Delta u.$$
(3.3.27)

Laplace transform for Eq. (3.3.27) can be represented as follows,

From  $\dot{\mathbf{X}}(t)=A\mathbf{X}(t)+B\mathbf{\Delta}\mathbf{U}(t)$ Laplace transform  $\mathbf{SX}(s)=\mathbf{AX}(s)+B\mathbf{\Delta}\mathbf{U}(s)$  $\mathbf{X}(s)=(sI-A)-1$  B $\mathbf{\Delta}\mathbf{U}(s)$ ,

 $\Delta U(s) = \frac{\Delta u}{s},$ 

where

$$X(s) = \frac{\begin{bmatrix} s + (2\zeta\omega_n - \frac{F_0}{2Hr}) & 1 \\ -\omega_n^2 & s \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \frac{\Delta u}{s}}{s^2 + (2\zeta\omega_n - \frac{F_0}{2Hr})s + \omega_n^2},$$
(3.3.28)

$$\Delta\delta(s) = \frac{\Delta u}{s^2 + (2\zeta\omega_n - \frac{F_0}{2Hr})s + \omega_n^2},$$
(3.3.29)

$$\Delta\omega(s) = \frac{\Delta u}{s(s^2 + (2\zeta\omega_n - \frac{F_0}{2Hr})s + \omega_n^2)}.$$
(3.3.30)

In this thesis, Matlab is used to find the Laplace inverse for the final answer can be expressed as,

$$\Delta \delta = \frac{\Delta u}{\omega_n^2} \left(1 - \frac{1}{\sqrt{\frac{F_0^2}{16} - (\frac{F_0\zeta K}{2}) + K^2 \zeta^2 - K^2}} e^{(\frac{F_0 - 4\zeta K}{4Hr})r} \left(\cosh(\frac{t\sqrt{\frac{F_0^2}{16} - (\frac{F_0\zeta K}{2}) + K^2 \zeta^2 - K^2}}{Hr}) + (Chr) \left(\frac{t\sqrt{\frac{F_0^2}{16} - (\frac{F_0\zeta K}{2}) + K^2 \zeta^2 - K^2}}{Hr}\right) \right)$$

$$(Hr \sinh(\frac{t\sqrt{\frac{F_0^2}{16} - (\frac{F_0\zeta K}{2}) + K^2 \zeta^2 - K^2}}{Hr}) \left(\frac{F_0 - 4\zeta K}{4Hr} - (\frac{\Delta uF_0 - 4\Delta u\zeta K}{2\Delta uHr}))))),$$
(3.3.31)

$$\Delta \omega = \frac{4\Delta u H r}{\sqrt{F_0^2 - 8F_0\zeta K + 16\zeta^2 K^2 - 16K^2}} e^{(\frac{F_0 - 4\zeta K}{4Hr})_t} \sinh(\frac{t\sqrt{F_0^2 - 8F_0\zeta K + 16\zeta^2 K^2 - 16K^2}}{4Hr}), \quad (3.3.32)$$

where  $K = \omega nHr$ .

Finally, Eq. (3.3.3) and Eq. (3.3.32) is reflecting the effect on the angular frequency and power angle. In this section, a mathematical model is presented to determine the situation for analyzing the effects of frequency.

# CHAPTER 4 RESULT AND DISCUSSION

# 4.1 Introduction

This section presents the simulation results of changing the operating mode of the microgrid under various conditions. 4.2 presents a model of the simulation scenario. and 4.3 presented the simulation results under different circumstances.

In the experiment, all the answers from the mathematical model were calculated with Matlab program.

# 4.2 Model and circumstances for simulation

This thesis is proposed to test with two systems as follows: System one: The modified IEEE radial distribution 33-bus test system



Figure 4.1 Modified IEEE radial distribution system 33-bus

The test system model was modified from IEEE radial distribution 33-bus (P. Díaz, M. P. Cisneros, E. Cuevas, O. Camarena, F. Fausto and A. González, 2018, V. Vita,

2017 and M. Mousavi, A. M. Ranjbar, A. Safdarian, 2017) by placing the generators at bus 13, 22 and 28, while bus 1 is connected to the MPG as show in Figure 4.1. The generation placement in the test system is resulted from total power loss and generation cost minimization (M. Mousavi, A. M. Ranjbar, A. Safdarian, 2017). There are two scenarios in this test system:

Scenario 1: MPG disconnected while MG is receiving electric power.



Figure 4.2 Scenario 1 MG is receiving electric power

This situation when the MPG is disconnected while the MG receives the input power from the MPG is shown in Figure 4.2. The participation factor used in the DSLF calculation is shown in Table 4.1.

| Table 4.1 | Participation | factor | of | Scenario | 1 |
|-----------|---------------|--------|----|----------|---|
|-----------|---------------|--------|----|----------|---|

| Generator buses | Participation factor |
|-----------------|----------------------|
| Bus 1 (MPG)     | 0.06                 |
| Bus 13          | 0.205                |
| Bus 22          | 0.397                |
| Bus 28          | 0.338                |

In the test of disconnection, the power flow from MPG to MG is small. Therefore, from Table 4.1, the power flow from MPG to bus 1 is determined at 6% of Power Generation.

Scenario 2: MPG disconnected while MG is supplying electric power.



Figure 4.3 Scenario 2 MG is supplying electric power

The opposite of scenario 1 when MPG is disconnected while MG is supplying power to MPG is shown in Figure 4.3.

 Table 4.2 Participation factor of Scenario 2

| Generator buses | Participation factor |
|-----------------|----------------------|
| Bus 13          | 0.218                |
| Bus 22          | 0.422                |
| Bus 28          | 0.360                |

In this situation, the MPG will behave as a load. The power flow from MPG to MG is defined as 100 kW and the participation factor of the other generators is shown in Table 4.2.



System two: The modified IEEE radial distribution 69-bus test system.

Figure 4.4 Modified IEEE radial distribution system 69-bus

This test system is modified from the IEEE 69 bus system. Modified by placement distributed generator in buses 2, 60 and 69 is shown in Figure 4.4. (P. Díaz, M. P. Cisneros, E. Cuevas, O. Camarena, F. Fausto and A. González, 2017)

Scenario 3: MPG disconnected while MG is receiving electric power.



Figure 4.5 Scenario 3 MG is receiving electric power

This scenario is the same as scenario 1. The modified from the IEEE 69 bus system, the test system was analyzed under this scenario.

Table 4.3 Participation factor of Scenario 3

| Generator buses | Participation factor |
|-----------------|----------------------|
| Bus 1 (MPG)     | 0.060                |
| Bus 2           | 0.600                |
| Bus 60          | 0.168                |
| Bus 69          | 0.171                |
|                 |                      |

In Scenario 3 this is similar to Scenario 1. but using the test system as show in Figure 4.4, the participation factor is shown in Table 4.3.

Scenario 4: MPG disconnected while MG is supplying electric power.



Figure 4.6 Scenario 4 MG is supplying electric power

The same principles and concepts as in scenario 3. In this situation, the test system is the modified from the IEEE 69 bus is shown in Figure 4.6.

Table 4.4 Participation factor of Scenario 4

| Generator buses | Participation factor |
|-----------------|----------------------|
| Bus 2           | 0.639                |
| Bus 60          | 0.179                |
| Bus 69          | 0.182                |

All example scenarios, the power flow is calculated with a rough estimate of the frequency using the DSLF method.

# 4.3 Frequency Deviation

In this topic, the results of the experiment on finding the frequency deviation using the method DSLF and the Swing Equation Method under the same situation.

# In the simulation of Scenario 1

Determination of the approximate frequency deviation with the test system under scenario 1 in Figure 4.2.

Using DSLF

In this simulation, the MPG supplies power to MG 228.0 kW before MG is connected. The total power generation including power supply from MPG is 3,715 kW before MG is disconnected and changing the status of MG to islanded mode. The impact on system control both primary and secondary controls.

| Power flow (kM)  | Roforo transfor   | After transfer  |                   |  |  |
|------------------|-------------------|-----------------|-------------------|--|--|
|                  | before transfer - | Primary control | Secondary control |  |  |
| MPG              | 228               | 0               | 0                 |  |  |
| P <sub>G13</sub> | 779 779           |                 | 831.5             |  |  |
| P <sub>G22</sub> | 1,508.5           | 1,508.5         | 1,588.2           |  |  |
| P <sub>G28</sub> | 1,284.3           | 1,284.3         |                   |  |  |
| Power Generation | 3,799.8           | 3,571.8         | 3,744.6           |  |  |
| Power Demand     | 3,715.0           | 3,715.0         | 3,715.0           |  |  |
| Power Loss       | 84.8              | -               | 29.6              |  |  |
| Frequency (Hz)   | 50                | 49.5963         | 50                |  |  |
|                  |                   |                 |                   |  |  |

 Table 4.5 Simulation Results of Scenario 1

From the experimental results in Table 4.5, the main control power generation was unchanged. But the frequency decreases because the master regulator adjusts the frequency to control the power as in equation (3.2.7). On the other hand, the secondary control frequency is controlled at 50 Hz as it should, but the power generation is reevaluated in response to the load. All generators are adjusted to compensate for lost power generation from the main grid. Total power generation without power supply from MPG is 3,744.6 kW after secondary control operation. Note that the power loss is reduced from 84.8 kW to 29.6 kW due to the increase in the local version. This results in a decrease in overall power generation after transferring the MG mode.

• Using Swing Equation

Parameter adjustment to determine the behavior of changes in the frequency response after system interference. In this test, Scenario 1 was used in the test.



Figure 4.7 Frequency Response of Scenario 1

Figure 4.7 shows the result of adjusting the parameters of swing equation. The adjusted parameters are as  $F_0 = 50$  Hz, H = 5, r = 25 and D = 0.138.

# In the simulation of scenario 2

Determination of the approximate frequency deviation with the test system in Figure 4.3 with participation factor in Table 4.2.

• Using DSLF

In Scenario 2, the main power grid receives power from the MG 185.75 kW, in connected mode, before MG is disconnected, changing the status of MG to change to islanded mode. The effect of disconnection on system control both primary and secondary controls are shown in Table 4.6.

| Power flow (kW)  | Refere transfer | After transfer  |                   |  |  |
|------------------|-----------------|-----------------|-------------------|--|--|
|                  | belore transfer | Primary control | Secondary control |  |  |
| MPG              | -100            | 0               | 0                 |  |  |
| P <sub>G13</sub> | 837.8           | 837.8           | 816.2             |  |  |
| P <sub>G22</sub> | 1,621.7         | 1,621.7         | 1,579.9           |  |  |
| P <sub>G28</sub> | 1,383.5         | 1,383.5         | 1,347.8           |  |  |
| Power Generation | 3,843.0         | 3,843.0         | 3,743.9           |  |  |
| Power Demand     | 3,815.0         | 3,715.0         | 3,715.0           |  |  |
| Power Loss       | 28.0            | -               | 28.9              |  |  |
| Frequency (Hz)   | 50              | 50.237          | 50                |  |  |

Table 4.6 Simulation Result of Scenario 2

From the experimental results in Table 4.6, power generation of primary control has not changed. But the frequency increases to 50.237 Hz, because the primary control will adjust the frequency to control the power, as in Eq. (3.2.7). On the contrary, the power generation of the secondary control is stable at 50 Hz. From the experimental Table 4.6, the secondary control power generation has decreased due to the decrease in the load at the main power grid, resulting in a reduce power generation.

Using Swing Equation

Parameter adjustment to determine the behavior of changes in the frequency response after system interference. In this test, Scenario 2 was used in the test.



