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CHAPTER 1  
INTRODUCTION 

 

1.1  Introduction 
In a wide variety of scientific and engineering applications, such as computer-

aided geometric design (CAGD), graphics, computer vision, medical image analysis, 
computational modeling, augmented reality (AR), and digital multimedia, etc., the 
reconstruction of a three-dimensional (3D) scene is an essential component (R. J. 
Wilson, 1988). For example, in computer-aided diagnosis (CAD), the 3D information on 
an anatomical shape and its peripherals, possibly with associated lesions, 
reconstructed from the tomographic scan of a patient, are of great clinical value (S. 
Lee, et. al., 2005). This information can be helpful in determining whether or not a 
patient has a disease (D.C. Le, 2021). If a doctor is given this information, they will be 
able to establish an accurate diagnosis, as well as determine the prognosis for the 
condition, and they will also be able to execute therapeutic intervention. The 
topographic features of an underlying terrain can be determined through the use of a 
digital elevation model (DEM) in the field of remote sensing (RS). 

Photogrammetry techniques, such as aerial laser altimetry, synthetic aperture 
radar, and other methods can be utilized to generate DEMs (Florinsky, 2003). A series 
of three-dimensional points, also known as a point cloud, sampled from an object's     
or form's surface can be used to characterize the object or shape. In most cases,          
the position of each point may be precisely determined by its Cartesian           
coordinate, which is written as (𝑥, 𝑦, 𝑧) or by the equation 𝑝 = [𝑥 𝑦 𝑧)]𝑇 . Typical 
photogrammetry can collect these three-dimensional points on an object's surface 
using either a passive or active approach. Examples of active approaches are structured 
light scanners and Light Detection and Ranging (LiDAR) scanners. The most recent 
breakthroughs in optical sciences have made it possible for us to tackle reverse 
engineering and rapid prototyping in a substantially more efficient manner, thanks in 
large part to these scanners. To this point, the accuracy of their reconstruction has 
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improved in tandem with the fidelity of the results provided by the most recent CAD 
application software. This has made it possible to speed the convergence of these 
essential technologies, which has led to a widespread use of those technologies in 
computer graphics and vision, specifically in the modeling, recognition, and analysis of 
real-world settings. As a result, three-dimensional scanners have been put to use in a 
wide variety of applications across all fields of data-driven science and at a variety of 
scales. Even up until the very moment that Metaverse was brought into existence, the 
vast proliferation of computerized point cloud analyses had already been triggered 
and attained by competing inventions and commercialization of low-cost real-time 
scanners such as the MicrosoftTM Kinect (C. V. Nguyen, 2012). This was accomplished 
even before Metaverse came into existence. These innovations have had a significant 
impact on many different areas of research and development, such as the automotive 
industry, the design of machinery and artificial organs, archaeology, the military and 
defense, urban planning, and digital laboratories, amongst others. 

The estimation of three dimensions using stereo vision has garnered a 
significant amount of interest, mostly as a result of the relatively low costs and 
amounts of resources required for its implementation. However, the quality of its 
estimation is greatly dependent on exact dense connection between cameras, which 
is in turn dependent on the scene. It's possible that holes or an inaccurate topology 
will be reconstructed as a result of mismatched pixels due to the features of the image 
texture. In contrast, monocular depth estimation (also known as MDE) draws 
conclusions about depth from a single image by analyzing motion or visual cues (Zhang 
et. al, 2013). Its primary benefit is that it eliminates the requirement to calibrate the 
alignment between cameras and, as a result, the mistakes that are caused by doing 
so. At this point, it does not have the ability to make certain judgments or have 
particular mental perceptions, both of which are often acquired through human 
experience. Due to these many features, it is no longer acceptable for use in shape 
critical applications. These advantages and disadvantages, as a result, served as the 
impetus for this research towards integrating depths determined from a variety of 
modalities. 
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A 3D reconstruction on a wireless visual sensor network is proposed in this 
study. The network's basic framework is depicted on   

Figure 1.1 The algorithm to fusion three-dimensional point cloud with 
occluded area was created to complete the reconstruction with incomplete area.  

Figure 1.1 depicts the overall layout for simulating a wireless vision sensor 
network. 

 

 
 

Figure 1.1 Wireless Visual Sensor Network Structure 
 

The implementation of a wireless sensor network was divided into three levels 
in the simulation. Real-world object information is acquired in the perception layer 
utilizing an RGB-D camera (RGB image with Depth information) that is attached. The 
data is sent to a cloud server for storage via a cellular module. Finally, the collected 
data is sent to a local client for reconstruction of a three-dimensional model. 

 

1.2  Statement of Problem 
Because to occlusion and/or insufficient sampling, the majority of 

reconstructed scenes almost always have gaps in them, regardless of the cloud 
acquisition methods or approximation techniques that were utilized. As a direct result 
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of this, hole filling is frequently a necessary step in the post-processing stage, as shown 
in Figure 1.2 

 

 
 

Figure 1.2 A traditional 3D scene reconstruction pipeline would begin with the 
extraction of a point cloud from a series of depth photos, followed by 
triangulation, and then hole filling would typically come next in the 
process. 

 
In order to solve these problems, the authors of this study propose an 

approach to the reconstruction of 3D scenes by fusing information theoretically 
between point clouds that were gathered using several modalities (Z. Wang et. al, 
2020). To be more specific, in order to reduce the need for hole filling, cloud points 
that were extracted from a depth scan were aligned and combined with those that 
were learned by a convolutional neural network (CNN) called ResNet-50 from an RGB 
image of the same scene. This was done in order to create a more accurate 
representation of the scene. Because the pixels in a color image are continuously 
distributed, the 3D points that are retrieved from their estimated depth can fill any 
hole that was present in the original point set, prior to the surface reconstruction. We 
updated ICP by including cross entropy (CE) function, which we later referred to as 
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CEICP, in order to robustly align these point sets. This modification was motivated by 
the work that Tsin and Kanade had done. Following that, a BPA was utilized in order 
to approximate the surface. The rolling -shape technique would correct any errors in 
the image-to-depth estimate process that may have occurred.   

Figure 1.3 provides a concise summary of the overall approach that has been 
suggested. 

 

 
 

Figure 1.3 The overarching idea of the cloud fusion technique that's being presented. 
 

1.3  Contribution 
• In this research, the fusion approach of the point cloud which is 

extracted from RGB images and depth images is proposed. 

• To increase accuracy and reduce computational time of the algorithm, 
the fusion approach consists of modified iterative closest point using 
cross-entropy. 
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1.4  Research Objective 
• Get an algorithm to reconstruct a three-dimensional point cloud from RGB-

D images.  

• Get a simulation of Wireless Visual Sensor Network system (WVSN) for 
handling three-dimensional scene perception and reconstruction. 

 

1.5  Schedule 
 
Table 1.1 Grant chart of dissertation 
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CHAPTER 2  

BACKGROUND KNOWLEDGE 
 

In this section the background knowledge and literature review were 
performed. To complete the research, some theoretical background and literature 
review needed be described. 

 

2.1  Device and Infra-Structure 
In this research, the wireless sensor network (WSN) of hand-held three-

dimensional model reconstruction system was designed. RGB-D camera was employed 
to collect image sequence and depth information. The collected data was firstly store 
in Raspberry Pi integrated with cellular module and individual battery. Then, the 
information is transferred wirelessly to cloud storage server for further process. 

2.1.1   RGB-D Camera 
 RGB-D Sensors are a special sort of depth-sensing devices that work in 

combination with a camera that contains an RGB (red, green, and blue color) sensor. 
Such a camera detects red, green, and blue light in addition to depth. These sensors 
determine how far away an item is from the camera they are attached to. They are 
able to improve the conventional picture by adding depth information to it on a per-
pixel basis. Depth information is information that is connected to the distance to the 
sensor. The fields of computer vision and computer graphics have been pushed in 
recent years to examine novel approaches that are founded on RGB-D photographs as 
a result of depth sensors. The depth information has the potential to make a significant 
contribution to the solution or simplification of a great number of challenging tasks. 
Some examples of these tasks include object detection, scene parsing, pose 
estimation, visual tracking, semantic segmentation, shape analysis, image-based 
rendering, and 3D reconstruction, to name just a few. For instance, after the depth 
formation of the scene has been achieved, the corresponding 3D model may be 
immediately constructed by using a mapping strategy. This can be done once the 
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depth formation of the scene has been obtained. Because of the use of mapping, this 
is now feasible. To put it another way, in order to get a high-quality geometric model, 
depth-based three-dimensional reconstruction does not demand that you carry out 
the routines of structure from motion (SFM), which is a method that is notoriously 
difficult to execute. As a result, the organizations that are now working on 3D 
reconstruction have an opportunity presented by RGB-D sensors. Consequently, an 
RGB-D Camera need to be taken into consideration. The RGB-D Cameras are the focus 
of this research project's investigation. 

  2.1.1.1 KinectTM Camera 
  Kinect is a line of motion sensing input devices produced by 

Microsoft and first released in 2010 (TechTarget, 2021). The devices generally contain 
RGB cameras, and infrared projectors and detectors that map depth through either 
structured light or time of flight calculations, which can in turn be used to perform 
real-time gesture recognition and body skeletal detection, among other capabilities.  

  Kinect was originally developed as a motion controller 

peripheral for Xbox video game consoles, distinguished from competitors (such as 

Nintendo's Wii Remote and Sony's PlayStation Move) by not requiring physical 

controllers. The first-generation Kinect was based on technology from Israeli company 

PrimeSense and unveiled at E3 2009 as a peripheral for Xbox 360 codenamed "Project 

Natal". It was first released on November 4, 2010. The component of the Kinect Camera 

can be demonstrated in Figure 2.1 It consists of microphone array, status indicator LED, 

#D Depth sensor and vision camera. 
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Figure 2.1 Front-view of Kinect Camera 
 

  2.1.1.2 Intel RealSense 
  The Intel RealSense Technology product line is a suite of depth 

and tracking technologies that was created to provide machines and other electronic 
devices the ability to have a feeling of depth (Plitch A., 2015). The technologies, which 
are owned by Intel, are applied in a wide range of goods catering to a large market. 
These products include autonomous drones, robotics, augmented reality and virtual 
reality (AR/VR), and smart home devices. Vision Processors, Depth and Tracking 
Modules, and Depth Cameras are the individual components that make up the 
RealSense product. It is supported by a Software Development Kit (SDK) that is open 
source and cross-platform. This makes it simpler for third-party software developers, 
system integrators, original design manufacturers, and original equipment 
manufacturers to provide support for cameras. An example of an Intel RealSense depth 
camera is shown in Figure 2.2 which gives a demonstration of the device. 

 
Figure 2.2 Intel RealSense 
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In the system design, the image information is collected using RGB-D camera 
(RGB and Depth Information). Then, the collected data is firstly stored in the visual 
node i before transmitting to reconstruct in the cloud server through wireless visual 
sensor network simulation. 

2.1.2  Wireless Sensor Network 
 

 
 

Figure 2.3 Example of simple wireless sensor network architecture 
 

Wireless sensor networks, also known as WSNs, are networks that consist of 
sensors that are both spatially scattered and dedicated (Figure 2.3). 

These sensors monitor and record the environmental conditions and then 
transmit the data that they have gathered to a centralized point. WSNs have the 
capability to measure aspects of the environment, including temperature, sound, 
levels of pollution, humidity, and wind. 

These are very similar to wireless ad hoc networks in the sense that they allow 
sensor data to be transmitted wirelessly by relying on wireless connectivity and the 
spontaneous development of networks. The likes of temperature, sound, and pressure 
are some of the physical or environmental parameters that WSNs keep an eye on. 
Contemporary networks are bi-directional, meaning they can both gather data and 
enable users to manage the operation of sensors.  Military applications, including as 
spying on the battlefield, were a driving force behind the development of these 
networks.  These types of networks are utilized in a variety of commercial and 
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consumer applications, such as the monitoring and control of industrial processes and 
the health monitoring of machines. 

2.1.3  Wireless Sensor Network Simulator 
 As embedded system and network technology has advanced, there has 

been an increasing interest in developing low-power devices that can provide fine-
grained metering and control of living environments. This interest has been spurred on 
by the development of embedded system technology. Wireless Sensor Networks 
(WSNs), which are comprised of self-configurable sensors that are dispersed throughout 
space, are an ideal solution that satisfies all of the requirements. The sensors enable 
very low levels of energy consumption during the monitoring of a variety of 
environmental or physical parameters, including temperature, humidity, vibration, 
pressure, sound, motion, and so on. 

 Additionally, the sensors are able to communicate and relay data on 
the detecting environment to the base station. The vast majority of contemporary 
WSNs are bi-directional, which enables two-way communication. This makes it possible 
to receive sensing data from sensors and send it to the base station, as well as 
distribute orders from the base station to end sensors. Military uses, such as battlefield 
monitoring, were a driving force behind the creation of wireless sensor networks 
(WSNs). WSNs are now extensively employed in a variety of settings, including industrial 
settings, residential settings, and wildlife settings. Applications like as monitoring the 
health of structures, providing healthcare, automating the house, and tracking animals 
are examples of representative WSNs applications. 

 "Sensor nodes" are the building blocks of a typical Wireless Sensor 
Network (WSN), which might consist of several hundreds or even thousands of 
individual nodes. WSNs can have a topology that is any of three different types: a star 
network, a tree network, or a mesh network. Considering that every node is capable 
of wirelessly communicating with every other node, a typical sensor node is made up 
of several different components. These components include a radio transceiver with 
an antenna that is able to send or receive packets, a microcontroller that is able to 
process the data and schedule tasks that are relevant to it, a variety of sensors that 
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are able to collect data regarding the environment, and batteries that are able to 
provide an energy supply. 

2.1.4  Data transferring 
 A wireless network is one that does not use any physical medium to 

function (TechWalla, 2019). Radio waves, microwaves, line-of-sight infrared, satellite 
communication, and other forms of wireless communication can be used to connect 
the various components of a wireless network, such as personal computers, laptops, 
servers, and printers. Radio waves are used by the majority of wireless network 
providers as demonstrated in Figure 7. Each node in a wireless network is equipped 
with an adapter or network card that is tailored to capture and transmit radio waves 
that have been finely tuned to a certain frequency. The adapters function in a manner 
quite similar to that of radio antennas. 

 The network will be equipped with a piece of hardware known as a 
wireless router. This piece of hardware will physically connect to the incoming network 
and, in turn, the Internet by means of high-speed cable or broadband Internet. The 
data that is physically sent is converted by the wireless router into radio waves, which 
it then sends out through its antennae. This procedure is also performed in reverse by 
the router, which takes information from wireless sources (such a computer) and 
converts it from radio waves into a language that can be used by an Internet 
connection that is physically attached. 

 The transmission of data involves converting information from its binary 
form of zeroes and ones into a medium that is comprised of radio waves. The newly 
converted data is subsequently broadcast, at which point wireless adapters listen in 
and convert the data received from the radio into a format that the computer can 
understand, using a combination of zeros and ones. Radio frequencies of 2.4 GHz or 5 
GHz are utilized by wireless network technologies. The transmission of additional data 
is made possible by using a higher frequency. The 802.11 standard governs the 
operation of wireless networks, just as every other type of computer network has a 
specific code for the norms by which it abides. The example of data transmitting 
structure is shown in Figure 2.4. 
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Figure 2.4 Example data transmitting structure 

 
2.1.5  Cloud Server 
 "Cloud storage" is a method of storing data for computers that keeps 

the digital information in logical pools as opposed to physical ones (WikiContributor, 
2021). The actual storage is distributed among a large number of servers, some of 
which may be found in more than one location. In most cases, the actual environment 
of the storage, which might span numerous servers, is owned and managed by the 
company that provides hosting services. It is the responsibility of these cloud storage 
providers to ensure that the data are always available and can be accessed, as well as 
to keep the physical environment safe, protected, and operational. In addition to this 
responsibility, the cloud storage providers must also ensure that the data can be 
accessed. Individuals and companies may buy or lease storage capacity from the 
providers in order to accomplish the task of storing user, organizational, or application 
data. 

