ENHANCED HYDROGEN SORPTION PROPERTIES OF MgH₂-BASED SYSTEMS FOR HYDROGEN STORAGE APPLICATIONS

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Chemistry Suranaree University of Technology Academic Year 2021 การเพิ่มคุณสมบัติการดูดซับไฮโดรเจนของแมกนีเซียมไฮไดรด์ สำหรับการประยุกต์ใช้เป็นแหล่งกักเก็บไฮโดรเจน

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรดุษฎีบัณฑิต สาขาวิชาเคมี มหาวิทยาลัยเทคโนโลยีสุรนารี ปีการศึกษา 2564

ENHANCED HYDROGEN SORPTION PROPERTIES OF MgH₂-BASED SYSTEMS FOR HYDROGEN STORAGE APPLICATIONS

Suranaree University of Technology has approved this thesis submitted in partial fulfillment of the requirements for the Degree of Doctor of Philosophy.

Thesis Examining Committee

(Prof. Dr. James R. Ketudat-Cairns)

Chairperson

ance Oth

(Assoc. Prof. Dr. Rapee Utke)

Member (Thesis Advisor)

(Dr. Claudio Pistidda) Member (Thesis Co-Advisor)

(Dr. Thi Thu Le)

Member

amus Annan

(Prof. Dr. Jatuporn Wittayakun)

Member

Thuranun Sintanon

(Assoc. Prof. Dr. Theeranun Siritanon) Member

char's

5475NU

(Assoc. Prof. Dr. Chatchai Jothityangkoon) Vice Rector for Academic Affairs and Quality Assurance

(Prof. Dr. Santi Maensiri) Dean of Institute of Science

โสภิดา เที่ยงวิริยะ : การเพิ่มคุณสมบัติการดูดซับไฮโดรเจนของแมกนีเซียมไฮไดรด์สำหรับ การประยุกต์ใช้เป็นแหล่งกักเก็บไฮโดรเจน (ENHANCED HYDROGEN SORPTION PROPERTIES OF MgH₂-BASED SYSTEMS FOR HYDROGEN STORAGE APPLICATION) อาจารย์ที่ปรึกษา : รองศาสตราจารย์ ดร.ระพี อูทเคอ, 81 หน้า

คำสำคัญ: การดูดซับไฮโดรเจน/ โลหะไฮไดรด์/ จลพนศาสตร์/ การซึมผ่านของไฮโดรเจน/คาร์บอน/ การกักเก็บไฮโดรเจน/ โลหะทรานซิซั่น/ แมกนีเซียม/ การแทนที่/ การผันกลับได้

การกักเก็บไฮโดรเจนในวัสดุแมกนีซี<mark>ยม</mark> (Mg-based) ยังคงได้รับความสนใจอย่างกว้างขวาง เนื่องจากวัสดุแมกนีเซียมมีข้อดีคือ มีความจุไฮโดรเจน และปริมาตรการกักเก็บสูง (7.6 wt.% H₂ และ 110 kg H₂/ m⁻³ ตามลำดับ) มีความเสถีย<mark>ร</mark>ในการเกิดปฏิกิริยากักเก็บและปลดปล่อยไฮโดรเจน ราคา ถูก และมีความต้านทานความร้อน อย่า<mark>ง</mark>ไรก็ตาม พันธะระหว่างแมกนีเซียมและไฮโดรเจน มีความ ้ เสถียรทางความร้อนสูง ส่งผลให้ต้อง<mark>ใช้อ</mark>ุณหภูมิสูง<mark>ใน</mark>การทำให้เกิดปฏิกิริยาการปลดปล่อยไฮโดรเจน และอัตราเร็วในการเกิดปฏิกิริยาช้ำ ดังนั้นการจะปรับปรุงคุณสมบัติการดูดซับไฮโดรเจนของ แมกนีเซียมไฮไดรด์ (MgH2) นั้<mark>นได้</mark>ถูกศึกษาดังนี้ (i) กา<mark>รคอ</mark>มโพสิตแมกนีเซียมไฮไดรด์กับลิเทียมโบ โรไฮไดรด์ (LiBH4) และ ผสมกับเส้นใยคาร์บอนระดับนาโนเมตร (activated carbon nanofiber, ACNFs) (ii) การเติมโลห<mark>ะนิก</mark>เกิ<mark>ล (Ni) ในระบบ MgH₂/Fe นอกจ</mark>ากนี้ยังได้ศึกษาการเพิ่มขนาดถังกัก เก็บไฮโดรเจนของระบบ MgH₂ ที่เติม TiF₄ และ คาร์บอนนาโนทิวบ์ (MgH₂-TiF₄-MWCNTs) จาก การศึกษาประสิทธิภาพก<mark>ารกักเก็บไฮโดรเจน</mark>ของคอมโพสิต 2LiBH₄-MgH₂ ที่ถูกอัดเป็นเม็ด ทั้งที่เติม และไม่เติม ACNFs พบว่า<mark>ตัวอย่างที่เติม 30 wt.% ACNFs ส</mark>ามารถเกิดปฏิกิริยาการปลดปล่อย ไฮโดรเจนได้ที่อุณหภูมิต่ำกว่าตัวอย่างที่ไม่ถูกเติม ACNFs มากถึง 85 °C อีกทั้งยังลดพลังงานก่อกัม มันต์ (Activation energy, Ea) ระหว่างปฏิกิริยาปลดปล่อยไฮโดรเจนของ MgH2 และ LiBH4 นอกจากนี้การคงรูปร่าง ความสามารถในการซึมผ่านของไฮโดรเจน และการนำความร้อน ระหว่าง การเกิดปฏิกิริยา ยังได้รับการปรับปรุงหลังเติม ACNFs สำหรับประสิทธิภาพการกักเก็บไฮโดรเจน และกลไกการเกิดปฏิกิริยาของตัวอย่างแมกนีเซียมไอเอิร์นไฮไดรด์ (Mg₂FeH₆) ทั้งที่เติม (5 และ 20 wt. %) และไม่เติมโลหะนิกเกิลถูกศึกษา พบว่าตัวอย่าง Mg2FeH6 เกิดปฏิกิริยาการปลดปล่อย ไฮโดรเจนเพียงขั้นตอนเดียวที่อุณหภูมิ 250 ℃ ความจุไฮโดรเจน 5.4 wt.% ส่วนตัวอย่างที่เติมโลหะ ้นิกเกิลเกิดการปลดปล่อยไฮโดรเจน 2 ขั้นตอนที่อุณหภูมิ 170 °C และ 220-250 °C ซึ่งเป็นปฏิกิริยา การปลดปล่อยไฮโดรเจนของแมกนีเซียมนิกเกิลไฮไดรด์ (Mg2NiH4) และ Mg2FeH6 ตามลำดับ ความจุ ไฮโดรเจน 2.83-3.70 wt.% นอกจากนี้ตัวอย่างที่เติม 20 wt.% โลหะนิกเกิล เกิดสารใหม่ขึ้นคือ แมกนี้เซียมไอเอิร์นนิกเกิลไฮไดรด์ (Mg2Fe0.75Ni0.25H6) ระหว่างเกิดปฏิกิริยาการปลดปล่อยไฮโดรเจน

ซึ่ง Mg₂Fe_{0.75}Ni₀₋₂₅H₆ ช่วยเพิ่มความเร็วในการดูดซับไฮโดรเจนเมื่อเปรียบเทียบกับตัวอย่าง Mg₂FeH₆ ที่ไม่เติมโลหะนิกเกิล และการศึกษาการเพิ่มขนาดถังกักเก็บไฮโดรเจนของระบบ MgH₂ ที่เติม TiF₄ และ คาร์บอนนาโนทิวบ์ที่มีระบบแลกเปลี่ยนความร้อน พบว่าตัวอย่างนี้เกิดปฏิกิริยาการปลดปล่อย ไฮโดรเจนที่อุณหภูมิต่ำกว่าตัวอย่างที่ไม่ถูกเติม TiF₄ และ MWCNTs จาก 433 °C เป็น 388 °C ความ จุไฮโดรเจน 4.1 wt.% เกิดปลดปล่อยและปฏิกิริยากักเก็บไฮโดรเจนสมบูรณ์ภายใน 120-150 และ 25 นาทีตามลำดับซึ่งใช้เวลาสั้นกว่าเมื่อเปรียบเทียบกับงานวิจัยก่อนหน้านี้ และเมื่อทำปฏิกิริยาการ กักเก็บและปลดปล่อยไฮโดรเจนผ่านไป 20 รอบ ได้ความจุไฮโดรเจนเฉลี่ย และความจุไฮโดรเจนเมื่อ เทียบกับวัสดุ 5.60 และ 5.40 wt.% ตามลำดับ โดยไม่มีการรวมตัวกันของอนุภาคตัวอย่าง ดังนั้นการ เพิ่มความเร็วในการเกิดปฏิกิริยาและการผันกลับได้ของตัวอย่างนี้ไม่เพียงแต่อธิบายได้โดยผลของ ตัวเร่งปฏิกิริยา TiF₄ และ MWCNTs แต่ยังรวมถึงผลของระบบแลกเปลี่ยนความร้อนอีกด้วย สำหรับ การศึกษาสมรรถนะทางไฟฟ้าของระบบถังกักเก็บที่ต่อกับ PEMFC พบว่าผลิตกำลังไฟฟ้ารวมได้ 19 Wh

สาขาวิชาเคมี ปีการศึกษา 2564

ลายมือชื่อนักศึกษา <u>ไว้สมัดก เส้ญจริงิ</u>ก ลายมือชื่ออาจารย์ที่ปรึกษา <u>() ห</u>น. ลายมือชื่ออาจารย์ที่ปรึกษาร่วม

11

SOPHIDA THIANGVIRIYA : ENHANCED HYDROGEN SORPTION PROPERTIES OF MgH₂-BASED SYSTEMS FOR HYDROGEN STORAGE APPLICATIONS. THESIS ADVISOR : ASSOC. PROF. RAPEE UTKE, Ph.D. 81 PP.

Keyword: HYDROGEN SORPTION/ METAL HYDRIDES/ KINETICS/ HYDROGEN PERMEABILITY/ CANBON/ HYDROGEN STORAGE/ TRANSITION METAL/ MAGNESIUM/ SUBSTITUTION/ REVERSIBILITY

Mg-based hydrogen storage materials have been investigated due to their advantages of high gravimetric and volumetric storage capacities (7.6 wt. % H₂ and 110 kg H₂ m⁻³, respectively), good cycling stability, abundance, low cost, and heat resistance. However, the high thermal stability of Mg-H bonds leads to a high dehydrogenation temperature and sluggish kinetics. Therefore, the improvement of hydrogen sorption properties of MgH₂ by (i) compositing with LiBH₄ and doping with activated carbon nanofibers (ii) doping with Ni into MgH_2 /Fe were investigated in detail. Moreover, upscaling of MgH₂ doped with TiF₄ and multi-walled carbon nanotubes (MWCNTs) to tank scale was proposed. The hydrogen storage performance of compacted 2LiBH₄- MgH₂ composite with and without activated carbon nanofiber (ACNFs) was studied. The dehydrogenation temperature of compacted 2LiBH₄-MgH₂ with 30 wt.% ACNFs (onset temperature = 275 °C) was significantly lower than that of 2LiBH_{4} - MgH₂ (Δ T=85 °C) together with reduction of activation energy (E_a) during dehydrogenation of MgH₂ and LiBH₄ after doping with ACNFs. Moreover, the mechanical stability, hydrogen permeability, and thermal conductivity, during cycling were enhanced. The hydrogen storage performance and dehydrogenation pathways of Mg₂FeH₆ with (5 and 20 wt.% Ni) and without Ni were studied. As-prepared Mg₂FeH₆ showed single-step dehydrogenation at 250 °C with hydrogen capacity of 5.4 wt.% H₂. Mg₂FeH₆ with Ni doping showed two-steps dehydrogenation at 170 and 220-250 °C of Mg_2NiH_4 and Mg_2FeH_6 , respectively, with storage capacity of 2.83-.3.70 wt.% H_2 . Moreover, 20 wt.% Ni exhibited a new phase of Mg₂Fe_{0.75}Ni_{0.25}H₆ during dehydrogenation. Mg₂Fe_{0.75}Ni_{0.25}H₆ had improved hydrogen sorption kinetics compared to Mg₂FeH₆, together with the improved kinetics and cycling stability. MgH₂-TiF₄-MWCNT

based tank with heat exchanger system was studied. The dehydrogenation temperature of MgH₂-TiF₄-MWCNT was reduced from 433 to 388 °C with hydrogen capacity of 4.1 wt.%. De/rehydrogenation was done within 120-150 and 25 min, respectively, which were a shorter time compared with the previous work. Upon the 20th cycling, the average capacity and material capacity were 5.60 and 5.40 wt.% H₂, respectively, with no particle agglomeration. Thus, the enhanced kinetics and reversibility of the MH-TiF₄-MWCNT-based tank was explained by not only catalytic effects of TiF₄ and MWCNTs but also effective heat exchanger system. For the study of electrical performances, the MgH₂TiF₄-MWCNTs tank was combined with the PEMFC stack. It produced total electrical power of 19 Wh.

School of Chemistry Academic Year 2021

Student's Signature	Sophida Thianguiriya
Advisor's Signature_	Uthe Roga
Co-advisor's Signatu	re Cloud o Potado

ACKNOWLEDGEMENTS

This work would have never been accomplished without the contribution of many people. Firstly, I would like to thank my supervisor, Assoc. Prof. Dr. Rapee Utke for her expert guidance, support, discussions, encouragement, putting up with my moaning in many years and always believing in me over the course of my thesis.

I also would like to thank my co-supervisor, Dr. Claudio Pistidda from Institute of Hydrogen Technology, Helmholtz-Zentrum Hereon GmbH, Geestacht, Germany for his great help and support. Other members from his group, such as Dr. Thi Thu Le, Dr. Gökhan Gizer, Yuanyuan Shang, and Annbritt Hagenah are also gratefully acknowledged for valuable help with the experimental work and kindly suggestion during my visits to Helmholtz-Zentrum Hereon GmbH.

I wish to gratefully acknowledge the financial support I have received from The Royal Golden Jubilee (RGJ) Ph.D. program, Thailand (PHD/0153/2558) which enable me to continue my study after my master degree.

Also, I would like to thank all members of the Hydrogen Storage Material Lab and Solid-state Chemistry at SUT for their help, fulfill, discussions and friendship. I would like to thank The Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, Thailand and the people from Mechanical work shop at Facility Building 1 (F1) SUT, especially Mr. Nasart Boonyada for characterization equipment.

Finally, I would also like to thank my parents for their encouragement and moral support in every step of my academic career.

Sophida Thiangviriya

CONTENTS

Page

ABST	RACT	IN THA	ΑΙ			
ABST	ABSTRACT IN ENGLISHIII					
ACKN	IOWL	EDGEM	IENTS	V		
CONT	FENT	S		VI		
LIST (OF T	ABLES		VII		
LIST (OF F	IGURES		.VIII		
CHAF	PTER					
I	INT	RODUC		1		
	1.1	Hydrog	gen energy	1		
	1.2	Hydrog	gen storage methods and applic <mark>atio</mark> ns	2		
	1.3	Refere	nces	6		
II	LITE	ERATUF	RE REVIEW	8		
	2.1	Hydrog	gen in metal hydrides	8		
	2.2	Proper	ties of magnesium hydride and their tuning strategies	. 11		
	2.3	Refere	nces	. 22		
III	EXP	ERIMEN	ITAL SECTION	28		
	3.1	Chemi	cals	. 28		
	3.2	Appara	atus	. 28		
		3.2.1	Glove box	. 28		
		3.2.2	High energy ball milling	. 29		
		3.2.3	Autoclave	. 31		
	3.3	Prepar	ation of compacted 2LiBH ₄ -MgH ₂ -ACNFs	. 31		
	3.4	Synthe	esis of Ni-doped Mg ₂ FeH ₆	. 32		
	3.5	Up sca	aling of MgH_2 -TiF ₄ -MWCTs to tank scale	. 32		
	3.6	Charac	terizations	. 34		
		3.6.1	Chemical compositions and structure	. 34		

CONTENTS (Continued)

				Page	
		3.6.1.1	Powder X-ray diffraction (PXD)	34	
		3.6.1.2	In situ synchrotron radiation powder X-ray diffraction		
			(SR-PXD)	34	
		3.6.1.3	X-ray absorption spectroscopy (XAS)	35	
		3.6.1.4	Fourier Trans <mark>fo</mark> rm Infrared Spectrometry (FTIR)	36	
	3.6.2	Hydroge	en sorption pr <mark>ope</mark> rties	37	
		3.6.2.1	Simultaneo <mark>us</mark> Thermal Analysis (STA) coupled with		
			Mass Spectroscopy (MS)	37	
		3.6.2.2	Differential scanning calorimetry (DSC)	37	
		3.6.2.3	Sievert-type apparatus in laboratory scale	38	
		3.6.2.4	Sievert's type apparatus in tank scale	40	
	3.6.3	Integrat	ion of PEMFC stack and hydrogen storage tank	41	
	3.6.4	Hydroge	en diffusion and thermal conductivity properties	42	
		3.6.4.1	Hydrogen permeability	42	
		3.6.4.2	Thermal conductivity	43	
3.	7 Refere	ences		44	
IV R	ESULTS	AND DIS	CUSSION	46	
4.	1 Comp	acted 21	_iBH ₄ -MgH ₂ -ACNF	46	
4.	2 Ni-dop	Ni-doped Mg ₂ FeH ₆			
4.	.3 MgH ₂ -	MgH ₂ -TiF ₄ -MWCNT hydrogen storage tank67			
4.	4 Refere	ences		74	
V C	ONCLUS	IONS		79	
CURRIC	JLUM VI	ТАЕ		81	