Figure 4.8 Frequency Response of Scenario 2

Figure 4.8 shows the result of adjusting the parameters of swing equation. The adjusted parameters are as  $F_0 = 50$  Hz, H = 5, r = 25 and D = 0.138.

#### In the simulation of Scenario 3

Determination of the approximate frequency deviation with the test system in Figure 4.5 with participation factor in Table 4.3.

• Using DSLF

while the MPG supplies power to MG 228.0 kW before MG is connected. The total power generation including power supply from MPG is 3,715 kW before MG is disconnected and changing the status of MG to islanded mode. The impact on system control both primary and secondary controls is shown in Table 4.7.

|                  |                                 | After transfer  |                   |  |  |
|------------------|---------------------------------|-----------------|-------------------|--|--|
| Power flow (kW)  | Before transfer                 | Primary control | Secondary control |  |  |
| MPG              | 256.7                           | 0               | 0                 |  |  |
| P <sub>G2</sub>  | P <sub>G2</sub> 2,567.2 2,567.2 |                 | 2,741.3           |  |  |
| P <sub>G60</sub> | 720.0                           | 720.0           | 738.7             |  |  |
| P <sub>G69</sub> | 734.4                           | 734.4           | 750.7             |  |  |
| Power Generation | 4,278.3                         | 4,021.6         | 4,230.7           |  |  |
| Power Demand     | 3,801.4                         | 3,801.4         | 3,801.4           |  |  |
| Power Loss       | 476.9                           | -               | 429.3             |  |  |
| Frequency (Hz)   | 50                              | 49.5963         | 50                |  |  |
|                  |                                 |                 |                   |  |  |

Table 4.7 Simulation Results of Scenario 3

From the experimental results in Table 4.6, the main control power generation was unchanged. But the frequency decreases because the master regulator adjusts the frequency to control the power according to Equation (3.2.7). Conversely, the secondary control frequency is regulated at 50 Hz as it should, but the power generation is re-evaluated in response. Responsive to load All generators are adjusted to compensate for lost power generation from the main grid. Total power generation without power supply from MPG is 4,278.3 kW after secondary control operation. Note that the power loss increased from 476.9 kW to 515.7 kW due to the increase in the local version. This results in a decrease in overall power production after transferring MG mode.

• Using Swing Equation

Parameter adjustment to determine the behavior of changes in the frequency response after system interference. In this test, Scenario 3 was used in the test.



Figure 4.9 Frequency Response of Scenario 3

Figure 4.9 shows the result of adjusting the parameters of swing equation. The adjusted parameters are as  $F_0 = 50$  Hz, H = 5, r = 25 and D = 0.138.

#### In the simulation of Scenario 4

Determination of the approximate frequency deviation with the test system in Figure 4.6 with participation factor in Table 4.4.

• Using DSLF

While the MPG powers the MG 228.0 kW before the MG is connected, the total power generation including the power supply from the MPG is 3,715 kW before the MG is disconnected and the MG state is switched to island mode. Control systems for both primary and secondary controls are shown in Table 4.8.

| Power flow (kW)  | Poforo transfor                 | After transfer  |                   |  |  |
|------------------|---------------------------------|-----------------|-------------------|--|--|
|                  | before transfer                 | Primary control | Secondary control |  |  |
| MPG              | -100                            | 0               | 0                 |  |  |
| P <sub>G2</sub>  | P <sub>G2</sub> 2,749.4 2,749.4 |                 | 2,693.5           |  |  |
| P <sub>G60</sub> | 769.8                           | 769.8           | 754.2             |  |  |
| P <sub>G69</sub> | 783.6                           | 783.6           | 767.7             |  |  |
| Power Generation | 4,302.8                         | 4,302.8         | 4,215.4           |  |  |
| Power Demand     | 3,901.4                         | 3,801.4         | 3,801.4           |  |  |
| Power Loss       | 401.4                           | -               | 414.0             |  |  |
| Frequency (Hz)   | 50                              | 50.1136         | 50                |  |  |
|                  |                                 |                 |                   |  |  |

Table 4.8 Simulation Results of Scenario 4

From the experimental results in Table 4.8, the main control power generation was unchanged. But the frequency decreases because the master regulator adjusts the frequency to control the power as in Eq. (3.2.7). On the other hand, the secondary control frequency is controlled at 50 Hz as it should, but the power generation is reevaluated in response to the load. All generators are adjusted to compensate for lost power generation from the main grid. Total power generation without power supply from MPG is 4,302.8 kW after secondary control operation. Note that the power loss is increase from 401.4 kW to 414.0 kW due to the increase in the local version. This results in a decrease in overall power generation after transferring the MG mode.

• Using Swing Equation

Parameter adjustment to determine the behavior of changes in the frequency response after system interference. In this test, Scenario 4 was used in the test.



Figure 4.10 Frequency Response of Scenario 4

Figure 4.10 shows the result of adjusting the parameters of swing equation. The adjusted parameters are as  $F_0 = 50$  Hz, H = 5, r = 25 and D = 0.138.

From the experiment to find the solution by using the oscillation equation It was found that the variables were adjusted for calculating the frequency deviation. If the adjusted variables change, the frequency response curve will also change. Therefore, it may affect the discrepancy caused by adjusting the variable. Different from DSLF method that can be calculated more easily. However, DSLF cannot provide a graphical response, therefore DSLF is suitable for initial evaluation of primary frequencies before transfer.

# CHAPTER 5 CONCLUSION

# 5.1 Conclusion

This thesis presents a method for calculating the primary frequency deviation due to the mode transfer of the microgrid system. This is a different calculation from other studies, but the results obtained from this method are quick and uncomplicated. The proposed method is DSLF for frequency Deviation, which is a combination of normal DSLF, and Equation 3.2.7 modified in the jacobian matrix. The results are reliable. and that method was also published at ICPEI 2020.

This thesis also examines swing equation method as a guideline for solving problems when excessive frequency deviations occur in the system. this method was designed and studied considering the simulation of damping and speed droop and when testing parameter adjustments.

# 5.2 Recommendation for future

Due to the experimental results of adjusting the parameters of the swing equation in item 4.3 showed that the frequency response can be controlled by adjusting the parameters, there are suggestions as follows:

I. Use the optimization method to find the parameters suitable for the system to reduce the occurrence of under-frequency conditions.

## REFERENCES

- Y. R. Kukandeh and M. H. Kazemi (2018). Microgrid Control in Islanding and Connected Mode. ICEE., 2018, DOI. 10.1109/ICEE.2018.8472560.
- Q. Fu, A. Nasiri, A. Solanki, A. B. Ahmed, L. Weber, and V. Bhavaraju (2015). Microgrids: Architectures, Controls, Protection, and Demonstration. Electric Power Components and Systems. vol.43, no.12, 1453–1465.
- M. Prakash.M and J. Paul (2016). Control of Microgrid for Different Modes of Operation. International Journal of Engineering Research & Technology. vol. 5, no. 05, pp. 815-820.
- J. H. Zheng, Y. T. Wang, Z. J. Wang, S. Zhu, X. Wang and S. Xinwei (2011). Study on microgrid operation modes switching based on eigenvalue analysis. International Conference on Advanced Power System Automation and Protection. DOI. 10.1109/APAP.2011.6180443.
- L. I. U. Meiyin, L. V. Zhenhua, W. U. Beibei , G. U. O. Chongyang, and H.A.N. Pingping (2018). Research on Switching Model of Microgrid with Distributed Power Supply. ICSREE. DOI. 10.1051/e3sconf/20185703008.
- T. Wu, Z. Alaywan, and A. D. Papalexopoulos (2005). Locational Marginal Price Calculations Using the Distributed-Slack Power-Flow Formulation. IEEE TRANSACTIONS ON POWER SYSTEMS. vol. 20, no. 2, 1188-1190.
- P. Yan (2001). Modified Distributed Slack Bus Load Flow Algorithm for Determining Economic Dispatch in Deregulated Power Systems. **PESW**. 1226-1231.
- K. Chayakulkheeree (2007). Application of distributed slack bus power flow to competitive environments. **AUPEC**. Paper no.20-16, 531–536.
- A. J. Wood, B. F. Wollengerg, G. B. Sheblé (2014). Power Generation, Operation, And control. vol. 3rd, Canada, John Wiley & Sons.

- P. Díaz, M. P. Cisneros, E. Cuevas, O. Camarena, F. Fausto and A. González (2018). A Swarm Approach for Improving Voltage Profiles and Reduce Power Loss on Electrical Distribution Networks. IEEE Access, vol. 6, 49498-49512.
- V. Vita, "Development of a Decision-Making Algorithm for the Optimum Size and Placement of Distributed Generation Units in Distribution Networks, **Energies**, vol. 10, pp. 1433-1446, 2017.
- M. Mousavi, A. M. Ranjbar, A. Safdarian (2017). Optimal DG Placement and Sizing Based on MICP in Radial Distribution Networks. Smart Grid Conference (SGC).
- Yasser R. K. and Mohammad H. K., (2018). Microgrid Control In Islanding And Connected Mode. Iranian Conference on Electrical Engineering.
- D. Leng and S. Polmai, (2019). Transient Respond Comparison Between ModifiedDroop Control and Virtual Synchronous Generatorin Standalone Microgrid. International Conference on Engineering, Applied Sciences and Technology (ICEAST). DOI: 10.1109/ICEAST.2019.8802552.
- S. Mansour, M. I. Marei and A. A. Sattar, (2016). Droop based Control Strategy for a Microgrid. Global Journal of Researches in Engineering: F Electrical and Electronics Engineering. Vol 16, Issue 7, V. 1.0.
- Qiang F., Adel N., Ashishkumar S., Abedalsalam B. A., Luke W., and Vijay B., (2015). Microgrids: Architectures, Controls, Protection, and Demonstration. **Electric Power Components and Systems**. 43(12), 1453–1465.
- Megha Prakash.M. and Jasmy P., (2016). Control of Microgrid for Different Modes of Operation. International Journal of Engineering Research & Technology (IJERT). Vol. 5 Issue 05, 2278-0181.
- M. Yang, X. Hongliang, B. Chunyan, W. Shengyi, Z. Han, J. Yuanwei, (2016). Study on Smooth Switching of Microgrid Operation States Using Sliding Mode Control. Chinese Control and Decision Conference (CCDC). 28<sup>th</sup>, 6105-6108.

Z. Xiaobo and Z. Baohui, (2014). Improved microgrid energy storage device model in microgrid mode switching process. International Conference on Green Energy (ICGE). 1<sup>st</sup>, 96-100.