 Access to cloud storage services can be gained through a colocated 
cloud computing service, an application programming interface (API) for a web service, 
or by applications that use the API. Some examples of these types of applications 
include cloud desktop storage, a cloud storage gateway, and Web-based content 
management systems. Using an application programming interface (API) provided by a 
web service is yet another method for accessing cloud storage services (API). Figure 2.5 
is a visual representation of the extensive capacity of cloud storage. 
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Figure 2.5 High level of cloud storage architecture 
 

2.2  Theoretical Background 
In this research, several necessary theoretical backgrounds for reconstruction 

process consist of camera calibration, morphological processing, 3D model polygon 
mesh, and 3D scene reconstruction are described. 
 2.2.1   Camera Calibration 

 To precisely extract depth of image and depth-image, the camera 
parameter must be calculated. So that, camera-calibration is required. The estimation 
of the parameters of an image or video camera's lens and image sensor is 
accomplished by a process known as geometric camera calibration, which is also 
known as camera resection (Zhang, 2020). Figure 2.5 illustrated these characteristics to 
adjust for lens distortion, quantify the size of an item in terms of world units, or 
establish where the camera is situated within the image. Applications such as machine 
vision make use of these activities to identify and quantify the objects in their field of 
view. They are also utilized in robotics, navigational systems, and the reconstruction 
of three-dimensional scenes. 
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Figure 2.6 Overview of camera calibration (Zhang, 2020). 
 

The intrinsic, the extrinsic, and the distortion coefficients are all types of 
camera parameters that need to have both the 3D world points and the 2D image 
points that correspond to those world points in order to estimate the camera 
parameters. These correspondences can be obtained by utilizing numerous pictures of 
a calibration pattern, such as a checkerboard, to do the calibration. It will be able to 
solve the camera settings if correspondences are used., in order to assess the precision 
of the calculated parameters, the result are follow: 

• Plot the relative locations of the camera and the calibration pattern 

• Calculate the reprojection errors. 

• Calculate the parameter estimation errors. 
Utilize the Camera Calibrator to carry out camera calibration and assess the 

degree to which the estimated parameters are accurate. 

 2.2.1.1  Camera Model 
 Both the pinhole camera model and the fisheye camera 

type have calibration algorithms included in the Computer Vision ToolboxTM (Matlab, 
2021). The fisheye variant is compatible with cameras that have a field of vision (FOV) 
that is no greater than 195 degrees. 
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Figure 2.7 Camera Model (Matlab, 2021) 
 

The model that was provided by Jean-Yves Bouguet serves as the foundation 
for the pinhole calibration algorithm (J. Bouguet, 2010). The pinhole camera type 
(Figure 2.5) and lens distortion are both accounted for in this approach. Because an 
ideal pinhole camera does not contain a lens, the lens distortion effect is not 
accounted for in the model of the pinhole camera. The radial and tangential lens 
distortions are accounted for in the whole camera model that the algorithm employs 
because this is necessary for an accurate representation of a genuine camera. The 
pinhole model is not suitable for simulating the behavior of a fisheye camera because 
of the severe distortion caused by fisheye lenses. 

  2.2.1.2 Pinhole Camera 
  A pinhole camera is a very basic type of camera that does not 

have a lens and just has a single, very narrow aperture. When light beams enter the 

camera and travel through the aperture, they produce a reversed image on the other 

side of the camera. The virtual picture plane is in front of the camera and it contains 

the image of the scene in its normal. Figure 2.8 shows a mechanic of pinhole camera. 

It consists of image plane, focal point, virtual image plane, and 3D real worked object. 
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Figure 2.8 Pinhole Camera Model (Matlab, 2021) 
 

The camera matrix is a four-by-three matrix that contains the representations 
of the pinhole camera's parameters. This matrix converts the three-dimensional scene 
into a picture on the plane. The camera matrix is computed by the calibration 
algorithm utilizing the extrinsic as well as the intrinsic characteristics. The position of 
the camera inside the three-dimensional scene is reflected by the extrinsic parameters. 
The optical center and focal length of the camera are both represented by the 
camera's intrinsic characteristics. 

 
[𝑥 𝑦 1] = [𝑋 𝑌 𝑍 1]𝑃 (2.1) 
 
Where 𝑊 is a scale factor. 𝑥 and 𝑦 are image point. 𝑋, 𝑌, and 𝑍 are world 

point. 
 

  𝑝 =  [
𝑅
𝑡

] 𝑘  (2.2) 

 
Let 𝑅 and 𝑡 are rotational matrix and translation matrix respectively. Through 

the utilization of the extrinsics parameters, Figure 2.9 shows the camera coordinates 
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of the world's points are altered. Through the utilization of the intrinsic parameters, 
the camera coordinates are mapped into the image plane. 

 

 
 

Figure 2.9 Image point and Real-World Point (MatlabTM, 2021) 
 

  2.2.1.3 Camera Calibration Parameter 
  The camera matrix is computed by the calibration algorithm 

utilizing the extrinsic as well as the intrinsic parameters. Figure 2.10 demonstrated the 
extrinsic parameters constitute a strict transition from the coordinate system of the 
three-dimensional world to the coordinate system of the three-dimensional camera. 
A projective transformation from the coordinates of the three-dimensional camera to 
the coordinates of the two-dimensional image is represented by the intrinsic 
parameters. 

 

 
Figure 2.10 Overview of World point and Image Point (Matlab, 2021) 
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  2.2.1.4 Extrinsic Parameter 
  In the Figure 2.11, the rotation, denoted by 𝑅 , and the 

translation, denoted by 𝑡, make up the extrinsic parameters. The optical center of the 
camera serves as the starting point for the coordinate system, and the image plane is 
defined by the camera's x-axes and y-axes. 

 

 
 

Figure 2.11 Explanation of Rotational and Translation Matrix (MatlabTM, 2021) 
 

  2.2.1.5 Intrinsic Parameter 
  The focal length, the optical center, or principal point, and the 

skew coefficient are all examples of intrinsic characteristics. Other intrinsic parameters 
include the axial tilt.  

  Figure 2.12 shows skew Coefficients: A sensor's pixels may not 

be precisely square, which might lead to a slight distortion in either the 𝑋  or 𝑌 
direction. On a sensor, the skew coefficient refers to the number of pixels that are 
packed into one unit of length in each direction. 
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Figure 2.12 Explanation of Skew (Remondino, F., 2006) 
 

  2.2.1.6 Distortion Camera Parameter 
  Due to the fact that an ideal pinhole camera does not contain 

a lens, lens distortion is not taken into consideration by the camera matrix. The radial 
and tangential lens distortions are accounted for in the camera model so that it can 
faithfully simulate the behavior of a real camera. 

  2.2.1.7 Radial Distortion Parameter 
  When light rays bend closer to the borders of a lens than they 

do at the optical center of the lens, a phenomenon known as radial distortion occurs. 
The greater the degree of distortion, the more compact the lens. 

 

 
 

Figure 2.13 Explanation of Distortion (Matlab, 2020) 
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 Radial distortion is a problem that can occur in a transmission that 
follows a straight line, as was previously explained. Radial distortion can be broken 
down into two primary categories (Figure 2.13). The first one is a barrel distortion, which 
is also known as a negative displacement. When points are pushed from their correct 
position toward the center of the image, a phenomenon known as barrel distortion 
takes place. The second kind of radial distortion is known as a positive displacement, 
and it takes place whenever points are moved further away from the optical axis. 
Another name for this kind of distortion is pincushion distortion. The wide-angle lenses 
are more likely to have barrel distortion, whereas the narrow-angle lenses are more 
likely to have pincushion distortion. 

2.2.3   Point Cloud 
 A point cloud is the collective representation of data points that are 

spread out throughout a three-dimensional region. It's feasible that the points reflect 
a form or entity that's three dimensions deep. Cartesian coordinates are independently 
allotted to each point location in the space (𝑋, 𝑌, 𝑍). Both photogrammetry software 
and 3D scanners acquire data from a high number of points situated on the outside of 
the object being scanned. This information is then used to build point clouds, which 
are often used for visualization purposes. Example of extracted point cloud is shown 
in Figure 2.14 The creation of 3D CAD models for manufactured parts, the conduct of 
metrology and quality inspections, and the execution of a wide variety of tasks 
involving visualization, animation, rendering, and mass customization are just some of 
the many uses for point clouds, which are the output of 3D scanning processes. 
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Figure 2.14 Example of unstructured Point cloud 
 

2.2.4  Point Cloud Registration 
 The process of finding a spatial transformation (such as scaling, rotation, 

and translation) that aligns two-point clouds is referred to as point-set registration in 

the fields of computer vision, pattern recognition, and robotics. Specifically, point-set 

registration is used to describe the process. This procedure is also referred to as scan 

matching and point-cloud registration (Figure 2.15). Finding a transformation of this kind 

will allow you to accomplish multiple goals at the same time, including the merging 

of multiple data sets into a globally consistent model (or coordinate frame), as well 

as the mapping of a new measurement to a known data set in order to identify features 

or to estimate its pose. The goal of finding this transformation is to achieve multiple 

goals at once. Finding a transformation is the path to success for achieving both of 

these objectives. The raw 3D point cloud data that is often gathered comes from a 

variety of sources, the key ones being Lidars and RGB-D cameras. Producing 3D point 

clouds may also be accomplished with the use of computer vision methods such as 

triangulation, bundle correction, and more recently, monocular image depth 

estimation accomplished by deep learning. Other computer vision algorithms include 

Feature extraction from an image, which can yield two-dimensional pixel coordinates 

that can be used in 2D point set registration, which is used in image processing and 
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feature-based image registration. Corner detection is one example of a computer vision 

algorithm that can extract features from an image. Both methods of picture registration 

may be accomplished with the help of a point set. Point cloud registration has a wide 

variety of applications, some of which include autonomous driving, motion estimation 

and 3D reconstruction, object detection and pose estimation, robotic manipulation, 

simultaneous localization and mapping (SLAM), panorama stitching, virtual and 

augmented reality, medical imaging, and many more 

 

 

 
 Figure 2.15 Example of point cloud registration process using correspondence point 
 

2.2.5  Three-dimensional reconstruction 
 The process of capturing the form and look of real-world objects in 

three dimensions is referred to as "3D reconstruction" in the fields of computer vision 
and computer graphics. This process can be completed using either active or passive 
ways, depending on your preference. Non-rigid or spatio-temporal reconstruction is the 
term used to describe the situation in which the model is permitted to vary its shape 
throughout the course of time. 

 Reconstruction in three dimensions has traditionally been considered a 
challenging scientific aim. One may determine the three-dimensional profile of any 
object by using 3D reconstruction, as well as know the three-dimensional coordinate 
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of any point on the profile. Computer-aided geometric design (CAGD), computer 
graphics, computer animation, computer vision, medical imaging, computational 
science, virtual reality, digital media, and many other fields all rely heavily on the core 
technology of three-dimensional object reconstruction. This is because three-
dimensional object reconstruction is both a general scientific problem and a core 
technology. For example, the information about the patients' lesions can be presented 
in 3D on the computer. This provides a novel and accurate approach to diagnosis, and 
as a result, it has essential clinical value. Reconstructing digital elevation models is 
possible through the utilization of techniques such as aerial laser altimetry and 
synthetic aperture radar. In the Figure 2.16, the demonstration of 3D reconstruction is 
performed. The 3D model can be constructed from multi plane or multi point of view. 

 

 
 

Figure 2.16 Three-Dimensional Reconstruction 
 

  2.2.5.1 Polygon Meshes 
  When applied to the realm of three-dimensional computer 

graphics and solid modeling, the term "polygon mesh" refers to a collection of vertices, 
edges, and faces that, when taken as a whole, constitute the geometry of a polyhedral 
object (Wikipedia contributor, 2021). The rendering process is simplified when the faces 
are made up of triangles (triangle mesh), quadrilaterals (quads), or other basic convex 
polygons (n-gons), since these shapes may be broken down into the simplest possible 
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configurations. However, the faces may also be built in a less specific manner of 
concave polygons, or even polygons having holes cut out of them. The study of 
polygon meshes is one of the important subfields that can be found within both 
computer graphics, more especially 3D computer graphics, and geometric modeling. 
Both of these subjects have substantial subfields. Alternative representations of 
polygon meshes are required for a wide variety of applications and goals, and this is 
because polygon meshes are so often used. Meshes are capable of undergoing a large 
variety of operations, some of which include but are not limited to smoothing, 
simplification, and Boolean logic, amongst many more. Meshes may also be simplified. 
Because methods are available, ray tracing, collision detection, and rigid-body 
dynamics are all able to be performed using polygon meshes. When a model is turned 
into a wireframe representation by drawing the edges of the mesh rather than the 
faces of the model, this is known as "edge-drawing. The example of different resolution 
of point cloud is demonstrated in. 

 

 
 

Figure 2.17 Example of Polygon Meshes (Wikipedia contributor, 2021) 
 

 2.2.5.2 Surface Reconstruction 
  Although point clouds may be directly displayed and inspected, 

the process known as surface reconstruction (Figure 2.17) is often used to turn point 
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clouds into a polygon mesh or triangle mesh models, NURBS surface models, or CAD 
models. Converting a point cloud into a 3D surface may be done in a variety of different 
ways. While some methods, such as Delaunay triangulation, alpha shapes, and ball 
pivoting, construct a network of triangles over the existing vertices of the point cloud, 
other methods convert the point cloud into a volumetric distance field and then 
reconstruct the implicit surface defined by doing so using an algorithm called marching 
cubes. 

One of the inputs that go into the creation of a digital elevation model of the 
landscape in geographic information systems is point clouds. Another use for them is 
the generation of three-dimensional representations of urban settings. It is common 
practice to collect a series of RGB images using a drone. These images can then be 
processed using a computer vision algorithm platform to generate RGB point clouds. 
These point clouds can then be used to derive distances and volumetric estimates. 

 

 
 

Figure 2.18 Example of NURBS Surface model 
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2.3  Literature Review 
 

 
 

Figure 2.19 Overview of device and reconstruction techniques 
 

The actual scene that is taking place in the real world is obscured at each and 
every time instance, and significant motion results in significant frame-to-frame 
changes, which may lead to an incomplete picture reconstruction. Therefore, the 
following categories of system designing approaches are used to classify the study 
activities that have been done in the field of three-dimensional scene reconstruction 
in the real-world environment: 1) Camera and Object in a Static Position (SCSO). 2) 
Camera Held Still, Subject in Motion (SCMO). 3) Camera in Motion, Object in the Same 
Place (MCSO). 4) Camera in Motion, Subject Also in Motion (MCMO) as described in  
Figure 2.19. 

Reconstructing dynamic scenes requires a variety of approaches, tools, and 
equipment, all of which are determined by the camera and the subject being 
reconstructed. The most typical uses of a gadget may be broken down into the 
following five modules: 1) Laser Pattern. 2) DoF Camera. Ex. Kinect Camera, RGB- 
Camera. 3) Stereo Camera. 4) Omni- directional Camera or 360-degree camera. 5) The 
Most Recent Sensor. Ex. Lidar-sensor, Ultrasonic. The following is an explanation of 
how devices and systematics design may be applied in practice: The SCSO design is 
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one that is utilized often. In order to accomplish a scene reconstruction, each of the 
aforementioned equipment was utilized due to the ease with which it could be done. 
On the other hand, if you capture still objects with a stationary camera, you run the 
risk of making an occlusion mistake from the point of view. As a result, the SCSO is 
dissatisfied with the performance in the real-world application. SCMO is a 
reconstruction approach that has gained popularity in recent years. It is possible to 
divide it into three distinct groups according on the nature of the thing that is being 
pieced back together. 1) the creation of a three-dimensional model from a static 
object. 2) the development of a three-dimensional model from a non-rigid object. In 
this course, the real-world scene is taken using either many cameras, a single RGB-D 
camera, or a monocular camera. Monocular cameras only record in one dimension. It 
is possible that the format of the collected data will differ depending on the scanning 
devices used; the data may either be gathered in the form of a point cloud or it may 
be represented as straightforward RGB information in pixel format. The second phase 
is called data pre-processing, and it involves applying filters to the data in order to 
reduce the noise that was introduced as a result of the collecting devices. 3) A three-
dimensional reconstruction of the object's articulated motion in its various states If 
they start with a known priory, several state-of-the-art tracking and reconstruction 
algorithms that concentrate on articulated motion are able to reach high levels of 
performance. Priory-based reconstruction methods are dependent on additional inputs 
such as the geometric topology of the 3D model that needs to be reconstructed. 
Similarly, the animation of many three-dimensional facial reconstructions depends on 
blend shapes, probabilistic models, and other such things to estimate the dynamic 
changes. On the other hand, if the video camera does not have a high enough frame 
rate, SCMO will not be able to obtain any information about the item. It may result in 
a mistake or the loss of information. The MCSO reconstruction approach has a very 
high level of precision. The reconstructed model often improves in terms of its 
correctness as a result of the inclusion of many perspectives of the item. The MCSO 
comes equipped with a Depth-of-Field camera such as a Kinect camera, RGB-D, 
omnidirectional Camera, as well as sophisticated sensors such as Lidar-sensors, 
ultrasonic acoustic sensors, and so on. The problem of registering the required item 
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between frames continues to be a barrier. The MCMO strategy is the most difficult one 
to implement. because of the dynamic viewpoint that it provides between the camera 
and the item. 