LIST OF TABLES

Page
Materials-based automotive hydrogen storage systems compared
to the 2020 and ultimate targets set by the US-DOE
The comparison of specification and performance of different fuel cars4
Chemicals used in this work
Photographs, thickness, and density of 2Li-MH and 2Li-MH-30% ACNF
in as-prepared and rehydrogenated states
Thermal conductivity, thermal diffusivity, and specific heat
capacity of compacted 2Li-MH and 2Li-MH-30% ACNF55
Phase compositions and quantities in as-prepared samples
were determined by Rietveld refinement
Scattering paths, coordination number, the path range (<i>R</i>), the
mean squared displacement (σ^2) and <i>R</i> -factor extracted from
the fitted data for Ni atoms substituted in Mg ₂ FeH ₆ of 20%Ni-Mg-Fe65
Specification of PEMFC stack supplying hydrogen from
MH-TiF ₄ -MCNT tank

LIST OF FIGURES

Figure		Page
1.1	World historical and projected primary energy consumption from 1970	
	to 2050	1
1.2	The global surface air temperat <mark>ur</mark> e anomalies	2
1.3	Physical- and material-based methods to store hydrogen	5
2.1	Interaction of hydrogen with material in various steps	8
2.2	Pressure-composition isotherm plot of metal-to-metal hydride phase	
	transition	10
2.3	Activation energy (E_a) and enthalpy (ΔH) diagram	11
2.4	Crystal structures of five MgH2 phases crystallite size	12
2.5	The changes in decomposition temperature for MgH_2 vs. crystallite size.	13
2.6	TDS spectra of the xMgH ₂ @CT composites	14
2.7	Thermal desorption mass spectra (TDMS) of hydrogen for milled-MgH $_2$	
	and MgH ₂ doped with 1 mol % Cu ^{nano} , Fe ^{nano} , Co ^{nano} , and Ni ^{nano}	15
2.8	Temperature programmed desorption during dehydrogenation of all as-	
	prepared samples	16
2.9	Experimental evolutions of temperature, pressure, and hydrogen	
	volume during dehydrogenation at 340 °C under 0.1 MPa	17
2.10	Axial and radial permeabilities of MgH_2 disks versus ENG content	18
2.11	Thermodynamics of ${\rm LiBH_4/MgH_2}$ composite as an example of evolution	
	of the ΔH and ΔS as a function of the reaction paths	19
2.12	Schematic showing the formation procedures of the $Mg_2Fe(Ni)H_6$	21
2.13	DSC curves during desorption of the Mg-Fe-H and Mg-Fe(Ni)-H	22
3.1	Glove box	29
3.2	Different types of ball mill	29
3.3	Autoclave	31
3.4	The components of hydrogen storage tank	33

LIST OF FIGURES (Continued)

Figure		Page
3.5	An airtight sample holder for PXD experiments	34
3.6	In situ SR-PXD sample cell	35
3.7	The set-up at BL5.2 SUT-NANOTEC-SLRI XAS beamline at SLRI,	
	Thailand	36
3.8	FTIR spectrometer of Tensor 27-Hyperion 2000	36
3.9	STA 449 F3 Jupiter coupled with QMS 403C	37
3.10	Photo and schematic diagram of Sievert-type apparatus	38
3.11	Sievert's type apparatus (HERA, Qu <mark>e</mark> bec, Canada)	
3.12	Photo and schematic diagram of Sievert-type apparatus in tank scale	41
3.13	The measurement setup of electrical performances of integrated	
	PEMFC-H ₂ tank system	42
3.14	Schematic diagram of hydrogen permeability setup	43
4.1	Simultaneous STA-MS results during dehydrogenation of 2Li-MH and	
	2Li-MH-30% ACNF.	47
4.2	Dehydrogenation kinetics and reversibility of 2LiMH and 2Li-MH	
	-30% ACNF	48
4.3	PXD and FTIR spectra of as-prepared, dehydrogenated, and	
	rehydrogenated pellets of 2Li-MH.	50
4.4	PXD and FTIR spectra of as-prepared, dehydrogenated, and	
	rehydrogenated of 2Li-MH-30%ACNF	51
4.5	DSC curves with heating rates of 5-20 °C/min and the Kissinger plots	
	of 2Li-MH and 2Li-MH-30%ACNF	53
4.6	Pu and Pd versus time and hydrogen permeability of 2Li-MH and	
	2Li-MH-30%ACNF	54
4.7	Rietveld refinement of SR-PXD results of as-prepared Mg_2FeH_6 ,	
	5%Ni-Mg-Fe, and 20%Ni-Mg-Fe.	67
4.8	First hydrogen desorption kinetics at 330 °C under 10 kPa of pure	
	Mg-Fe, 5%Ni-Mg-Fe, and 20%Ni-Mg-Fe	59

LIST OF FIGURES (Continued)

Figure		Page
4.9	In situ SR-XRD spectra of as-prepared Mg_2FeH_6 and peak intensities	
	versus temperature	60
4.10	In situ SR-XRD spectra of 5%Ni-Mg-Fe and peak intensities versus	
	temperature	61
4.11	In situ SR-XRD spectra of 20%Ni-Mg-Fe and peak intensities versus	
	temperature	62
4.12	Ni K-edge EXAFS data and model fitting in k-space and R-space,	
	and Ni K-edge XANES spectrum of Mg2Fe0.75Ni0. 25	64
4.13	Dehydrogenation kinetics and reversibility under vacuum at 330 °C of	
	Mg ₂ FeH ₆ , 5%Ni-Mg-Fe <mark>, an</mark> d 20%Ni-Mg-Fe	66
4.14	PXD and STA-MS results of as-prepared MH-TiF ₄ -MWCNT	68
4.15	Dehydrogenation of MH-TiF $_4$ -MWCNT based tank at isothermal condition	
	and the positions of thermocouples (TCs) located in the axial and	
	radial directions of the tank	69
4.16	Hydrogenation of MH-TiF ₄ -MWCNT based tank at isothermal condition	70
4.17	Cycling stability upon 20 de/rehydrogenation cycles of MH-TiF4-	
	MWCNT based tank.	71
4.18	PXD spectrum and physical appearance of MH-TiF ₄ -MWCNT after	
	the 20 th hydrogenation	72
4.19	Polarization curve and electrical performance of PEMFC stack	
	supplied with hydrogen gas from MH-TiF ₄ -MWCNT tank	73

CHAPTER I

INTRODUCTION

1.1 Hydrogen energy

Demand for clean and environmentally friendly energy resources has been enhanced due to the awareness of increasing worldwide energy consumption and pollution. From Figure 1.1, world primary energy consumption is projected to peak in 2035 and fossil fuels are most consumed. However, the use of fossils fuel will not last for longer than a few decades due to the limitation of crude oil resources (Shafiee et al, 2009).

Figure 1.1 World historical and projected primary energy consumption from 1970 to 2050 (Randers, 2013).

Moreover, the consumption of fossil fuel also generates pollutants and carbon dioxide (CO_2) , leading to global warming and climate change. For example, in June 2021, the global surface temperature was 0.88 °C, which is warmer than the average value in 1991-2020 (0.21 °C) and the fifth-highest for in the 142-year period (Figure 1.2). (C3S., 2021, NCEI, 2021, and CHANGE, 2021).

Figure 1.2 The global surface air temperature anomalies (NCEI, 2021).

Thus, many scientists are looking for alternative renewable resources to reduce the overall dependency on fossil fuels. Extensive research has recently been carried out on renewable energy sources, such as hydrogen, solar, wind, nuclear, tidal, hydro, biofuels, and geothermal energy. Hydrogen has drawn a lot of attention due to its high energy density per unit mass of 120 MJ/kg (~three and seven times greater than gasoline and coal, respectively), cleanness, and abundance, and various production methods.

1.2 Hydrogen storage methods and applications

To use hydrogen energy effectively, one of the most important components is an effective hydrogen storage system with high volumetric and gravimetric capacities (30 gH₂/L and 45 gH₂/kg, respectively) and moderate operating temperatures and pressures (-40 to 85 °C and 5-12 bar H₂) as targeted by the US-DOE for 2025 (Table 1.1) (Partnership, 2017). These targets are still challenging to achieve, and no existing material can well satisfy them.

	Gravimetric		Volumetric Density	Temperature	Pressure
Storage System Targets	Density		(kg H ₂ /L system)	(°C)	(bar H ₂)
	(kg H ₂ /kg system)			
2025	0.055		0.040	-40-85	5-12
Ultimate	65		50	-40-85	5-12
	Gravimetric		Volumetric Density	Temperature	Pressure
Current Status	Density		(kg H ₂ /L system)	(°C)	(bar H ₂)
	(kg H ₂ /kg system	ר)			
Metal Hydride (MH): NaAlH ₄	12	Н	12	125	0.2-10
Sorbent: MOF-5	38		21	-193	100
Chemical Hydrogen (CH)	46		40	-	-
Storage: Off-Board					
Regenerable (AB)	E I	4	H		

Table 1.1 Materials-based automotive hydrogen storage systems compared to the2020 and ultimate targets set by the US-DOE (US-DOE, 2017).

As an energy source, hydrogen can be used for different purposes including portable electronics, transportation, and stationary applications. However, several projects focus on personal vehicles, (Hao and Sarkis, 2016) eliminating carbon dioxide and others air pollution to the environment. Hydrogen is environmentally friendly since it can generate energy by converting the chemical free energy of hydrogen into electrical energy via a fuel cell. The most suitable type of fuel cells for mobile application is the polymer electrolyte membrane fuel cells (PEMFCs) owing to low operating temperatures about 80 °C (Sharaf and Orhan, 2014), high power density, rapid change in power on demand, and quick start up. Recently, the hydrogen fuel cell car is successfully developed by Toyota (Mirai) (TOYOTA, 2020), Mercedes Benz (GLC F-Cell) (Mercedes-Benz, 2021), Hyundai (Nexo) (HYUNDAI, 2018), and Honda (Clarity) (HONDA, 2017).

Properties	Toyota	Mercedes Benz	Hyundai	Honda
	Mirai	GLC F-Cell	Nexo	Clarity
Max. Power /kW	114	155	120	130
Max. Speed/kmh ¹	178	160	179	165
Battery	Ni-metal hydride	Li-ion	Li-ion	Li-ion
Tank volume /L	122.4	-	156	141.0
H ₂ storage/kg	5.00	4.40	6.33	5.00
Fuel tank pressure	70	70	70	70
MPa				
Refueling time/min	5	3	5	3
Rang/km	480	328	756	650

 Table 1.2 The comparison of specification and performance of different fuel cars are listed in

Hydrogen can be stored mainly by physical- and material-based methods (Figure 1.3). For the physical-based method, hydrogen stored in the forms of compressed gas (350-700 bar H_2 at room temperature) and liquefied hydrogen (at a cryogenic temperature) of -253 °C) provide storage capacities of 40 and 71 gH₂/L, respectively (Ren et al., 2017). Due to severe storage pressure and temperature conditions of physical-based methods, not only safety issue is concerned but also the cost of fabrication for storage tanks with high tensile strength (compressed gas) and superior insulator (liquified H_2). Alternatively, materials-based methods of chemical absorption in either solid-state hydrides (metal, complex, and composite hydrides) or liquid organic hydrogen as well as physical adsorption in porous materials with high surface area through van der Waals interaction, have been significantly interested (Ren et al., 2017). Among these materials-based methods, solid-state hydrides are promising for hydrogen storage applications due to their high volumetric and gravimetric hydrogen capacities (70-150 gH₂/L and 2-25 wt.% H₂, respectively) (Ren et al., 2017). Moreover, since hydride materials are claimed to store hydrogen in high purity, they can be used directly to supply hydrogen to fuel cells without a purification system. However, solid-state hydrides still have some obstacles based on their severe operating temperature and pressure conditions, slow hydrogen sorption kinetics (rehydrogenation of LiBH₄ at ~600 °C under 155 bar H₂ for >12 h) (He et al., 2019), and release of toxic gases during operation (e.g., B_2H_6 from LiBH₄) (Yan et al., 2012).

Figure 1.3 Physical- and material-based methods to store hydrogen (Ren et al., 2017).

In this work, we aim to approach the 2025 targets set by US-DOE, especially gravimetric and volumetric capacities of 5.5 wt.% H_2 and 30 gH₂/L, respectively, as well as reduction of operating temperatures and pressures (-40 to 85 °C and 5-12 bar H₂ for absorption) (US-DOE, 2017). Among hydride-based hydrogen storage materials, magnesium hydride (MgH₂) is one of the most promising candidates due to high gravimetric and volumetric storage capacities (7.6 wt.% H₂ and 110 kg H₂ m⁻³, respectively), good cycling stability, abundance, low cost, and heat resistance (Zhang et al., 2020). In addition, MgH₂ has the highest energy density (9 MJ/kg Mg) among all reversibility hydrides for hydrogen storage application (Jain et al., 2010). We would like to improve hydrogen sorption properties of MgH₂ by (i) compositing with LiBH₄ and doping with activated carbon nanofibers (ACNFs) (ii) doping with Ni into MgH₂/Fe system. Moreover, upscaling of MgH₂ doped with TiF₄ and multi-walled carbon nanotubes (MWCNTs) to tank scale is proposed. The goal of this study is to improve hydrogen sorption kinetics and reversibility of MgH_2 -based hydrogen storage in both laboratory powder and tank scale.

1.3 References

- The Copernicus Climate Change Service (C3S). (2021). Surface air temperature for June 2021. [On-line]. Avialable: https://climate.copernicus.eu/surface-air-temperatur e-june-2021.
- CHANGE, N. G. C. (2021). NASA's AIRS Tracks Record-Breaking Heat Wave in Pacific Northwest. [On-line]. Avialable: https://climate.nasa.gov/news/3095/nasas-airstracks-record-breaking-heat-wave-in-pacific-northwest/.
- Hao, H., Geng, Y., and Sarkis, J. (2016). Carbon footprint of global passenger cars: Scenarios through 2050. *Energy*, *101*, 121-131. doi:10.1016/j.energy. 2016.01.08
 9.
- He, Q., Zhu, D., Wu, X., Dong, D., Jiang, X., and Xu, M. (2019). The dehydrogenation mechanism and reversibility of LiBH₄ doped by active Al* derived from AlH₃. *Metals*, *9*, 559.doi:10.20944/preprints201904.0158.v1.
- HONDA. (2017). Honda Clarity Fuel Cell 2017-Press Kit. [On-line]. Available: https://hon danews.eu/at/de/cars/media/pressreleases/107266/honda-clarity-fuel-cel2017 -pressemappe.
- HYUNDAI. (2018). Hyundai NEXO press kit. [On-line]. Available: http://www.hyundai.new s /eu/models/electrified/nexo/press-kit.html.
- Jain, I. P., Lal, C., and Jain, A. (2010). Hydrogen storage in Mg: A most promising material. International Journal of Hydrogen Energy, 35(10), 5133-5144. doi:10.1016/j.ijhyd ene.2009.08.088.
- Mercedes-Benz. (2021). Mercedes-Benz GLC F-CELL. [On-line]. Available: https://www. mercedes-benz.de/passengercars/mercedes-benz-cars/models/glc/glc-f- cel/d eer-neue-glc-f-cell/stage.module.html.
- NCEI, N. (2021). Global Climate Report-June 2021. [On-line]. Avialable: https://www.nc d c.noaa.gov/sotc/global/202106.

- Partnership, U. S. D. (2017). Target Explanation Document: Onboard Hydrogen Storage for Light-Duty Fuel Cell Vehicles. [On-line]. Avialable: https://www.energy.gov/ sites/prod/files/2017/05/f34/fcto_targets_onboard_hydro_storage_explanation .pdf.
- Randers, J. (2013). Energy Consumption to 2050, Peak oil news and message boards. [On-line]. Avialable: http://peakoilbarrel.com/world-energy-2014-2050-part-3/.
- Ren, J., Musyoka, N. M., Langmi, H. W., Mathe, M., and Liao, S. (2017). Current research trends and perspectives on materials-based hydrogen storage solutions: A critical review. *International Journal of Hydrogen Energy*, 42(1), 289-311. doi:10.1016/j.ijhydene.2016.11.195.
- Shafiee, S., and Topal, E. (2009). When will fossil fuel reserves be diminished. *Energy Policy*, *37*(1), 181-189. doi:10.1016/j.enpol.2008.08.016.
- Sharaf, O. Z., and Orhan, M. F. (2014). An overview of fuel cell technology: Fundamentals and applications. *Renewable and Sustainable Energy Reviews*, *32*, 810-853. doi:10.1016/j.rser.2014.01.012.
- TOYOTA. (2020). The toyota mirai. [On-line]. Available: https://www.toyota-europe.com /world-of-toyota/feel/environment/better-air/fuel-cell-vehicle.
- Yan, Y., Remhof, A., Hwang, S. J., Li, H. W., Mauron, P., Orimo, S., and Zuttel, A. (2012).
 Pressure and temperature dependence of the decomposition pathway of LiBH₄.
 Physical Chemistry Chemical Physics, 14(18), 6514-6519. doi:10.1039/c2cp4013
 1b.
- Zhang, X. L., Liu, Y. F., Zhang, X., Hu, J. J., Gao, M. X., and Pan, H. G. (2020). Empowering hydrogen storage performance of MgH₂ by nanoengineering and nanocatalysis. *Materials Today Nano*, *9*. doi:10.1016/j.mtnano.2019.100064.

CHAPTER II LITERATURE REVIEW

2.1 Hydrogen storage in metal hydrides

Generally, mechanisms to store hydrogen in the form of solid-state hydrides include physical adsorption of hydrogen molecule (van der Waals forces), dissociation of H₂, chemisorption, and penetration of H atoms. Activation energy barrier has to be crossed for the chemisorption to take place. Afterward, hydrogen diffusion as well as nucleation and growth of hydride, proceed. This is accompanied by the phase transformation (α to β), resulting in the change in crystal structure or lattice parameters. A typical sequence of steps during hydrogen adsorption in metal hydride is provided in Figure 2.2 (Gupta et al., 2021).