APPENDIX I

# Data of Test Systems



Appendix A1: the modified IEEE radial distribution 33-bus system



Figure A1.1 Modified IEEE radial distribution 33-bus system

| Table | A1.1 | Transmission | Line | Data | for | Modified | IEEE | radial | distribution | 33-bus |
|-------|------|--------------|------|------|-----|----------|------|--------|--------------|--------|
|       |      | system       |      |      |     |          |      |        |              |        |
|       |      |              |      |      |     |          |      |        |              |        |

| From Bus | To Bus | R(P.U.) | X(P.U.) | ТАР | MVA Line |
|----------|--------|---------|---------|-----|----------|
| 1        | 2      | 0.0575  | 0.0298  | 0   | 85       |
| 2        | -3     | 0.3076  | 0.1567  | 0   | 85       |
| 3        | 4      | 0.2284  | 0.1163  | 0   | 85       |
| 4        | 5      | 0.2378  | 0.1211  | 0   | 85       |
| 5        | 6      | 0.511   | 0.4411  | 0   | 85       |
| 6        | 7      | 0.1168  | 0.3861  | 0   | 85       |
| 7        | 8      | 1.0678  | 0.7706  | 0   | 85       |
| 8        | 9      | 0.6426  | 0.4617  | 0   | 85       |
| 9        | 10     | 0.6489  | 0.4617  | 0   | 85       |
| 10       | 11     | 0.1227  | 0.0406  | 0   | 85       |
| 11       | 12     | 0.2336  | 0.0772  | 0   | 85       |
| 12       | 13     | 0.9159  | 0.7206  | 0   | 85       |

| From Bus | To Bus | R(P.U.)              | X(P.U.)               | TAP | MVA Line |
|----------|--------|----------------------|-----------------------|-----|----------|
| 13       | 14     | 0.3379               | 0.4448                | 0   | 85       |
| 14       | 15     | 0.3687               | 0.3282                | 0   | 85       |
| 15       | 16     | 0.4656               | 0.34                  | 0   | 85       |
| 16       | 17     | 0.8042               | 1.0738                | 0   | 85       |
| 17       | 18     | 0.4567               | 0.3581                | 0   | 85       |
| 2        | 19     | 0.1023               | 0.0976                | 0   | 85       |
| 19       | 20     | 0.9385               | 0.8457                | 0   | 85       |
| 20       | 21     | 0.2 <mark>555</mark> | 0.2985                | 0   | 85       |
| 21       | 22     | 0.4423               | 0. <mark>584</mark> 8 | 0   | 85       |
| 3        | 23     | 0.2815               | 0.1924                | 0   | 85       |
| 23       | 24     | 0.5603               | 0.4424                | 0   | 85       |
| 24       | 25     | 0.559                | 0.4374                | 0   | 85       |
| 6        | 26     | 0.1267               | 0.0645                | 0   | 85       |
| 26       | 27     | 0.1773               | 0.0903                | 0   | 85       |
| 27       | 28     | 0.6607               | 0.5826                | 0   | 85       |
| 28       | 29     | 0.5018               | 0.4371                | 0   | 85       |
| 29       | 30     | 0.3166               | 0.1613                | 0   | 85       |
| 30       | 31     | 0.608                | 0.6008                | 0   | 85       |
| 31       | 32     | 0.1937               | 0.2258                | 0   | 85       |

 Table A1.1 Transmission Line Data for Modified IEEE radial distribution 33-bus

 system (Continued)

| Bus No. | Bus Type | P <sub>LOAD</sub> | $Q_{LOAD}$ | Participation factor |
|---------|----------|-------------------|------------|----------------------|
| 1       | Gen      | 0                 | 0          | 0.06                 |
| 2       | Load     | 0.1               | 0.06       | 0                    |
| 3       | Load     | 0.09              | 0.04       | 0                    |
| 4       | Load     | 0.12              | 0.08       | 0                    |
| 5       | Load     | 0.06              | 0.03       | 0                    |
| 6       | Load     | 0.06              | 0.02       | 0                    |
| 7       | Load     | 0.2               | 0.1        | 0                    |
| 8       | Load     | 0.2               | 0.1        | 0                    |
| 9       | Load     | 0.06              | 0.02       | 0                    |
| 10      | Load     | 0.06              | 0.02       | 0                    |
| 11      | Load     | 0.045             | 0.03       | 0                    |
| 12      | Load     | 0.06              | 0.035      | 0                    |
| 13      | Gen      | 0.06              | 0.035      | 0.205                |
| 14      | Load     | 0.12              | 0.08       | 0                    |
| 15      | Load     | 0.06              | 0.01       | 0                    |
| 16      | Load     | 0.06              | 0.02       | 0                    |
| 17      | Load     | 0.06              | 0.02       | 0                    |
| 18      | Load     | 0.09              | 0.04       | 0                    |
| 19      | Load     | 0.09              | 0.04       | 0                    |
| 20      | Load     | 0.09              | 0.04       | 0                    |
| 21      | Load     | 0.09              | 0.04       | 0                    |
| 22      | Gen      | 0.09              | 0.04       | 0.397                |
| 23      | Load     | 0.09              | 0.05       | 0                    |
| 24      | Load     | 0.42              | 0.2        | 0                    |
| 25      | Load     | 0.42              | 0.2        | 0                    |
| 26      | Load     | 0.06              | 0.025      | 0                    |

Table A1.2 Bus Data for Modified IEEE radial distribution 33-bus system

| Bus No. | Bus Type | P <sub>LOAD</sub> | Q <sub>LOAD</sub> | Participation factor |
|---------|----------|-------------------|-------------------|----------------------|
| 27      | Load     | 0.06              | 0.025             | 0                    |
| 28      | Gen      | 0.06              | 0.02              | 0.338                |
| 29      | Load     | 0.12              | 0.07              | 0                    |
| 30      | Load     | 0.2               | 0.6               | 0                    |
| 31      | Load     | 0.15              | 0.07              | 0                    |
| 32      | Load     | 0.21              | 0.1               | 0                    |
| 33      | Load     | 0.06              | 0.04              | 0                    |

Table A1.2 Bus Data for Modified IEEE radial distribution 33-bus system (Continued)

 

 Table A1.3 Result of Power Flow using DSLF from Modified IEEE radial distribution 33bus system

| No. | Bus  |           | DEL     | P <sub>gen</sub> | Q <sub>gen</sub> | $P_{Load}$ | $Q_{\text{Load}}$ |
|-----|------|-----------|---------|------------------|------------------|------------|-------------------|
| Bus | Туре | v  (p.u.) | (deg)   | (MW)             | (MVar)           | (MW)       | (MVar)            |
| 1   | Gen  | 1.0000    | 0.0000  | 0.2280           | 0.3019           | 0.0000     | 0.0000            |
| 2   | Load | 0.9993    | 0.1831  | 0.0000           | 0.0000           | 0.1000     | 0.0600            |
| 3   | Load | 0.9947    | 0.1552  | 0.0000           | 0.0000           | 0.0900     | 0.0400            |
| 4   | Load | 0.9942    | 0.1457  | 0.0000           | 0.0000           | 0.1200     | 0.0800            |
| 5   | Load | 0.9940    | 0.1276  | 0.0000           | 0.0000           | 0.0600     | 0.0300            |
| 6   | Load | 0.9941    | 0.0863  | 0.0000           | 0.0000           | 0.0600     | 0.0200            |
| 7   | Load | 0.9933    | -0.0978 | 0.0000           | 0.0000           | 0.2000     | 0.1000            |
| 8   | Load | 0.9921    | -0.1996 | 0.0000           | 0.0000           | 0.2000     | 0.1000            |
| 9   | Load | 0.9931    | -0.2096 | 0.0000           | 0.0000           | 0.0600     | 0.0200            |
| 10  | Load | 0.9946    | -0.1939 | 0.0000           | 0.0000           | 0.0600     | 0.0200            |
| 11  | Load | 0.9949    | -0.2045 | 0.0000           | 0.0000           | 0.0450     | 0.0300            |
| 12  | Load | 0.9957    | -0.2311 | 0.0000           | 0.0000           | 0.0600     | 0.0350            |
| 13  | Gen  | 1.0000    | -0.1152 | 0.7790           | 1.0314           | 0.0600     | 0.0350            |

| No. | Bus  |           | DEL                   | $P_{gen}$ | Q <sub>gen</sub> | $P_{Load}$ | $Q_{Load}$ |
|-----|------|-----------|-----------------------|-----------|------------------|------------|------------|
| Bus | Туре | v  (p.u.) | (deg)                 | (MW)      | (MVar)           | (MW)       | (MVar)     |
| 14  | Load | 0.9979    | -0.3232               | 0.0000    | 0.0000           | 0.1200     | 0.0800     |
| 15  | Load | 0.9966    | -0.4228               | 0.0000    | 0.0000           | 0.0600     | 0.0100     |
| 16  | Load | 0.9954    | -0.4842               | 0.0000    | 0.0000           | 0.0600     | 0.0200     |
| 17  | Load | 0.9935    | -0.6882               | 0.0000    | 0.0000           | 0.0600     | 0.0200     |
| 18  | Load | 0.9930    | -0.7135               | 0.0000    | 0.0000           | 0.0900     | 0.0400     |
| 19  | Load | 0.9992    | 0.60 <mark>6</mark> 2 | 0.0000    | 0.0000           | 0.0900     | 0.0400     |
| 20  | Load | 1.0003    | 4.4547                | 0.0000    | 0.0000           | 0.0900     | 0.0400     |
| 21  | Load | 1.0002    | <mark>5.6</mark> 795  | 0.0000    | 0.0000           | 0.0900     | 0.0400     |
| 22  | Gen  | 1.0000    | 8.0227                | 1.5085    | 1.9974           | 0.0900     | 0.0400     |
| 23  | Load | 0.9912    | 0.0609                | 0.0000    | 0.0000           | 0.0900     | 0.0500     |
| 24  | Load | 0.9846    | -0.2093               | 0.0000    | 0.0000           | 0.4200     | 0.2000     |
| 25  | Load | 0.9814    | -0.3424               | 0.0000    | 0.0000           | 0.4200     | 0.2000     |
| 26  | Load | 0.9947    | 0.0868                | 0.0000    | 0.0000           | 0.0600     | 0.0250     |
| 27  | Load | 0.9956    | 0.0892                | 0.0000    | 0.0000           | 0.0600     | 0.0250     |
| 28  | Gen  | 1.0000    | 0.3129                | 1.2843    | 1.7006           | 0.0600     | 0.0200     |
| 29  | Load | 0.9924    | 0.5247                | 0.0000    | 0.0000           | 0.1200     | 0.0700     |
| 30  | Load | 0.9891    | 0.8101                | 0.0000    | 0.0000           | 0.2000     | 0.6000     |
| 31  | Load | 0.9853    | 0.5814                | 0.0000    | 0.0000           | 0.1500     | 0.0700     |
| 32  | Load | 0.9844    | 0.5191                | 0.0000    | 0.0000           | 0.2100     | 0.1000     |
| 33  | Load | 0.9841    | 0.4981                | 0.0000    | 0.0000           | 0.0600     | 0.0400     |

**Table A1.3** Result of Power Flow using DSLF from Modified IEEE radial distribution33-bus system (Continued)

Appendix A2: the modified IEEE radial distribution 69-bus system



Figure B1.1 Modified IEEE radial distribution 69-bus system

| Table | B1.1 | Transmission | Line | Data | for | Modified | IEEE | radial | distribution | 69-bus |
|-------|------|--------------|------|------|-----|----------|------|--------|--------------|--------|
|       |      | system       |      |      |     |          |      |        |              |        |

| From Bus | To Bus | R(P.U.) | X(P.U.) | ТАР | MVA Line |
|----------|--------|---------|---------|-----|----------|
| 1        | 2      | 0.00031 | 0.00075 | 0   | 100      |
| 2        | 3      | 0.00031 | 0.00075 | 0   | 100      |
| 3        | 4      | 0.00094 | 0.00225 | 0   | 100      |
| 4        | 5      | 0.01566 | 0.01834 | 0   | 100      |
| 5        | 6      | 0.22836 | 0.11630 | 0   | 100      |
| 6        | 7      | 0.23772 | 0.12110 | 0   | 100      |
| 7        | 8      | 0.05753 | 0.03000 | 0   | 100      |
| 8        | 9      | 0.03076 | 0.02000 | 0   | 100      |
| 9        | 10     | 0.51099 | 0.16890 | 0   | 100      |
| 10       | 11     | 0.11680 | 0.03862 | 0   | 100      |

