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CHAPTER I
INTRODUCTION

The study of hypernuclei is very important to understand the hyperon–
nucleon interactions. Unlike the nucleon–nucleon (NN) case, the hyperon–nucleon
(YN) scattering experiments are quite difficult to carry out due to the hyperons’
short lifetime. YN scattering data are very limited to fully determine the YN
interactions. Fortunately, the existing data of few-body hypernuclei such as the
Λ-binding energies and excitation spectra could provide the important constrain
on YN interaction (Davis, 2005). However, it is a very challenging task to apply the
precise experimental hypernuclear data in order to constrain the hyperon-nucleon
interactions.

First, the modern ab initio methods without uncontrolled approximations
to renormalize the YN interactions developed in the recent past (Nogga, 2013;
Lonardoni et al., 2013; Wirth et al., 2014; Wirth et al., 2018; Contessi et al., 2018;
Le et al., 2020; Schäfer et al., 2021). Second, it is very important to understand
all sources of uncertainties including in the process of going from a chiral NN (YN)
interaction to computed many-body nuclear (hypernuclear) observable. Uncertainty
quantification is essential not only to generate the new knowledge in the nuclear
and hypernuclear structure but also to obtain more new observables in order to
constrain the hyperon-nucleon (YN) interaction. In the nucleon-nucleon (NN) sector,
there has been significant progress in the analysis of different uncertainties in NN
interactions using various methods (Furnstahl et al., 2015; Ekström et al., 2015;
Carlsson et al., 2016; Pérez et al., 2015; Carlsson et al., 2016; Binder et al., 2016;
Navarro Pérez et al., 2015; Acharya et al., 2016). Theoretical uncertainties such
as the model error of nuclear interaction in χEFT due to the omitted size of
low impact contributions in momentum expansion and the method errors due to
the application of many-body method containing approximations are increasingly
acknowledged. The effect on other nuclear observables was studied by propagating
the well qualified uncertainties of NN interactions (Carlsson et al., 2016; Ekström
et al., 2015; Navarro Pérez et al., 2015; Acharya et al., 2016). In ab initio
hypernuclear calculations, the dominant uncertainty come from the hypernuclear
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Hamiltonian which is constructed from different nuclear and hypernuclear models.
The uncertainty of YN interaction is much larger than that of NN interaction due
to the very limited YN scattering data. It is hard to quantify the theoretical
uncertainties in YN interaction as in NN case. If the remaining freedom in the
construction of realistic nuclear interactions is taken into hypernuclear calculations,
it would be possible to provide more observables as the important constrains
on YN interactions by studying the dependence of predicted hypernuclear bound
observables on the uncertainties of NN interaction.

In this work, we are able to quantify the systematic nuclear model un-
certainties in the s-shell hypernuclei such as 3

ΛH , 4ΛH and 4
ΛHe. This knowledge

is very important to apply these observables as important constrains on YN interac-
tions in future calculations. Particularly, hypernuclear no-core shell model (NCSM)
calculations are performed in relative Jacobi-coordinate harmonic oscillator (HO)
basis by using chiral NNLOsim family of NN interactions and a fixed YN interaction.
We study the convergence properties and the dependence on the model-space
parameters. We apply the standard infrared (IR) extrapolation technique (Wendt
et al., 2015) to extrapolate the NCSM results obtained in finite model spaces to
infinite model space. We then present the ground- and excited state energy of our
computed s-shell hypernuclei and discuss the effects of nuclear model uncertainty
on hypernuclear observables. This study opens up the opportunity to quantify the
uncertainty of other hypernuclear observables.

Furthermore, we analysis the Λnn bound state problem using the no-
core shell model technique since the theoretical calculations for the Λnn system
has been a long time as a serious doubtful bound state problem (Belyaev et al.,
2008; Afnan and Gibson, 2015; Garcilazo and Valcarce, 2014; Kamada et al., 2016;
Gibson and Afnan, 2019; Downs and Dalitz, 1959; Ando et al., 2015; Hilden-
brand and Hammer, 2019; Schäfer et al., 2021). The calculation of Λnn system
(Jπ = 1/2+, T = 1) is carried out in Jacobi coordinate HO basis using the NN
and YN interactions derived from chiral effective field model. In the extension into
the continuum state, we apply the SS-HORSE (Mazur et al., 2017; Shirokov et al.,
2016a; Blokhintsev et al., 2017; Lurie and Shirokov, 2004; Shirokov et al., 2018;
Mazur et al., 2019) formalism, which is a single state harmonic oscillator representa-
tion of scattering equations, to calculate the low-energy phase shifts and scattering
amplitude at the NCSM eigenenergies by employing hyperspherical harmonic oscil-
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lator basis. The low-lying Λnn resonance energy and width are extracted from
the scattering amplitude parametrization. The NCSM-SS-HORSE method (Shirokov
et al., 2016b) has been successfully applied to study tetraneutron unbound system
considered as true four-body scatterings. Here we first apply this method to study
the three-body system with strangeness.

In the thesis, we briefly present the formalism of the hypernuclear no-
core shell model and IR extrapolation technique to estimate the infinite energies in
Chapter II. The study of convergence properties and uncertainty quantification for
the relevant hypernuclei is presented in Chapter III. The Chapter IV presents the
SS-HORSE method formalism and its application to the calculating democratic three-
body decays within the NCSM as well as parametrization of scattering amplitude
to extract the resonance energy and level width of Λnn system. A summary is
presented in Sec. V.

 



CHAPTER II
HYPERNUCLEAR NO-CORE SHELL MODEL

The hypernuclear no-core shell model describes the many-body systems
containing nucleons and hyperons in the HO basis where all A fermions of the
system are treated as being active. The main feature of NCSM is the use of HO basis
which permits one to represent the full complexity of nuclear and hypernuclear
interactions efficiently with the aim to solve full A-body problems without making
any approximations regarding the structure of the many-body wavefunction.

The ambition is to solve the A-body non-relativistic Schrodinger equation

HAΨ
A = EAΨ

A, (2.1)

with realistic NN and YN interactions. The Hamiltonian matrix in many-body basis
grows rapidly with the number of particles in the system and model space truncation
in HO basis and the eigenvalue problem converges slowly in some cases. To solve
this many-body problem, Lanczos diagonalization method is used in modern NCSM
calculations to find the relevant eigenenergies and eigenstates of hypernuclear
systems under our consideration.

2.1 Hypernuclear Hamiltonian and Jacobi Coordinates

The hypernuclear NCSM approach starts with the non-relativistic Hamil-
tonian of a hypernuclear system employing realistic two-body NN, YN interactions
and realistic three-body NNN interactions

H =
A∑
i=1

ℏ2

2mi

∇⃗2
i +

A−1∑
i<j=1

VNN(r⃗i, r⃗j) +
A−1∑
i=1

VYN(r⃗i, r⃗A)

+
A−1∑

i<j<k=1

VNNN(r⃗i, r⃗j, r⃗k) + ∆M,

(2.2)
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where the mass mi and coordinates r⃗i correspond to the nucleons for i ≤ A−1

and for i = A to a hyperon.
The ΛN ↔ ΣN mixing effect in VYN (Polinder et al., 2006) is explicitly

taken into account. The mass term

∆M =
∑
i

mi −M0, (2.3)

is the rest-mass difference of Λ and Σ hyperons. M0 is the total rest mass of
constituent fermions in a system. The mass difference between the Λ and Σ

hyperons is small, mΣ −mΛ ∼ 77 MeV/c2, compared to that of the nucleon
and ∆ isobar, m∆ − mN ∼ 290 MeV/c2. This condition causes the effect
of the ΛN − ΣN coupling essential in the hypernuclear structure calculation.
The inclusion of the coupling effect may increase the ΛΣ attraction only for
hypernuclear systems with non-zero isospin due to the isospin conservation. We
use the isospin averaged particle masses in hypernuclear calculations (Wirth et al.,
2018) and consider the full coupled channels.

The formulation of NCSM uses a translationally invariant HO basis to omit
the center of mass (c.m.) coordinate. Employing Jacobi coordinates to construct
the HO basis is appropriate only for A ≤ 6 hypernuclear systems. The Jacobi
coordinates can be introduced as an orthogonal transformation of the single-nucleon
coordinates. There are several different sets of Jacobi coordinates that are related
to each other by orthogonal transformations. In the construction of the A-body HO
basis state to evaluate the two-body and three-body interaction matrix elements,
in general, we need three sets of Jacobi coordinates. For our purpose, the first
set of Jacobi coordinates in terms of scaled version of single-particle coordinates
x⃗i =

√
mi r⃗i is defined as

ξ⃗0 =
1

M1,A

A∑
i=1

√
mix⃗i,

ξ⃗i =

√
M1,imi+1

M1,i+1

(
1

M1,i

i∑
j=1

√
mjx⃗j −

1
√
mi+1

x⃗i+1

)
.

(2.4)

The total mass of the system is Mkl =
∑l

j=kmj with i = 1, ..., A − 1. This
set is employed for the construction of the antisymmetrized HO basis state of
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nucleon clusters. ξ⃗0 corresponds to the center of mass of the A-baryon system.
The coordinate ξ⃗A−1 corresponds to the relative coordinate between Ath hyperon
and the c.m. coordinate of the (A-1) nucleons cluster. When two-body hyperon-
nucleon interaction matrix elements need to be calculated, another set of Jacobi
coordinate appropriate for the basis expansion is obtained by keeping ξ⃗0, ..., ξ⃗A−3

and proposing two new variables

η⃗A−2 =

√
M1,A−2MA−1,A

M1,A

×
(

1

M1,A−2

A−2∑
i=2

√
mix⃗i −

1

MA−1,A

A∑
i=A−1

√
mix⃗i

)
,

η⃗A−1 =

√
mA−1mA

MA−1,A

(
1

mA−1

x⃗A−1 −
1

√
mA

x⃗A

)
.

(2.5)

In order to calculate the three-body nuclear interaction matrix elements,
a suitable set of Jacobi coordinate is obtained by keeping ξ⃗0, ..., ξ⃗A−4 and η⃗A−1

from the previous set and introducing other two different variables

ζ⃗A−2 =

√
M1,A−4MA−3,A−1

M1,A−1

×
(

1

M1,A−4

A−4∑
i=2

√
mix⃗i −

1

MA−3,A−1

A−1∑
i=A−3

√
mix⃗i

)
,

ζ⃗A−3 =

√
mA−3MA−2,A−1

MA−3,A−1

(
1

mA−3

x⃗A−3 −
1

MA−2,A−1

A−1∑
i=A−2

√
mix⃗i

)
.