Figure 2.1 Interaction of hydrogen with material including steps (i) physisorption, (ii) chemisorption, (iii) solid solution, and (iv) compound formation (Broom, 2011).

From the thermodynamic point of view, it is examined through pressurecomposition isotherms (PCT) (Figure 2.2) (Bardhan et al., 2011). The PCT curve shows the correlation of the equilibrium pressure and the hydrogen content at a given temperature. At low pressures, a solid solution is formed between the metal and hydrogen (α -phase), then nucleation and growth of the metal hydride initiate (β phase). The two phases coexist and the amount of β -phase increases rapidly with further uptake of hydrogen at constant pressure. This is revealed as the plateau region in the PCT plot. The length of the plateau determines the practical amount of hydrogen stored. As the content of the β -phase reaches saturation point, the pressure starts to increase significantly. The equilibrium pressure (P_{eq}) as a function of temperature is related to the changes of enthalpy (Δ H) and entropy (Δ S) as explained by the Van't Hoff equation (equation (2.1)).

$$\ln(P_{eq}/P_0) = \Delta H/RT - \Delta S/R$$
(2.1)

where P_{eq} is the plateau pressure, T is the temperature, P_0 is the reference pressure (1 bar), R is the gas constant (R = 8.314 J/mol.K), Δ H and Δ S are the enthalpy and entropy changes during the $\alpha \rightarrow \beta$ transformation, respectively.

For practical applications, the pressure at which this transition takes place is close to 1 bar at a relatively low temperature (~100 °C). Assuming that Δ S is the entropy of gaseous hydrogen (130 J mol⁻¹K⁻¹), the enthalpy of formation of the hydride (Δ H) should be between -30 and -55 kJmol⁻¹ to achieve P_{eq} = 1 bar H₂ 40-150 °C (Züttle, 2008). Unfortunately, none of the hydrides with sufficiently high hydrogen capacity has the desired thermodynamic properties.

Figure 2.2 Pressure-composition isotherm plot of metal-to-metal hydride (α to β) phase transition (left) and Van't Hoff plot related to the phase transition (right) (Bardhan et al., 2011).

Not only thermodynamics but also the slow sorption kinetics is an obstacle to practical application for metal hydrides. A metal hydrogen system is required to rapidly absorb and desorb hydrogen at moderate temperature. The rate of many chemical reactions is dominated by the presence of activation barriers in the reaction pathway. The H₂ absorption and desorption of many hydrides are chemical reactions, which show significantly high activation barriers. Figure 2.3 shows a typical activation barrier for a generic system, where the activation energy (E_a) quantifies the value of the barrier and shows the effect of catalyst on the system. Although, the catalyst has no effect on the thermodynamics of the system as the nature of the reactants and products is unchanged, it favors E_a reduction (Züttle et al., 2008).

Figure 2.3 Activation energy (E_a) and enthalpy (Δ H) diagram of de/rehydrogenation reaction AH₂ \leftrightarrow A + H₂.

Kissinger analysis can be employed to measure the E_a of the reaction using the results from differential scanning calorimetry (DSC), decried in equation (2.2)

$$\ln(\beta/T_p^2) = -E_a/RT_p + \ln(k_0)$$
(2.2)

where β is the heating rate (°C/min), T_p is the peak temperature of desorption, R is the gas constant (8.314 j mol⁻¹ K⁻¹), E_a is the activation energy, and k₀ is a constant. The activation energy is calculated from the slope of $ln(\beta ramp/T_p^2)$ versus $1/T_p$ plot (Züttle, 2008).

2.2 Properties of magnesium hydride and their tuning strategies

Among all the hydride materials, magnesium hydride (MgH₂) has attracted particular attention because of its high gravimetric and volumetric capacities (7.6 wt%. H₂ and 110 gH₂/L, respectively), low cost, and natural abundance (Jain et al., 2010 and Crivello et al., 2016). MgH₂ is an ionic compound of an alkaline earth metal (Mg) and hydride (H⁻). At ambient condition, MgH₂ has α -MgH₂ rutile structure (space group P42/mnm) and transforms to γ , δ , ε , and ζ when pressures increase to 5, 10, 100, and 180 GPa, respectively (Figure 2.4) (Zhang et al., 2017).

Figure 2.4 Crystal structures of α -MgH₂ at 1 atm (a), γ -MgH₂ at 5GPa (b), δ -MgH₂ at 10 GPa (c), ϵ -MgH₂ at 100 GPa (d), and ζ -MgH₂ at 180 GPa (e) (Zhang et al., 2017).

Although Mg/MgH₂ is attractive for storing hydrogen, high dehydrogenation temperature (T >400 °C), slow sorption kinetics, and rapid oxidation with oxygen in air prohibit its practical use in fuel cells (El-Eskandarany et al., 2017). Several approaches have been proposed to improve the hydrogen storage properties of MgH₂, such as particle size reduction (ball milling and nanoconfinement) (Czujko et al., 2020 and Ma et al., 2021), addition of catalysts and additives (Sun et al., 2020 and Wang et al., 2021), reactive hydride composites (Cho et al., 2016), and alloying with other metals (Sun et al., 2020). The first approach of Mg/MgH₂ particle size reduction using mechanical ball milling technique with different parameters (e.g., ball-to-powder weight ratio, milling time, and speed) is the most common method to increase the contact surface and decrease the diffusion distance of hydrogen for significant improvement in sorption kinetics. Rahmaninasab et al. (2018) studied the effects of ball milling times (10, 30, and 40 h) on the hydrogen desorption properties of MgH₂. By increasing milling time up to 40 h, the onset desorption temperature of MgH₂

decreased by 80 °C as compared with as-received MgH_2 (Rahmaninasab et al., 2018). Next, Czujko et al. (2020) found that dehydrogenation temperature of MgH_2 reduced almost linearly with the size of crystallites (Figure 2.5) (Czujko et al., 2020).

Next approach is the nanoconfinement of MgH₂ into nanoporous materials with high surface area and porosity. Nanoconfined MgH₂ showed greatly enhanced desorption properties, good cyclic stability, and preventing agglomeration during cycling. For example, MgH₂ was confined into nanoporous resorcinol-formaldehyde carbon aerogels prepared by solution impregnation of dibutyl magnesium (MgBu₂) precursor solution and hydrogenation. Two carbon aerogel scaffolds with pore volumes of 1.27 and 0.65 mL/g and average pore sizes of 22 and 7 nm were studied. It was found that the smaller the pores size, the faster the dehydrogenation rate. This was possibly due to the particle size reduction of MgH₂ after nanoconfinement, leading to high reactive surface area and kinetic improvement. Furthermore, ultra-small MgH₂ nanoparticles embedded in an ordered microporous carbon (15, 25, and 50 wt. % MgH₂ denoted as 15MgH₂@CT, 25MgH₂@CT, and 50MgH₂@CT, respectively) was prepared by solution impregnation using MgBu₂ precursor solution (Zlotea et al., 2015). The more the MgH₂ loading content, the bigger the particle size. For example, the average particle sizes of

15MgH₂@CT, 25MgH₂@CT, and 50MgH₂@CT were 1.3, 3.0, and 4-10 nm, respectively. Thermal desorption spectroscopy (TDS) showed that bulk MgH₂ started to desorb hydrogen at 635 K, while nanoconfined samples of $15MgH_2@CT$, $25MgH_2@CT$, and $50MgH_2@CT$ started at 390, 390, and 525 K, respectively (Figure 2.6). Improved desorption kinetics was due to the shorter diffusion length of hydrogen within nanoparticles.

Figure 2.6 TDS spectra of the xMgH₂@CT composites with x = 15, 25, and 50 wt.% Mg and bulk MgH₂ recorded at a heating rate of 1 K·min⁻¹ (Zlotea et al., 2015).

Another strategy to enhance the properties of MgH₂ is catalytic doping to improve the hydrogen sorption kinetics of MgH₂. In addition, catalysts generally act as activation agents to form trapping centers or intermediate metastable states, reducing the reaction barriers (West et al., 2013) and accelerating reaction rate (Gaboardi et al., 2014). For instance, Nobuko et al. (2005) examined the catalytic effects of 3d-transition metals (Fe^{nano}, Co^{nano}, Ni^{nano}, and Cu^{nano}) on hydrogen desorption properties of MgH₂ (Figure 2.7). In particular, 1 mol % Ni^{nano}-doped MgH₂ prepared by ball milling (2h) shows the best hydrogen desorption properties, for example, the desorption peak temperature (260 °C) was about 100 °C lower than that of milled MgH₂ (Nobuko et al., 2005).

Figure 2.7 Thermal desorption mass spectra of hydrogen for milled MgH_2 and MgH_2 doped with 1 mol % Cu^{nano}, Fe^{nano}, Co^{nano}, and Ni^{nano} nanoparticle metals (Nobuko et al., 2005).

synergistic effects of transition metal halides (TiF₄, NbF₄, and ZrCl₄) and activated carbon nanofibers (ACNF) on reversible hydrogen storage of MgH₂ was investigated by Plerdsranoy et al. (2019). The onset and main dehydrogenation temperatures of MgH₂ reduced from 416 and 423 °C respectively, to 173 and 265 °C, respectively, with 4.7-5.0 wt.% H₂ within 1 h 30 min (Figure 2.8). Moreover, the activation energy (E_a) for dehydrogenation of MgH₂ significantly reduced from 140 to 37 kJ/mol (Plerdsranoy et al., 2019).

Figure 2.8 Temperature programmed desorption during dehydrogenation of all asprepared samples (Plerdsranoy et al., 2019).

Currently, MgH_2 in the scales of hydrogen storage tanks has been considerably proposed. Chaise et al. (2010) reported that MgH_2 -based tank (123 g) stored reversibly 80 nl H_2 (5.8 wt.% H_2) at a pressure lower than 1 MPa. However, rehydrogenation and dehydrogenation rates were slow (2 h 30 min and 11 h, respectively) (Figure 2.9) as a consequence of the limitation of heat diffusion due to low thermal conductivity of MgH_2 powder.

Figure 2.9 Experimental evolutions of temperature, pressure, and hydrogen volume during dehydrogenation at 340 °C under 0.1 MPa (A) and hydrogenation at 300 °C under 0.77 MPa (B) of MgH_2 -based tank (Chaise et al., 2010)

Therefore, for large-scale tanks using MgH₂ as hydrogen storage material, the basic problem lies with very low effective thermal conductivity, hydrogen diffusion, and mechanical stability during the cycling of hydride beds. In order to improve these problems, the MgH₂ was ball milled with expanded natural graphite (ENG), compacted into the pellets, and packed into the tanks integrated with heat exchanger systems in different geometries such as tube (Garrier et al., 2011 and Chibani and Bougriou, 2017), copper fins (Souahlia et al., 2014), and honeycomb (Bhouri et al., 2011). Furthermore, ENG improved not only the thermal conductivity but also hydrogen permeability, especially in radial direction as presented in Figure 2.10 (Garrier et al., 2011).

Figure 2.10 Axial and radial permeabilities of MgH_2 disks versus ENG contents (A) and diffusion path of hydrogen in compacted MgH_2 containing ENG (B) in the axial (a) and radial flows (b) (Garrier et al., 2011).

Next approach is the compositing of MgH_2 with other two or more hydrides, socalled reactive hydride composites (RHCs). RHCs lead to the formation of an unstable phase and/or a more stable product during dehydrogenation, facilitating the release of hydrogen. For instance, MgH_2 composites with complex hydrides, such as amides (e.g., $LiNH_2$) (M. Ma et al., 2017), alanates (e.g., $NaAlH_4$) (Bhatnagar et al., 2014), and borohydrides (e.g., $LiBH_4$) (Cho et al., 2016). The MgH_2 -LiBH₄ composite has been widely investigated owing to high gravimetric hydrogen storage capacities of 11.4 wt.% H₂. The desorption proceeds in two steps as shown in equations (2.3) and (2.4).

$$2\text{LiBH}_4 + \text{MgH}_2 \longrightarrow 2\text{LiH} + \text{MgB}_2 + 4\text{H}_2 \tag{2.3}$$

$$2LiH + MgB_2 \longrightarrow 2Li + MgB_2 + H_2$$
(2.4)

From Figure 2.11, it reveals the desorption enthalpy of 33 kJ mol⁻¹ H₂ for equation (2.3) lower than that of pristine LiBH₄ (49 kJ mol⁻¹ H₂). In contrast, the entropy of equation (2.3) (112 J K⁻¹ mol⁻¹ H₂) is in between those of pristine LiBH₄ (97 J K⁻¹ mol⁻¹ H₂) and MgH₂ (131 J K⁻¹mol⁻¹ H₂). Achieving hydrogen reversibly for borohydrides is also found to be easier under this approach.

However, particle size agglomeration of RHCs was observed during cycling. The reduction of grain/particle size was done by addition of carbon-based materials, for

examples single-walled carbon nanotubes (SWCNTs), muti-walled carbon nanotubes (MWCNTs), activated carbon nanofibers (ACNFs), activated carbon (AC), and graphite. The addition of carbon-based materials not only reduces the particle size but also improves hydrogen diffusion and thermal conductivity. Furthermore, nanoconfinement of 2LiBH₄-MgH₂ into nanoporous scaffold has been investigated because the nanoscale shortens diffusion distances for hydrogen and other light elements, leading to faster hydrogen desorption and absorption rates upon cycling as well as improvement of thermodynamic performance (Utke et al., 2016, Gosalawit–Utke et al., 2014 and Gosalawit-Utke et al., 2013). For further improvement of the packing efficiency, the hydride composite of LiBH₄-MgH₂ was compacted to pellet shape, benefiting thermal conductivity and mechanical stability during cycling (Jepsen et al., 2013). For example, the compacted sample of LiNH₂-MgH₂-ENG (Pohlmann et al., 2012), 2LiBH₄-MgH₂ doped with MWCNTs-TiO₂ (Plerdsranoy et al., 2017), and nanoconfined LiBH₄-LiAlH₄ in ACNFs (Plerdsranoy et al., 2017) showed not only the improvement of dehydrogenation kinetics and mechanical stability under high stress and expansion during cycling but also significant enhancement of thermal conductivity.

The last approach is alloying of MgH₂ with other metals. Besides thermodynamic improvement, hydrogen diffusion rates in Mg-based alloys have been demonstrated to be far more superior than that of pure Mg. Accordingly, introducing alloying elements to synthesize intermetallic compounds is an effective method to facilitate both the kinetics and thermodynamics of MgH₂. In principle, there are two ways to prepare intermetallic hydrides. The first one is forming stable intermetallic hydrides with determined stoichiometry. Typical example is binary Mg₂Ni and ternary Mg₃MNi₂ (M = Al, Ti, Mn) alloys, which the stable intermetallic hydrides are formed when reacting with H₂. The second one is a class of Mg-based solid solution or non-stoichiometry compounds, which can store a desirable amount of H₂, such as Mg-In and Mg-In-Ni alloys (Lelis et al., 2010). Among Mg-based intermetallic hydride, Mg₂FeH₆ has drawn great attention for storing hydrogen due to the highest volumetric hydrogen density of 150 kg H²/m³, relatively high gravimetric content of 5.43 wt.% H₂, and low cost (Mg and Fe) (Herrich et al., 2004). However, poor kinetics of Mg₂FeH₆ formation due to long distance for hydrogen diffusion obstructs its practical uses. Two methods

are proposed to solve this problem including (i) increase of the driving force for H, Mg, and Fe diffusion and (ii) reduction of H diffusion distance. Chen et al. (2016) synthesized $Mg_2Fe(Ni)H_6$ nanowires from coarse-grained Mg and nano-sized-Fe(Ni) precursors by using γ -Fe stabilized by Ni instead of α -Fe commonly used for Mg_2FeH_6 formation. γ -Fe benefited the reduction of diffusion distance of Fe at the atomic level due to the same fcc lattice as Mg_2FeH_6 , which might remarkably shorten the diffusion distance of Fe during the formation of Mg_2FeH_6 from MgH_2 and Fe. In addition, the catalytic effect of Ni could facilitate the formation of Mg_2FeH_6 (Figure 2.12) (Chen et al., 2016).

Figure 2.12 Schematic illustrations showing the formation of $Mg_2Fe(Ni)H_6$ from coarsegrained Mg powder and γ -Fe(Ni) nanoparticles (Chen et al., 2016).

Besides, $Mg_2Fe(Ni)H_6$ exhibited the reduction of dehydrogenation temperature and the improved desorption kinetics as compared to Mg_2FeH_6 prepared from α -Fe precursor. The peak dehydrogenation temperature decreases from 614.2 K (Mg_2FeH_6) to 592.6 K ($Mg_2Fe(Ni)H_6$) (Figure 2.13) together with the reduction of sorption enthalpy of Mg_2FeH_6 (from 89 to 69 kj/mol H_2) The improved thermodynamics was attributed to the destabilization of Mg_2FeH_6 through doping with Ni (Batalovic et al., 2014).

Figure 2.13 DSC curves during dehydrogenation of Mg-Fe-H and Mg-Fe(Ni)-H (Chen et al., 2016).