| From Bus | To Bus | R(P.U.)               | X(P.U.) | ТАР | MVA Line |
|----------|--------|-----------------------|---------|-----|----------|
| 11       | 12     | 0.44386               | 0.14668 | 0   | 100      |
| 12       | 13     | 0.64264               | 0.21213 | 0   | 100      |
| 13       | 14     | 0.65138               | 0.21213 | 0   | 100      |
| 14       | 15     | 0.66011               | 0.21812 | 0   | 100      |
| 15       | 16     | 0.12266               | 0.04056 | 0   | 100      |
| 16       | 17     | 0.23360               | 0.07724 | 0   | 100      |
| 17       | 18     | 0.00293               | 0.00100 | 0   | 100      |
| 18       | 19     | 0.20440               | 0.06757 | 0   | 100      |
| 19       | 20     | 0.13 <mark>140</mark> | 0.04305 | 0   | 100      |
| 20       | 21     | <mark>0.21</mark> 313 | 0.07044 | 0   | 100      |
| 21       | 22     | 0.00873               | 0.00287 | 0   | 100      |
| 22       | 23     | 0.09927               | 0.03282 | 0   | 100      |
| 23       | 24     | 0.21607               | 0.07144 | 0   | 100      |
| 24       | 25     | 0.46720               | 0.15442 | 0   | 100      |
| 25       | 26     | 0.19273               | 0.06370 | 0   | 100      |
| 26       | 27     | 0.10806               | 0.03569 | 0   | 100      |
| 3        | 28     | 0.00275               | 0.00674 | 500 | 100      |
| 28       | 29     | 0.03993               | 0.09764 | 0   | 100      |
| 29       | 30     | 0.24820               | 0.08205 | 0   | 100      |
| 30       | 31     | 0.04380               | 0.01448 | 0   | 100      |
| 31       | 32     | 0.21900               | 0.07238 | 0   | 100      |
| 32       | 33     | 0.52347               | 0.17570 | 0   | 100      |
| 33       | 34     | 1.06566               | 0.35227 | 0   | 100      |
| 34       | 35     | 0.91967               | 0.30404 | 0   | 100      |
| 3        | 36     | 0.00275               | 0.00674 | 0   | 100      |
| 36       | 37     | 0.03993               | 0.09764 | 0   | 100      |

 Table B1.1 Transmission Line Data for Modified IEEE radial distribution 69-bus

 system (Continued)

| From Bus | To Bus | R(P.U.)               | X(P.U.) | ТАР | MVA Line |
|----------|--------|-----------------------|---------|-----|----------|
| 37       | 38     | 0.06570               | 0.07674 | 0   | 100      |
| 38       | 39     | 0.01897               | 0.02215 | 0   | 100      |
| 39       | 40     | 0.00112               | 0.00131 | 0   | 100      |
| 40       | 41     | 0.45440               | 0.53090 | 0   | 100      |
| 41       | 42     | 0.19342               | 0.22605 | 0   | 100      |
| 42       | 43     | 0.02558               | 0.02982 | 0   | 100      |
| 43       | 44     | 0.00574               | 0.00724 | 0   | 100      |
| 44       | 45     | 0.06795               | 0.08566 | 0   | 100      |
| 4        | 46     | 0.00 <mark>056</mark> | 0.00075 | 0   | 100      |
| 46       | 47     | 0.00212               | 0.00524 | 0   | 100      |
| 47       | 48     | 0.05310               | 0.12996 | 0   | 100      |
| 48       | 49     | 0.18081               | 0.44243 | 0   | 100      |
| 8        | 50     | 0.05129               | 0.12547 | 0   | 100      |
| 50       | 51     | 0.05790               | 0.02951 | 0   | 100      |
| 9        | 52     | 0.20708               | 0.07113 | 0   | 100      |
| 52       | 53     | 0.10856               | 0.05528 | 0   | 100      |
| 53       | 54     | 0.12666               | 0.06451 | 500 | 100      |
| 54       | 55     | 0.17732               | 0.09028 | 0   | 100      |
| 55       | 56     | 0.17551               | 0.08941 | 0   | 100      |
| 56       | 57     | 0.99204               | 0.33299 | 0   | 100      |
| 57       | 58     | 0.48897               | 0.16409 | 0   | 100      |
| 58       | 59     | 0.18980               | 0.00628 | 0   | 100      |
| 59       | 60     | 0.24090               | 0.07312 | 0   | 100      |
| 60       | 61     | 0.31664               | 0.16128 | 0   | 100      |
| 61       | 62     | 0.06077               | 0.03095 | 0   | 100      |
| 62       | 63     | 0.09047               | 0.04605 | 0   | 100      |

 Table B1.1 Transmission Line Data for Modified IEEE radial distribution 69-bus

 system (Continued)

| From Bus | To Bus | R(P.U.) | X(P.U.) | TAP | MVA Line |
|----------|--------|---------|---------|-----|----------|
| 63       | 64     | 0.44330 | 0.22580 | 0   | 100      |
| 64       | 65     | 0.64951 | 0.33081 | 0   | 100      |
| 11       | 66     | 0.12553 | 0.03812 | 0   | 100      |
| 66       | 67     | 0.00293 | 0.00087 | 0   | 100      |
| 12       | 68     | 0.46133 | 0.15249 | 0   | 100      |
| 68       | 69     | 0.00293 | 0.00100 | 0   | 100      |

 Table B1.1 Transmission Line Data for Modified IEEE radial distribution 69-bus

 system (Continued)

Table B1.2 Bus Data for Modified IEEE radial distribution 69-bus system

| Bus No. | Bus Type | P <sub>LOAD</sub> | Q <sub>LOAD</sub> | Participation<br>factor |
|---------|----------|-------------------|-------------------|-------------------------|
| 1       | Gen      | 0.00000           | 0.00000           | 0.060                   |
| 2       | Gen      | 0.00000           | 0.00000           | 0.600                   |
| 3       | Load     | 0.00000           | 0.00000           | 0.000                   |
| 4       | Load     | 0.00000           | 0.00000           | 0.000                   |
| 5       | Load     | 0.00000           | 0.00000 10        | 0.000                   |
| 6       | Load     | 0.00260           | 0.00220           | 0.000                   |
| 7       | Load     | 0.04040           | 0.03000           | 0.000                   |
| 8       | Load     | 0.07500           | 0.05400           | 0.000                   |
| 9       | Load     | 0.03000           | 0.02200           | 0.000                   |
| 10      | Load     | 0.02800           | 0.01900           | 0.000                   |
| 11      | Load     | 0.14500           | 0.10400           | 0.000                   |
| 12      | Load     | 0.14500           | 0.10400           | 0.000                   |
| 13      | Load     | 0.00800           | 0.00500           | 0.000                   |
| 14      | Load     | 0.00800           | 0.00500           | 0.000                   |
| 15      | Load     | 0.00000           | 0.00000           | 0.000                   |
| 16      | Load     | 0.04500           | 0.03000           | 0.000                   |

|         |          | 5                      |            | Participation |
|---------|----------|------------------------|------------|---------------|
| Bus No. | Bus Type | P <sub>LOAD</sub>      | $Q_{LOAD}$ | factor        |
| 17      | Load     | 0.06000                | 0.03500    | 0.000         |
| 18      | Load     | 0.06000                | 0.03500    | 0.000         |
| 19      | Load     | 0.00000                | 0.00000    | 0.000         |
| 20      | Load     | 0.00100                | 0.00060    | 0.000         |
| 21      | Load     | 0.11400                | 0.08100    | 0.000         |
| 22      | Load     | 0.00500                | 0.00350    | 0.000         |
| 23      | Load     | 0.00000                | 0.00000    | 0.000         |
| 24      | Load     | 0.02 <mark>8</mark> 00 | 0.02000    | 0.000         |
| 25      | Load     | 0.00000                | 0.00000    | 0.000         |
| 26      | Load     | 0.01400                | 0.01000    | 0.000         |
| 27      | Load     | 0.01400                | 0.01000    | 0.000         |
| 28      | Load     | 0.02600                | 0.01860    | 0.000         |
| 29      | Load     | 0.02600                | 0.01860    | 0.000         |
| 30      | Load     | 0.00000                | 0.00000    | 0.000         |
| 31      | Load     | 0.00000                | 0.00000    | 0.000         |
| 32      | Load     | 0.00000                | 0.00000    | 0.000         |
| 33      | Load     | 0.01400                | 0.01000    | 0.000         |
| 34      | Load     | 0.01950                | 0.01400    | 0.000         |
| 35      | Load     | 0.00600                | 0.00400    | 0.000         |
| 36      | Load     | 0.02600                | 0.01855    | 0.000         |
| 37      | Load     | 0.02600                | 0.01855    | 0.000         |
| 38      | Load     | 0.00000                | 0.00000    | 0.000         |
| 39      | Load     | 0.02400                | 0.01700    | 0.000         |
| 40      | Load     | 0.02400                | 0.01700    | 0.000         |
| 41      | Load     | 0.00120                | 0.00100    | 0.000         |
| 42      | Load     | 0.00000                | 0.00000    | 0.000         |

Table B1.2 Bus Data for Modified IEEE radial distribution 69-bus system (Continued)

|         | а т      | 2                      |            | Participation |
|---------|----------|------------------------|------------|---------------|
| Bus No. | Bus Type | P <sub>LOAD</sub>      | $Q_{LOAD}$ | factor        |
| 43      | Load     | 0.00600                | 0.00430    | 0.000         |
| 44      | Load     | 0.00000                | 0.00000    | 0.000         |
| 45      | Load     | 0.03922                | 0.02630    | 0.000         |
| 46      | Load     | 0.03922                | 0.02630    | 0.000         |
| 47      | Load     | 0.00000                | 0.00000    | 0.000         |
| 48      | Load     | 0.079 <mark>00</mark>  | 0.05640    | 0.000         |
| 49      | Load     | 0.38470                | 0.27450    | 0.000         |
| 50      | Load     | 0. <mark>384</mark> 70 | 0.27450    | 0.000         |
| 51      | Load     | 0 <mark>.04</mark> 050 | 0.02830    | 0.000         |
| 52      | Load     | 0.00360                | 0.00270    | 0.000         |
| 53      | Load     | 0.00435                | 0.00350    | 0.000         |
| 54      | Load     | 0.02640                | 0.01900    | 0.000         |
| 55      | Load     | 0.02400                | 0.01720    | 0.000         |
| 56      | Load     | 0.00000                | 0.00000    | 0.000         |
| 57      | Load     | 0.00000                | 0.00000    | 0.000         |
| 58      | Load     | 0.00000                | 0.00000    | 0.000         |
| 59      | Load     | 0.10000                | 0.07200    | 0.000         |
| 60      | Gen      | 870.00000 AT           | 00000.051  | 0.168         |
| 61      | Load     | 1.24400                | 0.88800    | 0.000         |
| 62      | Load     | 0.03200                | 0.02300    | 0.000         |
| 63      | Load     | 0.00000                | 0.00000    | 0.000         |
| 64      | Load     | 0.22700                | 0.16200    | 0.000         |
| 65      | Load     | 0.05900                | 0.04200    | 0.000         |
| 66      | Load     | 0.01800                | 0.01300    | 0.000         |
| 67      | Load     | 0.01800                | 0.01300    | 0.000         |
| 68      | Load     | 0.02800                | 0.02000    | 0.000         |

Table B1.2 Bus Data for Modified IEEE radial distribution 69-bus system (Continued)

| Bus No. | Bus Type | P <sub>LOAD</sub> | Q <sub>LOAD</sub> | Participation<br>factor |  |
|---------|----------|-------------------|-------------------|-------------------------|--|
| 69      | Gen      | 0.02800           | 0.02000           | 0.172                   |  |

Table B1.2 Bus Data for Modified IEEE radial distribution 69-bus system (Continued)

 

