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The flood has caused enormous losses to economies, societies, and ecological 
environments worldwide. The optimizing LULC allocation for flood mitigation based 
on the surface runoff coefficient value of LULC types with Goal programming, Mueang 
Chaiyaphum District, Chaiyaphum Province, was conducted. The research objectives 
were (1) to classify LULC data in 2001, 2010, and 2019, (2) to predict LULC change in 
two periods based on classified LULC data, (3) to estimate surface runoff between 
2001 and 2019, (4) to optimize and map LULC allocation for flood mitigation under 
three rainfall conditions, and (5) to evaluate economic and ecosystem service values 
and change of suitable LULC allocation for flood mitigation in terms of gain and loss. 
The research procedures consisted of data collection and preparation and six 
significant research components. 

As a result, the overall accuracy and Kappa hat coefficient of classified LULC 
maps in 2001, 2010, and 2019 were more than 85%. The significant increase in LULC 
types between 2001 and 2019 was sugarcane, para rubber, and unused land, while the 
significant decrease in LULC types was paddy field, forest land, and cassava. The 
predicted LULC map in two periods (2002-2009 and 2011-2018) by the CLUE-S model 
provided realistic results as expected, with deviation values from -0.05 to 0.05 km2. 
Meanwhile, time-series surface runoff with suitable AMC-II varied from 1,003.60 million 
m3 in 2014 to 6,366.80 million m3 in 2008. For SCS-CN model validation, the derived 
NSE and R2 values are more than 0.65, and the PBIAS value is less than ± 10%. After 
optimizing LULC allocation to minimize surface runoff for flood mitigation in 2029, 
2039, and 2049 based on the average surface runoff coefficient from each LULC type 
under three rainfall conditions using Goal programming, all allocated LULC data in 
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CHAPTER I 

INTRODUCTION 
 

1.1 Background problems and significance of the study 
Flood represents one of the most severe natural disasters threatening the 

development of human society worldwide, including Thailand. It has caused enormous 
losses to economies, societies, and ecological environments (Yu et al., 2018). Besides, 
the flood-related damage to agriculture and other related activities resulted in the 
country’s economy and development (Jothityangkoon, Maskong, Sangthong, and Kosa, 
2015). 

In general, the primary cause of the flooding is heavy rainfall. However, many 
other causes are also due to human activities, such as land degradation, deforestation 
of catchment areas, urban growth and increased population along riverbanks (Mbow, 
Diop, Diaw, and Niang, 2008), poor land use planning, zoning, and control of flood plain 
development, poor drainage particularly in cities, and insufficient management of 
discharges from river reservoirs (Danumah, 2016). 

In recent decades, Chaiyaphum province has experienced a problem with 
flooding almost every year. It has caused a loss of lives and affected economic losses, 
asset or housing losses, inundated farmlands, and decreased crop productivity to 
people who live in this area. According to the Department of Disaster Prevention and 
Mitigation report, Ministry of Interior in 2019, floods in 2010 caused property damage 
of 495 million Baht. More than 322,000 persons were affected. At least seven persons 
lost their lives, agricultural productions were affected by about 1,046.4 km2, and more 
than 1,000 facilities (school, temple, government place, road, etc.) were affected 
(Department of Disaster Prevention and Mitigation, 2019). The summary of flood 
damage in Chaiyaphum province between 2006 and 2018 is presented in Table 1.1.  
In addition, the spatial distribution of flood of GISTDA (Geo-Informatics and Space 
Technology Development Agency) between 2005 and 2018 is displayed in Figure 1.1. 
  

 



2 

 

Table 1.1 Flood damage in Chaiyaphum province between 2006 and 2018. 
Flood damage in Chaiyaphum province 
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2006 2,354 710 156 11  - - 395.60 - 113 - - - 288,253,679 

2007 21,258 5,898 210 6 - 21 34.36 326 133 - 1 7 34,805,174 

2008 296,345 64,621 - 4 - - 413.85 2,935 874 - - - 139,753,922 

2009 204,866 82,817 - - - 99,276 124.26 - 201 - - - 165,127,287 

2010 322,341 85,496 60 7 - 123 1,047.23 8,278 938 6 - 1 495,427,300 

2011 - 71,335 - 12 - - 721.33 9,452 871 - - - 98,155,417 

2012 108,677 30,566 - - - 635 179.06 388 282 - - - - 

2013 289,471 108,522 1 3 - 1,270 805.75 5,836 1,598 4 1 - 53,296,320 

2014* - - - - - - - - - - - - - 

2015* - - - - - - - - - - - - - 

2016 136,494 48,211 - - - - 771.98 1,816 592 3 2 - 56,837,481 

2017 10,940 4,795 - - 1 35 234.49 244 134 - 1 - 4,684,859 

2018 54,219 33,745 - - - 384 667.38 1,892 300 4 2 - 12,279,214 

Source: Department of Disaster Prevention and Mitigation (2019). 
* Data is not available. 

 
Due to the risk of large-scale damage to public and private property in 

Chaiyaphum province, the Royal Thai Government has allocated a significant budget 
to mitigate flood effects using structural measures, such as channel modification, bank 
protection, dikes, and reservoir development. However, problems persist and are 
becoming exacerbated (Sriwongsitanon, 2010). Because it is difficult to fundamentally 
mitigate flood damage using only flood prevention facilities (Banba, 2016), a 
comprehensive flood control measure should consider land use and land cover 
change and optimum land use allocation. 

Tajbakhsh, Memarian, and Kheyrkhah (2018) stated that LULC strongly 
influences flood risk and affects the probability of flood and its consequences in 
several ways. LULC change can affect the hydrological characteristics of a river basin 
through the influences of land uses on the runoff generation processes. This study 
chooses the SCS-CN method, which represents a distributed hydrologic model, to 
estimate the time-series surface runoff according to LULC changes in the study period 
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(2001-2019). These changes may alter the quantity of surface/subsurface runoff 
generation, river flooding regimes, and extent. (Kuntiyawichai, 2012). Therefore, defining 
optimal strategies for appropriate flood management, especially LULC management, 
is very important and necessary (Tingsanchali and Karim, 2010) for flood mitigation in 
Chaiyaphum province. 

 

 
Source: Geo-Informatics and Space Technology Development Agency (2019). 
Figure 1.1 Spatial distribution of cumulative flood of Chaiyaphum province between 
2005 and 2018. 
 

Land use optimization is one of the proper solutions for soil and water 
conservation at the watershed level. It can help decision-makers determine the best 
scenario of various land use alternatives without sacrificing economic values obtained 
from the available land use (Riedel, 2003; Sadeghi, Jalili, and Nikkami, 2009). Land use 
arrangement can be optimized using a programming model to increase land use 
earnings and reduce environmental impacts, especially surface runoff (Riedel, 2003). 
The essence of management science manifested in the modeling and programming 

 



4 

 

techniques is considered an essential tool for allocating rare resources optimally to 
gain the most benefits (Nikkami, Elektorowicz, and Mehuys, 2002). 

In recent decades, new programming methods developed can be employed 
under conflicting conditions of the goals and limited resources for decision-maker. In 
natural resources management, there are many optimization techniques. Still, some 
approaches like linear programming (LP), and goal programming (GP), or weighted goal 
programming (WGP) are widely employed in land use optimization at the watershed 
level (Tajbakhsh et al., 2018). For instance, Owji, Nikkami, Mahdian, and Mahmoudi 
(2012) applied linear programming for land use optimization in the Jajrood watershed, 
Iran, to reduce surface runoff and sediment yield. Yeo, Gordon, and Guldmann (2004) 
applied the LP to optimize land use to peak discharge minimization at Old Woman 
Cheek watershed, Ohio State, USA. Likewise, the WGP was applied to optimize LULC 
allocation for surface runoff and sediment load minimization at the Bayg watershed 
by Tajbakhsh et al. (2018). Similarly, Gonfa and Kumar (2015) applied the LP and GP 
for optimum land use to minimize soil erosion and maximize net benefit in Ethiopia’s 
Mojo watershed. Recently, Al-Zahrani, Musa, and Chowdhury (2016) developed the GP 
for optimizing water resources in Riyadh, Saudi Arabia. 

Therefore, the optimizing LULC allocation for flood mitigation based on the 
surface runoff coefficient value of LULC types with goal programming at Mueang 
Chaiyaphum district, Chaiyaphum province, Thailand, is here conducted for the Ph.D. 
thesis. Consequently, the derived results can be used as a guideline to relevant 
government agencies, particularly the Land Development Department, Royal Irrigation 
Department, Department of Disaster Prevention and Mitigation, and Department of 
Public Works and Town & Country Planning to investigate in more detail flood 
mitigation at the watershed level. 

In this study, a novel classification method, Random Forests, was first applied 
to classify LULC maps. Then, they are used to predict a time-series LULC between 
2001 and 2019 by the CLUE-S model for time-series surface runoff estimation using the 
SCS-CN model with suitable antecedent moisture condition (AMC). After that, LULC 
allocation for flood mitigation based on the average runoff coefficient of LULC type 
between 2001 and 2019 under three different rainfall conditions according to the 
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Standardized Precipitation Index (SPI) was optimized using goal programming for the 
years 2029, 2039, and 2049. Finally, economic and ecosystem service value change 
between the existing LULC data in 2019 and the optimizing LULC allocation in three 
different years were examined using the present value (PV) model and the simple 
benefit transfer method for gain and loss evaluation. 

 

1.2 Research objectives 
The Ph.D. research aims to optimize LULC allocation for flood mitigation at 

Mueang Chaiyaphum district, Chaiyaphum province, Thailand, by the integration of 
advanced LULC classification method (RF), land use change modeling (CLUE-S), 
distributed hydrological model (SCS-CN), and goal programming (What’s Best!). Specific 
research objectives are set as follows: 

(1) To classify LULC data in 2001, 2010, and 2019 using Random Forests 
classifier; 

(2) To predict LULC change in two periods (2002-2009 and 2011-2018) based 
on historical LULC in 2001, 2010, and 2019 using CLUE-S model;  

(3) To estimate surface runoff from 2001 to 2019 using SCS-CN method; 
(4) To optimize LULC allocation for flood mitigation based on average runoff 

coefficient of LULC type between 2001 and 2019 under three different rainfall 
conditions using goal programming; 

(5) To map an optimizing LULC allocation under three different rainfall 
conditions for flood mitigation of Mueang Chaiyaphum district, Chaiyaphum province 
using CLUE-S model; and 

(6) To examine economic and ecosystem service evaluation and change of 
optimizing LULC allocation under three different rainfall conditions using the PV model 
and simple benefit transfer method in terms of gain and loss for project 
implementation 
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1.3 Scope and limitations of the study 
1.3.1 Scope of the study 

The scope of the study can be summarized as follows: 
(1) LULC data in 2001, 2010, and 2019 were classified from Landsat  

5-TM and Landsat 8-OLI data using the RF classifier under EnMAP-Box software. Here, 
the LULC classification system consists of (1) urban and built-up area, (2) paddy field, 
(3) sugarcane, (4) cassava, (5) other field crops, (6) para rubber, (7) perennial trees and 
orchards, (8) forest land, (9) water body, (10) rangeland, (11) marsh and swamp, and 
(12) unused land. 

(2) Driving forces for LULC prediction were identified by 
multicollinearity test and binary logistic regression analysis based on driving forces for 
LULC change, including physical, proximity, and socio-economic factors. In this study, 
an optimum local parameter of the CLUE-S model was validated by comparing the 
predicted LULC map in 2019 and the classified LULC map in 2019 using overall 
accuracy and Kappa hat coefficient of agreement. Herein, the accepted values of 
overall accuracy and Kappa hat coefficient of the agreement should be equal or more 
than 80 percent. 

(3) LULC prediction data of two periods (2002-2009 and 2011-2018) 
were conducted to create time-series LULC data between 2001 and 2019 using the 
CLUE-S model based on the optimum local parameter, elasticity value, LULC 
conversion matrix, and land requirement of each LULC type based on historical LULC 
development from three classified LULC data (2001, 2010, and 2019) using Markov 
Chain model. 

(4) The SCS-CN method was used to estimate time-series surface 
runoff between 2001 and 2019 based on LULC, soil, and annual rainfall data in each 
respective year. Herein, observed runoff data between 2001 and 2010 of E.21, E.23, 
and E.6C hydrological stations of the RID were used to identify suitable AMC for surface 
runoff estimation while observed runoff data between 2011 and 2019 from those 
stations were applied to validate the result of the SCS-CN method for surface runoff 
estimation. 
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(5) The SPI was used to identify three different rainfall conditions: 
drought, normal, and wet years between 2001 and 2019. Then the average annual 
surface runoff volume of each LULC type under three different rainfall conditions was 
calculated to represent the surface runoff coefficient of each LULC type for surface 
runoff minimization. 

(6) The goal programming of multi-objective decision analysis (MODA) 
was applied to allocate LULC to minimize surface runoff for flood mitigation based on 
the surface runoff coefficient of each land use type between 2001 and 2019 under 
three different rainfall conditions with the “What’s Best!” extension of MS-Excel 
software. The constraints for optimizing LULC allocation under three different rainfall 
conditions were assigned for LULC in 2029, 2039, and 2049 based on the historical 
LULC development between 2010 and 2019 using the Markov Chain model. This study 
will examine for LULC change every ten years according to historical LULC 
development and cover 30 years of long terms reforestation program. 

(7) Economic and ecosystem service value and change were separately 
evaluated using the present value (PV) model and simple benefit transfer method 
based on LULC data in 2019 and the optimizing LULC allocation data for flood 
mitigation under three different rainfall conditions and in terms of gain and loss. 

1.3.2 Limitation of the study 
The limitation of the study can be summarized as follows: 
(1) Due to the limitation of the existing ground reference information 

on LULC type in 2001 and 2010, color orthophotograph in 2000-2001 was used as 
reference ground information to perform a thematic accuracy assessment of the LULC 
map 2001. Meanwhile, very high spatial resolution imageries from Google Earth in 2010 
were applied as reference ground information for the thematic accuracy assessment 
of LULC classification in 2010. 
 

1.4 Study area 
The study area is the Second Part of the Lam Nam Chi watershed, covering 

approximately 3,794 km2. It is a part of the Chi River Basin. The selected study area 
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covers the flood-prone area at Mueang Chaiyaphum district, Chaiyaphum province, as 
mentioned earlier in the background problems and significance of the study. 

The topography of the area is generally characterized by hilly-rolling terrain and 
flat areas. Elevation ranges from 162 meters above mean sea level (MSL) in the lower 
part of the watershed to about 1,034 meters above MSL in the upper part of the 
watershed (Figure 1.2). Based on the reconnaissance soil survey at a scale of 100,000, 
the study area consists of 32 soil series types that can be grouped by soil texture 
property into nine soil groups: clay, clay loam, loam, loamy sand, sandy loam, sandy 
clay loam, silty clay, silty loam, and silty clay loam (Figure 1.3). In the year 2015, the 
top three dominant agriculture types are paddy field (43.47%), cassava (12.69%), and 
sugarcane (9.18%), while forest land includes dense and disturbing evergreen and 
deciduous forests, and forest plantation account for 12.48%. Meanwhile, other land 
use types include urban and built-up area, perennial trees and orchards, waterbody, 
and miscellaneous land cover area of 4.62%, 5.70%, 4.11%, and 7.67%, respectively 
(Figure 1.4). 
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Figure 1.2 Terrain characteristics of the study area and location of RID hydrologic 
stations. 
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Figure 1.3 Spatial distribution of soil series in the study area. 
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Figure 1.4 Spatial distribution of LULC in 2015 in the study area. 
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1.5 Benefits of the study 
The benefits of the study, which are covered all research objectives, are as 

follow: 
(1) LULC data in 2001, 2010, and 2019 by using Random Forests classifier, 
(2) An optimum local parameter for LULC prediction by using the CLUE-S 

model, 
(3) Time-series classified and predicted LULC data between 2001 and 2019, 
(4) Time-series estimated surface runoff data between 2001 and 2019, 
(5) Rainfall conditions (drought, normal and wet year) in the study area 

according to SPI calculation from historical records of rainfall data between 1987 and 
2019, 

(6) Optimizing LULC allocation for flood mitigation based on the average surface 
runoff coefficient of each LULC type between 2001 and 2019 under three different 
rainfall conditions in 2029, 2039, and 2049 using goal programming, 

(7) Optimizing LULC allocation map in 2029, 2039, and 2049 for flood mitigation 
in the future, 

(8) Basic information on economic and ecosystem service value change in terms 
of gain and loss for flood mitigation project implementation, and 

(9) The research methodology framework can guide relevant government 
agencies for a detailed study on flood mitigation at the watershed level. 

 



 

 

 
CHAPTER II 

RELATED CONCEPTS AND LITERATURE REVIEWS 
 

Related concepts and literature reviews of this study, including (1) Random 
Forests classifier, (2) CLUE-S model, (3) SCS-CN method, (4) Linear and goal 
programming, and (5) Standardized Precipitation Index, are summarized and 
synthesized in this chapter. 

 

2.1 Random Forests classifier 
A relatively new algorithm that uses a binary decision tree classification is called 

Random Forests (RF). The RF algorithm firstly creates several decision trees, and the 
collection of trees container is then used to classify an image. Classification accuracy 
using RF is higher than using a single tree approach such as classification and regression 
trees (CART) (Gislason, Benediktsson, and Sveinsson, 2006), and there is no need to 
edit the trees, so it is much easier to use when compared to other binary decision tree 
approaches. 

The RF, which Breiman firstly developed in 2001, is an ensemble and multiple-
decision-tree classifier for supervised classification. It confides in the assumption that 
different independent predictors predict incorrectly in changed areas. Combining the 
prediction results makes it possible to improve the overall prediction accuracy (Polikar, 
2006). The RF offers several advantages for classification include: 

(1) Data can be binary, categorical, or continuous; 
(2) The classifier performs internal cross-validation through “bootstrapping,” 

which provides a robust estimate of classification accuracy using out of bag estimates; 
(3) It is a non-parametric classifier and is relatively insensitive to outliers in the 

training data; 
(4) It requires little user input (the number of decision trees and the number of 

variables for each decision tree); 
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(5) It produces a classification map, but more importantly, probability maps 
(strength of membership in each lithological class); and 

(6) It ranks the input variables with respect for their importance in the 
predictions (Breiman, 2001; Breiman, Friedman, Olshen, and Stone, 1984). 

Breiman (2001) stated that training data is required for the RF approach, similar 
to other supervised classifiers. In each tree, the number of decision trees is first 
determined by the operator, a random selection of the input variables (i.e., remotely 
sensed image bands are then made. The number of variables selected for each tree is 
a fraction of the total number of variables; the square root of the number of variables 
is often used. Each tree employs a “bagging” process (i.e., “bootstrap” sample) 
whereby approximately two-thirds of the training areas (pixels) are used to create a 
prediction (referred to as in-bag) and one-third to validate the accuracy of the 
prediction (referred to as out of the bag, or OOB). This random sampling with the 
replacement of the training dataset is undertaken for every tree. In-bag data are used 
to create multiple decision trees that are applied to produce independent 
classifications. The best split is chosen from a random sample of variables at each 
node of the individual decision tree. Each tree is grown to the maximum extent with 
no pruning. In practice, the Gini index is applied to determine the impurity at each 
node (Harris and Grunsky, 2015) as: 

Gini Index =∑ gc(1-gc)

K

c=1

 (2.1) 

where K is the number of classes and gc is the probability or the relative frequency of 
class c at the considered node and is given by 

gc=
nc

n 
 (2.2) 

where nc is the number of samples belonging to class c and n is the total number of 
samples within a particular node. 

The stop criterion for splitting each node is based on the minimum of samples 
in a node (used 1) and the minimum impurity in a node (used 0), allowing the full 
growth of the decision trees (no pruning). Thus, an ensemble of trees (predictions) is 
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created, and a voting procedure is employed to assign the majority class to each pixel 
in the final prediction map (Breiman, 2001). 

According to Breiman (2001) and Gislason et al. (2006), the RF is not sensitive 
to noise or over-fitting. There is no need for cross-validation as it is estimated internally. 
However, as with any supervised classification method, an independent check of the 
training dataset of each litho-type is still required to calculate an unbiased and more 
robust estimate of classification accuracy. Additionally, the probability of membership 
in each class is also generated, which can be used to assess the uncertainty of the RF 
classification.  

Harris and Grunsky (2015) summarized the RF classification process, as shown 
in Figure 2.1. 

 
Source: Harris and Grunsky (2015). 
Figure 2.1 Summary of the RF classification process. 
 

2.2 CLUE-S model 
The Conversion of Land Use and its Effects (CLUE) modeling framework was 

developed to simulate land use change using empirically quantified relations between 
land use and its driving factors in combination with dynamic modeling (Veldkamp and 
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Fresco, 1996; Verburg, De Koning, Kok, Veldkamp, and Bouma, 1999). This model was 
developed for the national and continental levels. Verburg et al. (2002) claimed that 
the study areas, to a large extent, the spatial resolution for analysis was coarse or pixel 
size varying between 7x7 and 32x32 km. For instance, Central America (Kok and 
Winograd, 2002), Ecuador (de Koning, Verburg, Veldkamp, and Fresco, 1999), China 
(Verburg, Chen, and Veldkamp, 2000), and Indonesia (Verburg, Veldkamp, and Bouma, 
1999) are available. Each land use is represented by assigning the relative cover of 
each land use type to the pixels. However, the CLUE model cannot directly be applied 
at the regional scale. 

Therefore, the modeling approach has been modified and is now called  
CLUE-S (Conversion of Land Use and its Effects at Small regional extent). Verburg (2010) 
stated that the CLUE-S is developed explicitly for the spatially explicit simulation of 
land use change based on an empirical analysis of location suitability combined with 
the dynamic simulation of competition and interactions between the spatial and 
temporal dynamics of land use systems. Figure 2.2 shows an overview of the 
information needed to run the CLUE-S model. The required information of CLUE-S can 
categorize into four groups: (1) spatial policies and restrictions, (2) specific land use 
type conversion settings, (3) land requirements, and (4) location characteristics 
(Verburg, 2010; Verburg and Lesschen, 2014). 

 
Source: Verburg (2010). 
Figure 2.2 Overview of the information flow in the CLUE-S model. 
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(1) Spatial policies and restrictions 
Spatial policies and restrictions mainly indicate areas where land use changes 

are restricted through policies or tenure status. Some spatial policies restrict all land 
use change in a particular area, e.g., a log-ban within a forest reserve. Other land use 
policies restrict a set of specific land use conversions, e.g., residential construction in 
designated agricultural areas or permanent agriculture in the buffer zone of a nature 
reserve. The conversions restricted by a specific spatial policy can be indicated in a 
land use conversion matrix: for all possible land use conversions, it is indicated if the 
spatial policy applies (Verburg, 2010; Verburg and Lesschen, 2014). 

(2) Specific land use type conversion settings 
Specific land use type conversion settings determine the temporal dynamics of 

the simulations. Therefore, two sets of parameters are needed to characterize the 
individual land use types: conversion elasticities and land use transition sequences. 

The first parameter set, the conversion elasticities, is related to the reversibility 
of land use change. Land use types with the high capital investment will not easily be 
converted to other uses as long as there is sufficient demand. Examples are residential 
locations but also plantations with permanent crops (e.g., fruit trees). Other land use 
types easily shift location when the location becomes more suitable for other land 
use types. Therefore, the land use type must specify the relative elasticity to change 
from 0 (easy conversion) to 1 (not allow). 

The second set of land use type characteristics that need to be specified 
include land use type conversion settings and their temporal characteristics. These 
settings are specified in a conversion matrix. Verburg (2010) suggested that the 
conversion matrix definition should be answered the following questions: 

• What other land use types the present land use type can be converted or 
not. 

• Which regions a specific conversion is allowed to occur and in which 
regions it is not allowed. 

• How many years (or time steps) the land use type at a location should 
remain the same before changing into another land use type. 
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(3) Land use requirements (demand) 
Land use requirements (demand) are calculated at the aggregate level as part 

of a specific scenario. Land use requirements constrain the simulation by defining the 
total required change in land use. All changes in individual pixels should add up to 
these requirements. The extrapolation of trends in land use change of the recent past 
into the near future is a common technique to calculate land use requirements 
(Verburg, 2010; Verburg and Lesschen, 2014). 

(4) Location characteristics 
Land use conversions are expected to occur at locations with the highest 

preference for the specific type of land use at that moment in time. The preference 
of a location is empirically estimated from a set of factors based on the different 
disciplinary understandings of the determinants of land-use change. The preference is 
calculated using the following equation: 

Rki = akX1i+bkX2i+..… (2.3) 
where R is the preference to devote location, i to land use type, k, X1,2,…, are biophysical 

or socio-economical characteristics of the location, i and ak and bk the relative impact 

of these characteristics on the preference for land use type k.  
A statistical model can be developed as a binomial logit model of two choices: 

convert location i into land use type k or not. The preference Rki is assumed to be the 
underlying response of this choice. However, the preference Rki cannot be observed 
or measured directly and must be calculated as a probability. The function that relates 
these probabilities with the biophysical and socio-economic location characteristics is 
defined as a logit model using the following equation: 

Log (
Pi

1-Pi
) = β0+β1X1,i+β2X2,i…..+βnXn,i (2.4) 

where Pi is the probability of a grid cell for the occurrence of the considered land use 

type on location i, and the X is the location factors. The coefficients (β) are estimated 
through logistic regression using the actual land use pattern as the dependent variable 
(Verburg, Koning, Koning, Veldkamp, and Bouma, 1999). 

In summary, the allocation procedure is displayed in Figure 2.3. The following 
steps are taken to allocate the changes in land use: 

 



19 

 

(1) The first step includes the determination of all grid cells that are allowed 
to change. Grid cells that are either part of a protected area or presently under a land 
use type that is not allowed to change are excluded from the further calculation. Also, 
the locations where specific conversions are not allowed due to the specification of 
the conversion matrix are identified.  

(2) For each grid cell i, the total probability (TPROPi,u) is calculated for each of 
the land use types u according to: 

TPROPi,u = Pi,u+ ELASu+ ITERu (2.5) 
where Pi,u are the suitability of location i for land use type u (based upon the logit 
model), ELASu is the conversion elasticity for land use u, and ITERu is an iteration 
variable that is specific to the land use type and indicative for the relative competitive 
strength of the land use type. ELASu, the specific land use type elasticity to change 
the value, is only added if grid-cell i is already under land use type u in the year 
considered. Pi,u consists of a part based on the biophysical and socio-economic factors 
and a neighborhood interaction part. 

(3) A preliminary allocation is made with an equal value of the iteration variable 
(ITERu) for all land use types by allocating the land use type with the highest total 
probability for the considered grid cell. Conversions that are not allowed according to 
the conversion matrix are not allocated. This allocation process will cause a certain 
number of grid cells to change land use. 

(4) The total allocated area of each land use is now compared to the land use 
requirements (demand). For land use types where the allocated area is smaller than 
the demanded area, the value of the iteration variable is increased. For land use types 
for which too much is allocated, the value is decreased. Through this procedure, the 
local suitability based on the location factors may be overruled by the iteration 
variable due to the differences in regional demand. The procedure followed balances 
the bottom-up allocation based on location suitability and the top-down allocation 
based on regional demand. 

Steps 2 to 4 are repeated as long as the demands are not correctly allocated. 
When allocation equals demand, the final map is saved, and the calculations can 
continue for the next time step. Some of the allocated changes are irreversible, while 
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others depend on the changes in earlier steps. Therefore, the simulations tend to 
result in complex, non-linear changes in land use patterns, characteristics for complex 
systems (Verburg, 2010; Verburg and Lesschen, 2014). 

 
Source: Verburg (2010). 
Figure 2.3 Flow chart of the allocation module of the CLUE-S model. 
 

2.3 SCS-CN method 
The Soil Conservation Service Curve Number (SCS-CN) method (now called 

Natural Resources Conservation Service Curve Number, NRCS-CN method) was 
developed by the United States Department of Agriculture (USDA) for estimating total 
storm runoff from total storm rainfall. This method estimates direct runoff, consisting 
of channel runoff, surface runoff, and an unknown proportion of subsurface runoff 
(National Resources Conservation Service, 2004). Developing the runoff curve number 
from field experiments of runoff in small catchments is presented in Technical Release 
55 (TR-55) (United States Department of Agriculture, 1986). The curve number (CN) 
determination depends on the watershed’s soil and covers conditions representing a 
hydrologic soil group, cover type, treatment, and hydrologic condition. 

In principle, the SCS-CN method is based on the water balance equation and 
two fundamental hypotheses. The first hypothesis equates the ratio of the actual 
amount of direct surface runoff (Q) to the total rainfall (P), the amount of actual 
infiltration (F), and the initial abstraction (Ia). The second hypothesis shows relationships 
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among Ia, the amount of the potential maximum retention (S). Thus, the CN method 
consists of the following equations (Mishra and Singh, 2003): 

(a) Water balance equation 

P = Ia + F + Q (2.6) 
(b) Proportional equality hypothesis 

Q

P - Ia
 = 

F

S
 (2.7) 

(c) Ia-S hypothesis 

Ia = λS (2.8) 
where P is total rainfall; Ia is an initial abstraction; F is cumulative infiltration excluding 

Ia; Q is direct surface runoff; S is potential maximum retention; λ is regional parameter 

dependent on geologic and climate factors (0.1  λ  0.3). The Ia consists mainly of 
interception, infiltration, antecedent soil moisture, and depression storage, all of which 
occur before surface runoff begins (Grunwald and Norton, 2000). The relation between 
Ia and S was developed by analyzing the rainfall-runoff data from experiments in small 
watersheds and expressed as Ia = 0.2S. Combining the water balance equation and 
proportional equality hypothesis, the CN equation is presented as: 

Q =
(P - Ia)

2

P-Ia+S
 (2.9) 

Eq. (9) is valid for P>Ia; otherwise, Q=0. For 𝜆 =0.2, Eq. (10) can be written as: 

Q =
(P-0.2S)2

P+0.8S
 (2.10) 

The parameter S in Eq. (11) is defined as: 

S =
1000

CN
-10 (2.11) 

where S is measured in inch, and CN is curve number values, which vary based on land 
use, land treatment, hydrologic soil group, and antecedent moisture condition (AMC) 
of the watershed. Mohammed, Yohannes, and Zeleke (2004) suggested that the CN 
values are the most sensitive parameter, should be carefully determined through field 
assessment based on local conditions such as cultural practices, land use, and 
topography. Figure 2.4 and Table 2.1 solve equations 2.10 and 2.11 for a range of CNs 
and rainfall. 
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Source: National Resources Conservation Service (2004). 
Figure 2.4 Solution of runoff equation. 
 
Table 2.1 Runoff depth for selected CNs and rainfall amounts1. 

Rainfall 
Runoff depth for curve number of - 

40 45 50 55 60 65 70 75 80 85 90 95 98 
1.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.08 0.17 0.32 0.56 0.79 
1.2 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.07 0.15 0.27 0.46 0.74 0.99 
1.4 0.00 0.00 0.00 0.00 0.00 0.02 0.06 0.13 0.24 0.39 0.61 0.92 1.18 
1.6 0.00 0.00 0.00 0.00 0.01 0.05 0.11 0.20 0.34 0.52 0.76 1.11 1.38 
1.8 0.00 0.00 0.00 0.00 0.03 0.09 0.17 0.29 0.44 0.65 0.93 1.29 1.58 
2.0 0.00 0.00 0.00 0.02 0.06 0.14 0.24 0.38 0.56 0.80 1.09 1.48 1.77 
2.5 0.00 0.00 0.02 0.08 0.17 0.30 0.46 0.65 0.89 1.18 1.53 1.96 2.27 
3.0 0.00 0.02 0.09 0.19 0.33 0.51 0.71 0.96 1.25 1.59 1.98 2.45 2.77 
3.5 0.02 0.08 0.20 0.35 0.53 0.75 1.01 1.30 1.64 2.02 2.45 2.94 3.27 
4.0 0.06 0.18 0.33 0.53 0.76 1.03 1.33 1.67 2.04 2.46 2.92 3.43 3.77 
4.5 0.14 0.30 0.50 0.74 1.02 1.33 1.67 2.05 2.46 2.91 3.40 3.92 4.26 
5.0 0.24 0.44 0.69 0.98 1.30 1.65 2.04 2.45 2.89 3.37 3.88 4.42 4.76 
6.0 0.50 0.80 1.14 1.52 1.92 2.35 2.81 3.28 3.78 4.30 4.85 5.41 5.76 
7.0 0.84 1.24 1.68 2.12 2.60 3.10 3.62 4.15 4.69 5.25 5.82 6.41 6.76 
8.0 1.25 1.74 2.25 2.78 3.33 3.89 4.46 5.04 5.63 6.21 6.81 7.40 7.76 
9.0 1.71 2.29 2.88 3.49 4.10 4.72 5.33 5.95 6.57 7.18 7.79 8.40 8.76 
10.0 2.23 2.89 3.56 4.23 4.90 5.56 6.22 6.88 7.52 8.16 8.78 9.40 9.76 
11.0 2.78 3.52 4.26 5.00 5.72 6.43 7.13 7.81 8.48 9.13 9.77 10.39 10.76 
12.0 3.38 4.19 5.00 5.79 6.56 7.32 8.05 8.76 9.45 10.11 10.76 11.39 11.76 
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Table 2.1 (Continued). 

Rainfall 
Runoff depth for curve number of - 

40 45 50 55 60 65 70 75 80 85 90 95 98 
13.0 4.00 4.89 5.76 6.61 7.42 8.21 8.98 9.71 10.42 11.10 11.76 12.39 12.76 
14.0 4.65 5.62 6.55 7.44 8.30 9.12 9.91 10.67 11.39 12.08 12.75 13.39 13.76 
15.0 5.33 6.36 7.35 8.29 9.19 10.04 10.85 11.63 12.37 13.07 13.74 14.39 14.76 

1 Interpolating the values shown to obtain runoff depths for CN’s rainfall amounts is not shown. 
Source: United States Department of Agriculture (1986). 

 
The SCS-CN method uses a soil cover curve number for computing excess 

precipitation. The curve number is related to the hydrologic soil group, cover type and 
treatment, hydrologic condition, antecedent runoff condition, and impervious areas 
connected/unconnected to the closed drainage system. 

2.3.1 Hydrologic soil groups (HSGs) 
Hydrologic soil groups (HSGs) are the infiltration rates of soils. 

According to their minimum infiltration rates, soils are classified into four HSG’s (A, B, 
C, and D), obtained for bare soil after prolonged wetting. The infiltration rate is the rate 
at which water enters the soil at the soil surface. This factor is controlled by the soil 
profile (United States Department of Agriculture, 1986). USDA defines the four groups 
of HSG as follows (National Resources Conservation Service, 2009): 

(1) Group A, soil having low runoff potential when thoroughly wet. 
Water is transmitted freely through the soil. In this group, soils typically have less than 
10 percent clay and more than 90 percent sand or gravel and have gravel or sand 
textures. 

(2) Group B, soil having moderately low runoff potential when 
thoroughly wet. Water transmission through the soil is unimpeded. In this group, soils 
typically have between 10 percent and 20 percent clay and 50 percent to 90 percent 
sand and have loamy sand or sandy loam textures. 

(3) Group C, soil having moderately high runoff potential when 
thoroughly wet. Water transmission through the soil is somewhat restricted. In this 
group, soils typically have between 20 percent and 40 percent clay and less than 50 
percent sand and have loam, silt loam, sandy clay loam, clay loam, and silty clay loam 
textures. 

 



24 

 

(4) Group D, soil having high runoff potential when thoroughly wet. In 
this group, soils typically have greater than 40 percent clay, less than 50 percent sand, 
and have clayey textures. 