2.3 References

- Bardhan, R., Ruminski, A. M., Brand, A., and Urban, J. J. (2011). Magnesium nanocrystalpolymer composites: A new platform for designer hydrogen storage materials. *Energy & Environmental Science*, 4(12). doi:10.1039/c1ee02258j.
- Batalovic, K., Radakovic, J., Belosevic-Cavor, J., and Koteski, V. (2014). Transition metal doping of Mg₂FeH₆-a DFT insight into synthesis and electronic structure. *Phys Chem Chem Phys, 16*(24), 12356-12361. doi:10.1039/c4cp01020e.
- Bhatnagar, A., Pandey, S. K., Dixit, V., Shukla, V., Shahi, R. R., Shaz, M. A., and Srivastava, O, N. (2014). Catalytic effect of carbon nanostructures on the hydrogen storage properties of MgH₂–NaAlH₄ composite. *International Journal of Hydrogen Energy, 39*(26), 14240-14246. doi:10.1016/j.ijhydene.2014.04.179.
- Bhouri, M., Goyette, J., Hardy, B. J., and Anton, D. L. (2011). Honeycomb metallic structure for improving heat exchange in hydrogen storage system. *International Journal of Hydrogen Energy, 36*(11), 6723-6738. doi:10.1016/j.ijhy dene.2011.02.092.
- Broom, D. P. (2011). Hydrogen Storage Materials, The Characterisation of Their Storage Properties. *Springer London*. 23, ISBN-10:0857292226.
- Chaise, A., de Rango, P., Marty, P., and Fruchart, D. (2010). Experimental and numerical study of a magnesium hydride tank. *International Journal of Hydrogen Energy, 35*(12), 6311-6322. doi:10.1016/j.ijhydene.2010.03.057.
- Chen, X., Zou, J., Zeng, X., and Ding, W. (2016). Hydrogen storage in Mg₂Fe(Ni)H₆ nanowires synthesized from coarse-grained Mg and nano sized γ-Fe(Ni) precursors. *International Journal of Hydrogen Energy*, 41(33), 14795-14806. doi:10.1016/j.ijhydene.2016.06.024.
- Chibani, A., and Bougriou, C. (2017). Effect of the tank geometry on the storage and destocking of hydrogen on metal hydride (LaNi₅H₂). *International Journal of Hydrogen Energy, 42*(36), 23035-23044. doi:10.1016/j.ijhydene.2017.07.102.
- Cho, I. H., Gang, S., Lee. H., Shim, J-H., Park, M., and Choi, Y. N. (2016). Kinetic enhancement of LiBH₄–MgH₂ composite by pre-milled MWCNTs observed by in situ X-ray diffraction measurements. *International Journal of Hydrogen Energy*, 41(47), 22090-22096. doi:10.1016/j.ijhydene.2016.09.141.
- Chuanzhao, Z. G. S., Jingjing, W., Cheng, L., Yuanyuan, J., Xiaoyu, Ku., and Andreas, H. (2017). Prediction of Novel High-Pressure Structures of Magnesium Niobium Dihydride. *Applied Materials & Interfaces, 31*(9), 26169-26176.
- Crivello, J. C., Denys, R. V., Dornheim, M., Felderhoff, M., Grant, D. M., Huot, J., Jensen, T. R., de Jongh, P., Latroche, M., Walker, G. S., Webb, C. J., and Yartys, V. A. (2016). Mg-based compounds for hydrogen and energy storage. *AppliedPhysics A*, *122*(2). doi:10.1007/s00339-016-9601-1.
- Czujko, T., Oleszek, E. E., and Szot, M. (2020). New Aspects of MgH₂ Morphological and Structural Changes during High-Energy Ball Milling. *Materials (Basel), 13*(20). doi:10.3390/ma13204550.
- El-Eskandarany, M. S., Shaban, E., Aldakheel, F., Alkandary, A., Behbehani, M., and Al-Saidi, M. (2017). Synthetic nanocomposite MgH₂/5 wt.% TiMn₂ powders for solid-hydrogen storage tank integrated with PEM fuel cell. *Scientific Reports,* 7(1), 13296. doi:10.1038/s41598-017-13483-0.

- Gennari, F. C., Castro, F. J., and Andrade-Gamboa, J. J. (2002). Synthesis of Mg₂FeH₆ by reactive mechanical alloying: Formation. *Journal of Alloys and Compounds*, 339, 261-267.
- Gaboardi, M., Bliersbach, A., Bertoni, G., Aramini, M., Vlahopoulou, G., Pontiroli, D., Mauron, P., Magnani, G., Salviati, G., Züttel, A., and Riccò, M. (2014). Decoration of graphene with nickel nanoparticles: study of the interaction with hydrogen. *Journal of Materials Chemistry A, 2*(4), 1039-1046. doi:10.1039/c3ta14127f.
- Garrier, S., Chaise, A., de Rango, P., Marty, P., Delhomme, B., Fruchart, D., and Miraglia,
 S. (2011). MgH₂ intermediate scale tank tests under various experimental conditions. *International Journal of Hydrogen Energy*, *36*(16), 9719-9726. doi:10.1016/j.ijhydene.2011.05.017.
- Gosalawit-Utke, R., Milanese, C., Nielsen, T. K., Karimi, F., Saldan, I., Pranzas, K., Jensen, T. R., Marini, A., Klassen, T., and Dornheim, M. (2013). Nanoconfined 2LiBH₄– MgH₂ for reversible hydrogen storages: Reaction mechanisms, kinetics and thermodynamics. *International Journal of Hydrogen Energy, 38*(4), 1932-1942. doi:10.1016/j.ijhydene.2012.11.064.
- Gosalawit–Utke, R., Thiangviriya, S., Javadian, P., Laipple, D., Pistidda, C., Bergemann, N., Horstmann, C., T. R., Marini, A., Klassen, T., and Dornheim, M. (2014). Effective nanoconfinement of 2LiBH₄–MgH₂ via simply MgH₂ premilling for reversible hydrogen storages. *International Journal of Hydrogen Energy, 39*(28), 15614-15626. doi:10.1016/j.ijhydene.2014.07.167.
- Gupta, A., Baron, G. V., Perreault, P., Lenaerts, S., Ciocarlan, R. G., Cool, P., Mileo, P. G.
 M., Rogge, S., Van Speybroeck, V., Watson, G., Van Der Voort, P., Houlleberghs,
 M., Breynaert, E., Martens, J., and Denayer, J. F. M. (2021). Hydrogen Clathrates:
 Next Generation Hydrogen Storage Materials. *Energy Storage Materials*, 41, 69107. doi:10.1016/j.ensm.2021.05.044.
- Herrich, M., Ismail, N., Lyubina, J., Handstein, A., Pratt, A., and Gutfleisch, O. (2004).
 Synthesis and decomposition of Mg₂FeH₆ prepared by reactive milling. *Materials Science and Engineering: B, 108*(1-2), 28-32. doi:10.1016/j.mseb.2003
 .10.031.

- Huang, Z. G., Guo, Z. P., Calka, A., Wexler, D., and Liu, H. K. (2007). Effects of carbon black, graphite and carbon nanotube additives on hydrogen storage properties of magnesium. *Journal of Alloys and Compounds, 427*(1-2), 94-100. doi:10.1016 /j.jallcom.2006.03.069.
- Ismail, M., Juahir, N., and Mustafa, N. S. (2014). Improved Hydrogen Storage Properties of MgH₂ Co-Doped with FeCl₃ and Carbon Nanotubes. *The Journal of Physical Chemistry C, 118*(33), 18878-18883. doi:10.1021/jp5046436.
- Huot, J., Hayakawa, H., and AkibaH, E. (1997). Preparation of the hydrides Mg_2FeH_6 and Mg_2CoH_5 by mechanical. *Journal of Alloys and Compounds 248*, 164-167.
- Jain, I. P., Lal, C., and Jain, A. (2010). Hydrogen storage in Mg: A most promising material. International Journal of Hydrogen Energy, 35(10), 5133-5144. doi:10.1016/j.ijhyd ene.2009.08.088.
- Jepsen, J., Milanese, C., Girella, A., Lozano, G. A., Pistidda, C., Bellosta von Colbe, J. M., Marini, A., Klassen, T., and Dornheim, M. (2013). Compaction pressure influence on material properties and sorption behaviour of LiBH₄–MgH₂ composite. *International Journal of Hydrogen Energy, 38*(20), 8357-8366. doi:10.1016/j.ijhy dene.2013.04.090.
- Lai, Q., Sun, Y., Wang, T., Modi, P., Cazorla, C., Demirci, U. B., Ares Fernandez, J. R., Leardini, F., and Aguey, Z. K. F. (2019). How to Design Hydrogen Storage Materials Fundamentals, Synthesis, and Storage Tanks. *Advanced Sustainable Systems, 3*(9). doi:10.1002/adsu.201900043.
- Lelis, M., Milcius, D., Wirth, E., Hålenius, U., Eriksson, L., Jansson, K., Kadir, K., Ruan, J., Sato, T., Yokosawa, T., and Noréus, D. (2010). A mechanically switchable metal insulator transition in Mg₂NiH₄ discovers a strain sensitive, nanoscale modulated resistivity connected to a stacking fault. *Journal of Alloys and Compounds, 496*(1-2), 81-86. doi:10.1016/j.jallcom.2010.02.135.
- Liu, G., Wang, Y., Jiao, L., and Yuan, H. (2014). Solid-state synthesis of amorphous TiB₂ nanoparticles on graphene nanosheets with enhanced catalytic dehydrogenation of MgH₂. *International Journal of Hydrogen Energy, 39*(8), 3822-3829. doi:10.1016/j.ijhydene.2013.12.133.

- Luo, Y., Wang, P., Ma, L. P., and Cheng, H. M. (2007). Enhanced hydrogen storage properties of MgH₂ co-catalyzed with NbF₅ and single-walled carbon nanotubes. *Scripta Materialia*, *56*(9), 765-768. doi:10.1016/j.scriptamat.2007.01. 016
- Ma, M., Ouyang, L., Liu, J., Wang, H., Shao, H., and Zhu, M. (2017). Air-stable hydrogen generation materials and enhanced hydrolysis performance of MgH₂-LiNH₂ composites. *Journal of Power Sources, 359*, 427-434. doi:10.1016/j.jpowsour. 2017.05.087.
- Ma, Z., Panda, S., Zhang, Q., Sun, F., Khan, D., Ding, W., and Zou, J. (2021). Improving hydrogen sorption performances of MgH₂ through nanoconfinement in a mesoporous CoS nano-boxes scaffold. *Chemical Engineering Journal, 406*. doi:10.1016/j.cej.2020.126790.
- Nobuko, H. T. I., and Hironobu, F. (2005). Catalytic Effect of Nanoparticle 3d-Transition Metals on Hydrogen Storage Properties in Magnesium Hydride MgH₂ Prepared by Mechanical Milling. *The Journal of Physical Chemistry B, 109*, 7188 7194.
- Plerdsranoy, P., Chanthee, S., and Utke, R. (2017). Compaction of LiBH₄-MgH₂ doped with MWCNTs-TiO₂ for reversible hydrogen storage. *International Journal of Hydrogen Energy*, 42(2), 978-986. doi:10.1016/j.ijhydene.2016.11.066.
- Plerdsranoy, P., Javadian, P., Jensen, N. D., Nielsen, U. G., Jensen, T. R., and Utke, R. (2017). Compaction of LiBH₄-LiAlH₄ nanoconfined in activated carbon nanofibers: Dehydrogenation kinetics, reversibility, and mechanical stability during cycling. *International Journal of Hydrogen Energy, 42*(2), 1036-1047. doi:10.1016/j.ijhydene.2016.09.056.
- Plerdsranoy, P., Thiangviriya, S., Dansirima, P., Thongtan, P., Kaewsuwan, D., Chanlek, N., and Utke, R. (2019). Synergistic effects of transition metal halides and activated carbon nanofibers on kinetics and reversibility of MgH₂. *Journal of Physics and Chemistry of Solids, 124*, 81-88. doi:10.1016/j.jpcs.2018.09.001.
- Pohlmann, C., Röntzsch, L., Hu, J., Weißgärber, T., Kieback, B., and Fichtner, M. (2012). Tailored heat transfer characteristics of pelletized LiNH₂–MgH₂ and NaAlH₄ hydrogen storage materials. *Journal of Power Sources, 205*, 173-179. doi:10.1016/j.jpowsour.2012.01.064.

- Rahmaninasab, M. A., Raygan, S., Abdizadeh, H., Pourabdoli, M., and Mirghaderi, S. H. (2018). Properties of activated MgH₂ + mischmetal nanostructured composite produced by ball-milling. *Materials for Renewable and Sustainable Energy*, 7(3). doi:10.1007/s40243-018-0122-z.
- Vajo, J. J., Skeith, S. L., and Mertens, F. (2005). Reversible Storage of Hydrogen in Destabilized LiBH_{4.} *The Journal of Physical Chemistry B, 109*, 3719-3722.
- Souahlia, A., Dhaou, H., Mellouli, S., Askri, F., Jemni, A., and Ben, N. S. (2014). Experimental study of metal hydride-based hydrogen storage tank at constant supply pressure. *International Journal of Hydrogen Energy, 39*(14), 7365-7372. doi:10.1016/j.ijhydene.2014.02.121.
- Sun, Z., Lu, X., Nyahuma, F. M., Yan, N., Xiao, J., Su, S., and Zhang, L. (2020). Enhancing Hydrogen Storage Properties of MgH₂ by Transition Metals and Carbon Materials:
 A Brief Review. *Frontiers in Chemistry*, 8, 552. doi:10.3389/fchem.2020-00552.
- Utke, R., Thiangviriya, S., Javadian, P., Jensen, T. R., Milanese, C., Klassen, T., and Dornheim, M. (2016). 2LiBH₄–MgH₂ nanoconfined into carbon aerogel scaffold impregnated with ZrCl₄ for reversible hydrogen storage. *Materials Chemistry and Physics, 169*, 136-141. doi:10.1016/j.matchemphys.2015.11.040.
- Wang, P., Tian, Z., Wang, Z., Xia, C., Yang, T., and Ou, X. (2021). Improved hydrogen storage properties of MgH₂ using transition metal sulfides as catalyst. *International Journal of Hydrogen Energy*, *46*(53), 27107-27118. doi:10.1016/j.ij hydene.2021.05.172.
- Xie, W., West, D. J., Sun, Y., and Zhang, S. (2013). Role of nano in catalysis: Palladium catalyzed hydrogen desorption from nanosized magnesium hydride. *Nano Energy, 2*(5), 742-748. doi:10.1016/j.nanoen.2012.12.010.
- Zlotea, C., Oumellal, Y., Hwang, S.-J., Ghimbeu, C. M., de Jongh, P. E., and Latroche, M. (2015). Ultrasmall MgH₂ Nanoparticles Embedded in an Ordered Microporous Carbon Exhibiting Rapid Hydrogen Sorption Kinetics. *The Journal of Physical Chemistry C, 119*(32), 18091-18098. doi:10.1021/acs.jpcc.5b05754.
- Züttle. A., Borgschulte, A., and Schlapbach. L. (2008). Hydrogen as a Future Energy Carrier. WILEY-VCH Verg GmbH & Co. KGaA, Weinhein, ISBN: 978-3-527-30817-0.

CHAPTER III

EXPERIMENTAL SECTION

3.1 Chemicals

 Table 3.1 Chemicals used in this work.

Chemicals	Formular	specification	Supplier
Magnesium	Mg	≥99 %	Aldrich
Lithium borohydride	LiBH ₄	90% (hydrogen	Aldrich
		storage grade)	
Magnesium hydride	MgH ₂	98%	Alfa Aesar
Titanium tetrafluoride	TiF ₄	99%	Acros Organics
Multiwall carbon nanotubes	-	H -	Nano
			Generation
Activated carbon nanofibers			
Iron 💋	Fe	99.99%	Aldrich
Nickel	Ni	≥9 <mark>9%, -</mark> 100 mesh	Alfa Aesar
Polyacrylonitrile	(C ₃ H ₃ N) _n	Mw=150,000 g/mol	Aldrich
N, N-dimethylformamide	HCON(CH ₃) ₂	reagent	Carlo Erba
15han		ia su	Reagent
Potassium hydroxide	KOH	Analytical	QRëC

3.2 Apparatus

3.2.1 Glove box

Due to the sensitivity of hydride materials to air and moisture, the procedures during samples preparation and some characterizations were handled in a filled- N_2 glove boxes.

Figure 3.1 Glove box (Omni-Lab System, VAC) used in the laboratory.

3.2.2 High energy ball milling

The ball milling was used for particle size reduction and sample preparation.

Figure 3.2 Different types of ball mill, a Spex 8000 M Mixer/Mill (A).

(A)

Figure 3.2 (Continued) Different types of ball mill, a QM0.4L Planetary Ball Mill, Nanjing Chishun Science & Technology (B) and a Planetary Mono Mill PULVERISETTE 6 (C).

3.2.3 Autoclave

The autoclave was used for heat treatment process at high pressure and temperature.

(C)

(B)

Figure 3.3 Autoclave from Parr Instruments (4838 reactor controller).

3.3 Preparation of compacted 2LiBH₄-MgH₂-ACNFs

The activated carbon nanofibers (ACNFs) were prepared by the carbonization and electrospinning techniques. The 10 % w/v solution of polyacrylonitrile (PAN) in N, N-dimethylformamide was used as polymer precursor for electrospinning. The PAN solution was transferred to polypropylene syringe (10 ml) with stainless steel needle (diameter of 22 mm). A syringe pump injected PAN solution at a flow rate of 1.5 ml/h. The electrospinning was done using the voltage of 10 kV at room temperature with a distance between the spinner and the fiber collector of 15 cm. The PAN- nanofibers were stabilized in the air at 280 °C for 3 h and carbonized at 1000 °C in N₂ for 1 h to obtain carbon nanofibers (CNFs). The CNFs were treated with 30 % w/v KOH for 2 h at 80 °C and dried at room temperature for 24 h. CNFs were carbonized at 800 °C under N₂ atmosphere for 15 min to obtain activated carbon nanofibers (ACNFs). To neutralize residual KOH, ACNFs were immersed in 0.5 M HCl at room temperature for 30 min and washed with deionized water until the pH of the filtrate reached pH 6. The obtained ACNFs were dried at 120 °C for 24 h. Before milling with 2LiBH_4 -MgH₂ composite, ACNFs were treated at 500 °C under vacuum for 3 h.