Nevertheless, the reconstruction results are tending to the most accurate to a 
real-world object. By using advanced sensor like Lidar-sensor, omnidirectional camera, 
DoF camera, a detail of reconstructed objects is nearly completed. Owing to expensive 
devices and uncertainty registration procedure, MCMO is challenging. 

In this section, the literatures are separated into 3 parts, consist of 1) Image 
data communication, 2) Camera Calibration, and 3) Three-dimension scene 
reconstruction. 

2.3.1  Image information transferring and Data Communication 
 In this review section, the research paper with image data transferring 

through Wireless Sensor Network (WSN) was proposed. 

 

 
 

Figure 2.20 PCB structure of image transferring (J. Loret) 
 

J. Loret et al. (2011) presented WSN that makes use of an image processing 

system in each wireless node to detect any unusual status of the leaves that could 

be caused by a deficiency, pest, disease, or other harmful agent in the vineyard. This 

could be done in order to protect the vines from potential damage. When the wireless 

sensor identifies any sign of illness in the leaves of the vine, it will trigger an alert that 

will be sent to the sink node in order to notify the farmer as shown in  
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 Figure 20. They have investigated the WSN from the perspective of the sensing 
coverage area as well as the radio coverage area with the various spot (Figure 21). They 
have demonstrated with the sensor network traffic that the dispersed architecture 
enables reduced bandwidth usage as well as greater scalability. This is in comparison 
to when all video streams are broadcast across the network. The communication 
structure between router and sensor/motor is illustrated in Figure 19. The RS-232 was 
employed as a connection protocol between PIC program and router for data 
transferring. 

 

 
 

Figure 2.21 Wireless sensor network for proposed system 
 

Taking into consideration the data collected in the sensor network traffic 
measurement section about the average value of the traffic (4.26 kbps), as well as the 
fact that IEEE 802.11g has a theoretical bandwidth rate of 54 Mbps, but an effective 
bandwidth rate of 27 Mbps, they are able to conclude that there will not be any 
limitations placed on the number of nodes that are able to operate within the WSN, 
at least not from a theoretical standpoint. 

A. Javier et. al.  (2015) proposed the implementation of wireless sensor 
networks for the purpose of integrating data monitoring and video surveillance in 
precision agriculture across scattered crops. 
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Figure 2.22 Overview of agricultural monitoring system 
 

In this study, the Figure 2.21 shows the integrated system based on Wireless 
Sensor Figure 2.22 illustrated network for monitoring crops, conducting video 
surveillance, and controlling the cultivation process. The implementation of precision 
agriculture through the use of IEEE 802.15.4 as a technology that is efficient and cost-
effective is implied by this network. As a result, the method has been created to carry 
out all of these duties not only in a single crop but also in deployments taking into 
consideration scattered crops that are located several kilometers apart from the 
premises of the farmer's cooperative. Additional elements are taken into consideration 
and given the necessary amount of engineering, such as the amount of energy 
consumed by the video devices or the end-to-end transmission delays. All of these 
needs are met by the comprehensive ISSPA system, which offers an effective and well-
coordinated communication infrastructure between the many sensing nodes installed 
in the crops and the end-user. The ISSPA methodology makes it easier to maintain a 
well-organized crop monitoring system and to find trespassers in a timely manner. A 
comprehensive performance assessment study that illustrates the viability of the ISSPA 
system for use in precision agricultural applications has also been carried out as part 
of this body of work. In addition to that, a test-bed scenario has been established and 
is now being run. Several hardware prototypes for agricultural monitoring devices have 
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been developed and tested. Additional detection capabilities are supplied by infrared 
motion sensors, and intruder identification is achieved by utilizing video sensors in 
conjunction with the system. Each apparatus comes equipped with its own control, 
which may be customized with a unique set of application software modules. When it 
comes to the parameters that were chosen, the lifetime of the devices, and the 
transmission delay, the findings that were acquired experimentally in the real-world 
situation are comparable to those that were obtained through analysis and computer 
simulation. 

According to the reviewed paper, the image information was transferred on 
wireless sensor networks with high quality. Due to the connection stable problems, 
their some transmitting issues which caused information loss. It also reduces the 
accuracy of the computational process. 

2.3.2  Camera Calibration 
 To determine the depth information of the two-dimensional image, the 

camera is calibrated for obtaining camera parameters. Recently, there are many camera 
calibration methods which compatible with RGB-D camera. In this section, the camera 
calibration methods were described. 

 In their study, Yannick Hold-Geoffroy et. al. (2018) offered the first 
examination of human sensitivity to estimate errors for camera pitch, roll, and field of 
vision in the context of inserting virtual objects. In order to achieve this goal, they 
carried out a large-scale user study on Mechanical Turk. The purpose of the study was 
to determine the accuracy with which participants were able to differentiate between 
two images containing virtual objects that were composited with ground truth and 
distorted camera parameters. Their research shows that people are not always good 
at detecting significant inaccuracies, particularly when the roll is exaggerated or when 
the area of vision is overestimated. A CNN-based single picture calibration estimation 
approach that offers state-of-the-art performance was also described by these 
researchers. This method enables applications such as image retrieval, geometrically 
consistent 2D object transfer, and virtual 3D object insertion. In the course of the 
inquiry, it was found out that the learnt model is seeking for semantically significant 
vanishing lines, drawing similarities with geometrically based strategies for auto-
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calibration. In the end, they utilize the findings of the user survey to establish a 
distance function that is based on human perception. This function is then used to 
compare the CNN to other techniques that have been taken in the past. Figure 2.23 
shows the heatmap visualization of the experimental result. 

 

 
 

Figure 2.23 Experimental Result (Hold-Geoffroy. 2018) 
 
 Y. Liu et. al (2018) suggested developing an efficient 3D tracker for use in 
tracking objects in RGB-D films. They investigated a mean-shift tracker with a three-
dimensional extension and uncovered its mechanism. They suggest two useful 
approaches, explicit occlusion management and 3D context-based model adaptation, 
both of which are based on the tracker and considerably increase the tracker's 
resilience. The efficiency of the strategy that was presented has been proved by a 
large number of experimental findings. Even if the procedure is able to operate 
successfully the vast majority of the time, there is a possibility that it may fail when 
dealing with long-term blockage. It should be noted that the discriminative capacity of 
color histograms is restricted. Figure 2.24 

 shows the adaptation in the face of distractions on the left, the pixels that 
are colored green represent locations that are contained within the target sphere. The 
weight of the points obtained without taking into account the effects of any distractor 
(AAD). The weights of distracting spots on the wall have been suppressed using AAD, 
which can be found in the middle of the bottom. When 3D PDF is used without AAD, 
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the mode of distractor is brought to the forefront. The mode of the distractor in the 
3D PDF on the right becomes less clear when it is combined with AAD. 

 

 
 

Figure 2.24 Experimental Result (Y. Liu, 2018) 
 

Jen-Hui Chuang et. al. (2018) devised an innovative method for camera 
calibration that is based on a geometric point of view. The proposed method solves 
two major problems that are associated with Zhang's method, which is widely used. 
These problems include a lack of clear hints of appropriate pattern poses and a 
limitation on the applicability of the method that is imposed by the assumption of a 
fixed focal length. The proposed method resolves both of these problems. A closed-
form solution to the calibration of extrinsic and intrinsic parameters based on the 
analytically tractable principal lines is the primary contribution of this study. The 
principal point is determined as the place where such lines meet. Each of the lines 
can then conveniently represent the relative three-dimensional orientation and 
position (each line only has one degree of freedom) between the image plane and the 
corresponding calibration plane for a particular WCS-IPCS pair. This can be done by 
comparing the relative orientation of the image plane to the orientation of the 
calibration plane. As a consequence of this, the calculations related with the 
calibration may be substantially simplified, and relevant recommendations can be 
easily developed to prevent outliers in the computation. Experimental results for both 
synthetic and real data clearly validate the correctness and robustness of the proposed 
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approach, with both comparing favorably with Zhang's method. This is especially true 
in terms of the possibilities to screen out problematic calibration patterns as well as 
the ability to cope with the situation of varied focal length. Moreover, the experimental 
results validate the correctness and robustness of the proposed approach.  There are 
four examples in Figure 2.25 taken from eight good calibration photos, and the values 
range from 0 degrees to 180 degrees. Calibration pictures were used to obtain eight 
primary lines, each of which was used to calibrate the image. 

 

 
 

Figure 2.25 Calibration Result (J. Huang, 2018) 
 

Shaoyan Gai et. al. (2015) suggested a unique 3D dual camera calibration. The 
reconstruction error that is employed in the suggested technique is better appropriate 
to dual-camera calibration. 1) The method comprises of using dual-camera calibration. 
When compared to the mistake in reprojection that the traditional approach produced, 
the precision achieved by the new method is a substantial improvement. 2) During the 
process of calibrating the system, they employ Zhang's approach to determine the 
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principal single camera parameters, the Centroid Distance Increment Matrix to 
determine the R, T matrix, and the space intersection method to determine the 
outcomes of the 3D reconstruction. The task is made more adaptable and secure by 
all of the processes described above. During the process of calibration, the calibration 
template will be moved into a few different places; nevertheless, there are no specific 
requirements about the position of the calibration template. First and foremost, the 
procedure is effective in terms of calibrating two cameras simultaneously. It has the 
potential to boost the efficiency of the 3D reconstruction. 

The above-mentioned literatures, they proposed techniques to calibrate the 
camera parameter using the chess board pattern with different viewpoint. The corner 
of each pattern was detected and used as calibration input. The result shows that the 
camera parameters were calculated accurately. On the other hand, they still need the 
chessboard pattern with variety of viewpoint to get calibrated parameters. 

2.3.3  Image registration and Three-Dimensional Reconstruction 
  S. Song et. al. (2013) presented an assessment of numerous baseline 
techniques using 2D detectors, 3D detectors, optical flow, and ICP, as well as provided 
a unified tracking benchmark for both RGB and RGB-D tracking. They provide a 
straightforward occlusion management approach that is based on the depth map, and 
they also assess numerous advanced RGB tracking algorithms. Both of these are done 
based on the depth map. The findings indicate that it is possible for trackers to improve 
their performance and deal with occlusion in a more reliable manner if they make use 
of depth data. They have high hopes that the single benchmark, which will make 
experimental assessment more uniform and more freely available, would give fresh 
insights to the field. Figure 2.26 shows algorithm for RGBD tracking based on a 2D 
picture patch. The combined confidence from the detector and the optical flow 
tracker is displayed on the two-dimensional confidence map. The target depth 
histogram is used to generate an estimated Gaussian for the one-dimensional depth 
distribution. A threshold derived from the 1D Gaussian is applied to the 2D confidence 
map before the computation of the 3D confidence map may begin. Figure 2.26  
demonstrated the location of the target, shown in the output by the green bounding 
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boxes, is the point in which confidence is the highest. The depth value of an Occluder, 
shown by the blue enclosing box, allows it to be identified. 

 

 
 

Figure 2.26 RGB-D tracking overall approach 
 

Arnulfo León Reyesa et. al. (2016), this article demonstrates a way for 
developing a prototype of a 3D scanning device that is capable of representing virtual 
3D objects using distance measurements received by a 1D optical distance sensor. The 
method is offered as part of this article. An electromechanical platform, data collecting 
hardware (which is controlled by the PIC18F4550 microcontroller), and a graphical user 
interface that is coded in Matlab make up the essential components of the device. 
The findings that were achieved by scanning a variety of solid items are quite 
encouraging and demonstrate the usefulness of the technique that was provided as 
well as the device's capacity for excellent operation. 
 Zhiyi Zhang et al. (2011) presented a 3D scanning technology that was 
introduced that was based on the geometric structure of monocular vision. According 
to the findings of the experiments, when using a 10-mW laser and the natural 
environmental light illumination was less than 500 lx, it was possible to obtain at least 
4000 valid vertex data in one second across a variety of resolutions. This was the case 
regardless of the resolution chosen. Within a distance of three meters, the highest error 
and the average error are both around two millimeters, while the relative error stayed 
at approximately 0.08 percent throughout. Therefore, using this technology, it is 
possible to essentially re-construct the 3D model, and regular users will be happy with 
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both the scanning accuracy and speed. The findings of scanning the terracotta warriors 
and clay pots are shown in Figure 2.27 respectively. The scanned point cloud of the 
terracotta warriors can be seen in Figure 2.27 (a), and the depth map of the surface 
model can be seen in Figure 2.27 (b), which was produced from Figure 2.27 (a). The 
model contains a total of 39,460 vertices in addition to 64,918 polygons. Figure 2.27 
(c) displays the scanned point cloud of clay pots, and Figure 2.27 (d) displays the depth 
map of the surface model derived from Figure 2.27 (a). Both figures may be found in 
the same Figure 2.27 (a). The model contains a total of 23,7823 vertices in addition to 
28,9861 polygons. Pseudo coloration is used to convey information about depth in the 
picture; the range from far to near corresponds to the colors blue, green, and red. 

 

 
 

 

Figure 2.27 Point Cloud Experimental Result (Z. Zhang, 2011) 
 
 Chenyang Zhang et. al. (2020) proposed a novel geometric constraint model of 
RGB-D SLAM with points and lines was suggested by the researchers. The following is 
a rundown of the method's most significant contributions to the field: (1) In regard to 
the point, in addition to the 2D re-projection error of points, the per-depth was 
leveraged to its full potential and the constraint error of per-depth was added to the 
approach. This is due to the fact that an RGB-D camera is able to offer the per-depth  
 

(c) (d) 
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information. Their technique was distinct from the RGB-D SLAM systems since it was 
only based on the 2D re-projection error of point and line features. For the line, they 
constructed the suggested method by making the most of the 2D and 3D geometric 
information included inside the lines. (2) Using the 2D and 3D information of points 
and lines, they created their geometric constraint model and then extended it to the 
BA model. The outcome of the camera posture estimation that yields the least value 
should be considered the best possible one. The tracking loss of partial frames that 
happened in the OPF-SLAM was indicated in Figure 2.28 by a yellow rectangle. This 
information was gleaned from the experimental findings of our dynamic SLAM in real-
world settings. Despite the fact that ORB-SLAM2 carried out trials in both of the image 
sequences, the camera pose estimate has a poor level of precision. 

 

 
 

Figure 2.28 Reconstruction Result (Z. Chang, 2020) 
 
 Maxime Lhuillier et. al. (2018) proposed the first surface reconstruction 
approaches that simultaneously ensure consistent visibility while maintaining a low 
genus. They demonstrate surface improvements, including the elimination of holes, as 
well as a quantitative reduction in the genus. The topological noise that was caused 
by an operation of the original technique may be eliminated with a simple adjustment. 
A second technique, albeit more difficult than the first, changes the topology 
simplification with the help of a user parameter while the visibility consistency is being 
optimized. Other contributions include an acceleration of the manifold test by using 
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the orientability of the 3D Delaunay triangulation (of the input points), and a more 
efficient removal of surface singularities, which improves escapes from local extrema. 
Both of these improvements were made possible thanks to the work of the authors. 
An investigation of the non-manifoldness of the region close to a surface vertex or 
edge led to the conclusion that this feature should be eliminated. In the field of 
combinatorial topology, the local extrema may be explained in part by the constraints 
of an operation known as "shelling." To begin, the input point cloud has a low density. 
This is helpful in a few different circumstances, including the setup of dense stereo as 
well as big scale sceneries with limited processing resources. Second, the points are 
rebuilt using movies that were captured by many consumer cameras (or a spherical 
camera) put on a helmet while the subject was walking (or riding) through complicated 
landscapes. The images at a single site are depicted in Figure 2.29, together with their 
estimated and ground truth surfaces. Experiments conducted utilizing a fabricated city 
setting. Images taken at a certain place can be seen at the top. The middle section 
exhibits top views of the SfM result and the M3 surface. At the bottom are several 
local perspectives of the ground truth and the M3 surfaces. 