2.3.2 Cover type and treatment 
Cover type and treatment factors are used to prepare hydrological 

soil-cover complex, which is used in estimating direct runoff. Land use types are 
classified on runoff production: fallow bare soil, row crops, small grains, legumes or 
rotation meadow, pasture, brush, vegetation, woods, and farmsteads, including 
impervious surfaces. For the first four cropping cover types, combinations of treatments 
describe the land use. The treatment aspect of the cover complex considers the 
percentage area covered with crop residue and the type of tillage system or 
combination (National Resources Conservation Service, 2009). 

2.3.3 Hydrologic condition 
The hydrologic condition (good, fair, or poor) indicates the effects of 

cover type and treatment on infiltration and runoff. Some factors to consider in 
estimating the effect of cover on infiltration and runoff are (a) canopy or density of 
lawns, crops, or other vegetative areas; (b) amount of year-round cover; (c) amount of 
grass or close-seeded legumes in rotations; (d) percent of residue cover; and (e) degree 
of surface roughness. The good hydrologic condition indicates that the soil usually has 
a low runoff potential for that specific hydrologic soil group, cover type, and treatment 
(National Resources Conservation Service, 2009). 

2.3.4 Antecedent runoff condition (ARC) 
Antecedent runoff condition (ARC) is the index of runoff potential 

before a storm event, which is an attempt to account for the variation in the CN at a 
site from storm to storm. The CN for the average ARC at a site is the median value 
taken from sample rainfall and runoff data. 

2.3.5 Impervious areas connected/unconnected to drainage system 
The Technical Release, number 55 (TR-55) also suggests that 

consideration is given to whether impervious areas are connected (outlet directly to 
the drainage system) or disconnected (flow is spread out over a pervious area before 
entering the drainage system) in curve number selection and includes graphical figures 
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based on the percent directly connected impervious areas to select the appropriate 
curve number (National Resources Conservation Service, 2009). 

2.3.6 Antecedent Moisture Condition 
The antecedent moisture condition (AMC) indicates the moisture 

content of the soil at the beginning of the rainfall event. The AMC attempts to account 
for the variation in curve numbers in an area under consideration from time to time. 
Three levels of AMC were documented by SCS: AMC-I (dry), AMC-II (normal), and AMC-
III (wet). The limits of these three different AMC classes are based on the rainfall 
magnitude of the previous five days and season (dormant season and growing season) 
(Ahmad, Ahmad, and Verma, 2015). Formulae for CN conversion from AMC- II (CN-II) to 
AMC-I (CN-I) and AMC-II to AMC-III (CN-III) are displayed in Table 2.2. 
 
Table 2.2 CN conversion formulae of AMC I and III. 

Method AMC-I AMC-III 
Sobhani 
(1975) 

CNI =
CNII

2.334-0.01334CNII
 CNIII =

CNII

0.4036+0.005964CNII
 

Hawkins et al. 
(1985) 

CNI =
CNII

2.281-0.01281CNII
 CNIII =

CNII

0.427+0.00573CNII
 

Chow et al. 
(1988) 

CNI =
4.2CNII

10-0.058CNII
 CNIII =

23CNII

10+0.13CNII
 

Neitsch et al. 
(2002) 

CNI = CNII-
20(100-CNII)

{100-CNII+exp[2.533-0.0636(100-CNII]}
 CNIII =

CNII

0.430+0.0057CNII
 

Source: Mishra, Jain, Suresh Babu, Venugopal, and Kaliappan (2008). 

 

2.4 Linear and Goal programming 
2.4.1 Basic concepts of linear programming 

Bazaraa, Jarvis, and Sherali (2009) explained the general concept of 
the LP, which is concerned with the optimization (minimization or maximization) of a 
linear function while satisfying a set of linear equality and/or inequality of constraints 
or restrictions. George B. Dantzig first conceived the linear programming problem in 
1947 while working as a mathematical advisor to the United States Air Force 
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Comptroller to develop a mechanized planning tool for a time-staged deployment, 
training, and logistical supply program. 

The LP is a mathematical technique for finding optimal solutions to 
problems expressed using linear equations and inequalities. If a real-world problem 
can be represented accurately by the mathematical equations of a linear program, the 
method will find the best solution to the problem. Indeed, few complex real-world 
problems can be perfectly expressed in a set of linear functions. Nevertheless, linear 
programs can provide reasonably realistic representations of many real-world 
problems, particularly if a bit of creativity is applied in the mathematical formulation 
of the problem (McDill, 1999). 

The LP is not a programming language like C++, Java, or Visual Basic. 
The LP can be defined as: “A mathematical method to allocate scarce resources to 
competing activities in an optimal manner when the problem can be expressed using 
a linear objective function and linear inequality constraints.” A linear program consists 
of a set of variables, a linear objective function indicating the contribution of each 
variable to the desired outcome, and a set of linear constraints describing the limits 
on the values of the variables. The “answer” to a linear program is a set of values for 
the problem variables that result in the best -largest or smallest- value of the objective 
function and yet is consistent with all the constraints. The formulation is the process 
of translating a real-world problem into an LP. Once a problem has been formulated 
as a linear program, a computer program can solve the problem. In this regard, solving 
a linear program is relatively easy. The hardest part of applying linear programming is 
formulating the problem and interpreting the solution (McDill, 1999). 

The following example case presents minimization as the optimization 
function of a single objective. Any general LP problem can be expressed in accepted 
form as (Bazaraa et al., 2009): 

Minimize: 

z = min(c1x1+c2x2+...+c3x3); (2.12) 
subject to: 
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a11x1+a12x2+...+a1nxn≥b1;
a21x1+a22x2+...+a2nxn≥b2;.

.

.
am1x1+am2x2+...+amnxn≥bm ;

            

}
 
 

 
 

 (2.13) 

and: 

x1, x2, …, xn≥0 (2.14) 

where objective function, c1x1+c2x2+...+c3x3 is the objective function (or criterion 

function) to be minimized and denoted by z. The coefficients c1, c2,…, cn are the 

(known) cost coefficients and x1, x2,…, xn are the decision variables (unknown) to be 
determined. 

Constraint set: the inequality ∑ aijxj
n
j=1 ≥bi denotes the ith constraint 

set. In practice, the condition of constraints can be ≥or = or≤ as long as it serves the 
optimization objective.  

The coefficients aij for i = 1, 2, …, m,   j = 1, 2, …, n are called the 
technological coefficients. The coefficients are usually expressed in a matrix form of A. 

A= [

a11 a12
… a1n

a21 a22
… a2n

⋮
am1

⋮
am2

 
…

⋮
amn

] 

The column vector, whose ith component is bi, which is referred to as 
the right-hand-side vector, represents the minimal requirement to be satisfied. 

Non-negativity constraints: the constraints x1, x2 ,…, xn≥0 are the non-

negativity constraints. A set of variables x1,…, xn satisfying all the constraints is called 
a feasible point or vector. The set of all such points constitutes the feasible region or 
space. 

2.4.2 Basic concepts of goal programming 
Goal programming is a form of linear programming that allows for the 

consideration of multiple goals. Whereas linear programming identifies, from the set of 
feasible solutions, the point that optimizes a single objective, goal programming 
determines the point that best satisfies the setting of goals in the decision problem. 
Furthermore, it attempts to minimize deviations from the goals (Malczewski, 1999). The 
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goal programming methods require the decision-maker to specify the most desirable 
value (goal) for each objective (criterion) as the aspiration level or target value. The 
objective functions (Eq. 2.15) are then transformed into goals as follows (Malczewski 
and Rinner, 2015): 

fk(x)+dk
- -dk

+= ak       for k = 1, 2, …, q  (2.15) 

dk
- , dk

+≥0, (dk
- ,dk

+) = 0  (2.16) 

where ak is the aspiration level for the kth objective, dk
-  and dk

+ are negative and 
positive goal deviations, respectively; that is, non-negative state variables that measure 
deviations of the achieved value of the kth objective function from the corresponding 
aspiration level. Thus, two types of variables are part of any goal programming 

formulation: the decision variables, xi, and the deviational variables, dk.  
Many measures of multidimensional deviations (achievement 

functions) and corresponding goal programming forms have been proposed by Jones 

and Tamiz (2010). The achievement function, g(dk
- , dk

+), can be formulated in terms of 

the weighted Lp norm as follows: 

g(dk
- , dk

+) = [∑(wk
- dk

- +wk
+dk

+)

n

k=1

]

1
p

 (2.17) 

where wk
-  and wk

+ are weights corresponding to the kth goal deviations. The weights 
represent additional information reflecting the decision maker’s preferences for the 

deviation variables. One can generate several models by changing the value of p. 
 

2.5 Standardized Precipitation Index 
Standardized Precipitation Index (SPI) was developed by McKee et al. in 1993 

at Colorado State University to quantify the precipitation deficit for multiple time 
scales such as 1, 3, 6, 9, 12, 24, and 48 months (Rahmat, Jayasuriya, and Bhuiyan, 2015). 
Generally, the original precipitation data is not a completely normal distribution 
essential to transforming precipitation time series into a standardized normal 
distribution. This index can be calculated by fitting the Gamma probability function to 
a given frequency of total precipitation (Sayari, Bannayan, Alizadeh, and Farid, 2013). 
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The computation of the SPI index requires the following steps (Karavitis, 
Alexandris, Tsesmelis, and Athanasopoulos, 2011; McKee, Doesken, and Kleist, 1993; 
Rahmat et al., 2015): 

(1) Fit a cumulative probability distribution function (PDF) (usually gamma 
distribution) on aggregated monthly (k) precipitation series (namely, k = 3, 6, and 12 
months). The gamma PDF, g(x), is defined as: 

g(x) = 
1

βαΓ(α)
xα-1e

-
x
β (2.18) 

For x ≥ 0, otherwise g(x) = 0, 

where β is a scale parameter, α is a shape parameter, which can be estimated using 

maximum likelihood, x is the precipitation amount, and is the gamma function at α. 

Γ(α) is the gamma distribution function. 

Γ(α)=∫ yα-1

∞

0

e-ydy (2.19) 

The estimated parameters can find the cumulative PDF of observed 
precipitation events for the given month and particular time scale. The cumulative 
distribution function (CDF) is obtained by integrating Equation 2.20. 

G(x) =∫ g(x)dx =∫
1

β̂
α̂
Γ(α̂)

x

0

x

0

xα̂-1e
-
x
β̂dx (2.20) 

α̂ =
1

4A
(1+√1+

4A

3
) (2.21) 

β̂ =
x̂

â
 (2.22) 

A = ln(x)̅-
∑ ln(x)

n
 (2.23) 

G(x) =
1

Γ(α̂)
∫ tα̂-1

x

0

e-tdt, t=
x

β̂
 (2.24) 

where n is the number of precipitation observation and refer to the sample mean of 
the data. 
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(2) Since the gamma distribution is undefined for x = 0 and q = P(x = 0) > where 
P(x = 0) is the probability of zero precipitation, CDF becomes as follow: 

H(x) = q+(1-q)G(x) (2.25) 
where q is the probability of zero precipitation 

The cumulative probability distribution is then transformed into the standard 
normal distribution to yield the SPI and classified SPI categories (Table 4). 

In addition, two critical factors that should be carefully considered when 
applying SPI include an adequate length of precipitation record and the nature of the 
probability distribution (Mishra, Singh, and Desai, 2009). 

 
Table 2.3 The SPI drought classification. 
SPI values SPI category 
2.00 and above Extreme wet 
1.50 to 1.99 Severe wet 
1.00 to 1.49 Moderate wet 
0.50 to 0.99 Mild wet 
-0.49 to 0.49 Near normal 
-0.99 to -0.50 Mild drought 
-1.49 to -1.00 Moderate drought 
-1.99 to -1.50 Severe drought 
-2.0 and less Extreme drought 

Source: Liu et al. (2014).  
 

2.6 Previous studies 
The previous studies related to this study are summarized, including the 

application of Random Forests, the CLUE-S model, the SCS-CN method, Linear and 
Goal programming, and SPI. 

2.6.1 Application of Random forests 
Tatsumi, Yamashiki, Canales Torres, and Taipe (2015) applied the RF 

classifier for cropland classification in the Ica region of Peru. A time series of moderate 
spatial resolution with enhanced vegetation index (EVI) of Landsat 7 ETM+ and its 
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summary statistics were used to develop crop type classification. The evaluation was 
based on several criteria, i.e., sensitivity to training dataset size, number of variables, 
and mapping accuracy. The results showed that the training dataset size strongly 
affects the classifier accuracy. The RF classifier provided an overall accuracy of 81% 
and a Kappa hat coefficient of agreement of 0.70. These values indicated high model 
performance. 

Jhonnerie, Siregar, Nababan, Prasetyo, and Wouthuyzen (2015) used 
the RF classifier for mangrove land cover mapping in Kembung River, Bengkalis Island, 
Indonesia. The results were compared with a standard pixel-based classification 
algorithm (Maximum Likelihood: ML). Their study used seven input data derived from 
Landsat 5 TM, SAR, and spectral transformations (NDVI, NDWI, NDBI) to examine both 
classifiers. Overall accuracy (OA), user’s accuracy (UA), producer’s accuracy (PA), and 
Kappa statistics were used to compare classification results. The results showed that 
the more data model used produced higher overall accuracy and kappa statistics for 
RF classifier. The overall accuracy achieved by the RF classifier was 81.1% and 0.76 for 
the Kappa statistic. Meanwhile, for the ML classifier, the overall accuracy achieved was 
77.7% and 0.71 for the Kappa statistic. 

Eisavi, Homayouni, Yazdi, and Alimohammadi (2015) evaluated the 
potential of multitemporal Landsat 8-OLI spectral and thermal imageries using a 
random forests classifier. They used a grid search approach based on the out-of-bag 
(OOB) estimate of the error to optimize the RF parameters. In this study, four different 
scenarios were considered in this research: (1) multitemporal spectral images, (2) 
multitemporal LST images, (3) all multitemporal LST and spectral images, and (4) 
selected important or optimum features to classify land covers mapping in the 
northwest of Iran. The results indicated that the overall accuracies of the first, second, 
third, and fourth scenarios were equal to 86.48, 82.26, 90.63, and 91.82 %, respectively. 
The results also demonstrated that the most essential or optimum features increase 
class separability. In contrast, the spectral and thermal features produced a more 
moderate increase in the land cover mapping accuracy. 

Midekisa et al. (2017) applied the RF classifier to quantify continental 
LULC changes over a long period (15 years) in continental Africa. In this study, Landsat 
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7 ETM+ data and Google Earth Engine cloud computing platform with spectral indices 
of Landsat data were used to classify 7 LULC classes. A total of 7,084 sample points 
was used to capture the LULC map by 80% of the sample points (5,664) from each 
class were randomly selected as training data, while 20% of sample points (1,420) were 
for the validation dataset. The results showed that the overall accuracy was 88%, while 
the producer’s and user’s accuracy ranged from 79% to 96% and 84% to 94%, 
respectively. 

Liu, Gong, Hu, and Gong (2018) applied the RF algorithm for forest 
types mapping in Wuhan, China. They evaluate the potential of freely available multi-
source imagery included Sentinel-2A, Sentinel-1A, SRTM DEM, and multi-temporal 
Landsat 8-OLI images, with seven different sets of explanatory variables for classifying 
eight forest types. The results indicated that using only Sentinel-2A and Landsat 8-OLI 
cannot obtain satisfactory results. The overall accuracy was increased by adding DEM 
and multi-temporal Landsat-8 imagery. The highest overall accuracy (82.78%) was 
achieved with fused imagery, the terrain, and multi-temporal data contributing the 
most to forest type identification. 

Pareeth, Karimi, Shafiei, and De Fraiture (2019) developed the RF 
machine learning algorithm to extract irrigated land use types with the time-series 
Landsat 8-OLI data (2013-2016) in the Mashhad basin of Iran. This study used the HPF-
based data fusion technique to develop the LULC map at the moderate spatial 
resolution of 15 m with nine classes of land use types. The results indicated that the 
total irrigated area was estimated at 1,796.16 km2, 1,581.7 km2, and 1,578.26 km2 for 
the cropping years 2013/2014, 2014/2015, and 2015/2016, respectively. The overall 
accuracy of the final LULC map was 87.2% and Kappa hat coefficient of 0.85. 

Srichaichana, Trisurat, and Ongsomwang (2019) applied the RF method 
to classify LULC in 2010 and 2017 from Landsat 5 and 8 images at Klong  
U-Tapao watershed, Songkhla province, Thailand. The classified LULC types include 
urban and built-up area, paddy field, rubber plantation, oil palm plantation, perennial 
tree and orchard, aquatic cultural area, evergreen forest, mangrove forest, marsh and 
swamp, water body, and miscellaneous land. As a result, the overall accuracy and 
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Kappa hat coefficient of thematic LULC maps of two years were 91.36% and 84.00% 
for 2010 and 94.32% and 87.00% for 2017. 

In summary, it can be observed that many researchers have applied 
the RF classifier to classify LULC types. Most input data is free-downloaded with 
moderate spatial resolution, e.g., Landsat images, Sentinel images. The RF classifier 
provides an overall accuracy and Kappa hat coefficient of agreement of more than 
80%. Besides, the finding also indicates that the RF classifier can provide higher 
accuracy results than other classifier algorithms.  

However, the split rules for the LULC classification of the RF are 
unknown; therefore, it can be considered a black-box type classifier as the Artificial 
Neuron Network. Besides, users are generally required to observe the preliminary result 
of LULC classification and add more sample points to increase thematic accuracy 
(Tatsumi et al., 2015). 

2.6.2 Application of CLUE-S model 
Ongsomwang and Iamchuen (2015) studied the integration of 

geospatial models for optimum land use allocation in three different scenarios in the 
Upper Lam Phra Phloeng watershed, Nakhon Ratchasima province, Thailand. Their 
study used the CLUE-S model to simulate the LULC map of three different scenarios, 
i.e., historical land use evolution, energy crop extension, forest conservation, and 
prevention. Furthermore, the logistic regression model applied the physical and socio-
economic factors to indicate the preference for a specific type of land use. The results 
indicated that population density is the most important driving factor for the location 
preference of the LULC types. Besides, the simulation of three LULC scenarios in 2023 
by the CLUE-S model revealed that urban and built-up land, cassava, sugarcane, water 
body, and miscellaneous land were increased while maize, perennial trees/orchard, 
and forest land were decreased under Scenario I. At the same time, the increase in 
cassava and sugarcane under Scenario II came from maize, forest land, and 
miscellaneous land, while most of the increasing forest land under Scenario III was 
converted from maize, sugarcane, and miscellaneous land. 

Zhou, Zhang, Ye, Wang, and Su (2016) developed the CLUE-S model 
to simulate future land use change and urban growth from 2009 to 2027 in Xinzhuang 
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town of Changshu city, China. In their study, three scenarios were designed to represent 
a different implementation of the spatial policies and restrictions, i.e., the current 
trend, urban planning, ecological protection. Also, the logistic regression model with 
eleven driving factors of land use change is taken into account as independent factors 
for the current land use pattern to indicate the preference for a specific type of land 
use. Furthermore, the pixel-based comparison for the simulated land use map of 2009 
and the actual land use map of 2009 was performed to evaluate the accuracy of the 
predicted map. The results showed that the ROC value was more significant for all 
land use types than 0.7, suggesting the strong explanatory power of the selected 
driving factors employed to explain the land use spatial patterns. Meanwhile, it was 
found that the probability of correct classification of the given land-use types ranges 
between 77.3% and 83.1%, indicating that the CLUE-S model gave excellent simulation 
accuracy for land use change prediction.  

Zare, Nazari Samani, Mohammady, Salmani, and Bazrafshan (2017) 
applied the CLUE-S model to simulate land use in the Kasilian watershed of Iran. In 
this study, the predicted LULC map of five scenarios in 2030 was simulated based on 
the LULC map in 1986, 2000, and 2011. Meanwhile, the logistics regression model used 
nine driving factors to indicate a specific type of land use preference. The results 
showed that the AUC value was higher than 0.8 for total land use types, which meant 
good accuracy in assessing the driving forces for LULC prediction. Therefore, they 
concluded that the CLUE-s model is suitable for modeling future land use transitions. 

Mohammady et al. (2018) studied modeling and assessing the effects 
of land use changes on runoff generation with the CLUE-S and WetSpa models. 
Baghsalian watershed in the north of Iran was selected as the study area. In this study, 
the land use map of the year 2030 was simulated using the CLUE-S model based on 
land use change in the year 1986 to 2012 period. The results indicated that the primary 
land use changes in the study area between 1986, 2012, and 2030 were converting 
forest and rangeland to agriculture and residential land use types. Besides, they 
concluded that the CLUE-S model could provide future land use conditions for better 
planning and management. 
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Kucsicsa et al. (2019) applied the CLUE-S model to simulate future 
LULC in Romania. The predicted map of two different scenarios in 2007-2050 was 
simulated based on LULC data in 1990 and 2006. The first scenario LULC was predicted 
based on the annual rates of change between 1990 and 2000. The second scenario 
assumes that LULC will change based on the historical LULC dynamics between 2000 
and 2006. In this study, biophysical and socio-economic variables associated with the 
current land use and land cover pattern were used to indicate a specific type of land 
use preference. In the meantime, the receiver operating characteristic (ROC) method 
was assessed to evaluate the performance of the predicted data. As a result, they 
found that biophysical variables make the most significant contribution to explaining 
the current spatial pattern of LULC. Also, the predicted data reveal that changes in 
land use and land cover will affect about 7.0% of the total study area under scenario 
1 and 15.2% under scenario 2. 

Srichaichana et al. (2019) applied the CLUE-S model to predict LULC 
in Klong U-Tapao watershed, Songkhla province, Thailand. Their study used the LULC 
map in 2010 and 2017 to predict LULC change from 2018 to 2024 under three different 
scenarios using the CLUE-S model. Meanwhile, logistic regression analysis was 
performed to identify LULC type location preference according to the driving force on 
LULC change. As a result, it was found that the most dominant driving factor for all 
LULC type allocation was the distance to settlement, and followed by distance to 
water bodies and road network. Furthermore, the study result showed that the 
significant increasing areas of LULC types during 2010-2017 were rubber plantations 
and urban and built-up areas. The significant decreasing areas of LULC classes were 
evergreen forest and miscellaneous land. Moreover, they also concluded that the 
derived LULC prediction of three different scenarios from the CLUE-S model could 
provide realistic results as expected. 

In summary, the CLUE-S model has been studied by many researchers 
to simulate the spatial allocation of LULC in the future based on different scenarios. 
Biophysical and socio-economic variables are the most dominant driving factor for 
LULC type allocation. The logistic regression analysis was performed to identify LULC 
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type location preference for land allocation. Also, the literature reveals that the CLUE-
S model can provide accurate results for better planning and management.  

On the contrary, the model’s main limitation is its incapability to 
simulate land use dynamics in areas without a land-use change history, e.g., 
deforestation in a pristine forest area. Because the model uses an empirically derived 
relationship based on the existing land-use patterns for land use change allocation. 
The only possible way around this limitation is using empirical relations derived in an 
area with very similar characteristics (Verburg et al., 2002). 

2.6.3 Application of SCS-CN method 
Phetprayoon, Sarapirome, Navanugraha, and Wonprasaid (2012) 

developed distributed geospatial models to simulate runoff and sediment yield for 
the Upper Lam Phra Phloeng watershed, Thailand. In this study, the SCS-CN method 
was used to simulate event-based runoff. Calibration and validation of the model were 
performed by comparing predicted runoff with corresponding instream measurements 
from two gauging stations within the watershed in 2008. As a result, it was found that 
calibration results show a reasonable agreement for both the coefficient of 
determination (R2) and coefficient of efficiency (NSE) within ranges of 0.87-0.94 and 
0.91-0.95, respectively. Meanwhile, the validation results show R2 and NSE values 
ranging from 0.68-0.87 and 0.75-0.89, respectively. They also confirmed that the grid-
based modified SCS-CN method is applicable to surface runoff estimation and is 
helpful for the study area. 

Ongsomwang and Pimjai (2014) applied the SCS-CN method to 
estimate surface runoff in the Mueang Maha Sarakham and Kantharawichai districts of 
Maha Sarakham province. The regression analysis coefficient of determination (R2) 
value explained the spatiotemporal relationship between urbanization and runoff 
depth from 2001 to 2021. The results indicated that the urban area and total surface 
runoff depth positively correlated with R2 at 0.98. Also, they concluded that the urban 
and built-up area, which consists of an impervious surface, is a significant cause of the 
increased surface runoff in the study area. 

Lal et al. (2017) applied the SCS-CN method to estimate surface runoff 
of natural storm events from 27 agricultural plots in India. In this study, the CN values 
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of a plot are designated as CNHT (HT refers to the handbook tables), CNLSn (for natural 
dataset), and CNLSo (for ordered dataset). Meanwhile, the performance evaluation is 
primarily based on statistical analysis, i.e., the coefficient of determination (R2), Nash 
Sutcliffe efficiency coefficient (NSE), number of times (nt), and percent bias (PBIAS) for 
individual plot data. The results indicated that the runoff prediction using former CNs 
was insufficient for the data of 22 (out of 24) plots. However, the match was slightly 
better for higher CN values, consistent with the general notion that the existing SCS-
CN method performs better for high rainfall-runoff (high CN) events.  

Rawat and Singh (2017) applied Earth observation data sets and the 
SCS-CN method to estimate the surface runoff from Jhagrabaria, an agricultural 
watershed of Allahabad district, Uttar Pradesh, India. This study used three antecedent 
moisture conditions (AMC) in the CN method: AMC-I for dry conditions, AMC-II for 
normal conditions, and AMC-III for wet conditions. In addition, the coefficient of 
determination (R2) was used to observe between satellite drive rainfall and runoff to 
validate the model. The results showed that the CN values of three conditions (AMC-
I, II, and III were 79.35, 61.76, and 89.84, respectively. Meanwhile, the validation results 
show an R2 value of 0.91. 

Rizeei, Pradhan, and Saharkhiz (2018) applied the SCS-CN method to 
simulate the maximum probable surface runoff in 2000, 2010, and 2020. The Semenyih 
watershed, Selangor State, Malaysia, was selected as the study area. The Root Mean 
Square Error (RMSE) was used to calibrate the model results in this study. As a result, 
it was found that the accumulative simulated surface runoff as the basin outlet was 
successfully calibrated with the RMSE value of 0.75. Besides, the results showed that 
deforestation and urbanization have occurred at the given time, and they are 
anticipated to increase. Secondly, the amount of rainfall has non-stationary declined 
from 2000 till 2015, and this trend is estimated to continue by 2020. Thirdly, due to 
damaging changes in LULC, the surface runoff has been increased till 2010, and it is 
forecasted to exceed by 2020 gradually. 

Li et al. (2019) studied an assessment of the impact of land use land 
and cover change and rainfall change on surface runoff in China. In their study, the 
SCS-CN method was used to estimate surface runoff in 2005, 2010, and 2015. In 
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addition, the NSE and R2 were used to calibrate and validate the model. The results 
showed that the calibration result shows the R2 and NSE values as 0.95 and 0.94, 
respectively, while the R2 and NSE values of 0.96 and 0.93, respectively, for model 
validation. In the meantime, the average annual runoff depths in 2005, 2010, and 2015 
were 78 mm, 83 mm, and 90 mm, respectively. 

In summary, the SCS-CN method has been widely applied by many 
researchers to estimate surface runoff. The SCS-CN method is flexible for use with local 
or regional scale, especially in the agricultural watershed. Besides, Weng (2010) stated 
that the development and maturity of GIS technology in the late 1980s have made it 
possible to combine various data sources to derive model input parameters and have 
automated the SCS modeling process. Additionally, the main criteria for choosing the 
model are to be in line with specific problems, data requirements, model accuracy, 
model capability, and ease of use (Beckers et al., 2009; Calow and Petts, 1994) since 
the efficiency in developing a new model can be based on several facets such as 
research budget, study objectives and available time. Therefore, the SCS-CN method 
is chosen to estimate surface runoff for optimized LULC allocation for flood mitigation 
with goal programming modeling. 

2.6.4 Application of linear and goal programming 
Yeo, Gordon, and Guldmann (2004) studied optimizing land use 

patterns to reduce peak runoff flow and non-point source pollution with an integrated 
hydrological and land use model in Old Woman Creek watershed, Ohio State, USA. 
This study used the SCS-CN method to analyze the geographical impacts of land uses 
with DEM, soil, and LULC data. For land use optimization, an optimization algorithm 
(LP) is integrated with the simulation model to evaluate different land use patterns 
and their response to rainfall-runoff events and search for optimal land use patterns 
to minimize peak surface runoff. The results showed that by utilizing land use 
optimization, the level of peak runoff was reduced by 15-20%. 

Evelyn (2009) applied the LP to maximize forest cover, minimize soil 
loss, runoff, groundwater loss, and agricultural production loss based on varying 
constraints, i.e., land availability, land capacity, urban and industrial, slope, soil 
type/depth, and ecological. In this study, the Rio Minho watershed of Jamaica was 
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selected as the study area. The results indicated that after optimization, spatial 
patterns in the upper parts of the watershed, which increased the forest cover from 
16.76% to 37.47%, could significantly reduce runoff where the forest cover was 
optimized and simulated in a hydrological model. 

Owji, Nikkami, Mahdian, and Mahmoudi (2012) studied LULC allocation 
to minimize surface runoff and sediment yield in the Jajrood watershed of Iran. The 
SCS-CN method was used to compute the amount of surface runoff with three 
different land use scenarios. At the same time, the LP-based on simplex method was 
used to allocate optimum LULC. As a result, irrigated farming and pasture were 
reduced by using optimization, while the orchard area was increased. Furthermore, 
after optimization, the watershed surface runoff and sediment yield will be reduced 
by 73.03% and 36.93%, respectively. 

Huang, Kuo, and Tsou (2013) developed a multi-objective spatial 
optimization for land use allocation in high flood risk areas. The main objective of this 
study was to assess future land use patterns based on a multi-objective programming 
model in mountain land use, Tai Po Township, Chiayi County, Taiwan. This study used 
the LP of multi-objective programming to maximize economic benefit, environmental 
benefit (biological oxygen demanding load), and soil erosion based on varying 
constraints. The results showed that after optimization, the economic benefit output 
value was increased (from 198,929,030 to 422,672,234 NT/year), soil erosion was 
reduced (from 129,771 to 72,086 tons/year), and biological oxygen demanding load 
was the same (from 2,026 to 2,404 kg/year). Therefore, they concluded that multi-
objective programming is helpful for high flood risk areas. 

Sunandar, Suhendang, Hendrayanto, Jaya, and Marimin (2014) 
integrated the LP and SWAT model for land use optimization in the Asahan watershed. 
Their study used LP to minimize erosion with several constraints and consider the 
land’s economic value. Meanwhile, spatial optimization uses the query method based 
on land capability category to obtain a combination of optimal land use area to be 
simulated using the SWAT model. After optimization, the results indicate a significant 
change in forest area, increased plantation and rice field areas, reduced dry farmland 
areas, and barren land soil and shrubs converted into other vegetated areas. These 
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changes can reduce erosion without reducing water yield in the SWAT model 
simulation. 

Gonfa and Kumar (2015) studied optimal land use planning in mojo 
watersheds with multi-objective linear programming. This study used the SWAT model 
to predict annual sediment yield and net income per unit area in each land use as the 
coefficient of decision variables in the optimization process. In the meantime, the LP 
was used to minimize soil erosion and maximize net benefit. The results showed that 
on solving the problem using a goal programming, net income from the watershed is 
increased by 29.91%, and soil erosion decreased by 16.14% with the reduction of 
dryland farming by 18.45% and increasing the current rangeland 946.36 ha to 15,419.74 
ha and 45.96 ha under irrigated agriculture to 25,526.69 ha. 

Sokouti and Nikkami (2017) applied the LP to determine the optimal 
use of land to reduce erosion and increase the resident’s income of the Qushchi 
watershed in West Azerbaijan province, Iran. In this study, three different options, 
including the current status of land use without and with land management and the 
standard status of land use, multi-objective LP model was established by LINGO 
software. The results showed that in the case of the optimization of land use, soil 
erosion and the profitability of the whole area would decrease by 0.75% and increase 
by 3.68%, respectively. For land management practices, soil erosion will reduce by 
42.27%, and the profitability will increase by 21.39%. In contrast, soil erosion will 
decrease by 60.95%, and profitability will increase by 24.20% in standard conditions. 

Al-Zahrani, Musa, and Chowdhury (2016) developed a multi-objective 
model for optimal water distribution from multiple resources to multiple users in 
Riyadh, Saudi Arabia. In this study, weighted GP based on specific objectives were used 
to (1) satisfy water quality, (2) maximize treated wastewater (TWW) reuse and 
groundwater (GW) conservation, and (3) minimize overproduction of desalinated water 
(DW) and overall cost. The results showed that in 2015, the required allocations of GW, 
DW, and TWW are 3,286, 662, and 609 MCM, respectively, which are projected to be 
4,345, 1,554, and 1,305 MCM in 2050, respectively. In addition, the GW source is likely 
to satisfy the predicted withdrawal of GW till 2035, while probabilities of non-
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satisfaction of total demands of GW in 2040, 2045, and 2050 were 0.04, 0.23, and 0.51, 
respectively. 

Tajbakhsh, Memarian, and Kheyrkhah (2018) applied the GP to 
optimize land allocation in the Bayg watershed, Iran. The GP of multi-objective was 
used to allocate five categories of land uses, i.e., irrigated orchard, rangeland, irrigated 
farming, rain-fed farming, and almond orchard, to minimize surface runoff and 
sediment yield and to increase net income. The results indicated that combining the 
techniques weighted GP, AHP, and multi-objective land allocation can optimize land 
use and land covers based on the conflicting objectives (runoff and sediment load 
minimization and net income maximization). 

In summary, linear programming (LP) has been applied by many 
researchers to optimize LULC allocation based on different objective function 
problems, e.g., to minimize surface runoff, sediment yield, soil erosion. The simplex 
method is a popular method that can be used to solve the problem in the LP model. 
Meanwhile, the LP model can be integrated with any hydrological model, including 
the Soil Conservation Service Curve Number (SCS-CN) method and the Soil and Water 
Assessment Tool (SWAT) model. 

Likewise, goal programming (GP) is a subdivision of multi-objective 
optimization, which can support linear programming to deal with multiple and usually 
conflicting objectives. The GP has been used to solve the objective function problem 
based on the target or goal. The finding indicates that most researchers have applied 
the GP to allocate LULC based on different objective problems. Therefore, if any 
problem with multi-objective optimization (minimization or maximization) exists, the 
GP might be helpful to solve such a problem. 

2.6.5 Application of SPI 
In recent decades, the standardized precipitation index has been 

widely used to characterize dry and wet conditions in many countries and regions due 
to its simplicity and variable timescales, which requires only the precipitation as input 
data to quantify water deficit and surplus for long-term normal conditions for multiple 
time scales (Zhang, Xu, and Zhang, 2009; Du, Fang, Xu, and Shi, 2013; Liu and Liu, 
2019). However, the SPI calculation requires at least 20-30 years of monthly 
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precipitation data, and 50-60 years or more is ideal (Tan, Yang, and Li, 2015). For 
instance, Seiler, Hayes, and Bressan (2002) analyzed the potential of using SPI to 
monitor flood risk in the Southern Cordoba province in Argentina during the last 25 
years. The SPI index was calculated on time scales of 1, 3, 12, and 24 months. They 
found that SPI satisfactorily explains the development of conditions leading up to the 
three main flood events in the region. Karavitis et al. (2011) used time-series data from 
46 precipitation stations covering 1947-2004 (57 years) with time scales of 1, 3, 6, 12, 
and 24 months to calculated SPI values in Greece.  