 Table B1.3 Result of Power Flow using DSLF from Modified IEEE radial distribution 69bus system

| No. Bus | Bus<br>Type | V  (p.u.) | DEL<br>(deg) | P <sub>gen</sub><br>(MW) | Q <sub>gen</sub><br>(MVar) | P <sub>Load</sub><br>(MW) | Q <sub>Load</sub><br>(MVar) |
|---------|-------------|-----------|--------------|--------------------------|----------------------------|---------------------------|-----------------------------|
| 1       | Gen         | 1.0000    | 0.0000       | 0.2567                   | -0.1069                    | 0.0000                    | 0.0000                      |
| 2       | Gen         | 1.0000    | -0.0004      | 2.5672                   | -1.0696                    | 0.0000                    | 0.0000                      |
| 3       | Load        | 1.0000    | -0.0054      | 0.0000                   | 0.0000                     | 0.0000                    | 0.0000                      |
| 4       | Load        | 1.0000    | -0.0198      | 0.0000                   | 0.0000                     | 0.0000                    | 0.0000                      |
| 5       | Load        | 1.0000    | -0.1647      | 0.0000                   | 0.0000                     | 0.0000                    | 0.0000                      |
| 6       | Load        | 0.9987    | -1.7163      | 0.0000                   | 0.0000                     | 0.0026                    | 0.0022                      |
| 7       | Load        | 0.9972    | -3.3368      | 0.0000                   | 0.0000                     | 0.0404                    | 0.0300                      |
| 8       | Load        | 0.9969    | -3.7331      | 0.0000                   | 0.0000                     | 0.0750                    | 0.0540                      |
| 9       | Load        | 0.9970    | -3.9610      | 0.0000                   | 0.0000                     | 0.0300                    | 0.0220                      |
| 10      | Load        | 0.9963    | -3.6678      | 0.0000                   | 0.0000                     | 0.0280                    | 0.0190                      |
| 11      | Load        | 0.9961    | -3.6028      | 0.0000                   | 0.0000                     | 0.1450                    | 0.1040                      |
| 12      | Load        | 0.9966    | -3.4121      | 0.0000                   | 0.0000                     | 0.1450                    | 0.1040                      |
| 13      | Load        | 0.9938    | -3.2757      | 0.0000                   | 0.0000                     | 0.0080                    | 0.0050                      |
| 14      | Load        | 0.9910    | -3.1376      | 0.0000                   | 0.0000                     | 0.0080                    | 0.0050                      |
| 15      | Load        | 0.9882    | -3.0017      | 0.0000                   | 0.0000                     | 0.0000                    | 0.0000                      |
| 16      | Load        | 0.9877    | -2.9764      | 0.0000                   | 0.0000                     | 0.0450                    | 0.0300                      |
| 17      | Load        | 0.9869    | -2.9346      | 0.0000                   | 0.0000                     | 0.0600                    | 0.0350                      |
| 18      | Load        | 0.9869    | -2.9342      | 0.0000                   | 0.0000                     | 0.0600                    | 0.0350                      |
| 19      | Load        | 0.9864    | -2.9090      | 0.0000                   | 0.0000                     | 0.0000                    | 0.0000                      |

| No. Bus | Bus  | V  (p.u.) | DEL                    | Pgen   | Q <sub>gen</sub> | $P_{Load}$ | $Q_{Load}$ |
|---------|------|-----------|------------------------|--------|------------------|------------|------------|
|         | Туре |           | (deg)                  | (MW)   | (MVar)           | (MW)       | (MVar)     |
| 20      | Load | 0.9861    | -2.8927                | 0.0000 | 0.0000           | 0.0010     | 0.0006     |
| 21      | Load | 0.9857    | -2.8665                | 0.0000 | 0.0000           | 0.1140     | 0.0810     |
| 22      | Load | 0.9857    | -2.8 <mark>66</mark> 1 | 0.0000 | 0.0000           | 0.0050     | 0.0035     |
| 23      | Load | 0.9856    | -2.8622                | 0.0000 | 0.0000           | 0.0000     | 0.0000     |
| 24      | Load | 0.9854    | -2.8536                | 0.0000 | 0.0000           | 0.0280     | 0.0200     |
| 25      | Load | 0.9853    | - <mark>2.</mark> 8443 | 0.0000 | 0.0000           | 0.0000     | 0.0000     |
| 26      | Load | 0.9852    | -2.8405                | 0.0000 | 0.0000           | 0.0140     | 0.0100     |
| 27      | Load | 0.9852    | -2.8394                | 0.0000 | 0.0000           | 0.0140     | 0.0100     |
| 28      | Load | 1.0000    | -0.0062                | 0.0000 | 0.0000           | 0.0260     | 0.0186     |
| 29      | Load | 0.9999    | -0.0143                | 0.0000 | 0.0000           | 0.0260     | 0.0186     |
| 30      | Load | 0.9998    | -0.0077                | 0.0000 | 0.0000           | 0.0000     | 0.0000     |
| 31      | Load | 0.9998    | -0.0065                | 0.0000 | 0.0000           | 0.0000     | 0.0000     |
| 32      | Load | 0.9997    | -0.0007                | 0.0000 | 0.0000           | 0.0000     | 0.0000     |
| 33      | Load | 0.9994    | 0.0132                 | 0.0000 | 0.0000           | 0.0140     | 0.0100     |
| 34      | Load | 0.9991    | 0.0315                 | 0.0000 | 0.0000           | 0.0195     | 0.0140     |
| 35      | Load | 0.9990    | 0.0348                 | 0.0000 | 0.0000           | 0.0060     | 0.0040     |
| 36      | Load | 1.0000    | -0.0067                | 0.0000 | 0.0000           | 0.0260     | 0.0186     |
| 37      | Load | 0.9999    | -0.0218                | 0.0000 | 0.0000           | 0.0260     | 0.0186     |
| 38      | Load | 0.9998    | -0.0270                | 0.0000 | 0.0000           | 0.0000     | 0.0000     |
| 39      | Load | 0.9997    | -0.0285                | 0.0000 | 0.0000           | 0.0240     | 0.0170     |
| 40      | Load | 0.9997    | -0.0286                | 0.0000 | 0.0000           | 0.0240     | 0.0170     |
| 41      | Load | 0.9993    | -0.0471                | 0.0000 | 0.0000           | 0.0012     | 0.0010     |
| 42      | Load | 0.9992    | -0.0548                | 0.0000 | 0.0000           | 0.0000     | 0.0000     |
| 43      | Load | 0.9992    | -0.0558                | 0.0000 | 0.0000           | 0.0060     | 0.0043     |
| 44      | Load | 0.9992    | -0.0561                | 0.0000 | 0.0000           | 0.0000     | 0.0000     |

**Table B1.3** Result of Power Flow using DSLF from Modified IEEE radial distribution69-bus system (Continued)

| No. Bus | Bus<br>Type | V  (p.u.) | DEL<br>(deg)           | P <sub>gen</sub><br>(MW) | Q <sub>gen</sub><br>(MVar) | P <sub>Load</sub><br>(MW) | Q <sub>Load</sub><br>(MVar) |
|---------|-------------|-----------|------------------------|--------------------------|----------------------------|---------------------------|-----------------------------|
| 45      | Load        | 0.9991    | -0.0589                | 0.0000                   | 0.0000                     | 0.0392                    | 0.0263                      |
| 46      | Load        | 1.0000    | -0.0201                | 0.0000                   | 0.0000                     | 0.0392                    | 0.0263                      |
| 47      | Load        | 1.0000    | -0.0 <mark>23</mark> 2 | 0.0000                   | 0.0000                     | 0.0000                    | 0.0000                      |
| 48      | Load        | 0.9993    | -0.0998                | 0.0000                   | 0.0000                     | 0.0790                    | 0.0564                      |
| 49      | Load        | 0.9974    | -0.3167                | 0.0000                   | 0.0000                     | 0.3847                    | 0.2745                      |
| 50      | Load        | 0.9963    | -3.8014                | 0.0000                   | 0.0000                     | 0.3847                    | 0.2745                      |
| 51      | Load        | 0.9962    | -3.8006                | 0.0000                   | 0.0000                     | 0.0405                    | 0.0283                      |
| 52      | Load        | 0.9966    | <mark>-</mark> 5.4493  | 0.0000                   | 0.0000                     | 0.0036                    | 0.0027                      |
| 53      | Load        | 0.9971    | -6.2742                | 0.0000                   | 0.0000                     | 0.0044                    | 0.0035                      |
| 54      | Load        | 0.9977    | -7.2359                | 0.0000                   | 0.0000                     | 0.0264                    | 0.0190                      |
| 55      | Load        | 0.9986    | -8.5820                | 0.0000                   | 0.0000                     | 0.0240                    | 0.0172                      |
| 56      | Load        | 0.9996    | -9.9135                | 0.0000                   | 0.0000                     | 0.0000                    | 0.0000                      |
| 57      | Load        | 1.0000    | -17.0488               | 0.0000                   | 0.0000                     | 0.0000                    | 0.0000                      |
| 58      | Load        | 1.0000    | -20.5601               | 0.0000                   | 0.0000                     | 0.0000                    | 0.0000                      |
| 59      | Load        | 0.9994    | -21.8193               | 0.0000                   | 0.0000                     | 0.1000                    | 0.0720                      |
| 60      | Gen         | 1.0000    | -23.5530               | 0.7200                   | -0.3000                    | 0.0000                    | 0.0000                      |
| 61      | Load        | 0.9932    | -23.3705               | 0.0000                   | 0.0000                     | 1.2440                    | 0.8880                      |
| 62      | Load        | 0.9930    | -23.3633               | 0.0000                   | 0.0000                     | 0.0320                    | 0.0230                      |
| 63      | Load        | 0.9926    | -23.3537               | 0.0000                   | 0.0000                     | 0.0000                    | 0.0000                      |
| 64      | Load        | 0.9909    | -23.3065               | 0.0000                   | 0.0000                     | 0.2270                    | 0.1620                      |
| 65      | Load        | 0.9903    | -23.2923               | 0.0000                   | 0.0000                     | 0.0590                    | 0.0420                      |
| 66      | Load        | 0.9961    | -3.5994                | 0.0000                   | 0.0000                     | 0.0180                    | 0.0130                      |
| 67      | Load        | 0.9961    | -3.5994                | 0.0000                   | 0.0000                     | 0.0180                    | 0.0130                      |
| 68      | Load        | 1.0000    | -3.3584                | 0.0000                   | 0.0000                     | 0.0280                    | 0.0200                      |
| 69      | Gen         | 1.0000    | -3.3581                | 0.7344                   | -0.3060                    | 0.0280                    | 0.0200                      |

**Table B1.3** Result of Power Flow using DSLF from Modified IEEE radial distribution69-bus system (Continued)

APPENDIX II

List of Publications

ะ ราววิทยาลัยเทคโนโลยีสุรมาว
# List of Publication

- Keerati Chayakulkheeree Nithiwat Intharasomchai and Udoum Chhor, (2019). Probabilistic Day-Ahead Optimal Power Dispatch Using Truncated Normal Density Function Considering Price-Based Real-Time Demand Response. Electrical Engineering Conference 42 (EECON 42), PW14.
- Nithiwat Intharasomchai and Keerati Chayakulkheeree, (2020) Steady State Primary Frequency Estimation for Microgrid Transferring Mode Using Distributed Slack Bus Load Flow Analysis. **2020 International Conference on Power, Energy and Innovations (ICPEI 2020)**, 101 - 104.