 

 
 

Figure 2.29 Reconstruction Result (M. Lhuler, 2018) 
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Sheng et. al. (2018) presented a lightweight surface reconstruction approach for online 
3D scanning point cloud data geared toward 3D printing has been developed. this 
method was proposed. An online lightweight surface reconstruction algorithm has 
been proposed. This algorithm is made up of three sub-algorithms: a point cloud 
update algorithm (PCU), a rapid iterative closest point algorithm (RICP), and an 
improved Poisson surface reconstruction algorithm. The goals of this algorithm are to 
generate a lightweight 3D model and achieve a low level of algorithmic complexity 
(IPSR). The point cloud data is denoised using the PCU, which results in a version that 
uses less memory and processing power. A quick and precise registration between two 
different sets of point cloud data may be accomplished with the help of the RICP. 
Postprocessing of the PDE patch creation based on biharmonic-like fourth order PDEs 
is done to repair the mesh holes on the rebuilt lightweight mesh, which results in an 
improvement to the 3D model's visualization. The IPSR is utilized to produce the 
lightweight mesh. In addition, a dynamic visualization framework for point cloud data 
that is based on WebSocket is provided in order to enable real-time point cloud data 
transfer in combination with the 3D scanning process in an online environment. This is 
accomplished by using WebSocket. Using this method, a thorough and dynamic display 
of the point cloud data may be accomplished in the browser. In a setting with a high 
level of concurrency, the Web Worker technique makes it possible to maintain fluidity 
and a high level of rendering quality. The next step involves developing, on the basis 
of the suggested technology, an online customized customisation system that is geared 
for 3D printing. The number of iterations for the "Huba" model reduced from 15 to 8, 
and the time decreased by 46.8 percent from 77 s to 41 s as a result of using the RICP. 
In comparison, the time for the "Totoro" model decreased by 45.8 percent, going from 
59 s to 32 s. Table 4.2 contains a listing of these findings. Figure 2.30 demonstrates 
that after one iteration, the MSEs of the two models decrease by 0.039 mm and 0.036 
mm, respectively. An increase in algorithmic efficiency is demonstrated by the 
experimental study as a result of preregistering the point cloud data in the RICP. Figure 
2.30 depicts the implications of the registrations made by the RICP and the ICP on the 
visualisation of the data. 
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Figure 2.30 Experimental Result (Chang, 2018) 
 

Carmelo Mineo et. al. (2018) presented a new approaches were introduced in 
order to improve the boundary of meshed surfaces after they were derived using point 
cloud data received from 3D scanning. The BPD method divides the unlabeled points 
of a surface point cloud into two categories—boundary points and interior points—so 
that the data may be processed more efficiently. The currently available detection 
methods have been honed to perfection in order to recognize points that correspond 
to sharp edges and wrinkles. The BPD algorithm is geared at the detection of boundary 
points, and it is able to do this task more effectively than the other approaches that 
are now available. The RBS algorithm locates the corners of each closed boundary and 
then separates each closed boundary into the edges that constitute it. Through the 
use of spatial FFT-based filtering, every edge is smoothed off. The fact that the 
proposed methods are not based on any threshold values, which means they might 
be appropriate for certain point clouds but not appropriate for others, is a significant 
benefit of these algorithms. The difficulty of choosing a certain polynomial function 
order for optimal polynomial curve fitting is solved by using FFT-based edge 
reconstruction instead of the traditional approach. The algorithms were put through 
their paces in order to examine the findings and determine the amount of time 
required for the execution of point clouds that were produced from laser scanned 
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measurements on a turbofan engine turbine blade that had a variety of member 
points. It has been demonstrated that the BPD algorithm is very robust for out-of-plane 
noise that is lower than 25 percent of the cloud resolution, and that it can produce 
satisfactory results when the noise is lower than approximately 75 percent of the total. 
This was accomplished by adding artificial noise to the model. The identification 
technique will miss some boundary spots if the noise values are between 25 and 75 
percent of the cloud resolution; nevertheless, it will not create any outliers. In addition 
to this, quantitative findings about the functionality of the RBS algorithm were 
discussed. When compared to polynomial edges, the reconstruction edges that were 
calculated using the novel method provided a fit that was 4.7 times more accurate 
with the boundary points. In addition to this, they adhere to the rebuilt surface mesh 
contthe, which results in a 77 percent improvement as compared to the polynomial 
fitting edges. The cloud points were decimated in order to create four distinct point 
cloud versions, each of which had a target resolution that was correspondingly 
equivalent to 4, 16, 8, or 34 millimeters. An extra point cloud with configurable point 
resolution ranging from 2 to 34 millimeters was produced as well. Testing the 
algorithms in such controlled environments and analyzing the results was made easier 
by the point clouds that were created using these techniques. The points that were 
identified within three spheres that were centered at preset places and had radii equal 
to 16, 32, and 64 mm were eliminated from the clouds in order to bring about the 
introduction of clearly defined internal boundaries. As a result, every cloud has three 
holes, denoted by the letters H1, H2, and H3, whose radii are approximately equivalent 
to those of the initial producing spheres. The five-point clouds that were produced as 
a consequence are depicted in the top row of plots in Figure 2.31 These plots illustrate 
the identified boundary spots with darker point markers in the shape of a circle. Both 
the exterior and the interior border locations have been pinpointed successfully. The 
resolution of the point cloud is one of the factors that determines the smallest hole's 
observable radius. This topic is covered in Section 2. Due to the fact that the resolution 
of these clouds is quite near to that of the holes' radii, only four spots of the 16 mm 
and 32 mm radius holes (H1 and H2) are found in the clouds shown in Figure 2.31 c 
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and d. On the cloud with a resolution of 34 millimeters, H1 cannot be found (Figure 
2.31 d). 

 

 
 

Figure 2.31 Experimental Result (C. Mineo, 2018) 
 

K. Wang et. al. (2014) proposed an innovative and robust three-dimensional 

reconstruction method using an RGB-D camera was suggested. They combine the SFM 

approach with the use of visual and geometric cues to provide a more robust 

registration, particularly in circumstances when depth information is unavailable. They 

came up with a Prior-based Multi-Candidates RANSAC (PMCSAC) technique in order to 

deal with the repetitive textures. The goal of this approach was to make feature 

matching more reliable and effective. In addition to this, they make use of 3D 

information to assist in the detection of the loop closure and undertake global 

refinement in order to get rid of the drift issue. Combining multi-view stereo with mesh 

deformation methods is an excellent way to fill the missing geometry caused by depth 

missing. The findings of the experiments show that the approach is capable of 

producing superior 3D reconstruction outcomes compared to the current state of the 

art. Their system is not yet capable of functioning well in real-time environments. Due 

to the fact that the suggested system was developed using the code that had not 

been optimized, there is a lot of potential for the system to be sped up.  
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 Figure 2.32 illustrated 3D models reconstructed using their approach, using 
the bag dataset, the bear dataset, and the human head dataset, respectively. The data 
on the collected depth that corresponds to the image. An assortment of perspectives 
on the rebuilt models. 

 

 
 

Figure 2.32 Experimental Result (K. Wang, 2014) 
 
 Y. Cui et. al. (2010) proposed an alignment of depth scans that were obtained 
from around an item using a time-of-flight camera was offered as a method for doing 
3D object scanning. These ToF cameras have the capability of measuring depth scans 
at a video rate. They have the potential for low-cost manufacturing in large numbers 
because to the very basic technology that they use. It is possible that a scanning 
solution that is based on such a sensor and is both cost-effective and efficient may 
make 3D scanning technology more accessible to regular consumers. The degree of 
random noise produced by the sensor is high, and there is a non-trivial systematic bias. 
These two factors provide a problem for the algorithm. It revealed that 3D form 
representations of stationary objects can also be collected using a Time-of-Flight 
sensor, which, at first appearance, seems to be entirely unsuited for the job at hand. 

 



 
46 

 

The key to successfully accomplishing this goal is the effective integration of 3D super 
resolution with a novel probabilistic multi-scan alignment technique that has been 
adapted specifically for ToF cameras. Figure 2.33 

 illustrated Antique skull (a); despite the fact that the raw ToF data had a lot 
of mistakes, our system was able to generate a 3D model of fair quality (c) (b). When 
compared to the results of a laser scan (d), the reconstruction error (e) reveals that 
under no circumstances was the error greater than 2.5 cm, and throughout the majority 
of the surface, it was less than 1.0 cm. (Note: these are raw aligned scans; hole filling 
has not been done) 

 

 
 

Figure 2.33 Experimental Result (Y. Cui, 2014) 
 

R. A. Newcombe et. al.  (2011) presented an utilizing low-cost depth camera 
and commodity graphics technology, the researcher was able to develop a method 
for accurate real-time mapping of complicated and arbitrary interior environments 
under varying illumination circumstances. They do this in real time by combining all of 
the depth data that is being broadcast from a Kinect sensor into a single global implicit 
surface model of the scene that is being viewed. Tracking the live depth frame in 
relation to the global model using a coarse-to-fine iterative closest point (ICP) 
approach, which makes use of all of the observed depth data that is now available, 
concurrently allows the current sensor posture to be derived. They show that tracking 
against a developing whole surface model has many benefits over frame-to-frame 
tracking, including the ability to acquire tracking and mapping findings in continuous 
time inside room-sized scenarios with little drift and high precision. In addition to this, 
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they provide both qualitative and quantitative findings in relation to different facets of 
the tracking and mapping system. An interesting new development in the field of 
augmented reality (AR), in particular, is expected to come from the modeling of natural 
environments in real-time using just commodity sensor and GPU technology (Figure 
2.34). It enables the reconstruction of dense surfaces in real-time, with a degree of 
detail and resilience that is superior to any approach that has been offered so far 
making use of passive computer vision. 

 

 
 

Figure 2.34 Experimental Result (R. A Newcombe, 2011) 
 

The mentioned reconstruction techniques provide a good result with low 
errors. Some techniques use high performance sensors such as Lidar and SLAM, so 
that, it may cause lack of device access. Not only high-performance device was used 
but also point of view (POV) was varied. In the real world, it hard to get all the POV of 
the desired object. Thus, the mentioned reconstruction techniques are a disadvantage 
at this point. 

2.3.4  Surface Reconstruction 
 Wei Ma et al. presented a novel approach to filtering that makes use of 

a spatial sorting algorithm in conjunction with an improved ball-pivoting algorithm. 
When compared to older filtering approaches, the parameters are simpler to 
comprehend and adjust. An improved BPA that retrieved bottom boundary points 
directly without the requirement for a 3D TIN model was able to successfully solve 
the issue of output loss in the bare ground zone. In addition, the performance of this 
method is often stable, which may be attributed to the straightforward approach for 
parameter selection. The findings of the trials indicate that this tactic has a high degree 
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of dependability and resilience in its execution. Because of this characteristic, it is 
possible to prevent making errors in interpolation or having uncertainty. 

 

 
 

Figure 2.35 Three-dimensional tin surface 
 

The raw point cloud of the 3D TIN structure, as well as the form that it 
ultimately became. It is possible for a primary raw point cloud's class to be either 
ground (brownness points) or non-ground. This distinction is made based on the cloud 
(white points). When a standard 3D alpha shape is used in the development of a 3D 
TIN, the resulting from demonstrated in Figure 2.35 

2.3.5  Wireless Visual Sensor Network Simulation 
 Joao Paolo et. al (2017) presented a Wireless visual sensor network for 

smart city applications: A relevance-based approach for multiple sinks mobility. In 
today's globe, big cities all around the world are faced with challenges that would 
have been unimaginable in years gone by. New problems are always cropping up as a 
result of the rapid rate of population growth; nevertheless, technology may be 
employed to alleviate these problems and improve the quality of life in large cities. 
Under those circumstances, surveillance is a service that is in great demand, and the 
majority of governments are currently employing a wide variety of tools to ensure 
adequate levels of safety. Wireless Visual Sensor Networks (WVSN) may be used to 
monitor every section of a city without the expense of stringing wires all over it. This 
is possible because to recent technological advancements. However, there has to be 
an effective method for compiling all of the data gleaned from the sensors and 
cameras, preferably one that uses less power and has a more consistent lag time. In 
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this study, a new method for positioning numerous mobile sinks in WVSN networks 
that are placed along highways and streets is proposed. Because source nodes with 
greater sensing relevance are anticipated to send more data packets, a relevance-
based strategy was developed with the intention of positioning sinks in closer proximity 
to these nodes. Because the suggested algorithm is able to identify prohibited and 
unconnected regions, it can ensure that sinks will be positioned in locations where 
they are authorized. This ensures that the technique is particularly suited for the 
implementation of actual smart city applications.  

In addition, the suggested method was tested with a variety of different 
combinations of sensor nodes and sinks. The purpose of this project was to give 
average performance data that might further witness to the efficacy of the solution 
that was devised. 

During the initial random verification, a standard distribution of sensor nodes 

was taken into consideration. In the "Network 3" scenario (Figure 2.36), which describes 

a city with 20 horizontal and 20 vertical streets, a total of 64 sensors are distributed 

across the city, with 4 sensors located in each of the city's 16 blocks. It is possible that 

some of the 64 sensors may be source nodes for that scenario; however, the 

determination of which sensors will be sources and the sensing relevancies of those 

source nodes will be determined in a random fashion. 

 

 
 

Figure 2.36 Random network configuration (Joao P. et. al, 2017) 
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Ahmed M. et al (2009) present a new field, wireless multimedia sensor 
networks in research entitled “Multimedia sensor networks: an approach based on 3D 
real-time reconstruction”. They present a variety of issues, and the consumption of 
resources is compounded by the fact that multimedia data are being transmitted. They 
described the design of their system as well as the preliminary performance of their 
system, which was specifically adapted for the use of video surveillance in this study. 
Optimizing system resources, in particular the bandwidth of the network, and providing 
the ability for full video data fusion and exploitation are the primary objectives that 
have motivated the development of our approach. Real-time three-dimensional 
reconstruction of the scene being witnessed was their original concept. However, 
despite the fact that this design offers a number of benefits (some of which were 
mentioned before), it mandates that the sensor nodes carry out a number of extra 
responsibilities in addition to their capturing responsibilities. 

In this specific piece of research, the authors paid particular attention to this 
aspect by developing and testing an actual capture device. The latter makes use of a 
Fox Board card measuring 66 by 72 millimeters and weighing 37 grams, which is 
interfaced with a camera and a Wi-Fi USB key. Based on the results of the experiments 
that we carried out, it is clear that the suggested capture device is more than capable 
of simply meeting the criteria of the target application, provided that videos of a low 
or medium resolution are employed. In addition, despite the fact that we are utilizing 
an "ancient" Fox Board, we are certain that more recent versions are capable of 
managing films of a high definition. 

This significant finding motivates them to proceed with our work in two primary 
directions: (a) first, they intend to make our capture device out of a different material 
(for example, a Stargate Board that is fitted with a PXA-255 XScale 400 MHZ RISC 
processor); this will be one of the main directions. They anticipate performances that 
are superior to those of Fox Board. (b) Secondly, they plan to validate their proposal 
by conducting an in-depth study of both the fusion server and the end-user server 
from two different points of view: the performance point of view, in order to support 
the significant workload generated by a significant number of sensor nodes; and the 
exploitation point of view, through the development of intuitive and interactive tools 
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that are dedicated to the exploitation of data. The overall architecture of their 
proposition is seen in Figure 2.37. It is made up of three primary components that are 
referred to as the capture device, the fusion server, and the end-user server. 

 

 
 

Figure 2.37 Functional Architecture (Ahmed M et. al., 2009) 
  

 



 
52 

 

 
CHAPTER 3  

METHODOLOGY 
 

In this research, an approach to the reconstruction of 3D meshes employing 
multi-modal point clouds, such as those obtained by depth scan and those inferred 
from the associated RGB picture, is presented as a possible solution. The figure seen 
in Figure 3.1 provides an overview of its description. 

There are two data streams that make up the multi-modal input. In the 
beginning, a group of cloud points were taken from the scene's depth picture and 
placed into a separate file. After taking into consideration the camera characteristics 
and performing a calibration based on an acquisition, the physical coordinate of a given 
point was derived based on its depth. The natural light (RGB) image of the same scene 
was used as the input for the second pipeline in the process of inferring another set 
of point clouds using a deep learning (DL) network that had been trained before. After 
that, an outlier reduction technique known as spatial noise filtering was applied to the 
initial point cloud. After that, the CEICP that was developed was utilized to combine 
both point clouds, and then 3D TIN was ultimately rebuilt from those point clouds by 
utilizing BPA. A more in-depth explanation of this procedure may be found in the 
following subsections. To be more explicit, they are as follows: A) camera calibration; 
B) point cloud acquisition; C) depth estimate using deep learning derived from an RGB 
picture; D) entropy-based point cloud fusion; E) surface reconstruction utilizing BPA; 
and F) Simulation of a Wireless Visual Sensor Network. 
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Figure 3.1 Overview of proposed framework 
 

3.1  Experiment Environment Set-up 
3.1.1  RGB-D Camera set-up 
 In the Figure 3.2, displays images depicting the configuration of the 

system. KinectTM for Xbox OneTM served as the study's RGB-D camera throughout its 
whole. It was made up of an infrared (IR) depth camera as well as an RGB camera, 
both of which had a spatial resolution of 640 x 480 pixels and a frame rate of 30 frames 
per second (FPS), respectively. 
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Figure 3.2  Pictures of system configuration, illustrating a KinectTM for Xbox OneTM  (left)  
and a person holding a planar object (right). 