(2.6)

The two-and three-body interactions in the Hamiltonian (2.2) depend only
on the relative coordinates (and relative momenta) and can be represented as
a potential matrix in a partial-wave decomposed relative-momentum basis |qγ⟩,
where |γ⟩ ≡ |(LS)JMχi⟩ assembling the relative quantum numbers for angular
momentum, spin, total angular momentum, isospin of the involved particles in the
system. When we employ the two- and three-body interactions in the NCSM
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calculations, the relative momentum-space matrix elements of potential need to
be transformed to a HO basis |nγ⟩ ≡ |n(LS)JMχi⟩, where n is the radial
quantum number. The antisymmetrization procedure using HO basis for three- and
four-body hypernuclei is presented in the Appendix A. The antisymmetrization of
relative-momentum states can also be obtained by using the same procedure. The
relative-momentum basis is transformed into the HO basis

|nγ⟩ =
∫
dq q2 |qγ⟩ ⟨qγ|nγ⟩

∫
dq q2ϕγ

n(q) |qγ⟩ , (2.7)

with the momentum-space wavefunction of the HO states

ϕγ
n(q) = (−1)n

√
2a3χi

n!

Γ(n+ L+ 3
2
)
e−

1
2ρ2ρLLL+ 1

2
n (ρ2), (2.8)

where aχi
=

1√
µχi

Ω
is the oscillator length, Ω is the oscillator frequency,

ρ = aχi
q is the dimensionless relative momentum and Lm

n (x) is an associated
Laguerre polynomial.

2.2 Potential Models

In our calculations, we use the leading-order (LO) Bonn–Jülich SU(3)-based
χEFT YN model (Polinder et al., 2006) and the next-to-next-to-leading-order (NNLO)
chiral NN+NNN interactions (Carlsson et al., 2016). Renormalization is not applied
to both nuclear and hypernuclear interactions. We present a brief description of
the potentials that have been used in the calculations of the binding energy for
light hypernuclei.

2.2.1 Nucleon-Nucleon Potentials

With the power counting fixed, B. D. CARLSSON et al. (Carlsson et al.,
2016) constructed the chiral interactions from the terms or diagrams depending on
the order ν and on the type of the exchanged particles. It consist of the contact
interaction (Vct) which is a general parametrization of the short-range physics and
the pion exchanges (V1π, V2π, V3π and so on) which comprise the long-range part
of the nuclear interactions. Each term in contact interaction is proportional to a
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low-energy constant (LEC). The interactions at different orders are

VLO = V
(0)
ct + V

(0)
1π ,

VNLO = VLO + V
(2)
ct + V

(2)
1π + V

(2)
2π ,

VNNLO = VNLO + V
(3)
1π + V

(3)
2π + VNNN ,

(2.9)

where the superscript specifies the orders ν of the interaction terms. The next to
next to leading order (NNLO) NN interactions were constructed from all terms with
orders ν ≤ 3. All 26 LECs up to a NNLO order in χEFT were optimized at the
same time with respect to NN and πN scattering data as well as experimentally
determined nuclear bound-state observables: 2,3H and 3He.

2.2.2 Hyperon-Nucleon Potentials

Analogous to the chiral NN potential, the YN interaction in a chiral effective
field theory approach constructed by Polinder et al. (Polinder et al., 2006) based
on a modified Weinberg powercounting. The limited accuracy and incompleteness
of the YN scattering data do not allow for a unique partial wave analysis as in
NN case. The parameters of the LO YN interaction in χEFT were directly fitted
to the cross sections. The YN potential in leading order consists of nonderivative
four-baryon contact term and one-pseudoscalar-meson exchange (OPME) related via
SU(3)f symmetry,

VLO = V
(0)
ct + V

(0)
OPME. (2.10)

The leading order YN contact term potential is

V
(0)
ct = CBB

S + CBB
T σ1.σ2, (2.11)

including CΛΛ
S,T , C

ΛΣ
S,T and CΣΣ

S,T for singlet and triplet state. There are only 5
LECs in the contact terms which were determined by a fit to only the set of 35
low-energy YN scattering data. The reasonable YN scattering data were reproduced
well in the regulator cutoff range between 550 and 700 MeV.
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2.3 Jacobi-Coordinate Formulation

The NCSM is based on an expansion of the total wavefunction in many-
body HO basis. The Jacobi coordinate is more convenient to use in the construction
of the basis state for light hypernuclei only. It is hard to build up an antisymmetrized
set of nuclear HO states using relative Jacobi coordinates when the number of
particles increases. The relative Jacobi coordinate HO basis allows us to carry out
the calculations in larger model spaces. Since J-formulation uses the translational
invariant Hamiltonian, the center of mass motion, related with ξ⃗0, can be removed
to reduce the basis states dimension. Then, a JT-coupled HO basis depending on
the relative coordinates ξi with i = 1, ..., A− 1, is built as

|(...(α1, α2), J3T3, α3)J4T4, ..., αA−1)JT ⟩ , (2.12)

where αi ≡ |ni(lisi)jiti⟩ are the relative HO basis including radial, orbital, spin
and isospin quantum numbers. The parentheses in Eq. (2.12) express the coupling
of angular momentum and isospin. The J and T quantum numbers are the total
angular momentum and total isospin of our consideration system. The state of
the two-nucleon subsystem is labeled here with α1.

For practical calculations, the basis state is truncated to a finite model
space by restricting a maximum number of HO quanta N tot

max,

A−1∑
i=1

(2ni + li) ≤ Nmax +N0 ≡ N tot
max, (2.13)

where Nmax is the maximum number of excitation quanta defining the many-body
NCSM basis space. In our calculations for s-shell hypernuclei, the minimal possible
number of HO quanta is N0 = 0.

2.3.1 Calculation of Interaction Matrix Elements for Three-body System

For the channel subsystem (two-nucleon pair and a hyperon), the relative
Jacobi coordinate described in term of scaled version of single particle coordinates
is defined as
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N Y

N

h1

h2
N

N

Y

x1
x2

(a) (b)

Figure 2.1 Demonstration of Jacobi coordinates employed for (a) NN pair (b) YN
pair in three-body system.

ξ⃗1 =

√
1

2
(x⃗1 − x⃗2) ,

ξ⃗2 =

√
2mNmY

2mN +mY

[
1

2
√
mN

(x⃗1 + x⃗2)−
1

√
mY

x⃗3

]
,

(2.14)

and a JT coupled three-body HO basis depending on these coordinates ξ⃗1 and ξ⃗2
is constructed as

|(nNN(lNNsNN)jNNtNN ,NYLYJY TY )JT ⟩ , (2.15)

which is appropriate for the calculation of the two-body NN interaction matrix
elements ⟨VNN(ξ⃗1)⟩. The nNN , lNN , sNN , jNN , tNN (NY ,LY ,JY , TY ) are
the relative HO quantum numbers depending on the coordinate −→

ξ 1 between two
nucleon (on the coordinate −→

ξ 2 between center of mass of two nucleons and a
hyperon). The J and T are the total angular momentum and total isospin of the
three-body system.

For a subsystem including hyperon-nucleon pair and a nucleon, the new
set of Jacobi coordinate is defined as
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η⃗1 =

√
(mN +mY )mN

2mN +mY

×
[

1
√
mN

x⃗1 −
1

(mN +mY )
(
√
mN x⃗2 +

√
mY x⃗3)

]
,

η⃗2 =

√
mNmY

mN +mY

(
1

√
mN

x⃗2 −
1

√
mY

x⃗3

)
,

(2.16)

where η⃗2 is the relative coordinate of the YN state and η⃗1 is the relative
coordinate between a nucleon and the c.m. of YN pair. Consequently, using
orthogonal transformation, the HO basis (2.15) can be transformed as

|(nNN(lNNsNN)jNNtNN ,NYLYJY TY )JT ⟩

=
∑

|(nNY (lNY sNY )jNY tNY ,NNLNJN)JT ⟩
(2.17)

×⟨(nNY (lNY sNY )jNY tNY ,NNLNJN)JT |(nNN(lNNsNN)jNN tNN ,NY LY JY TY )JT ⟩ .

The ⟨.|.⟩ notation is the recoupling coefficient which is given by Wigner
6-j, 9-j symbols and spacial part transformation coefficient (see detail in Appendix
B). The expansion of HO basis (2.15) become

|(nNN(lNNsNN)jNNtNN ,NYLYJY TY )JT ⟩ =
∑
LS

L̂2Ŝ2ĵNY ĴN ĵNN ĴY

× (−1)sNY +1/2+sNN+1/2

lNY sNY jNY

LN
1/2 JN

L S J


lNN sNN jNN

LY
1/2 JY

L S J


× (−1)tNY +TN+tNN+TY t̂NY t̂NN

{
1/2 1/2 tNN

tY T tNY

}
(−1)L−LN−LY

× |(nNY (lNY sNY )jNY tNY ,NNLNJN)JT ⟩

× ŝNN ŝNY ⟨NNLNnNY lNY |nNN lNNNYLY : L⟩d
{

1/2 1/2 sNN
1/2 S sNY

}
,

(2.18)

 



12

in terms of HO basis states

|(nNY (lNY sNY )jNY tNY ,NNLNJN)JT ⟩ , (2.19)

where |(nNY (lNY sNY )jNY tNY ⟩ and |NNLNJN)JT ⟩ are harmonic oscillator
states corresponding to the hyperon-nucleon pair depending on the η⃗2 coordi-
nate and a nucleon depending on the η⃗1 coordinate. The general HO bracket
⟨NNLNnNY lNY |nNN lNNNYLY : L⟩d mediates the spacial part transformation
between two coordinate sets ξ⃗1, ξ⃗2 and η⃗2, η⃗1 which couple to the total angular
momentum L. The coordinate transformation can be put into the form of Ref.
(Kamuntavicius et al., 2001)

(
η⃗2
η⃗1

)
=


√

d

1 + d

√
1

1 + d√
1

1 + d

√
1

1 + d


(
ξ⃗1
ξ⃗2

)
, (2.20)

with the mass radio d = mY

2mN+mY
. The two-body YN interaction matrix elements

are calculated in the basis (2.19) through the basis expansion (2.18)

⟨
2∑

i=1

VYN(r⃗i, r⃗3)⟩ = 2 ⟨VYN(η⃗2)⟩ . (2.21)

The matrix element ⟨VYN(η⃗2)⟩ is diagonal in all quantum numbers of the
states (2.19), excluding nNY and lNY . The computational model space is charac-
terized by the maximum number of HO quanta in the basis states (2.15) as

2nNN + lNN + 2NY +LY ≤ Nmax, (2.22)

where Nmax is the maximum number of oscillator quanta shared by all three
particles above the lowest HO configuration. The total energies of three-body
systems 3

ΛH and Λnn are calculated by diagonalization of Hamiltonian (2.2)
between the basis states in Eq. (2.15). The corresponding results are presented in
the next chapter.