Likewise, the daily precipitation data, covering 1951 to 2007 (56 years), 
was used to calculate the annual SPI value in China’s Hunan province. The time series 
of SPI at multiple time scales of 2, 6, 12, and 24 months were calculated to determine 
their potential usefulness for detecting dry/wet periods and monitoring drought/flood 
risk by Du et al. (2013). Zhang and Jia (2013) used the long-term monthly precipitation 
data from 1960 to 2010 (51 years) to construct SPI series at 1, 3, 6, 9, and 12-month 
time scales for each weather station. Similarly, Tan et al. (2015) used monthly 
precipitation data from 1971 to 2011 (41 years) to calculate the monthly SPI value for 
Ningxia, China. 

 



 

 

 
CHAPTER III 

RESEARCH PROCEDURES 
 

The ultimate goal of this study focuses on optimizing LULC allocation for flood 
mitigation in the Second Part of Lam Nam Chi watershed, Mueang Chaiyaphum district, 
Chaiyaphum province. The research procedures involve data collection and 
preparation and six major components: (1) LULC classification, (2) LULC prediction,  
(3) surface runoff estimation, (4) optimization of LULC allocation for flood mitigation, 
(5) mapping of LULC allocation for flood mitigation, and (6) economic and ecosystem 
service value evaluation and change. The overview framework of the research 
procedures is schematically illustrated in Figure 3.1. The detailed information about 
data collection and preparation and main research components are separately 
summarized in the following sections. 

 

3.1 Data collection and preparation 
The required input data for the study include GIS data, remote sensing data, 

and primary and secondary data, which were collected and prepared in advance as a 
summary in Table 3.1. 

 
Table 3.1 List of data collection and preparation for data analysis in the study. 

Data Data collection Data Preparation Source Component 
Primary - Ground reference - - 1 
Secondary - Runoff - RID  3 

- Annual rainfall Interpolation TMD  3 and 4 
- Socio-economic data Population density DOPA 2 
 Income per capita NESDC 2 

Remote 
Sensing 

- Landsat 5 TM: Path 128 
Row 49, Date 6 January 
2001 and Path 129 Row 
49, Date 14 February 2001 

1. Radiometric 
correction 
2. Geometric correction 

USGS  1 
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Table 3.1 (Continued). 
Data Data collection Data Preparation Source Component 
Remote 
Sensing 

- Landsat 5 TM: Path 128 
Row 49, Date 16 February 
2010 and Path 129 Row 
49, Date 23 February 2010 

-  1 

- Landsat 8 OLI: Path 128 
Row 49, Date 24 January 
2019 and Path 129 Row 
49, Date 31 January 2019 

1 

- Satellite image from 
Google Earth in 2010 

 Google 1 

- Color orthophotograph - RTSD 1 
GIS - Administrative boundary - DEQP  1 and 3 

- Soil (soil series) Recode LDD 3 
- Watershed boundary - RID 1, 2, and 3 
- Elevation Extract from DEM SRTM 2 
- Slope Extract from DEM SRTM 2 
- Road network Buffering MOT, DEQP 2 
- Stream Buffering RTSD 2 
- Urban area Buffering LULC data 2 

Note: USGS: United States Geological Survey; RTSD: Royal Thai Survey Department; DEQP: 
Department of Environmental Quality Promotion; TMD: Thai Meteorological Department; RID: Royal 
Irrigation Department; LDD: Land Development Department; NESDC: Office of the National 
Economic and Social Development Council; SRTM: Shuttle Radar Topography Mission: MOT: Ministry 
of Transport, DOPA: Department of Provincial Administration. 
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Figure 3.1 Overview framework of research procedures. 
  

Component 1: LULC classification 

Data collection and preparation 
GIS data Remote sensing data 

Landsat 5-TM data in 2001, 2010 and Landsat 8-OLI in 2019 

LULC classification using Random Forests classifier and accuracy assessment 

LULC data in 2001, 2010, and 2019 

Component 2: LULC prediction 
LULC data in 2001,2010, and 2019, land use requirements, driver factors, land demand 

LULC prediction in two period (2002 to 2009 and 2011 to 2018) using CLUE-S model  

Predicted LULC data in two periods (2002-2009 and 2011-2018) 

Component 3: Surface runoff estimation  
LULC data (2001 to 2019), soil data, rainfall data (2001 to 2019) 

Surface runoff estimation using SCS-CN method 

Surface runoff series data between 2001 and 2019 

Component 4: Optimization of LULC allocation for flood mitigation 
Objective function, average runoff coefficient, constraints 

LULC allocation using goal programming under MS-Excel software 

Optimizing LULC allocation for flood mitigation under three different rainfall conditions 

Component 5: Mapping of LULC allocation for flood mitigation 
LULC data, land use requirements, driving factors, land demand of optimized LULC allocation 

LULC prediction of optimized LULC allocation using CLUE-S model 

An optimized LULC allocation map for flood mitigation 

Component 6: Economic and ecosystem service value evaluation and change 
LULC data in 2019 and an optimized LULC allocation data 

Economic value and ecosystem service value change 

Economic and ecosystem service value change in term of gain and loss 

Input Process Output 

 



46 

 

3.2 Component 1: LULC classification 
Under this component, three Landsat imageries in 2001, 2010, and 2019 are 

firstly downloaded from the USGS website (www.earthexplore.usgs.gov) for LULC 
classification using the RF classifier. Then, the preliminary LULC maps in 2001, 2010, 
and 2019 were assessed accuracy based on the reference data from the aerial 
photograph in 2001, Google satellite image in 2010, and field survey in 2020, 
respectively. This study estimated the number of sample points for accuracy 
assessment based on multinomial distribution with stratified random sampling. The 
derived results of this component will be further applied for LULC prediction between 
2002 and 2018 in the next component. The schematic workflow of the LULC 
classification, including input, process, and output, is displayed in Figure 3.2. 

Brief information on significant tasks under this component includes (1) LULC 
classification using the RF classifier and (2) accuracy assessment summarized in the 
following sections. 

3.2.1 LULC classification using RF classifier 
Training areas of LULC type from three Landsat images in 2001, 2010, 

and 2019 were separately prepared to extract multiple decision trees for LULC 
classification using the RF classifier of EnMap-Box software. Herein, spectral reflectance 
data product (Level 2) of Landsat 5-TM (band 1, 2, 3, 4, 5, and 7) in 2001 and 2010 or 
Landsat 8-OLI (band 2, 3, 4, 5, 6, and 7) in 2019 with spectral indices (NDVI, MNDWI, 
and NDBI) and elevation were applied to classify LULC in the corresponding years. The 
additional bands represent a particular characteristic for enhancing LULC classification 
under non-parametric statistics of the RF. Generally, NDVI (Normalized Difference 
Vegetation Index) represents vegetation characteristics (Rouse et al., 1974), while 
MNDWI (Modified Normalized Difference Wetness Index) signifies moisture regime (Xu, 
2008), and NDBI (Normalized Difference Built-up Index) indicates a built-up area (Zha, 
Gao, and Ni, 2003). Meanwhile, the distribution of LULC types is directly related to 
elevation, e.g., paddy fields are generally situated in floodplains while forests are 
primarily located in mountainous areas.  

In this study, 200 random decision trees with a Gini coefficient index 
of the impurity were applied to classify LULC with majority voting using RFs classifiers. 
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Figure 3.2 Schematic workflow of LULC classification. 

 
In this study, the LULC classification system, which was modified from 

the standard land use classification system of the LDD, consists of (1) urban and built-
up area, (2) paddy field, (3) sugarcane, (4) cassava, (5) other field crops, (6) para rubber, 
(7) perennial trees and orchards, (8) forest land, (9) water body, (10) rangeland,  
(11) marsh and swamp, and (12) unused land. The description of the LULC types is 
summarized in Table 3.2. 
  

  

 

 Remote sensing data 

Landsat-5 TM in 2001 Landsat-5 TM in 2010 Landsat-8 OLI in 2019 

Define training area of LULC 

Primary LULC data in 2001 Primary LULC data in 2010 Primary LULC data in 2019 

Random decision trees 

LULC classification by using Random Forests classifier with majority voting 

Accuracy assessment: Overall accuracy and Kappa hat coefficient 

Primary LULC data in 2001 Primary LULC data in 2010 Primary LULC data in 2019 

Final LULC data in 2001 Final LULC data in 2010 Final LULC data in 2019 

Define training area of LULC Define training area of LULC 

Random decision trees Random decision trees 

LULC classification using Random Forests classifier under EnMap-Box software 

Input Process Output 
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Table 3.2 Description of LULC classification system. 
LULC type Description 

Urban and built-up area All land uses to construct human structures, 
including villages, urban areas, industrial areas, and 
road networks. 

Paddy field Rice agriculture cultivation area is determined by 
the inundating of fields. 

Sugarcane The area consists of a multi-growth stage of 
sugarcane. 

Cassava The area consists of a multi-growth stage of 
cassava. 

Other field crops The area consists of a multi-growth stage of field 
crops, which excludes sugarcane and cassava. 

Para rubber The area consists of a multi-growth stage of para 
rubber. 

Perennial trees and orchard Area covered by tree and orchard, which excludes 
para rubber. 

Forest land Area covered by trees, dense forest, opened forest, 
and forest plantation. 

Water body Area covered by lake, river, and drainages, and 
artificial water areas. 

Rangeland Area covered by grass, shrubs, uncultivated land, 
lands with herbaceous types of cover. Tree and 
shrub cover are less than 10%.  

Marsh and swamp Marsh exists along river banks, characterized by 
poor drainage moisture. Swamp is situated on the 
shallow margins of bays, lakes, ponds, streams, and 
artificial impoundments such as reservoirs. 

Unused land Area covered by uncultivated areas including 
abandoned land, bare land, pit, landfill, and 
outcrop. 
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3.2.2 Accuracy assessment 
The preliminary LULC maps in 2001, 2010, and 2019 were assessed 

accuracy (overall accuracy, producer’s accuracy, user’s accuracy, and Kapa hat 
coefficient of agreement) based on the reference data from color orthophotograph in 
2000-2001, very high spatial resolution imageries from Google Earth in 2010, and field 
survey in 2020, respectively. This study estimated the number of sample sizes for 
thematic accuracy assessment based on multinomial distribution with a stratified 
random sampling scheme, as suggested by (Congalton and Green, 2019). 

 

3.3 Component 2: LULC prediction 
Two significant tasks implemented under this component include (1) optimum 

local parameter for LULC prediction using CLUE-S model and (2) LULC prediction of 
two periods: 2002-2009 and 2011-2018 using CLUE-S model. 

3.3.1 Optimum local parameter identification for LULC prediction using 
CLUE-S model 

In this study, optimum local parameters for LULC prediction using the 
CLUE-S model were justified by comparing the predicted LULC map in 2019 and the 
classified LULC map in 2019 using thematic accuracy assessment.  

In practice, basic parameters of the CLUE-S model, which include  
(1) elasticity value, (2) LULC conversion matrix, and (3) land requirement of each LULC 
type in 2019 were extracted based on the final LULC map in 2001 and 2010 using the 
Markov Chain model. At the same time, three selected driving factor categories on 
LULC change include physical, socio-economic, and proximity, which was reviewed 
from the previous studies of many researchers (Table 3.3), were examined 
multicollinearity and identified LULC type location preference using binomial logistic 
regression analysis for allocating LULC type during LULC prediction in 2019 by CLUE-S 
model. 

Then, the predicted LULC map in 2019 was compared with the 
classified map in 2019 using a wall-to-wall accuracy assessment with overall accuracy 
and Kappa hat coefficient of agreement. If the overall accuracy and Kappa hat 
coefficient are equal to or more than 80%, then the selected driving factor on LULC 
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change is chosen as the optimum local parameter of the CLUE-S model for LULC 
prediction. 

3.3.2 LULC prediction of two periods: 2002-2009 and 2011-2018 
The optimum local parameter, elasticity value, LULC conversion 

matrix, and land requirement of each LULC type in two periods (2002-2009 and  
2011-2018), which were extracted using the Markov Chain model based on the 
corresponding LULC data in 2001, 2010, and 2019, were applied to predict LULC data 
in two periods. The derived time-series of LULC data between 2001 and 2019 from 
classification and prediction will be further applied to estimate the time-series surface 
runoff data using the SCS-CN method in the next component. 

The workflow of optimum local parameters for LULC prediction and 
LULC prediction of two periods using CLUE-S is displayed in Figure 3.3. 
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Table 3.3 Driving factors on LULC change for LULC type location preference. 

Categories Driving factors References 
Physical factor Elevation Trisurat et al. (2010) ; Han et al. (2015); Ongsomwang and Iamchuen (2015); Zheng et al. (2015) ; Xu et al. (2016) ; (Gao 

et al., 2016); Ongsomwang and Boonchoo (2016); Phompila et al. (2017); Arowolo and Deng (2018); Palchowdhuri and 
Roy (2018); Ongsomwang, Pattanakiat, and Srisuwan (2019). 

 Slope Trisurat et al. (2010); Han et al. (2015); Ongsomwang and Iamchuen (2015); Zheng et al. (2015); Xu et al. (2016); Gao 
et al. (2016); Ongsomwang and Boonchoo (2016); Phompila et al. (2017); Arowolo and Deng (2018); Palchowdhuri and 
Roy (2018); Ongsomwang et al. (2019). 

 Annual rainfall Ongsomwang and Iamchuen (2015); Xu et al. (2016); Gao et al. (2016); Li et al. (2016) ; Arowolo and Deng (2018); 
Palchowdhuri and Roy (2018). 

Socio-economic 
factor 

Average income per capita 
at sub-district level 

Gao et al. (2016); Ongsomwang and Boonchoo (2016); Li et al. (2016); Arowolo and Deng (2018); Ongsomwang et al. 
(2019). 

 Population density at sub-
district level 

Trisurat et al. (2010); Han et al. (2015); Ongsomwang and Iamchuen (2015); Zheng et al. (2015); Gao et al. (2016); 
Ongsomwang and Boonchoo (2016); Arowolo and Deng (2018); Palchowdhuri and Roy (2018); Ongsomwang et al. 
(2019). 

Proximity Distance to road network Trisurat et al. (2010); Han et al. (2015); Ongsomwang and Iamchuen (2015); Zheng et al. (2015); Ongsomwang and 
Boonchoo (2016); Phompila et al. (2017); Arowolo and Deng (2018); Ongsomwang et al. (2019). 

 Distance to stream Trisurat et al. (2010); Han et al. (2015); Ongsomwang and Iamchuen (2015); Gao et al. (2016); Phompila et al. (2017); 
Ongsomwang et al. (2019). 

 Distance to the existing 
urban area 

Han et al. (2015); Xu et al. (2016); Ongsomwang and Boonchoo (2016); Ongsomwang et al. (2019). 
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Figure 3.3 Schematic workflow of optimum local parameter for LULC prediction and 
LULC prediction of two periods using CLUE-S model.  

LULC map in 2001 LULC map in 2010 Driving factors  

Transitional probability matrix 
using Markov Chain 

Multicollinearity test and 
Binary logistic regression 

analysis 

Elasticity value LULC type location preference 

CLUE-S model LULC map 2001 
  

Predicted LULC map in 2019 Classified LULC map in 2019 

Accuracy test 

 

Predicted LULC data between 2002 and 2009  
and 2011 and 2018 

LULC maps: 2001, 2010, 2019 Land use requirements 

LULC conversion matrix 

Transition change area 

Optimum local 
parameters 

LULC prediction using CLUE-S model 

Input Process Output 

OA and 
Kappa hat ≥ 80 

Yes 

No 
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3.4 Component 3: Surface runoff estimation 
This study estimates time-series surface runoff between 2001 and 2019 based 

on the classified and predicted LULC data, soil series, and rainfall data using the SCS-
CN method with suitable AMC under ESRI ArcGIS software. Two significant tasks 
implemented under this component include (1) suitable AMC for surface runoff 
estimation using the SCS-CN method and (2) time-series surface runoff estimation 
between 2001 and 2019. 

3.4.1 Suitable AMC for surface runoff estimation using SCS-CN method 
Suitable AMC for surface runoff estimation using the SCS-CN method 

was examined based on the classified and predicted LULC data from 2001 and 2010 
with three different CN values of three different AMCs, as suggested by Chow, 
Maidment, and Mays (1988) using the following equations. 

CNI=
4.2CNII

10-0.058CNII
 (3.1) 

 

CNIII=
23CNII

10+0.13CNII
 (3.2) 

where CNI is the runoff curve number value of each LULC type of AMC-I, CNII is the 
runoff curve number value of each LULC type of AMC-II, and CNIII is the runoff curve 
number value of each LULC type of AMC-III. 

The runoff curve number value of each LULC type in three antecedent 
moisture conditions (AMC-I, AMC-II, and AMC-III) is summarized in Tables 3.4 to 3.6. 
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Table 3.4 Runoff curve number under AMC-I with the dry condition. 

Land cover Treatment 
Hydrologic 
condition1 

The appropriate 
assumption to land 

use in the study area 

Curve numbers for hydrologic 
soil group 

A B C D 

Urban districts  85% of the 
average 
impervious 
area  

Urban and built-up 
area 

77.26 82.85 86.81 88.86 

Row crop Straight row Poor Cassava and other 
field crops 

51.92 64.16 75.49 80.94 

 Straight row Partial cover2 Sugarcane  28.75 48.32 61.24 68.80 
Small grain Straight row Poor Paddy field 43.82 57.08 68.80 75.49 
Pasture, 
grassland, or 
range 
continuous 
forage for 
grazing3 

 Fair Rangeland 28.75 48.32 61.24 68.80 

Woods-grass 
combination 
(orchard or 
tree farm) 

 Fair  Para rubber, and 
perennial trees and 
orchard 

24.06 43.82 57.08 65.68 

Woods4  Good  Forest land 15.25 33.92 49.49 58.44 
Impervious 
and water 
surface 

  Water body, and 
marsh and swamp 

95.37 95.37 95.37 95.37 

Fallow  - Unused land 58.44 72.07 80.94 86.81 
Sources: Modified from (National Resources Conservation Service, 2004; Phetprayoon, 2010). 
1 Hydrologic condition is based on combinations of factors that affect infiltration and runoff, including (a) density 
and canopy of vegetative areas, (b) amount of year-round cover, (c) amount of grass or close-seeded legumes, (d) 
percent of residue cover on the land surface, and (e) degree of surface roughness. 
 Poor: Factors impair infiltration and tend to increase runoff. 
 Good: Factors encourage average and better than average infiltration and tend to decrease runoff. 
2 Sugarcane degrees of cover. 
 Partial cover-Cane in a transition period between limited and completed cover; canopy over half to nearly the 
entire field area. 
3 Pasture, grassland, or range continuous forage for grazing. 
 Fair: 50 to 70%ground cover and not heavily grazed. 
4 Woods 
 Good: Woods are protected from grazing, and litter and brush adequately cover the soil.  
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Table 3.5 Runoff curve number under AMC-II with normal condition. 

Land cover Treatment 
Hydrologic 
condition1 

The appropriate 
assumption to land 

use in the study area 

Curve numbers for hydrologic 
soil group 

A B C D 

Urban districts  85% of the 
average 
impervious 
area  

Urban and built-up 
area 

89 92 94 95 

Row crop Straight row Poor Cassava and other 
field crops 

72 81 88 91 

 Straight row Partial cover2 Sugarcane  49 69 79 84 
Small grain Straight row Poor Paddy field 65 76 84 88 
Pasture, 
grassland, or 
range 
continuous 
forage for 
grazing3 

 Fair Rangeland 49 69 79 84 

Woods-grass 
combination 
(orchard or 
tree farm) 

 Fair  Para rubber, and 
perennial trees and 
orchard 

43 65 76 82 

Woods4  Good  Forest land 30 55 70 77 
Impervious 
and water 
surface 

    Water body, and 
marsh and swamp 

98 98 98 98 

Fallow  - Unused land 77 86 91 94 
Sources: (National Resources Conservation Service, 2004; Phetprayoon, 2010). 
1 Hydrologic condition is based on combinations of factors that affect infiltration and runoff, including (a) density 
and canopy of vegetative areas, (b) amount of year-round cover, (c) amount of grass or close-seeded legumes, (d) 
percent of residue cover on the land surface, and (e) degree of surface roughness. 
 Poor: Factors impair infiltration and tend to increase runoff. 
 Good: Factors encourage average and better than average infiltration and tend to decrease runoff. 
2 Sugarcane degrees of cover. 
 Partial cover-Cane in a transition period between limited and completed cover; canopy over half to nearly the 
entire field area. 
3 Pasture, grassland, or range continuous forage for grazing. 
 Fair: 50 to 70%ground cover and not heavily grazed. 
4 Woods 
 Good: Woods are protected from grazing, and litter and brush adequately cover the soil.  
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Table 3.6 Runoff curve number under AMC-III with wet condition. 

Land cover Treatment 
Hydrologic 
condition1 

The appropriate 
assumption to land 

use in the study area 

Curve numbers for hydrologic 
soil group 

A B C D 

Urban districts   85% of the 
average 
impervious 
area  

Urban and built-up 
area 

94.90 96.36 97.30 97.76 

Row crop Straight row Poor Cassava and other 
field crops 

85.54 90.75 94.40 95.88 

 Straight row Partial cover2 Sugarcane  68.85 83.66 89.64 92.35 
Small grain Straight row Poor Paddy field 81.03 87.93 92.35 94.40 
Pasture, 
grassland, or 
range 
continuous 
forage for 
grazing3 

 Fair Rangeland 68.85 83.66 89.64 92.35 

Woods-grass 
combination 
(orchard or 
tree farm) 

 Fair  Para rubber, and 
perennial trees and 
orchard 

63.44 81.03 87.93 91.29 

Woods4  Good  Forest land 49.64 73.76 84.29 88.51 
Impervious 
and water 
surface 

  Water body, and 
marsh and swamp 

99.12 99.12 99.12 99.12 

Fallow  - Unused land 88.51 93.39 95.88 97.30 
Sources: Modified from (National Resources Conservation Service, 2004; Phetprayoon, 2010). 
1 Hydrologic condition is based on combinations of factors that affect infiltration and runoff, including (a) density 
and canopy of vegetative areas, (b) amount of year-round cover, (c) amount of grass or close-seeded legumes, (d) 
percent of residue cover on the land surface, and (e) degree of surface roughness. 
 Poor: Factors impair infiltration and tend to increase runoff. 
 Good: Factors encourage average and better than average infiltration and tend to decrease runoff. 
2 Sugarcane degrees of cover. 
 Partial cover-Cane in a transition period between limited and completed cover; canopy over half to nearly the 
entire field area. 
3 Pasture, grassland, or range continuous forage for grazing. 
 Fair: 50 to 70%ground cover and not heavily grazed. 
4 Woods 
 Good: Woods are protected from grazing, and litter and brush adequately cover the soil. 
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In practice, three runoff curve numbers of hydrologic soil group of 
each LULC type were separately applied to estimate potential maximum storage under 
three different AMCs using the following equation. 

S=25.4×
1000

CN
-10 (3.3) 

where CN is the runoff curve number of the hydrologic soil group (HSG)-land cover 
complex. 

The calculated potential maximum storage was further applied to 
estimate the surface runoff depth of three different AMCs using Eq. 3.4, as suggested 
by the United States Department of Agriculture (1986); Weng (2010). 

Q=
(P-0.2S)2

(P+0.8S)
 (3.4) 

where Q is surface runoff depth (mm), P is annual rainfall (mm), S is potential maximum 
storage. 

Then, the estimated surface runoff depth of three different AMCs from 
2001 to 2010 was converted into surface runoff volume using Equation 3.5. These 
surface runoff volumes were further used to identify the suitable AMC of the watershed 
for surface runoff estimation according to model performance (Table 3.7) using Nash 
and Sutcliffe’s coefficient of efficiency (NSE), coefficient of determination (R2), and 
percent of bias (PBIAS) (Equations 3.6-3.8). In this study, the observed runoff data 
between 2001 and 2010 from the hydrological station gauge at E.21, E.23, and E.6C of 
the RID were used to calculate an average NSE, R2, and PBIAS for suitable AMC 
identification. The schematic workflow of suitable AMC identification for surface runoff 
estimation using the SCS-CN method is displayed in Figure 3.4. 

Surface runoff volume=
Surface runoff depth

1000
×cell size (3.5) 

NSE=1- [
∑ (Qsimi-Qobsi)

2n
i

∑ (Qobsi-Qavg)2n
i

] (3.6) 

where n is the number of years, Qsimi is the simulated surface runoff, Qobsi is the 
observed surface runoff, and Qavg is the average observed surface runoff over the 
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simulation period. The values for E can be varied from -∞ to 1, with 1 indicating a 
perfect fit. 

R2= {
∑ (Qobsi-Qobsavg)(Qsimi-Qsimavg)

n
i=1

[∑ (Qobsi-Qobsavg)2 ∑ (Qsimi-Qsimavg)2n
i=1

n
i=1 ]

0.5}

2

 (3.7) 

where, Qobsi is observed surface runoff at year i, Qsimi is the simulated surface runoff at 
year i, Qobsavg is the average of observed surface runoff over the calibration or validation 
period, Qobsavg is the average of simulated surface runoff over the validation period, i is 
the year, and n is the total counting of data pairs. 

PBIAS= [
∑ (Yi

obs-Yi
sim)*(100)n

i=1

∑ (Yi
obs)n

i=1
] (3.8) 

where, Yi
obs is observed surface runoff at time step i, and Yi

sim simulated surface runoff 
at time step i. 
 
Table 3.7 Criteria for model performance. 

Statistics 
measurement 

Performance ratings 
Unsatisfactory Satisfactory Good Very good 

NSE < 0.5 0.5-0.65 0.65-0.75 0.75-1 
R2 < 0.5 0.5-0.6 0.6-0.7 0.7-1 

PBAIS > 25 15-25 10-15 < 10 
Source: Me, Abell, and Hamilton (2015). 
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Figure 3.4 Workflow of suitable AMC identification for surface runoff estimation using 
SCS-CN method.  
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3.4.2 Time-series surface runoff estimation between 2011 and 2019 
The runoff curve number of suitable AMC was applied to estimate 

time-series surface runoff between 2011 and 2019. The estimated surface runoff was 
validated based on observed runoff data between 2011 and 2019 from the 
hydrological station gauge of RID at E.21, E.23, and E.6C using NSE, R2, and PBIAS 
according to model performance (See Table 3.7). If three performance ratings are 
satisfied, the derived results are accepted under the validation phase. The schematic 
workflow of time-series surface runoff estimation between 2001 and 2019 is displayed 
in Figure 3.5. Additionally, an overview of the GIS raster-based approach for time-series 
surface runoff estimation is shown in Figure 3.6. It is a GIS raster-based spatial analysis 
applying all the mathematic equations present in the SCS-CN method algorithm. 

The derived results of this component will be further applied to 
calculate the average surface runoff coefficient of each LULC type between 2001 and 
2019 under three different rainfall conditions according to SPI calculation based on 
annual rainfall data between 1987 and 2019. 
 

 



61 

 

 
Figure 3.5 Workflow of time-series surface runoff estimation between 2001 and 2019. 
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Rainfall (P)

Curve Number 

Runoff VolumeRunoff Depth (Q)

AMC-I (Dry)

AMC-II (Normal)

AMC-III (Wet)

The estimated values of all years were 
tabulated in an Excel spreadsheet

 
Figure 3.6 Overview of estimated surface runoff from GIS raster-based SCS-CN method. 
 

3.5 Component 4: Optimization of LULC allocation for flood 
mitigation 

The optimization of LULC allocation for flood mitigation based on the surface 
runoff coefficient value of LULC types under three different rainfall conditions (drought, 
normal, and wet years) are implemented using goal programming with the “What’s 
Best!” extension under MS-Excel software. Under this component, two significant tasks 
include (1) SPI calculation for rainfall condition identification and (2) optimization of 
LULC allocation to minimize surface runoff for flood mitigation. 

3.5.1 SPI calculation for rainfall condition identification 
Annual rainfall data between 1987 and 2019 were used to calculate 

the 12-month SPI value and classified according to the SPI drought classification of Liu 
et al. (2014) for rainfall conditions identification (See Table 2.3). The derived cumulative 
probability of SPI values was then reclassified into three rainfall conditions as follows: 

1. If any year has an SPI value less than or equal to -0.50, then it is 
categorized as a drought year condition,  

2. If any year has an SPI value between -0.49 and 0.49, it is categorized 
as a normal year condition. and 
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3. If any year has an SPI value more than or equal to 0.50, it is 
categorized as a wet year condition. 

Then, the average surface runoff coefficient for each LULC type of 
each rainfall condition was extracted from the time-series surface runoff data and LULC 
data using zonal statistical analysis.  

3.5.2 Optimization of LULC allocation to minimize surface runoff for 
flood mitigation 

Optimization of LULC allocation for flood mitigation was implemented 
using goal programming. The objective of the analysis was the minimization of surface 
runoff under certain constraints of three different rainfall conditions (drought, normal 
and wet years). In practice, the constraints set for optimizing LULC allocation in 2029, 
2039, and 2049 were assigned based on the historical LULC development between 
2010 and 2019 using the Markov Chain model. The changing area of each LULC type 
was considered according to the derived transitional area from the Markov Chain 
model. Then, the derived average runoff coefficient and constraints of the objective 
function were applied to optimize LULC allocation for flood mitigation under drought, 
normal, and wet year conditions using goal programming with “What’s Best!” as an 
extension program under the MS-Excel environment. Moreover, the average surface 
runoff between 2001 and 2019 under drought, normal, and wet year conditions were 
used to set up the goal to minimize runoff based on the LULC type in 2019 under goal 
programming. 

The goal programming model working as surface runoff minimization 
function can be expressed as the following equations: 

Minimize surface runoff: 

Min (Z) = ∑ CiXi

n

i=1

 (3.9) 

Subject to constraints: 

∑ Xi

n

i=1

= A (3.10) 
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∑ Xi

n

i=1

≥ A (3.11) 

∑ Xi

n

i=1

≤ A (3.12) 

Xi ≥ 0 (3.13) 

where Z is the total annual surface runoff of the study area (m3/yr), Ci is the average 
surface runoff coefficient in each land use type (m3/km2/yr), Xi is the area of land use 
class i (km2), n is the number of land use classes, and A is the total area of land use 
classes (km2).  

The schematic workflow of optimization of LULC allocation for flood 
mitigation under three different rainfall conditions is displayed in Figure 3.7. The 
derived results will be further applied to map optimizing LULC allocation for flood 
mitigation under three different rainfall conditions in the future (2029, 2039, and 2049). 

 

 
Figure 3.7 Workflow of optimization of LULC allocation for flood mitigation.  
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3.6 Component 5: Mapping of LULC allocation for flood mitigation 
Under this component, an optimizing LULC allocation for flood mitigation in 

2029, 2039, 2049 under three different rainfall conditions was mapped using the CLUE-
S model. In practice, input data, which includes LULC data in 2019, an optimum local 
parameter (driving factors for each LULC type location preference, elasticity value, 
LULC conversion matrix), and optimizing LULC allocation data of three different rainfall 
conditions, as the land demand, were applied to map LULC maps using CLUE-S model. 

The schematic workflow of mapping LULC allocation for flood mitigation under 
three different rainfall conditions is presented in Figure 3.8. The derived optimum LULC 
data for flood mitigation will be further applied to evaluate economic and ecosystem 
service value change in the next component. 

 

 
Figure 3.8 Workflow of mapping of LULC allocation for flood mitigation. 
 

3.7 Component 6: Economic and ecosystem service values 
evaluation and change 

Economic and ecosystem service values evaluation and change were 
separately evaluated using the present value (PV) model and simple benefit transfer 
method based on LULC data in 2019 and optimizing LULC allocation data for flood 
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mitigation under three different rainfall conditions in terms of gain and loss for project 
implementation. 

3.7.1 Economic values evaluation and change 
For economic value evaluation, LULC data in 2019 and optimizing 

LULC allocation data in a specific year (2029, 2039, or 2049) for flood mitigation under 
three different rainfall conditions were first calculated economic values using the PV 
model (Eq. 3.14) as suggested by Rossiter (1994).  

 PV = FV∙ ⌈
100

100+IR
⌉

Y
 (3.14) 

where PV is the present value, FV is the future value, IR is the interest rate in percent, 
and Y is the number of years from the present, counting from zero. 

Then the economic value change in terms of gain and loss for flood 
mitigation between the current LULC data in 2019 and optimized LULC data in a 
specific year under three different rainfall conditions were compared using image 
algebra change detection algorithm. 

3.7.2 Ecosystem service value evaluation and change 
In brief, ecosystem services are categorized into four groups: regulating, 

supporting, provisioning, and cultural service (Millennium Ecosystem Assessment, 
2005), as a summary in Table 3.8. Ecosystem services represent a dynamic field in 
current scientific research, linking ecological, economic, and social aspects, demanding 
practical applications and methodologies at different spatial scales, and maintaining 
environmental management and decision making processes (Costanza et al., 1997; 
Millennium Ecosystem Assessment, 2005; TEEB, 2010). 

For ecosystem service value evaluation, the ecosystem service value 
(ESV) were first calculated based on LULC in 2019 and optimizing LULC allocation data 
in a specific year (2029, 2039, or 2049) for flood mitigation under drought, normal, and 
wet year conditions were calculated using a simple benefit transfer method (Costanza 
et al., 1997) (Eq. 3.15). 

 ESV= ∑ (Ak ×VCk) (3.15) 
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where ESV denotes the total value of ecosystem service while Ak and VCk represent 
the area and value coefficient for proxy LULC type ‘k’, respectively. The coefficient 
value for different LULC types for ESV calculation is shown in Table 3.9.  

Then, ecosystem service value change in terms of gain and loss for 
flood mitigation between the current LULC data in 2019 and optimize LULC data in a 
specific year under three different rainfall conditions were compared using an image 
algebra change detection algorithm. 

Finally, economic and ecosystem service value changes of optimal 
LULC allocation in terms of gain and loss for flood mitigation by each rainfall condition 
(drought, normal, and wet year) were reported. 

The schematic workflow of economic and ecosystem service values 
evaluation and change is presented in Figure 3.9. The derived information on economic 
and ecosystem service value evaluation and change in terms of gain and loss can be 
informed to policy-makers for flood mitigation at Mueang Chaiyaphum district, 
Chaiyaphum province in the future. 

 

 
Figure 3.9 Workflow of economic and ecosystem service value evaluation and change. 
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Table 3.8 Classification of ecosystem services. 
Ecosystem services 

Supporting services 

• Nutrient cycling 

• Soil formation 

• Primary production 

Provisioning services 

• Food (crops, livestock, wild foods, etc.) 

• Fiber (timber, cotton, wood fuel) 

• Genetic resources 

• Biochemical, natural medicines, pharmaceutical 

• Freshwater 
Regulating services 

• Air quality regulation 

• Climate regulation 

• Water regulation 

• Erosion regulation 

• Natural hazard regulation 

• Pollination 

• Disease regulation 

• Pest regulation 
Cultural services 

• Aesthetic values 

• Spiritual and religious values 

• Recreation and ecotourism 
Source: Millennium Ecosystem Assessment (2005). 
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Table 3.9 Coefficient value for different LULC types for ESV estimation. 