 
Although it was anticipated that the proposed system could be generalized to 

fusing a static scene with a moving camera, so as to capture it at different aspects for 
better 3D coverage, the results are reported only for a pair of depth and RGB images, 
taken at the same time in the subsequent experiments. This is because it was 
anticipated that the proposed system could be generalized to fusing a static scene 
with a moving camera (Figure 3.3). 
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Figure 3.3 WSN (Simulated) Structure for reconstruction System 

Simulated Wireless visual sensor network implementation was separated into 
three layers. In the perception layer, real-world object information is collected using 
RGB-D camera (RGB image with Depth information) connected with Raspberry Pi 4. The 
information is transferred to cloud server storage via cellular connection. Finally, the 
collected data is transferred to local client for three-dimensional model reconstructing. 
The result in Figure 3.4 show the RGB-D camera is moving around the desired object 
with the limited angle of viewpoint. This caused the occluded area occurs on the other 
side of object or obstacle object. 

 

 
 

Figure 3.4 Example of RGB-D input 
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3.2  Camera Calibration 
Camera Calibration is an important stage in the process of scene reconstruction 

from an 2D image. It investigates the possibility of determining the geometric factors 
that regulate the picture capturing. In this research, the factors that were taken into 
account were those of the camera (i.e., focal length, primary point, and skew of axis) 
and its geometry (i.e., rotation and translation), which were afterwards referred to as 
the intrinsic afterward and extrinsic parameters, respectively. These parameters were 
then approximated using known physical locations in the actual world and their 
projection on the picture plane after a calibration pattern with well-defined geometry 
had been provided. In order to get an accurate approximation of these parameters, it 
is necessary to rectify the distortion caused by the characteristics of the lens by 
employing below equation. 

 

𝑢 = 𝑥 ⋅ (1 + 𝑘1𝑟2 + 𝑘2𝑟4 + 𝑘3𝑟6)

𝑣 = 𝑦 ⋅ (1 + 𝑘1𝑟2 + 𝑘2𝑟4 + 𝑘3𝑟6)
 

 
 (3.1) 

 
where the coordinates of a depth picture before and after rectification were 

denoted by the values (𝑥, 𝑦) and (𝑢, 𝑣), respectively. The values 𝑘1, 𝑘2, and 

𝑘3  represented the radial distortion coefficients, while 𝑟 represented the distance 

from the coordinates (𝑥, 𝑦) to the center of the lens, as specified by 
 

𝑟2 = 𝑥2 + 𝑦2 
(3.2) 

 
Afterwards, the intrinsic camera parameter is computed. The term "intrinsic 

parameters" refers to information that is unique to a camera and includes focal length 
and optical centers. For the purpose of providing a fundamental description of a 
camera lens, the focal length is commonly expressed as (mm). The term "focal length" 
does not relate to the size of a particular lens; rather, it describes the point at an 
optical distance at which light rays converge to form a clear and detailed picture for 
the underlying digital sensor. Focal length has nothing to do with the size of a lens. As 
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a representation of the case (𝑓𝑥, 𝑓𝑦). The singular point at which light rays continue 
to travel in the same direction after passing through the curvature of a lens is referred 
to as the optical center of the lens. Any other point on a lens will cause the light rays 
to be bent toward or away from the optical center depending on whether or not the 
lens is holding a convex or concave shape. In the case it is represented with the 

following notation (𝑐𝑥 , 𝑐𝑦 ). The intrinsic parameters are contained in a 3 x 3 matrix 
as shown below. 

 

camera matrix K = [
fx 0 cx

0 f𝑦 c𝑦

0 0 1

] 
(3.3) 

 

Extrinsic parameters were used to characterize the relative location of the 
camera in 3D space. They were governed by a rotation matrix, which specified 

them. 𝑅, as well as a translation vector denoted by 𝑡, which moved the camera all 
the way from its starting point to where it is now. Imagine for a moment if the image 
was projected in perspective. Once the camera has been calibrated, a point that was 

captured by it and shown at (𝑢, 𝑣) on the sensor will correspond to that which is 

located at (𝑥, 𝑦, 𝑧) in the actual coordinate systems of the world coordinates. 

 

[
𝑥
𝑦
𝑧

] = 𝐑−1 (𝐊−1 [
𝑢ℎ

𝑣ℎ

ℎ
] − 𝐭) 

(3.4) 

 
where ℎ is a homogeneous coordinate and 𝑢ℎ  =  𝑢 ∙ ℎ and 𝑣ℎ  =  𝑣 ∙

ℎ. Note that ℎ depended on the distance from a point to the sensor in the camera 

coordinate system. However, since both 𝑢ℎ and 𝑣ℎ also varied as ℎ, so during the 

calibration, ℎ could be eliminate. 
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Figure 3.5 Calibration plane 
 
Figure 3.5 shows the image that was used for the calibration process. It had 99 

black circles on a white backdrop that were evenly dispersed at 9x11 and placed at 
35mm intervals from one another. As can be seen in  

Figure 3.5 it was printed out and then adhered to a piece of black cardboard, 
which acted as the calibration plane. These images of the aircraft were shot with the 
cameras aimed in two separate directions, each providing a unique perspective. Each 
perspective resulted in the acquisition of eight distinct plane orientations; four of these 
were used for the purpose of establishing the camera settings, while the other four 
were employed for testing purposes. The size of their image were 1030 by 1380 pixels. 
Figure 3.6 demonstrates the position of real-world camera (right), The real position of 
the calibration plane (left). 
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Figure 3.6 Camera position visualization 
 

3.3  Point Cloud Acquisition 

3.2.1  Point Cloud Extraction 
  After the camera has been computed and acquired, the point cloud in 
three dimensions will be retrieved from the depth picture. The camera projection 
matrix is made up of three components: the rotation matrix 𝑹, the translation vector 
𝒕, and the intrinsic matrix 𝑲. It is defined to convert from the coordinates of the globe 
to the coordinates of the screen as follows. Figure 3.7 shows the point cloud was 
derived from this depth image, which is an example of a depth image. It can be 
observed that the lens distortion and noise have been mostly controlled, but there 
are still some outliers and certain spots with depth that isn't defined. 
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Figure 3.7 Result of Point cloud Acquisition process 
 

3.2.2  Point Cloud Noise Reduction 
 Point cloud meshing may not give results that are satisfactory. On the 

other hand, if an excessive amount of regularization was used, the rebuilt mesh can 
be missing certain essential elements or have erroneous geometry. In order to solve 
this problem, also known as maintaining their features while denoising the data, a 
statistically based structural adaptive filter was applied to the retrieved points in a 
direct manner. In the event that the distribution of a point cloud was found to be 
locally Gaussian, an outlier would be eliminated if it was found to reside outside of 
this distribution. Let’s choose a random point in the cloud and call it p. After that, the 
below equation, was used to determine the typical distance between it and its N 
closest neighbors. 

 

𝑑(𝐩) = (1/𝑁) ∑  

𝐪∈Ω𝑁(𝐩)

∥ 𝐩 − 𝐪 ∥    (3.5) 

 
Let the mean and standard deviation of 𝑑 over all points be denoted by the 

symbols 𝜇 and 𝜎, respectively. After then, a location would be designated an outlier 
if the average distance to its 𝑁  closest neighbors was more than or equal to a 
predetermined threshold. To put it another way, if we start with the original point 
cloud denoted by 𝑃𝑜 , we may define its smoothed version as 𝑃. 
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𝐏 = {𝐩 ∈ 𝐏o ∣ 𝑑(𝐩) ≤ 𝜇 + 𝑡 ⋅ 𝜎} (3.6) 

 
where 𝑡 represented some kind of empirical threshold. In this particular 

research, the values for 𝑁 and t were determined to be 4.0 and 1.0, respectively. This 
filter was resilient and adaptable to both sparse points and large outliers due to the 
fact that the threshold, 𝑡, was determined based on the statistics of distances. 

 

3.3  Depth Estimation from RGB 

3.3.1  CNN Architecture 

 

 
 

Figure 3.8 Visualization of ResNet-50 for Depth Estimation 
 

The process of estimating depth from images is an essential step in computer 
vision as well as in a wide variety of other applications, such as simultaneous 
localization and mapping (SLAM), navigation, object recognition, and semantic 
segmentation, etc. In particular, the assignment is an important step in deducing the 
geometrical aspects of the scene that is under the surface. The quality of the cloud 
points that are extracted, however, is highly dependent on the surface properties, its 
continuity, its texture pattern and repetitions, and the lighting environment. This is 
because the acquisition of depth from a stereo camera is dependent on the analysis 
of projected light patterns on an object surface using epipolar geometry. It is common 
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knowledge that the presence of certain elements, such as voids, ambiguity, and 
degraded or missing features, etc., all lead to an inaccurate 3D reconstruction. We 
hypothesized that these inaccuracies may be reduced if the data were combined with 
considerably more regularized depths and interpreted using other methods, such as a 
visual cue. As a result, reconstruction via fusion is going to be one of the most 
important contributions made by this work. In order to accomplish this goal, the 
second set of point cloud data that would be fused was inferred using CNN from an 
RGB picture. In this subsection, as opposed to those that were previously recovered 
using an infrared camera, depth values were calculated from a image taken with 
natural light. Inspired by a method of self-supervision that was proposed by Godard et 
al., in which the depth map was calculated using a mix of network topologies, this 
research was carried out. The approach made its predictions about depth by utilizing 
a fully connected U-Net, and it made its predictions regarding poses between picture 
pairs by utilizing a pose network that used ResNet-18 as its encoder. In addition, the 
pre-trained version of ImageNet was used to initialize the weights. 

For the purposes of this investigation, a customized version of the ResNet-50 
(Figure 3.8) was used. The network was trained with RGB pictures and their associated 
depth images, which served as input and target, respectively, during the training 
process. The KITTI dataset was combed through to gather imaging data, all of which 
were of the size 304 by 228 pixels. The network was set up using a configuration of 22 
layers, a batch size of 32, a learning rate (LR) of 0.0002, and 30 epochs. The 
appearance-based loss function was utilized all during the training process. In addition, 
we implemented a modified minimum reprojection loss, which was computed for each 
individual pixel, and eigen splits were utilized in order to provide an approximation of 
the final depth map. In a manner analogous to that described in the preceding 
paragraph, a resulting depth map was turned into a dense point cloud. Taking an 
information-theoretic approach, the next section provides a detailed description of 
how to combine the point cloud that was captured by an infrared camera with the 
point cloud that was estimated using a modified version of ResNet-50. The result from 
the depth estimation with modified ResNet-50 is demonstrated below. Figure 3.9 is 
examples of RGB photos (on top), together with their corresponding ground truth and 
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estimated depth images (middle and bottom) (bottom). It is important to note that 
these estimations correspond to ground plane perception, the vanishing point, and the 
relative sizes of items in the scene, among other things. 

 

 
 

Figure 3.9 Example of Depth Estimation Result 
 

The depth map image was used in to extract set of point cloud using eq. (3.4). 
Then, the inferred point set is employed to perform fusion in the next process. 

 

3.4  Point Cloud Fusion 
It is common knowledge that combining the geometrical data collected from 

many sensors may significantly improve the quality of the 3D model reconstruction in 
comparison to the results achieved by using only one sensor on its own. The 
information that is absent from one collection of data might be completed or 
suggested by the information that is available in another group. Therefore, in order to 
verify that the reciprocal is valid, it is necessary to build a thick correlation between 
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the source clouds and the destination clouds. The iterative closest point (ICP) 
technique is one of the most successful approaches, and it is frequently used in the 
research that has been published. The fundamental algorithm for this method, as well 
as several proposed variations, are detailed below. 

It is important to point out that ICP was often used to align dynamic objects. 
This is something that should be highlighted here. But in the example that was given, 
it was presumed that there was no movement at all between the cloud points that 
were extracted and those that were calculated. Despite this, their outward 
appearances were distinct from one another as a result of complementary 
interpretations of depths, which were separately based on epipolar geometry and 
visual cues learned by a CNN. Not only could voids arise in one set but not in the 
other, but it's also possible that their geometrical aspects do not coincide with one 
another. These required a unique approach to be taken with regard to their similarity 
metric, which is what is being presented here. 

3.4.1  Point Cloud Registration 
 If the correspondences are already known before the optimization 

process begins, for instance through the use of methods for feature matching, then 
the optimization process simply needs to estimate the transformation. 
Correspondence-based registration is the name given to this particular mode of 
registration. On the other hand, if the correspondences are not known, then the 
optimization must be performed in order to jointly find out the correspondences and 
transformation at the same time. A simultaneous pose and correspondence registration 
are an example of this particular kind of registration. 

3.4.2  Traditional Iterative Closest Point Registration (ICP) 
 The ICP algorithm is extremely useful for a variety of applications, 

including but not limited to the following: reconstructing an object from multiple 
surfaces; aligning an anatomical model to a patient-specific scan; localizing a moving 
robot; and optimizing the path planning of said robot (especially in situations where 
an equipped wheel odometry is unreliable due to slippery terrain). ICP's primary 
objective is to identify the transformation that results in a given source point being 
sent to the point that is either the closest possible match to it or the point that is the 
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most possible match to it. This is done in an effort to reduce the overall gap between 
the two-point sets with regard to some metric. On the other hand, these matched 
pairings could not all be perfect correspondences depending on the original 
orientation and capture range; hence, the transformations might not be unique at 
initially. Therefore, the ICP will continue to do this procedure, which involves iteratively 
updating the correspondences, until coverage is achieved. The conventional ICP 
method is successful, however it has a low level of efficiency. It has a slow 
convergence rate, which is notably noticeable when compared to a pair of cloud points 
with better resolutions. As a result, this research also offered a modified ICP based on 
cross-entropy and designated it as CEICP. This was done as another contribution to the 
topic. Figure 3.10 illustrated ICP seeks to establish the closest pairs (dashed lines) (b) 
between the source (Q) and destination (P) points (a), and then iteratively (t > t+1) 
finds the transformation that best matches them (c). The traditional ICP algorithm is 
demonstrated in Table 3.1. 

 

 
 

Figure 3.10 ICP Fundamental 
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Table 3.1 Traditional Iterative Closest Point 

 
 

3.4.3  Cross-Entropy Iterative Closest Point 
 The ICP makes an effort to align several point sets, with regard to a 

distance measure, whenever it does a normal registration. However, such a measure is 
often sensitive, which results in ICP performing badly whenever either dataset has a 
considerable number of outliers or has a higher noise floor. This is because such a 
measure is sensitive to general variations in the data. This is notably the case in 
photogrammetry, which evaluates depths rather than immediately determining them 
on the surface of an item. In addition, the point clouds that were used in this study 
were of the same scene; however, they were acquired using two different imaging 
modalities, which resulted in differences not only in precision but also in the 
interpretation of depths. These differences were achieved by correlating projected light 
patterns and by deep learning from visual cues, respectively. Because of this, their 
outward looks were distinct, and the degree to which they are alike may be ascertained 
by comparing the information they share with one another. 