 



13

2.3.2 Calculation of Interaction Matrix Elements for Four-body System

Analogs to the construction of three-body HO basis, the first set of
Jacobi-coordinates for a four-body hypernuclear system (three-nucleon pair and a
hyperon) is defined as

ξ⃗1 =

√
1

2

(
x⃗1 − x⃗2

)
,

ξ⃗2 =

√
2

3

[1
2
(x⃗1 + x⃗2)− x⃗3)

]
,

ξ⃗3 =

√
3mmY

3m+mY

[
1

2
√
m
(x⃗1 + x⃗2 + x⃗3)−

1
√
mY

x⃗4

]
,

(2.23)

where ξ⃗1 is the relative coordinate of two nucleon pair, ξ⃗2 is the relative coordinate
between c.m. of two nucleon pair and a third nucleon, ξ⃗3 is the relative coordinate
between a hyperon and the c.m. of the three nucleons. The antisymmetrized
four-body HO basis (A.7) depending on the coordinates ξ⃗1, ξ⃗2 and ξ⃗3 is expressed
as

|(NNNN iNNNJNNNTNNN ,NYLYJY TY )JT ⟩ , (2.24)

which is suitable for the calculation of the three-body NNN interaction matrix ele-
ments. The quantum number iNNN distinguishes between different antisymmetric
states with the same quantum numbers NNNN , JNNN , TNNN . A NNN basis
depending on Jacobi coordinates ξ⃗1 and ξ⃗2 is

|NNNN iNNNJNNNTNNN⟩ =
∑

cfp

× |nNN(lNNsNN)jNNtNN ,NNLNJN , JNNNTNNN⟩ ,
(2.25)

where cfp is the coefficients of fractional parentage obtained
from three-body NNN basis antisymmetrization (see detail in Appendix A).
|(nNN(lNNsNN)jNNtNN⟩ and |NNLNJN⟩ are harmonic oscillator states re-
lated to the NN pair depending on the coordinate ξ⃗1 and a third nucleon depending
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on the coordinate ξ⃗2. The three-body NNN interaction matrix elements are calcu-
lated in the basis (2.24) as

⟨VNNN(r⃗1, r⃗2, r⃗3)⟩ = ⟨VNNN(ξ⃗1, ξ⃗2)⟩ . (2.26)

The matrix elements ⟨VNNN(ξ⃗1, ξ⃗2)⟩ are diagonal in all quantum numbers of the
state (2.24) expect for NNNN and iNNN , for isospin-invariant interactions.

N

N

Y

x1 x2
N

x3

h1

h2N

N

Y

N

h3

(a) (b)

Figure 2.2 Demonstration of Jacobi coordinates employed for (a) antisymmetrization
and NNN interaction (b) NN and YN interactions.

The constructed antisymmetrized basis (2.24) is not appropriate for the
calculation of two-body interaction matrix elements. The new set of Jacobi
coordinates is required when the NN and YN interaction matrix elements need to
be calculated. The new set is acquired from the first set (2.23) by keeping the
c.m. coordinate ξ⃗0, ξ⃗1 and introducing two different variables as follows

ξ⃗0, ξ⃗1 = η⃗1,

η⃗2 =

√
2mN(mN +mY )

3mN +mY

×
[ 1√

2mN

(x⃗1 + x⃗2)−
1

mN +mY

(
√
mN x⃗3 +

√
mY x⃗4)

]
,

η⃗3 =

√
(mNmY )

mN +mY

( 1

mN

x⃗3 −
1

√
mY

x⃗4

)
,

(2.27)
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where η⃗1 is the relative coordinate of two nucleon pair, η⃗2 is the relative coordinate
between c.m. of the hyperon-nucleon pair and c.m. of the two nucleon pair. η⃗3
is the relative coordinate of the YN pair. Using orthogonal transformation, the basis
(2.24) is transformed to a basis containing antisymmetrized nucleon-nucleon state
and hyperon-nucleon state

|(NNNN iNNNJNNNTNNN ,NYLYJY TY )JT ⟩

=
∑

cfp(−1)tNN+1/2+TY+T+JNN+jN+JNNN+J+L′+jNY+IN+LY+sNY

× T̂NNN t̂NY ĴY ĴNNN Î
2
NY ĵN ŝNY ÎNY ĵNY

 IN 1/2 jN
LY

1/2 JN

INY sNY J


×
{
LY J INY

sNY lNY jNY

}{
TNN

1/2 TNNN

TY T tNY

}{
jNN jN JNNN

JY J J

}
× ⟨nNY lNYN ′L′INY |NYLY nNININY ⟩d

× |nNN lNNsNNjNNtNN , (nNY lNY sNY jNY tNY ,N ′L′)J , JT ⟩ ,

(2.28)

in term of HO basis states

|nNN lNNsNNjNNtNN , (nNY lNY sNY jNY tNY ,NL)J , JT ⟩ , (2.29)

where |nNN lNNsNNjNNtNN⟩ and |nNY lNY sNY jNY tNY ⟩ correspond to
nucleon-nucleon state depending on the η⃗1 coordinate and hyperon-
nucleon state depending on the coordinate η⃗3. The state |NL⟩ de-
pends on the η⃗2 coordinate. The calculation of the general HO bracket
⟨nNY lNYN ′

YL
′
Y INY |NLnNININY ⟩d needs two coordinate sets ξ⃗2, ξ⃗3 and

η⃗3, η⃗2 which are connected by the orthogonal transformation (Kamuntavicius et al.,
2001),

(
η⃗3
η⃗2

)
=


√

d

1 + d

√
1

1 + d√
1

1 + d

√
1

1 + d


(
ξ⃗2
ξ⃗3

)
, (2.30)
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where d = 2∗mY

3m+mY
is the mass radio of the involved particles. With the help of

basis expansion (2.28), the two-body YN and NN interaction matrix elements can
be calculated in the basis (2.29) as

⟨
3∑

i<j=1

VNN(r⃗i, r⃗j)⟩ = 3 ⟨VNN(η⃗1)⟩ , (2.31)

and

⟨
3∑

i=1

VYN(r⃗i, r⃗4)⟩ = 3 ⟨VYN(η⃗3)⟩ , (2.32)

where the ⟨VNN(η⃗1)⟩ and ⟨VYN(η⃗3)⟩ matrix elements are diagonal in all quantum
numbers of the state (2.29) expect for the quantum numbers n and l. The
computational model space is restricted by maximal four-body HO basis truncation
as

2nNN + lNN + 2NN +LN + 2NY +LY ≤ Nmax, (2.33)

where Nmax is the maximum number of oscillator quanta shared by all four particles
above the lowest HO configuration. The total energies of four-body systems 4

ΛH

and 4
ΛHe are calculated by diagonalization of Hamiltonian (2.2) between the basis

states, which are presented in chapter III.

2.4 IR Extrapolation

IR extrapolation can be utilized to estimate the infinite results from
smaller model spaces (Furnstahl et al., 2012; Coon et al., 2012; Wendt et al.,
2015). The computational finite HO basis defined by the model space (Nmax) and
HO frequency (ℏω) can be described by the corresponding infrared (IR) length and
ultraviolet (UV) scales.

In the NCSM basis specified by a total energy truncation, the IR length
scale (Leff ) can be computed by evaluating the discrete kinetic energy spectrum in
hyperradial well and NCSM space (Wendt et al., 2015). A brief description of the
calculation of infrared (IR) length scales is presented in Appendix D. The leading
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order IR extrapolation formula (Furnstahl et al., 2012) for energies is

E(Leff) = E∞ + a0e
(−2k∞Leff ), (2.34)

where E∞, a0 and k∞ are the fit parameters. When the IR extrapolation is invalid
at where the final energy is above the variational minimum energy calculated
in a NCSM space with N tot

max , IR corrections need to be considered in the
extrapolation. Subleading IR corrections to a leading order IR extrapolation formula,
have the suggested form (Forssén et al., 2018)

σIR ∝ e−2k∞Leff

k∞Leff

. (2.35)

The inclusion of subleading IR correction in the extrapolation will push the extrap-
olated parameter E∞ down under the variational minimum Evarmin.

The extrapolated results will depend on the selected UV scales. To
achieve UV-convergence, UV cutoff ΛUV needs to be higher than chiral regulator
cutoff ΛNN used in chiral effective field theory. We use a fixed UV cutoff ΛUV =

1200 MeV (Forssén et al., 2018) because a higher UV cutoff is needed in many-body
basis to capture all UV physics included in NN interactions. Then UV corrections
to finite-space results can be important unless ΛUV ≫ ΛNN ,ΛYN . Here there
is no need for UV correction because a fixed UV cutoff ΛUV = 1200 MeV is
sufficient for this calculation. Only the UV converged energy points are selected
for extrapolation. The IR extrapolation formula (2.34) is still valid at a selected
UV cutoff ΛUV = 1200 MeV (Forssén et al., 2018). The UV converged data
can be obtained by doing calculations at corresponding (Nmax, ℏω) model-space
parameters.

 



CHAPTER III
CONVERGENCE PROPERTIES AND UNCERTAINTY

QUANTIFICATION OF HYPERNUCLEI

In this chapter, we study the convergence properties and the dependence
of hypernuclear binding energy on various model space sizes and HO frequencies.
We then analyze the sensitivity of the s-shell hypernuclear binding energies to
systematic nuclear uncertainties.

3.1 Systematic Uncertainties of Nuclear Interactions

The chiral NN interaction model depends on the choice of regular cutoffs
Λ in the chiral NN potentials, selection of the experimental data for fitting and the
truncation of the chiral expansion. The family of 42 different nuclear interactions
at NNLO (labeled NNLOsim) (Carlsson et al., 2016) was constructed by varying the
chiral momentum cutoff parameter ΛNN between 450 and 600 MeV in steps of
25 MeV and the truncation of the input NN scattering Tmax ≤ Tmax

Lab between 125
and 290 MeV in six steps. All nuclear potential models indicate an equally good
description of the NN scattering. These model errors are also called systematic
model uncertainties. For each 42 different potential models, all 26 low-energy
constants (LECs) up to NNLO were optimised to NN and πN scattering and few-
body nuclear bound-state observables at the same time: 2,3H , 3He. Each LECs
also have small statistical uncertainties from the fit. But it does not have much
effect on a predicted observable if we compare with systematic uncertainties. So,
we focus our attention on the study of the systematic nuclear uncertainty effect
on predicted hyernuclear binding energy.

3.2 Binding Energies of Hypernuclear Systems

We here present the ground state and excited state binding energies of
three- and four-body hypernuclear systems and discuss the consequence of our
findings.
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3.2.1 Three-Body Λnn System and 3
ΛH Hypernucleus

The three-body systems are analyzed within the NCSM framework using
chiral NNLO NN interaction with momentum cutoff ΛNN = 500 MeV and LO YN
interaction with ΛYN = 600 MeV. We have computed the total energy of Λnn
system in the oscillator basis with model space up to Nmax = 36 MeV in the
range of the HO frequencies 1 MeV ≤ ℏω ≤ 40 MeV. It is found that there
is no Λnn bound system. The ground-state Λnn energies as a function of HO
frequencies ℏω and model space sizes Nmax are presented in Figure 3.1. The solid
black lines represent the predicted binding energies obtained from interpolation
between each data point. The NCSM energies decrease with increasing of Nmax

and with decreasing of ℏω. Then we continue the study of the Λnn resonance
within SS-HORSE extension of the NCSM to the continuum. The calculation of 3
→ 3 scattering phase shifts will be presented in chapter IV.
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Figure 3.1 The Λnn eigenenergy E(Λnn) dependence on the HO frequency ℏω,
computed using the NNLOsim interaction ΛNN = 500 MeV and Tmax

Lab = 290 MeV
for different model-space sizes from Nmax = 2 to Nmax = 36. Blue shaded area
shows the selected energies for parametrization of the scattering amplitude.