Ecosystem services 
category 

Ecosystem services function 
LULC types 

Urban and 
built-up area 

Paddy 
field 

Field crop 
Forest 
land 

Water 
body 

Rangeland  
Marsh and 

swamp 
Unused 

land 
1. Regulating services 1.1 Gas regulation 0 74.7 74.7 299.4 0 104 268.9 4.2 

1.2 Climate regulation 0 133.0 133.0 282.1 68.7 108 2,554.7 9.0 
1.3 Waste treatment 0 245.0 245.0 119.2 2,719.0 91.5 2,716.0 18.0 

2. Supporting services 2.1 Soil formation  0 218.1 218.1 278.6 1.5 155 255.5 11.8 
2.2 Biodiversity protection 0 106.1 106.1 312.6 372 130 373.5 27.7 

3. Provision services 3.1 Water supply 0 89.6 89.6 283.5 3,047.7 105 2,315.6 4.8 
3.2 Food production 0 149.4 149.4 22.9 14.9 29.8 44.8 1.4 
3.3 Raw materials 0 14.9 14.9 206.5 1.5 25 10.5 2.8 

4. Cultural services 4.1 Recreation and culture 12.7 1.5 1.5 144.2 648.4 60.3 829.2 16.6 
Total 12.7 1,032.3 1,032.3 1,949.0 6,873.7 808.6 9,368.7 96.3 

Source: Modified from Mamat, Halik, and Rouzi (2018). 

 



 

 

 
CHAPTER IV 

LAND USE AND LAND COVER CLASSIFICATION AND CHANGE 
DETECTION 

 
This chapter presents the first objective results focusing on the classification of 

LULC in 2001, 2010, and 2019 based on Landsat 5-TM, Landsat 5-TM, and Landsat 8-
OLI with supplementary data, including NDVI, MNDWI, NDBI, and DEM using the RF 
classifier. Spatial distribution of Landsat and supplemental data for LULC classification 
using the RF classifier are displayed in Figures 4.1 to 4.6. In the study, the LULC 
classification system, which was modified from the standard land use classification 
system of LDD, consists of (1) urban and built-up area, (2) paddy field, (3) sugarcane, 
(4) cassava, (5) other field crops, (6) para rubber, (7) perennial trees and orchard, (8) 
forest land, (9) water body, (10) rangeland, (11) marsh and swamp, and (12) unused 
land (See detail in Table 3.2 of Chapter III). Furthermore, the change detection between 
2001 and 2019 using a post-classification comparison change detection algorithm is 
also presented. The significant results in this chapter consist of (1) LULC classification 
in 2001, (2) LULC classification in 2010, (3) LULC classification in 2019, (4) LULC change 
between 2001 and 2010, and (5) LULC change between 2010 and 2019 are described 
and discussed in details. 
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Figure 4.1 False-color composite image of Landsat 5-TM in 2001 (RGB: 453). 

  

(a) NDVI (b) MNDWI 

  

(c) NDBI (d) Elevation 
Figure 4.2 Supplementary data for LULC classification in 2001 (a) NDVI, (b) MNDWI,  
(c) NDBI, and (d) elevation. 
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Figure 4.3 False-color composite image of Landsat 5-TM in 2010 (RGB: 453). 

  
(a) NDVI (b) MNDWI 

  
(c) NDBI (d) Elevation 

Figure 4.4 Supplementary data for LULC classification in 2010 (a) NDVI, (b) MNDWI,  
(c) NDBI, and (d) elevation. 
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Figure 4.5 False-color composite image of Landsat 8-OLI in 2019 (RGB: 453). 

  
(a) NDVI (b) MNDWI 

  
(c) NDBI (d) Elevation 

Figure 4.6 Supplementary data for LULC classification in 2019 (a) NDVI, (b) MNDWI,  
(c) NDBI, and (d) elevation. 
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4.1 LULC classification in 2001 
The spatial distribution of training points identified from the input dataset for 

LULC classification in 2001 by the RF classifier is displayed in Figure 4.7. Meanwhile, 
LULC classification in 2001 as a historical record in this study is spatially shown in Figure 
4.8. In the meantime, the area and percentage of LULC data in 2001 are summarized 
in Table 4.1. 

The results reveal that the top three most dominant LULC types in 2001 are 
paddy field, forest land, and cassava, covering 2,344.39 km2 (61.79%), 632.00 km2 
(16.66%), and 532.95 km2 (14.05%), respectively. Additionally, it can be observed that 
most of the paddy fields are situated on the central plain of the study. Simultaneously, 
forest lands are primarily located in the mountainous in the northern part of the study 
area. In the meantime, cassava fields are situated in undulated areas in the southern 
part of the study area. On the contrary, the top three least dominant LULC types in 
2001 are other field crops, marsh and swamp, and para rubber, which are randomly 
situated in the study area, covering an area of 2.09 km2 (0.06%), 11.64 km2 (0.30%), 
and 16.56 km2 (0.44%), respectively.  
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Figure 4.7 Spatial distribution of training points for LULC classification in 2001.  
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Figure 4.8 Spatial distribution of LULC classification in 2001.  
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Table 4.1 Area and percentage of LULC data in 2001. 

No. LULC type Area in km2 Area percentage 
1 Urban and built-up area 46.17 1.22 
2 Paddy field 2,344.39 61.79 
3 Sugarcane 61.25 1.61 
4 Cassava 532.95 14.05 
5 Other field crops 2.09 0.06 
6 Para rubber 16.56 0.44 
7 Perennial trees and orchard 55.76 1.47 
8 Forest land 632.00 16.66 
9 Water body 36.81 0.97 
10 Rangeland 26.03 0.69 
11 Marsh and swamp 11.64 0.31 
12 Unused land 28.57 0.75  

Total 3,794.22 100.00 
 

The classified LULC map in 2001 was compared with ground reference 
information from color orthophotograph in 2000-2001 for a thematic accuracy 
assessment using overall accuracy (OA), producer’s accuracy (PA), user’s accuracy (UA), 
and the Kappa hat coefficient. For the LULC map in 2001, the required 800 stratified 
random sampling points based on multinomial distribution theory with the desired 
confidence level of 95 percent and a precision of 5 percent were used for a thematic 
accuracy assessment (Figure 4.9). The error matrix and accuracy assessment of the 
LULC map in 2001 between the classified LULC in 2001 and the ground reference 
information from color orthophotograph in 2000-2001 is shown in Table 4.2. 

For thematic accuracy assessment, overall accuracy is 89.88%, and the Kappa 
hat coefficient is 84.88%. Meanwhile, the producer’s accuracy (PA), which represents 
omission error, varies between 73.91% for sugarcane and 95.72% for the paddy field. 
The user’s accuracy (UA), which describes commission error, varies between 71.43% 
for rangeland and 100.00% for the water body. 
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Figure 4.9 Spatial distribution of sampling points overlaid on aerial photograph for 
accuracy assessment of thematic LULC map in 2001.  
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As a result, the overall accuracy of more than 85% of the LULC map can provide 
acceptable results, as suggested by Anderson, Hardy, Roach, and Witmer (1976). 
Likewise, the Kappa hat coefficient of the agreement is more than 80% representing 
strong agreement or accuracy between the classified map and the ground reference 
information (Fitzpatrick-Lins, 1981). Besides, the derived overall accuracy and Kappa 
hat coefficient in the current study is similar to the previous research of Jhonnerie, 
Siregar, Nababan, Prasetyo, and Wouthuyzen (2015), who applied Landsat 5-TM to 
classify land cover by the RF classifier in Kembung River, Bengkalis Island, Indonesia, 
their study provides an overall accuracy of 81.10% and 76.00% for the Kappa hat 
coefficient. Furthermore, Srichaichana, Trisurat, and Ongsomwang (2019) applied the 
RF classifier to classify the LULC map from Landsat 5-TM at Klong U-Tapao watershed, 
Songkhla province, Thailand, and their study shows an overall accuracy of 91.36% and 
Kappa hat coefficient of 84.00%. Similarly, Na, Zhang, Li, Yu, and Liu (2010) Classified 
LULC mapping using the RF classifier from Landsat 5-TM at Sanjiang Plain, China. Their 
study provides an overall accuracy of 91.30% and the Kappa hat coefficient of 89.43%. 
 
Table 4.2 Error matrix and accuracy assessment of LULC in 2001. 

 

LULC types 
Ground reference data from color orthophotograph in 2000-2001 

 
UR PA SU CA FC PR PO FO WA RA MA UL Total 

Cl
as

sif
ie

d 
LU

LC
 d

at
a 

in
 2

00
1 

Urban and built-up area (UR) 16 2           18 

Paddy field (PA) 3 403 1 20     2  3  432 

Sugarcane (SU)    1 17 2 1        21 

Cassava (CA)  12 4 87 1  1   1   106 

Other field crops (FC)   1 1 8        10 

Para rubber (PR)      9  2  1   12 

Perennial trees and orchard (PO)    1   16 3     20 

Forest land (FO)    1  1 4 115    3 124 

Waterbody (WA)         16    16 

Rangeland (RA)  1  2      10  1 14 

Marsh and swamp (MA)  1       1  10  12 

 Unused land (UL)  1      2    12 15 

 Total 19 421 23 114 10 10 21 122 19 12 13 16 800 

 Producer’s accuracy (%) 84.21 95.72 73.91 76.32 80.00 90.00 76.19 94.26 84.21 83.33 76.92 75.00  

 User’s accuracy (%) 88.89 93.29 80.95 82.08 80.00 75.00 80.00 92.74 100.00 71.43 83.33 80.00  

 Overall accuracy (%) 89.88             

 Kappa hat coefficient (%) 84.88             
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Also, it can be observed that the significant omission error of sugarcane comes 
from cassava because the brightness value of sugarcane in the tillering phase is similar 
to cassava in the canopy development phase (Figure 4.10). In the meantime, most of 
the significant commissions of rangeland come from the cassava because the cassava 
fields without weeding are frequently mixed with grass, giving them a similar 
appearance to the rangeland (Figure 4.11). 

  
Sugarcane in the tillering phase Cassava in canopy development phase 

Figure 4.10 Comparison of growth stage between sugarcane and cassava from a field 
survey in 2020. 
 

  
Cassava fields without weeding 

Figure 4.11 Cassava fields and mixed-grass from a field survey in 2020. 
 

4.2 LULC classification in 2010 
The spatial distribution of training points identified from the input dataset for 

LULC classification in 2010 by the RF classifier is presented in Figure 4.12. Meanwhile, 
the result of the LULC classification in 2010, as a historical record in this study, is 
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spatially shown in Figure 4.13. In the meantime, the area and percentage of LULC data 
in 2001 are summarized in Table 4.3. 

As a result, it was found that the top three most dominant LULC types in 2010 
are paddy field, cassava, and forest land, covering 2,070.71 km2 (54.58%), 629.33 km2 
(16.59%), and 604.70 km2 (15.94%), respectively. Conversely, the top three least 
dominant LULC types in 2001 are other field crops, marsh and swamp, and para rubber, 
covering 5.19 km2 (0.14%), 30.05 km2 (0.79%), and 33.40 km2 (0.88%), respectively. 

 

 

Figure 4.12 Spatial distribution of training points for LULC classification in 2010. 
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Figure 4.13 Spatial distribution of LULC classification in 2010. 
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Table 4.3 Area and percentage of LULC data in 2010. 
No. LULC type Area in km2 Area percentage 
1 Urban and built-up area 53.21 1.40 
2 Paddy field 2,070.71 54.58 
3 Sugarcane 153.52 4.05 
4 Cassava 629.33 16.59 
5 Other field crops 5.19 0.14 
6 Para rubber 30.05 0.79 
7 Perennial trees and orchard 50.21 1.32 
8 Forest land 604.70 15.94 
9 Waterbody 57.46 1.51 
10 Rangeland 72.11 1.90 
11 Marsh and swamp 33.40 0.88 
12 Unused land 34.33 0.90  

Total 3,794.22 100.00 
 

In addition, the classified LULC map in 2010 was compared with ground 
reference data from very high spatial resolution imageries from Google Earth in 2010 
for thematic accuracy assessment using OA, PA, UA, and Kappa hat coefficient. For the 
LULC map in 2010, the required 840 stratified random sampling points based on 
multinomial distribution theory with the desired confidence level of 95 percent and a 
precision of 5 percent were used for accuracy assessment (Figure 4.14). The error matrix 
and accuracy assessment between the classified LULC in 2010 and the ground 
reference information from very high spatial resolution imageries from Google Earth in 
2010 is shown in Table 4.4. 

The overall accuracy is 90.71%, and the Kappa hat coefficient is 87.03%. 
Meanwhile, the PA varies from 65.22% for perennial trees and orchards to 100.00% for 
water bodies, while the UA varies from 78.95% for perennial trees and orchards to 
95.00% for water bodies. 
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Figure 4.14 Spatial distribution of sampling points overlaid on a very high spatial 
resolution from Google Earth for accuracy assessment of thematic LULC map in 2010. 
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As a result, the overall accuracy of more than 85% of the LULC map can provide 
acceptable results, as suggested by Anderson et al. (1976). Likewise, the Kappa hat 
coefficient of more than 80% represents strong agreement or accuracy between the 
classified map and the ground reference information (Fitzpatrick-Lins, 1981). Besides, 
the derived overall accuracy and Kappa hat coefficient in the current study are similar 
to the previous research of Rodriguez-Galiano, Ghimire, Rogan, Chica-Olmo, and Rigol-
Sanchez (2012). They applied the RF classifier to classify land cover from Landsat  
5-TM at Granada province, South of Spain. Their study shows overall accuracy of 
92.00% and a Kappa hat coefficient of 92.00%. Similarly, Kulkarni and Lowe (2016) 
applied the RF to classify LULC with Landsat 5-TM at the Yellowstone and Mississippi. 
Their study provides an overall accuracy of 96.00% and a Kappa hat coefficient of 
94.00%. Likewise, Gartzia, Alados, Pe´rez-Cabello, and Bueno (2013) applied Landsat 5-
TM to classify vegetation categories using the RF at Ordesa and Monte Perdido National 
Park, Spain. Their study shows the Kappa hat coefficient of 94.00%.  

 
Table 4.4 Error matrix and accuracy assessment of LULC in 2010. 

 

LULC types 
Ground reference data from Google Earth in 2010 

 
UR PA SU CA FC PR PO FO WA RA MA UL Total 

Cl
as

sif
ie

d 
LU

LC
 d

at
a 

in
 2

01
0 

Urban and built-up area (UR) 17 2           19 

Paddy field (PA) 5 386 6 4   1   3 3  408 

Sugarcane (SU)    1 36 1 1        39 

Cassava (CA) 1 13 3 108 2  3      130 

Other field crops (FC)   1 1 8        10 

Para rubber (PR)      14  1     15 

Perennial trees and orchard (PO)    1   15 3     19 

Forest land (FO)      2 4 114  2  4 126 

Waterbody (WA)         19  1  20 

Rangeland (RA)  2 2       19   23 

Marsh and swamp (MA)  3         12  15 

 Unused land (UL)   1 1        14 16 

 Total 23 407 49 116 11 16 23 118 19 24 16 18 840 

 Producer’s accuracy (%) 73.91 94.84 73.47 93.10 72.73 87.50 65.22 96.61 100.00 79.17 75.00 77.78  

 User’s accuracy (%) 89.47 94.61 92.31 83.08 80.00 93.33 78.95 90.48 95.00 82.61 80.00 87.50  

 Overall accuracy (%) 90.71             

 Kappa hat coefficient (%) 87.03             
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Besides, it can be observed that the significant omission and commission errors 
of perennial trees and orchard comes from forest land because the appearance and 
brightness value of perennial trees and orchards are similar to the dominant 
dipterocarps forest type in forest land (Figure 4.15). 

 

 
Figure 4.15 Perennial trees and orchard nearby dipterocarps forest type in forest land. 

4.3 LULC classification in 2019 
The spatial distribution of training points identified from the input dataset for 

LULC classification in 2019 by the RF classifier is displayed in Figure 4.16. Additionally, 
characteristic of training points, including LULC type, composite Landsat image, 
spectral plot, and ground photographs, is presented in Table 4.5. In practice, average 
spectral reflectance, spectral indices, and elevation values from each LULC type 
training point were plotted against the number of bands to characterize its signature 
as a spectral plot. As a result, it can be observed that spectral plot patterns (with 
spectral reflectance from Bands 2 to 7) from other field crops (pineapple), para rubber, 
and forest land are similar, but the reflectance values are different. In the meantime, 
unique patterns of the spectral plot are exhibited from other LULC types. 

Meanwhile, LULC classification in 2019, as a recent record in this study, is 
spatially displayed in Figure 4.17. In the meantime, the area and percentage of LULC 
data in 2019 are summarized in Table 4.6. 
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As a result, the top three most dominant LULC types in 2019 are paddy field, 
cassava, and forest land, covering 2,012.16 km2 (53.03%), 489.91 km2 (12.91%), and 
481.30 km2 (12.68%), respectively. On the other hand, the top three least dominant 
LULC types in 2019 are other field crops, marsh and swamp, and water bodies, covering 
an area of 6.19 km2 (0.16%), 27.73 km2 (0.73%), and 53.30 km2 (1.40%), respectively. 

 

 
Figure 4.16 Spatial distribution of training points for LULC classification in 2019.  
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Table 4.5 Characteristic of training points for LULC classification with the RF classifier. 

LULC type 
Composite Landsat 
image (RGB: 453) 

Spectral plot Ground photographs 

1. Urban and 
built-up area 

 
  

2. Paddy field 
 

  

3. Sugarcane 
 

  

4. Cassava 
 

  

5. Other field 
crops 

 
  

6. Para rubber 
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Table 4.5 (Continued). 

LULC type 
Composite Landsat 
image (RGB: 453) 

Spectral plot Ground photographs 

7. Perennial 
trees and 
orchard  

  

8. Forest land 
 

  

9. Water body 
 

  

10. Rangeland 
 

  

11. Marsh and 
swamp 

 
  

12. Unused 
land 
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Figure 4.17 Spatial distribution of LULC classification in 2019.  

 



91 

 

Table 4.6 Area and percentage of LULC data in 2019. 
No. LULC type Area in km2 Area percentage 
1 Urban and built-up area 65.84 1.74 
2 Paddy field 2,012.16 53.03 
3 Sugarcane 306.85 8.09 
4 Cassava 489.91 12.91 
5 Other field crops 6.19 0.16 
6 Para rubber 97.03 2.56 
7 Perennial trees and orchard 88.95 2.34 
8 Forest land 481.30 12.68 
9 Water body 53.30 1.40 
10 Rangeland 71.65 1.89 
11 Marsh and swamp 27.73 0.73 
12 Unused land 93.32 2.46  

Total 3794.22 100.00 
 

Furthermore, the classified LULC map in 2019 was compared with ground 
reference data from ground information by field survey in 2020 for a thematic accuracy 
assessment using overall accuracy and kappa hat coefficient of agreement. For the 
LULC map in 2019, the required 846 stratified random sampling points based on 
multinomial distribution theory with the desired confidence level of 95 percent and a 
precision of 5 percent were used for accuracy assessment (Figure 4.18). The error matrix 
and accuracy assessment between the classified LULC in 2019 and the ground 
reference information from ground information by field survey in 2020 is shown in 
Table 4.7. 

As a result, the overall accuracy is 91.37%, and the Kappa hat coefficient is 
88.26%. In the meantime, the PA varies between 71.43% for rangeland and 100.00% 
for a water body. Meanwhile, the UA varies between 71.43% for marsh and swamp 
and 96.43% for para rubber.  
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Figure 4.18 Spatial distribution of sampling points overlaid on Google satellite for 
accuracy assessment of thematic LULC map in 2019.  
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As a result, the overall accuracy of more than 85% of the LULC map can 
provide acceptable results, as suggested by Anderson et al. (1976). Likewise, the Kappa 
hat coefficient of more than 80% represents strong agreement or accuracy between 
the classified map and the ground reference information(Fitzpatrick-Lins, 1981). 
Besides, the derived overall accuracy and Kappa hat coefficient in the current study 
are similar to the previous research of Eisavi, Homayouni, Yazdi, and Alimohammadi 
(2015), who applied the RF to classify land cover data from Landsat 8-OLI at Naghadeh 
city, West Azerbaijan province, Iran. Their study provides an overall accuracy of 91.82% 
and 90.00% for the Kappa hat coefficient. Likewise, Pareeth, Karimi, Shafiei, and De 
Fraiture (2019) applied the RF classifier to extract land use types with Landsat 8-OLI 
data at the Mashhad basin, Iran. Their study shows an overall accuracy of 87.20% and 
Kappa hat coefficient of 85.00%. Similarly, Srichaichana et al. (2019) applied the RF 
classifier to classify the LULC map from Landsat 8-OLI at Klong U-Tapao watershed, 
Songkhla province, Thailand, and their study provide an overall accuracy of 91.36% 
and Kappa hat coefficient of 84%. Hence, the classified LULC in 2010 in this current 
study can be accepted and applied for LULC change detection and prediction in this 
study. 

Besides, it can be observed that the significant commission error of marsh and 
swamp comes from paddy fields because the appearance of marsh and swamp in the 
dry season is similar to abandoned paddy fields (Figure 4.19). Meanwhile, rangeland is 
a significant omission error mostly from forest land because the brightness value of 
the rangeland with bush and shrub is similar to the dominant dry dipterocarps forest 
of forest land (Figure 4.20). 
  

 



94 

 

Table 4.7 Error matrix and accuracy assessment of LULC in 2019. 
 

LULC types 
Ground reference data from a field survey in 2020 

 
UR PA SU CA FC PR PO FO WA RA MA UL Total 

Cl
as

sif
ie

d 
LU

LC
 d

at
a 

in
 2

01
9 

Urban and built-up area (UR) 19 2          1 22 

Paddy field (PA) 5 383 5 4       2 2 401 

Sugarcane (SU)    3 65  1        69 

Cassava (CA) 1 6 3 89  3 1   1   104 

Other field crops (FC)   2  8        10 

Para rubber (PR)      27 1      28 

Perennial trees and orchard (PO)      2 19 4  1   26 

Forest land (FO)      2 3 93  4  1 103 

Waterbody (WA)         18  1  19 

Rangeland (RA)  2  1      20   23 

Marsh and swamp (MA)  4         10  14 

 Unused land (UL)    1  1  1  2  22 27 

 Total 25 400 75 95 9 35 24 98 18 28 13 26 846 

 Producer’s accuracy (%) 76.00 95.75 86.67 93.68 88.89 77.14 79.17 94.90 100.00 71.43 76.92 84.62  

 User’s accuracy (%) 86.36 95.51 94.20 85.58 80.00 96.43 73.08 90.29 94.74 86.96 71.43 81.48  

 Overall accuracy (%) 91.37             

 Kappa hat coefficient (%) 88.26             

 

  
Abandoned paddy field 

Figure 4.19 Field photograph of abandoned paddy field. 
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Rangeland with bush and shrub 

Figure 4.20 Field photograph of rangeland with bush and shrub. 
 

In summary, it can be here concluded that the RF classifier under the EnMap 
BOX software can be used as an efficient tool to classify the LULC from remotely 
sensed data since it can provide high classification accuracy. In this study, overall 
accuracy varies from 89.88% to 91.37%, and the Kappa hat coefficient ranges from 
84.88% to 88.26%. However, selecting appropriate training points of each LULC type, 
particularly the number of points and their locations, requires much more time to 
classify the final LULC maps in three different years. A phenological cycle of agricultural 
LULC type and natural vegetation plays a significant role in training point selection 
because the appearance of some LULC types is similar when they display on the 
screen with specific color composition (Band 4, 5, and 3: RGB), for example, rangeland 
and unused land (abandoned land). 

 
4.4 LULC change between 2001 and 2010 

A simple comparison of LULC change between 2001 and 2010, with the annual 
change rate, is presented in Table 4.8 and Figure 4.21.  
 
Table 4.8 Comparison of LULC change between 2001 and 2010. 

LULC  
LULC type (Area in km2) 

UR PA SU CA PC PR PO FO WA RA MA UL 

In 2001 46.17 2344.39 61.25 532.95 2.09 16.56 55.76 632.00 36.81 26.03 11.64 28.57 
In 2010 53.21 2070.71 153.52 629.33 5.19 30.05 50.21 604.70 57.46 72.11 33.40 34.33 

Change area 7.04 -273.68 92.27 96.38 3.11 13.49 -5.54 -27.30 20.65 46.08 21.76 5.76 

Annual change rate 0.78 -30.41 10.25 10.71 0.35 1.50 -0.62 -3.03 2.29 5.12 2.42 0.64 

Percentage of change 0.19 -7.21 2.43 2.54 0.08 0.36 -0.15 -0.72 0.54 1.21 0.57 0.15 
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Figure 4.21 Comparison of the annual change rate of LULC type between 2001 and 
2010. 
 

As a result, the significant increase of LULC types between 2001 and 2010 are 
cassava, sugarcane, and rangeland, with an annual change rate of 10.71, 10.25, and 
5.12 km2 per year, respectively. In the meantime, the minor increase of LULC types in 
this period are marsh and swamp, waterbody, para rubber, urban and built-up area, 
unused land, and other field crops, with an annual change rate of 2.42, 2.29, 1.50, 0.78, 
and 0.35 km2 per year, respectively. In contrast, the significant decrease of LULC type 
between 2001 and 2010 is paddy field, with an annual change rate of 30.41 km2 per 
year, while the minor decrease of LULC types in this period are forest land and 
perennial trees and orchard, with an annual change rate of 3.03 and 0.62 km2 per year, 
respectively.  

Meanwhile, a transitional change matrix of LULC between 2001 and 2010, which 
provides “from-to” change class information, is summarized in Table 4.9, and the LULC 
change map in this period is displayed in Figure 4.22. 

-35.00
-30.00
-25.00
-20.00
-15.00
-10.00
-5.00
0.00
5.00

10.00
15.00

UR PA SU CA FC PR PO FO WA RA MA UL

Ar
ea

 in
 k

m
2

LULC type

Annual change rate between 2001 and 2010

 



 

 

97 

Table 4.9 Transitional matrix of LULC change between 2001 and 2010. 
 

LULC types 
LULC in 2010 (km2)  

UR PA SU CA FC PR PO FO WA RA MA UL Total 

LU
LC

 in
 2

00
1 

(k
m

2 ) 

Urban and built-up area (UR) 46.17 - - - - - - - - - - - 46.17 
Paddy field (PA) 6.54 2,007.89 69.31 169.46 - - - - 16.82 48.79 25.19 0.40 2,344.39 
Sugarcane (SU)   0.01 4.65 31.19 24.57 - 0.13 - - 0.29 0.09 0.09 0.23 61.25 
Cassava (CA) 0.05 39.56 51.34 415.26 3.01 12.12 - - 1.84 5.17 - 4.61 532.95 
Other field crops (FC) - - - - 2.09 - - - - - - - 2.09 
Para rubber (PR) - - - 0.07 - 16.48 - - - - - - 16.56 
Perennial trees and orchard (PO) 0.03 1.23 0.41 3.57 - - 49.94 - 0.48 0.09 - - 55.76 
Forest land (FO) 0.34 15.83 0.29 6.23 0.10 1.13 - 604.70 0.01 1.07 - 2.30 632.00 
Waterbody (WA) - 0.14 0.10 0.45 - 0.19 - - 35.91 - - 0.01 36.81 
Rangeland (RA) 0.05 0.04 0.56 8.33 - - 0.27 - 0.01 16.77 - 0.02 26.03 
Marsh and swamp (MA) 0.01 0.54 0.28 0.57 - - - - 2.10 0.02 8.12 - 11.64 

 Unused land (UL) 0.02 0.82 0.05 0.81 - - - - 0.01 0.10 - 26.77 28.57 
 Total 53.21 2,070.70 153.52 629.33 5.19 30.05 50.21 604.70 57.46 72.11 33.40 34.33 3,794.22 
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Figure 4.22 Spatial distribution of LULC change between 2001 and 2010. 
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As a result, urban and built-up areas in 2001 were not converted into other 
LULC classes in 2010, and the increased area of urban and built-up areas in 2010 
mainly comes from the paddy field, with an area of 6.54 km2 in 2001. Likewise, other 
field crops in 2001 were not converted into other LULC classes in 2010. 

For the significant increasing area of LULC types between 2001 and 2010, areas 
of cassava, which increased by about 96.38 km2 in 2010, mainly came from the paddy 
field (169.46 km2) sugarcane (24.57 km2) in 2001. Meanwhile, areas of sugarcane, which 
increased by about 92.27 km2 in 2010, mainly came from paddy field (69.31 km2) and 
cassava (51.34 km2) in 2001. These phenomena indicate changeable agriculture 
practices among economic crops by farmers. Generally, the market price of economic 
crops dictates agricultural practice to farmers. Table 4.10 shows the market price of 
economic crops, including paddy field, cassava, sugarcane, and para rubber in Thailand 
between 2001 and 2019, while Figure 4.23 compares the fluctuation of the market 
price of three main dominant crops: paddy field, cassava, and sugarcane in the study 
period. As a result, it can be observed that the market price of sugarcane is relatively 
stable while the market price of the paddy field is unstable. Generally, the agriculture 
practice by the farmers is considered the market prices in previous years (2-3 years).  

In the meantime, areas of rangeland, which increased by about 46.08 km2 in 
2010, mainly came from paddy fields (48.79 km2) in 2001. This finding indicates the 
existing abandoned paddy field in rangeland, which is defined as an area covered by 
grass, shrubs, uncultivated land, lands with herbaceous types of cover. This 
phenomenon is unpredictable, and it depends on economic and weather conditions. 

Details for the irrelevant increasing area of LULC types between 2001 and 2010 
are presented in Table 4.9. The spatial distribution of significant increasing cassava, 
sugarcane, and rangeland areas between 2001 and 2010 is displayed in Figures 4.24 to 
4.26, respectively. 
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Table 4.10 Market price of economic crops in Thailand between 2001 and 2019. 

Year 
Paddy field 1 

(Baht/ton) 
Cassava 1 

(Baht/ton) 
Sugarcane 2 
(Baht/ton) 

Para rubber 3 
(Baht/kg) 

2001 6,116.00 690.00 513.00 20.52 
2002 5,139.00 1,050.00 434.00 227.69 
2003 6,562.00 930.00 469.00 37.76 
2004 8,437.00 800.00 367.00 44.13 
2005 7,711.00 1,330.00 521.00 53.57 
2006 7,887.00 1,290.00 691.00 66.24 
2007 8,326.00 1,180.00 684.00 68.90 
2008 9,650.00 1,930.00 574.00 73.00 
2009 12,726.00 1,190.00 698.00 66.00 
2010 13,770.00 1,860.00 860.00 58.47 
2011 13,127.00 1,800.00 920.00 102.76 
2012 15,196.00 1,870.00 947.00 124.16 
2013 15,379.00 1,830.00 906.00 87.15 
2014 14,672.00 1,870.00 854.00 74.75 
2015 12,781.00 1,870.00 844.00 53.93 
2016 11,632.00 1,810.00 745.00 44.31 
2017 8,896.00 1,430.00 949.00 48.81 
2018 11,879.00 1,520.00 968.00 55.81 
2019 15,367.00 1,430.00 900.00 40.96 

Source: 1 Office of Agricultural Economics: OAE (2019), 2 Office of the Cane and Sugar 
Board: OCSB (2019), and 3 Rubber Authority of Thailand: RAOT (2019). 
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Figure 4.23 Market price of economic crops (paddy field, cassava, and sugarcane 
between 2001 and 2019. 
 

On the contrary, for the extensive decreasing area of LULC types between 2001 
and 2010, areas of paddy field in 2001, which are decreased by about 273.68 km2 in 
2010, are mostly converted into cassava (169.46 km2), sugarcane (69.31 km2) and 
rangeland (48.79 km2). These phenomena indicate changeable practice among 
economic crops by farmers, and active paddy fields become abandoned fields in 
rangeland, as mentioned earlier. Meanwhile, areas of forest land in 2001, which 
decreased by about 27.30 km2 in 2010, are mostly converted into paddy fields (15.83 
km2). The finding indicates forest encroachment activity for agricultural area expansion 
in the study area. 

Details for the irrelevant decreasing area of LULC types between 2001 and 2010 
are reported in Table 4.9. The spatial distribution of significant decreasing paddy field 
and forest land areas between 2001 and 2010 is displayed in Figures 4.27 and 4.28, 
respectively.  
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Figure 4.24 Spatial distribution of increased and unchanged areas of cassava between 
2001 and 2010. 
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Figure 4.25 Spatial distribution of increased and unchanged areas of sugarcane 
between 2001 and 2010. 
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Figure 4.26 Spatial distribution of increased and unchanged areas of rangeland 
between 2001 and 2010.  
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Figure 4.27 Spatial distribution of decreased and unchanged areas of paddy fields 
between 2001 and 2010. 
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Figure 4.28 Spatial distribution of decreased and unchanged areas of forest land 
between 2001 and 2010. 
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4.5 LULC change between 2010 and 2019 
A simple comparison of LULC change between 2010 and 2019, with the annual 

change rate, is presented in Table 4.11 and Figure 4.29.  
 
Table 4.11 Comparison of LULC change between 2010 and 2019. 

LULC  
LULC type (Area in km2) 

UR PA SU CA PC PR PO FO WA RA MA UL 

In 2010 53.21 2,070.71 153.52 629.33 5.19 30.05 50.21 604.70 57.46 72.11 33.40 34.33 
In 2019 65.84 2,012.16 306.85 489.91 6.19 97.03 88.95 481.30 53.30 71.65 27.73 93.32 

Change area 12.63 -58.55 153.33 -139.41 1.00 66.99 38.73 -123.41 -4.16 -0.47 -5.67 58.99 

Annual change rate 1.40 -6.51 17.04 -15.49 0.11 7.44 4.30 -13.71 -0.46 -0.05 -0.63 6.55 

Percentage of change 0.33 -1.54 4.04 -3.67 0.03 1.77 1.02 -3.25 -0.11 -0.01 -0.15 1.55 

 

 
Figure 4.29 Comparison of the annual change rate of LULC type between 2010 and 
2019. 

As a result, the significant increase of LULC types between 2010 and 2019 are 
sugarcane, para rubber, perennial trees and orchard, and unused land, with an annual 
change rate of 17.04, 7.44, 6.55, and 4.30 km2 per year, respectively. Meanwhile, the 
minor increase of LULC types in this period are urban and built-up areas and other 
field crops with an annual change rate of 1.40 and 0.11 km2 per year. On the opposite, 
the significant decrease of LULC type between 2010 and 2019 are cassava, forest land, 
and paddy field, with an annual change rate of 15.49, 13.71, and 6.51 km2 per year, 
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while the minor decrease of LULC types in this period are marsh and swamp, 
waterbody, and rangeland, with an annual change rate of 0.63, 0.46, and 0.05 km2 per 
year, respectively.  

Meanwhile, a transitional change matrix of LULC between 2010 and 2019, which 
provides “from-to” change class information, is summarized in Table 4.12, and the 
LULC change map in this period is displayed in Figure 4.30. 

 

 
Figure 4.30 Spatial distribution of LULC change between 2010 and 2019. 
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Table 4.12 Transitional matrix of LULC change between 2010 and 2019. 
 