The composite of 2LiBH_4 -MgH₂ was prepared by milling LiBH₄ and powder Mg under a 2:1 molar ratio (LiBH₄: Mg). The powder sample was milled under a ball to powder ratio (BPR) of 20:1 for 10 h in a N₂-filled glove box using a SPEC Sample Prep 8000D DUAL Mixer/Mill. The mixture was hydrogenated at 350 °C under 80 bar H₂ for 12 h to obtain 2LiBH_4 -MgH₂ composite, denoted as 2Li-MH. ACNFs (30 wt. %) were milled with 2Li-MH for 30 min (BPR = 10:1), to obtain 30 wt. % ACNFs-doped 2Li-MH, denoted as 2Li-MH- 30%. The powder samples of 2Li-MH and 2Li-MH-30% were compacted into the pellets (diameter of 12 mm).

3.4 Synthesis of Ni-doped Mg₂FeH₆

Mg₂FeH₆ was synthesized by milling MgH₂ and Fe with a molar ratio of 2:1 (MgH₂: Fe) for 40 h under 20 bar H₂ using a Planetary Mono Mill PULVERISETTE 6. The BPR and the rotational speed of 30: 1 and 500 rpm, respectively, were applied. The as-milled sample was hydrogenated at 550 °C under 45 bar H₂ for 15 h with a Parr 4838 reactor controller (Figure 3.3). After heat treatment, the sample was milled using a Spex SamplePrep 8000M MIXER/MILL with BPR of 10:1 for 90 min under Ar atmosphere to obtain as-prepared Mg₂FeH₆. Ni powder of 5 and 20 wt.% was milled with as-prepared Mg₂FeH₆ for 30 min with BPR of 10:1 under Ar atmosphere. The mixtures were sintered at 450 °C under 60 bar H₂ for 48 h using a sieverts-type apparatus designed by HERA, Quebec, Canada to obtain Mg₂FeH₆ doped with 5 and 20 wt.% Ni, denoted as 5%Ni-Mg-Fe and 20%Ni-Mg-Fe, respectively.

3.5 Up scaling of MgH₂-TiF₄-MWCTs to tank scale

Mg powder was hydrogenated under 15-20 bar H₂ for 12 h at 320 °C to achieve as-prepared MgH₂. TiF₄ (5 wt.%) was milled for 5 h and milled with as-prepared MgH₂ for 3 h using BPR and rotation speed of 10:1 and 580 rpm, respectively. The powder sample of MgH₂ doped with TiF₄ was hydrogenated under 10-15 bar H₂ for 2 h at 250 °C. The obtained sample was milled with 5 wt.% treated MWCNTs for 30 min using BPR and rotational speed of 10:1 and 580 rpm, respectively, to obtain MgH₂ doped with 5 wt.% each of TiF₄ and MWCNTs, denoted as MH-TiF₄- MWCNT. MH-TiF₄-MWCNT (45.15 g) was packed tightly into the stainless-steel mesh cylinder (SS304, No. 120), placed into the storage tank (packing volume of 96.2 mL) (Figure 3.4(A)). The top flange was mounted with hydrogen supply tube and five K-type thermocouples (TC1-TC5), located at different locations inside the storage tank, while the bottom one was with a double tube heat exchanger wrapped with SS mesh (Figure 3.4(A)). Heat transfer fluid (compressed air) was supplied to the inner tube and flowed through the space between the inner and outer tubes (Figure 3.4(D)).

Figure 3.4 The components of hydrogen storage tank (A), positions of thermocouples along the tank length (B) and radius (C), and central tube heat exchanger (D).

3.6 Characterizations

3.6.1 Chemical compositions and structures

3.6.1.1 Powder x-ray diffraction (PXD)

Powder x-ray diffraction (PXD) was performed using a D2 PHASER, Bruker with Cu K α radiation (λ =1.5406 Å) and. The diffractions were collected in a 2 θ range of 10-80° with a scanning step of 0.02°/s. To prevent the sample from oxidation or hydrolysis, it was packed in an airtight sample holder, covered by a poly (methyl methacrylate) (PMMA) dome (Figure 3.5).

Figure 3.5 An airtight sample holder covered with PMMA dome for PXD experiments.

3.6.1.2 In situ synchrotron radiation powder x-ray diffraction (SR-PXD)

In situ synchrotron radiation powder x-ray diffraction (SR-PXD) was performed at the beamline P.02.1, PETRA III, Deutsches Elektronen-Synchrotron (DESY), Germany. The used wavelength (λ) was 0.20761 Å and the 2D patterns were recorded using a Perkin Elmer plate image detector (2048×2048 pixel with the size of 200×200 μ m²). The sample was loaded into a sapphire capillary under Ar atmosphere in the glovebox and placed into a custom-designed sample cell with controlled temperature and pressure (Figure 3.6). The sample was heated from room temperature to 400 °C (5 °C/min), kept at 400 °C for 30 min, and cooled to room temperature. Collected data was integrated into one-dimensional diffraction pattern using a Fit2D software.

Figure 3.6 In situ SR-PXD sample cell.

3.6.1.3 X-ray absorption spectroscopy (XAS)

X-ray absorption spectroscopy (XAS), including x-ray absorption near edge structure (XANES) and extended x-ray absorption fine structure (EXAFS) were conducted at the SUT-NANOTEC-SLRI XAS beamline (BL5.2, electron energy of 1.2 GeV), Synchrotron Light Research Institute (SLRI), Nakhon Ratchasima, Thailand (Figure 3.7) (Kidkhunthod, 2017). XANES and EXAFS spectra at the Ni K-edge (8333 eV) were collected in a fluorescence mode using a 4-element Si-drifted detector. After background subtraction in the pre-edge and post-edge regions, XAS data were normalized using an ATHENA software included in an IFEFFIT package (Kidkhunthod, 2017, Klysubun and Limpijumnong, 2017, Newville, 2001, and Ravel and Newville, 2005). The local structure around Ni atoms was studied by fitting EXAFS data to the simulated model using a nonlinear least square fitting procedure in the ARTEMIS program. Due to the large noise at high k-space, the data fitting was performed with a maximum k-value of 10 Å⁻¹and the fitting quality was evaluated by R-factor.

Figure 3.7 The set-up at BL5.2 SUT-NANOTEC-SLRI XAS beamline, SLRI, Thailand (Kidkhunthod, 2017).

3.6.1.4 Fourier Transform Infrared Spectrometry (FTIR)

Fourier transform infrared spectrometry (FTIR) experiment was carried out in the wavenumber range of 400-4000 cm⁻¹ and the number of scans of 64 using a Tensor 27-Hyperion 2000 (Bruker) (Figure 3.8). The KBr powder was dried at 120 °C overnight prior utilization. The sample was ground with dried KBr using a mortar and pressed under specific pressure to obtain the KBr pellet. The latter was assembled into FTIR spectrometer.

Figure 3.8 FTIR spectrometer of Tensor 27-Hyperion 2000 (Bruker).

3.6.2 Hydrogen sorption properties

3.6.2.1 Simultaneous Thermal Analysis (STA) coupled with Mass Spectroscopy (MS)

The dehydrogenation mechanisms were investigated by simultaneous thermal analysis (STA) and mass spectroscopy (MS) using a STA 449 F3 Jupiter coupled with a QMS 403C (Netzsch) (Figure 3.9). The powder sample (10-20 mg) was placed in an alumina crucible. The samples were heated from room temperature to 500 °C (5 °C/min) under the nitrogen flow of 50 mL/min. The relative composition of hydrogen in the exhaust gas was investigated by MS technique.

Figure 3.9 A STA 449 F3 Jupiter coupled with QMS 403C (Netzsch).

3.6.2.2 Differential scanning calorimetry (DSC)

The activation energy (E_a) during dehydrogenation was determined by differential scanning calorimetry using a DSC 204 F1 PHOENIX, Netzsch. The samples were heated from room temperature to 500 °C with the heating rates of 5, 10, 15, and 20 °C/min under N₂ flow of 50 mL/min. E_a was calculated using a Kissinger method (equation. (3.1)) (Kissinger, 1957) (Plerdsranoy et al, 2017).

$$\ln (\beta / T_{P}^{2}) = -(E_{a} / RT) + \ln(k_{0} R / E_{a})$$
(3.1)

Where β is the heating rate, T_p indicates peak temperature of dehydrogenation in DSC curve, R is gas constant (8.314 j K⁻¹mol⁻¹), and k_0 is frequency factor.

3.6.2.3 Sievert-type apparatus in laboratory scale

Hydrogen de/rehydrogenation performances of the samples were investigated using a sievert-type apparatus (Figure 3.10). The sample (60-70 mg) was packed into the stainless-steel sample holder in N₂ atmosphere in the glove box and transferred to the sievert-type apparatus. Dehydrogenation was investigated by heating the sample to 400 °C under 3 bar H₂. Rehydrogenation was carried out at 400 °C under 80 bar H₂ for 12 h. The amount of hydrogen release and uptake was calculated by the pressure change (ΔP) using the following equation:

$$(\Delta P) V = nRT$$
(3.2)

where P, V, n, R, and T are H_2 pressure (atm), volume of the system (L), the number of hydrogen moles (mol), and gas constant (0.0821 L atm K⁻¹ mol⁻¹) and temperature (K), respectively.

(B)

Figure 3.10 Photo (A) and schematic diagram (B) of Sievert-type apparatus.

Another sievert-type apparatus based on volumetric method used in this thesis work was from HERA, Quebec, Canada (Figure 3.11). The powder sample (150-180 mg) was packed to the sample holder under Ar atmosphere and transferred to the sievert-type apparatus. Dehydrogenation and rehydrogenation were investigated by heating the powder samples to 330 °C (3 °C/min) under 0.1 and 40 bar H_2 for dehydrogenation and rehydrogenation, respectively.

Figure 3.11 Sievert-type apparatus (HERA, Quebec, Canada).

3.6.2.4 Sievert-type apparatus in tank scale

De/rehydrogenation was carried out using a test station automatically controlled by the software developed in a LabVIEW® environment (Figure 3.12) (Thongtan et al., 2018). Two pressure transducers with operating pressures of 0-1500 psig (PX409-1.5KGI, OMEGA Engineering) and 0-3000 psig (PX309-3KGI, OMEGA Engineering) were used to measure the system pressure during the experiments. Hydrogen gas released from and applied to the tank during de/rehydrogenation was controlled by the direct-acting plunger solenoid valves (Type 0255, Bürkert). Hydrogen content liberated during desorption was measured by a mass flow controller (MFC, a Bronkhorst EL-FLOW select F-201CV) with operating flow rate of 0-2 standard L/min (SLM), which standard temperature (Ts) and pressure (Ps) were 294.15 K and 1.0085 bar, respectively. The temperature, pressure, and mass flow rate as well as the command to automatically open and close the solenoid valves were transferred to the computer using the module data loggers (NI USB-6009, National Instruments and Al210, Wisco). Hydrogenation was done under the isothermal condition at setting temperature (T_{set}) of 250-300 °C under 10-20 bar H₂, while dehydrogenation was at T_{set} = 300 °C with the initial pressure of \sim 15 bar H₂, remaining after hydrogenation. During hydrogenation, compressed air at room temperature (T~25-27 °C) with the flow rate of ~3-5 L/min was used as heat transfer fluid. The volume of hydrogen gas released from the tank (standard L, SL) was calculated by integrating the area of the plot between hydrogen flow rate (SLM) and time (min). Total hydrogen storage capacity defined as the combination of material storage capacity and hydrogen content remaining after hydrogenation was calculated by the following equations:

$$V_{STP} = \frac{P_{s}V_{s}T_{STP}}{T_{s}P_{STP}}$$
(3.3)

 V_{STP}

22,4 L/mol

n_{H2}

H₂ capacity (wt.%) =
$$\frac{n_{H2} \times 2.016 \text{ g/mol}}{\text{sample weight (g)}} \times 100$$
 (3.5)

where V_{STP} (L) and Vs (SL) are the volumes of hydrogen gas at standard temperature and pressure condition (STP, T_{STP} = 273.15 K and P_{STP} = 1.0133 bar) and at the standard condition of MFC, respectively. nH₂ (mol) is hydrogen mole and standard molar volume (A)

(B)

Vent \$X H₂ ir V2 N₂ in PT-3 Data acquisition and control module Xv11 V10 MFC /ent/Pump VR ES: = 3-ways ball vale = ball vale \bowtie 181 = Needle valve 品 = Solenoid valve Thermocouple type K Pressure Transducer (0-100 bar) тс PT-1 Computer PT-2 PT-3 = Pressure Transducer (0-200 bar = Pressure Transducer (0-35 bar) = Pressure Gauge = Reference Volume (300 ml) PG VR Temperature Temperature controller

Figure 3.12 Photo (A) and schematic diagram (B) of Sievert-type apparatus in tank scale.

3.6.3 Integration of PEMFC stack and hydrogen storage tank

Proton exchange membrane fuel cell (PEMFC) stack containing 13 single cells with a rated power of 20 W requiring hydrogen flow rate at a maximum output of 0.28 L/min was purchased from Fuel Cell Store, USA (a Horizon 20WPEM Fuel cell). Polarization experiments and electrical performances of PEMFC stack supplied by hydrogen gas were characterized at room temperature (30 °C) under atmospheric pressure using a N3304A 300 W Electronic Load Module (Keysight Technologies, USA). Anode of PEMFC stack was fed by humidified hydrogen gas with flow rates of 0.10-0.25 SLM, while cathode was with air under atmospheric pressure. The measurements were

41

carried out using a constant current (CC) mode in the range of 0.05-2.55 A. The current increment and the dwelling time at each step were 0.05 A/step and 5 s/step, respectively. Stabilization time during an open-circuit voltage (OCV) for all experiments was 1 h.

Figure 3.13 The measurement setup of electrical performances of integrated PEMFC- H_2 tank system.

3.6.4 Hydrogen diffusion and thermal conductivity

3.6.4.1 Hydrogen permeability

Hydrogen permeability in the axial direction was investigated using the same transient method, reported by Sitthiwet et al. (2017) (Figure 3.13) following the method of Brace et.al. (2015) and Ghanizadeh et al. (2017). The powder sample (~ 0.70-0.80 g) was compacted into the pellet using a die set (diameter of 12 mm) under the pressures of 1300 MPa to obtain the pellet samples with the thickness of 6.00 – 7.20 mm. The hydrogen permeability of the pellet sample was characterized at ambient temperature (~30 °C) by applying hydrogen pressure of 6 bar in the upstream chamber and evacuating the downstream chamber to ~0.7 bar. The pressures of the upstream and downstream chambers were recorded using pressure transducers (0– 500 psig, C206 Cole Parmer). When volumes of upstream ($2.27 \times 10^{-5} m^3$) and downstream ($2.22 \times 10^{-5} m^3$) chambers were comparable and gas was ideal, the gas permeability was calculated by equations (3.6) and (3.7).

$$\frac{(P_u - P_d)}{(P_{u,0} - P_{d,0})} = e^{-at}$$
(3.6)

where $(P_u - P_d)$ is the difference pressure between the upstream and downstream chambers, $(P_{u,0} - P_{d,0})$ is the difference pressure between the upstream and downstream chambers at the initial stage, *t* is time (s), and α is explained by equation (3.7).

$$\alpha = \frac{kA(P_{u,0} + P_{d,0}) (1/V_u + 1/V_d)}{2\mu L}$$
(3.7)

where k is hydrogen permeability (m²), L is the sample thickness (6.1 x 10⁻³ m), A is the sample cross-section area (1.13 x 10⁻⁴ m²), μ is hydrogen gas viscosity at 30 °C (8.95 x 10⁻⁶ Pa *s*), and V_u and V_d are the volumes of the upstream and downstream chambers, respectively (2.27 x 10⁻⁵ and 2.22 x 10⁻⁵ m³, respectively).

Figure 3.14 Schematic diagram of hydrogen permeability setup.

3.6.4.2 Thermal conductivity

Thermal conductivity and the thermal diffusivity were measured in the axial direction using Transient Plane Source (TPS) method (Al-Ajlan, 2006) (a TPS 1500

system, C3 Prozess-und Analysetechnik, Germany). The experiment was done at room temperature using the supplied power of 200 mW.

3.7 References

- Al-Ajlan, S. A. (2006). Measurements of thermal properties of insulation materials by using transient plane source technique. *Applied thermal engineering, 26*(17), 2184-2191.
- Kissinger, H. E. (1957). Reaction Kinetics in Differential Thermal Analysis. *Analytical Chemistry 29*(11), 1702-1706.
- Klysubun, W., Kidkhunthod, P., Tarawarakarn, P., Sombunchoo, P., Kongmark, C., and Limpijumnong, S, (2017). SUT-NANOTEC-SLRI beamline for X-ray absorption spectroscopy. *Journal of Synchrotron Radiation 24*, 707-716.
- Newville, M. (2001). EXAFS analysis using FEFF and FEFFIT. Journal of Synchrotron Radiation, 8, 96-100.
- Kidkhunthod, P. (2017). Structural studies of advanced functional materials by synchrotron-based x-ray adsorption spectroscopy: BL5.2 at SLRI, Thailand. *Advance Natural Sciences: Nanoscience and Nanotechnology, 8*(035007.).
- Pan, Z., Ma, Y., Connell, L. D., Down, D. I., and Camilleri, M. (2015). Measuring anisotropic permeability using a cubic shale sample in a triaxial cell. *Journal of Natural Gas Science and Engineering, 26*, 336-344.
- Plerdsranoy, P., Javadian, P., Jensen, N. D., Nielsen, U. G., Jensen, T. R., and Utke, R. (2017). Compaction of LiBH₄-LiAlH₄ nanoconfined in activated carbon nanofibers: Dehydrogenation kinetics, reversibility, and mechanical stability during cycling. *International Journal of Hydrogen Energy*, *42*(2), 1036-1047. doi:10.1016/j.ijhydene.2016.09.056.
- Ravel, B., and Newville, M. (2005). ATHENA, ARTEMIS, HEPHAESTUS: data analysis for Xray absorption spectroscopy using IFEFFIT. *Journal of Synchrotron Radiation*, *12*(4), 537-541. doi:10.1107/S0909049505012719.