For the 3
ΛH system, the calculations of total energy are performed in

the model space Nmax up to 66 MeV and in the range of the HO frequencies
7 ≤ ℏω ≤ 40 MeV by using a chiral LO YN interaction and chiral NNLOsimNN
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Figure 3.2 The hypertriton ground state energy E(3ΛH) dependence on the HO
frequency ℏω, computed using the NNLOsim interaction ΛNN = 500 MeV and
Tmax
Lab = 290 MeV for different model-space sizes from Nmax = 14 to Nmax =

70.

interactions. We choose one of the 42 nuclear interactions (ΛNN = 500 MeV,
Tmax
Lab = 290 MeV), which is the standard choice in nuclear calculations, to

study more detail about the convergence behaviors. The ground-state energy of
hypertriton for different model space sizes and HO frequencies is presented in
Figure 3.2, for a particular interaction (ΛNN = 500 MeV, Tmax

Lab = 290 MeV). The
hypertriton energy is converging with the increasing of the model space size while
the dependence on ℏω decreases. But the convergence is very slow due to the
very weak hypertriton binding energy. We also searched for the eigenenergy values
at ℏω = 7, 8, 9 MeV with the largest model space sizes to locate the variational
minimum. The optimal energy Evarmin(

3
ΛH) = −2.385 MeV for this particular

interaction is occurred at the HO frequency ℏω = 9 MeV and Nmax = 70 MeV.
Calculations of 3

ΛH in the model spaces up to Nmax = 70 MeV show that the
resulting variational minimum energy is converged enough.

We furthermore study the convergence of variational minimum by applying
IR extrapolation technique to our NCSM results computed in model space specified
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Figure 3.3 Extrapolation of E(3ΛH) computed using the NNLOsim interaction
ΛNN = 500 MeV and Tmax

Lab = 290 MeV for a fixed ΛUV = 1200 MeV. The data
Nmax ∈ [22, 60] points are used in the fit.

by corresponding IR length scale Leff at ΛUV = 1200 MeV. We perform fits to
Eq. (2.34) with an NLO correction term in Eq. (2.35) to get more stabilized results.
All UV converged energy points included in our exponential fitting are described
by dark blue makers. The extrapolated energy E∞(

3
ΛH) = −2.385 MeV obtained

from fitting with data Nmax ∈ [22, 60] is shown by a red horizontal line in Figure
3.3. The energy difference between Evarmin at Nmax = 66 and E∞ for this
nuclear interaction (ΛNN = 500 MeV and Tmax

Lab = 290 MeV) is just a few keV. It
indicates that uncertainty of many-body method is negligible.

The experimental binding energy for hypertriton is Eexp.(3ΛH) = −2.35
± 0.05 MeV (Davis, 2005). For other 41 nuclear Hamiltonians, we assume that the
final conclusion for convergence study will be the same. The predicted results of
hypertriton system have been published (Htun et al., 2021).

3.2.2 Four-Body 4
ΛH and 4

ΛHe Hypernuclei

NCSM calculations are performed for the four-body hypernuclear systems
using chiral nuclear interactions (NN+NNN) at approximate (Nmax, ℏω) model-space

 



22

4 6 8 10 12
Leff [fm]

12

10

8

6

4

2
E 

[M
eV

]
4H

(a)

4 6 8 10 12
Leff [fm]

4He

(b)

Figure 3.4 (a-b) Extrapolations of the total energy for both ground state and excited
state of 4

ΛH and 4
ΛHe for ΛNN = 500 MeV and Tmax

Lab = 290 MeV NN interaction.
The solid red (green) line and the dash blue (black) line indicate the extrapolated
and variational minimum energies in the largest model space Nmax = 20 (16) MeV
for 0+(1+) states, respectively.

parameters associated with a high UV cutoff ΛUV = 1200 MeV. The computed IR
length scales Leff and the HO frequencies ℏω for all corresponding systems are
tabulated in Table D.1. The ground and excited states binding energies of both
4
ΛH and 4

ΛHe hypernuclei are obtained with model spaces Nmax ≤ 20 MeV and
Nmax ≤ 16 MeV, respectively. The model space is enough to get converged values
in 4

ΛH and 4
ΛHe with the bare LO YN and NNLOsim NN interactions. The NCSM

computation going to larger Nmax is difficult and costly when involved particles
increase. We show the model-space dimensions of our calculated hypernuclei with
different Nmax in Figure C.1.

The IR extrapolation is applied to extract the final binding energy from
smaller model spaces. The only UV converged energy points obtained with ΛUV =

1200 MeV are included in our simple fitting to Eq. (2.34). The fits are performed
with the data Nmax ∈ [6, 20] for ground state and with the data Nmax ∈ [8, 16]

for excited state. Figure 3.4 shows the extrapolations with NLO correction term
for the ground state and excited state of 4

ΛH and 4
ΛHe. We can see that the

convergence with the size of the model space is much faster for more bound
hypernuclear systems. But every heavier hypernuclear system are not always
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feasible to reach convergence. Then we compute the ground state Λ-separation
energies, EΛ = E(A−1Z) − E(AΛZ), of all relevant hypernuclei and compare
with their experimental Λ binding energy which is presented in Table 3.1. We
found that the Λ-separation energy of 4

ΛH hypernucleus is overbinding than the
experimental one for this particular NN interactions.

Table 3.1 The Λ-separation energies obtained with NNLOsim(ΛNN = 500 MeV,
Tmax
Lab = 290 MeV) for bound-state light hypernuclei.

Hypernuclei Experimental value Reference Egs,∞ Esep
Λ,∞

(MeV) (MeV) (MeV)

3
ΛH 0.13 ± 0.05 [(Davis, 2005)] -2.385 0.161
4
ΛH 2.04 ± 0.04 [(Davis, 2005)] -11.248 2.766
4
ΛHe 2.39 ± 0.03 [(Davis, 2005)] -10.467 2.750

3.3 Systematic Uncertainties of 3
ΛH , 4

ΛH and 4
ΛHe Hypernuclei

Since we have presented that we can reach converged results, the
calculations with all 42 interaction models are performed to quantify the magnitude
of model variations in 3

ΛH , 4
ΛH and 4

ΛHe hypernuclei. The resulting spread in
the hypertriton binding energies from 42 independent calculations using Nmax =

66 and ℏω = 9 MeV are shown in Figure 3.5. The NCSM eigenenergies decrease
with increasing momentum cutoff and increase with increasing Tmax

Lab . The obtained
spread in binding energy predictions express the model uncertainties of E(3ΛH)

due to the quantified uncertainty of nuclear structure models. We find that the
systematic nuclear uncertainty in E(3ΛH) is rather small. It is about ≲ 100 keV
and almost the same as the experimental uncertainties of hyertriton.

The E∞ values obtained in this way for all 42 different NN nuclear
interactions follow the same trend in 4

ΛH and 4
ΛHe (see Figure 3.7). The variational

results are obtained with Nmax = 20 and ℏω = 29.19 MeV for ground states and
Nmax = 16 and ℏω = 34.49 MeV for excited states of four-body hypernuclei.
The extrapolation are performed at ΛUV = 1200 MeV including NLO correction
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terms. The uncertainties of variational minimum energies, Evarmin and extrapolated
energies, E∞ are summarized in Table 3.2. The magnitudes of the spread of four-
body hypernuclear binding energies indicate that our results are not extremely
sensitive to the uncertainty of NN interactions. The entire model uncertainties of
extrapolated Λ-separation energies obtained from 42 NNLOsim NN interactions for
4
ΛH are overbind than the experimental uncertainties. Although the calculations
with YN and NN-forces only for the four-body systems give much larger uncertainty,
the inclusion of the three-body nucleon forces provides the smaller dependence of
total binding energy on the uncertainties of nuclear interaction. This finding of the
modest systematic uncertainties opens up the opportunity to utilize the binding
energies of 3

ΛH and 4
ΛHe hypernuclei as the relevant bound state observables to

constrain YN interaction models.

Table 3.2 Uncertainty ranges of the variational minimum energies and extrapolated
energies for ground and excited states of four-body hypernuclei.

Hypernuclei Evarmin(MeV) ENLO
∞ (MeV)

Range σvar.
model Range σ∞

model

4
ΛH(0+) -11.272 ... -10.749 0.523 -11.337 ... -10.856 0.481
4
ΛH(1+) -9.941 ... -9.471 0.328 -10.269 ... -9.890 0.419
4
ΛHe(0

+) -10.484 ... -9.970 0.514 -10.554 ... -10.082 0.472
4
ΛHe(1

+) -9.117 ... -8.655 0.462 -9.463 ... -9.094 0.369
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Figure 3.5 Binding energy predictions for 3
ΛH (variational minima at Nmax = 66 and

ℏω = 9 MeV) with the 42 different NNLOsim interaction models. The blue band
represents the experimental binding energies Eexp.(

3
ΛH) = -2.35 ± 0.05 MeV.
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Figure 3.6 Ground state energies for 4
ΛH and 4

ΛHe with the 42 different NNLOsim in-
teraction models. The green band represents the model uncertainty in hypernuclei.
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Figure 3.7 Ground state Λ-separation energies for 4
ΛH and 4

ΛHe with the 42 differ-
ent NNLOsim interaction models. The green band represents the model uncertainty
in hypernuclei. The experimental Λ-binding energies are 4

ΛH ∼ 2.04 ± 0.04 MeV
and 4

ΛHe ∼ 2.39 ± 0.03 MeV, presented by a blue band.

 



CHAPTER IV
CALCULATION OF LOW ENERGY PHASE SHIFTS AND

RESONANT PARAMETERS

Assuming that the NCSM final energy of Λnn is an estimation to the
resonance energy, we extend NCSM to the continuum state by employing J-Matrix
formalism (Bang et al., 2000; Yamany and Fishman, 1975), also known as Harmonic
oscillator representation of scattering equation (HORSE) formalism, which allows us
to study continuum spectrum using only positive energies obtained from bound
state approaches like NCSM applying harmonic oscillator basis. The HORSE method
can be used to describe the open channels in the external subspace while the
internal subspace is associated with NCSM approach.