Probabilistic Day-Ahead Optimal Power Dispatch Using Truncated Normal Density Function Considering Price-Based Real-Time Demand Response

Keerati Chayakulkheeree<sup>1</sup> Nithiwat Intharasomchai<sup>1</sup> and Udoum Chhor<sup>2</sup>

<sup>1</sup>School of Electrical Engineering, Institute of Engineering, Suranaree University of Technology, Thailand, <u>keerati.ch@sut.ac.th</u>, <sup>2</sup>Department of Electrical Engineering, Faculty of Engineering, National Polytechnic Institute of Cambodia, Phnom Penh, Cambodia

#### Abstract

In this paper, a probabilistic day-ahead optimal power dispatch (PDOPD) using truncated normal probability density function (TNPDFF) has been proposed to solve the power generation dispatching with the price-based real-time demand response (PRDR). The PDOPD has been solved using linear programming (LP) based Monte Carlo Simulation (MCS). The simulation result has prosperously shown that the proposed method can handle the optimal solutions for real power dispatch considering PRDR, with probabilistic load consideration. Therefore, the proposed method can efficiently and effectively minimize total power generation cost, while trading off PRDR cost in the optimal power dispatch problem, considering load uncertainty.

Keywords: probabilistic day-ahead optimal power dispatch, truncated normal probability density function, price-based real-time demand response.

#### 1. Introduction

Recently, the day-ahead optimal power dispatch in the emerging more marketing-based power system has become one of the most extensive optimization tools required in the power system planning and operation. With the above issues, many researchers have studied optimization techniques to investigate the power system. Many optimization algorithms have always been mentioned both artificial intelligence and conventional methods to obtain an optimal operation for the recent increasing more complex power systems.

Meanwhile, the accurate daily load forecasts for now-a-day power system are more difficult to obtain than, those of earlier. The numbers of very small distributed generation units and consumer self-generation from renewable, such as photovoltaic panels, are increasing and spread all over the system. Moreover, the demand side management (DSM) schemes, such as demand respond (DR), using price-based process are implemented in many consumer levels. As a result, in the high system load uncertainty is one of the most important issue in current power system.

Fortunately, the innovation in modern computer processor units has produced as a matter of engineering required to solve the complex problems in short time. Therefore, the probabilistic optimal power dispatch had been proposed in several research. The basic probabilistic load flow (PLF) solution [1] is based on linearizing the load flow functions around the expected value and using convolution to evaluate the relevant density functions of the output variables. The probabilristic optimal power flow (POPF) using parameter estimation by the percentile algorithm efficiently and effectively solves Weibull PDF parameters of the OPF variables was proposed in [2]. Similarly, PLF using Weibull PDFs of photovoltaic power generation is investigated in [3]. In order to describe the impact of uncertainties, such as fluctuation of bus loads and intermittent behavior of renewable generations, on the available load supply capability (ALSC) of distribution system accurately and comprehensively, [4] defines a series of meaningful indices for the probabilistic evaluation of ALSC, using Latin hypercube sampling-based Monte Carlo simulation (LHS-MCS). A validation of two proposed schemes of the point estimate method (PEM) is made, [5] not only for normal distributions but also different kinds of PDF, such as Weibull and generalized extreme value. A PEM based Nataf transformation to solve probabilistic multiobjective optimal power flow (MO-OPF) [6] problem considering fuel cost and emission as objectives. Uncertainties in the wind power output and load demand are considered.

In this paper, the probabilistic day-ahead optimal power dispatch (PDOPD) problem formulation, with price-based real-time demand respond (PRDR), is proposed. The Truncated normal probability distribution function (TNPDF) is used to represent the daily load uncertainties. The proposed method accentuates the probabilistic inquiries in PDOPD solutions. The empirical rule will perform with important TNPDF sampling method as a vital role in the computational procedure to avoid the infeasible LF results during the computation.

This paper was arranged into five Section, as follow. Section 2 introduces the model of uncertainties including DR schemes and probabilistic loading pattern. Section 3 represents the problem formulation of the PDOPD with PRDR programs, while the real power demand at load buses is represented by normal PDF with and without TNPDF model. Section 4 indicates the simulation results from the modified IEEE 30 buses test system. Then, Section 5 provides the conclusion.

#### 2. DR Schemes and Probabilistic Load Pattern

There are basically two concept for DR programs [7-9] which are price-based programs (PBPs) and incentivebased programs (IBPs). PBPs are commonly interested for researchers who provoke the consumers voluntarily provide load reductions by reacting to economic gestures. In spite of IBPs the customers have bided the payments in order to report an exact amount of load reduction over a specified time interval. Many economists are convinced that they are the most direct and efficient DR programs suitable for competitive electricity markets and should be the focus of policymakers. The PRDR concept can be shown in Fig.1.



#### 3. PDOPD Problem Formulation 3.1 PDOPD Problem Formulation

In this paper, the operating cost for each generator which is given by piecewise linear cost functions computed from the quadratic cost functions [10-11]. Therefore, the "hourly" objective function can be expressed by piecewise linear optimization model. The objective function can be expressed as,

Minimize 
$$TC = \sum_{i=1}^{NG} \sum_{j=1}^{NS} S_{ij} P_{G_{ij}} + \sum_{i=1}^{NB} D_i P_{DR_i}$$
, (1)  
subjected to the power balance constraint,

$$\sum_{i=1}^{NG} P_{G_i} + \sum_{i=1}^{NB} P_{DR_i} = \sum_{i=1}^{NB} \tilde{P}_{D_i}^{o} + P_{loss} ,$$

and the generator operating limit constraint,  

$$P_{G_i}^{\min} \leq P_{G_i} \leq P_{G_i}^{\max}$$
,  $i = 1, 2, ..., NG$ ,

$$\begin{split} &\sum_{i=1}^{NG} P_{G_i} = \sum_{i=1}^{NB} \tilde{P}_{D_i} + P_{loss}, \end{split} \tag{4} \\ &\tilde{P}_{D_i} = \tilde{P}_{D_i} - P_{DR_i}, \ i = 1, 2, \dots, NB, \cr P_{G_i} = \sum_{j=1}^{NS} P_{G_i} + P_{G_i}^{\min}, \ i = 1, 2, \dots, NG, \cr 0 \le P_{G_i} \le P_{G_i}^{\max}, \ j = 1, 2, \dots, NS_i, \cr (f) \cr |f_{im}| \le |f_{im}|^{\max}, \cr |V_i|^{\min} \le |V_i| \le |V_i|^{\max}, \ i = 1, 2, \dots, NB. \end{split}$$

For the NRPF technique, the bus power injections including active and reactive power for every bus can be reproduced in polar coordinates and expressed as

$$P_{G_{i}} - \tilde{P}_{D_{i}} = \sum_{i=1}^{NB} |V_{i}| |V_{k}| |y_{ik}| \cos(\theta_{ik} - \delta_{ik})$$
(10)  
$$Q_{G_{i}} - \tilde{Q}_{D_{i}} = -\sum_{i=1}^{NB} |V_{i}| |y_{ik}| \sin(\theta_{ik} - \delta_{ik})$$
(11)

 $P_{cr}$ is the real power generation at bus i, is the linearized incremental cost curve for  $S_{\mu}$ each segment of  $P_{Gi}$  at bus *i*,  $D_i$ is the linearized incremental cost curve for each demand response at bus i, NS. is the number of segments of the linearized cost of the generator at bus i, NG is the number of generators in the system, NB is the number of buses in the system, is the real power demand response at bus i,  $P_{DR_i}$  $\tilde{P}_{D}$ is the probabilistic real power demand at bus i,  $Q_{Gi}$ is the reactive power generation at bus i, is the reactive power demand at bus i,  $Q_{D_i}$ Plass is the total transmission loss in the system,  $P_{G_i}^{\min}$ is the minimum real power generation at bus i,  $P_{G_i}^{max}$ is the maximum real power generation at bus i, is the apparent power flow on the branch  $f_{lm}$ between bus l and m,  $f_{lm}$ is the maximum limit at apparent power flow on the branch between bus l and m,  $|V_i|$ is the voltage magnitude at bus i,  $\left|V_{i}\right|^{n}$ is the maximum voltage magnitude at bus i,  $|V_i|^{\prime}$ is the minimum voltage magnitude at bus i, Yik is the magnitude of the yik element of Ybus,  $\theta_{ik}$ is the angle of the  $y_{ik}$  element of  $Y_{bus}$ , and is the voltage angle difference between bus i and  $\delta_{k}$ bus k. The objective function in Eq.(1), with the

The objective function in Eq.(1), with the constraints in Eqs. (2)-(9), is solved for 24 hours in order to obtain PDOPD solution, using Monte Carlo Simulation (MCS).

#### 3.2 MCS for PDOPD

(2)

(3)

The MCS [12] is used for probabilistic power demand simulation and the PDOPD is run until the average total real power generation of the iteration k+1 ( $TPg_{avg}^{k+1}$ ) is close to that of the iteration k ( $TPg_{avg}^{k}$ ). More specifically, the MCS base OPD is run until  $|TPg_{avg}^{k} - TPg_{avg}^{k+1}| < \varepsilon$ , where  $\varepsilon$  is a very small real number. In this case study, the  $\varepsilon$  is set to 0.0001. The proposed framework of MCS procedure as,

Step 1: Read the initial system data for the required variables and offered price of generators and PRDR,

- **Step 2:** Create the PDF of power demand at every specified bus *i*
- **Step 3:** Execute the iteration k = 1, where  $TPg_{avg}^{k} = 0$ ,

- Determine the initial LF solution. Step 4:
- Solving Eqs.(1) (9) for optimal solution. Step 5:
- Does the solution from Step 5 matches the Step 6: solution from Step 4 ? If yes, go to Step 7, else, go to Step 4.
- whether  $|TPg_{avg}^{k} TPg_{avg}^{k+1}| < \epsilon$ ? If yes, go to **Step 8**, or else, k = k+1 and go to **Step 4**. Step 7:

Step 8: Compute total power generation and DR costs.

#### 4. Results and Discussion

The one line diagram of the modified test system is shown in Fig. 2, besides, bus data, branch data, generator data, generators' operating costs, and other related data for this system following the standard IEEE 30-bus test system [13]. The proposed framework was performed by PDOPD computational procedure with simulation 2000 runs. The cases study are as follows;

- Base case with original LF solution
- Day-ahead Optimal power dispatch (OPD) without DR - PDOPD using NPDF
- PDOPD using TNPDF case 1: μ + σ - PDOPD using TNPDF case 2:  $\mu \pm 2\sigma$
- PDOPD using TNPDF case 3:  $\mu \pm 3\sigma$



Fig. 2 Diagram of the Modified IEEE 30-bus Test System

Moreover, the pattern of the total system cost with and without DR program is shown in Fig.6 when the system loading represented by TNPDF sampling rules in order to confirm the practicality of the proposed setting. It is exposed that the proposed methods could offer the dispatch results and it provided the neglected error less than one percent because of the output data were provided with an average value during the simulations.

From the results, normal PDF sampling variables with the computational framework processed at least 1540 trials to meet the convergent solution. Involvement in this study, it was enhanced after applying the empirical rule mentioned in Section 3.8.3. They are complicated in the computational procedure by refining to give the convergent solutions at least 411 trials within one standard deviation (Case 1) and at least 817 trials within two standard deviations (Case 2). Otherwise, within three standard deviations (Case 3), the convergence has met at least 1406 trials parallel to the case of normal PDF sampling methods.

In Table 1, the POPD is run with normal PDF random variation input as loading uncertainties at the specified, which the size of  $P_{DR}$  was also enhanced from LP optimization to participate in the system and then it properly determined the total system operating cost dispatch 17,200 \$/day. In addition, the PRDR is still directed on the system planning for aggregate loads.