- Sitthiwet, C., Thiangviriya, S., Thaweelap, N., Meethom, S., Kaewsuwan, D., Chanlek, N., and Utke, R. (2017). Hydrogen sorption and permeability of compacted LiBH₄ nanoconfined into activated carbon nanofibers impregnated with TiO₂. *Journal of Physics and Chemistry of Solids, 110*, 344-353.
- Thongtan, P., Dansirima, P., Thiangviriya, S., Thaweelap, N., Suthummapiwat, A., Plerdsranoy, P., and Utke, R. (2018). Reversible hydrogen sorption and kinetics of hydrogen storage tank based on MgH₂ modified by TiF₄ and activated carbon. *International Journal of Hydrogen Energy, 43*(27), 12260-12270. doi:10.1016/j.i jhydene.2018.04.171.

CHAPTER IV RESULTS AND DISCUSSION

4.1 Compacted 2LiBH₄—MgH₂-ACNF

Dehydrogenation profiles of the compacted 2Li-MH and 2Li-MH-30% ACNF are characterized by simultaneous thermal analysis (STA) and mass spectroscopy (MS). From Figure 4.1(A), the DSC curve of 2Li-MH shows four endothermic peaks at 118, 291, 376, and 450 °C, corresponding to phase transformation of LiBH₄ (o- to h-LiBH₄), melting of LiBH₄, decomposition of MgH₂, and decomposition of LiBH₄, respectively. Meanwhile, the 2Li-MH-30% ACNF also shows four endothermic peaks at 120, 288, 336, and 431 $^{\circ}$ C (Figure 4.1(B)), in accordance with similar events as 2Li-MH. TGA and H₂-MS results of compacted 2Li-MH and 2Li-MH-30%ACNF reveal mainly two steps dehydrogenation. Decomposition temperature of MgH₂ and LiBH₄ of 2Li-MH reduce by 30 and 20 °C, respectively, after doping with ACNFs. Moreover, onset dehydrogenation temperature of 2Li-MH-30%ACNF is 275 °C, which is 85 °C lower than that of 2Li-MH (360 °C). With respect to theoretical dehydrogenation capacity of 2Li-MH of 11.4 wt.% H₂ according to equation (4.1), the total hydrogen contents desorbed from 2Li-MH and 2Li-MH-30% ACNF (5.31 wt.% and 6.51 wt.% H₂, respectively) are 46.60 and 57.10 % of theoretical capacity, respectively. 5- dagu

$$2\text{LiBH}_4 + \text{MgH}_2 \longrightarrow 2\text{LiH} + \text{MgB}_2 + 4\text{H}_2 \tag{4.1}$$

Significant reduction of dehydrogenation temperature and enhancement of hydrogen capacity suggest the improved kinetics of 2Li-MH after doping with ACNFs.

Figure 4.1 Simultaneous STA-MS results during dehydrogenation of 2Li-MH (A) and 2Li-MH-30% ACNF (B).

Furthermore, reversibility of compacted samples at 400 °C under 2 and 80 bar H_2 for dehydrogenation and rehydrogenation, respectively, was studied. From Figure 4.2, 2Li-MH releases hydrogen in one step during the 1st and 2nd cycles with capacity of 1.80 and 1.75 wt.%H₂, respectively. This dehydrogenation is mainly from MgH₂ (400 °C) with slightly LiBH₄, corresponding to the STA-MS results (Figure.4.2). In the case of 2Li-MH-30% ACNF, the 1st and 2nd cycles release hydrogen of 4.00 and 4.50 wt.% H₂, respectively, with two-step reaction, in accordance with equations (4.2) and (4.3) (Bösenberg et al., 2007 and Kim et al., 2015).

(B)

$$MgH_2 \rightarrow Mg + H_2$$
 (4.2)

$$2\text{LiBH}_4 + \text{Mg} \longrightarrow 2\text{LiH} + \text{MgB}_2 + 2\text{H}_2 \tag{4.3}$$

During the 1st step desorption (equation (4.2)), MgH₂ desorbs into Mg and H₂. Afterward, LiBH₄ reacts with Mg to produce LiH, MgB₂, and H₂ (equation (4.3)). It should be noted that the incubation period belonging to MgB₂ formation of the 2nd cycle is remarkably shorter than the 1st one. This is probably explained by the cracks due to pellet expansion and contraction during de/rehydrogenation (Table 4.1). This leads to the enhancement of hydrogen permeability through the pellet, benefiting hydrogen sorption kinetics of 2LiBH₄-MgH₂ system.

Figure 4.2 Dehydrogenation kinetics and reversibility of 2LiMH and 2Li-MH-30% ACNF.

Mechanical stability upon cycling of the pellet samples is further investigated. 2Li-MH-30%ACNF maintains its pellet shape with small cracks due to expansion and contraction during de/rehydrogenation, while 2Li-MH transforms to loose powder (Table 4.1). The fibrous structure of ACNFs probably plays an important role as reinforced frameworks for compacted 2Li-MH-30%ACNF. (Plerdsranoy et al., 2017 and Javadian et al., 2017).

	As-prepared			After
samples	Compacted	Thickness	Density	Rehydrogenated
		(mm)	(g/cm³)	
2Li-MH		0.061	0.86	
2Li-MH- 30%ACNF		0.055	0.93	

Table 4.1 Photographs, thickness, and density of 2Li-MH and 2Li-MH-30% ACNF in asprepared and rehydrogenated states.

To study the de/rehydrogenation mechanisms, PXD and FTIR techniques are applied. From Figure 4.3(A)(a), as-prepared 2Li-MH reveals diffraction peaks of LiBH₄. hydrate LiBH₄ (Fang et al., 2010), and MgH_2 together with a small broad peak of MgO from oxidation with air during the experiment. After dehydrogenation, diffraction peaks of LiBH₄, MgH₂, Mg, LiH, and MgO are observed (Figure. 4.3(A)(b)). The appearances of LiBH₄ and MgH₂ refer to incomplete dehydrogenation of 2Li-MH. The formation of Mg and slight LiH is due to dehydrogenation of LiBH₄ and MgH_2 (equations (4.2) and (4.3)). After rehydrogenation, Figure 4.3(A)(c) reveals the diffraction peaks of LiBH₄ and MgH₂, corresponding to the reversibility of 2Li-MH. For FTIR results, all samples show strong vibrational peaks of B-H stretching and bending of LiBH₄ at 2389-2224 and 1126 cm⁻¹, respectively, (Thaweelap et al., 2017) together with O-H bending of oxygen and humility during the experiment at 1635 cm⁻¹ (Figure 4.3(B)). For de/rehydrogenated 2Li-MH, the vibrational peaks of $[B_{12}H_{12}]^{-2}$ from $Li_2B_{12}H_{12}$ (2486 cm⁻¹) (equation (4.5)) and B-O stretching of oxidized boron (B) (equation (4.4)) (1600-1300 cm⁻¹) are observed (Bosenberg et al., 2010) (Pitt et al., 2013).

$$LiBH_4(s) \longrightarrow LiH(s) + B(s) + 3/2H_2(g)$$

$$(4.4)$$

$$LiBH_{4}(s) \longrightarrow 5/6LiH(s) + 1/12Li_{2}B_{12}H_{12}(s) + 13/12H_{2}(g)$$
(4.5)

Figure 4.3 PXD (A) spectra of as-prepared and FTIR (B) spectra of as-prepared (a), dehydrogenated (b), and rehydrogenated (c) pellets of 2Li-MH.

For 2Li-MH-30%ACNF, the as-prepared sample shows the diffraction peaks of LiBH₄, hydrated LiBH₄, MgH₂, and MgO (Figure 4.4(A)(a)). Dehydrogenated sample shows the diffraction peaks of MgB₂, LiH, and MgO, suggesting successful dehydrogenation of LiBH₄ and MgH₂ (Figure 4.4(A)(b)). After rehydrogenation, the disappearance of LiBH₄ signals

(A)

(B)

(Figure 4.4(A)(c)) indicates nanoparticles or amorphous states probably due to melt infiltration into nanoporous ACNFs during the 1st dehydrogenation. The sharp peaks of MgO also appear due to the oxidation of Mg with oxygen and/or moisture. Furthermore, the FTIR results of all states of 2Li-MH-30%ACNF reveal the vibrations of B-H stretching and bending are found at 2389-2224 and 1126 cm⁻¹, respectively, together with O-H bending at 1635 cm⁻¹ (Figure 4.4(B)). After de/rehydrogenation, the vibration peaks of $[B_{12}H_{12}]^{-2}$ from Li₂ $B_{12}H_{12}$ and B-O stretching from oxidation of amorphous boron (a-B) at 2488 and 1600-1300 cm⁻¹, respectively, are observed (Bosenberg et al., 2010; Plerdsranoy et al., 2017; and Yan et al., 2011). The appearance of B-H stretching and bending of LiBH₄ after dehydrogenation indicates incomplete dehydrogenation reaction (Figure 4.4(B)(b)). After rehydrogenation, the vibrations of LiBH₄ suggest reversibility of LiBH₄ but incomplete reaction is obtained due to the formation of irreversible Li₂ $B_{12}H_{12}$ and amorphous boron.

(A)

Figure 4.4 PXD (A) spectra of as-prepared (a), dehydrogenated (b), and rehydrogenated (c) of 2Li-MH-30%ACNF.

Figure 4.4 (Continued) FTIR (B) spectra of as-prepared (a), dehydrogenated (b), and rehydrogenated (c) of 2Li-MH-30%ACNF.

The activation energy (E_a) during dehydrogenation of 2Li-MH and 2Li-MH-30%ACNF was studied by DSC technique with different heating rates of 5, 10, 15, and 20 °C/min. DSC profiles of 2Li-MH and 2Li-MH-30%ACNF show the first endothermic peak at 288-297 °C belonging to the melting of *h*-LiBH₄. Three endothermic peaks at 338-396, 402.7-478, and 428.0-498 °C represent the dehydrogenation of MgH₂ as well as the 1st and 2nd steps of LiBH₄, respectively (Figure 4.5(A) and (C)). Based on the linear fitting of the Kissinger plot of 2Li-MH and 2Li-MH-30%ACNF (Figure 4.5(B) and (D)), the E_a is calculated from the slope of Kissinger plots. E_a during dehydrogenation of 2Li-MH is 250.6, 130.0, and 131.0 kJ/mol for dehydrogenation of MgH₂ as well as the 1st and 2nd steps of LiBH₄, respectively, while those of 2Li-MH-30%ACNF are 166.7, 103.9, and 124.6 kJ/mol, respectively. Significant reduction of E_a of 2Li-MH after doping with 30% ACNFs suggests the decrease of kinetic barrier, corresponding to the reduction of dehydrogenation temperature and results in Figures 4.1 and 4.2

Figure 4.5 DSC curves with heating rates of 5-20 °C/min and the Kissinger plots of 2Li-MH ((A) and (B), respectively) and 2Li-MH-30%ACNF ((C) and (D), respectively).

Gas permeability measurements in the axial direction of compacted samples are carried out using the setup shown in Figure (3.13) of the experimental section (Sitthiwet et al., 2017). The experiments are performed at room temperature (~30 °C) under vacuum to 6 bar H₂. From Figure 4.6, the experiments start with vacuum and ~5-6 bar H₂ at downstream and upstream chambers, respectively. For 2Li-MH, the pressure at the upstream chamber (P_u) decreases with the increase of the downstream chamber (P_d) and stable pressure is found after about 500 min. In the case of 2Li-MH-30% ACNF, P_u and P_d change rapidly within about 80 min, significantly faster than that of 2Li-MH (Figure 4.6(A)). Figure 4.6(B) shows the linear plot between ln(P_u-P_d/Pu_{.0}-P_{d.0}) versus time (t) and α is obtained by slop of this plot. The hydrogen permeability (*k*) can be

calculated using α and equation (3.6). 2Li-MH and 2Li-MH-30%ACNF show α values of 0.00099 and 0.000088 s⁻¹, respectively, in accordance with hydrogen permeability of 1.56×10^{-18} and 1.49×10^{-17} m², respectively (inset of Figure 4.6(B)). Hydrogen permeability of 2Li-MH increases significantly after doping with 30% ACNFs. This can be explained by phase boundaries between hydride and ACNFs providing small void space for hydrogen diffusion. This leads to the improvement of dehydrogenation kinetics of hydride composite (Sitthiwet et al., 2017).

Figure 4.6 Pu and Pd versus time (A) and hydrogen permeability (B) of 2Li-MH and 2Li-MH-30%ACNF.

The thermal properties of 2Li-MH and 2Li-MH-30% ACNF, including thermal conductivity, thermal diffusivity, and specific heat capacity are characterized. The measured thermal conductivity of 2Li-MH and 2Li-MH-30% ACNF are 1.64±0.34% and 1.67 \pm 0.40% Wm⁻¹K⁻¹, respectively. From the previous work of the compacted hydride bed with expanded natural graphite (ENG), ENG led to the improvement of anisotropy thermal conductivity (along ENG alignment) (Chaise et al., 2009 and Pohlmann et al., 2010). In our work, thermal conductivity slightly increases after doping with ACNFs due to the homogeneous orientation of ACNFs in the pellet sample. Thermal diffusivity and specific heat capacity of compacted 2Li-MH are 0. 20±0.10% mm²s⁻¹ and 8.16±0.33% MJ/m³K, while those of 2Li-MH-30%ACNF are 0.33±0.33% mm²s⁻¹ and 5.04±0.40% MJ/m³K, respectively. Considering the equation $\alpha = k/\rho$ Cp, where α , k, ρ , and Cp are thermal diffusivity, thermal conductivity, density, and specific heat capacity, respectively, the higher the thermal diffusivity the lower the specific heat capacity. Therefore, heat transfer 2Li-MH of pellet is significantly improved by the addition of 30% ACNFs. Thus, the enhancement of hydrogen sorption kinetics and reversibility of 2Li-MH-30%ACNF is due to the improvement of not only hydrogen permeability but also heat transfer (Chaise et al., 2009; Plerdsranoy et al., 2017; Javadian, et al., 2017; Pohlmann et al., 2013; Shim et al., 2014).

 Table 4.2 Thermal conductivity, thermal diffusivity, and specific heat capacity of compacted 2Li-MH and 2Li-MH-30% ACNF.

2-

	Jh.			
	Thermal	Thermal	Specific Heat	
Samples	Conductivity	Diffusivity	Capacity	
Sumples	(W/mK)	(mm²/s)	(MJ/m³K)	
2Li-Mg	1.64±0.34%	0.20±0.10%	8.16±0.33%	
2Li-MH-30%ACNF	1.67±0.40%	0.33±0.33%	5.04±0.40%	

4.2 Ni-doped Mg₂FeH₆

Phase compositions of as-prepared Mg_2FeH_6 with and without Ni are characterized by in situ SR-XRD and Rietveld refinement method (Figure 4.7). Asprepared Mg_2FeH_6 shows the diffraction peaks of Mg_2FeH_6 and slight MgH_2 (Figure 4.7 (A)), indicating successful synthesis of Mg_2FeH_6 according to equation (4.7) (Polanski et al., 2019 and Zhao et al., 2014).

$$2MgH_2(s) + Fe(s) + H_2(g) \longrightarrow Mg_2FeH_6(s)$$
(4.7)

For as-prepared 5%Ni-Mg-Fe, the diffraction peaks of Mg_2FeH_6 , Mg_2NiH_4 , MgH_2 , $Mg_2NiH_{0.3}/Mg_2Ni$, Mg, and Fe/Ni are observed (Figure 4.7(B)). The formation of Mg_2Ni , Mg, and Fe is due to partial dehydrogenation of Mg_2NiH_4 (equation (4.8)) and Mg_2FeH_6 (equation (4.9)), respectively. As-prepared 20%Ni-Mg-Fe reveals similar diffractions (Mg_2FeH_6 , Mg_2NiH_4 , MgH_2 , and Fe) with the sample with 5% wt. % Ni as well as FeNi₃ (Figure 4.7(C)).

$$Mg_2NiH_4 (s) \longrightarrow Mg_2Ni (s) + 2H_2$$
(4.8)

ลัยเทคโนโลยีสุรบา

 $Mg_2FeH_6(s) \rightarrow 2Mg(s) + Fe(s) + 3H_2(g)$

Strisner:

(4.9)

Figure 4.7 Rietveld refinement of SR-PXD results of as-prepared Mg_2FeH_6 (A), 5%Ni-Mg-Fe (B), and 20%Ni-Mg-Fe (C).

In addition, Table 4.3 summarizes the phase compositions and quantities in all as-prepared samples calculated from the Rietveld refinement software. High quantity

of Mg_2FeH_6 in as-prepared Mg_2FeH_6 (92.6 wt.%) suggests an effective preparation method of high energy ball milling and heat treatment under high temperature and hydrogen pressure (Katarzyna et al., 2018, Nyamsi et al., 2018 and Li et al., 2018). For the samples doped with Ni, the content of Mg_2FeH_6 decreases due to Mg_2NiH_4 formation and partial dehydrogenation during sample preparation. It is found that the higher the Ni-loading content, the more the effectiveness of Mg_2NiH_4 formation.