4.1 Hyperspherical Coordinate for Λnn System

The similar three-body Jacobi coordinate set described in Chp. II. is used
for Λnn system as

ξ⃗1 =

√
1

2
(x⃗1 − x⃗2) ,

ξ⃗2 =

√
2mnmY

2mn +mY

[
1

2
√
mn

(x⃗1 + x⃗2)−
1

√
mY

x⃗3

]
,

(4.1)

where ξ⃗1 (ξ⃗2) is correspond to the relative coordinate of the two neutron (between
the c.m. coordinate of the two neutron pair and a hyperon).

For a given choice of three-body Jacobi vector (ξ⃗1, ξ⃗2), the configuration
of the system is expressed by the six parameters, ξ1, ξ2, θ1, θ2, ϕ1, ϕ2 , including
the polar angles ξ̂i ≡ (θi, ϕi) of each Jacobi vector. The two radii ξ1, ξ2 have
infinite ranges and the others vary within finite limits. The first two variables can
be changed to the hyperradius ρ and hyperangle β which are defined respectively
as
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ρ =
√
ξ21 + ξ22 , (4.2)

and

β = tan−1ξ2
ξ1
, (4.3)

to run one variable ρ from zero to infinite while the other five variables vary
within finite limits, where ξ1 = ρcos(β) and ξ2 = ρsin(β). The hyper radius ρ
is the collective size of the system. The six parameters now become

ρ, β, θ1, θ2, ϕ1, ϕ2. (4.4)

In the following, we use the notation Ω5 ≡ (β, θ1, θ2, ϕ1, ϕ2) for hyperspherical
polar angles. In hyperspherical formalism, three-body system is described in six-
dimensional hyperspherical space having hyper radius and five hyperspherical angles.
Generally speaking, the hyperspherical coordinate is a magic coordinate having hyper
radius which measures the distance between all three particles at once which also
have some relative angular momentum.

The hyperradial part of free Schrodinger equation for three-body system
is (

− ∂2

∂ρ2
+

L(L + 1)

ρ2
− q2

)
uK(E, ρ) = 0, (4.5)

where the effective angular momentum L = K +
3A− 6

2
and q =

√
2E

ℏω
is dimensionless momentum. The hypermomentum K , also called grand angular
momentum, can be obtained by the sum of intrinsic orbital angular momenta.
Note that K in Λnn calculation is the angular momentum in six-dimensional
space.

4.2 Democratic Decay Approximation

In the extension into continuum, the three-body extension of the J-matrix
formalism for all three-body Λnn decay channels is very complicated. We utilize
the democratic decay approximation (also known as true three-body scattering or
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3 → 3 scattering) (Zaitsev et al., 1998) to describe the Λnn system decaying
through only three-body break-up channel. The other possible two-body channels
associated with two-body sub-bound systems nn and Λn are not allowed in this
approximation. A decay of a system into A particles is called ‘democratic’ if no
sub-bound systems is in the decaying process. In the asymptotic limit, all three
particles are well separated from each other and they fly away freely. Democratic
decay approximation employs a complete hyperspherical harmonics (HH) basis to
describe the continuum spectrum. The illustration for democratic 3 → 3 scattering
is shown in Figure 4.1.

(a) (b)

Figure 4.1 Illustration for three-body democratic decaying (a) and no sub-bound
system (b).

4.3 J-Matrix Formalism with Hyperspherical Oscillator Basis

The J-Matrix approach (Yamany and Fishman, 1975), also known as HORSE
method, can be used to extend the finite NCSM Hamiltonian matrix in the HO
basis into the continuum. The total wave function of the system is generally
described as a function of the (A - 1) jacobi coordinate ξi where the center of
mass motion is separated. To describe the 3 → 3 scattering, we employ the
hyperspherical oscillator basis which is the eigenfunction of a (3A - 3) dimensional
harmonic oscillator, i.e. six dimensional HO for three-body case, with the frequency
ℏω in the hyperspherical coordinates. The hyperspherical oscillator basis is defined
as

|κΓ⟩ ≡ |κKγ⟩ ≡ ⟨ρ⃗ |κK((l1l2)L(s1s2)S)J(t1t2)T ⟩

= RκK(ρ)YKγ(Ω5),
(4.6)

where YKγ(Ω5) is the hyperspherical function characterized by the set of quantum
numbers γ ≡ {l1, l2, L, s1, s2, S, t1, t2, T}, κ is the oscillator principal quantum
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number, l1 and l2 are the relative orbital angular momenta. The s1, s2 (t1, t2) is
intermediate spin (isospin) couplings. The quantum numbers L, S and T specify
the total orbital angular momentum, spin and isospin of the system. The L and
S coupled to the total angular momentum J . The hyperradial oscillator function
is defined as

RκK(ρ) ≡ RL
κ (ρ) = ρ−5/2rκK(ρ), (4.7)

rκK(ρ) ≡ rLκ (ρ) = (−1)κ
√

2κ

Γ(κ+ L + 3
2
)
ρL+1e

ρ2

2 LL+ 1
2

κ (ρ2), (4.8)

where L = K +
3

2
for three-body system and the hyperspherical harmonics

spin-isospin function is defined as

YKγ(Ω5) ≡ YKLSJT
Γ (Ω5, χ⃗) = P l1,l2

K (β)YJM
l1l2LST

(ξ̂1, ξ̂2, χ⃗), (4.9)

which is expressed detail in Appendix F. The Γ channel account for all possible
quantum numbers for three-body system,

Γ ≡ {Kγ} ≡ {K, l1, l2, L, s1, s2, S, t1, t2, T}, (4.10)

which is consistent with the given values of K,L, S, J, T . The Eq. (4.6) to (4.8)
define the eigenfunctions of the 3-body Schrodinger equation. The hyperspherical
oscillator basis in Eq. (4.6) is orthonormalized

⟨κΓ|κ′Γ′⟩Ω ≡ ⟨κKLSJT |κ′K ′L′S ′J ′T ′⟩Ω = δκκ′δΓΓ′, (4.11)

where ⟨ ⟩Ω indicates the evaluation of the spin-isospin traces and the integration
over the hyperspherical variables. The total wave function of the system charac-
terized by the total energy E and other quantum numbers α can be expanded in
the hyperspherical oscillator function series

Ψ = |Eα⟩

=
∑
κΓ

⟨κΓ|Eα⟩ |κΓ⟩ ≡
∑

κKLSJT

⟨κKLSJT |Eα⟩ |κKLSJT ⟩ ,
(4.12)
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and the Schrodinger equation takes the form∑
κ′K′L′S′J ′T ′

⟨κKLSJT |H − E |κ′K ′L′S ′J ′T ′⟩

× ⟨κ′K ′L′S ′J ′T ′|Eα⟩ = 0.

(4.13)

The wave function ⟨κ′K ′L′S ′J ′T ′|Eα⟩ ≡ aκK(E) in the hyperspherical oscil-
lator representation (OR) which is a solution of an infinite set of algebraic equations
can be labeled by the principle quantum number κ or the number of oscillator
quanta

N = 2κ+K = 2κ+ L − 3

2
. (4.14)

Generally the Hamiltonian matrix elements is infinite. We split the
complete infinite oscillator basis space into two parts: internal part and exter-
nal part. For internal subspace specified by harmonic oscillator functions with
N ≡ 2n+ l ≤ Nmax where the truncated Hamiltonian H = T +V is used, we
compute the eigenvalues of our system within the framework of NCSM approach
using Jacobi formalism (see in Chap. II). In an extension of the finite NCSM Hamilto-
nian to continuum using J-Matrix(SS-HORSE) formalism, we consider only the kinetic
energy matrix elements in the hyperspherical oscillator basis. The external subspace
is specified by hyperspherical oscillator functions with N ≡ 2κ + K > Nmax

where the Hamiltonian H = T is used. The free Schrodinger equation can be
written in terms of maximum number of oscillator quanta Nmax as∑

N ′
maxΓ′

⟨NmaxΓ|T − E |N ′
maxΓ

′⟩ ⟨N ′
maxΓ

′|Eα⟩ = 0. (4.15)

The kinetic energy matrix is diagonal with respect to the Γ and Γ′ and tridiagonal
with respect to κ and κ′. The non-zero KE matrix elements are increasing linearly
with the principal quantum number κ or with the model space truncation Nmax.
The tridiagonal KE matrix is
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⟨NmaxΓ|T |N ′
maxΓ

′⟩ = δΓΓ′

[
⟨Nmax − 2|T |N ′

max⟩+ ⟨Nmax|T |N ′
max⟩

+ ⟨Nmax + 2|T |N ′
max⟩

]
=

ℏω
2
δΓΓ′

[
(Nmax + 3)δNmax,N ′

max

− 1

2

√(
Nmax − L +

3

2

)(
Nmax + L +

5

2

)
× δNmax−2,N ′

max

− 1

2

√(
Nmax − L +

7

2
)
(
Nmax + L +

9

2

)
× δNmax+2,N ′

max

]
.

(4.16)

By substituting Eq. (4.16) in Eq. (4.15), the Schrodinger equation becomes the form
of three-term recurrence relation (TRR),

⟨Nmax − 2|T |N ′
max⟩ aassNmax−2,L(E) + ⟨Nmax|T − E |N ′

max⟩ aassNmaxL(E)

+ ⟨Nmax + 2|T |N ′
max⟩ aassNmax+2,L(E) = 0.

(4.17)

This Eq. (4.17) is a second order finite-difference equation. It has two independent
solutions for the free Schrodinger equation in the hyperspherical OR which can
be utilized in the case of arbitrary L (integer and half integer). The asymptotic
wave function in the oscillator representation aassNmaxL(E) is an arbitrary solution
of Eq. (4.17), which is a superposition of the fundamental regular SNmaxL(E)and
irregular CNmaxL(E) solutions,

aassNmaxL(E) = ⟨NmaxΓ|Eα⟩ = cosδL SNmaxL(E) + sinδL CNmaxL(E), (4.18)

where δL is the scattering phase shift. The regular solution of Eq. (4.17) is the
hyperradial momentum-space oscillator function,
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SNmaxL(E) =

√√√√√√√ (Nmax − L +
3

2
)!

λ Γ(
Nmax

2
+

L
2
+

9

4
)
qL+1 e−

q2

2 L
L+ 1

2

(Nmax−L+ 3
2 )/2

(q2), (4.19)

where L
L+ 1

2
κ (x) is the associated Laguerre polynomial, λ =

√
mω

ℏ
is the

oscillator length. The irregular solutions are more complicated and can be generally
expressed through Tricomi function Ψ(a, c; x) (in terms of special functions).