LULC types 
LULC in 2019 (km2)  

UR PA SU CA FC PR PO FO WA RA MA UL Total 

LU
LC

 in
 2

01
0 

(k
m

2 ) 

Urban and built-up area (UR) 53.21 - - - - - - - - - - - 53.21 
Paddy field (PA) - 1,932.32 58.92 40.78 0.01 - 19.64 - 0.39 3.42 14.38 0.86 2,070.71 
Sugarcane (SU)   0.86 1.06 143.01 7.45 - - 0.96 - 0.05 0.10 0.02 0.01 153.52 
Cassava (CA) 8.94 37.71 100.15 407.10 - 41.97 7.68 - 0.05 2.12 0.04 23.57 629.33 
Other field crops (FC) 0.01 - - - 5.14 - 0.04 - - - - - 5.19 
Para rubber (PR) - - 0.12 3.32 0.29 23.92 0.78 - 0.01 - - 1.61 30.05 
Perennial trees and orchard (PO) - 0.07 0.30 0.28 - - 49.55 - - 0.01 - - 50.21 
Forest land (FO) 2.19 13.42 1.81 28.88 0.75 31.12 8.89 481.30 0.26 1.64 - 34.44 604.70 
Waterbody (WA) 0.22 2.10 1.35 0.74 - 0.02 0.12 - 52.54 - 0.33 0.03 57.46 
Rangeland (RA) 0.01 5.91 0.16 1.17 - - 0.51 - - 64.35 - - 72.11 
Marsh and swamp (MA) 0.17 18.50 0.97 0.07 - - 0.74 - - - 12.96 - 33.40 

 Unused land (UL) 0.23 1.08 0.04 0.13 - - 0.05 - - - - 32.80 34.33 
 Total 65.84 2,012.16 306.85 489.91 6.19 97.03 88.95 481.30 53.30 71.65 27.73 93.32 3,794.22 
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As a result, urban and built-up areas in 2010 were not converted into other 
LULC classes in 2019, and the increased area of urban and built-up areas in 2019 
mainly comes from the cassava, with an area of 8.94 km2 in 2010. 

For the significantly increasing LULC types between 2010 and 2019, areas of 
sugarcane, which are increased by about 153.33 km2 in 2019, mostly come from 
cassava (100.15 km2) paddy field (58.92 km2) in 2010. Meanwhile, para rubber areas, 
which increased by about 66.99 km2 in 2019, mainly came from cassava (41.97 km2) 
and forest land (31.12 km2) in 2010. These findings indicate changeable practice among 
economic crops by farmers and the forest encroachment activities for agricultural area 
expansion, especially para rubber. Figure 4.31 shows the distribution of para rubber 
plots allocated in natural forests in the study area based on a very high spatial 
resolution from Google Earth. In the meantime, areas of unused land, which increased 
by about 58.99 km2 in 2019, mainly came from forest land (34.44 km2) and cassava 
(23.57 km2) in 2010. These findings indicate uncultivated cassava fields in unused land, 
which is covered by uncultivated areas including abandoned land, bare land, pit, 
landfill, and outcrop. Additionally, forest fires frequently occur in the dry dipterocarps 
forest during the dry season become unused land. Figure 4.32 shows forest fire that 
occurred in the study during the field survey in 2020. 

Details for the irrelevant increasing area of LULC types between 2001 and 2010 
are reported in Table 4.12. The spatial distribution of significant increasing areas of 
sugarcane, para rubber, and unused land between 2010 and 2019 is displayed in 
Figures 4.33 to 4.35, respectively.  
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Figure 4.31 Distribution of para rubber plots allocated in the natural forest from a very 
high spatial resolution from Google Earth. 
 

 
Figure 4.32 Forest fire in the study during a field survey in 2020. 
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Figure 4.33 Spatial distribution of increased and unchanged areas of sugarcane 
between 2010 and 2019. 
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Figure 4.34 Spatial distribution of increased and unchanged areas of para rubber 
between 2010 and 2019. 
  

 



114 

 

 
Figure 4.35 Spatial distribution of increased and unchanged areas of unused land 
between 2010 and 2019. 
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On the contrary, for the extensive decreasing area of LULC types between 2010 
and 2019, areas of cassava in 2010, which are decreased about 139.41 km2 in 2019, are 
mainly converted into sugarcane (100.15 km2), para rubber (41.97 km2), paddy field 
(37.71 km2), and unused land (23.57 km2). These phenomena indicate changeable 
agriculture practice among economic crops by farmers, and active cassava fields 
become uncultivated areas in unused land. Meanwhile, areas of forest land in 2010, 
which decreased by about 123.41 km2 in 2019, are mostly converted into unused land 
(34.44 km2), para rubber (31.12 km2), and cassava (28.88 km2). These phenomena imply 
forest fire and encroachment activities for non-timber products collection and 
agricultural area expansion in natural forest in the study area. Figure 4.36 displays 
encroachment activities that occurred in the forest land areas of the study area. In the 
meantime, areas of paddy field in 2010, which decreased by about 58.55 km2 in 2019, 
are mostly converted into sugarcane (58.92 km2) and cassava (40.78 km2). These 
phenomena imply changeable agriculture practice among economic crops by farmers. 

Details for the irrelevant decreasing area of LULC types between 2001 and 2010 
are presented in Table 4.12. The spatial distribution of significant decreasing areas of 
cassava, forest land, and paddy field between 2010 and 2019 is displayed in Figures 
4.37 to 4.39, respectively.  
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Figure 4.36 Encroachment activities in the forest land areas from a field survey in 2020. 
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Figure 4.37 Spatial distribution of decreased and unchanged areas of cassava between 
2010 and 2019.  
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Figure 4.38 Spatial distribution of decreased and unchanged areas of forest land 
between 2010 and 2019.  

 



119 

 

 
Figure 4.39 Spatial distribution of decreased and unchanged areas of paddy field 
between 2010 and 2019.  
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In summary, LULC change’s tendency can be observed based on the derived 
area of each LULC type in 2001, 2010, and 2019, as a summary in Table 4.13 and Figure 
4.40. As a result, areas of significant LULC types include urban and built-up areas, 
sugarcane, para rubber, other field crops, and unused land, tend to increase in the 
future. On the contrary, areas of substantial LULC types include paddy fields and forest 
land, tend to decrease in the future. Meanwhile, cassava, perennial trees and orchards, 
waterbody, and marsh and swamps tend to be unstable and unpredictable in the 
future.  

Additionally, the post-classification comparison change detection algorithm can 
provide detailed from-to-change class information in two different periods (2001-2010 
and 2010-2019). However, reliable information depends on the accuracy of LULC maps, 
as mentioned by Jensen (2005). 
 
Table 4.13 Area of each LULC type in 2001, 2010, and 2019. 

No. LULC type 
Area of LULC type in km2 
2001 2010 2019 

1 Urban and built-up area 46.17 53.21 65.84 
2 Paddy field 2,344.39 2,070.71 2012.16 
3 Sugarcane 61.25 153.52 306.85 
4 Cassava 532.95 629.33 489.91 
5 Other field crops 2.09 5.19 6.19 
6 Para rubber 16.56 30.05 97.03 
7 Perennial trees and orchard 55.76 50.21 88.95 
8 Forest land 632 604.7 481.3 
9 Waterbody 36.81 57.46 53.3 
10 Rangeland 26.03 72.11 71.65 
11 Marsh and swamp 11.64 33.4 27.73 
12 Unused land 28.57 34.33 93.32 

 Total 3794.22 3794.22 3794.22 
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Figure 4.40 Area of each LULC type in 2001, 2010, and 2019. 
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CHAPTER V 

PREDICTION OF TIME-SERIES OF LAND USE AND LAND COVER BY 
CLUE-S MODEL 

 
This chapter presents the second objective results focusing on predicting time-

series of LULC between 2002 and 2009 and 2011 and 2018, which were predicted 
based on the classified LULC data in 2001, 2010, and 2019 using the CLUE-S model. 
The significant results in this chapter consist of (1) driving force identification for LULC 
change, (2) optimum local parameter of the CLUE-S model, (3) LULC prediction 
between 2002 and 2009, and (4) LULC prediction between 2011 and 2018 are here 
described and discussed in detail. 
 

5.1 Driving force identification for LULC change 
Driving factors are the factors that influence the allocation of land use changes. 

According to Table 3.3 of Chapter III, the selected driving force for LULC change 
included (1) elevation, (2) slope, (3) annual rainfall, (4) average income per capita at 
the sub-district level, (5) population density at the sub-district level, (6) distance to the 
road network, (7) distance to stream, and (8) distance to the existing urban area (Figure 
5.1) are firstly prepared in raster format with a cell size of 100 m. They were then used 
to identify the significant driving factors for each LULC type using a multicollinearity 
test and logistic regression analysis. Brief information on the driving factor on LULC 
changes is summarized below: 

Elevation. Elevation was computed from the digital elevation model (DEM), 
which was downloaded from the SRTM. The domain value of elevation varies between 
160 and 1,034 meters above mean sea level. 

Slope. The percentage slope was calculated from DEM, and its domain value 
varies between 0 and 47 percent. 

Annual rainfall. Annual rainfall was interpolated as a continuous annual 
rainfall surface using the IDW method from Chaiyaphum meteorological station and 
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surrounding TMD stations. The domain value of annual rainfall in 2019 varies between 
743.44 and 823.35 millimeters. 

The average income per capita at the sub-district level. The average income 
per capita at the sub-district level was computed from Basic Minimum Need data (BMN) 
by average income per capita at the sub-district level. The average income per capita 
at the sub-district level in 2019 varies between 27,888 and 133,728 Baht per year. 

Population density at the sub-district level. The population density of each 
sub-district was calculated based on population data from the Department of 
Provincial Administration in 2019. The population density of each district diverges 
between 34.31 and 1,128.92 persons per km2. 

Distance to the road network. Distance to the road network was computed 
from the exiting road network using the Euclidean distance method. The domain value 
of distance to road network varies between 0 and 4,080.44 m. 

Distance to stream. Distance to the stream was calculated from the stream 
network using the Euclidean distance method. The domain value of distance to the 
stream network varies between 0 and 4,000 m. 

Distance to the existing urban area. Distance to the existing urban area was 
computed from the existing urban area of interpreted LULC using the Euclidean 
distance method. The domain value of distance to the existing urban area varies 
between 0 and 9,780.08 m. 

 

  
(a) Elevation (b) Slope 

Figure 5.1 Driving factors on LULC change. 
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(c) Annual rainfall (d) Average income per capita 

  
(e) Population density (f) Distance to road network 

  
(g) Distance to stream (h) Distance to the existing urban area 

Figure 5.1 (Continued). 
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The multicollinearity test result among independent variables with correlation 
coefficient and VIF values is summarized in Tables 5.1 and 5.2, respectively. It was 
found that the correlation between a pair of covariates is very low, while the variance 
inflation factor (VIF) values that are calculated to examine the correlation among 
driving factors are lower than 10. These values imply that they are uncorrelated among 
driving factors, and it is reasonable to use them for logistic regression analysis for a 
specific LULC type allocation (Liang et al., 2020; Shrestha and Shrestha, 2017). 
Meanwhile, the multiple linear regression equation by logistic regression analysis of 
each LULC type for its location preference with the area under curve (AUC) value is 
summarized in Table 5.3. 
 
Table 5.1 The correlation coefficient among driving factors on LULC change. 

Driving factor 
Correlation coefficient 

X1 X2 X3 X4 X5 X6 X7 X8 

Elevation (X1) 1.000 0.521 0.022 0.088 0.045 0.065 0.001 0.285 

Slope (X2) 0.521 1.000 0.023 0.061 0.031 0.097 0.000 0.185 

Annual rainfall (X3) 0.022 0.023 1.000 0.021 0.003 0.011 0.003 0.002 

Average income per capita at the sub-district level (X4) 0.088 0.061 0.021 1.000 0.388 0.027 0.008 0.032 

Population density at the sub-district level (X5) 0.045 0.031 0.003 0.388 1.000 0.011 0.004 0.025 

Distance to road network (X6) 0.065 0.097 0.011 0.027 0.011 1.000 0.000 0.135 

Distance to stream (X7) 0.001 0.000 0.003 0.008 0.004 0.000 1.000 0.004 

Distance to the existing urban area (X8) 0.285 0.185 0.002 0.032 0.025 0.135 0.004 1.000 

 
Table 5.2 Multicollinearity statistics test of driving factors and VIF value. 

Driving factor 

Unstandardized 
Coefficients 

Standardized 
Coefficient 

t-test Sig. VIF 
Beta Std. error 

Elevation (X1) 0.008 0.000 0.429 72.315 0.000 2.578 

Slope (X2) 0.092 0.003 0.167 30.129 0.000 2.255 

Annual rainfall (X3) -0.031 0.001 -0.085 -22.311 0.000 1.067 

Average income per capita at the sub-district level (X4) -0.005 0.000 -0.070 -14.149 0.000 1.815 

Population density at the sub-district level (X5) -0.001 0.000 -0.062 -12.870 0.000 1.688 

Distance to road network (X6) 0.001 0.000 0.073 17.966 0.000 1.203 

Distance to stream (X7) 0.006 0.000 0.001 0.387 0.000 1.052 

Distance to the existing urban area (X8) -0.005 0.000 -0.007 -1.472 0.001 1.574 
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Table 5.3 Identified driving force for each LULC type allocation as equation form with AUC using binary logistic regression analysis. 

Remark: All explanatory variables are significant at p < 0.05 error level; n. s. is not significant at 0.05 level.

LULC 
Driving Factors 

AUC 
Constant X1 X2 X3 X4 X5 X6 X7 X8 

1. Urban and Built-Up area (UR) 0.09295 n. s. n. s. n. s. n. s. 0.00084 -0.00640 n. s. -0.01816 0.98239 
2. Paddy field (PD) 10.88306 -0.09471 n. s. 0.01299 n. s. -0.00179 n. s. n. s. n. s. 0.97633 
3. Sugarcane (SU) 94.65603 -0.00009 -0.19427 -0.12635 n. s. -0.01166 n. s. n. s. n. s. 0.76771 
4. Cassava (CA) -38.47663 0.00422 -0.10302 0.04774 n. s. -0.01475 n. s. 0.00095 n. s. 0.79419 
5. Other field crops (FC) 207.97836 0.01012 -0.21443 -0.28499 n. s. n. s. n. s. n. s. n. s. 0.93547 
6. Para rubber (PR) 24.18697 0.00834 -0.07301 -0.03984 n. s. -0.01857 n. s. -0.00138 n. s. 0.94398 
7. Perennial trees and orchard (OP) -38.48305 n. s. -0.13142 0.04540 n. s. -0.00426 n. s. n. s. n. s. 0.61857 
8. Forest land (FO) 87.34838 0.00321 0.18855 -0.11672 n. s. -0.01130 n. s. n. s. n. s. 0.92888 
9. Waterbody (WA) -4.68618 0.00683 -0.67145 n. s. n. s. n. s. 0.00143 -0.00369 n. s. 0.83181 
0. Rangeland (RA)  -80.01175 -0.00429 n. s. 0.09908 n. s. -0.00595 n. s. n. s. n. s. 0.74452 
11. Marsh and swamp (MA) 5.04358 -0.04668 n. s. n. s. n. s. -0.00589 n. s. -0.00526 n. s. 0.86275 
12. Unused land (UL) -8.63439 0.00932 -0.02903 n. s. n. s. n. s. n. s. n. s. n. s. 0.86930 
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5.1.1 Driving factor for urban and built-up area allocation 
The multiple linear equation of the binomial logit regression model 

for urban and built-up area allocation after multicollinearity test is as follows: 

Log (
Pi

1-Pi
) = 0.09295+0.00084X5-0.00640X6-0.01816X8 (5.1) 

where X5 is Population density at the sub-district level (person per km2), 
 X6 is Distance to road network (m), and 
 X8 is Distance to the existing urban area (m). 
 According to Equation 5.1, it was found that two driving factors include 
distance to the road network and distance to the existing urban area, have a negative 
relationship with the probability of urban and built-up area allocation. Meanwhile, only 
one driving factor, population density at the sub-district level, positively correlates with 
the probability of urban and built-up area allocation. All significant driving factors 
genuinely play an essential role in urban and built-up area allocation. These results 
imply that when the distance to the road and the existing urban area decreases, the 
probability of urban and built-up areas increases. Meanwhile, when the population 
density at the sub-district level increases, the probability of urban and built-up areas 
increases. 
 The AUC value for urban and built-up area allocation with a value of 
0.98 suggests an excellent fit between the predicted and real LULC transition (Liang et 
al., 2020; Pontius and Schneider, 2001; Vilar del Hoyo, Martín Isabel, and Martínez Vega, 
2011). 

5.1.2 Driving factor for paddy field allocation 
The multiple linear equation of the binomial logit regression model 

for paddy field allocation after multicollinearity test is as follows: 

Log (
Pi

1-Pi
) = 10.88306-0.09471X1+0.01299X3-0.00179X5 (5.2) 

where X1 is Elevation (m), 
 X3 is Annual rainfall (mm), and 
 X5 is Population density at the sub-district level (person per km2). 
 Equation 5.2 reveals that two driving factors include elevation and 
population density at the sub-district level, negatively affecting the probability of 
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paddy field allocation. In the meantime, only one driving factor, annual rainfall, has a 
positive relationship with the probability of paddy field allocation. All significant driving 
factors truly play an important role in paddy field allocation. These results indicate 
that the paddy field prefers to situate at low elevation or flat area, low population 
density, and high annual rainfall. 
 The AUC value for paddy field allocation with a value of 0.97 suggests 
an excellent fit between the predicted and real LULC transition (Liang et al., 2020; 
Pontius and Schneider, 2001; Vilar del Hoyo et al., 2011). 

5.1.3 Driving factor for sugarcane allocation 
The multiple linear equation of the binomial logit regression model 

for sugarcane allocation after multicollinearity test is as follows: 

Log (
Pi

1-Pi
) = 94.65603-0.00009X1-0.19427X2-0.12635X3-0.01166X5 (5.3) 

where X1 is Elevation (m), 
 X2 is Slope (percent), 
 X3 is Annual rainfall (mm), and 

 X5 is Population density at the sub-district level (person per km2). 
 According to Equation 5.3, it was found that four driving factors include 
elevation, slope, annual rainfall, and population density at the sub-district level, having 
a negative relationship with the probability of sugarcane allocation. The most crucial 
sugarcane factors are slope, annual rainfall, and population density at the sub-district 
level. These imply that sugarcane prefers to situate at an undulating terrain with low 
annual rainfall and population density. 
 The AUC value for sugarcane allocation with a value of 0.76 suggests 
a fair fit between the predicted and real LULC transition (Liang et al., 2020; Pontius and 
Schneider, 2001; Vilar del Hoyo et al., 2011). 

5.1.4 Driving factor for cassava allocation 
The multiple linear equation of the binomial logit regression model 

for cassava allocation after multicollinearity test is as follows: 

Log (
Pi

1-Pi
) = -38.47660+0.00422X1-0.10302X2+0.04774X3-0.01475X5 

+0.00095X7 (5.4) 
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where X1 is Elevation (m), 
 X2 is Slope (percent), 
 X3 is Annual rainfall (mm),  
 X5 is Population density at the sub-district level (person per km2), and 
 X7 is Distance to stream (m). 
 According to Equation 5.4, it was found that three driving factors 
include elevation, annual rainfall, and distance to stream, having a positive relationship 
with the probability of cassava allocation. Meanwhile, two driving factors include slope 
and population density at the sub-district level, negatively affecting cassava allocation. 
The most crucial cassava factors were slope, annual rainfall, and population density at 
the sub-district level. These imply that sugarcane prefers to situate at an undulating 
terrain, has low population density, and has high annual rainfall. 
 The AUC value for cassava allocation with a value of 0.79 suggests a 
fair fit between the predicted and real LULC transition (Liang et al., 2020; Pontius and 
Schneider, 2001; Vilar del Hoyo et al., 2011). 

5.1.5 Driving factor for other field crops allocation 
The multiple linear equation of the binomial logit regression model 

for other field crops allocation after multicollinearity test is as follows: 

Log (
Pi

1-Pi
) = 207.97840+0.01012X1-0.21443X2-0.28499X3 (5.5) 

where X1 is Elevation (m), 
 X2 is Slope (percent), and 

 X3 is Annual rainfall (mm).  
 Equation 5.5 reveals that two driving factors include slope and annual 
rainfall, negatively affecting other field crop allocation probability. Meanwhile, only 
one driving factor, elevation, positively relates with other field crop allocation 
probability. The most critical factors for other field crops occurrence are slope and 
annual rainfall. These results show that when these factors decreased, the probability 
for other field crops occurrence increased. Other field crops frequently occurred in the 
low terrace area in the study area. 
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 The AUC value for other field crops allocation with a value of 0.93 
suggests an excellent fit between the predicted and real LULC transition (Liang et al., 
2020; Pontius and Schneider, 2001; Vilar del Hoyo et al., 2011). 

5.1.6 Driving factor for para rubber allocation 
The multiple linear equation of the binomial logit regression model 

for para rubber allocation after multicollinearity test is as follows: 

Log (
Pi

1-Pi
) = 24.18697+0.00834X1-0.07301X2-0.04774X3-0.01857X5 

-0.00138X7 (5.6) 
where X1 is Elevation (m), 
 X2 is Slope (percent), 
 X3 is Annual rainfall (mm),  
 X5 is Population density at the sub-district level (person per km2), and 
 X7 is Distance to stream (m). 
 According to Equation 5.6, it was found that four driving factors include 
slope, annual rainfall, population density at the sub-district level, and distance to 
stream, having a negative relationship with the probability of para rubber allocation. 
But, only one driving factor, elevation, has a positive relationship with para rubber 
allocation. All significant driving factors play an essential role in para rubber allocation. 
These results show that para rubber prefers to situate at high elevation and hilly slope, 
close to the stream, low population density, and low annual rainfall. 
 The AUC value for para rubber allocation with a value of 0.94 suggests 
an excellent fit between the predicted and real LULC transition (Liang et al., 2020; 
Pontius and Schneider, 2001; Vilar del Hoyo et al., 2011). 

5.1.7 Driving factor for perennial trees and orchard allocation 
The multiple linear equation of the binomial logit regression model 

for perennial trees and orchard allocation after multicollinearity test is as follows: 

Log (
Pi

1-Pi
) = -38.48310-0.13142X2+0.04540X3-0.00426X5 (5.7) 

where X2 is Slope (percent), 
 X3 is Annual rainfall (mm), and 
 X5 is Population density at the sub-district level (person per km2). 
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 According to Equation 5.7, it was found that two driving factors include 
slope and population density at the sub-district level, having a negative relationship 
with the probability of perennial trees and orchard allocation. In the meantime, only 
one driving factor, annual rainfall, has a positive relationship with the probability of 
perennial trees and orchard allocation. All significant driving factors play an essential 
role in perennial trees and orchard allocation. These results indicate that the perennial 
trees and orchards prefer to be located in a flat area with low population density and 
high annual rainfall. 
 The AUC value for paddy field allocation with a value of 0.61 suggests 
a poor fit between the predicted and real LULC transition (Liang et al., 2020; Pontius 
and Schneider, 2001; Vilar del Hoyo et al., 2011). 

5.1.8 Driving factor for forest land allocation 
The multiple linear equation of the binomial logit regression model 

for forest land allocation after multicollinearity test is as follows: 

Log (
Pi

1-Pi
) = 87.34838+0.00321X1+0.18855X2-0.11672X3-0.01130X5 (5.8) 

where X1 is Elevation (m), 
 X2 is Slope (percent), 
 X3 is Annual rainfall (mm), and 
 X5 is Population density at the sub-district level (person per km2). 
 According to Equation 5.8, it was found that two driving factors include 
elevation and slope, have a positive relationship with the probability of forest land. 
Meanwhile, two driving factors, namely annual rainfall and population density at the 
sub-district level, negatively affect forest land allocation probability. All significant 
driving factors play an essential role in forest land allocation. These results show that 
forest land prefers to be located at a high area and steep slope, with low population 
density and annual rainfall. 
 The AUC value for forest land allocation with a value of 0.92 suggests 
an excellent fit between the predicted and real LULC transition (Liang et al., 2020; 
Pontius and Schneider, 2001; Vilar del Hoyo et al., 2011). 
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5.1.9 Driving factor for waterbody area allocation 
The multiple linear equation of the binomial logit regression model 

for waterbody allocation after multicollinearity test is as follows: 

Log (
Pi

1-Pi
) = -4.68618+0.00683X1-0.67145X2+0.00143X6-0.00369X7 (5.9) 

where X1 is Elevation (m), 
 X2 is Slope (percent), 
 X6 is Distance to road (m), and 
 X7 is Distance to stream (m). 
 Equation 5.9 reveals that two driving factors, elevation, and distance 
to road, positively affect waterbody's probability. On the other hand, two driving 
factors, namely slope and distance to stream, negatively affect waterbody allocation 
probability. All significant driving factors play an essential role in waterbody allocation. 
These results indicate that waterbody prefers to situate in a flat area, far from the road 
network and close to the stream. 
 The AUC value for waterbody allocation with a value of 0.83 suggests 
a good fit between the predicted and real LULC transition (Liang et al., 2020; Pontius 
and Schneider, 2001; Vilar del Hoyo et al., 2011). 

5.1.10 Driving factor for rangeland allocation 
The multiple linear equation of the binomial logit regression model 

for rangeland allocation after multicollinearity test is as follows: 

Log (
Pi

1-Pi
) = -80.01180-0.00429X1+0.09908X3-0.00595X5 (5.10) 

where X1 is Elevation (m), 
 X3 is Annual rainfall (mm), and 

 X5 is Population density at the sub-district level (person per km2). 
 According to Equation 5.10, it was found that two driving factors 
include elevation and population density at the sub-district level, have a negative 
relationship with the probability of rangeland allocation. But, only one driving factor, 
annual rainfall, negatively affects rangeland allocation probability. All significant driving 
factors play an important role in rangeland allocation. These results indicate that 
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rangeland prefers to situate at low elevation and population density with high annual 
rainfall. 
 The AUC value for rangeland allocation with a value of 0.74 suggests 
a fair fit between the predicted and real LULC transition (Liang et al., 2020; Pontius and 
Schneider, 2001; Vilar del Hoyo et al., 2011). 

5.1.11 Driving factor for marsh and swamp allocation 
The multiple linear equation of the binomial logit regression model 

for marsh and swamp allocation after multicollinearity test is as follows: 

Log (
Pi

1-Pi
) = 5.04358-0.04668X1-0.00589X5-0.00526X7 (5.11) 

where X1 is Elevation (m), 
 X5 is Population density at the sub-district level (person per km2), and 
 X7 is Distance to stream (m). 
 Equation 5.11 reveals that three driving factors include elevation, 
population density at the sub-district level, and distance to stream, negatively affect 
marsh and swamp allocation probability. All significant driving factors play an essential 
role in marsh and swamp allocation. These results indicate that marsh and swamp 
prefer to locate at low elevation and population density, with an area close to the 
stream. 
 The AUC value for marsh and swamp allocation with a value of 0.86 
suggests a good fit between the predicted and real LULC transition (Liang et al., 2020; 
Pontius and Schneider, 2001; Vilar del Hoyo et al., 2011). 

5.1.12 Driving factor for unused land allocation 
The multiple linear equation of the binomial logit regression model 

for unused land allocation after multicollinearity test is as follows: 

Log (
Pi

1-Pi
) = -8.63439+0.00932X1-0.02903X2 (5.12) 

where X1 is Elevation (m), and 
 X2 is Slope (percent) 
 Equation 5.12 reveals that elevation has a positive relationship with 
the probability of unused land allocation. Meanwhile, slope negatively affect unused 
land allocation probability. Thus, all significant driving factors play an essential role in 
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marsh and swamp allocation. These results show that unused land prefers to situate 
at high elevations and steep slopes in the study area. 
 The AUC value for unused land allocation with a value of 0.86 suggests 
a good fit between the predicted and real LULC transition (Liang et al., 2020; Pontius 
and Schneider, 2001; Vilar del Hoyo et al., 2011). 
 In summary, as mentioned in Section 5.1.1-5.1.12, it was found that 
the most common vital driving force for all LULC type change was the elevation. 
Meanwhile, the most important driving force for field crops (sugarcane, cassava, and 
other field crops) include elevation, slope, and annual rainfall. The specific driving 
factors for each LULC type preference from binary logistics regression are further 
applied to allocate LULC type for predicting LULC change under the CLUE-S model. 
 

5.2 Optimum local parameter of the CLUE-S model 
Two required parameters for the optimum local parameter examination, 

including land use type conversion matrix and land use type resistance (elasticity), 
were first defined based on the transitional probability change matrix between 2010 
and 2019 by the Markov Chain model. At the same time, the land requirement in the 
same period was estimated based on the transitional area change matrix using the 
Markov Chain model. After that, LULC in 2019 was predicted with the preference LULC 
type allocation under the CLUE-S model. The predicted LULC in 2019 was further 
compared with the classified LULC in 2019 using the wall-to-wall accuracy assessment 
for validating an optimum local parameter of the CLUE-S model. In this study, if overall 
accuracy and the Kappa hat coefficient of the predicted LULC map are equal to or 
more than 80 percent, the assigned parameter values of elasticity and conversion 
matrix are accepted as an optimum local parameter of the CLUE-S model. The brief 
information of two predefine parameter are summarized below: 

(1) Land use type conversion matrix 
Land use type-specific conversion settings represents the behavior of one 

specific land use type. A value must be specified for each land use type representing 
the relative conversion resistance, ranging from 0 (not allowed to change) to 1 (allowed 
to change). In general, the modeler decides on this factor based on expert knowledge 
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or observed behavior in the recent past (Verburg, 2010). In this study, the conversion 
matrix for each LULC type possibly changes between 2010 and 2019 was assigned 
based on transitional LULC change between 2001 and 2010 as the summary in Table 
5.4. It can be observed that urban and built-up areas in 2010 did not change to any 
LULC types in 2019. 
 
Table 5.4 Conversion matrix of possible change between 2010 and 2019. 

 

LULC types 
LULC type possible change in 2019 

UR PA SU CA FC PR PO FO WA RA MA UL 

LU
LC

 in
 2

01
0 

Urban and built-up area (UR) 1 0 0 0 0 0 0 0 0 0 0 0 
Paddy field (PA) 0 1 1 1 0 0 1 0 0 1 1 0 
Sugarcane (SU) 1 1 1 1 0 0 1 0 0 0 0 0 
Cassava (CA) 1 1 1 1 0 1 1 0 0 1 0 1 
Other field crops (FC) 0 0 1 1 1 0 0 0 0 0 0 0 
Para rubber (PR) 0 0 0 1 1 1 0 0 0 0 0 1 
Perennial trees and orchard (PO) 0 0 1 0 0 0 1 0 0 0 0 0 
Forest land (FO) 1 0 0 0 0 1 1 1 0 1 0 1 
Waterbody (WA) 1 0 1 0 0 0 0 0 1 0 1 0 
Rangeland (RA) 0 1 0 0 0 0 1 0 0 1 0 0 
Marsh and swamp (MA) 1 1 1 1 0 0 1 0 0 0 1 0 
Unused land (UL) 1 1 0 0 0 0 0 0 0 0 0 1 

Remark: 0 is not allowed and 1 is allowed. 
 
(2) Land use type resistance (elasticity) 
The conversion resistance is one of the land use type-specific settings that 

determine the temporal dynamic of prediction. The conversion resistance or elasticity 
relates to the reversibility of land use changes. In principle, land use type resistance 
represents the relative elasticity to conversion, ranging from 0 (easy conversion) to 1 
(irreversible change) (Verburg, 2010). In this study, the transition probability matrix of 
LULC change between 2010 and 2019 from the Markov Chain model is displayed in 
Table 5.5. Here, the elasticity value of the urban and built-up area, paddy field, 
sugarcane, cassava, other field crops, para rubber, perennial trees and orchard, forest 
land, waterbody, rangeland, marsh and swamp, and unused land are 1.00, 0.93, 0.93, 
0.65, 0.99, 0.80, 0.99, 0.80, 0.91, 0.89, 0.39 and 0.96, respectively. The assigned elasticity 
value is suggested by Ongsomwang and Iamchuen (2015). They found that an optimum 
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local parameter for LULC prediction under the CLUE-S model should be probability 
values of the transition probability matrix of LULC change between two periods. 

 
Table 5.5 Elasticity of LULC change for LULC prediction between 2010 and 2019. 

LULC types 
LULC type possible change in 2019 

UR PA SU CA FC PR PO FO WA RA MA UL 

LU
LC

 in
 2

01
0 

Urban and built-up area (UR) 1.00 - - - - - - - - - - - 
Paddy field (PA) - 0.93 0.03 0.02 - - 0.01 - - - 0.01 - 
Sugarcane (SU) 0.01 0.01 0.93 0.05 - - 0.01 - - - - - 
Cassava (CA) 0.01 0.06 0.16 0.65 - 0.07 0.01 - - - - 0.04 
Other field crops (FC) - - - - 0.99 - 0.01 - - - - - 
Para rubber (PR) - - - 0.11 0.01 0.80 0.03 - - - - 0.05 
Perennial trees and orchard (PO) - - 0.01 0.01 - - 0.99 - - - - - 
Forest land (FO) - 0.02 - 0.05 - 0.05 0.01 0.80 - - - 0.06 
Waterbody (WA) - 0.04 0.02 0.01 - - - - 0.91 - 0.01 - 
Rangeland (RA) - 0.08 - 0.02 - - 0.01 - - 0.89 - - 
Marsh and swamp (MA) 0.01 0.55 0.03 - - - 0.02 - - - 0.39 - 
Unused land (UL) 0.01 0.03 - - - - - - - - - 0.96 

 
The error matrix and accuracy assessment between the classified LULC in 2019 

by the RF and the predicted LULC in 2019 by the CLUE-S model is presented in Table 
5.6. Simultaneously, the spatial distribution of predicted LULC by the CLUE-S model 
and classified LULC by RF classifier is compared as shown in Figure 5.2. As a result, it 
was found that the overall accuracy and Kappa hat coefficient were 86.95% and 
80.72%, respectively. Both accuracy values were more than 80 percent as a 
requirement. Therefore, predefined parameters (land use type conversion matrix and 
land use type resistance) can be accepted for LULC prediction in 2002-2009 and 2011-
2018, respectively. 
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(a) (b) 

Figure 5.2 Comparison of spatial LULC distribution in 2019: (a) predicted LULC by the 
CLUE-S model and (b) classified LULC by RF classifier. 
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Table 5.6 Error matrix and accuracy assessment between classified LULC in 2019 and predicted LULC in 2019. 
 

LULC types 
Predicted LULC in 2019 (pixel)  

UR PA SU CA FC PR PO FO WA RA MA UL Total 

Cl
as

sif
ie

d 
LU

LC
 in

 2
01

9 
(p

ixe
l) 

Urban and built-up area (UR) 6,414 13 51 86 0 0 3 12 0 0 3 1 6,583 
Paddy field (PA) 3 189,634 3,581 4,459 2 37 1,856 176 440 361 564 103 201,216 
Sugarcane (SU)   48 4,309 20,298 5,208 0 384 301 0 6 76 45 11 30,686 
Cassava (CA) 34 3,095 5,553 36,672 0 1,050 535 3 5 138 4 1,902 48,991 
Other field crops (FC) 2 0 0 116 497 0 4 0 0 0 0 0 619 
Para rubber (PR) 20 680 133 480 31 6,986 1,043 0 0 88 0 242 9,703 
Perennial trees and orchard (PO) 5 1,504 96 180 0 795 4,859 755 2 695 1 3 8,895 
Forest land (FO) 14 0 107 1,002 88 31 6 46,175 23 51 0 633 48,130 
Waterbody (WA) 25 593 139 82 0 0 16 0 4,440 0 32 3 5,330 
Rangeland (RA) 1 870 16 114 0 0 27 386 0 5,751 0 0 7,165 
Marsh and swamp (MA) 10 131 98 7 0 0 72 300 405 0 1,750 0 2,773 

 Unused land (UL) 13 388 611 587 0 420 181 323 8 0 370 6,430 9,331 
 Total 6,589 201,217 30,683 48,993 618 9,703 8,903 48,130 5,329 7,160 2,769 9,328 379,422 
 Producer’s accuracy (%) 97.34 94.24 66.15 74.85 80.42 72.00 54.58 95.94 83.32 80.32 63.20 68.93  
 User’s accuracy (%) 97.43 94.24 66.15 74.85 80.29 72.00 54.63 95.94 83.30 80.27 63.11 68.91  
 Overall accuracy (%) 86.95             
 Kappa hat coefficient (%) 80.72             
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5.3 LULC prediction between 2002 and 2009 
Under this section, the derived optimum local parameter of the CLUE-S model 

from the previous section was applied to predict LULC data between 2002 and 2009. 
Simultaneously, specific land demand was calculated based on the LULC change rate 
between 2001 and 2010 using the Markov Chain model, summarized in Tables 5.7 and 
5.8. 
 