Methods

| Table T Dispatch Results for Day-ahead     |                        |                        |                       |                        |                        |                        |  |  |
|--------------------------------------------|------------------------|------------------------|-----------------------|------------------------|------------------------|------------------------|--|--|
| Variable                                   | Base                   | DOPD PDOPD             |                       | PDOPD with TNPDF       |                        |                        |  |  |
|                                            | Case                   | w/o DR                 | Ν (μ, σ)              | Case 1                 | Case 2                 | Case 3                 |  |  |
| Total<br>Generation<br>[MWhr,<br>MVARhr]   | [7,885.6 ;<br>2002,7]  | [7,885.2 ;<br>2,006.4] | [6,949 ;<br>1,980]    | [6,950.8 ;<br>1,980.7] | [6,949.5 ;<br>1,980.9] | [6,949.3 ;<br>1,980.8] |  |  |
| Total P-Q<br>Load<br>[MWhr,<br>MVARhr]     | [7,806.2 ;<br>3,028.8] | [7,806 ;<br>3,028.8]   | [6,876.5;<br>3,028.8] | [6,877.8 ;<br>3,028.8] | [6,876.2;<br>3,028.8]  | [6,876 ;<br>3,028.8]   |  |  |
| Total DR<br>Size<br>[MWhr]                 | -                      | -                      | [385.4]               | [377.4]                | [380.5]                | [385]                  |  |  |
| Total Syst.<br>Losses<br>[MWhr,<br>MVARhr] | [79.44 ;<br>-412.32]   | [78.96 ;<br>-412.08]   | [72.5 ;<br>-438.77]   | [73 ;<br>-438.07]      | [73.3 ;<br>-437.81]    | [73.3 ;<br>-437.92]    |  |  |
| Total Gen.<br>Cost<br>(\$/day)             | 18,996                 | 17,739                 | 16,178                | 16,228                 | 16,206                 | 16,181                 |  |  |
| Total DR<br>Cost<br>(\$/day)               | -                      | -                      | 1,022.6               | 1,001.6                | 1,009.7                | 1,022.6                |  |  |
| Total Syst.<br>Cost<br>(\$/day)            | 18,996                 | 17,739                 | 17,200                | 17,229                 | 17,216                 | 17,204                 |  |  |

## Table 1 Dispatch Results for Day-ahead

The total cost for day-ahead resulted from the proposed method is shown to be the lowest among all cases. It had total system cost, of approximately 17,200 \$/day, less than those of the PEM solution [3]. Regarding the proposed method, the approximate system cost in both normal PDF and PTNF sampling methods is satisfactory to confirm the effectiveness of the proposed framework.

#### 5. Conclusion

In this paper, the PDOPD, using TNPDF, considering PRDR problem formulation is proposed. The proposed PDOPD had been solved by LP and investigated by MCS. The predictable load uncertainties at the demand side are represented by the normal PDF with TNPDF sampling methods as input variations in the framework of the MCS procedure. The results shown that the proposed method can effectively and efficiently curtail the total power generation cost, while the PRDR is a trade-off between the total system operating cost and the PRDR providers. Meanwhile, the TNPDF sampling method can avoid infeasible solutions from the MCS, leading to the better convergence behavior in computation.

#### References

- Allan, R.N., Leite da Silva, A.M., and Burchett, R.C.. "Evaluation Methods and Accuracy in Probabilistic Load Flow Solutions," *IEEE Transactions on Power Apparatus and Systems*, 1981, PAS-100(5), pp. 2539-2546.
- [2] Chayakulkheeree, K.. "Probabilistic Optimal Power Flow with Weibull Probability Distribution Function of System Loading using Percentiles Estimation," *Electric Power Components and Systems*, 2013, 41(3), pp. 252-270.
- [3] Chayakulkheeree, K., "Probabilistic Load Flow for High Penetration Solar Power Plant Distribution System using Percentile Estimation of Weibull Probability Distribution Function," *PEACON2015*, *Technology for Distribution System Development in* the Future, 2015, pp. 116-121.
- [4] Zhang, S., Cheng, H., Zhang, L., Bazargan, M., and Yao, L. "Probabilistic Evaluation of Available Load Supply Capability for Distribution System," *IEEE Transactions on Power Systems*, 2013, 28(3), pp. 3215-3225.
- [5] Giraldo-Chavarriaga, J.S., Castrillón-Largo, J.A., and Granada-Echeverri, M.. "Stochastic AC Optimal Power Flow Considering the Probabilistic Behavior of the Wind, Loads and Line Parameters," *Ingenieria Investigación y Tecnología*, 2014, 15(4), pp. 529-538.
- [6] Shargh, S., Khorshid ghazani, B., Mohammadiivatloo, B., Seyedi, H., and Abapour, M. "Probabilistic Multi-objective Optimal Power Flow Considering Correlated Wind Power and Load Uncertainties," *Renewable Energy*, 2016, vol. 94, pp. 10-21.

- [7] Vardakas, J.S., Zorba, N., and Verikoukis, C.V., "A Survey on Demand Response Programs in Smart Grids: Pricing Methods and Optimization Algorithms," *IEEE Communication Surveys and Tutorials*, 17(1), 2015, pp.152-178.
- [8] Paterakis, N.G., Erdinç, O., and Catalão, J.P.S., "An Overview of Demand Response: Key-elements and International Experience," *Renewable and Sustainable Energy Reviews*, 69, 2017, pp. 871-891.
- [9] Chhor, U., Leeton, U., and Chayakulkheeree. "Probabilistic Optimal Power Dispatch Considering Price-based Real Time Demand Response," *International Journal of Intelligent Engineering and* Systems, 2019, vol. 12, no.1, pp. 201-210.
- [10] Allen J. Wood, Bruce F. Wollenberg, and Gerald B. Sheblé, Power Generation, Operation, and Control, Third Edition, John Wiley & Sons, Inc, 2014.
- [11] W. Ongsakul, S. Chirarattananon, and K. Chayakulkheeree, "Optimal Real Power Dispatching Algorithm for Auction Based Dispatch Problems," *Proceedings of International Conference on Power Systems (ICPS)*, CIGRE, China, 2001.
- [12]M. H. Kalos and P. A. Whitlock, Monte Carlo Method, 2nd Edition, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008.
- [13] Alsac, O. and Stott, B. "Optimal Load Flow with Steady-state Security," *IEEE Transactions on Power Apparatus Systems*, 1974, PAS-93(3), pp. 745-751.

#### Biography



Keerati Chayakulkheeree received his B. Eng. in EE from KMITL in 1995, M. Eng. and D. Eng. degree in Electric Power System Management from AIT, in 1999 and 2004, respectively. He is currently an associate professor at School of Electrical Engineering, Institute of Engineering, Suranaree University of Technology, Thailand.

Nithiwat Intharasomchai received his B. Eng. in EE from Suranaree University of Technology in 2019. He is currently a graduate student in power system program at Suranaree University of Technology (SUT). His current interests are in power system optimization algorithms and artificial intelligence.



Udoum Chhor received his B. Eng. degree in electrical and electronic engineering (EEE) from Institute of Technology of Cambodia (ITC), Cambodia in 2015, M. Eng. degree in power system program from Suranaree University of Technology in 2019. He is currently a lecturer of Department of Electrical Engineering, Faculty of Engineering, National Polytechnic Institute of Cambodia, Phnom Penh, Cambodia

# Steady State Primary Frequency Estimation for Microgrid Transferring Mode Using Distributed Slack Bus Load Flow Analysis

N. Intharasomchai and K. Chayakulkheeree School of Electrical Engineering Institute of Engineering Suranaree University of Technology Nakhonratchasima, Thailand keerati.ch@sut.ac.th

Abstract- This paper proposes a calculation method to determine the frequency deviation of microgrid (MG) system in transferring mode, using the mathematical model of distribution slack bus load flow (DSLF). In the proposed method, the modified incorporating Newton-Raphson load flow incorporating generation control equations are used to find the primary frequency deviation. The IEEE radian distribution 33-bus was modified as an microgrid model and used to test the proposed method.

Keywords— Microgrid, Transferring mode microgrid, frequency deviation and load flow

#### NOMENCLATURE

- F is actual system frequency,
- $F_0$ is schedule system frequency.
- NB is the number of buses.
- is the real power generation at bus i,
- $P_{-}$ is the real power demand at bus i,
- is the real power flow calculate at bus i, p
- Q<sub>6</sub> is the reactive power generation at bus *l*,
- Q<sub>p</sub> is the reactive power demand at bus i,
- Q<sub>cal,i</sub> is the reactive power flow calculate at bus i,
- PLOSS is the total real power transmission loss in system.
- is the real power schedule at bus i,
- is speed-droop setting on turbine governor in r, generating plant connected to bus i,
- is the voltage magnitude at bus i,
- Y<sub>i</sub> is the admittance magnitude of bus i and bus k,
- is the admittance angle of bus i and bus k,  $\theta_{i,k}$  $\delta_i$
- is the angle of voltage at bus i,
- α, is the participation factor of generator connected to bus i.
- $\Delta F$  is steady-state frequency deviation,
- $\Delta G$  is static area control error,
- $\Delta P_G$  is the real power generation deviation at bus *i*,
- $\Delta P_i$  is the real power deviation at bus *i*.
- ΔO is the reactive power deviation at bus i,
- Ybus is the matrix of Yki,
- $\Delta P$  is the column matrix of  $\Delta P_c$ ,
- $\Delta Q$  is the column matrix of  $\Delta Q_i$ ,
- $\Lambda\delta$  is the column matrix of  $\delta_i$  deviation,
- A V is the column matrix of V deviation.

large system. In the last decade, many researches related to the MG operation have been presented. Both the structure of the MG [1,2], which has been described as a microgrid is a cluster of distributed generations (DGs),

I. INTRODUCTION

distributed energy resources, many distribution

systems have been shifted to MG structure. A MG is a local power grid with capability to disconnected from

a main power grid (MPG). Moreover, MG can even

modes. However, which are grid connected and islanded modes unavailable when the MG is

transferred in between these two modes of operation,

the consequence is the frequency (primary control) and voltage deviation and the following consequence

is the change of electric power generation (secondary

control). The most of impact analysis for MG

transferring mode are presented by simulation with the transfer function, which is difficult to analyze in a

In common practice, the MG has two operating

supply the electricity to the MPG.

Therefore, with the high dramatically in

energy storage, and loads within clearly defined electrical boundaries, which acts as a single controllable entity with respect to the grid, as defined by the MG Exchange Group, an ad hoc group of experts and implementers of MG technology. The operating condition of MG can be divided into different modes as shown in Fig 1.



Fig. 1 Operation modes of MG.

There are also researches that discuss the effect of changing the MG mode [3-6]. However, most of the research simulated the MG system with the transfer function for analysis. Many research papers found that changing the MG operating mode affects the deviation of the primary frequency.

66

978-1-7281-7240-8/20/\$31.00 C2020 IEEE

Therefore, being aware of the effects of changes in operating modes is very important. This paper purposes the concept of frequency analysis of the first control resulting from the effect of changing the MG mode by load flow simulation.

In the propose method, the mathematical model of distributed slack bus load flow (DSLF) program is used to find the exact frequency deviation, without the transfer function determination.

This paper was arranged into five Sections, as follows. Section II introduces equation of method involved in the frequency deviation analysis. Section III presents the models for simulating. Section IV indicates the simulation results from the modified 33 buses distribution system. Then, Section V provides the conclusion.

#### II. STEADY STATE FREQUENCY DEVIATION ANALYSIS FOR MG

This section presents the method involved in the simulation to find the deviation of frequency in the MG primary control.