C
(±)
NmaxL(E) =

1

π
√
λ

√
(Nmax − L +

3

2
)! Γ(

Nmax

2
+

L
2
+

9

4
) qL+1 e

q2

2

× e∓iπ(L+ 1
2 )Ψ(

Nmax

2
+

L
2
+

9

4
,L +

3

2
; e∓iπq2),

(4.20)

CNmaxL(E) =
1

2

(
C

(+)
NmaxL(E) + C

(−)
NmaxL(E)

)
. (4.21)

The wave function in the oscillator representation aNL(E) in the internal
subspace can be expressed through the external solution aassN+2,L(E) in the
asymptotic subspace as follow

aNL(E) = GN,Nmax(E)T
L
Nmax,Nmax+2 a

ass
Nmax+2,L(E). (4.22)

To be consistent in notation we need to introduce a bra-ket notation and in that
case we will define the aNL(E) as

⟨NΓ|Eα⟩ = ⟨NΓ|G |Nmax,Γ
′⟩ ⟨Nmax,Γ

′|T |Nmax + 2,Γ′⟩

× ⟨Nmax + 2,Γ′|Eα⟩ ,
(4.23)

where N = N0, N0 + 2, ..., Nmax. Nmax is the maximal total quanta of many-
body oscillator states. In our case, N tot

max = Nmax + N0 = Nmax. The matrix
elements,
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GNN ′(E) = −
N∑
ν=0

⟨N |ν ′⟩ ⟨ν ′|N ′⟩
Eν′ − E

, (4.24)

are described through the NCSM eigenenergies Eν′ and eigenvectors ⟨N |ν⟩ of
truncated Hamiltonian to the internal subspace. Only one diagonal matrix element

GNmaxNmax(E) = −
Nmax∑
ν=0

⟨Nmax|ν⟩2

Eν − E
, (4.25)

is responsible for the calculation of phase shifts. The scattering phase shifts can
be derived through the matching condition where N = Nmax as follow

aNmaxL(E) = aassNmaxL(E). (4.26)

Substitution Eq. (4.22) in Eq. (4.26),

GNmaxNmax(E) T
L
Nmax,Nmax+2 a

ass
Nmax+2,L(E) = aassNmaxL(E), (4.27)

GNmaxNmax(E)T
L
Nmax,Nmax+2

(
cosδL SNmax+2,L(E) + sinδL CNmax+2,L(E)

)
= cosδLSNmaxL(E) + sinδLCNmaxL(E),

(4.28)

tanδL(E) = −
SNmaxL(E)−GNmaxNmax(E)T

L
Nmax,Nmax+2SNmax+2,L(E)

CNmaxL(E)−GNmaxNmax(E)T
L
Nmax,Nmax+2CNmax+2,L(E)

.(4.29)

Note that the basis (4.6) is applicable for the calculation of three-body decays and
not suitable for the calculation of interaction matrices. We remind here that the
matrix elements of the two-body potentials Vnn and VnY are computed in the
basis

|nlsjt⟩ = |n1l1s1j1t1, n2l2s2j2t2 : JT ⟩

= |(nnnlnnsnnjnntnn, nY lY sY jY tY )JT ⟩ .
(4.30)

Supposing that the basis functions (4.6) and (4.30) are specified by the same number
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of oscillator quanta N, i.e, when the total oscillator quanta 2n1+ l1+2n2+ l2 =

2κ + K where κ is the principle quantum number for the hyper-radial, the
extension of the kinetic energy matrix can be performed in the model space
characterized by 2κ + K > Nmax (2κ + K ≥ Nmax + 2) to describe the
external subspace. We do not need to do any transformations from NCSM jacobi-
coordiante HO basis to hyperspherical coordinate HO basis since we could directly
use the energies obtained from NCSM calculations to compute the 3 → 3 scattering
phase shifts.

4.3.1 Minimum Approximation

The complete set of HH basis includes an infinite number of basis states
with hypermomenta K ≥ Kmin where Kmin is the minimal hypermomentum
consistent with the Pauli principle for a given nucleus. For practical calculations,
the HH basis needs to be limited. We impose the minimum approximation of
hypershpherical harmonic approach to take only HH basis with Kmin for the Λnn

democratic decay channel.
The two-body subsystems in Λnn system are assumed to be S wave

states (l1 = l2 = 0) and the minimum hypermomentum (the lowest angular
momentum in the relative coordinate system) is

Kmin = 0. (4.31)

In the case of no sub-bound Λnn system, the HH states with large value of
hypermomentum K are insignificant due to high centrifugal barrier L(L + 1)/ρ2,
where ρ is hyper radius with the mass scaled Jacobi coordinates. Therefore,
the kinetic energy extension to the NCSM is performed only in HH basis with
hyperspherical momentum Kmin = 0.

4.3.2 SS-HORSE Approach

A direct HORSE extension of computationally demanding NCSM calculations
is impracticable. The Eq. (4.29) includes a sum over all possible eigenstates, i.e.,
over millions of states in modern NCSM computations. A calculation of a large
number of many-body eigenstates is too computationally expensive and it is hard
to obtain an adequate accuracy of the final sum in Eq. (4.29). To overcome these
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Figure 4.2 3 → 3 scattering phase shifts obtained directly from the NCSM eigenstates
using Eq. (4.32).

problems, we apply the SS-HORSE approach which computes the scattering phase
shift at the eigenenergies Eν > 0 obtained directly from NCSM calculation. The
Eq. (4.29) is reduced to

tan δL(Eν) = − SNmax+2,L(Eν)

CNmax+2,L(Eν)
. (4.32)

Generally speaking, a NCSM eigenstate Eν defines all the properties of a
nearby resonant state. So we calculate the 3 → 3 scattering phase shifts δL(Eν)

at these energies. We set N tot
max = Nmax since the number of minimum HO

quanta N0 = 0. Then, one can use asymptotic expressions for SNmax+2,L(Eν)

and CNmax+2,L(Eν) at large Nmax when we calculated the NCSM calculations
with even Nmax for even parity 1

2

+ state. The computed scattering phase shifts
covering the NCSM eigenenergies from Figure 3.1 are presented in Figure 4.2.

We can see the phase shifts pattern which is going to be convergent
with the increasing of model space size Nmax. The phase shifts at small values
of Nmax lie in the wide range of energy as the obtained Λnn ground-state
energies spread widely and lead to outside the resonance region. When Nmax

increases, the obtained Λnn ground-state energies converge to lower values and
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Figure 4.3 3 → 3 scattering phase shifts obtained from selected NCSM eigenstates
for scattering amplitude parametrization.

the corresponding phase shifts shift to the resonance energies region. The first
convergence of phase shifts is achieved at smaller energies with larger Nmax,
almost the same results at Nmax = 34 and 36 MeV. It is required to pick the
lowest eigenenergies for further phase shift or scattering amplitude parametrization.
There is no single rule for the selection of eigenenergies. We choose a set of
eigenenergies from Nmax = 10−36 which produces the phase shifts lying on or
close the common curve. The selected energy values are shown by blue shaded
area in Figure 3.1. Their resulting SS-HORSE phase shifts in Figure 4.3 become a
single smooth curve. We note that Eq. (4.32) can be used for scattering channels
of any type.

In the low energy region of q → 0, the phase shift behaves as δ ∼ q2L+1.
In our case, L = 3

2
(half integer). The computed phase shift δL(E) ∼ q4 is an

even function of q. Its expansion in Taylor series of even powers of
√
E ∼ q

contradicts the symmetry properties of S-matrix. Apparently, S-Matrix symmetry
is broken for all the systems having odd number of particles with half integer
L. Therefore, we instead compute the SS-HORSE low-energy scattering amplitude
for the purpose of extracting the resonance parameters from scattering amplitude
parametrization.
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The SS-HORSE scattering amplitude fL(Eν) is calculated through the
standard formula as

fL(Eν)q =
1

(cot δL(Eν)− i)
. (4.33)

The values of |fL(Eν)q|2 at the respective set of phase shifts in Figure 4.3
are shown by solid symbols in Figure 4.4. Next section, we extrapolate the low
energy scattering amplitudes on a larger energy interval using parametrizations of
|fL(Eν)q|2 and extract the resonance energy and width from fitting.

4.4 Parametrization of Scattering Amplitude

We parameterize the scattering amplitude in the method proposed in Ref.
(Cho et al., 1993) for the case of resonance scattering on the basis of the scattering
and resonance theory. In general, the resonance state is related with the pole of
the scattering amplitude located on the second energy sheet at Ep = Er + iΓ

2
.

When the resonance is not sharp, the resonance pole on scattering amplitude is
undetermined and the contribution of non-resonant scattering amplitude becomes
comparable with resonance one. In this case, non-resonant background needs
to be taken into the resonance part. The sum of potential scattering (non-
resonant background) and resonance contribution leads to a good approximation
to exhibit the better resonance energy and width. The scattering amplitude may
be parametrized as

F (E)q = eiδ0(E)sin δ0(E) +
−Γ/2

E− Er + iΓ/2
e2iδ0(E), (4.34)

where δ0(E) is the potential scattering phase shift, depending on the energy E.
The real and imaginary part of the above complex-valued function F (E)q

can be written respectively as

ReF (E)q =
Γ(−E + Er)cos 2δ0(E)− Γ2sin 2δ0(E)

Γ2 + 4(E − Er)2
, (4.35)
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Figure 4.4 The scattering amplitude function |fL(Eν)q|2 using Eq. (4.33) obtained
from NCSM eigenstates (symbol). The solid line shows the parametrization of
scattering amplitude using Eq. (4.34).

ImF (E)q =
Γ2cos 2δ0(E) + 2(Er − E)sin 2δ0(E)

Γ2 + 2(E − Er)2
. (4.36)

We perform minimization fit to both real and imaginary parts of the objective
function

Ξ =

√∑
ν

[F (E)q − fL(Eν)q]
2
, (4.37)

and the background phaseshift form is chosen arbitrarily which may ensure 3 →
3 scattering phase shift δ ∼ q4 in the low energy limit (E → 0). The fitting to
the SS-HORSE result |fL(Eν)q|2 by the function |F (E)q|2 leads the δ0(E) to
the form

δ0(E) = a0 + a2(
√
E)2 + a4(

√
E)4, (4.38)

with the adjustable parameters a0 = 1.856, a2 = −0.014 MeV−1, a4 = 2.959
×10−4 MeV−2. The resonance energy and width are extracted, Er = 0.124 MeV
and Γ = 1.161 MeV from the best fit to the data. The parametrization of the
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scattering amplitude |fL(Eν)q|2 with this selection of eigenstates is presented in
Figure 4.4.

As we can see in Figure 4.2, the states with very smaller HO frequencies
ℏω and large model space truncation Nmax have very small energies. The
selection of the NCSM energy points with very small ℏω may not very likely fulfill
the condition for UV convergence. According to Table D.1, the eigenenergies should
be calculated at approximate ℏω and Nmax depending on the UV cutoff ΛUV =

1200 MeV for three-body system. We can see that ℏω depends on model space
truncations Nmax and decreases when Nmax increases. But, within the SS-HORSE
analysis, we can use all NSCM eigenstates forming a common curve to include
scattering amplitudes from larger energy interval in our fitting, which enhance the
accuracy of the fitting parameters.