Table 5.7 The matrix of transition area of LULC change between 2001 and 2010. 

LULC type 
LULC in 2010 (Area in km2) 

UR PD SU CA FC PR PO FO WA RA MA UL 

LU
LC

 in
 2

00
1 

(A
re

a 
in

 k
m

2 ) 

Urban and built-up area (UR) 46.17 - - - - - - - - - - - 
Paddy field (PD) 6.54 2,007.89 69.31 169.46 - - - - 16.82 48.79 25.19 0.40 
Sugarcane (SU) 0.01 4.65 31.19 24.57 - 0.13 - - 0.29 0.09 0.09 0.23 
Cassava (CA) 0.05 39.56 51.34 415.26 3.01 12.12 - - 1.84 5.17 - 4.61 
Other field crops (FC) - - - - 2.09 - - - - - - - 
Para rubber (PR) - - - 0.07 - 16.48 - - - - - - 
Perennial trees and orchard (PO) 0.03 1.23 0.41 3.57 - - 49.94 - 0.48 0.09 - - 
Forest land (FO) 0.34 15.83 0.29 6.23 0.10 1.13 - 604.70 0.01 1.07 - 2.30 
Waterbody (WA) - 0.14 0.10 0.45 - 0.19 - - 35.91 - - 0.01 
Rangeland (RA) 0.05 0.04 0.56 8.33 - - 0.27 - 0.01 16.77 - 0.02 
Marsh and swamp (MA) 0.01 0.54 0.28 0.57 - - - - 2.10 0.02 8.12 - 
Unused land (UL) 0.02 0.82 0.05 0.81 - - - - 0.01 0.10 - 26.77 

 

Table 5.8 Annual land requirement of LULC prediction between 2001 and 2010 for 
each LULC type. 

Year 
LULC type (Area in km2) 

Total 
UR PA SU CA FC PR PO FO WA RA MA UL 

2001 46.17 2,344.39 61.25 532.95 2.09 16.56 55.76 632.00 36.81 26.03 11.64 28.57 3,794.22 
2002 46.95 2,314.01 71.53 543.60 2.45 18.03 55.15 628.98 39.12 31.16 14.03 29.19 3,794.22 
2003 47.71 2,283.59 81.77 554.34 2.79 19.54 54.54 625.95 41.40 36.28 16.46 29.84 3,794.22 
2004 48.50 2,253.18 91.96 565.05 3.13 21.09 53.90 622.90 43.70 41.38 18.94 30.47 3,794.22 
2005 49.30 2,222.70 102.27 575.78 3.50 22.54 53.27 619.88 46.00 46.51 21.30 31.16 3,794.22 
2006 50.05 2,192.30 112.51 586.50 3.83 24.10 52.66 616.83 48.28 51.63 23.78 31.74 3,794.22 
2007 50.82 2,161.94 122.76 597.16 4.17 25.57 52.07 613.81 50.57 56.77 26.17 32.40 3,794.22 
2008 51.61 2,131.48 133.03 607.87 4.51 27.08 51.47 610.77 52.86 61.90 28.60 33.03 3,794.22 
2009 52.41 2,101.12 143.27 618.63 4.87 28.53 50.84 607.74 55.16 66.99 30.97 33.69 3,794.22 
2010 53.21 2,070.70 153.51 629.33 5.19 30.05 50.21 604.70 57.46 72.11 33.40 34.33 3,794.22 

Annual rate 0.79 -30.42 10.24 10.71 0.33 1.52 -0.63 -3.03 2.29 5.12 2.44 0.64  

 
According to Table 5.8, the increasing LULC types are urban and built-up area, 

sugarcane, cassava, other field crops, para rubber, waterbody, rangeland, marsh and 
swamp, and unused land, with an increasing annual change rate of 0.79, 10.24, 10.71, 
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0.33, 1.52, 2.29, 5.12, 2.44, and 0.64 km2 per year, respectively. On the other hand, 
decreasing LULC types are paddy fields, perennial trees and orchards, and forest land, 
with a decreasing annual change rate of 30.42, 0.63, and 3.03 km2 per year, respectively. 
In principle, land requirement dictates the final allocated area of each LULC type in 
different years under the CLUE-S model. The spatial distribution of the predicted LULC 
data between 2002 and 2009 is presented in Figure 5.3. Meanwhile, the area and 
percentage of predictive LULC types between 2002 and 2009 are summarized in Tables 
5.9 to 5.10, respectively. 
 

  
Predicted LULC in 2002 Predicted LULC in 2003 

  
Predicted LULC in 2004 Predicted LULC in 2005 

Figure 5.3 Spatial distribution of predicted LULC data between 2002 and 2009. 
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Predicted LULC in 2006 Predicted LULC in 2007 

  
Predicted LULC in 2008 Predicted LULC in 2009 

Figure 5.3 (Continued). 
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Table 5.9 Area of predicted LULC type between 2002 and 2009. 

LULC types 
Area of predicted LULC type in km2 

2002 2003 2004 2005 2006 2007 2008 2009 
Urban and built-up area (UR) 46.95 47.71 48.50 49.30 50.05 50.82 51.61 52.41 
Paddy field (PD) 2,314.01 2,283.59 2,253.18 2,222.70 2,192.30 2,161.94 2,131.48 2,101.12 
Sugarcane (SU) 71.53 81.77 91.96 102.27 112.51 122.76 133.03 143.27 
Cassava (CA) 543.60 554.34 565.05 575.78 586.50 597.16 607.87 618.63 
Other field crops (FC) 2.45 2.79 3.13 3.50 3.83 4.17 4.51 4.87 
Para rubber (PR) 18.03 19.54 21.09 22.54 24.10 25.57 27.08 28.53 
Perennial trees and orchard (PO) 55.15 54.54 53.90 53.27 52.66 52.07 51.47 50.84 
Forest land (FO) 628.98 625.95 622.90 619.88 616.83 613.81 610.77 607.74 
Waterbody (WA) 39.12 41.40 43.70 46.00 48.28 50.57 52.86 55.16 
Rangeland (RA) 31.16 36.28 41.38 46.51 51.63 56.77 61.90 66.99 
Marsh and swamp (MA) 14.03 16.46 18.94 21.30 23.78 26.17 28.60 30.97 
Unused land (UL) 29.19 29.84 30.47 31.16 31.74 32.40 33.03 33.69 

Total 3,794.22 3,794.22 3,794.22 3,794.22 3,794.22 3,794.22 3,794.22 3,794.22 
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Table 5.10 Percentage of predicted LULC type between 2002 and 2009. 

LULC types 
Area of predicted LULC type in the percentage 

2002 2003 2004 2005 2006 2007 2008 2009 
Urban and built-up area (UR) 1.24 1.26 1.28 1.30 1.32 1.34 1.36 1.38 
Paddy field (PD) 60.99 60.19 59.38 58.58 57.78 56.98 56.18 55.38 
Sugarcane (SU) 1.89 2.16 2.42 2.70 2.97 3.24 3.51 3.78 
Cassava (CA) 14.33 14.61 14.89 15.18 15.46 15.74 16.02 16.30 
Other field crops (FC) 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 
Para rubber (PR) 0.48 0.51 0.56 0.59 0.64 0.67 0.71 0.75 
Perennial trees and orchard (PO) 1.45 1.44 1.42 1.40 1.39 1.37 1.36 1.34 
Forest land (FO) 16.58 16.50 16.42 16.34 16.26 16.18 16.10 16.02 
Waterbody (WA) 1.03 1.09 1.15 1.21 1.27 1.33 1.39 1.45 
Rangeland (RA) 0.82 0.96 1.09 1.23 1.36 1.50 1.63 1.77 
Marsh and swamp (MA) 0.37 0.43 0.50 0.56 0.63 0.69 0.75 0.82 
Unused land (UL) 0.77 0.79 0.80 0.82 0.84 0.85 0.87 0.89 

Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 
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5.4 LULC prediction between 2011 and 2018 
The derived optimum local parameter of the CLUE-S model from section 5.2 

was applied to predict LULC data between 2011 and 2018. Simultaneously, specific 
land demand was calculated based on the LULC change rate between 2010 and 2019 
using the Markov Chain model were summarized in Tables 5.11 and 5.12. 
 

Table 5.11 Transition area matrix of LULC change between 2010 and 2019 from Markov 
Chain model. 

LULC type 
LULC in 2019 (Area in km2) 

UR PD SU CA FC PR PO FO WA RA MA UL 

LU
LC

 in
 2

01
0 

(A
re

a 
in

 k
m

2 ) 

Urban and built-up area (UR) 53.21 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
Paddy field (PD) 0.00 1,932.32  58.92  40.78  0.01  0.00  19.64  0.00  0.39  3.42  14.38  0.86  
Sugarcane (SU) 0.86 1.06  143.01  7.45  0.00  0.00  0.96  0.00  0.05  0.10  0.02  0.01  
Cassava (CA) 8.94 37.71  100.15  407.10  0.00  41.97  7.68  0.00  0.05  2.12  0.04  23.57  
Other field crops (FC) 0.01 0.00  0.00  0.00  5.14  0.00  0.04  0.00  0.00  0.00  0.00  0.00  
Para rubber (PR) 0.00 0.00  0.12  3.32  0.29  23.92  0.78  0.00  0.01  0.00  0.00  1.61  
Perennial trees and orchard (PO) 0.00 0.07  0.30  0.28  0.00  0.00  49.55  0.00  0.00  0.01  0.00  0.00  
Forest land (FO) 2.19 13.42  1.81  28.88  0.75  31.12  8.89  481.30  0.26  1.64  0.00  34.44  
Waterbody (WA) 0.22 2.10  1.35  0.74  0.00  0.02  0.12  0.00  52.54  0.00  0.33  0.03  
Rangeland (RA) 0.01 5.91  0.16  1.17  0.00  0.00  0.51  0.00  0.00  64.35  0.00  0.00  
Marsh and swamp (MA) 0.17 18.50  0.97  0.07  0.00  0.00  0.74  0.00  0.00  0.00  12.96  0.00  
Unused land (UL) 0.23 1.08  0.04  0.13  0.00  0.00  0.05  0.00  0.00  0.00  0.00  32.80  

 

Table 5.12 Annual land requirement of LULC prediction between 2010 and 2019 for 
each LULC type. 

Year 
LULC type (Area in km2) 

Total 
UR PA SU CA FC PR PO FO WA RA MA UL 

2010 53.21 2,070.71 153.52 629.33 5.19 30.05 50.21 604.70 57.46 72.11 33.40 34.33 3,794.22 
2011 54.58 2,064.15 170.56 613.86 5.32 37.51 54.49 591.02 57.00 72.09 32.75 40.88 3,794.22 
2012 55.99 2,057.68 187.61 598.35 5.43 44.93 58.80 577.30 56.54 72.03 32.13 47.42 3,794.22 
2013 57.46 2,051.17 204.62 582.86 5.53 52.39 63.17 563.53 56.06 71.98 31.48 53.98 3,794.22 
2014 58.81 2,044.70 221.65 567.39 5.65 59.83 67.42 549.87 55.61 71.85 30.90 60.55 3,794.22 
2015 60.27 2,038.20 238.68 551.89 5.74 67.26 71.78 536.14 55.15 71.81 30.21 67.07 3,794.22 
2016 61.65 2,031.64 255.75 536.39 5.87 74.71 76.06 522.43 54.70 71.81 29.59 73.61 3,794.22 
2017 63.06 2,025.15 272.80 520.90 5.97 82.14 80.37 508.74 54.25 71.71 28.95 80.18 3,794.22 
2018 64.41 2,018.69 289.83 505.42 6.08 89.59 84.63 495.02 53.76 71.71 28.33 86.75 3,794.22 
2019 65.84 2,012.16 306.85 489.91 6.19 97.03 88.95 481.30 53.30 71.65 27.73 93.32 3,794.22 

Annual rate 1.40 -6.51 17.04 -15.49 0.11 7.44 4.30 -13.71 -0.46 -0.05 -0.63 6.55  

 

As a result, the increasing LULC types are urban and built-up area, sugarcane, 
other field crops, para rubber, perennial trees and orchard, and unused land, with an 
increasing annual change rate of 1.40, 17.04, 0.11, 7.44, 4.30, and 6.55 km2 per year, 
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respectively. In contrast, decreasing LULC types are paddy field, cassava, forest land, 
waterbody, rangeland, and marsh and swamp, decreasing the annual change rate of 
6.51, 15.49, 13.71, 0.46, 0.05, and 0.63 km2 per year, respectively. In principle, land 
requirement dictates the final area of each LULC type in each predicted year under 
the CLUE-S model. The spatial distribution of the predicted LULC between 2011 and 
2018 is displayed in Figure 5.4. Meanwhile, the area and percentage of LULC type 
between 2011 and 2018 are summarized in Tables 5.13 and 5.14, respectively. 
 

  
Predicted LULC 2011 Predicted LULC 2012 

  
Predicted LULC 2013 Predicted LULC 2014 

Figure 5.4 Spatial distribution of predicted LULC data between 2011 and 2018. 

 



146 

 

  
Predicted LULC 2015 Predicted LULC 2016 

  
Predicted LULC 2017 Predicted LULC 2018 

Figure 5.4 (Continued) 
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Table 5.13 Area of predicted LULC type between 2011 and 2018. 

LULC types 
Area of predicted LULC type in km2 

2011 2012 2013 2014 2015 2016 2017 2018 
Urban and built-up area (UR) 54.58 55.99 57.46 58.81 60.27 61.65 63.06 64.41 
Paddy field (PD) 2,064.15 2,057.68 2,051.17 2,044.70 2,038.20 2,031.64 2,025.15 2,018.69 
Sugarcane (SU) 170.56 187.61 204.62 221.65 238.68 255.75 272.80 289.83 
Cassava (CA) 613.86 598.35 582.86 567.39 551.89 536.39 520.90 505.42 
Other field crops (FC) 5.32 5.43 5.53 5.65 5.74 5.87 5.97 6.08 
Para rubber (PR) 37.51 44.93 52.39 59.83 67.26 74.71 82.14 89.59 
Perennial trees and orchard (PO) 54.49 58.80 63.17 67.42 71.78 76.06 80.37 84.63 
Forest land (FO) 591.02 577.30 563.53 549.87 536.14 522.43 508.74 495.02 
Waterbody (WA) 57.00 56.54 56.06 55.61 55.15 54.70 54.25 53.76 
Rangeland (RA) 72.09 72.03 71.98 71.85 71.81 71.81 71.71 71.71 
Marsh and swamp (MA) 32.75 32.13 31.48 30.90 30.21 29.59 28.95 28.33 
Unused land (UL) 40.88 47.42 53.98 60.55 67.07 73.61 80.18 86.75 

Total 3,794.22 3,794.22 3,794.22 3,794.22 3,794.22 3,794.22 3,794.22 3,794.22 
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Table 5.14 Percentage of predicted LULC type between 2011 and 2018. 

LULC types 
Percentage of predicted LULC type 

2011 2012 2013 2014 2015 2016 2017 2018 
Urban and built-up area (UR) 1.44 1.48 1.51 1.55 1.59 1.62 1.66 1.70 
Paddy field (PD) 54.40 54.23 54.06 53.89 53.72 53.55 53.37 53.20 
Sugarcane (SU) 4.50 4.94 5.39 5.84 6.29 6.74 7.19 7.64 
Cassava (CA) 16.18 15.77 15.36 14.95 14.55 14.14 13.73 13.32 
Other field crops (FC) 0.14 0.14 0.15 0.15 0.15 0.15 0.16 0.16 
Para rubber (PR) 0.99 1.18 1.38 1.58 1.77 1.97 2.16 2.36 
Perennial trees and orchard (PO) 1.44 1.55 1.66 1.78 1.89 2.00 2.12 2.23 
Forest land (FO) 15.58 15.22 14.85 14.49 14.13 13.77 13.41 13.05 
Waterbody (WA) 1.50 1.49 1.48 1.47 1.45 1.44 1.43 1.42 
Rangeland (RA) 1.90 1.90 1.90 1.89 1.89 1.89 1.89 1.89 
Marsh and swamp (MA) 0.86 0.85 0.83 0.81 0.80 0.78 0.76 0.75 
Unused land (UL) 1.08 1.25 1.42 1.60 1.77 1.94 2.11 2.29 

Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 
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In summary, it can be concluded that the predicted LULC map in two periods 
(2002-2009 and 2011-2018) using the CLUE-S model can provide realistic results as 
expected. Thus, the CLUE-S model can be used as an efficient tool to predict LULC 
based on historical development. In practice, the optimum derived multiple linear 
equations from the binary logit regression analysis for the LULC allocation, land 
requirement, and model parameters (elasticity and LULC conversion matrix) are very 
important for predicting the time-series LULC under the CLUE-S model. The suitable 
eight driving factors on LULC change in the study area include elevation, slope, annual 
rainfall, average income per capita at the sub-district level, population density at the 
sub-district level, distance to road network, distance to stream, and distance to the 
existing urban area. The LULC prediction applies specific multiple linear equations from 
the binomial logistic regression analysis, which provide AUC values from 0.61857 (poor 
fit) to 0.98239 (excellent fit) for specific LULC type allocation. The deviation values 
between the land use requirement and the predicted area of each LULC type varies 
from -0.0005% to 0.0005% or -0.05 km2 (underestimation) to 0.05 km2 (overestimation). 
The deviation value depends on iteration driving factors of each LULC type, which 
indicates the different maximum allowance between the required and allocated area 
of LULC type under the CLUE-S model (Liu, Wang, Li, and Xia, 2013; van Asselen and 
Verburg, 2013; Xu, Li, Song, and Yin, 2013). Therefore, the predicted LULC map in two 
periods (2002-2009 and 2011-2018) using the CLUE-S model can be validated and 
accepted for time-series surface runoff estimation in the next chapter. The area and 
percentage of each LULC type from time-series LULC data between 2001 and 2019 
based on RF classification and CLUE-S prediction are presented in Tables 5.15 and 5.16 
and Figure 5.5. 
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Table 5.15 Area of each LULC type from time-series LULC data between 2001 and 2019 based on RF classification and CLUE-S prediction. 
LULC type 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 
Urban and built-up area 46.17 46.95 47.71 48.5 49.3 50.05 50.82 51.61 52.41 53.21 54.58 55.99 57.46 58.81 60.27 61.65 63.06 64.41 65.84 
Paddy field 2,344.39 2,314.01 2,283.59 2,253.18 2,222.70 2,192.30 2,161.94 2,131.48 2,101.12 2,070.71 2,064.15 2,057.68 2,051.17 2,044.70 2,038.20 2,031.64 2,025.15 2,018.69 2,012.16 
Sugarcane 61.25 71.53 81.77 91.96 102.27 112.51 122.76 133.03 143.27 153.52 170.56 187.61 204.62 221.65 238.68 255.75 272.8 289.83 306.85 
Cassava 532.95 543.6 554.34 565.05 575.78 586.5 597.16 607.87 618.63 629.33 613.86 598.35 582.86 567.39 551.89 536.39 520.9 505.42 489.91 
Other field crops 2.09 2.45 2.79 3.13 3.5 3.83 4.17 4.51 4.87 5.19 5.32 5.43 5.53 5.65 5.74 5.87 5.97 6.08 6.19 
Para rubber 16.56 18.03 19.54 21.09 22.54 24.1 25.57 27.08 28.53 30.05 37.51 44.93 52.39 59.83 67.26 74.71 82.14 89.59 97.03 
Perennial trees and orchard 55.76 55.15 54.54 53.9 53.27 52.66 52.07 51.47 50.84 50.21 54.49 58.8 63.17 67.42 71.78 76.06 80.37 84.63 88.95 
Forest land 632 628.98 625.95 622.9 619.88 616.83 613.81 610.77 607.74 604.7 591.02 577.3 563.53 549.87 536.14 522.43 508.74 495.02 481.3 
Waterbody 36.81 39.12 41.4 43.7 46 48.28 50.57 52.86 55.16 57.46 57 56.54 56.06 55.61 55.15 54.7 54.25 53.76 53.3 
Rangeland 26.03 31.16 36.28 41.38 46.51 51.63 56.77 61.9 66.99 72.11 72.09 72.03 71.98 71.85 71.81 71.81 71.71 71.71 71.65 
Marsh and swamp 11.64 14.03 16.46 18.94 21.3 23.78 26.17 28.6 30.97 33.4 32.75 32.13 31.48 30.9 30.21 29.59 28.95 28.33 27.73 
Unused land 28.57 29.19 29.84 30.47 31.16 31.74 32.4 33.03 33.69 34.33 40.88 47.42 53.98 60.55 67.07 73.61 80.18 86.75 93.32 

Total 3,794.22 3,794.22 3,794.22 3,794.22 3,794.22 3,794.22 3,794.22 3,794.22 3,794.22 3,794.22 3,794.22 3,794.22 3,794.22 3,794.22 3,794.22 3,794.22 3,794.22 3,794.22 3794.22 
Note: LULC data in 2001, 2010, and 2019 are classified by RF classifier, while LULC data in 2002, 2003, 2004,2005,2006, 2007, 2008, 2009, 2011, 2012, 2013, 2014, 2015, 2016, 2017 and 2018 are 
predicted by CLUE-S model. 
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Table 5.16 Percentage of each LULC type from time-series LULC data between 2001 and 2019 based on RF classification and CLUE-S 
prediction. 
LULC type 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 

Urban and built-up area 1.22 1.24 1.26 1.28 1.30 1.32 1.34 1.36 1.38 1.40 1.44 1.48 1.51 1.55 1.59 1.62 1.66 1.70 1.74 
Paddy field 61.79 61.00 60.20 59.40 58.60 57.80 57.00 56.20 55.40 54.58 54.40 54.20 54.10 53.90 53.70 53.60 53.40 53.20 53.03 
Sugarcane 1.61 1.89 2.16 2.42 2.70 2.97 3.24 3.51 3.78 4.05 4.50 4.94 5.39 5.84 6.29 6.74 7.19 7.64 8.09 
Cassava 14.05 14.30 14.60 14.90 15.20 15.50 15.70 16.00 16.30 16.59 16.20 15.80 15.40 15.00 14.60 14.10 13.70 13.30 12.91 
Other field crops 0.06 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.14 0.14 0.15 0.15 0.15 0.15 0.16 0.16 0.16 
Para rubber 0.44 0.48 0.51 0.56 0.59 0.64 0.67 0.71 0.75 0.79 0.99 1.18 1.38 1.58 1.77 1.97 2.16 2.36 2.56 
Perennial trees and orchard 1.47 1.45 1.44 1.42 1.40 1.39 1.37 1.36 1.34 1.32 1.44 1.55 1.66 1.78 1.89 2.00 2.12 2.23 2.34 
Forest land 16.66 16.60 16.50 16.40 16.30 16.30 16.20 16.10 16.00 15.94 15.60 15.20 14.90 14.50 14.10 13.80 13.40 13.10 12.68 
Waterbody 0.97 1.03 1.09 1.15 1.21 1.27 1.33 1.39 1.45 1.51 1.50 1.49 1.48 1.47 1.45 1.44 1.43 1.42 1.40 
Rangeland 0.69 0.82 0.96 1.09 1.23 1.36 1.50 1.63 1.77 1.90 1.90 1.90 1.90 1.89 1.89 1.89 1.89 1.89 1.89 
Marsh and swamp 0.31 0.37 0.43 0.50 0.56 0.63 0.69 0.75 0.82 0.88 0.86 0.85 0.83 0.81 0.80 0.78 0.76 0.75 0.73 
Unused land 0.75 0.77 0.79 0.80 0.82 0.84 0.85 0.87 0.89 0.90 1.08 1.25 1.42 1.60 1.77 1.94 2.11 2.29 2.46 

Total 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 
Note: LULC data in 2001, 2010, and 2019 are classified by RF classifier, while LULC data in 2002, 2003, 2004,2005,2006, 2007, 2008, 2009, 2011, 2012, 2013, 2014, 2015, 2016, 2017 and 
2018 are predicted by CLUE-S model.  
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Figure 5.5 Contribution of LULC type of time-series LULC data between 2001 and 2019. 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Ar
ea

 in
 p

er
ce

nt

Year

Percentage of LULC type between 2001 and 2019

Urban and built-up area Paddy field Sugarcane Cassava
Other field crops Para rubber Perennial trees and orchard Forest land
Waterbody Rangeland Marsh and swamp Unused land

 



 
CHAPTER VI 

TIME-SERIES SURFACE RUNOFF ESTIMATION USING SCS-CN 
METHOD 

 
This chapter presents the third objective results focusing on estimating time-

series surface runoff between 2001 and 2019 based on the classified and predicted 
LULC data, annual rainfall data, and soil series data using the SCS-CN method. The 
significant results in this chapter consist of (1) basic information of input data for surface 
runoff estimation, (2) surface runoff estimation between 2001 and 2010, (3) surface 
runoff estimation between 2011 and 2019, and (4) contribution of time-series LULC 
data on surface runoff are here described and discussed in detail. 
 

6.1 Basic information of input data for surface runoff estimation 
The required input data for surface runoff estimation using the SCS-CN method 

include LULC, soil series, rainfall, and hydrologic soil group (HSG) data prepared in 
raster format with a cell size of 30 meters under raster-based GIS operation. Basic 
information and its distribution of input data for surface runoff estimation are 
separately described in the following sections. 

6.1.1 LULC data 
For surface runoff estimation, time-series LULC data between 2001 and 

2019 were classified and predicted LULC data. The classified LULC data are the LULC 
data in 2001, 2010, and 2019, which were classified from remotely sensed data using 
the Random Forest classifier, as reported in the details in Chapter IV: LAND USE AND 
LAND COVER CLASSIFICATION AND CHANGE DETECTION. Meanwhile, the predicted 
LULC data are LULC data from 2002 to 2009 and 2011 to 2018, which predicted based 
on the actual LULC data in 2001, 2010, and 2019 by the CLUE-S model, as described 
in the details in Chapter V: SIMULATION OF TIME-SERIES OF LAND USE AND LAND COVER 
DATA BY CLUE-S MODEL. The spatial distribution of LULC data between 2001 and 2019 
is displayed in Figure 4.8, Figure 5.3, Figure 4.13, Figure 5.4, and Figure 4.17. Additionally, 
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areas and percentage of each LULC type from time-series LULC data between 2001 
and 2019 based on the RF classification and CLUE-S prediction are summarized in 
Tables 5.15 and 5.16. 

6.1.2 Soil series data 
Recent soil series data obtained from LDD consist of thirty-two soil 

series types with texture attributes, as shown in Figure 6.1. Based on the 
reconnaissance soil survey at the scale of 100,000, thirty-two soil series types can be 
grouped by soil texture property into nine soil groups: clay, clay loam, loam, loamy 
sand, sandy loam, sandy clay loam, silty clay, silty loam, and silty clay loam (Table 
6.1). 

 
Table 6.1 Area and percentage of soil groups in the study area. 
Soil series Area in km2 Area in percent 
Alluvial Complex (AC) 184.62 4.87 
Ban Phai Series (Bpi) 0.35 0.01 
Bo Thai Series (Bo) 0.70 0.02 
Borabu series (Bb) 158.42 4.18 
Chaiyaphum Series 2.05 0.05 
Chatturat Series (Ct) 124.16 3.27 
Chiang Mai Series (Cm) 25.21 0.66 
Chum Phuang Series (Cpg) 1.77 0.05 
Korat series (Kt) 597.21 15.74 
Kula Ronghai Series (Ki) 31.41 0.83 
Mae Rim Series (Mr) 3.05 0.08 
Nakhon Phanom Series (Nn) 2.83 0.07 
Nam Phong Series (Ng) 207.24 5.46 
Phu Phan (Pu) 103.23 2.72 
Phimai Series (Pm) 27.70 0.73 
Phon Phisai Series (Pp) 33.52 0.88 
Ratdhaburi Series (Rb) 252.91 6.67 
Roi-et Series (Re) 791.82 20.87 
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Table 6.1 (Continued). 
Soil series Area in km2 Area in percent 
Sapphaya Series (Sa) 1.81 0.05 
Satuk Series (Suk) 52.67 1.39 
Si Khiu Series (Si) 14.39 0.38 
Si Song Khram Series (Ss) 42.98 1.13 
Si Thon Series (St) 3.67 0.10 
Slope Complex (SC) 524.06 13.81 
Sung Noen Series (Sn) 6.87 0.18 
Takhli Series (Tk) 1.40 0.04 
Tha Li Series (Tl) 0.96 0.03 
Tha Muang Series (Tm) 4.66 0.12 
That Phanom Series (Tp) 1.24 0.03 
Ubon Series (Ub) 3.84 0.10 
Warin Series (Wn) 531.18 14.00 
Waterbody (Wa) 33.68 0.89 
Yasothon Series (Yt) 22.61 0.60 
SUM 3,794.22 100.00 
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Figure 6.1 Spatial distribution of soil series type. 
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6.1.3 Rainfall data 
In this study, the Thai Meteorological Department (TMD) provided 

annual rainfall data between 2001 and 2019 with twelve rain gauge stations located 
within and nearby the watershed (Table 6.2). The location of meteorological stations 
is displayed in Figure 6.2. The continuous surface of the annual rainfall surface data 
was interpolated using the IDW method instead of assuming a constant annual rainfall 
over the entire watershed. It creates a grid of spatially distributed values extracted 
from the attribute table of rain gauge points with a cell size of 30 meters. 
 

Table 6.2 Basic information of rainfall station for annual rainfall interpolation. 

Station name Station code 
Location 

Easting Northing 
Loei 353201 790332.52 1931415.21 
Loei Agromet 353301 790411.68 1925878.53 
Phetchabun 379201 725962.82 1732117.41 
Wichian Buri 379402 729594.70 1816243.52 
Khon Kaen 381201 263695.74  1821481.81 
Tha Phra Agromet 381301 266745.10  1807057.70 
Chaiyaphum  403201 182156.06  1749054.65 
Lop Buri 426201 673984.44  1636832.43 
Bua Chum 426201 735378.87  1688699.21 
Nakhon Ratchasima  431201 185546.48 1656281.57 
Pak Chong Agromet 431301 749975.08 1620219.57 
Chok Chai 431401 195101.71 1629149.48 
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Figure 6.2 Location of meteorological stations for rainfall data interpolation. 
 

The spatial distribution of annual interpolated rainfall data between 
2001 and 2010, which were used to examine and validate a suitable AMC condition 
for surface runoff estimation, is displayed in Figure 6.3. The primary statistical data of 
the interpolated rainfall data from 2001 to 2010 are presented in Table 6.3. 

Meanwhile, annual interpolated rainfall data between 2011 and 2019, 
which were applied to estimate surface runoff with the suitable AMC, is shown in Figure 

 



159 

 

6.4. The primary statistical data of the interpolated rainfall data from 2011 to 2019 are 
presented in Table 6.4. 
 

  

  
Figure 6.3 Spatial distribution of annual interpolated rainfall data between 2001 and 
2010. 
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Figure 6.3 (Continued). 
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Figure 6.4 Spatial distribution of annual interpolated rainfall data between 2011 and 
2019. 
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Figure 6.4 (Continued). 
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Table 6.3 Basic statistical data of annual interpolated rainfall data between 2001 and 
2010 for suitable AMC identification and validation. 

Year Minimum Maximum Mean Standard deviation 
2001 927.50 1,251.10 1,025.52 65.71 
2002 1,038.04 1,330.53 1,155.79 47.19 
2003 832.60 1,138.89 928.08 63.17 
2004 918.40 1,293.79 1,023.05 77.71 
2005 1,039.19 1,178.88 1,093.19 32.56 
2006 951.40 1,188.05 1,028.21 48.74 
2007 1,221.48 1,342.90 1,291.01 30.63 
2008 1,492.36 1,695.19 1,639.37 36.50 
2009 1,227.15 1,502.09 1,391.12 64.17 
2010 1,358.79 1,506.30 1,456.08 31.85 

Average 1,100.69 1,342.77 1,203.14 49.82 

 
Table 6.4 Basic statistical data of annual interpolated rainfall data between 2011 and 
2019 for surface runoff estimation with suitable AMC. 

Year Minimum Maximum Mean Standard deviation 
2011 1,253.53 1,428.30 1,377.00 9.25 
2012 1,049.69 1,088.01 1,075.88 8.08 
2013 1,171.07 1,349.00 1,296.83 36.01 
2014 793.5 929.81 845.45 30.82 
2015 619.29 1,017.61 943.52 18.39 
2016 1,164.40 1,272.50 1,245.55 21.68 
2017 1,135.90 1,395.71 1,234.51 59.75 
2018 913.29 1,197.26 995.81 47.45 
2019 743.44 823.35 782.12 12.29 

Average 982.68 1,166.84 1,088.52 27.08 
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As a result, in Figure 6.3 and Table 6.3, annual interpolated rainfall 
data patterns from 2001 to 2010 are similar, except in 2007, 2008, 2009, and 2010. The 
mean annual interpolated rainfall data between 2007 and 2010 are higher than the 
average mean annual interpolated rainfall data (Figure 6.5). Meanwhile, patterns of 
annual interpolated rainfall data from 2011 to 2019 are different according to Figure 
6.4 and Table 6.4. The mean annual interpolated rainfall data in 2011, 2012, 2013, 
2016, and 2017 are higher than the average of mean annual interpolated rainfall data 
(Figure 6.6). Patterns of annual interpolated rainfall data play an essential role in annual 
surface runoff estimation using the SCS-CN method since this method is distributed 
surface runoff model. (See Figure 3.6). 

 

 
Figure 6.5 Mean annual and average mean annual interpolated rainfall between 2001 
and 2010. 
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Figure 6.6 Mean annual and average mean annual interpolated rainfall between 2011 
and 2019. 
 

6.1.4 Hydrologic soil group (HSG) data 
Soil series data were used to classify soil texture classes based on the 

percentage of sand, silt, and clay, resulting in Table 6.5. The spatial distribution of the 
soil texture class is presented in Figure 6.7. The soil texture class was further applied 
to assign potential runoff group as hydrologic soil group (HSG) into four groups (A, B, C, 
and D) based on the suggested criteria of the National Resources Conservation Service 
(National Resources Conservation Service, 2009), as a summary in Table 6.6. 

In general, the HSG data account for soils’ infiltration characteristics. 
They are further combined with LULC data as hydrologic soil group-land cover complex 
to indicate a specific runoff potential as the Curve Number (CN) according to the 
watershed’s antecedent moisture condition (AMC). See Tables 3.4 to 3.6 in Chapter III: 
RESEARCH PROCEDURES.  

In this study, a suitable AMC condition is first examined and validated 
for time-series surface runoff estimation between 2001 and 2010. Then the suitable 

0.00

200.00

400.00

600.00

800.00

1,000.00

1,200.00

1,400.00

2011 2012 2013 2014 2015 2016 2017 2018 2019

Ra
in

fa
ll 

in
 m

m

Year

Mean annual interpolated rainfall Average of mean annual interpolated rainfall (2011-2019)

 



166 

 

AMC condition is further chosen to estimate time-series surface runoff between 2011 
and 2019.  
 