The objective of the CEICP that has been presented is to locate the right 
correspondence between two different sets of cloud points. To put it another way, it 
was the one that provided the probability distributions of random variables selected 
from these sets that were the most appropriate. Cross-entropy (CE) between 
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distributions 𝑃 and 𝑄 of the same underlying event (i.e., a 3D scene) quantifies the 
average amount of data units (or bits) necessary to uniquely identify a co-existing event 
(𝑝, 𝑞), where 𝑝 ∈ 𝑃 and 𝑞 ∈ 𝑄 are the distributions 𝑃 and 𝑄. This is the definition 
of cross-entropy. Let's say that 𝑄 was an estimated probability distribution of the real 
distribution, 𝑃, and that 𝑃 was the genuine distribution. An index mapping between a 

point, 𝑝, and the one that is closest to it, 𝑞, according to the present rigid 
transformation, was determined throughout each iteration of the process. After that, a 
fresh transformation was computed in an effort to send all of the points in 𝑃 to the 
points in 𝑄 that are geographically closest to them. The procedure was repeated while 
maximizing CE in order to achieve convergence; this is analogous to the standard ICP. 
The equation that expresses the cross-entropy of the distribution 𝑄 in comparison to 
the distribution 𝑃 across a certain sample space known as 𝐻 (𝑃, 𝑄) is as follows: 

 
𝐻(𝑃, 𝑄) = 𝐸𝑃𝑂[−log 𝑓(𝑝, 𝑞)] (3.7) 

 
where 𝐸𝑃𝑄 []  is an expected value operator, with respect to the joint 

probability of both distributions. The above definition may be formulated using 
Kullback-Leibler divergence, 𝐷𝐾𝐿 (𝑄 | 𝑃), of 𝑄 from 𝑃, which is also known as the 
relative entropy of 𝑄 with respect to 𝑃, i.e., 

 
𝐻(𝑃, 𝑄) = 𝐻(𝑄) + 𝐷𝐾𝐿(𝑄 ∣ 𝑃) (3.8) 

 
Let 𝐻(𝑄) is an entropy of 𝐻(𝑄) The relative entropy 𝐷𝐾𝐿 can be determined 

for probability distributions 𝑃 and 𝑄 that are both specified on the same support, 𝑋, 
by measuring the additional information that is necessary to encode samples from 𝑃 
using a coding that is optimized for 𝑄. Due to the fact that 𝑋 was a surface embedded 
on 𝑅 , the information 𝐼  was projected onto the norm of its 𝐿  value. In addition, 
because 𝐻 (𝑄) remained the same during ICP, optimizing Eq. (3.9) to its maximum is 
comparable to optimizing the information obtained by ICP. 
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𝐼 = − ∑  

𝑖

𝑓(∥∥𝑝𝑗 − 𝑞𝑖∥∥)log 𝑓(∥∥𝑝𝑗 − 𝑞𝑖∥∥) (3.9) 
 

 

It is obvious that Eq (3.9). was optimized to its full potential when both 𝑃 and 
𝑄 were in perfect alignment. In addition, the sample evaluations of Eq (3.9).  that were 

carried out during CEICP are presented in Figure. However, determining for 𝑞𝑖  the 
optimum correspondence  (𝑖, 𝑗) that maximizes 𝐼 required a significant amount of 
computing effort. Instead, each distinct piece of information was inferred by the use 

of 𝑤𝑖𝑗  in Algorithm 𝐼. Let 𝑃 and 𝑄 be the input point clouds, where 𝑃 was produced 
from an infrared depth picture and 𝑄 was inferred by ResNet-50 from a image of the 
same scene. After that, we looked for a transformation, denoted by 𝑇 =  𝑅 | 𝑡, that 
would provide the best correspondence possible between these point sets. First, for 
each point 𝑞𝑖 in 𝑄, determine the point 𝑝𝑗  in 𝑃 that is closest to it in terms of the 
Euclidean distance between them, which is provided in Eq.(3.10). 

 
𝑑𝑖𝑗 = ∥∥𝐩𝑗 − 𝐪𝑖∥∥ (3.10) 

 
Calculate the central element, 𝐻 (𝑝, 𝑞) of the pair 𝑥ij ∈ 𝑋 by utilizing Eq. (3.8) 

and Eq. (3.10) The pair was considered to be an outlier and removed from the support, 
𝑋, if the distance 𝑑𝑖𝑗 was greater than a previously defined threshold known as 𝑇𝑑. 
Following that, for each of the remaining pairings (𝑖, 𝑗) , their contribution to the 
alignment was determined by the information weight, 𝑤𝑖𝑗 , which was then stated by 
the Eq. (3.11) 

 
𝑤𝑖𝑗 = −𝑓(𝑑𝑖𝑗)log 𝑓(𝑑𝑖𝑗) (3.11) 
 
where 𝑓 represented the estimated Gaussian distribution of d at each iteration 

of the process. Due to the existence of this correlation, the rotation (𝑅) and 
 that wer 
e responsible for the transformation from 𝑃 to 𝑄 may  
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translation (𝑡) matrices that were responsible for the transformation from 𝑃 to 𝑄 may 
be determined by employing the singular value decomposition technique (SVD). In 
order to do this, the centroids of  𝑃  and 𝑄 were determined by taking into 
consideration just the locations that were supported by 𝑋 , and they were 

correspondingly represented as 𝑐𝑝  and 𝑐𝑞 . After that, both point clouds were 
translated using Eq. (3.12), such that their respective centroids would coincide with the 
origin. These new point clouds were then designated as 𝑃′ and 𝑄′, respectively. 

 

𝐜𝐩 =
1

𝑁𝑗
∑  

𝑗

𝐩𝑗𝐜𝐪 =
1

𝑁𝑖
∑  

𝑖

𝐪𝑖  (3.12) 

 
The covariance matrix, weighted by 𝑊, was evaluated, and decomposed by 

using SVD, as Eq. (3.13). 
 

𝐖 = diag [𝑤ij] (3.13) 
  
𝐏′𝐖𝐐′𝑇 = 𝐔𝚲𝐕T (3.14) 

 
Lastly, Eq (3.15) and Eq (3.16) were used to determine the matrices 𝑅 and 𝑡 

that most effectively pushed 𝑄 to 𝑄 ∗, which is the value that is closest to 𝑃. 

 
𝐑 = 𝐕𝐔T (3.15) 
  
𝐭 = 𝐜p − 𝐑𝐜q (3.16) 

 
At each iteration, the error of a resultant transformation 𝑻, i.e., 𝐸 (𝑹, 𝒕), was 

given by Eq. (3.17) 

 
𝐸(𝐑, 𝐭) = ∑  

(𝑖,𝑗)∈𝑋

𝑤𝑖𝑗∥∥𝒑𝑗 − (𝐑𝐪𝑖 + 𝐭)∥∥ (3.17) 
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It was formulated in terms of the weighted distances that separated 𝑃 and 𝑄 ∗. 
This process was continued by CEICP until either the accuracy requirements were 
satisfied, convergence was achieved, or the number of iterations reached their 
maximum (𝑡𝑀𝐴𝑋). After both 𝑄 ∗ and 𝑃 were finished, the point clouds from each 
were combined into a single one. An example of CEICP result and the corresponding 
fusion is illustrated in and Figure 3.11. It demonstrates Fusion of point clouds obtained 
from a depth image and calculated using a modified version of ResNet-50, illustrating 
instances in which the point clouds were complementary to one another and in which 
their holes coincided. 

 

 

 
Figure 3.11 Example of Fusion Result of indoor scene 
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Figure 3.12 Fusion result comparing with the original point cloud 
 

3.5  Surface Reconstruction 
This subsection provides a full description of the Ball Pivot Algorithm (BPA-

based) surface reconstruction that was implemented. A 3D TIN of a scene was built 
using the fused point cloud that was obtained from the step before this one. 
In the method that was developed (Bernardini et. al, 1998), a shape was represented 
in the form of a rolling ball. It was founded on the concept that if a sampled dataset 
P is sufficiently dense, then a sphere of a particular radius cannot transit through it 
without colliding with one or more points inside it (Lotem Nadir, 2022). This assumption 
served as the foundation for the model (H. Seo et. al, 2019). As a result, mounting the 
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initial three points with a ball is the first step in the BPA. This ball will continue to 
retain its interactions with two of these spots while it pivots until  
it makes contact with another point. 

 

 
 

Figure 3.13 Ball-pivot Algorithm (BPA) 
 
The BPA algorithm was started by selecting a seed triangle from the existing 

point cloud. To be more specific, it is defined by a chosen point and the two points 
that are immediately next to it. A ball with a radius of 𝑟 was pivoting on the edge (𝑝𝑖 , 𝑝𝑗) of the triangle 

𝜏𝑖𝑗𝑜, which lay on the 𝑧 − 𝑎𝑥𝑖𝑠, given that the triangle 𝜏𝑖𝑗𝑜 consisted of the vertices 
𝑝𝑖 , 𝑝𝑗 and 𝑝𝑜 . Before moving on to the next step, the sphere was examined to see 
whether it included any more points in the cloud. if it did not, a new triangle was 
selected. The local coordinate that is displayed in Figure 3.13 is given in such a way 
that the origin is at the same location as the midpoint of this edge (𝑚). At first, this 𝑟 − 𝑏𝑎𝑙𝑙 made its 

initial contact with the (𝑥 − 𝑦) plane at the circle 𝑠𝑖𝑗𝑜, which was centered at 𝑐𝑖𝑗𝑜. 
The center of the ball traveled along the trajectory as it pivoted on the edge (𝑝𝑖, 𝑝𝑗), 
which means it travelled around m with a radius ∥∥𝐜ijo − 𝐦∥∥ When the ball found a 

new point, 𝑝𝑘 , it intersected the (𝑥 − 𝑦) plane at a new circle, 𝑠𝑘 , and its center 

shifted to 𝑐𝑘 as a result of this discovery. 𝑛𝑘 was responsible for defining the 
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orientation of the new intersecting line from 𝑚 to 𝑝𝑘 , and as a result, the newly 
discovered triangle (𝑝𝑖 , 𝑝𝑗 , 𝑎𝑛𝑑 𝑝𝑘). This procedure was done several times, each time 
turning on a side that had not yet been explored, until all points had been thoroughly 
explored. After that, the generated mesh provided an approximation of the 3D surface 
underneath it. The fact that this method only needed linear amounts of time and 
storage made it incredibly effective. However, its difficulties included accurately 
determining the ball radius or managing point clouds that were sampled less 
frequently than one and also included those that included an excessive number of 
voids. Despite this, the multimodal fusion technique that was suggested was successful 
in resolving these more recent problems. The example result of Ball-pivot algorithm 
surface reconstruction with holes are illustrated in Figure 3.14 and Figure 3.15. 

. 

 
 

Figure 3.14 from Ball pivot algorithm surface reconstruction before fusion 
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Figure 3.15 Result from Ball pivot algorithm surface reconstruction 
 

3.6  Wireless Visual Sensor Network Simulation 
The Wireless Sensor Network (WSN) is now a popular research subject. There 

are still many network details that have not been established and standardized in 
WSNs. Putting together a testbed for WSNs may be highly expensive. It can be time-
consuming and expensive to conduct genuine trials on a testbed. In addition, 
reproducibility is severely hindered due to the fact that several factors have an 
influence on the findings of the experiment at the same time. It is difficult to focus on 
one facet. In addition, doing genuine tests always takes a significant amount of time. 
As a result, the simulation of WSNs is an essential part of the development of WSNs. 
Evaluation on a very wide scale is possible for everything from protocols and schemes 
to brand new concepts. Users of WSNs simulators are given the ability to tune 
adjustable settings in order to isolate distinct causes. 

As a consequence of this, simulation is necessary for the research of WSNs 
because it is the standard method for testing novel applications and protocols out in 
the field. Because of this, there has been a recent uptick in the creation of simulators. 

However, drawing reliable inferences from simulation research is not a process 
that can be considered simple. The accuracy of the simulation models and the 
appropriateness of a specific tool to implement the model are the two most important 
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features of WSNs simulators. (1) The correctness of the simulation models and (2) the 
appropriateness of a particular tool to implement the model. In order to arrive at 
reliable conclusions, it is essential to begin with a "proper" model that is founded on 
sound assumptions. The essential choice that has to be made is between performance 
and scalability and accuracy and the importance of details. In the next section of this 
study, various mainstream WSN simulators will each be discussed in further depth 
before being compared to one another. 

3.6.1  Type of Simulation 

• Discrete-event and Trace-driven 
 Since discrete-event simulation can quickly replicate hundreds of jobs 

operating on various sensor nodes, it is a popular choice for usage in wireless sensor 
networks (WSNs). Some of these components are included in the discrete-event 
simulation. This simulation has the ability to list upcoming occurrences, each of which 
may be modeled using different routines. The global variables, which are responsible 
for describing the current state of the system, are able to reflect the current time of 
the simulation, which enables the scheduler to make accurate predictions regarding 
this time period. Input routines, output routines, beginning routines, and trace routines 
are all a part of this simulation. Additionally, this simulation offers dynamic memory 
management, which allows new things to be added to the model while allowing the 
removal of older ones. Users are able to inspect the code in a step-by-step manner 
without interfering with the functioning of the program thanks to the debugger 
breakpoints that are supplied in discrete-event simulation. 

  Trace-Driven Simulation, on the other hand, offers a diverse set 
of services. In the real system, simulations of this sort are utilized rather frequently. 
The outcomes of the simulation have a higher level of trustworthiness. It offers a more 
realistic workload, and the detailed information it gives enables users to do in-depth 
research on the simulation model. Throughout most cases, the values of the inputs 
remain identical in this simulation. Nevertheless, this simulation has a few limitations 
that you should be aware of. 
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• Simulator and Emulator 
  It is common practice to employ Simulator in the process of 

developing and testing protocols for WSNs, particularly in the preliminary stages of 
these systems. The expense of simulating networks with thousands of nodes is quite 
minimal, and the simulation may be completed in an extremely little amount of 
execution time. For the purpose of simulating WSNs, there are both generic and 
specialist simulators available for usage. Emulator is the name given to the piece of 
software that, to carry out the simulation, makes use of both hardware and firmware. 
The software implementation and the hardware implementation can be combined in 
emulation. Since an emulator implements in actual nodes, it may thus deliver a 
performance that is more precise. Emulators often have excellent scalability, which 
allows them to imitate many sensor nodes all at the same time. 

3.6.2  Wireless Visual Sensor Network Structure 

 illustrates the process that must be followed. Let's call the group of 

visual sensors that have previously been calibrated 𝐶, where 𝐶 = {𝐶1, 𝐶2, 𝐶3, … , 𝐶𝑁}. 

They are located in a given region. The images set 𝐼 that 𝐶 developed looks like this: 

𝐼 = {𝐼1, 𝐼2, 𝐼3, … , 𝐼𝑁}. The number of visual sensors that may be employed to 

reconstruct a 3D scene is restricted to a maximum of 𝑀, where 𝑀 is a smaller number 

than 𝑁. 𝑁 is the total number of sight sensors that are at disposal. The overall of 

Wireless Visual Sensor Network demonstrates in Figure 3.16. 
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Figure 3.16 Wireless Visual Sensor Network Architecture 
 
 A full-fledged Wireless Visual Sensor Network was constructed with MATLABTM 
Simulink for the purposes of this study. The simulation process begins with the 
construction of the hardware architecture of the transmitting nodes and continues with 
the modeling of the communication channel as well as the design of the receiving 
master nodes. As can be seen in Figure 3.16, the simulated system model specifies 
that there are three sensor nodes fitted with an embedded Linux operating system 
that has the capacity to display imagesKinectTM for Xbox OneTM. It consisted of an 
infrared (IR) depth and RGB cameras, whose spatial resolution and frame rate were 
640× 480 pixels. Image size is 901 kilobytes, and the file is in the data raw format 
known as portable pixel map (ppm). The transmitted data result is illustrated in the 
next Section. 
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Figure 3.17 3D Scene reconstruction on Wireless Visual Sensor Network Mechanism 
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CHAPTER 4  

EXPERIMENTAL RESULTS 
 

In this part, the experimental surface reconstructions of chosen scenes that 
were created using the suggested technique are presented, and their results are 
discussed. It is broken down into four pieces based on the essential processes that go 
into it, which include camera calibration, depth estimation using deep learning, cloud 
point fusion, and surface reconstruction to round off the list. In particular, because 
fusion that is based on cross-entropy is the contribution of this research, it was 
benchmarked not only against the method that is considered to be the standard, but 
also against a number of other algorithms that are considered to be state-of-the-art. 

MATLABTM v.2020a was employed these tests to implement camera 
calibration, depth estimation, the extraction of point clouds, the noise reduction of 
those point clouds, and the fusing of those point clouds. Python version 3.10 was used 
in the writing of the surface reconstruction. All of the code was run on a Windows® 
computer that has an Intel®CoreTM i7-7700HQ processor operating at 2.81 GHz and 8 
gigabytes of RAM. 