Our results are in a good agreement with those in Ref. (Filikhin et al.,
2016; Gibson and Afnan, 2019) and lies within the estimated range of the location
and width of a Λnn pole (Schäfer et al., 2021). We look forward to the results
of both Λnn bound and resonance states from ongoing experiment (E12-17-003)
at Jefferson Lab (JLab) (Tang et al., ) in order to gain new perspective on Λn

interactions. Such a Λnn resonance, if any, can be used to constrain the Λn

interaction in the calculation of few-body Λ hypernuclei.

 



CHAPTER V
CONCLUSIONS

In this work, we performed the no-core shell model calculations for
s-shell light hypernuclei 3

ΛH , 4
ΛH and 3

ΛHe using a family of chiral NNLOsim
nucleon-nucleon interactions and a fixed chiral LO hyperon-nucleon interaction.
The standard IR extrapolation technique are first applied in the hypernuclear NCSM
calculations. It reduces the errors concerning with selection procedure of which data
points are actually need to include in fitting. We have estimated the uncertainty in
the predicted three- and four-body hypernuclear binding energy due to the model
uncertainty of the NN interaction. We got the precious information for very limited
YN physics by studying the hypernuclear systems with also study of NN sensitivity.
When we go to the next orders of YN interaction in CEFT, we need to come up
with more observables to constrain more parameters for NLO. As a consequence
of our finding of small sensitivity of A=3 and 4 hypernuclear binding energy found
with the NNLOsim family of interactions, one may claim that the spectra of light
hypernuclei provides the important constraints on the hyperon-nucleon interaction
models. Present method can be employed to study the systematic uncertainty of
p-shell hypernuclei using the M-scheme basis.

We have performed ab initio no-core shell model calculations for the
Λnn system (Jπ = 1/2+, T = 1) without tuning the strength of realistic NN
and YN potentials at various Nmax and ℏω values with full inclusion of ΛN -ΣN
coupling, and found that no bound state exists. To look for resonance states
of the Λnn, we have applied the SS-HORSE method which permits calculating
phase shift by using the NCSM eigenenergy values alone. From the minimization
fit of scattering amplitude by the complex function F (E)q which expresss both
resonance and potential scattering region, we derive a Λnn resonant state at
energy Er = 0.124 MeV and width Γ = 1.161 MeV. Further theoretical studies
and experimental searches for Λnn resonances would be of great benefit of
constraining Λn interactions.
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5.1 future work

In the future, we intend to perform the uncertainties quantification of A=5
and 6-body hypernuclear binding energies to get more observables as additional
constraints on YN interaction. Moreover, we plan to carry out the SS-HORSE
calculations for four particles Λnnn system, also studying the S-matrix poles
related to unbound Λnnn state.
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APPENDIX A
BASIS ANTISYMMETRIZATION

The JT-coupled HO basis have to be antisymmetrized. We treat the
hyperon as a distinguishable particles and exclude it from the antisymmetrization
process. We assume the hyperon is Ath particle. The fully antisymmetrized basis
of A-body system with strangeness can be obtained from doing the same procedure
as in the purely nucleonic system using a Jacobi-coordinate HO basis. The fully
antisymmetrization given by the exchanges of all A−1 nucleons can be obtained
by diagonalization the antisymmetrizer in the basis (2.12). The antisymmetrization
operator for (A-1) nucleon systems is given by

AA−1 =
1

(A− 1)!

∑
π

sgn(π)Pπ, (A.1)

where Pπ is the all permutation operators exchanging two nucleons. This anti-
symmetrizer act as an identity operator on the hyperon state. For the 3-body
hypernuclear case, the action of antisymmetrizer in the two-nucleon state is very
simple

A2 |(α1, α2)JT ⟩ =
1

2
(1− P12) |(α1, α2)JT ⟩

=
1

2

[
1− (−1)l1+s1+t1

]
|(α1, α2)JT ⟩ .

(A.2)

The permutation operator P12 exchanges the position of nucleon 1 and 2 in the
|α1⟩ ≡ |nNN(lNNsNN)jNNtNN⟩ two-nucleon state depending on the Jacobi
coordinate ξ⃗1 and does not make sense on |α2⟩ ≡ |nY (lY sY )jY tY ⟩ state
depending on ξ⃗2 coordinate between NN pair and a hyperon.

For the 4-body hypernuclear case, the antisymmetrizer needed for anti-
symmetrization of three nucleons states can be represented as

A3 =
1

3
[1− 2P23]. (A.3)
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The result of Eq. (A.2) together with above antisymmetrizer in Eq. (A.3)
is employed to initiate the iterative procedure of constructing the antisymmetrized
basis for a larger number of particles, by adding one nucleon at a time. The
calculations often require to represent basis states in terms of states of subclusters.
A basis containing an antisymmetrized subcluster of three nucleons is

|NNNN iNNNJNNNTNNN⟩ ≡ |N3i3J3T3⟩ , (A.4)

where the quantum number i3 distinguishes between different antisymmetric states
with the same quantum numbers N3, J3, T3. The basis state can be expanded in
the states containing antisymmetrized subcluster of two nucleons and one nucleon
as

|N3i3J3T3⟩ =
∑

N2i2J2T2

∑
α2

⟨(N2i2J2T2, α2)J3T3|N3i3J3T3⟩

× |(N2i2J2TNN , α2)J3T3⟩ ,
(A.5)

where the state |α2⟩ ≡ |NNLNJN⟩ corresponds to a 3rd nucleon. Note that
the subscripts of the HO quantum numbers N, J, T refer to the number of
nucleons and of the state |αi⟩ refer to the Jacobi coordinates ξi. The matrix
element in above equation is the coefficients of fractional parentage (cfp) which
define the antisymmetric 3-body state in terms of antisymmetric 2-body states
in relative motion with respect to the 3rd nucleon. We obtain these states by
diagonalization of permutation operator in Eq. (A.3),

⟨(N ′
2i

′
2J

′
2T

′
2, α

′
2)J3T3, α3, JT |P23 |(N2i2J2T2, α2, J3T3, α3)JT ⟩

= δN
′

N

∑
N1i1J1T1

∑
α1

⟨(N ′
1i

′
1J

′
1T

′
1, α

′
1)J

′
2T

′
2|N ′

2i
′
2J

′
2T

′
2⟩

× ⟨⟨n′
2l

′
2, n

′
1l

′
1|n2l2, n1l1 : L⟩⟩ 1

3

× (−1)T
′
2+T2+J ′

1+J1 ⟨(N1i1J1T1, α1)J2T2|N2i2J2T2⟩

× T̂ ′
2T̂2ĵ

′
1ĵ1ĵ

′
1ĵ2Ĵ

′
2Ĵ2K̂

2L̂2

{
1/2 T1 T2
1/2 T3 T ′

2

}{
l′1 l2 K
j2 j ′1 1/2

}
(A.6)
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× (−1)l
′
2+l2

{
l1 l′2 K
j ′2 j1 1/2

}{
l′2 l1 K
l2 l′1 L

}J1 j ′1 j ′2
j1 K J ′

2

J2 j2 J3

 .

The permutation operator P23 exchanges the position of nucleon 2 and 3 in
the three-nucleon |(N2i2J2T2, α2)J3T3⟩ state depending on the Jacobi coordi-
nates ξ⃗1, ξ⃗2 and does not make sense on the |α3⟩ ≡ |nY (lY sY )jY tY ⟩ state
depending on the ξ⃗3 coordinate between NNN pair and a hyperon. The fully anti-
symmetrized states (and eigenvalues = 0, 1) are only obtained when the complete
block of intermediate states for J, T and N was included. The Harmonic Os-
cillator Brackets ⟨⟨n′

2l
′
2, n

′
1l

′
1|n2l2, n1l1 : L⟩⟩d= 1

(A−1)(A−3)
follow the convention

of Ref. (Kamuntavicius et al., 2001) and mediate the transformation between two
coordinates. The resulting states for 4-body hypernucleus

|(N3i3J3T3, α3)JT ⟩ , (A.7)

are antisymmetric with respect to exchanges of all nucleons.

 



APPENDIX B
RECOUPLING COEFFICIENT

We here express the recoupling coefficient for the simple three-body
case as an example. The three-body recoupling coefficient arising from coordinate
transformation (ξ⃗1, ξ⃗2 to η⃗2, η⃗1 ) can be obtained through the jj coupling, ls
coupling and spin coupling and isospin coupling. To be simplify, we use the index
1, 2 for two nucleons and index 3 for a hyperon in three body systems. The
explicit expression for the three-body recoupling coefficients will be

⟨(n13n2(l13s13)J13(l2s2)I2)J(T13t2)T |n12n3(l12s12)J12(l3s3)I3)J(T12t3)T ⟩

= ⟨n13n2|n12n3⟩ ⟨(l13s13)J13(l2s2)I2)J |(l12s12)J12(l3s3)I3)J⟩

× ⟨((t1t3)T13t2)T |((t1t2)T12t3)T ⟩
(B.1)

Let us couple three isospin t1, t2 and t3 to the total isospin T. There are two
ways: (1) first t1, t2 → t12 and then t12, t3 → T . (2) first t2, t3 → t23 and then
t23, t1 → T . The three isospin coupling can be expressed by 6-j symbols,

⟨((t1t3)T13t2)T |((t1t2)T12t3)T ⟩ =(−1)T13+t2+T12+t3T̂13t̂2

×
{
t2 t1 T12

t3 T T13

}
.

(B.2)

JJ coupling need to transform to LS coupling as

⟨(l13S13)J13(l2s2)I2)J |(l12S12)J12(l3s3)I3)J⟩

=
∑
LS

⟨(l13S13)J13(l2s2)I2)J |((l13l2)L(S13s2)S)J⟩

× ⟨((l13l2)L(S13s2)S)J |((l12l3)L(S12s3)S)J⟩

× ⟨((l12l3)L(S12s3)S)J |(l12s12)J12(l3s3)I3)J⟩ .

(B.3)
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Transformation of the state jj coupling to ls coupling,

|(l13S13)J13(l2s2)I2)J⟩ =
∑
LS

|((l13l2)L(S13s2)S)J⟩

l13 S13 J13
l2 s2 I2
L S J

 .(B.4)

Coupling coefficient between jj and ls is given by 9j symbol.

⟨(l13S13)J13(l2s2)I2)J |((l13l2)L(S13s2)S)J⟩ =
∑
LS

Ĵ13Î2L̂Ŝ

×

l13 S13 J13
l2 s2 I2
L S J

 .

(B.5)

Above JJ coupling coefficient become

⟨(l13S13)J13(l2s2)I2)J |(l12S12)J12(l3s3)I3)J⟩

=
∑
LS

Ĵ13Î2Ĵ12Î3L̂
2Ŝ2 ⟨((l13l2)L(S13s2)S|(l12l3)L(S12s3)S⟩

×

l13 S13 J13
l2 s2 I2
L S J


l12 S12 J12
l3 s3 I3
L S J

 .