Table 6.5 Soil series properties for hydrologic soil group determination. 

Soil series 
Particle size analysis  

LDD (2004) 
Soil texture 

class 
HSG 

%sand %silt %clay 
Alluvial Complex (AC) 5.6 40.6 53.8 Silty clay C 
Ban Phai Series (Bpi) 87.5 8.0 4.5 Loamy sand B 
Bo Thai Series (Bo) 76.8 17.1 6.1 Loamy sand B 
Borabu series (Bb) 86.0 11.5 2.5 Loamy sand B 
Chaiyaphum Series 31.7 46.0 22.3 Clay loam C 
Chatturat Series (Ct) 11.1 34.4 55.5 Silty clay C 
Chiang Mai Series (Cm) 70.1 22.2 9.7 Sandy loam B 
Chum Phuang Series (Cpg) 78.8 14.7 6.5 Loamy sand B 
Korat series (Kt) 68.0 24.0 8.0 Sandy loam B 
Kula Ronghai Series (Ki) 57.5 28.4 14.1 Sandy loam B 
Mae Rim Series (Mr) 69.5 16.0 14.5 Sandy loam B 
Nakhon Phanom Series (Nn) 5.1 58.8 36.1 Silty clay C 
Nam Phong Series (Ng) 87.0 11.0 2.0 Sandy loam B 
Phu Phan Series (Pu) 40.8 43.3 15.9 Loam C 
Phimai Series (Pm) 14.0 38.2 47.9 Clay D 
Phon Phisai Series (Pp) 50.0 25.5 24.5 Sandy clay loam C 
Ratdhaburi Series (Rb) 6.0 17.5 76.5 Clay D 
Roi-et Series (Re) 64.5 5.0 30.5 Sandy loam B 
Sapphaya Series (Sa) 16.0 55.0 29.0 Silty clay loam C 
Satuk Series (Suk) 26.0 51.0 23.0 Sandy clay loam C 
Si Khiu Series (Si) 58.0 33.1 8.9 Sandy loam B 
Si Song Khram Series (Ss) 3.6 47.6 48.9 Clay D 
Si Thon Series (St) 75.1 20.6 4.3 Sandy clay loam C 
Slope Complex (SC) - - - Slope Complex A 
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Table 6.5 (Continued). 

Soil series 
Particle size analysis  

LDD (2004) 
Soil texture 

class 
HSG 

%sand %silt %clay 
Sung Noen Series (Sn) 22.5 57.0 20.5 Silty loam C 
Takhli Series (Tk) 21.5 37.5 41.0 Clay D 
Tha Li Series (Tl) 34.3 3.6 22.1 Loam C 
Tha Muang Series (Tm) 43.0 44.8 12.2 Sandy loam B 
That Phanom Series (TP) 34.6 50.6 14.8 Silty loam C 
Ubon Series (Ub) 87.0 10.5 2.5 Loamy sand B 
Warin Series (Wn) 43.0 30.0 27.0 Clay loam C 
Yasothon Series (Yt) 77.1 3.2 19.7 Sandy loam B 

 
Table 6.6 Criteria for hydrologic soil group determination. 

HSG Runoff potential 
Percent of clay and 

sand 
Soil texture 

A low runoff 
potential 

%clay<10 and 
%sand>90  

gravel or sand textures 

B moderately low 
runoff potential 

%clay10-20 and 
%sand50-90  

loamy sand or sandy loam 
textures 

C moderately high 
runoff potential 

%clay20-40 and 
%sand<50  

loam, silt loam, sandy clay 
loam, clay loam, and silty 
clay loam textures 

D high runoff 
potential 

%clay>40 and 
%sand<50  

clayey textures 

Source: National Resources Conservation Service (2009). 
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Figure 6.7 Spatial distribution of hydrologic soil group. 
 

6.2 Surface runoff estimation between 2001 and 2010 
The digital LULC data between 2001 and 2010, annual rainfall data between 

2001 and 2010, and hydrologic soil group were used to estimate surface runoff for 
suitable AMC identification. In practice, relative surface runoff in each cell was 
generated based on runoff curve numbers (CN) according to hydrological soil-cover 
complex using Model Builder of ArcGISTM as shown in Figure 6.8. 
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Figure 6.8 Schematic diagram of Model Builder for surface runoff estimation 

 
In this phase, the runoff curve number (CN) values were assigned based on 

three different AMCs: AMC-I for dry, AMC-II for normal, and AMC-III for wet conditions 
(Tables 3.4 to 3.6). In principle, the AMC is an indicator of watershed wetness and 
availability of soil storage. The spatial distribution of CN values between 2001 and 2010 
of three different AMC conditions was displayed in Figures 6.9 to 6.11. 
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Figure 6.9 Spatial distribution of runoff CN values of AMC-I between 2001 and 2010. 
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Figure 6.9 Continued. 
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Figure 6.10 Spatial distribution of runoff CN values of AMC-II between 2001 and 2010. 
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Figure 6.10 (Continued). 
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Figure 6.11 Spatial distribution of runoff CN values of AMC-III between 2001 and 2010. 
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Figure 6.11 (Continued). 
 

Based on the derived CN values of the hydrologic soil group of each LULC type, 
the potential maximum storage (S) was further calculated under three different AMCs 
using Equation 3.3 in Chapter III. Figures 6.12 to 6.14 illustrate the spatial distribution 
of potential maximum storage of three different AMCs between 2001 and 2010.  

As a result, the values of potential maximum storage with a depth of AMC-I 
vary from 246.89 mm to 1,596.56 mm. Meanwhile, the values of potential maximum 
storage with a depth of AMC-II and AMC-III vary from 235.00 mm to 798.50 mm and 
237.17 mm to 483.55 mm, respectively. It can be observed that the potential 
maximum storage of AMC-I provides the highest values because AMC-I represents the 
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dry of soil moisture condition; the soil can retain a maximum quantity of water until it 
reaches saturation. 
 

  

  
Figure 6.12 Spatial distribution of potential maximum storage (S) of AMC-I between 
2001 and 2010. 
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Figure 6.12 (Continued). 

 



178 

 

  

  

  
Figure 6.13 Spatial distribution of potential maximum storage (S) of AMC-II between 
2001 and 2010. 
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Figure 6.13 (Continued). 
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Figure 6.14 Spatial distribution of potential maximum storage (S) of AMC-III between 
2001 and 2010. 
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Figure 6.14 (Continued). 
 

Then, surface runoff of three different AMCs was estimated based on annual 
rainfall and potential maximum storage between 2001 and 2010 using the surface 
runoff depth equation using Equation 3.4. After that, the estimated surface runoff 
depth of three different AMCs was separately converted into surface runoff volume 
using Equation 3.5 for suitable AMC identification. 

The spatial distribution of surface runoff of three different AMCs between 2001 
and 2010 was displayed in Figures 6.15 to 6.17. Meanwhile, the summary of 
accumulated surface runoff volume and rainfall in three AMCs between 2001 and 2010 
was presented in Table 6.7. 
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Figure 6.15 Spatial distribution of surface runoff volume of AMC-I between 2001 and 
2010. 
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Figure 6.15 (Continued).  
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Figure 6.16 Spatial distribution of surface runoff volume of AMC-II between 2001 and 
2010. 
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Figure 6.16 (Continued). 
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Figure 6.17 Spatial distribution of surface runoff volume of AMC-III between 2001 and 
2010. 
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Figure 6.17 (Continued). 
 

Table 6.7 Accumulated surface runoff volume and rainfall in three different AMCs. 

Year Annual rainfall (mm) 
Surface runoff volume (million m3) 

AMC-I AMC-II AMC-III 
2001 939.70 1,178.41 1,429.77 1,537.88 
2002 1,191.60 4,057.74 4,483.62 4,652.40 
2003 900.80 1,444.46 1,719.46 1,836.21 
2004 915.40 1,335.34 1,602.36 1,716.51 
2005 1,039.00 1,754.45 2,057.88 2,185.22 
2006 1,196.00 4,229.13 4,672.73 4,847.85 
2007 1,342.90 3,234.72 3,636.14 3,795.55 
2008 1,695.20 5,869.54 6,366.80 6,558.70 
2009 1,502.10 4,189.38 4,629.86 4,804.03 
2010 1,506.30 5,761.81 6,249.33 6,437.31 
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As a result, the accumulated surface runoff volume in the study area ranges 
from 1,178.41 million m3 in 2001 of AMC-I to 6,558.70 million m3 in 2008 of AMC-III. 
Figure 6.18 shows the temporal change of the estimated surface runoff volume 
between 2001 and 2010 and the annual rainfall data of Chaiyaphum Meteorological 
station, located at the center of the study area. Consequently, it revealed that the 
pattern of surface runoff volume of three different AMCs and annual rainfall is similar. 
The higher the annual rainfall, the higher the surface runoff. This finding was confirmed 
by simple linear regression analysis, as a result in Figures 6.19 to 6.21. The surface 
runoff correlates with annual rainfall with the coefficient of determination (R2) of 
0.8503, 0.8511, and 0.8513 for AMC-I, AMC-II, and AMC-III, respectively. These coefficient 
values show a strong relationship between annual rainfall and surface runoff, according 
to Me, Abell, and Hamilton (2015). The coefficient of determination from each AMC 
condition indicates that the variation in annual rainfall accounts for 85% of the 
variation in surface runoff. 

Additionally, it can be observed that surface runoff volumes with three different 
AMC conditions show a positive correlation to rainfall with a strong coefficient of 
determination of more than 0.85. (See Figures 6.19 to 6.21). This finding was similar to 
the results of Kasei, Ampadu, and Sapanbil (2013). They applied linear regression 
analysis to identify the relationship between rainfall and runoff in the White Volta River 
at Pwalugu of the Volta Basin in Ghana. 
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Figure 6.18 Pattern of surface runoff volume and annual rainfall of three different 
AMCs between 2001 and 2010. 
 

 
Figure 6.19 Relationship between surface runoff and annual rainfall of AMC-I. 
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Figure 6.20 Relationship between surface runoff and annual rainfall of AMC-II.  
 

 
Figure 6.21 Relationship between surface runoff and annual rainfall of AMC-III. 
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The estimated surface runoff data in three different AMCs between 2001 and 
2010 from the SCS-CN method were further used to measure model performance 
based on the observed runoff from the hydrological station gauge at E.21, E.23, and 
E6C of the Hydrology and Water Center Management for the Upper Northeastern 
Region (Figure 6.22) using Nash and Sutcliffe’s coefficient of efficiency (NSE), coefficient 
of determination (R2), and percent of bias (PBIAS) (Equations 3.6 to 3.8). The best model 
performance statistics from the estimated surface runoff in three different AMCs were 
applied to validate and identify suitable AMC identification. 

Table 6.8 presented the comparison between observed surface runoff values 
from three sub-watershed (E.21, E23, and E.6C stations) and estimated surface runoff 
and their relative error (RE) values in three different AMCs.  

 

 
Figure 6.22 Spatial distribution of sub-watershed of the hydrological station 
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As a result, in Table 6.8, it can be observed that surface runoff in three different 
sub-watersheds with three soil conditions (AMC-I, AMC-II, and AMC-III) are over and 
underestimated in a specific year according to rainfall data as mentioned earlier. (See 
Figures 6.19 to 6.21). Furthermore, according to the RE values based on average 
observed and estimated values in Table 6.8, the estimated surface runoff in the 
upstream watershed at E.6C station and downstream watershed at E.21 station is 
underestimated with AMC-I soil condition and is overestimated with AMC-II and III. 
However, the estimated surface runoff in the middle stream watershed at E.23 station 
is underestimated with all AMC conditions. These findings indicate an effect of LULC 
on surface runoff, particularly in the case of middle-stream and downstream 
watersheds, where patterns of mean annual rainfall between 2001 and 2010 are 
almost the same (Figure 6.23). 
 

 
Figure 6.23 Mean annual rainfall of over downstream (E21 station), middle stream (E.23 
station), and upstream (E.6C station) between 2001 and 2010. 

 
The result of model performance using NSE, R2, and PBIAS for identifying 

suitable AMC for surface runoff estimation is reported in Table 6.9. 
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Table 6.8 Comparison between observed (Qobs) and simulated (Qsim) surface runoff of three hydrological stations. 

Year 

E.21 hydrological station E.23 hydrological station E.6C hydrological station 

Qobs  
AMC-I AMC-II AMC-III 

Qobs 
AMC-I AMC-II AMC-III 

Qobs  
AMC-I AMC-II AMC-III 

Qsim RE (%) Qsim RE (%) Qsim RE (%) Qsim RE (%) Qsim RE (%) Qsim RE (%) Qsim RE (%) Qsim RE (%) Qsim RE (%) 

2001 633.4 601.82 4.99 695.90 -9.87 725.99 -14.62 373.10 292.79 21.53 354.69 4.93 382.87 -2.62 36.64 25.82 29.53 45.19 -23.33 61.25 -67.17 
2002 1,954.20 1,820.05 6.86 1,959.27 -0.26 2,001.76 -2.43 1,500.70 929.33 38.07 1,032.16 31.22 1,074.94 28.37 166.38 113.11 32.02 169.23 -1.71 204.97 -23.19 
2003 656.7 650.03 1.02 746.73 -13.71 777.44 -18.39 575.60 316.30 45.05 379.93 33.99 408.74 28.99 50.63 21.60 57.34 37.64 25.65 51.78 -2.26 
2004 549.9 838.14 -52.42 945.00 -71.85 978.53 -77.95 542.40 409.53 24.50 482.10 11.12 514.13 5.21 41.21 31.16 24.40 53.41 -29.60 71.19 -72.74 
2005 854.7 1,077.71 -26.09 1,195.42 -39.86 1,232.06 -44.15 653.80 530.00 18.94 612.45 6.33 648.20 0.86 84.33 54.38 35.51 90.48 -7.30 116.27 -37.88 
2006 2,230.50 2,439.22 -9.36 2,590.81 -16.15 2,636.54 -18.20 1,630.70 1,246.65 23.55 1,364.56 16.32 1,412.19 13.40 73.37 35.22 51.99 61.22 16.56 81.35 -10.88 
2007 1,914.30 1,450.86 24.21 1,581.28 17.40 1,621.40 15.30 845.50 724.36 14.33 819.84 3.04 859.75 -1.69 85.42 47.58 44.30 82.78 3.10 107.02 -25.28 
2008 3,494.50 3,173.60 9.18 3,334.97 4.57 3,383.21 3.18 1,932.20 1,625.72 15.86 1,754.19 9.21 1,804.98 6.58 180.45 146.87 18.61 214.70 -18.98 256.12 -41.93 
2009 2,180.20 2,181.08 -0.04 2,328.33 -6.79 2,372.98 -8.84 1,560.00 1,121.68 28.10 1,234.52 20.86 1,280.50 17.92 151.03 122.82 18.68 184.17 -21.94 222.61 -47.40 
2010 3,188.90 3,033.46 4.87 3,189.97 -0.03 3,237.17 -1.51 2,174.40 1,570.83 27.76 1,698.55 21.88 1,749.15 19.56 206.15 181.51 11.95 255.45 -23.92 299.02 -45.05 
Avg 1,765.73 1,726.60 2.22 1,856.77 -5.16 1,896.71 -7.42 1,178.84 876.72 25.63 973.3 17.44 1,013.54 14.02 107.56 78.01 27.47 119.43 -11.04 147.16 -36.82 

Note: observed (Qobs) and simulated (Qsim) surface runoff in a million m3. 
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Table 6.9 Statistical data of model performance for suitable AMC identification and 
model validation. 

AMC Year 
E.21 station  E.23 station  E.6C station 

NSE R2 PBIAS  NSE R2 PBIAS  NSE R2 PBIAS 
AMC-II 2001 0.95 0.96 0.18  0.67 0.96 0.68  0.71 0.96 1.01 

2002 0.76  4.85  4.95 
2003 0.04  2.20  2.70 
2004 -1.63  1.13  0.93 
2005 -1.26  1.05  2.78 
2006 -1.18  3.26  3.55 
2007 2.62  1.03  3.52 
2008 1.82  2.60  3.12 
2009 -0.01  3.72  2.62 
2010 0.88  5.12  2.29 

AMC-II 2001 0.94 0.96 -0.35  0.82 0.96 0.16  0.85 0.97 -0.79 
2002 -0.03  3.97  -0.27 
2003 -0.51  1.66  1.21 
2004 -2.24  0.51  -1.13 
2005 -1.93  0.35  -0.57 
2006 -2.04  2.26  1.13 
2007 1.89  0.22  0.25 
2008 0.90  1.51  -3.18 
2009 -0.84  2.76  -3.08 
2010 -0.01  4.04  -4.58 

AMC-III 2001 0.94 0.96 -0.52  0.86 0.96 -0.08  0.32 0.97 -2.29 
2002 -0.27  3.61  -3.59 
2003 -0.68  1.42  -0.11 
2004 -2.43  0.24  -2.79 
2005 -2.14  0.05  -2.97 
2006 -2.30  1.85  -0.74 
2007 1.66  -0.12  -2.01 
2008 0.63  1.08  -7.03 
2009 -1.09  2.37  -6.66 
2010 -0.27  3.61  -8.63 
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As a result, the model performance results at the E.21 hydrological station 
shows that the NSE value is 0.95, 0.94, and 0.94, which indicates a perfect fit for surface 
runoff estimation of AMC-I, AMC-II, and AMC-III, respectively, and a very high correlation 
between the observed and estimated surface runoff with an R2 of 0.96 for all AMCs. 
Meanwhile, the PBIAS value varies from 0.93% in 2004 to 4.95% in 2002 for 
underestimation.  

The scatter plots of the observed and estimated surface runoff between 2001 
and 2010 at station E.21 of three different AMCs, along with the 1:1 line (solid line), 
are shown in Figure 6.24. It is observable that all of the AMC relation lines are almost 
identical to the 1:1 line. However, the AMC-I relation line is slightly below the 1:1 line, 
indicating that the model is slightly underestimated. In contrast, the AMC-II and  
AMC-III relation lines are slightly above the 1:1 line, indicating that the model is slightly 
overestimated. 

  
(a) AMC-I (a) AMC-II 

 

 

(a) AMC-III  

Figure 6.24 Relationship between observed and estimated runoff between 2001 and 
2010 at the E.21 stations. 
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In the meantime, the model performance results at the E.23 hydrological 
station reveal that the NSE value is 0.67, 0.82, and 0.86, which shows a good and very 
good fit for surface runoff estimation and a very high correlation between the observed 
and estimated surface runoff with R2 of 0.96 for all AMCs. Meanwhile, the PBIAS value 
varies from -4.58% for overestimation bias in 2010 to 1.21% for underestimation bias 
in 2003. The scatter plots of the observed and estimated surface runoff between 2001 
and 2010 at station E.23 of three different AMCs, along with the 1:1 line, are shown in 
Figure 6.25. It can be observed that all of the AMC relation lines are slightly below the 
1:1 line, indicating that the model is slightly underestimated. However, all AMC’s well-
distributed scatter plots are entirely satisfactory. 

 

  
(a) AMC-I (a) AMC-II 

 

 

(a) AMC-III  

Figure 6.25 Relationship between observed and estimated runoff between 2001 and 
2010 at the E.23 stations. 
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the model provides the R2 values of 0.96, 0.97, and 0.97, which indicates a very high 
correlation between the observed and estimated surface runoff. At the same time, the 
PBIAS value varies from -8.63% in 2010 to -0.11 in 2003 for overestimation bias. Figure 
6.26 illustrates the scatter plots of the observed and estimated surface runoff between 
2001 and 2010 at station E.6C of three different AMCs along with the 1:1 line. It reveals 
that all AMC’s well-distributed scatter plots are quite satisfactory. The AMC-I relation 
line is slightly below the 1:1 line, indicating that the model is slightly underestimated. 
In contrast, the AMC-II and AMC-III relation lines are slightly above the 1:1 line, 
indicating that the model is slightly overestimated. 

 

  
(a) AMC-I (b) AMC-II 

 

 

(c) AMC-III  

Figure 6.26 Relationship between observed and estimated runoff between 2001 and 
2010 at the E.6C stations. 
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Besides, NSE, R2, and PBIAS of all AMCs were compared to identify the suitable 
AMC for surface runoff estimation between 2011 and 2019, as shown in Table 6.10. As 
a result, it was found that AMC-II can provide all average statistics measurements better 
than other AMCs. Thus, the AMC-II condition was chosen as the suitable AMC for 
surface runoff estimation in the second period (2011-2019). 
 
Table 6.10 Comparison of average statistics measurement for suitable AMC 
examination. 

AMC 
Average statistics measurement 

NSE R2 PBIAS 
AMC-I 0.78 0.96 1.84 
AMC-II 0.87 0.96 0.04 
AMC-III 0.71 0.96 -1.01 

 

6.3 Surface runoff estimation between 2011 and 2019 
The digital LULC data between 2011 and 2019, annual rainfall data between 

2011 and 2019, and hydrologic soil group were used to estimate surface runoff with 
suitable AMC conditions. In practice, relative surface runoff in each cell was generated 
based on runoff curve numbers (CN) according to hydrological soil-cover complex using 
Model Builder of ArcGISTM, as mentioned earlier in the previous section (See Figure 6.6). 
The runoff curve number (CN) values were assigned based on the AMC-II condition, as 
the suitable AMC in this study. The spatial distribution of CN values between 2011 and 
2019 is displayed in Figure 6.27. 
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Figure 6.27 Spatial distribution of runoff CN values with AMC-II between 2011 and 
2019. 
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Figure 6.27 (Continued). 
 

Based on the derived CN values of the hydrologic soil group of each LULC type, 
the potential maximum storage (S) was calculated using Equation 3.3. The spatial 
distribution of potential maximum storage with AMC-II between 2011 and 2019 was 
displayed in Figure 6.28. As a result, it was found that the values of potential maximum 
storage in depth between 2011 and 2019 vary from 235.00 mm to 789.50 mm.  
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Figure 6.28 Spatial distribution of potential maximum storage (S) with AMC-II between 
2011 and 2019. 
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Figure 6.28 (Continued). 
 

Besides, surface runoff estimation with AMC-II between 2011 and 2019 was 
estimated based on annual rainfall and potential maximum storage using the surface 
runoff depth equation (Equation 3.4). After that, the estimated surface runoff depth 
with AMC-II between 2011 and 2019 was converted into surface runoff volume using 
Equation 3.5. As a result, the spatial distribution of surface runoff with AMC-II between 
2011 and 2019 is illustrated in Figure 6.29. Meanwhile, the summary of accumulated 
surface runoff volume and rainfall between 2001 and 2010 was presented in Table 
6.11. 
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Figure 6.29 Spatial distribution of surface runoff volume between 2011 and 2019. 
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Figure 6.29 (Continued). 
 
Table 6.11 Accumulated surface runoff volume and rainfall between 2011 and 2019. 

Year Annual rainfall (mm) Surface runoff volume (million m3) 
2011 1,428.30 6,142.43 
2012 1,087.20 3,583.03 
2013 1,333.30 4,200.48 
2014 793.50 1,003.60 
2015 919.30 1,233.80 
2016 1,044.20 3,475.16 
2017 1,281.80 5,433.33 
2018 809.00 2,588.57 
2019 752.60 1,445.54 
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As a result, it was found that the accumulated surface runoff volume ranged 
from 1,003.60 million m3 in 2014 to 6,142.43 million m3 in 2011. Figure 6.30 shows the 
temporal change of the estimated surface runoff volume and annual rainfall data 
between 2010 and 2019 of the Chaiyaphum Meteorological station, located at the 
center of the study area. It reveals that the pattern of surface runoff volume and 
annual rainfall between 2011 and 2019 is similar. The higher the annual rainfall, the 
higher the surface runoff. This finding was confirmed by simple linear regression 
analysis, as a result in Figure 6.31. The surface runoff correlates with annual rainfall 
with the coefficient of determination (R2) of 0.8511. This coefficient indicates that there 
is a very good relationship between annual rainfall and surface runoff. The coefficient 
of determination indicates that the variation in annual rainfall accounts for 85% of the 
variation in surface runoff. 

Additionally, it can be observed that all of them showed positive correlations, 
showing high correlation coefficient values indicating high variations in the rainfall and 
the surface runoff. This finding was similar to the previous section of the current study 
and similar to the results of Canqiang, Wenhua, Biao, and Moucheng (2012). They 
applied linear regression analysis to identify the relationship between rainfall and 
runoff in the Xitiaoxi river basin, China. 

 

 
Figure 6.30 Pattern of surface runoff volume and annual rainfall of AMC-II between 
2011 and 2019. 
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Figure 6.31 Relationship between surface runoff and annual rainfall of AMC-II between 
2011 and 2019. 

 
In addition, the estimated surface runoff with AMC-II between 2011 and 2019 

from the SCS-CN method was validated based on the observed surface runoff at E.21, 
E.23, and E6C hydrological station gauges of the Hydrology and Water Center 
Management for the Upper Northeastern Region using an average NSE, R2, and PBIAS. 

Table 6.12 presented the comparison between observed surface runoff values 
between 2011 and 2019 from E.21, E23, and E.6C gauge stations and estimated surface 
runoff with relative error (RE). As a result, the RE ranges from -1,223.63% in 2019 at 
E.21 hydrological station to 0.82% in 2011 at E.21 hydrological station. A high value of 
RE indicates a more significant deviation of the computed values from the observed, 
whereas RE equal to zero shows a perfect fit. 
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Table 6.12 Compares observed (Qobs) and simulated (Qsim) surface runoff between 
2011 and 2019 of three hydrological stations. 

Year 
E.21 hydrological station  E.23 hydrological station  E.6C hydrological station 

Qobs Qsim RE (%)  Qobs Qsim 
RE 
(%) 

 Qobs Qsim RE (%) 

2011 2,943.40 2,919.23 0.82   2,283.30 1,954.57 14.40   175.78 158.26 9.97 
2012 1,989.10 1,694.14 14.83   677.20 882.97 -30.39   112.15 151.54 -35.13 
2013 1,884.80 2,058.57 -9.22   1,646.70 1,492.01 9.39   70.59 79.15 -12.12 
2014 339.30 600.38 -76.95   330.40 299.17 9.45   19.87 23.05 -15.99 
2015 440.80 547.04 -24.10   418.70 272.62 34.89   27.32 53.76 -96.79 
2016 1,563.30 1,490.67 4.65   1,058.30 771.66 27.09   87.26 75.27 13.74 
2017 2,732.70 2,668.97 2.33   1,823.20 1,563.06 14.27   182.55 166.29 8.91 
2018 923.60 1,089.07 -17.92   665.80 573.76 13.82   64.48 78.83 -22.25 
2019 60.10 795.50 -1,223.63   84.20 412.55 -389.96   38.25 59.31 -55.07 
Avg 1,430.79 1,540.40   998.64 913.60   86.47 93.94  

Note: observed (Qobs) and simulated (Qsim) surface runoff in a million m3. 

 
Furthermore, the statistical report of model performance for validating surface 

runoff estimation between 2011 and 2019 is reported in Table 6.13. As a result, the 
model performance results at the E.21 hydrological station provide NSE and R2 values 
of 0.91 and 0.94, respectively. At the same time, PBIAS values range from -5.71% for 
an overestimation bias in 2019 to 2.29% for an underestimation bias in 2012. These 
values indicate a perfect fit for surface runoff estimation and a very high correlation 
between the observed and estimated surface runoff. Meanwhile, the model 
performance results at the E.23 hydrological station reveal that the NSE and R2 values 
are 0.90 and 0.94, which shows a very good fit for surface runoff estimation and a very 
high correlation between the observed and estimated surface runoff. At the same time, 
the PBIAS values vary between -3.65% for overestimation bias in 2019 and 3.66% for 
underestimation bias in 2011. At the same time, the model performance results at the 
E.6C hydrological station show that the PBIAS values range from -5.06% for 
overestimation bias in 2012 to 2.25% for underestimation bias in 2011. The NSE and R2 
values are 0.87 and 0.90, which indicate a perfect fit for the surface runoff estimation 
and a very high correlation between the observed and estimated surface runoff. 
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Table 6.13 Statistical model performance data for surface runoff estimation between 
2011 and 2019 at three hydrological stations. 

AMC Year 
E.21 station  E.23 station  E.6C station 

NSE R2 PBIAS  NSE R2 PBIAS  NSE R2 PBIAS 
AMC-II 2011 0.91 0.94 0.19  0.90 0.94 3.66  0.87 0.90 2.25  

2012 
  

2.29  
  

-2.29  
  

-5.06 
2013 -1.35  1.72  -1.10 
2014 -2.03  0.35  -0.41 
2015 -0.83  1.63  -3.40 
2016 0.56  3.19  1.54 
2017 0.49  2.89  2.09 
2018 -1.28  1.02  -1.84 
2019 -5.71  -3.65  -2.71 

 
Furthermore, the scatter plots of the observed and estimated surface runoff 

between 2011 and 2019 at E.21, E.23, and E.6C hydrological stations, along with the 
1:1 line (dash line), are displayed in Figure 6.32. It can be observed that all hydrological 
station relation lines are almost identical to the 1:1 line. The E.21 and E.6C hydrological 
station relation lines are slightly above the 1:1 line, indicating that the model is slightly 
overestimated. In contrast, the E.23 relation line is slightly below the 1:1 line, indicating 
that the model is slightly underestimated. 

According to a statistical report of model performance for surface runoff 
estimation between 2001 and 2019, the derived NSE and R2 values are more than 0.65, 
and the PBIAS value is less than ± 10. These results show a perfect fit for surface runoff 
estimation with a very high correlation between observed and estimated surface 
runoff. Thus, it can be concluded that surface runoff estimation using the SCS-CN 
method in the current study can be validated with acceptable results.  
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(a) E.21 station (b) E.23 station 

 

 

(c) E.6C station  

Figure 6.32 Relationship between observed and estimated runoff between 2011 and 
2019 at three hydrological stations. 
 

6.4 Contribution of times series LULC data on surface runoff 
The time-series estimated surface runoff and LULC data between 2001 and 

2019 were used to extract the surface runoff volume of each LULC type using Zonal 
analysis in the ArcGIS. The surface runoff volume and average surface runoff in each 
LULC type were presented in Tables 6.14 and 6.15, respectively. In addition, temporal 
average surface runoff volume by each LULC type was shown in Figure 6.33. 
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Table 6.14 Characteristics of temporal surface runoff volume by each LULC type 
between 2001 and 2019. 

Item 
LULC type 

Year UR PA SU CA FC PR PO FO WA RA MA UL 

Su
rfa

ce
 ru

no
ff 

in
 m

ill
io

n 
m

3  

2001 19.89 948.37 21.72 206.44 0.84 5.72 19.16 163.65 16.33 9.66 5.14 12.84 

2002 58.51 2,931.20 78.69 637.26 2.54 14.74 50.79 572.53 44.98 35.94 18.72 37.71 

2003 24.02 1,120.41 28.52 260.35 1.04 8.89 24.63 191.65 21.16 14.20 9.27 15.32 

2004 22.08 1,011.19 37.31 253.92 1.29 8.70 22.28 181.86 21.68 16.74 10.54 14.78 

2005 28.77 1,295.13 49.84 322.28 1.63 12.68 28.58 238.74 27.28 21.13 13.77 18.06 

2006 64.82 2,795.87 131.60 757.11 3.99 28.46 62.90 634.10 65.27 54.36 33.15 41.10 

2007 53.31 2,195.41 101.77 552.54 3.52 25.30 51.20 474.22 53.98 58.47 31.27 35.14 

2008 90.51 3,753.83 218.18 974.64 7.35 45.48 85.01 893.75 95.31 88.58 55.16 58.99 

2009 68.59 2,704.53 173.42 719.88 5.27 35.16 61.29 621.00 75.53 75.06 45.33 44.83 

2010 94.53 3,521.63 256.02 1,062.73 8.38 45.11 83.01 840.91 99.75 120.34 58.73 58.18 

2011 92.28 3,432.00 249.99 1,066.22 8.32 55.65 81.33 825.69 98.39 118.36 55.75 58.45 

2012 58.21 2,014.75 175.45 603.86 4.87 37.33 47.52 432.15 58.89 69.27 35.47 45.27 

2013 68.08 2,356.67 218.44 678.11 5.64 50.11 58.11 511.41 68.22 80.20 45.00 60.48 

2014 17.41 577.90 52.41 177.70 1.40 13.78 14.36 84.07 18.29 20.12 11.24 14.92 

2015 21.62 698.75 74.42 208.59 1.67 18.86 20.01 105.28 21.91 25.57 12.63 24.48 

2016 59.67 1,955.92 211.29 514.54 5.55 55.98 54.40 381.68 57.12 70.39 35.86 72.78 

2017 89.81 2,987.11 341.87 813.31 8.34 103.60 100.93 631.07 87.87 106.24 47.92 115.26 

2018 44.36 1,425.02 187.82 381.26 3.56 50.55 48.89 261.88 43.86 51.19 28.05 62.14 

2019 28.94 812.89 118.35 199.66 2.45 29.95 32.81 116.98 23.49 28.43 12.55 39.04 

 AVG 52.92 2,028.35 143.53 546.86 4.09 34.00 49.85 429.61 52.60 56.01 29.77 43.67 
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Table 6.15 Characteristics of average surface runoff volume by each LULC type 
between 2001 and 2019. 

Item 
LULC type 

Year UR PA SU CA FC PR PO FO WA RA MA UL 

Av
er

ag
e 

su
rfa

ce
 ru

no
ff 

in
 m

ill
io

n 
m

3  p
er

 k
m

2  

2001 0.43 0.40 0.35 0.39 0.40 0.35 0.34 0.26 0.44 0.37 0.44 0.45 

2002 1.25 1.27 1.10 1.17 1.04 0.82 0.92 0.91 1.15 1.15 1.33 1.29 

2003 0.50 0.49 0.35 0.47 0.37 0.45 0.45 0.31 0.51 0.39 0.56 0.51 

2004 0.46 0.45 0.41 0.45 0.41 0.41 0.41 0.29 0.50 0.40 0.56 0.48 

2005 0.58 0.58 0.49 0.56 0.47 0.56 0.54 0.39 0.59 0.45 0.65 0.58 

2006 1.30 1.28 1.17 1.29 1.04 1.18 1.19 1.03 1.35 1.05 1.39 1.29 

2007 1.05 1.02 0.83 0.93 0.84 0.99 0.98 0.77 1.07 1.03 1.20 1.08 

2008 1.75 1.76 1.64 1.60 1.63 1.68 1.65 1.46 1.80 1.43 1.93 1.79 

2009 1.31 1.29 1.21 1.16 1.08 1.23 1.21 1.02 1.37 1.12 1.46 1.33 

2010 1.78 1.70 1.67 1.69 1.61 1.50 1.65 1.39 1.74 1.67 1.76 1.69 

2011 1.69 1.66 1.47 1.74 1.56 1.48 1.49 1.40 1.73 1.64 1.70 1.43 

2012 1.04 0.98 0.94 1.01 0.90 0.83 0.81 0.75 1.04 0.96 1.10 0.95 

2013 1.18 1.15 1.07 1.16 1.02 0.96 0.92 0.91 1.22 1.11 1.43 1.12 

2014 0.30 0.28 0.24 0.31 0.25 0.23 0.21 0.15 0.33 0.28 0.36 0.25 

2015 0.36 0.34 0.31 0.38 0.29 0.28 0.28 0.20 0.40 0.36 0.42 0.36 

2016 0.97 0.96 0.83 0.96 0.95 0.75 0.72 0.73 1.04 0.98 1.21 0.99 

2017 1.42 1.48 1.25 1.56 1.40 1.26 1.26 1.24 1.62 1.48 1.66 1.44 

2018 0.69 0.71 0.65 0.75 0.59 0.56 0.58 0.53 0.82 0.71 0.99 0.72 

2019 0.44 0.40 0.39 0.41 0.40 0.31 0.37 0.24 0.44 0.40 0.45 0.42 

 AVG 0.97 0.96 0.86 0.95 0.86 0.83 0.84 0.74 1.01 0.89 1.08 0.96 
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Figure 6.33 Average surface runoff volume of LULC type during 2001 to 2019. 