 

4.1  Camera Calibration Result 
In Table 4.1 and Table 4.2 illustrated two experiments which conducted in 

order to evaluate the performance of this procedure by testing its resilience against 
noise while retrieving camera parameters. The results of these experiments are 
presented below. On a turn-by-turn basis, Gaussian noises with zero mean and 0–1.0 
standard deviations were added to the calibration image. These noises were applied 
to the image in a variety of orientations and viewpoints. Table 3.1 and Table 4.1, 
respectively, present the results of the analysis of the retrieved intrinsic and extrinsic 

parameters. In the first case, 𝑓𝑥and 𝑓𝑥 represented the focal length along their 

respective axes; (𝑢0, 𝑣0) represented the lens center; and 𝑘1and 𝑘2 represented 
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the lens' radial distortion in millimeters squared (mm-2) and millimeters squared        

(mm-4) respectively. In the latter, the translations were denoted by 𝑡𝑥 , 𝑡𝑦and 𝑡𝑧 , 

while the rotations were denoted by 𝑟𝑥 , 𝑟𝑦 and 𝑟𝑧 , in accordance with their respective 
axes. 

 
Table 4.1 Intrinsic Parameters 

Noise 𝒇𝒙 𝒇𝒚 𝒖𝟎 𝒗𝟎 𝒌𝟏 𝒌𝟐 
0 500.000 500.000 300.000 250.000 0.0500 0.1000 

0.2 500.013 500.009 300.132 249.855 0.0503 0.1023 
0.4 499.738 500.343 300.273 249.762 0.0443 0.1048 
0.6 498.836 501.538 299.317 249.346 0.0634 0.0936 
0.8 501.329 500.938 299.021 250.829 0.0849 0.1274 
1.0 502.474 497.638 301.327 251.043 0.1382 0.0632 

 
Table 4.2 Extrinsics Parameter 

Noise 𝒇𝒙 𝒇𝒚 𝒖𝟎 𝒗𝟎 𝒌𝟏 𝒌𝟐 
0 60.173 -10.193 17.757 30.0027 19.9969 18.0053 

0.2 60.237 -9.661 18.329 29.9965 20.0053 18.0072 
0.4 59.538 -10.472 18.517 30.0051 20.003 17.9929 
0.6 60.621 -10.613 17.104 30.0062 20.0089 17.9892 
0.8 60.126 -10.169 17.973 30.002 21.67 17.999 
1.0 0.3535 0.3422 0.5001 0.0035 40794 0.0071 

 
Except for radial distortions, which were extremely sensitive and displayed 

considerable errors (bold red), at increasing noise levels, the values for the majority of 
the recovered intrinsic parameters were well within 0.5 percent errors. Radial 
distortions were the exception to this rule. Nevertheless, the errors of the extrinsic 
parameters were held to a maximum of 5 percent over the whole spectrum of noise 
levels. According to this, the noise level should be maintained at or below 0.5. 
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4.2  Depth Estimation Result 
The errors in depth estimation caused by the proposed CNN, which is based 

on the modified ResNet-50, are compared to the actual measurements that are 
published in the KITTI indoor dataset in Figure 4.1. These errors are presented for each 
scene. The root-mean-square error (RMSE) and the mean absolute relative error (REL), 
expressed as a percentage, were, respectively, 6.328, 7.944, and 5.647 for scenes 1, 2, 
and 3, and 0.206, 0.361, and 0.161 for each of those scenes (Table 4.3). The RMSE of 
the estimations came in at 6.640, which was 0.963 on average. In spite of the fact that 
its homogeneity was excellent, the RLE of 0.243 and 0.086 suggested that its precision 
was subpar in comparison to that which could be obtained directly from the depth 
image. 

 
Table 4.3 Depth Estimation Result 

Training Data RMSE (lin.) RMSE (log.) Abs. Rel. 
Scene 1 6.328 0.284 0.206 
Scene 2 7.944 0.339 0.361 
Scene 3 5.647 0.236 0.161 
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Figure 4.1   Visualization of evaluation of depth estimation. Errors of the estimated 

depth by ResNet-50 from 3 scenes. Despite consistently low errors, they 
were inferior to direct extraction. 

 

4.3  Point Cloud Fusion Result 
The above result makes it abundantly clear that the depth information learnt 

and approximated by ResNet-50 was dependable but not very accurate. This is 
evidenced by the fact that the information was reliable. As a result, it was 
complementary to the information that was obtained from the infrared scan by means 
of fusion in this particular investigation. Existing works, such as basic ICP, picky ICP 
(PICP), RICP (E. Trucco et. al, 1999), multi-resolution ICP (MRICP) (T. Jost et. al, 2003), 
fractional ICP (FICP) (J. M. Phillips et. al, 2007), and hue ICP (H. Men et. al, 2010), were 
used as benchmarks for the proposed CEICP fusion in order to assess its efficacy (HICP). 
These approaches were evaluated using the RGB-D dataset that could be found on 
KITTI's website (A. Geiger et al, 2013). This data collection was comprised of three 
different scenarios, each of which included one hundred frames. The error metric that 
is being shown in TABLE IV is the average Hausdorff distance that was produced by 
each approach for the scenes that were being analyzed. It is abundantly clear that the 
proposed CEICP outperformed its competitors and was, for the most part, comparable 
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to the MRICP. The comparison between 3D TINs reconstructed from the point cloud, 
before and after CEICP fusion are illustrated in Figure 4.2 to  Figure 4.7. The ball radii 
were varied from 𝑟𝐹to 𝑟𝐹+𝜎𝐷, where 𝑟𝐹 and 𝜎𝐷 are mean and standard deviation of 
distance to a nearest neighbor in the fused point cloud. 

 

 
 

Figure 4.2 Result of BPA with r=0.0102 (Before fusion) 
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Figure 4.3 Result of BPA with r=0.0131 (Before fusion) 

 

 
 

Figure 4.4 Result of BPA with r=0.0156 (Before fusion) 
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Figure 4.5 Result of BPA with r=0.0209 (Before fusion) 
 

 
 

Figure 4.6 Result of BPA with r=0.0102 (After fusion) 
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Figure 4.7 Result of BPA with r=0.0156 (After fusion) 
 

Table 4.4 Point cloud fusion result comparation  
ICP PICP RICP MRICP FICP HICP Proposed 

Scene1 8.21 97.25 19.91 4.91 6.51 9.54 4.361 
Scene2 10.12 19.33 21.13 6.64 15.78 12.09 5.5484 
Scene3 23.84 85.51 32.39 12.51 39.7 18.97 7.6874 
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Figure 4.8 Visualization of result comparation of recent method and the proposed 
approach 

 
In addition to this, the convergence of the proposed merger was evaluated 

against that of its counterparts, as shown in Figure 4.9. PICP and MRICP are plotted in 
this graph. PICP and MRICP respectively made use of hierarchical point selection and 
KD-tree search in order to expedite registration in comparison to a standard ICP. 
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Figure 4.9 Convergence of the proposed approach comparing with the existing 
method. 

 

Moreover, to demonstrate the experimental result from the depth camera, the 
extracted point cloud using the calibrated parameters are used to fused with inferred 
depth from the captured RGB image. The result in Table 4.5 show that the average 
errors of width, length, and height are 0.67, 0.66, and 0.69 respectively. It can conclude 
that the camera calibration process can increase the accuracy of reconstruction and 
fusion.   
 
Table 4.5  Fusion result from different angle of camera placement using proposed 

approach.  
Width (cm) Length (cm) Height (cm) 

Position 1 (0°) 0.63 0.59 0.65 

Position 2 (45°) 0.57 0.61 0.62 

Position 3 (90°) 0.81 0.78 0.82 

Average 0.67 0.66 0.69 
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4.4  Wireless Visual Sensor Network Result 
The experimental findings of image transmission from the node to the sink are 

presented in Table 4., which can be found below. According to the findings, the total 
quantity of photos that are transmitted has a considerable impact on the delivery 
time. This is because the size of the picture captured by the vision sensor is 901 
kilobytes, the maximum speed of communication is 250 kbps, and each packet has a 
header that is that size. 

To be more specific, we will suppose that each image that is taken by a camera 
has a resolution of 800 by 600 pixels and is compressed using the JPEG format into a 
file that is smaller than 1000 bytes in size. As a result, it is possible to transport a single 
image using a single packet of size 1000 bytes. In addition, we are operating under the 
assumption that the properties of a picture may be outlined using only a few tens of 
bytes (40 bytes). As a result, just a few hundred kilobytes are required to send data 
summaries for thousands of photos. The data gathering strategies discussed earlier 
have been included into our system as an application agent that operates on top of 
the UDP transmission protocol. This agent's duties include the creation of data 
summaries, the transmission of those Internet connected server housing the data 
collector, and the receipt of requests for images. In conclusion, we model the wireless 
communications using the following parameters: the MAC protocol is IEEE 802.11 
without RTS/CTS handshaking, the physical transmission rate is 11 Mbps, the nominal 
radio range is set to 100 meters, and the two-ray ground propagation model is used. 
In the case when it is not specified differently, the simulated field typically has a total 
of four roadside APs. It is assumed that the wired cables that connect the roadside 
access points to the data collector have an unlimited bandwidth. 
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Table 4.6 Average delivery time against No. Of sent images 
Number of images 

transmitted 
Average time of delivering 

Seconds Minutes 
1 138 2.30 
2 336 5.60 
3 489 8.25 
4 605 10.18 
5 819 13.67 

 

Table 4.7 Parameter setting and Controlled simulation 
Parameter Value 

image buffer size 200 
camera sampling rate 2 s 

validity time 𝒯 10 s 

observation period 𝑇 600 s 

control period 𝑆 60 s 

𝑟𝐿 3 

𝑟𝐻 8 
  

The length of time for each simulation is set at five hours. However, in order 
to eliminate the possibility of temporary impacts, steady-state statistics aren't gathered 
until after the first 30 minutes have been subtracted. For the purpose of establishing 
confidence intervals with a 95% level of accuracy, we run each simulation five times. 

As a last step in our investigation of the relative merits of various data 

collecting strategies, we assess how well these methods make use of the available 

bandwidth. Figure 4.10 illustrates this point by depicting the typical number of photos 

received by the data collector in a given minute in comparison to the total number of 

objects that are fitted with cameras. As was to be predicted, the higher the number of 

objects and the greater the number of increases received is due of the increased 
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frequency of connections. On the other hand, GREEDY is able to drastically cut down 

on the amount of data traffic while simultaneously increasing the amount of network 

coverage since it requests only photos that do not include redundant information. 

Intuitively, the 𝑘 value and the number of received pictures are both reduced the 

more they are decreased. In a similar fashion, PDC cuts down on the amount of 

messages that are sent, however the level to which this reduction occurs may be 

contingent on the criteria that are employed in PDC to lower the likelihood of the 

system requesting fresh photos. In the end, we additionally investigate the protocol 

overheads caused by data summaries and picture queries, which are measured in 

terms of bytes per minute. In particular, 

Figure 4.10  The average number of photos acquired per minute by the data 
collector using the BASELINE, GREEDY, and PDC schemes in comparison to the total 
number of objects (each image is conveyed in a 1000B-long packet). depicts the 
protocol overheads for the various iterations of GREEDY and PDC schemes that were 
examined earlier as a function of the number n of objects that are fitted with cameras. 
For the sake of clarity, we would like to remind you that an image tag is comprised of 
40 bytes, and a data summary can include tags for a maximum of 200 images (i.e., the 
size of the local data storage), whereas the replies list the identifiers of the images that 
have been requested, and they typically consume a few hundreds of bytes at most. 
According to the findings, all of the strategies send around the same quantity of data 
summaries. This is due to the fact that the mobility profiles are the primary factor that 
determines this number. On the other hand, the signaling traffic that is caused by 

images requests diminishes as the value of 𝑘 increases. This is due to the fact that this 
also restricts the maximum number of items that may be included in each request. 
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Figure 4.10  The average number of photos acquired per minute by the data collector 

using the BASELINE, GREEDY, and PDC schemes in comparison to the total 
number of objects (each image is conveyed in a 1000B-long packet). 
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CHAPTER 5 

   CONCLUSION AND DISCUSSION 
 

5.1  Conclusion 
Recently, three-dimensional scene reconstruction task is still challenge. Many 

up-to-date approaches needs improvement for increasing its accuracy and reducing 
computational time. Therefore, there are numbers of research works which aims to 
speed up and gain more accuracy. In this research, the framework for three-
dimensional scene reconstruction on wireless visual sensor network using RGB-D 
camera is proposed. Firstly, the camera is calibrated using the calibration pattern for 
intrinsic and extrinsic camera parameter computing. Secondly, the set of point cloud 
is extracted from depth camera using the previous camera parameter. The RGB image 
is used to infer the point cloud based on deeply learn ResNet-50 model. Thirdly, both 
set of point cloud is fused together using modified iterative closest point algorithm, 
it’s called Cross-Entropy Iterative Closest Point (CEICP). Fourthly, the Ball-Pivot 
Algorithm (BPA) is performed to reconstruct its surface. The process is simulated on 
wireless sensor network simulator. 

 

5.2  Discussion and Future works 
The outcomes that were described above can be explained in the following 

manner. A more realistic calibration might be the first step in resolving visible distortion, 
which is often shown in a reconstruction that is based on a straightforward pinhole 
camera model. If this is not the case, then straight lines in an image that has been 
collected (and subsequent objects that have been rebuilt) may seem deformed; this 
effect will be exacerbated the more distant they were from the lens center. 
Furthermore, missing data that was caused by imperfect lighting, noise, and outliers in 
the point cloud that was extracted from an infrared depth map were remedied by 
using a statistical filter and by fusing it with that estimated by deep learning from the 
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RGB image that was captured from the same scene. This was done in order to complete 
the data. 

It was recommended that CEICP should register both point clouds before the 
fusion process began because they were received through distinct modalities. This 
would guarantee that the right correspondence was maintained. The results of the 
many evaluations showed that it was superior to the current state of the art. In 
instance, the suggested CEICP provided a correlation that was significantly more 
accurate while also having a quicker convergence rate. This is because in this particular 
instance, the degree of informational similarity was considerably more relevant than 
the geographic distance. However, because there were local minima in the entropy 
function, the two datasets had to start off having very few differences between them 
and being substantially aligned. This turned out to be the case in our environment, 
and we can credit the camera arrangement as well as the Deep Learning from the 
picture that corresponded to it. However, it is important to highlight that even after 
the fusion of the datasets, there were still some missing data as a result of coincident 
gaps in both of the datasets. It is common knowledge that reconstruction using only 
one of the modalities is inadequate, and this idea has been widely accepted. Just 
lately, another strategy that is analogous to ours was taken in mentioned research. 
They suggested an architecture for refining the disparity map, which merged monocular 
and stereo depth pictures. The former was pieced back together using a modified 
version of the VGG-16, which served as an auto encoder. The bilinear unification that 
was produced as a consequence was then improved using a minimal spanning tree 
(MST). In contrast to our approach, fusion was carried out, with the semantic prior of 
the scene serving as the basis. Because of this, empirical weights for known object 
classes and their distance are necessary, which reduces the generalizability of the 
method. As an additional alternative, the merging of point clouds directly with other 
suggestions was also taken into consideration. From the initial point cloud that was 
provided, first the point-wise features and then the voxel-wise features were extracted. 
The relevant proposals for voxel dense storage (VDS) and point sparse storage (PSS) 
have been combined. Second, proposal-aware fusion was used to combine the VDS 
and PSS proposals' semantic elements that had been derived from both proposals. 
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Finally, regression refinement was accomplished through the use of proposal 
classification and regression. Despite the fact that the fusion was performed directly 
on the point cloud, it was deduced from the information that was only available in a 
single modality. In addition, deep area of interest (ROI) fusion necessitated the tagging 
of objects within the image, which, in contrast to our approach, renders it inappropriate 
for use in scenarios involving surfaces that cannot be separated and the complexity of 
the proposed approach is need to be reduced.  

In conclusion, the fused point cloud was utilized in conjunction with the BPA 
in order to recreate the scene's ultimate surface. It is clear that following CEICP fusion, 

there were far fewer apparent holes, when the ball radii were no less than 𝑟𝐹 + 𝜎𝐷 ,  
although those from a single cloud still presented strong indications of missing data. 
This was the case even if there were significantly less holes overall. It is important to 
keep in mind that even if a larger ball could eventually get rid of those flaws, it might 
also cause the loss of certain details in the process. Despite the fact that the trials 
were performed on a public dataset depicting an interior scenario for the purpose of 
benchmarking, there was no reduction in the capacity to generalize the results. Having 
said that, analytical insights may very well gain from that on far more complicated 
situations, or when using a moving camera, provided that their ground-truth 
measurements and the conclusions of their peers were accessible. 