(B.6)

⟨((l13l2)L(S13s2)S|(l12l3)L(S12s3)S⟩ = ⟨(l13l2)L|(l12l3)L⟩

× ⟨(S13s2)S|(S12s3)S⟩ .
(B.7)

The three spin coupling coefficient is also given by 6j symbol as

⟨(S13s2)S|(S12s3)S⟩ = (−1)S13+s2+S12+s3Ŝ13Ŝ12

{
s2 s1 S12

s3 S S13

}
. (B.8)

The general expression for three-body recoupling coefficient is

⟨(n13n2(l13s13)J13(l2s2)I2)J(T13t2)T |(n12n3(l12s12)J12(l3s3)I3)J(T12t3)T ⟩
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= Ĵ13Î2Ĵ12Î3(−1)S13+s2+S12+s3Ŝ13+l2+l3+T13+t2+T12+t3
∑
LS

L̂2Ŝ2T̂13T̂12

×

l13 S13 J13
l2 s2 I2
L S J


l12 S12 J12
l3 s3 I3
L S J


{
s2 s1 S12

s3 S S13

}{
t2 t1 T12

t3 T T13

}

× ⟨n13l13n2l2L|n12l12n3l3L⟩d= 2m+m3
m3

.

(B.9)

The corresponding harmonic-oscillator brackets (HOBs)
⟨n13l13n2l2L|n12l12n3l3L⟩d can be calculated by filling the arrays of
the binomial and trinomial coefficients. The code was based on the observation
that all group-theoretical expressions can be represented as products or sums of
products of binomial coefficients (Kamuntavicius et al., 2001). We directly use this
general coordinate transformation technique for our three-body calculations.

 



APPENDIX C
BASIS DIMENSION

The model-space dimension of the Jacobi coordinate HO basis grows
rapidly with the increasing of the model space size Nmax and the number of
particles in the system. Going to higher Nmax in studying the entire NNLOsim
family is computationally costly for heavier hypernuclei. In our calculation, the
dimension for ground state of 4

ΛHe and 4
ΛH at Nmax = 20 is 7.9 × 104 and,

which is the highest limit that supercomputers can handle when employing NNN
forces.
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Figure C.1 Basis dimension of the full NCSM space as function of Nmax for 3
ΛH ,

4
ΛH , 4

ΛHe hypernuclei and a Λnn system.

All of computations were performed on resources provided by the Swedish
National Infrastructure for Computing (SNIC) at C3SE (Chalmers) and NSC (Linköping).
The Λnn computations were performed at SUT server.

 



APPENDIX D
IR LENGTH SCALE AND RELATED HO FREQUENCIES

The IR length scales Leff for relevant hypernuclei are needed to perform
IR extrapolation which can estimate the final result from small model spaces missing
IR physics. The main idea to compute the infrared length scale is to equate the
instrinsic kinetic energy of A fermions in the NCSM space to that of A fermions in
a (3A − 3)-dimensional hyper-radial well. For this purpose, we firstly compute
the eigenvalues of the kinetic energy for a (3A−3)-dimensional hyper-radial well
with an infinite wall at hyper radius ρ. The hyper-radial part of the noninteracting
Hamiltonian is

−
(
∂2

∂2ρ2
− L(L + 1)

ρ2

)
ψK(ρ) = Q2ψK(ρ) (D.1)

where Q2 is the total squared momentum and L = K + 3(A − 2)/2 with
hypermomentum K and ρ is the hyperradius. The hyper-radial eigensolutions of
this Hamiltonian are

ψK(ρ) =
√
QρJL+ 1

2
(Qρ). (D.2)

With the Dirichlet boundary condition at ρ = L, QL become a zero of the
spherical Bessel function JL+ 1

2
. For ith zero, we denote as Xi,L and compute

the total square momentum as

Q2
i,n =

X2
i,L

L2
. (D.3)

The next step is to compute the eigenvalue of the kinetic energy operator
in NCSM basis. We use the hyperspherical basis to avoid the computational
requirement in computing the eigenvalues of kinetic energy operator. The kinetic
energy matrix elements is tridiagonal as
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⟨nKγ| T̂NCSM |n′K ′γ ′⟩ =ℏω
2
δKK′δγγ′

[(
2n+ L +

3

2

)
δnn′

−
√
(n+ 1)

(
n+ L +

3

2

)
δn+1,n′

]
,

(D.4)

and we compute the eigenvalues of the kinetic energy operator. The hyperspherical
basis states |nKγ⟩ collect the principle quantum number n, hypermomentum K

and other quantum numbers characterizing the hyperspherical functions.
By comparing the lowest kinetic energy eigenstate in the hyper-radial well

and the first eigenstate in the NCSM basis, the intrinsic IR length scales of the
NCSM basis can be calculated through a relation

Leff = b

√
X2

1,L

T1,L(N tot
max)

= bÑeff , (D.5)

with the effective angular momentum

L = Kmin + 3(A− 2)/2, (D.6)

where Kmin is minimum hypermomentum, b is HO length, (X1,L
L
)2 is the lowest

total squared momentum Q2
1,n of hyper-radial infinite square well, X1,L is a zero

of the spherical Bessel function JL+ 1
2
. Ñeff depends on the number of particles

and the model space truncation. More details can be found in Ref. (Wendt
et al., 2015). The resulting IR length scales Leff for corresponding hypernuclei are
presented in Table D.1.
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Table D.1 Effective Ñeff and IR length Leff = bÑeff for NCSM at ΛUV = 1200

MeV for three- and four-body systems.

N tot
max

A=3 A=4
ℏω Ñeff Leff ℏω Ñeff Leff

2 116.2995 3.6314 2.1685 99.0849 3.9343 2.5453
4 88.2357 4.1691 2.8582 77.4332 4.4504 3.2570
6 71.3360 4.6367 3.5354 63.8666 4.9004 3.9488
8 59.9587 5.0576 4.2062 54.4669 5.3064 4.6303
10 51.7498 5.4439 4.8734 47.5343 5.6802 5.3056
12 45.5368 5.8034 5.5384 42.1955 6.0288 5.9769
14 40.6659 6.1412 6.2017 37.9506 6.3571 6.6455
16 36.7421 6.4608 6.8640 34.4911 6.6683 7.3120
18 33.5125 6.7649 7.5255 31.6155 6.9649 7.9771
20 30.8070 7.0557 8.1864 29.1863 7.2490 8.6410
22 28.5073 7.3348 8.8468 27.1063 7.5220 9.3041
24 26.5281 7.6035 9.5069 25.3049 7.7851 9.9664
26 24.8065 7.8629 10.1666 23.7293 8.0394 10.6282
28 23.2954 8.1139 10.8261 22.3393 8.2858 11.2895
30 21.9581 8.3574 11.4855 21.1038 8.5248 11.9504
32 20.7664 8.5938 12.1446
34 19.6975 8.8239 12.8036
36 18.7335 9.0481 13.4625
38 17.8595 9.2668 14.1213
40 17.0636 9.4805 14.7799
42 16.3357 9.6894 15.4385
44 15.6673 9.8939 16.0971
46 15.0517 10.0943 16.7556
48 14.4826 10.2907 17.4140
50 13.9550 10.4834 18.0723
52 13.4645 10.6726 18.7307
54 13.0074 10.8586 19.3890
56 12.5802 11.0414 20.0472

Continued on next page
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Table D.1 – (continued)

N tot
max

A=3 A=4
ℏω Ñeff Leff ℏω Ñeff Leff

58 12.1803 11.2212 20.7055
60 11.8051 11.3981 21.3637
62 11.4522 11.5724 22.0218
64 11.1199 11.7440 22.6800
66 10.8063 11.9132 23.3381
68 10.5099 12.0799 23.9962
70 10.2294 12.2445 24.6543

 



APPENDIX E
KINETIC ENERGY AND HAMILTONIAN

We express the kinetic energy operator T̂ needed for computing kinetic
energy matrix elements of the Λnn system using hyperspherical harmonic basis
when the finite Hamiltonian matrix is extended to the continuum state.

T̂ = − ℏ2

2µ12
∇⃗2

x12
− ℏ2

2µ3

∇⃗2
x3
, (E.1)

where

x⃗12 = r⃗1 − r⃗2, x⃗3 = r⃗3 −
m1r⃗1 +m2r⃗2
m1 +m2

. (E.2)

We may redefine the Jacobi coordinates,

X⃗12 =

√
µ12

m
x⃗12,

X⃗3 =

√
µ3

m
x⃗3,

(E.3)

to rewrite the kinetic energy term

T = − ℏ2

2m
∇⃗2

X12
− ℏ2

2m
∇⃗2

X3
= − ℏ2

2m
∇⃗2

ρ
(E.4)

with

ρ⃗ = {X⃗12, X⃗3} (E.5)

Corresponding, one can define a hyperspherical oscillator,

H = − ℏ2

2m
∇⃗2

ρ +
1

2
mω2ρ2 (E.6)

 



APPENDIX F
HYPERSPHERICAL HARMONICS

Within HH approach, the total wavefunction is expanded in an infinite
series over the hyperspherical harmonics as

Ψ =
∑
µ

ρ−5/2uκK(E, ρ)Y
KLSJT
Γ (Ω5, χ⃗), (F.1)

where uκK is the hyperradial wavefunction and it can be expanded in hyperradial
oscillator function series

uK(E, ρ) =
∞∑
κ=0

aκK(E)RκK(ρ). (F.2)

The hyperspherical harmonics spin-isospin function is formally defined as

YKLSJT
Γ (Ω5, χ⃗) ≡Y

m1,m2
K,l1,l2

(Ω5)χs(σ)χt(τ)

=P l1,l2
K (β)Ym1,m2

l1l2
(ξ̂1, ξ̂2)χs(σ)χt(τ)

=P l1,l2
K (β)

{[
Y m1
l1

(ξ̂1)Y
m2
l2

(ξ̂2)
]
LM

[s1s2]S

}
JJz

× [t1t2]TTz ,

(F.3)

where χ⃗ is the spin-isospin coordinate, P α,ν
n (x) is the hyper angle function and

Ylm(x̂) is the spherical harmonic. The hyperspherical harmonics have the following
orthonormal relation:
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∫
Y

m′
1m

′
2

K,l′1,l
′
2

∗
(Ω5)Y

m1,m2
K,l1,l2

(Ω5)dΩ =

∫ π/2

0

P l1,l2
K (β)P l1,l2

K (β)sin2(β)

× cos2(β)dβ

×
∫ π

0

∫ 2π

0

Y m1
∗

l1
(ξ̂1)Y

m1
l1

(ξ̂1)

× sin θ1d θ1dϕ1

×
∫ π

0

∫ 2π

0

Y m2
∗

l2
(ξ̂2)Y

m2
l2

(ξ̂2)

× sin θ2d θ2dϕ2

=δKK′δl1l′1δl2l′2δm1m
′
1
δm2m

′
2
,

(F.4)

where δjj′ is the Kronecker delta and K is the grand angular momentum (hyper-
momentum). The “ ∗ means complex conjugate.
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