Sample	Phase	Space group	wt %
Mg-Fe	Mg ₂ FeH ₆	Fm-3m	92.6
(Rwp : 5.99%)	MgH ₂	P42/mnm	7.4
	Mg ₂ FeH ₆	Fm-3m	61.5
	Mg ₂ NiH _{0.3} /	P6222	10.6
5%Ni-Mg-Fe	Mg2Ni		
(Rwp : 3.88%)	MgH ₂	P42/mnm	6.2
	Fe/Ni	lm-3m	10.6
	Mg	P63/mmc	11.1
	Mg ₂ FeH ₆	Fm-3m	48.8
20%-Ni-Mg-Fe	Mg ₂ NiH ₄	C2/C 10	31.8
(Rwp : 5.50%)	Fe/Ni	lm-3m	12.1
้างกายาลั	FeNi ₃	Fm-3m	7.3

 Table 4.3 Phase compositions and quantities in as-prepared samples were determined

 by Rietveld refinement

Dehydrogenation kinetics and hydrogen storage capacity of as-prepared Mg_2FeH_6 , 5%Ni-Mg-Fe, and 20%Ni-Mg-Fe are characterized by sievert-type apparatus by heating from room temperature to 330 °C under 0.1 bar H₂. From Figure 4.8, Mg_2FeH_6 reveals single-step dehydrogenation with onset temperature at 250 °C and hydrogen capacity of 5.40 wt.%. 5%Ni-Mg-Fe and 20%Ni-Mg-Fe show two-step dehydrogenation at 170 and 220-275 °C with total hydrogen capacity of 2.83 and 3.70 wt.%, respectively. These correspond to the dehydrogenation of Mg_2NiH_4 and Mg_2FeH_6 , respectively.

Figure 4.8. First hydrogen desorption kinetics at 330 °C under 10 kPa of pure Mg-Fe, 5%Ni-Mg-Fe, and 20%Ni-Mg-Fe.

Furthermore, dehydrogenation pathways of as-prepared samples are investigated by the in situ SR-XRD technique. The samples are heated under 1 bar Ar from room temperature to 400 °C and kept at the isothermal condition for 30 min. To clearly explain the mechanisms during dehydrogenation, the diffraction intensity versus temperature is plotted. From Figure 4.9, as-prepared Mg_2FeH_6 begins to decompose into Mg and Fe at 300 °C and completes at 370 °C (equation (4.9)) (Khan et al., 2020; Polanski et al., 2010).

For 5%Ni-Mg-Fe, $Mg_2NiH_{0.3}$ desorbs into Mg_2Ni (equation (4.10)) at 170 °C as well as MgH_2 and Mg_2FeH_6 into Fe and Mg (equations (4.11) and (4.9)) together with the formation of MgO due to the oxidation of Mg-containing phase with air and humidity (Figure 4.10) (Kalinichenka et al., 2011, de Rango et al., 2020 and Luo et al., 2015). Afterward, Mg reacts with Ni to form Mg_2Ni at 325 °C. the dehydrogenation products are Mg_2Ni , Mg, and Fe.

(B)

Figure 4.10 In situ SR-XRD spectra of 5%Ni-Mg-Fe (A) and peak intensities versus temperature (B).

In the case of 20%Ni-Mg-Fe, Mg_2NiH_4 decomposes into Mg_2Ni at 200 °C (equation (4.8)) together with the formation of a new phase of $Mg_2FeH_6^*$ (Figure 4.11). At 200-320 °C, Mg_2FeH_6 and $Mg_2FeH_6^*$ desorb into Mg, Fe, and Mg_2Ni (equations (4.9) and (4.12)) and Fe further reacts with Ni to form FeNi₃. Partial substitution of Ni for Fe in Mg_2FeH_6

61

is expected that due to their comparable atomic sizes. XANES and EXAFS techniques are applied to investigate the local environment of Ni atoms in 20%Ni-Mg-Fe to confirm this substitution (Figure 4.12). Moreover, the formation of FeNi₃ benefits dehydrogenation kinetics of Mg_2FeH_6 due to its catalytic effects of FeNi₃ (Chen et al., 2016) and Chen et al., 2018).

$$Mg_{2}FeH_{6}^{*}(s) \longrightarrow Mg_{2}Ni(s) + Fe + 3H_{2}$$

$$(4.12)$$

Figure 4.11 In situ SR-XRD spectra of 20%Ni-Mg-Fe (A) and Peak intensities versus temperature (B).

To investigate the local coordination environment of Ni atoms in Mg₂FeH₆* of 20%Ni-Mg-Fe, x-ray absorption (XAS) is applied. Mg₂FeH₆* is prepared by heating asprepared 20% Ni-Mg-Fe to 235 °C under 1 bar H₂, dwelling at 235 °C for 10 min, and cooling to room temperature. Based on the previous study using DFT calculation, the optimized lattice constant and Mg-H distance were enhanced. The optimized lattice constant (a) and Mg-H distance of Mg_2FeH_6 increased from 6.418 to 6.442 Å and from 2.269 to 2.276 Å, respectively, when Ni substitution for Fe in Mg_2FeH_6 to form Mg₂Fe_{0.75}Ni_{0.25}H₆ was proposed. (Batalovic et al., 2014). In our work, Mg₂Fe_{0.75}Ni_{0.25}H₆ is used as a model to fit the Ni K-edge EXAFS spectra of $Mg_2FeH_6^*$. The fitting result in the k-space shows a perfect match with the model (Figure 4.12(A)). From the fitting result in *R*-space, radial distances of the scattering paths in the first shell including Ni-H1 and Ni-Mg are 1.49 and 2.73 Å, respectively, while those of the second shell of Ni-H2, Ni-Ni, and Ni-Fe are 3.74, 4.27, and 4.76 Å, respectively (Figure 4.12(B)) and Table 4.4.). The calculated coordination numbers of Ni-H1, Ni-Mg, Ni-H2, Ni-Ni, and Ni-Fe paths are 4.41, 5.52, 16.56, 2.07, and 6.21, respectively. The *R*-factor value indicates the reliability and quality of the fitting between data and model. The smaller the *R*-factor, the better the fitting results. The *R*-factor value of this study is 0.0474, corresponding to the acceptable *R*-factor for good fitting (<0.05). (Newville et at., 2005 and Pinitsoontorn et al., 2014). Moreover, comparable radial distances of Ni-H1 and Ni-Mg (1.49 and 2.73 Å, respectively) (Table 4.4) to those of Fe-H and Fe-Mg of Mg₂FeH₆ (1.51 and 2.74 Å, respectively) (Zhang et al., 2013), confirm the Ni substitution for Fe in Mg₂FeH₆ to form Mg₂Fe_{0.75}Ni_{0.25}H₆. Thus, Mg₂Fe_{0.75}Ni_{0.25}H₆ phase is detected after dehydrogenation of Mg₂NiH₄ and reduction of Mg₂FeH₆ at 200-228 °C (Figure 4.11(B)) is likely obtained from the reaction between Mg_2Ni , Mg_2FeH_6 , and H_2 (equation (4.13)). Afterwards, Mg₂Fe_{0.75}Ni_{0.25}H₆ dehydrogenates into Mg₂Ni, Fe, and Mg at 228-320 °C (equation (4.14)) (Figure 4.11(B)). DFT calculation suggested that such Ni substitution resulted in the increment of unit cell volume and Mg-H distance of Mg₂FeH₆ as well as the significant reduction of desorption enthalpy of Mg₂FeH₆ from 39.4 to 27.7 kJ/mol H (Batalovic et al., 2014). This is in good agreement with the observed reduction of dehydrogenation temperature (30-55 °C) and greater hydrogen storage capacity (up to 0.85 wt. % H₂) of 20% Ni-Mg-Fe with respect to Mg_2FeH_6 and 5% Ni Mg-Fe (Figure 4.8).

$$0.25Mg_2Ni(s) + 0.75Mg_2FeH_6(s) + 0.75H_2(g) \rightarrow Mg_2Fe_{0.75}Ni_{0.25}H_6$$
(4.13)

$$Mg_2Fe_{0.75}Ni_{0.25}H_6 \rightarrow 0.25Mg_2Ni(s) + 0.75Fe(s) + 1.5Mg(s) + 3H_2(g)$$
 (4.14)

Furthermore, the oxidation state of Ni in $Mg_2Fe_{0.75}Ni_{0.25}H_6$ is investigated by Ni K-edge XANES technique. From Figure 4.12(C), Ni K-edge XANES spectrum of standard NiO (Ni²⁺) shows the absorption edge at ~8340 eV assigned to 1s to 4p transition and the strong white line at ~8350 eV (Hoffmann et al., 1999), while metallic Ni (Ni⁰) reveals the absorption edge at a lower energy of 8333 eV. For Ni K-edge XANES spectrum of $Mg_2Fe_{0.75}Ni_{0.25}H_6$, the absorption edge energy at 8336 eV is detected. This slight increment of absorption edge energy with respect to Ni⁰ (3 eV) implies the increase of Ni oxidation state, corresponding to the oxidation state of Ni^{0.5+} in $Mg_2Fe_{0.75}Ni_{0.25}H_6$ (Figure 4.12(C)).

Figure 4.12 Ni K-edge EXAFS data and model fitting in k-space (A) and *R*-space (B) as well as unit cell structure (inset of (B)).

(C)

Figure 4.12 (Continued) Ni K-edge XANES spectrum of Mg₂Fe_{0.75}Ni_{0.25}(C). (Batalovic et al., 2014)).

Table 4.4 Scattering paths, coordination number, the path range (*R*), the mean squared displacement (σ^2) and R-factor extracted from the fitted data for Ni atoms substituted in Mg₂FeH₆ of 20%Ni-Mg-Fe.

Samples	S <mark>catt</mark> ering	coordination	R(A)	σ^2	R-Factor
	path	number			
Mg ₂ Fe _{0.75} Ni _{0.25}	Ni-H1	4.41	1.49	0.031	0.0474
(Ni K-edge EXAFS)	Ni-Mg	5.52	2.73	0.013	
Ettis	Ni-H2	16.56	3.74	0.004	
101		2.07	4.27	0.101	
	Ni-Fe	6.21	4.76	0.022	
Mg ₂ FeH ₆ (Zhang et al.,	Fe-H	6	1.51	-	-
2013)	Fe-Mg	8	2.74	-	
(Fe K-edge EXAFS)					

The dehydrogenation kinetics and reversibility of Mg_2FeH_6 with and without Ni addition are measured at 330 °C under 0.1 bar and 40 bar H_2 for dehydrogenation and rehydrogenation, respectively. From Figure 4.13(A), Mg_2FeH_6 releases 5.40 and 4.20

wt.% H₂ during the 1st and 2nd cycles, respectively, at onset temperature of 250 °C and 209 °C, respectively. 5%Ni-Mg-Fe starts to release hydrogen at 170-205 °C together with the hydrogen capacities of 2.85-3.83 wt.% for cycling 1st-4th (Figure 4.13(B)). For 20%Ni-Mg-Fe, dehydrogenation begins at 170 – 207 °C with hydrogen capacities of 3.70 and 2.96-3.15 wt.% for the 1st and 2nd-4th cycles, respectively (Figure 4.13(C)). After doping with Ni, dehydrogenation temperature of Mg₂FeH₆ decreases together with the improved kinetics and cycling stability.

Figure 4.13 Dehydrogenation kinetics and reversibility under vacuum at 330 °C of Mg_2FeH_6 (A) and 5%Ni-Mg-Fe (B).

Figure 4.13 (Continued) Dehydrogenation kinetics and reversibility under vacuum at 330 °C of 20%Ni-Mg-Fe (C).

4.3 MgH₂-TiF₄-MWCNT hydrogen storage tank

(C)

Successful hydrogenation of MgH₂ and dehydrogenation performance of asprepared MgH₂ and as-prepared MH-TiF₄-MWCNT are confirmed by PXD and STA-MS techniques. Figure 4.14(A) shows the diffraction peaks of MgH₂ and a small amount of residual Mg. This indicates successful hydrogenation of Mg to MgH₂. Dehydrogenation of as-prepared MH-TiF₄-MWCNTs reveals onset and main temperature at 350 and 388 °C, respectively, (Figure 4.14(B)) which are significantly lower than those of pure MgH₂ (Δ T=138 and 109 °C, respectively) (Thongtan et al., 2018) together with storage capacity of 4.1wt.% H₂. This can be due to incomplete hydrogenation of Mg to MgH₂ (Figure 4.14(B).

(A)

Figure 4.14 PXD (A) and STA-MS (B) results of as-prepared MH-TiF $_4$ -MWCNT.

350

Temperature (°C)

400

450

500

300

250

Furthermore, dehydrogenation of MH-TiF₄-MWCNT based hydrogen storage tank is characterized under isothermal at setting temperature (T_{set}) of 300 °C with the initial pressure of 10.6 bar H₂. Upon hydrogen release from the tank, dehydrogenation begins shown as temperature reduction from the initial temperatures (308-317 °C) to the equilibrium temperature (T_{eq}) of 293-299 °C (TC1-TC5) due to endothermic reaction (Figure 4.15). In the meantime, hydrogen desorbs and flows through the mass flow meter with a flow rate of 0.3 standard L/min (SLM) under ~1.2 bar H₂. After 30 min, the hydrogen flow rate slightly decreases together with the elevated all temperatures at all positions inside the tank. It is found that TC1 and TC2 show the longest plateau range during endothermic dehydrogenation due to good hydrogen permeability at the positions near H_2 in/outlet. Total hydrogen volume and capacity of 29.70 SL and 5.5 wt.% H_2 , respectively, are achieved. (Figure 4.15(A)).

Figure 4.15 Dehydrogenation of MH-TiF₄-MWCNT based tank at isothermal condition $(T_{set} = 300 \text{ °C under } 1.2 \text{ bar } H_2)$ (A) and radial directions of the tank (B).

After dehydrogenation, hydrogenation is done by reducing T_{set} to 250 °C and applying 10-16 bar H₂ with compressed air flow of 3 L/min (heat exchanger). From Figure (4.16), temperatures at all positions in the tank increase rapidly to T_{eq} of 340-390 °C, corresponding to P_{eq} of 10-16 bar (Chaise et al., 2010; and Garrier et al., 2013). Different T_{eq} values indicate inhomogeneous hydrogenation performance probable due to poor hydrogen permeability and thermal conductivity. TC1 locating near the cooling tube displays a longer plateau temperature with greater T_{eq} than others (TC2-TC4) due to effective heat transportation at this location. After 25 min, hydrogenation of MH-TiF₄-MWCNT completes, confirmed by temperature reduction to the initial value. The temperature of the heat exchanger increases from 27 to about 100 °C indicating the successful heat transfer from exothermic rehydrogenation.

Figure 4.16 Hydrogenation of MH-TiF₄-MWCNT based tank at isothermal condition (T_{set} = 250 °C under 10-16 bar H₂).

Moreover, cycling stability of MH-TiF₄-MWCNT based tank upon 20 cycles is studied. Figure 4.17 shows average total and material capacity of 5.60 and 5.40 wt.% H₂, respectively, corresponding to 82% of theoretical capacity. These are superior to the results of the MgH₂-based tank without heat exchanger (3.4-3.6 wt.% H₂ and 50-52 % of theoretical value) previously reported (Thongtan et al., 2018). Thus, the enhanced kinetics and reversibility of $MH-TiF_{4}-MWCNT$ based tank is explained by not only catalytic effects of TiF_{4} and MWCNTs but also effective heat exchanger.

Figure 4.17 Cycling stability upon 20 de/rehydrogenation cycles of MH-TiF₄-MWCNT based tank.

Furthermore, phases composition of the powder sample after the 20^{th} hydrogenation is investigated by PXD. Figure 4.18 shows the diffraction peaks of MgH₂ with slightly Mg, suggesting partial irreversibility. From the inset of Figure 4.19, fine power of the MH-TiF₄-MWCNT sample after the 20^{th} hydrogenation is observed. Upon cycling at high temperature (>400 °C), MgH₂ tends to agglomerate or sinter. In this study, the storage tank together with heat exchanger able to transport heat up to 75 °C during exothermic rehydrogenation. This benefits the hydrogen sorption kinetics, and cycling stability of MH-TiF₄-MWCNT based tank.

Figure 4.18 PXD spectrum and physical appearance (inset) of MH-TiF₄-MWCNT after the 20^{th} hydrogenation.

The electrical production of proton exchange membrane fuel cell (PEMFC) stack coupled with MH-TiF₄-MWCNT tank is investigated. Prior to the experiment, the voltage (V), current (I), and power (W) of PEMFC stack are measured at different flow rates of 0.10-0.25 SLM to find the most suitable H₂ flow rates (Figure 4.19(A)). The open-circuit voltages of all flow rates are ~11 V, approaching to the specification from the manufacture (12 V). The maximum current and power are increased from 0.8 to 2.5 A and 6.7 to 20.0 W, respectively, with increasing the hydrogen flow rates. Although, the experiment flow rate of 0.25 SLM reveals maximum current and power, the tank can provide this constant flow rate for only 30 min. Therefore, the H₂ flow rate of 0.1 SLM is selected for the experiment using constant current mode at room temperature. Figure 4.19(B) shows the constant current and power of 0.6 A and 5.6 W, respectively, for 2 h 30 min. There is a small fluctuation of power caused by the produced water blocking cathode air hole and disturbing the air transfer. Therefore, the water management is pretty important for stable system operation in the long term uses (Fernández-M et al., 2013 and Kim et al., 2014). In conclusion, total hydrogen capacity used for PEMFC stack is 4.3 wt.% H₂, resulting in the electrical power of 19 Wh.

Figure 4.19 Polarization curve (A) and electrical performance (B) of PEMFC stack supplied with hydrogen gas from MH-TiF₄-MWCNT tank.

Specification	Values	
Total electric energy	19 Wh	
Constant current	0.6 A	
Constant power	5.6 W	
Maintaining time	150 min	
Flow rate	0.10 SLM	
Total hydrogen storage capacity	4.3 wt.% H ₂	
Volume metric capacity (Vs)	23.17 SLM	
Sample mass	45.15 g	

Table 4.5 Specification of PEMFC stack supplying hydrogen from MH-TiF₄-MCNT tank.