It is hoped that it will also be applicable to the reconstruction of sceneries 
obtained through remote sensing techniques, such as satellite images and aerial 
photography, as well as anatomical objects obtained through medical tomographic 
imaging. Another potential research path that should be taken into consideration is 
data fusion with other entities than points, such as voxel intensities and fiducial 
markers, and deep learning of these other entities. In addition, the treatments of their 
geometrical qualities, such as feature preserving mesh filtering approaches, 
inhomogeneous distribution, and sparse data collection, etc., have yet to be 
completely examined in the future. This to be done in the near future. Furthermore, 
the more complex shape of object i.e., engraved object, the archaeological site, the 
scene with different light effect which can be caused the accuracy will be investigated.  

 

 



 
96 

 

 
REFERENCES

 
R. Laing, M. Leon and J. Isaacs, "Monuments Visualization: From 3D Scanned Data to a               

Holistic approach, an Application to the City of Aberdeen," 2015 19th International 
Conference on Information Visualisation, 2017, pp. 512-517 

Newcombe, R. A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A. J., & Fitzgibbon, 
A. (2011, October). Kinectfusion: Real-time dense surface mapping and tracking. In 
2011 10th IEEE international symposium on mixed and augmented reality (pp. 127-
136). IEEE. 

Whelan, T., Kaess, M., Fallon, M., Johannsson, H., Leonard, J., & McDonald, J. (2012). 
Kintinuous: Spatially extended kinectfusion. 

TechTarget, T. (2011, March 25). Kinect. SearchHealthIT.https:// searchhealthit. 
Techtarget.com/definition/Kinect 

Piltch, A. (2015, January 14). Intel RealSense 3D: What It Is and What You Do With It. Tom’s 
Guide. https://www.tomsguide.com/us/intel-realsense-guide,news-20286.html 

Wikipedia contributors. (2021, November 4). Raspberry Pi. Wikipedia. https:// en. 
wikipedia.org/ wiki/ Raspberry_Pi 

Wikipedia contributors. (2021, June 2). Laser diode. In Wikipedia, The Free Encyclopedia. 
Retrieved 04:24, June 14, 2021, from https://en.wikipedia.org/ w/ index.php?title 
=Laser_diode&oldid=1026457016 

Kikuta, H., Iwata, K., & Nagata, R. (1986). Distance measurement by the wavelength shift of 
laser diode light. Applied optics, 25(17), 2976-2980. 

Rao, S. M., Heitz, J. J., Roger, T., Westerberg, N., & Faccio, D. (2014). Coherent control of 
light interaction with graphene. Optics letters, 39(18), 5345-5347. 

Zhang, Z. (2000). A flexible new technique for camera calibration. IEEE Transactions on 
pattern analysis and machine intelligence, 22(11), 1330-1334. Camera Calibration. 
Camera Calibration - MATLAB &amp; Simulink. (n.d.). https:// www. mathworks. 
com/ help / vision/camera-calibration.html. 

 



 
97 

 

He, L., Chao, Y., Suzuki, K., & Wu, K. (2009). Fast connected-component labeling. Pattern 
recognition, 42(9), 1977-1987. 

Chatzis, V., & Pitas, I. (2000). Interpolation of 3-D binary images based on morphological 
skeletonization. IEEE transactions on medical imaging, 19(7), 699-710. 

Mudrova, M., & Procházka, A. (2005, November). Principal component analysis in image 
processing. In Proceedings of the MATLAB technical computing conference, Prague. 

Wikipedia contributors. (2021, June 5). Polygon mesh. In Wikipedia, The Free Encyclopedia. 
Retrieved 05:10, June 14, 2021, from https:// en.wikipedia.org /w/index.php? 
title=Polygon_mesh&oldid=1027043893 

Hold-Geoffroy, Y., Sunkavalli, K., Eisenmann, J., Fisher, M., Gambaretto, E., Hadap, S., & 
Lalonde, J. F. (2018). A perceptual measure for deep single image camera 
calibration. In Proceedings of the IEEE Conference on Computer Vision and Pattern 
Recognition (pp. 2354-2363). 

J. -H. Chuang, C. -H. Ho, A. Umam, H. -Y. Chen, J. -N. Hwang and T. -A. Chen, "Geometry-
Based Camera Calibration Using Closed-Form Solution of Principal Line," in IEEE 
Transactions on Image Processing, vol. 30, pp. 2599-2610, 2021, doi: 10.1109/ 
TIP.2020.3048684. 

Gai, S., Da, F., & Dai, X. (2018). A novel dual-camera calibration method for 3D optical 
measurement. Optics and Lasers in Engineering, 104, 126-134. 

Reyes, A. L., Cervantes, J. M., & Gutiérrez, N. C. (2013). Low cost 3D scanner by means of a 
1D optical distance sensor. Procedia Technology, 7, 223-230. 

Zhang, Z., & Yuan, L. (2012). Building a 3D scanner system based on monocular vision. 
Applied optics, 51(11), 1638-1644. 

Rocchini, C. M. P. P. C., Cignoni, P., Montani, C., Pingi, P., & Scopigno, R. (2001, September). 
A low cost 3D scanner based on structured light. In Computer Graphics Forum (Vol. 
20, No. 3, pp. 299-308). Oxford, UK and Boston, USA: Blackwell Publishers. 

Zhang, C. (2021). PL-GM: RGB-D SLAM With a Novel 2D and 3D Geometric Constraint Model 
of Point and Line Features. IEEE Access, 9, 9958-9971. 

Lhuillier, M. (2018). Surface reconstruction from a sparse point cloud by enforcing visibility 
consistency and topology constraints. Computer Vision and Image nderstanding, 
52-71. 

 



 
98 

 

Sheng, B., Zhao, F., Yin, X., Zhang, C., Wang, H., & Huang, P. (2018). A lightweight surface 
reconstruction method for online 3D scanning point cloud data oriented toward 
3D printing. Mathematical Problems in Engineering, 2018. 

Mineo, C., Pierce, S. G., & Summan, R. (2019). Novel algorithms for 3D surface point cloud 
boundary detection and edge reconstruction. Journal of Computational Design 
and Engineering, 6(1), 81-91. 

R. J. Wilson and S. Chiang, “Image processing techniques for obtaining registration 
information with scanning tunneling microscopy,” J. Vac. Sci. Technol. A, Vac., Surf., 
Films, vol. 6, no. 2, pp. 398–400, Mar. 1988. 

S. Lee, P. Horkaew, W. Caspersz, A. Darzi, and G.Z. Yang, “Assessment of shape variation of 
the levator ani with optimal scan planning and statistical shape modeling,” Journal 
of Computer Assisted Tomography, vol. 29, no. 2, pp. 154-162, 2005. 

D.C. Le, J. Chansangrat, N. Keeratibharat, and P. Horkaew, “Symmetric reconstruction of 
functional liver segments and cross-individual correspondence of hepatectomy,” 
Diagnostics, vol. 11, no. 5., 852, 2021. 

Florinsky, V. Igor. “Digital Terrain Analysis in Soil Science and Geology”, Digital Elevation 
Models, pp. 31–41. 2003. 

C. V. Nguyen, S. Izadi and D.  Lovell, “Modeling kinect sensor noise for improved 3d 
reconstruction and tracking”. In 2012 second international conference on 3D 
imaging, modeling, processing, visualization & transmission, pp. 524-530. Oct, 2013. 

J. Zhang, and X. Lin, “Advances in fusion of optical imagery and LiDAR point cloud applied 
to photogrammetry and remote sensing”, International Journal of Image and Data 
Fusion, 8(1), pp. 1-31. 2017. 

P. Liang, Z. Fang, B. Huang, H. Zhou, X. Tang, and C. Zhong, “PointFusionNet: Point 
feature fusion network for 3D point clouds analysis”, Applied Intelligence, 51(4), 
pp. 2063-2076, 2021. 

Z. Wang, Y. Xu, Q. He, Z. Fang, G. Xu, and J. Fu, “Grasping pose estimation for SCARA robot 
based on deep learning of point cloud” , The International Journal of Advanced 
Manufacturing Technology, 108(4), pp. 1217-1231, 2020. 

 



 
99 

 

J. Ying, and X. Zhao, “Rgb-D Fusion For Point-Cloud-Based 3d Human Pose Estimation” In 
2021 IEEE International Conference on Image Processing (ICIP), pp. 3108-3112, Sep, 
2021. 

C. Wang,  D. Xu, Y. Zhu, R. Martín-Martín, C. Lu,L. Fei-Fei, and S. Savarese, “Densefusion: 6d 
object pose estimation by iterative dense fusion”, In Proceedings of the IEEE/CVF 
conference on computer vision and pattern recognition, pp. 3343-3352, 2019. 

S. Vosselman, “Fusion of laser scanning data, maps, and aerial photographs for building 
reconstruction”, In IEEE International Geoscience and Remote Sensing 
Symposium,Vol. 1, pp. 85-88. Jun, 2002. 

C. H Lin, C. Kong, and S. Lucey, (2018 , April). Learning efficient point cloud generation for 
dense 3d object reconstruction. In proceedings of the AAAI Conference on Artificial 
Intelligence,Vol. 32, No. 1. 

Z. Ouyang, Y. Liu, C. Zhang, and J. Niu, (2 0 1 7 , December). A cgans-based scene 
reconstruction model using lidar point cloud. In 2 0 1 7  IEEE International 
Symposium on Parallel and Distributed Processing with Applications and 2017 IEEE 
International Conference on Ubiquitous Computing and Communications 
(ISPA/IUCC), pp. 1107-1114. 

R. Scona, M. Jaimez, Y. R. Petillot, M. Fallon, and D. Cremers, “Staticfusion: Background 
reconstruction for dense rgb-d slam in dynamic environments”, In 2 0 1 8  IEEE 
International Conference on Robotics and Automation (ICRA), pp. 3849-3856. May, 2018. 

K. Tateno, F. Tombari, I. Laina, and N. Navab, “Cnn-slam: Real-time dense monocular slam 
with learned depth prediction”, In Proceedings of the IEEE conference on 
computer vision and pattern recognition, pp. 6243-6252, 2017 

B. Li, Y. Wang, Y. Zhang, W. Zhao, J. Ruan, and P. Li, “GP-SLAM: laser-based SLAM approach 
based on regionalized Gaussian process map reconstruction”, Autonomous 
Robots, 44(6), pp. 947-967, 2020. 

Q. Y. Zhou, J. Park, and V. Koltun, Fast global registration. In European conference on 
computer vision, pp. 766-782, Oct, 2016. 

 
 

 



 
100 

 

R. B. Rusu, N. Blodow, and M. Beetz, “Fast point feature histograms (FPFH) for 3 D 
registration”, In 2009  IEEE international conference on robotics and automation, 
pp. 3212-3217, May, 2009. 

S. Gold, A. Rangarajan, C. P. Lu, S. Pappu, and E. Mjolsness, “New algorithms for 2D and 3D 
point matching: pose estimation and correspondence”, Pattern recognition, 31(8), 
pp. 1019-1031, 1998. 

H. Chui, and A. Rangarajan, “A new point matching algorithm for non-rigid registration”, 
Computer Vision and Image Understanding, 89(2-3), pp. 114-141, 2003. 

Y. Tsin, and T. Kanade, “A correlation-based approach to robust point set registration”, In 
European conference on computer vision, pp. 558-569. May, 2004. 

X. Lu, S. Wu, H. Chen, S. K. Yeung, W. Chen, and M. Zwicker, “GPF: GMM-inspired feature-
preserving point set filtering”, IEEE transactions on visualization and computer 
graphics, 24(8), pp. 2315-2326, 2017.  

O. Hirose, “A Bayesian formulation of coherent point drift” IEEE transactions on pattern 
analysis and machine intelligence, 43(7), pp. 2269-2286, 2020. 

C. Kim, H. Son, and C. Kim, “Fully automated registration of 3D data to a 3D CAD model 
for project progress monitoring”,  Automation in Construction, 35 , pp. 587 -594 , 
2013. 

F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva and G. Taubin, “The ball-pivoting 
algorithm for surface reconstruction,” IEEE Transactions on Visualization and 
Computer Graphics, vol. 5, no. 4, pp. 349-359, Oct, 1999. 

H. Seo, T. Kin, and T. Igarashi, “A Mesh-Aware Ball-Pivoting Algorithm for Generating the 
Virtual Arachnoid Mater,” in Proceeding of Medical Image Computing and 
Computer Assisted Intervention (MICCAI 2019), Lecture Notes in Computer Science, 
vol. 11768, pp. 592-600. 

X. Guo, J. Xiao, and Y. Wang, “A survey on algorithms of hole filling in 3 D surface 
reconstruction.” Vis Comput, vol. 34, pp. 93–103, 2018. 

I. Laina, C. Rupprecht, V. Belagiannis, F. Tombari and N. Navab, “Deeper Depth Prediction 
with Fully Convolutional Residual Networks,” presented at 2 0 1 6  Fourth 
International Conference on 3D Vision (3DV), pp. 239-248, 2016. 

 



 
101 

 

P. Horkaew, G.Z. Yang, “Construction of 3D dynamic statistical deformable models for 
complex topological shapes,” in Lecture Notes in Computer Science; Springer: 
Berlin/Heidelberg, Germany, pp. 217–224, 2004. 

W. Ma and Q Li, “An Improved Ball Pivot Algorithm-Based Ground Filtering Mechanism for 
LiDAR Data,” Remote Sensing, vol. 11, no. 10, 1179, 2019. 

S. Gai, F. Da, X. Dai, “A novel dual-camera calibration method for 3 D optical 
measurement”, Optics and Lasers in Engineering, 104, pp. 126-134, 2018. 

J. Digne and C. Franchis, “The Bilateral Filter for Point Clouds,” Image Processing On Line, 
vol. 7, pp. 278–287, 2017. 

C. Godard, O.M. Aodha, M. Firman and G.J. Brostow, “Digging Into Self-Supervised 
Monocular Depth Estimation,” presented at 2 0 1 9  IEEE/CVF International 
Conference on Computer Vision (ICCV), pp. 3827-3837, Feb. 2020. 

A. Geiger, P. Lenz, C. Stiller, and R. Urtasun,  “Vision meets robotics: The kitti dataset”. The 
International Journal of Robotics Research, 32(11), pp. 1231-1237, 2013. 

S. Kullback, “Information Theory and Statistics,” New York, NY, USA, Dover Publications, 1968. 
Lotem Nadir, “Ball-Pivoting Algoritm [Online]. Available: 
https://github.com/Lotemn102/Ball-Pivoting-Algorithm, Accessed on: May 10, 2022. 
T. Zinßer, J. Schmidt, and H. Niemann, “A refined ICP algorithm for robust 3 - D 

correspondence estimation”, In Proceedings 2003  international conference on 
image processing, pp. 695, Sep, 2003. 

E. Trucco, A. Fusiello, and V. Roberto, “Robust motion and correspondence of noisy 3 -D 
point sets with missing data”, Pattern recognition letters, 20(9), 889-898, 1999 

T. Jost, and H. Hugli, “A multi-resolution ICP with heuristic closest point search for fast and 
robust 3D registration of range images” In Fourth International Conference on 3-D 
Digital Imaging and Modeling, 2003. 3DIM 2003. Proceedings, pp. 427-433, Oct, 2003. 

J. M. Phillips, R. Liu, and C. Tomas, “Outlier robust ICP for minimizing fractional RMSD”. In 
Sixth International Conference on 3-D Digital Imaging and Modeling (3DIM 2007) , 
pp. 427-434. Oct, 2010. 

H. Men, B. Gebre, and K. Pochiraju, “Color point cloud registration with 4D ICP algorithm”. 
In 2011 IEEE International Conference on Robotics and Automation, pp. 1511-1516, 
May 2010. 

 



 
102 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

APPENDIX I 
 

LIST OF PUBLICATIONS 
 

  

 



 
103 

 

 
List of Publications 
 
W. Yookwan, K. Chinnasarn, C. So-In and P. Horkaew, "Multimodal Fusion of Deeply 

Inferred Point Clouds for 3D Scene Reconstruction using Cross-Entropy ICP," 
in IEEE Access, 2022, doi: 10.1109/ACCESS.72022.3192869.  

 



 
104 

 

 
BIOGRAPHY 

 
Watcharaphong Yookwan Received The B.Sc. Degree In Computer Science And 

The M.Sc. Degree In Informatics From Burapha University, Chon Buri, Thailand, In 2016 
And 2018, Respectively. He Is Currently Pursuing The Ph.D. Degree In Computer 
Engineering With The Suranaree University Of Technology, Nakhon Ratchasima, 
Thailand. His Research Interests Include Image Processing And Digital Geometry 
Processing. 

 

 

 


	Cover
	Approved
	Abstract
	Acknowledgement
	Content
	Chapter1
	Chapter2
	Chapter3
	Chapter4
	Chapter5
	Reference
	Appendix
	Biography