### A. Distributed Slack Bus Load Flow (DSLF)

In this paper, the Newton-Raphson Power Flow (NRPF) technique [7-9] is used to incorporating generation frequency control characteristic. Bus power injections including active and reactive power for every bus and the Jacobian matrix can be expressed as.

$$\begin{split} \Delta P_i &= (P_{o_i} - P_{D_i}) - P_{cal,i} \quad i = 1, ..., NB, \quad (1) \\ \Delta Q_i &= (Q_{c_i} - Q_{c_i}) - Q_{cal,i} \quad i = 1, ..., NB, \quad (2) \\ P_{cal,i} &= \sum_{k=1}^{\infty} \|V_i\| V_k \| Y_{i,k} |\cos(\theta_{i,k} + \delta_k - \delta_i) , i = 1, ..., NB, \quad (3) \\ Q_{cal,i} &= -\sum_{k=1}^{\infty} \|V_i\| V_k \| Y_{i,k} |\sin(\theta_{i,k} + \delta_k - \delta_i) , i = 1, ..., NB, \quad (4) \\ \begin{bmatrix} \Delta P \\ \Delta Q \end{bmatrix} &= \begin{bmatrix} \frac{\partial P}{\partial \delta} & \frac{\partial P}{\partial |V|} \\ \frac{\partial Q}{\partial \delta} & \frac{\partial Q}{\partial |V|} \end{bmatrix} \begin{bmatrix} \Delta \delta \\ \Delta |V| \end{bmatrix}, \quad (5) \end{split}$$

and generator's prime mover responses and AGC action [10] are included as primary and secondary controls. Active power generation at a bus considered as.

$$\sum_{i=1}^{NG} P_{G_i} = \sum_{i=1}^{NG} P_{G_i^*} + \sum_{i=1}^{NG} \Delta P_{G_i}, i = 1, ..., NB, \quad (6)$$

$$\Delta P_{i_i} = -\frac{1}{r_i} \Delta F + \alpha_i \Delta G, \quad i = 1, \dots, NB, \quad (7)$$

$$\sum_{i=1}^{N} \alpha_i = 1.00, i = 1, ..., NB,$$
(8)

$$\Delta F = F - F_0. \qquad (9)$$

#### B. DSLF for MG Frequency Deviation Analysis

Assuming bus one as reference for the purpose of frequency deviation calculations of the system, the linearized equations for Newton-Raphson is corrected from Eq. (5) can be expressed as,

$$\begin{bmatrix} \Delta P_{1} \\ \partial \mathbf{P}_{2,NB} \\ \Delta \mathbf{Q} \end{bmatrix} = \begin{bmatrix} \frac{\partial \mathbf{P}}{\partial \mathbf{F}} & \frac{\partial \mathbf{P}}{\partial \delta_{2,NB}} & \frac{\partial \mathbf{P}}{\partial |\mathbf{V}|} \\ \frac{\partial \mathbf{Q}}{\partial \delta_{1}} & \frac{\partial \mathbf{Q}}{\partial \delta_{2,NB}} & \frac{\partial \mathbf{Q}}{\partial |\mathbf{V}|} \end{bmatrix} \begin{bmatrix} \Delta F \\ \Delta \delta \\ \Delta \mathbf{Q} \end{bmatrix} .$$
(10)

Therefore, this concept can be find the  $\Delta F$  in primary responsewhen there is sudden change of generation or load so, that is also a simpler and more convenient method than using transfer function.

The iterative process is repeated until  $\Delta P_t$  in Eq. (10) and  $\Delta Q_t$  in Eq. (5) for all buses are within a specified tolerance. The computational procedure is shown in Fig. 2.



Fig. 2 Computational procedure of power flow program for finding of the frequency deviation.

#### III. MG TRANSFERRING MODE MODEL

The test system model was modified from IEEE radian distribution 33-bus [11-13] by placing the generators at bus 13, 22 and 28, while bus 1 is connected to the MPG as show in Figure 3. The generation placement in the test system is resulted from total power loss and generation cost minimization [13].



Fig. 3 Modified IEEE radian distribution system 33-bus

The proposed framework in section II was performed by DSLF computational procedure with simulation to find frequency deviation in systems with these case study as follow;

- > Case 1: The load is distributed from the grid system to the microgrid, so that bus one is like a generator bus.
- > Case 2: The load is distributed from the microgrid to the grid system, so that bus one is like a load bus.

Therefore, disconnecting while the MG is under case 1 is the same concept generation outage and under case 2 it is load outage behavior as shown in Fig. 4.



ed IEEE MPG as a Fig. 4 Assume main grid for case

#### IV. SIMULATION RESULT

This section presents the results of Case 1 and 2. Which the simulation references of the modified IEEE radian distribution system 33-bus, in Fig 3.

The comparison on grid connected status, primary control after and transfer, secondary control after transfer is addressed for both cases.

#### A. Simulation Result of Case 1

In the simulation of Case 1, while the MPG supplies power to MG 235.4 kW before MG is connected. The total power generation including power supply from MPG is 3,715 kW before MG is disconnected and changing the status of MG to islanded mode. The impact on system control both primary and secondary controls is shown in Table 1.

Table 1 Simulation Results of Case 1

| Power flow          | Defere   | After transfer     |                      |  |
|---------------------|----------|--------------------|----------------------|--|
| (kW)                | transfer | Primary<br>control | Secondary<br>control |  |
| MPG                 | 235.4    | 0                  | 0                    |  |
| P <sub>G13</sub>    | 804.3    | 804.3              | 816.9                |  |
| PG22                | 1,557.6  | 1,557.6            | 1,581.9              |  |
| P <sub>G28</sub>    | 1,326.1  | 1,326.1            | 1,346.8              |  |
| Power<br>Generation | 3,923.4  | 3,688.0            | 3,745.6              |  |
| Power Demand        | 3,715.0  | 3,715.0            | 3,715.0              |  |
| Power Loss          | 208.4    | -                  | 30.55                |  |
| Frequency (Hz)      | 50       | 49.882             | 50                   |  |

Based on the results of the experiment in Table 1, the primary control power generation does not change, but the frequency falls because the primary control adjusts the frequency to control the power as in Eq. (7). On the other hand, the secondary control frequency is controlled to 50 Hz as it should, but the power generation is revalued to respond according to the load. All generators are adjusted to compensate for the power generation that is lost from the main power grid. The total power generation without power supply from MPG is 3,745.6 kW, after secondary control action. The simulation result for steady state frequency deviation can be illustrated in Fig. 5. Note that the power loss is reduced from 208.4 kW to 30.55 kW, due to increasing in local generation, leading to the lower total power generation after transferring of MG mode.





### B. Simulation Result of Case 2

In Case 2, the main power grid receives power from the MG 185.75 kW, in connected mode, before MG is disconnected, changing the status of MG to change to islanded mode. The effect of disconnection

on system control both primary and secondary controls are shown in Table 2.

Table 2 Simulation Result of Case 2

| Power flow          | Refore   | After transfer     |                      |  |
|---------------------|----------|--------------------|----------------------|--|
| (kW)                | transfer | Primary<br>control | Secondary<br>control |  |
| main power<br>grid  | -185.75  | 0                  | 0                    |  |
| PGI3                | 858.8    | 858.8              | 816.9                |  |
| P <sub>G22</sub>    | 1,663.1  | 1,663.1            | 1,581.9              |  |
| P <sub>G28</sub>    | 1,415.9  | 1,415.9            | 1,346.8              |  |
| Power<br>Generation | 3,937.8  | 3,937.8            | 3,745.6              |  |
| Power Demand        | 3,900.75 | 3,715.0            | 3,715.0              |  |
| Power Loss          | 37.75    | -                  | 30.55                |  |
| Frequency (Hz)      | 50       | 50.393             | 50                   |  |

From the experimental results in Table I, power generation of primary control has not changed. But the frequency increases to 50.393 Hz, because the primary control will adjust the frequency to control the power, as in Eq. (7). On the contrary, the power generation of the secondary control is stable at 50 Hz. From the experimental Table 2, the secondary control power generation has decreased due to the decrease in the load at the main power grid, resulting in a reduce power generation. The simulation result for steady state frequency deviation can be illustrated in Fig. 6.



#### V. CONCLUTION

Frequency deviation is an important factor in controlling MG's operation. Therefore, it is necessary to study several methods of MG frequency deviation analysis. In this paper, DSLF is introduced to determine the steady-state frequency of MG transferring mode. The proposed method can be used for pre-determining the frequency deviation in the MG operation, using steady state load flow model.

#### REFERENCES

- Y. R. Kukandeh and M. H. Kazemi, "Microgrid Control in Islanding and Connected Mode," ICEE., 2018, DOI. 10.1109/ICEE.2018.8472560.
- [2] Q. Fu, A. Nasiri, A. Solanki, A. B. Ahmed, L. Weber, and V. Bhavaraju, "Microgrids: Architectures, Controls, Protection, and Demonstration," Electric Power Components and Systems, vol.43, no.12, pp.1453–1465, 2015.
- [3] M. Prakash.M and J. Paul, "Control of Microgrid for Different Modes of Operation," International Journal of Engineering Research & Technology, vol. 5, no. 05, pp. 815-820, 2016.
- [4] J. H. Zheng, Y. T. Wang, Z. J. Wang, S. Zhu, X. Wang and S. Xinwei, "Study on microgrid operation modes switching based on eigenvalue analysis," International Conference on Advanced Power System Automation and Protection, 2011, DOI. 10.1109/APAP.2011.6180443.
- [5] S. Mansour, M. I. Marei and A. A. Sattar, "Droop based Control Strategy for a Microgrid," Global Journal of Researches in Engineering: F Electrical and Electronics Engineering, vol. 16, no. 7, 2016.
- [6] L. I. U. Meiyin, L. V. Zhenhua, W. U. Beibei , G. U. O. Chongyang, and H.A.N. Pingping, "Research on Switching Model of Microgrid with Distributed Power Supply," ICSREE, 2018, DOI. 10.1051/e3sconf/20185703008
- [7] T. Wu, Z. Alaywan, and A. D. Papalexopoulos, "Locational Marginal Price Calculations Using the Distributed-Slack Power-Flow Formulation," IEEE TRANSACTIONS ON POWER SYSTEMS, vol. 20, no. 2, pp. 1188-1190, 2005.
- [8] P. Yan, "Modified Distributed Slack Bus Load Flow Algorithm for Determining Economic Dispatch in Deregulated Power Systems," PESW, pp. 1226-1231, 2001.
- [9] K. Chavakulkheeree, "Application of distributed slack bus power flow to competitive environments," AUPEC, paper no.20-16, pp. 531–536, 2007.
- [10] A. J. Wood, B. P. Wollengerg, G. B. Sheblé (Eds.), 2014, "Power Generation, Operation, And control," Vol. 3<sup>rd</sup>, Canada, John Wiley & Sons.
- [11] P. Dlaz, M. P. Cisneros, E. Cuevas, O. Camarena, F. Fausto and A. González, "A Swarm Approach for Improving Voltage Profiles and Reduce Power Loss on Electrical Distribution Networks," IEEE Access, vol. 6, pp. 49498-49512, 2018.
- [12] V. Vita, "Development of a Decision-Making Algorithm for the Optimum Size and Placement of Distributed Generation Units in Distribution Networks," Energies, vol. 10, pp. 1433-1446, 2017.
- [13] M. Mousavi, A. M. Ranjbar, A. Safdarian, "Optimal DG Placement and Sizing Based on MICP in Radial Distribution Networks," Smart Grid Conference (SGC), 2017,

# BIOGRAPHY

Nithiwat Intharasomchai was born on April 18, 1997 in Nakhonratchasima Province, Thailand. He received his Bachelor's Degree in Engineering (Electrical Engineering) from Suranaree University of Technology in 2019. He continued with his graduate studies in the Electrical Engineering at Suranaree University of Technology. His current interests are in power system optimization algorithms and artificial intelligence.