4.4 References

- Batalovic, K., Radakovic, J., Belosevic-Cavor, J., and Koteski, V. (2014). Transition metal doping of Mg₂FeH₆-a DFT insight into synthesis and electronic structure. *Physical Chemistry Chemical Physics*, *16*(24), 12356-12361. doi:10.1039/c4cp01020e.
- Bösenberg, U., Doppiu, S., Mosegaard, L., Barkhordarian, G., Eigen, N., Borgschulte, A., Jensen, T, R., Cerenius, Y., Gutfleisch, O., and Klassen, T. (2007). Hydrogen sorption properties of MgH₂–LiBH₄ composites. *Acta Materialia, 55*(11), 3951-3958.
- Bösenberg, U., Ravnsbæk, D. B., Hagemann, H., D'Anna, V., Minella, C. B., Pistidda, C., Van Beek, W., Jensen, T. R., Bormann, R., and Dornheim, M. (2010). Pressure and temperature influence on the desorption pathway of the LiBH₄–MgH₂ composite system. *The Journal of Physical Chemistry C, 114*(35), 15212-15217.
- Chaise, A., de Rango, P., Marty, P., and Fruchart, D. (2010). Experimental and numerical study of a magnesium hydride tank. *International Journal of Hydrogen Energy, 35*(12), 6311-6322. doi:10.1016/j.ijhydene.2010.03.057.
- Chaise, A., De Rango, P., Marty, P., Fruchart, D., Miraglia, S., Olivès, R., and Garrier, S. (2009). Enhancement of hydrogen sorption in magnesium hydride using expanded natural graphite. *International Journal of Hydrogen Energy, 34*(20), 8589-8596.

- Chen, X., Zou, J., Huang, S., He, G., Zhao, N., Zeng, X., Zeng, X., and Ding, W. (2018). Hydrogen storage in Mg₂Ni(Fe)H₄ nano particles synthesized from coarse-grained Mg and nano sized Ni(Fe) precursor. *RSC Advances, 8*(34), 18959-18965. doi: 10.1039/c8ra01963k.
- Chen, X., Zou, J., Zeng, X., and Ding, W. (2016). Hydrogen storage in Mg₂Fe(Ni)H₆ nanowires synthesized from coarse-grained Mg and nano sized γ-Fe(Ni) precursors. *International Journal of Hydrogen Energy*, 41(33), 14795-14806. doi:10.1016/j.ijhydene.2016.06.024.
- De Rango, P., Wen, J., Skryabina, N., Laversenne, L., Fruchart, D., and Borges, M. (2020). Hydrogen Storage Properties of Mg-Ni Alloys Processed by Fast Forging. *Energies*, *13*(13). doi:10.3390/en13133509.
- Fang, Z. Z., Kang, X. D., and Wang, P. (2010). Improved hydrogen storage properties of LiBH₄ by mechanical milling with various carbon additives. *International Journal* of Hydrogen Energy, 35(15), 8247-8252.
- Fernández, M. J., Guelbenzu, G., Martín, A. J., Folgado, M. A., Ferreira, A. P., and Chaparro, A, M. (2013). A portable system powered with hydrogen and one single air-breathing PEM fuel cell. *Applied Energy*, 109, 60-66. doi:10.1016/j.apenergy.2013.03.076.
- Garrier, S., Delhomme, B., de Rango, P., Marty, P., Fruchart, D., and Miraglia, S. (2013). A new MgH₂ tank concept using a phase-change material to store the heat of reaction. *International Journal of Hydrogen Energy, 38*(23), 9766-9771. doi:10.1016/j.ijhydene.2013.05.026.
- Hoffmann, M. M., Darab, J. G., Palmer B. J., and Fulton, J. L. (1999). A Transition in the Ni²⁺ Complex Structure from Six- to Four-Coordinate upon Formation of Ion Pair Species in Supercritical Water An X-ray Absorption Fine Structure, Near-Infrared, and Molecular Dynamics Study. *The Journal of Physical Chemistry A, 103*, 8471-8482.
- Kalinichenka, S., Röntzsch, L., Baehtz, C., Weißgärber, T., and Kieback, B. (2011). Hydrogen desorption properties of melt-spun and hydrogenated Mg-based alloys using in situ synchrotron X-ray diffraction and TGA. *Journal of Alloys and Compounds, 509*, S629-S632. doi:10.1016/j.jallcom.2010.10.067.

- Witek, K., Karpowicz, M., and Polanski, M. (2018). Mg₂FeH₆ Synthesis Efficiency Map. *Crystals, 8*(2). doi:10.3390/cryst8020094.
- Khan, D., Panda, S., Ma, Z., Ding, W., and Zou, J. (2020). Formation and hydrogen storage behavior of nanostructured Mg₂FeH₆ in a compressed 2MgH₂–Fe composite. *International Journal of Hydrogen Energy, 45*(41), 21676-21686.doi:10.1016/j.ij hydene.2020.06.025.
- Kim, K. B., Shim, J. H., Park, S. H., Choi, I. S., Oh, K. H., and Cho, Y. W. (2015).
 Dehydrogenation reaction pathway of the LiBH₄–MgH₂ composite under various pressure conditions. *The Journal of Physical Chemistry C, 119*(18), 9714-9720.
- Kim, S. H., Miesse, C. M., Lee, H. B., Chang, I. W., Hwang, Y. S., Jang, J. H., and Cha, S. W. (2014). Ultra compact direct hydrogen fuel cell prototype using a metal hydride hydrogen storage tank for a mobile phone. *Applied Energy*, *134*, 382-391. doi:10.1016/j.apenergy.2014.08.019.
- Li, C., Wu, Z. W., and Zhang, Q. A. (2018). Synthesis and hydrogen desorption kinetics of Mg₂FeH₆-and Mg₂CoH₅-based composites with in situ formed YH₃ and Mg₂NiH₄ nanoparticles. *Rare Metals*. doi:10.1007/s12598-018-1174-z.
- Li, Q., Xu, K., Chou, K., Lu, X., and Lin, Q. (2006). Kinetics of hydrogen absorption and desorption of a mechanically milled MgH₂ + 5at% V nanocomposite. *Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material, 13*(4), 359-362. doi:10.1016/s1005-8850(06)60074-1.
- Luo, Q., Gu, Q. F., Zhang, J. Y., Chen, S. L., Chou, K. C., and Li, Q. (2015). Phase Equilibria, Crystal Structure and Hydriding/Dehydriding Mechanism of Nd₄Mg₈₀Ni₈ Compound. *Scientific Reports, 5*, 15385. doi:10.1038/srep15385.
- Nyallang, N. S., Yartys, V., and Lototskyy, M. (2018). Synthesis of Mg₂FeH₆ assisted by heat treatment of starting materials. *Materials Today: Proceedings, 5*(4), 10533-10541. doi:10.1016/j.matpr.2017.12.385.
- Pinitsoontorn, S., Prasoetsopha, N., Srepusharawoot, P., Bootchanont, A., Kidkhunthod,
 P., Kamwanna, T., Amornkitbamrung, V., Kurosaki, K., and Yamanaka, S. (2014).
 Local structure determination of substitutional elements in Ca₃Co₄-xMxO₉(M
 = Fe, Cr, Ga) using X-ray absorption spectroscopy. *physica status solidi (a),* 211(8), 1732-1739. doi:10.1002/pssa.201330493.

- Pitt, M. P., Paskevicius, M., Brown, D. H., Sheppard, D. A., and Buckley, C. E. (2013). Thermal stability of Li₂B₁₂H₁₂ and its role in the decomposition of LiBH₄. *Journal of the American Chemical Society*, *135*(18), 6930-6941. doi:10.1021/ja400131b.
- Plerdsranoy, P., Chanthee, S., and Utke, R. (2017). Compaction of LiBH₄-MgH₂ doped with MWCNTs-TiO₂ for reversible hydrogen storage. *International Journal of Hydrogen Energy, 42*(2), 978-986.
- Plerdsranoy, P., Javadian, P., Jensen, N. D., Nielsen, U. G., Jensen, T. R., and Utke, R. (2017). Compaction of LiBH₄-LiAlH₄ nanoconfined in activated carbon nanofibers: Dehydrogenation kinetics, reversibility, and mechanical stability during cycling. *International Journal of Hydrogen Energy, 42*(2), 1036-1047.
- Pohlmann, C., Röntzsch, L., Heubner, F., Weißgärber, T., and Kieback, B. (2013). Solidstate hydrogen storage in Hydralloy–graphite composites. *Journal of Power Sources, 231*, 97-105.
- Pohlmann, C., Röntzsch, L., Kalinichenka, S., Hutsch, T., and Kieback, B. (2010). Magnesium alloy-graphite composites with tailored heat conduction properties for hydrogen storage applications. *International Journal of Hydrogen Energy*, 35(23), 12829-12836. doi:10.1016/j.ijhydene.2010.08.104.
- Polanski, M., Nawra, D., and Zasada, D. (2019). Mg₂FeH₆ synthesized from plain steel and magnesium hydride. *Journal of Alloys and Compounds,* 776, 1029-1040. doi:10.1016/j.jallcom.2018.10.310.
- Polanski, M., Płociński, T., Kunce, I., and Bystrzycki, J. (2010). Dynamic synthesis of ternary Mg₂FeH₆. *International Journal of Hydrogen Energy, 35*(3), 1257-1266. doi:10.1016/j.ijhydene.2009.09.010.
- Ranjbar, A., Guo, Z. P., Yu, X. B., Attard, D., Calka, A., and Liu, H. K. (2009). Effects of SiC nanoparticles with and without Ni on the hydrogen storage properties of MgH₂. *International Journal of Hydrogen Energy, 34*(17), 7263-7268. doi:10.1016/j.ijhy dene.2009.07.005.
- Ravel, B., and Newville, M. (2005). ATHENA, ARTEMIS, HEPHAESTUS: data analysis for Xray absorption spectroscopy using IFEFFIT. *Journal of Synchrotron Radiation*, *12*(4), 537-541. doi:10.1107/S0909049505012719.

- Shao, H., Felderhoff, M., and Weidenthaler, C. (2015). Kinetics Enhancement, Reaction Pathway Change, and Mechanism Clarification in LiBH₄ with Ti-Catalyzed Nanocrystalline MgH₂ Composite. *The Journal of Physical Chemistry C, 119*(5), 2341-2348.
- Shim, J. H., Park, M., Lee, Y. H., Kim, S., Im, Y. H., Suh, J. Y., and Cho, Y. W. (2014). Effective thermal conductivity of MgH₂ compacts containing expanded natural graphite under a hydrogen atmosphere. *International Journal of Hydrogen Energy, 39*(1), 349-355.
- Sitthiwet, C., Thiangviriya, S., Thaweelap, N., Meethom, S., Kaewsuwan, D., Chanlek, N., and Utke, R. (2017). Hydrogen sorption and permeability of compacted LiBH₄ nanoconfined into activated carbon nanofibers impregnated with TiO₂. *Journal of Physics and Chemistry of Solids, 110*, 344-353.
- Thaweelap, N., Thongtan, P., Sitthiwet, C., Thiangviriya, S., Eiamlamai, P., and Utke, R. (2017). Hydrogen sorption, kinetics, reversibility, and reaction mechanisms of MgH₂-xLiBH₄ doped with activated carbon nanofibers for reversible hydrogen storage based laboratory powder and tank scales. *International Journal of Hydrogen Energy*, 42(39), 24915-24926.
- Thongtan, P., Dansirima, P., Thiangviriya, S., Thaweelap, N., Suthummapiwat, A., Plerdsranoy, P., and Utke, R. (2018). Reversible hydrogen sorption and kinetics of hydrogen storage tank based on MgH₂ modified by TiF₄ and activated carbon. *International Journal of Hydrogen Energy, 43*(27), 12260-12270. doi:10.1016/j.ijh ydene.2018.04.171.
- Yan, Y., Li, H. W., Maekawa, H., Miwa, K., Towata, S. i., and Orimo, S. i. (2011). Formation of intermediate compound Li₂B₁₂H₁₂ during the dehydrogenation process of the LiBH₄–MgH₂ system. *The Journal of Physical Chemistry C, 115* (39), 19419-19423.
- Zhang, J., Zaïdi, W., Paul-Boncour, V., Provost, K., Michalowicz, A., Cuevas, F., Latroche,
 M., Belin, S., Bonnet, J. P., and Aymard, L. (2013). XAS investigations on
 nanocrystalline Mg₂FeH₆ used as a negative electrode of Li-ion batteries.
 Journal of Materials Chemistry A, 1(15). doi:10.1039/c3ta01482g.

- Zhao, Y., Ding, L., Zhong, T., Yuan, H., and Jiao, L. (2014). Hydrogen storage behavior of 2LiBH₄/MgH₂ composites improved by the catalysis of CoNiB nanoparticles. *International Journal of Hydrogen Energy, 39*(21), 11055-11060.
- Zhou, C., Zhang, J., Bowman, R. C., and Fang, Z. Z. (2021). Roles of Ti-Based Catalysts on Magnesium Hydride and Its Hydrogen Storage Properties. *Inorganics*, *9*(5). doi:10.3390/inorganics9050036.

CHAPTER V CONCLUSIONS

In this work, we focused on the improvement of hydrogen sorption properties of MgH₂-based hydrogen storage in laboratory and tank scale. The strategies in laboratory scale consisted of (i) compositing with LiBH₄ and doping with activated carbon nanofibers (ACNFs) and (ii) doping with Ni into MgH₂/Fe system. For upscaling to storage tank, the performance of MgH_2 doped with TiF₄ and multi-walled carbon nanotubes (MWCNTs) was investigated. We started with the compacted 2LiBH₄-MgH₂ doped with ACNFs. Dehydrogenation temperature and activation energy of compacted 2LiBH₄-MgH₂ reduced from 360 to 275 °C and from 130-251 to 103-167 kJ/mol, respectively, after doping with ACNFs. Moreover, mechanical stability upon cycling, hydrogen permeability, and heat transfer were also significantly enhanced. These led to superior hydrogen sorption kinetics of the compacted 2LiBH₄-MgH₂. Furthermore, de/rehydrogenation performance and mechanisms of Ni-doped Mg₂FeH₆ (5 and 20 wt.% Ni) were of interest. As-prepared Mg₂FeH₆ showed single-step dehydrogenation at 250 °C with 5.4 wt.% H₂, while Ni-doped Mg₂FeH₆ performed two-step reaction at 170 and 220-250 °C of Mg_2NiH_4 and Mg_2FeH_6 , respectively. By increasing Ni-loading contents from 5 to 20 wt.%, the substitution of Ni for Fe in Mg₂FeH₆ to form Mg₂Fe_{0.75}Ni_{0.25}H₆ was observed, providing storage capacity of 3.70 wt.% H₂. The formation of Mg₂Fe_{0.75}Ni_{0.25}H₆ improved hydrogen sorption kinetics, in terms of the reduction of onset dehydrogenation temperature (~80 °C) and cycling stability. For upscaling, a MgH₂-TiF₄-MWCNT-based tank with central tube heat exchanger was proposed. Dehydrogenation and rehydrogenation (T= 250-300 °C and p (H_2) = 1.2-16 bar) completed within 120-150 and 25 min, respectively. Upon the 20th cycling, average total and material capacities of 5.60 and 5.40 wt.% H₂, respectively, were obtained without hydride particle agglomeration. The enhanced kinetics and reversibility of the MH-TiF₄-MWCNT tank were explained by not only catalytic effects of TiF₄ and MWCNTs but also effective heat exchanger system. Moreover, electrical performances of the

PEMFC stack coupled with the MgH_2 -TiF₄-MWCNTs tank at a constant hydrogen flow rate of 0.1 SLM showed the maintained current and power of 0.6 A and 5.6 W, respectively, for 2 h 30 min, leading to total electrical power of 19 Wh.

CURRICULUM VITAE

Miss Sophida	Thiangviriya
	Miss Sophida

Date of Birth 1st July 1988

Place of Birth Nakhonrachsima, Thailand

Education (Include dates, Major and Details of Degrees, University)

2007-2010 B.Sc. (Chemistry), Rajamankala University
of Technology Isan. Thailand
2011-2013 M.Sc. (Chemistry), Suranaree University of
Technology, Thailand
2016-2021 Ph.D. (Chemistry), Suranaree University of
Technology, Thailand

Publications

- Thiangviriya, S., Sitthiwet, C., Plerdsranoy, P., Capurso, G., Pistidda, C., Utke, O., Dornheim, M., Klassen, T., Utke, R. (2019) Hydrogen sorption kinetics, hydrogen permeability, and thermal properties of compacted 2LiBH₄ –MgH₂ doped with activated carbon nanofibers. Int. J. Hydrogen Energy. 44(29), pp. 15218-15227.
- Thiangviriya, S., Plerdsranoy, P., Sitthiwet, Ch., Dansirima, P., Thongtan, P., Eiamlamai, P., Utke, O., Utke, R. (2019) MgH₂–TiF₄-MWCNTs based hydrogen storage tank with central tube heat exchanger. Int. J. Hydrogen Energy, 44 (36), pp. 20173-20182.
- Thiangviriya, S., Plerdsranoy, P., Hagenah, A., Le, T, T., Kidkhunthod, P., Utke, O., Dornheim, M., Klassen, T., Pistidda, C., Utke, R. (2021) Effects of Ni-loading contents on dehydrogenation kinetics and reversibility of Mg₂FeH₆. Int. J Hydrogen Energy. 46(63), pp. 32099-32109.

Grants and FellowshipsThe Royal Golden Jubilee (RGJ) Ph.D. Programme,The Thailand Research Fund (TRF)