 
As a result, the top three most dominant LULC types on surface runoff are 

paddy field, cassava, and forest land, which provide surface runoff of 2,028.35, 546.86, 
and 429.61 million m3, respectively. On the other hand, the top three least dominant 
LULC types on surface runoff are other field crops, marsh and swamp, and unused 
land, which provides a surface runoff of 4.09, 29.77, and 43.67 million m3, respectively.  

In addition, it can be observed that marsh and swamp provide the highest 
average surface runoff every year, while forest land provides the lowest surface runoff 
every year. In the meantime, the average surface runoff of para rubber, orchard and 
perennial trees, and field crops (sugarcane, cassava, and other field crops) are similar. 
This character corresponds to the CN values; marsh and swamp provide the highest 
CN value while forest land provides the lowest CN value. These findings indicate the 
influence of LULC type on surface runoff. 
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CHAPTER VII 

OPTIMIZATION AND MAPPING OF LAND USE AND LAND COVER 
ALLOCATION FOR FLOOD MITIGATION 

 
This chapter presents the fourth and fifth objectives regarding optimization and 

mapping of LULC allocation for flood mitigation in the Second Part of the Lam Nam 
Chi watershed. Briefly, the fourth objective focuses on optimizing LULC allocation to 
minimize surface runoff for flood mitigation using Goal programming. Meanwhile, the 
fifth objective focuses on mapping LULC allocation for flooding mitigation using the 
CLUE-S model. The significant results in this chapter consist of (1) SPI calculation for 
rainfall condition identification, (2) optimization of LULC allocation for flood mitigation, 
and (3) mapping of LULC allocation for flood mitigation are here described and 
discussed in detail. 
 

7.1 SPI calculation for rainfall condition identification 
The historical rainfall data records from 33 years (between 1987 and 2019) of 

the Chaiyaphum meteorological station (Figure 7.1) were applied to identify rainfall 
conditions in the study area using SPI. In this study, 12-month SPI was first calculated 
for a given month using monthly precipitation data in the current and previous months. 
After that, the derived cumulative probability of SPI values was further classified into 
seven drought types (Table 2.3), as suggested by Liu et al. (2014), and they reclassify 
into three rainfall conditions: drought, normal, and wet year, as mentioned in CHAPTER 
III: RESEARCH PROCEDURES.  

The 12-month SPI distribution between 1987 and 2019 is presented in Figure 
7.2 and Table 7.1. As a result, it reveals that the SPI values in the study period range 
from -1.70 to 2.14. The SPI with values less than or equal to -0.50 are found in 2001, 
2003, 2004, 2014, 2015, 2018, and 2019 and these years are categorized as drought 
year conditions. Meanwhile, the SPI with values between -0.49 and 0.49 are found in 
2002, 2005, 2006, 2012, and 2016 and these years are categorized as normal year 
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conditions. In the meantime, the SPI with values more than or equal to 0.50 are found 
in 2007, 2008, 2009, 2010, 2011, 2013, and 2017, and they are grouped as wet year 
conditions. So, the derived surface runoff in drought, normal, and wet year conditions 
were further applied to calculate the average surface runoff coefficient of each LULC 
type under three different rainfall conditions (drought, normal, and wet year). 

 
Table 7.1 SPI values, drought categories, and rainfall conditions based on rainfall at 
Chaiyaphum meteorological station between 1987 and 2019. 

Year SPI Drought classification1 Rainfall condition 
1987 0.77 Mild wet Wet year 
1988 -0.21 Near normal Normal year 
1989 -0.58 Mild drought Drought year 
1990 -0.02 Near normal Normal year 
1991 -0.35 Near normal Normal year 
1992 -0.57 Mild drought Drought year 
1993 -0.88 Mild drought Drought year 
1994 -0.12 Near normal Normal year 
1995 1.09 Moderate wet Wet year 
1996 0.36 Mild wet Wet year 
1997 -1.65 Severe drought Drought year 
1998 -0.19 Near normal Normal year 
1999 -0.14 Near normal Normal year 
2000 2.14 Extreme wet Wet year 
2001 -0.76 Mild drought Drought year 
2002 0.31 Near normal Normal year 
2003 -0.95 Mild drought Drought year 
2004 -0.88 Mild drought Drought year 
2005 -0.32 Near normal Normal year 
2006 0.32 Near normal Normal year 
2007 0.87 Mild wet Wet year 
2008 2.06 Extreme wet Wet year 
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Table 7.1 (Continued). 

Year SPI Drought classification1 Rainfall condition 
2009 1.43 Moderate wet Wet year 
2010 1.45 Moderate wet Wet year 
2011 1.18 Moderate wet Wet year 
2012 -0.12 Near normal Normal year 
2013 0.84 Mild wet Wet year 
2014 -1.48 Moderate drought Drought year 
2015 -0.86 Mild drought Drought year 
2016 -0.30 Near normal Normal year 
2017 0.65 Mild wet Wet year 
2018 -1.40 Moderate drought Drought year 
2019 -1.70 Severe drought Drought year 

Note 1 SPI drought classification by Liu et al. (2014). 
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Figure 7.1 Annual rainfall of Chaiyaphum meteorological station between 1987 and 2019. 
 

 
Figure 7.2 SPI values of Chaiyaphum meteorological station between 1987 and 2019. 
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7.2 Optimization of LULC allocation for flood mitigation 
In this study, the Goal programming of multi-objective decision analysis (MODA) 

was applied to allocate optimum LULC to minimize surface runoff for flood mitigation 
based on the average surface runoff coefficient from LULC in drought years (2001, 
2003, 2004, 2014, 2015, 2018, and 2019), normal years (2002, 2005, 2006, 2012, and 
2016), and wet years (2007, 2008, 2009, 2010, 2011, 2013, and 2017). Here, “What’s 
Best!” as an extension program under Microsoft Excel software was used to allocate 
an area of LULC based on the surface runoff volume in three different rainfall 
conditions (drought, normal, and wet years) with the simplex method.  

In practice, the average annual surface runoff of each LULC type in drought, 
normal, and wet year conditions were separately calculated and applied as a surface 
runoff coefficient for optimizing LULC allocation of three different rainfall conditions 
using the Goal programming. As a result, an average surface runoff coefficient of each 
LULC type under three different rainfall conditions is separately displayed in Tables 
7.2 to 7.4. 

At the same time, the constraints of the Goal programming are subjected to 
the change of LULC area in the study area. The constraints for optimizing LULC 
allocation for flood mitigation were assigned based on the historical LULC 
development between 2010 and 2019 using the Markov Chain model. In this study, 
ten years period was chosen to predict LULC data in 2029, 2039, and 2049 based on 
a period of input data (2010-2019) for transitional area prediction by the Markov Chain 
model. 

Additionally, the changing area of each LULC type was categorized into two 
groups: decreased area (paddy field, cassava, forest land, waterbody, rangeland, and 
marsh and swamp) and increased area (urban and built-up area, sugarcane, other field 
crops, para rubber, perennial trees and orchard, and unused land) according to the 
derived transitional change area from Markov Chain model. Details of LULC change to 
minimize surface runoff in 2029, 2039, and 2049 as constraints of Goal programming 
are summarized in Tables 7.5 to 7.7. 
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Table 7.2 Surface runoff coefficient and its average in the drought year condition. 

No. LULC type 
Runoff coefficient (million m3/km2) Average runoff coefficient 

(million m3/km2) 2001 2003 2004 2014 2015 2018 2019 
1 Urban and built-up area 0.43 0.50 0.46 0.30 0.36 0.69 0.44 0.45 
2 Paddy field 0.40 0.49 0.45 0.28 0.34 0.71 0.40 0.44 
3 Sugarcane 0.35 0.35 0.41 0.24 0.31 0.65 0.39 0.38 
4 Cassava 0.39 0.47 0.45 0.31 0.38 0.75 0.41 0.45 
5 Other field crops 0.40 0.37 0.41 0.25 0.29 0.59 0.40 0.39 
6 Para rubber 0.35 0.45 0.41 0.23 0.28 0.56 0.31 0.37 
7 Perennial trees and orchard 0.34 0.45 0.41 0.21 0.28 0.58 0.37 0.38 
8 Forest land 0.26 0.31 0.29 0.15 0.20 0.53 0.24 0.28 
9 Water body 0.44 0.51 0.50 0.33 0.40 0.82 0.44 0.49 
10 Rangeland 0.37 0.39 0.40 0.28 0.36 0.71 0.40 0.42 
11 Marsh and swamp 0.44 0.56 0.56 0.36 0.42 0.99 0.45 0.54 
12 Unused land 0.45 0.51 0.48 0.25 0.36 0.72 0.42 0.46 
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Table 7.3 Surface runoff coefficient and its average in the normal year condition. 

No. LULC type 
Runoff coefficient (million m3/km2) Average runoff coefficient 

(million m3/km2) 2002 2005 2006 2012 2016 
1 Urban and built-up area 1.25 0.58 1.30 1.04 0.97 1.03 
2 Paddy field 1.27 0.58 1.28 0.98 0.96 1.01 
3 Sugarcane 1.10 0.49 1.17 0.94 0.83 0.90 
4 Cassava 1.17 0.56 1.29 1.01 0.96 1.00 
5 Other field crops 1.04 0.47 1.04 0.90 0.95 0.88 
6 Para rubber 0.82 0.56 1.18 0.83 0.75 0.83 
7 Perennial trees and orchard 0.92 0.54 1.19 0.81 0.72 0.84 
8 Forest land 0.91 0.39 1.03 0.75 0.73 0.76 
9 Water body 1.15 0.59 1.35 1.04 1.04 1.04 
10 Rangeland 1.15 0.45 1.05 0.96 0.98 0.92 
11 Marsh and swamp 1.33 0.65 1.39 1.10 1.21 1.14 
12 Unused land 1.29 0.58 1.29 0.95 0.99 1.02 
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Table 7.4 Surface runoff coefficient and its average in the wet year condition. 

No. LULC type 
Runoff coefficient (million m3/km2) Average runoff coefficient 

(million m3/km2) 2007 2008 2009 2010 2011 2013 2017 
1 Urban and built-up area 1.05 1.75 1.31 1.78 1.69 1.18 1.42 1.46 
2 Paddy field 1.02 1.76 1.29 1.70 1.66 1.15 1.48 1.44 
3 Sugarcane 0.83 1.64 1.21 1.67 1.47 1.07 1.25 1.30 
4 Cassava 0.93 1.60 1.16 1.69 1.74 1.16 1.56 1.41 
5 Other field crops 0.84 1.63 1.08 1.61 1.56 1.02 1.40 1.31 
6 Para rubber 0.99 1.68 1.23 1.50 1.48 0.96 1.26 1.30 
7 Perennial trees and orchard 0.98 1.65 1.21 1.65 1.49 0.92 1.26 1.31 
8 Forest land 0.77 1.46 1.02 1.39 1.40 0.91 1.24 1.17 
9 Water body 1.07 1.80 1.37 1.74 1.73 1.22 1.62 1.51 
10 Rangeland 1.03 1.43 1.12 1.67 1.64 1.11 1.48 1.36 
11 Marsh and swamp 1.20 1.93 1.46 1.76 1.70 1.43 1.66 1.59 
12 Unused land 1.08 1.79 1.33 1.69 1.43 1.12 1.44 1.41 
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Table 7.5 Existing and predicted area of LULC in 2029 for constraint setting. 
LULC type Existing area (km2) Predicted area (km2) Remark 
Urban and built-up area (X1) 65.84 77.38 Increment by 0.17% 
Paddy field (X2) 2,012.16 1,947.12 Reduction by 0.03% 
Sugarcane (X3) 306.85 424.95 Increment by 0.38% 
Cassava (X4) 489.91 408.26 Reduction by 0.16% 
Other field crops (X5) 6.19 7.72 Increment by 0.27% 
Para rubber (X6) 97.03 134.43 Increment by 0.38% 
Perennial trees and orchard (X7) 88.95 125.36 Increment by 0.40% 
Forest land (X8) 481.30 382.63 Reduction by 0.20% 
Waterbody (X9) 53.30 49.52 Reduction by 0.07% 
Rangeland (X10) 71.65 70.54 Reduction by 0.01% 
Marsh and swamp (X11) 27.73 25.13 Reduction by 0.09% 
Unused land (X12) 93.31 141.20 Increment by 0.51% 

SUM 3,794.22 3,794.22 
 

 
Table 7.6 Existing and predicted area of LULC in 2039 for constraint setting. 
LULC type Existing area (km2) Predicted area (km2) Remark 
Urban and built-up area (X1) 65.84 88.31 Increment by 0.34% 
Paddy field (X2) 2,012.16 1,879.30 Reduction by 0.06% 
Sugarcane (X3) 306.85 520.31 Increment by 0.69% 
Cassava (X4) 489.91 358.65 Reduction by 0.26% 
Other field crops (X5) 6.19 9.4525 Increment by 0.52% 
Para rubber (X6) 97.03 152.02 Increment by 0.56% 
Perennial trees and orchard (X7) 88.95 160.12 Increment by 0.80% 
Forest land (X8) 481.30 304.44 Reduction by 0.36% 
Waterbody (X9) 53.30 47.01 Reduction by 0.13% 
Rangeland (X10) 71.65 69.91 Reduction by 0.02% 
Marsh and swamp (X11) 27.73 24.66 Reduction by 0.11% 
Unused land (X12) 93.31 180.07 Increment by 0.93% 

SUM 3,794.22 3,794.22 
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Table 7.7 Existing and predicted area of LULC in 2049 for constraint setting. 
LULC type Existing area (km2) Predicted area (km2) Remark 
Urban and built-up area (X1) 65.84 99.03 Increment by 0.50% 
Paddy field (X2) 2,012.16 1,812.16 Reduction by 0.09% 
Sugarcane (X3) 306.85 599.36 Increment by 0.95% 
Cassava (X4) 489.91 330.32 Reduction by 0.32% 
Other field crops (X5) 6.19 11.26 Increment by 0.81% 
Para rubber (X6) 97.03 164.41 Increment by 0.69% 
Perennial trees and orchard (X7) 88.95 193.13 Increment by 1.17% 
Forest land (X8) 481.30 242.23 Reduction by 0.49% 
Waterbody (X9) 53.30 42.78 Reduction by 0.19% 
Rangeland (X10) 71.65 66.05 Reduction by 0.07% 
Marsh and swamp (X11) 27.73 21.61 Reduction by 0.07% 
Unused land (X12) 93.31 212.00 Increment by 1.27% 

SUM 3,794.22 3,794.22 
 

 
Based on the linearity of objective function and constraints, the objective 

functions of the surface runoff minimization problem for optimizing LULC allocation 
under drought, normal, and wet year can be formulated as shown in Equations 7.1 to 
7.3, respectively: 

 

Min(Z) = 0.45X1+0.44X2+0.38X3+0.45X4+0.39X5+0.37X6+0.38X7+0.28X8 
+0.49X9+0.42X10+0.54X11+0.46X12 (7.1) 

Min(Z) = 1.03X1+1.01X2+0.90X3+1.00X4+0.88X5+0.83X6+0.84X7+0.76X8 
+1.04X9+0.92X10+1.14X11+1.02X12 (7.2) 

Min(Z) = 1.46X1+1.44X2+1.30X3+1.41X4+1.31X5+1.30X6+1.31X7+1.17X8 
+1.51X9+1.36X10+1.59X11+1.41X12 (7.3) 

 
The above objective functions were then subjected to the constraints to 

minimize surface runoff in the future for 2029, 2039, and 2049 under three different 
rainfall conditions.  
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Details of the objective function constraints to minimize surface runoff for 
optimized LULC in 2029 under three different rainfall conditions (drought, normal, and 
wet years) were listed below. 

The first constraint is related to the existing area of the urban and built-up area 
should be more than or equal to 65.84 km2 as formulated in Equation 7.4. 

X1 ≥ 65.84 (7.4) 
The second constraint relates to the existing urban and built-up area is 65.84 

km2, but it can be expandable up to 77.38 km2 as formulated in Equation 7.5. 

X1 ≤ 77.38 (7.5) 
The third constraint is related to the maximum area of the paddy field should 

be less than or equal to 2,012.16 km2 as formulated in Equation 7.6. 

X2 ≤ 2,012.16 (7.6) 
The fourth constraint relates to the paddy field’s existing area is 2,012.16 km2, 

but it can be decreased to 1,947.12 km2 as formulated in Equation 7.7. 

X2 ≥ 1,947.12 (7.7) 
The fifth constraint is related to the existing area of sugarcane should be more 

than or equal to 306.85 km2 as formulated in Equation 7.8. 

X3 ≥ 306.85 (7.8) 
The sixth constraint relates to the maximum sugarcane area is 306.85 km2, but 

it can be increased to 424.95 km2 as formulated in Equation 7.9. 

X3 ≤ 424.95 (7.9) 
The seventh constraint is related to the existing area of cassava should be less 

than or equal to 489.91 km2 as formulated in Equation 7.10. 

X4 ≤ 489.91 (7.10) 
The eighth constraint relates to the maximum area of cassava is 489.91 km2, 

but it can be reduced to 408.26 km2 as formulated in Equation 7.11. 

X4 ≥ 408.26 (7.11) 
The ninth constraint is related to the existing area of other field crops should 

be more than or equal to 6.19 km2 as formulated in Equation 7.12. 

X5 ≥ 6.19 (7.12) 
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The tenth constraint is related to the maximum area of other field crops, which 
is 5.19 km2 but can be increased to 7.72 km2 as formulated in Equation 7.13. 

X5 ≤ 7.72 (7.13) 
The eleventh constraint is related to the area of para rubber that should be 

more than or equal to 97.03 km2 as formulated in Equation 7.14. 

X6 ≥ 97.03 (7.14) 
The twelfth constraint is related to the maximum area of para rubber is 97.03 

km2, but it can exceed up to 134.43 km2 as formulated in Equation 7.15. 

X6 ≤ 134.43 (7.15) 
The thirteenth constraint is related to the existing area of the perennial trees 

and orchards should be more than or equal to 88.95 km2 as formulated in Equation 
7.16. 

X7 ≥ 88.95 (7.16) 
The fourteenth constraint relates to the maximum area of perennial trees and 

orchards is 88.95 km2, but it can be increased to 125.36 km2 as formulated in Equation 
7.17. 

X7 ≤ 125.36 (7.17) 
The fifteenth constraint is related to the existing area of forest land should be 

less than or equal to 481.30 km2 as formulated in Equation 7.18. 

X8 ≤ 481.30 (7.18) 
The sixteenth constraint relates to the maximum forest land area is 481.30 km2, 

but it can be decreased to 382.63 km2 as formulated in Equation 7.19. 

X8 ≥ 382.63 (7.19) 
The seventeenth constraint is related to the existing area of the waterbody 

should be less than or equal to 53.30 km2 as formulated in Equation 7.20. 

X9 ≤ 53.30 (7.20) 
The eighteenth constraint relates to the maximum area of the waterbody is 

53.30 km2, but it can be reduced to 49.52 km2 as formulated in Equation 7.21. 

X9 ≥ 49.52 (7.21) 
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The nineteenth constraint is related to the existing rangeland area should be 
less than or equal to 71.65 km2 as formulated in Equation 7.22. 

X10 ≤ 71.65 (7.22) 
The twentieth constraint is related to the maximum rangeland area of 71.65 

km2, but it can be decreased to 70.54 km2 as formulated in Equation 7.23. 

X10 ≥ 70.54 (7.23) 
The twenty-first constraint is related to marsh and swamp area should be less 

than or equal to 27.73 km2 as formulated in Equation 7.24. 

X11 ≤ 27.73 (7.24) 
The twenty-second constraint relates to the maximum area of marsh and 

swamp is 27.73 km2, but it can be decreased to 25.13 km2 as formulated in Equation 
7.25. 

X11 ≥ 25.13 (7.25) 
The twenty-third constraint is related to the existing area of unused land should 

be more than or equal to 93.31 km2 as formulated in Equation 7.26. 

X12 ≥ 93.31 (7.26) 
The twenty-fourth constraint relates to the maximum area of unused land is 

93.31 km2, but it can be increased to 141.20 km2 as formulated in Equation 7.27. 

X12 ≤ 141.20 (7.27) 
The twenty-fifth constraint is related to the area of all land use classes must 

be equal to the allowable area of 3,794.22 km2 as formulated in Equation 7.28. 

X1+X2+X3+X4+X5+X6+X7+X8+X9+X10+X11+X12 = 3,794.22 (7.28) 
The last constraint is the non-negative variable, the area of each land use class 

should be more than or equal to 0 km2 as formulated in Equation 7.29. 

X1, X2, X3,X4,X5,X6,X7,X8,X9,X10,X11,X12 ≥ 0 (7.29) 
The constraints setting of each LULC type to minimize surface runoff in 2029 

under three different rainfall conditions is summarized in Table 7.8. 
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Table 7.8 Summary of constraints setting for optimizing LULC in 2029. 
LULC type Constraint setting 
Urban and built-up area (X1) 65.84 ≤ X1 ≤ 77.38 
Paddy field (X2) 2,012.16 ≥ X2 ≥ 1,947.12 
Sugarcane (X3) 306.85 ≤ X3 ≤ 424.95 
Cassava (X4) 489.91 ≥ X4 ≥ 408.26 
Other field crops (X5) 6.19 ≤ X5 ≤ 7.72 
Para rubber (X6) 97.03 ≤ X6 ≤ 134.43 
Perennial trees and orchard (X7) 88.95 ≤ X7 ≤ 125.36 
Forest land (X8) 481.30 ≥ X8 ≥ 382.63 
Waterbody (X9) 53.30 ≥ X9 ≥ 49.52 
Rangeland (X10) 71.65 ≥ X10 ≥ 70.54 
Marsh and swamp (X11) 27.73 ≥ X11 ≥ 25.13 
Unused land (X12) 93.31 ≤ X12 ≤ 141.20 

 
Likewise, details of constraints of the objective function to minimize surface 

runoff for optimized LULC in 2039 under three different rainfall conditions (drought, 
normal, and wet years) were listed as the following. 

The first constraint is related to the existing area of the urban and built-up area 
should be more than or equal to 65.84 km2 as formulated in Equation 7.30. 

X1 ≥ 65.84 (7.30) 
The second constraint relates to the existing urban and built-up area is 65.84 

km2, but it can be expandable up to 88.31 km2 as formulated in Equation 7.31. 

X1 ≤ 88.31 (7.31) 
The third constraint is related to the maximum area of the paddy field should 

be less than or equal to 2,012.16 km2 as formulated in Equation 7.32. 

X2 ≤ 2,012.16 (7.32) 
The fourth constraint relates to the paddy field’s existing area is 2,012.16 km2, 

but it can be decreased to 1,879.30 km2 as formulated in Equation 7.33. 

X2 ≥ 1,879.30 (7.33) 
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The fifth constraint is related to the existing area of sugarcane should be more 
than or equal to 306.85 km2 as formulated in Equation 7.34. 

X3 ≥ 306.85 (7.34) 
The sixth constraint relates to the maximum sugarcane area is 306.85 km2, but 

it can be increased to 520.31 km2 as formulated in Equation 7.35. 

X3 ≤ 520.31 (7.35) 
The seventh constraint is related to the existing area of cassava should be less 

than or equal to 489.91 km2 as formulated in Equation 7.36. 

X4 ≥ 489.91 (7.36) 
The eighth constraint relates to the maximum area of cassava is 489.91 km2, 

but it can be reduced to 358.65 km2 as formulated in Equation 7.37. 

X4 ≥ 358.65 (7.37) 
The ninth constraint is related to the existing area of other field crops should 

be more than or equal to 6.19 km2 as formulated in Equation 7.38. 

X5 ≥ 6.19 (7.38) 
The tenth constraint relates to the maximum area of other field crops, which 

is 5.19 km2 but can be increased to 9.45 km2 as formulated in Equation 7.39. 

X5 ≤ 9.45 (7.39) 
The eleventh constraint is related to the existing area of para rubber that 

should be more than or equal to 97.03 km2 as formulated in Equation 7.40. 

X6 ≥ 97.03 (7.40) 
The twelfth constraint is related to the maximum area of para rubber being 

97.03 km2, but it can exceed 152.02 km2 as formulated in Equation 7.41. 

X6 ≤ 152.02 (7.41) 
The thirteenth constraint is related to the existing area of the perennial trees 

and orchards should be more than or equal to 88.95 km2 as formulated in Equation 
7.42. 

X7 ≥ 88.95 (7.42) 
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The fourteenth constraint is related to the maximum area of perennial trees 
and orchards is 88.95 km2, but it can be increased to 160.12 km2 as formulated in 
Equation 7.43. 

X7 ≤ 160.12 (7.43) 
The fifteenth constraint is related to the existing area of forest land should be 

less than or equal to 481.30 km2 as formulated in Equation 7.44. 

X8 ≤ 481.30 (7.44) 
The sixteenth constraint is related to the maximum area of forest land is 481.30 

km2, but it can be decreased to 304.44 km2 as formulated in Equation 7.45. 

X8 ≥ 304.44 (7.45) 
The seventeenth constraint is related to the existing area of the waterbody 

should be less than or equal to 53.30 km2 as formulated in Equation 7.46. 

X9 ≤ 53.30 (7.46) 
The eighteenth constraint is related to the maximum area of the waterbody is 

53.30 km2, but it can be reduced to 47.01 km2 as formulated in Equation 7.47. 

X9 ≥ 47.01 (7.47) 
The nineteenth constraint is related to the existing rangeland area should be 

less than or equal to 71.65 km2 as formulated in Equation 7.48. 

X10 ≤ 71.65 (7.48) 
The twentieth constraint is related to the maximum rangeland area of 71.65 

km2, but it can be decreased to 69.91 km2 as formulated in Equation 7.49. 

X10 ≥ 69.91 (7.49) 
The twenty-first constraint is related to marsh and swamp area should be less 

than or equal 27.73 km2 as formulated in Equation 7.50. 

X11 ≤ 27.73 (7.50) 
The twenty-second constraint is related to the maximum area of marsh and 

swamp is 27.73 km2, but it can be decreased to 24.66 km2 as formulated in Equation 
7.51. 

X11 ≥ 24.66 (7.51) 
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The twenty-third constraint is related to the existing area of unused land should 
be more than or equal to 93.31 km2 as formulated in Equation 7.52. 

X12 ≥ 93.31 (7.52) 
The twenty-fourth constraint is related to the maximum area of unused land is 

93.31 km2, but it can be increased to 180.07 km2 as formulated in Equation 7.53. 

X12 ≤ 180.07 (7.53) 
The twenty-fifth constraint is related to the area of all land use classes must 

be equal to the allowable area of 3,794.22 km2 as formulated in Equation 7.54. 

X1+X2+X3+X4+X5+X6+X7+X8+X9+X10+X11+X12 = 3,794.22 (7.54) 
The last constraint is the non-negative variable, the area of each land use class 

should be more than or equal to 0 km2 as formulated in Equation 7.55. 

X1, X2, X3,X4,X5,X6,X7,X8,X9,X10,X11,X12 ≥ 0 (7.55) 
The constraints setting of each LULC type to minimize surface runoff in 2039 

under three different rainfall conditions is summarized in Table 7.9 
 

Table 7.9 Summary of constraints setting for optimizing LULC in 2039. 
LULC type Constraint setting 
Urban and built-up area (X1) 65.84 ≤ X1 ≤ 88.31 
Paddy field (X2) 2,012.16 ≥ X2 ≥ 1,879.30 
Sugarcane (X3) 306.85 ≤ X3 ≤ 520.31 
Cassava (X4) 489.91 ≥ X4 ≥ 358.65 
Other field crops (X5) 6.19 ≤ X5 ≤ 9.45 
Para rubber (X6) 97.03 ≤ X6 ≤ 152.02 
Perennial trees and orchard (X7) 88.95 ≤ X7 ≤ 160.12 
Forest land (X8) 481.30 ≥ X8 ≥ 304.44 
Waterbody (X9) 53.30 ≥ X9 ≥ 47.01 
Rangeland (X10) 71.65 ≥ X10 ≥ 69.91 
Marsh and swamp (X11) 27.73 ≥ X11 ≥ 24.66 
Unused land (X12) 93.31 ≤ X12 ≤ 180.07 
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Similarly, details of constraints of the objective function to minimize surface 
runoff for optimized LULC in 2049 under three different rainfall conditions (drought, 
normal, and wet years) were listed as the following. 

The first constraint is related to the existing area of the urban and built-up area 
should be more than or equal to 65.84 km2 as formulated in Equation 7.56. 

X1 ≥ 65.84 (7.56) 
The second constraint is related to the existing urban and built-up area is 65.84 

km2, but it can be expandable up to 99.03 km2 as formulated in Equation 7.57. 

X1 ≤ 99.03 (7.57) 
The third constraint is related to the maximum area of the paddy field should 

be less than or equal to 2,012.16 km2 as formulated in Equation 7.58. 

X2 ≤ 2,012.16 (7.58) 
The fourth constraint is related to the existing area of the paddy field is 2,012.16 

km2, but it can be decreased to 1,812.16 km2 as formulated in Equation 7.59. 

X2 ≥ 1,812.16 (7.59) 
The fifth constraint is related to the existing area of sugarcane should be more 

than or equal to 306.85 km2 as formulated in Equation 7.60. 

X3 ≥ 306.85 (7.60) 
The sixth constraint related to the maximum sugarcane area is 306.85 km2, but 

it can be increased to 599.36 km2 as formulated in Equation 7.61. 

X3 ≤ 599.36 (7.61) 
The seventh constraint is related to the existing area of cassava should be less 

than or equal to 489.91 km2 as formulated in Equation 7.62. 

X4 ≥ 489.91 (7.62) 
The eighth constraint is related to the maximum area of cassava is 489.91 km2, 

but it can be reduced to 330.32 km2 as formulated in Equation 7.63. 

X4 ≥ 330.32 (7.63) 
The ninth constraint is related to the existing area of other field crops should 

be more than or equal to 6.19 km2 as formulated in Equation 7.64. 

X5 ≥ 6.19 (7.64) 
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The tenth constraint related to the maximum area of other field crops is 5.19 
km2, but it can be increased to 11.26 km2 as formulated in Equation 7.65. 

X5 ≤ 11.26 (7.65) 
The eleventh constraint is related to the area of para rubber that should be 

more than or equal to 97.03 km2 as formulated in Equation 7.66. 

X6 ≥ 97.03 (7.66) 
The twelfth constraint related to the maximum area of para rubber is 97.03 

km2, but it can exceed up to 164.41 km2 as formulated in Equation 7.67. 

X6 ≤ 164.41 (7.67) 
The thirteenth constraint is related to the existing area of the perennial trees 

and orchards should be more than or equal to 88.95 km2 as formulated in Equation 
7.68. 

X7 ≥ 88.95 (7.68) 
The fourteenth constraint is related to the maximum area of perennial trees 

and orchards is 88.95 km2, but it can be increased to 193.13 km2 as formulated in 
Equation 7.69. 

X7 ≤ 193.13 (7.69) 
The fifteenth constraint is related to the existing area of forest land should be 

less than or equal to 481.30 km2 as formulated in Equation 7.70. 

X8 ≤ 481.30 (7.70) 
The sixteenth constraint is related to the maximum area of forest land is 481.30 

km2, but it can be decreased to 242.23 km2 as formulated in Equation 7.71. 

X8 ≥ 242.23 (7.71) 
The seventeenth constraint is related to the existing area of the waterbody 

should be less than or equal to 53.30 km2 as formulated in Equation 7.72. 

X9 ≤ 53.30 (7.72) 
The eighteenth constraint is related to the maximum area of the waterbody is 

53.30 km2, but it can be reduced to 42.78 km2 as formulated in Equation 7.73. 

X9 ≥ 42.78 (7.73) 
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The nineteenth constraint is related to the existing rangeland area should be 
less than or equal to 71.65 km2 as formulated in Equation 7.74. 

X10 ≤ 71.65 (7.74) 
The twentieth constraint is related to the maximum rangeland area of 71.65 

km2, but it can be decreased to 66.05 km2 as formulated in Equation 7.75. 

X10 ≥ 66.05 (7.75) 
The twenty-first constraint is related to marsh and swamp area should be less 

than or equal to 27.73 km2 as formulated in Equation 7.76. 

X11 ≤ 27.73 (7.76) 
The twenty-second constraint is related to the maximum area of marsh and 

swamp is 27.73 km2, but it can be decreased to 21.61 km2 as formulated in Equation 
7.77. 

X11 ≥ 21.61 (7.77) 
The twenty-third constraint is related to the existing area of unused land should 

be more than or equal to 93.31 km2 as formulated in Equation 7.78. 

X12 ≥ 93.31 (7.78) 
The twenty-fourth constraint is related to the maximum area of unused land is 

93.31 km2, but it can be increased to 211.89 km2 as formulated in Equation 7.79. 

X12 ≤ 211.89 (7.79) 
The twenty-fifth constraint is related to the area of all land use classes must 

be equal to the allowable area of 3,794.22 km2 as formulated in Equation 7.80. 

X1+X2+X3+X4+X5+X6+X7+X8+X9+X10+X11+X12 = 3,794.22 (7.80) 
The last constraint is the non-negative variable, the area of each land use class 

should be more than or equal to 0 km2 as formulated in Equation 7.81. 

X1, X2, X3,X4,X5,X6,X7,X8,X9,X10,X11,X12 ≥ 0 (7.81) 
The constraints setting of each LULC type to minimize surface runoff in 2039 

under three different rainfall conditions is summarized in Table 7.10. 
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Table 7.10 Summary of constraints setting for optimizing LULC in 2049. 
LULC type Constraint setting 
Urban and built-up area (X1) 65.84 ≤ X1 ≤ 99.03 
Paddy field (X2) 2,012.16 ≥ X2 ≥ 1,812.16 
Sugarcane (X3) 306.85 ≤ X3 ≤ 599.36 
Cassava (X4) 489.91 ≥ X4 ≥ 330.32 
Other field crops (X5) 6.19 ≤ X5 ≤ 11.26 
Para rubber (X6) 97.03 ≤ X6 ≤ 164.41 
Perennial trees and orchard (X7) 88.95 ≤ X7 ≤ 193.13 
Forest land (X8) 481.30 ≥ X8 ≥ 242.23 
Waterbody (X9) 53.30 ≥ X9 ≥ 42.78 
Rangeland (X10) 71.65 ≥ X10 ≥ 66.05 
Marsh and swamp (X11) 27.73 ≥ X11 ≥ 21.61 
Unused land (X12) 93.31 ≤ X12 ≤ 211.89 

 
The objective functions for drought, normal, wet years (Equations 7.1, 7.2, and 

7.3) were then transformed into a Goal programming form as follow: 

fk(x)+dk
- -dk

+ = ak (7.30) 

Results of optimized LULC allocation to minimize surface runoff for flood 
mitigation in 2029, 2039, and 2049 under three different rainfall conditions (drought, 
normal, and wet years) are presented in Tables 7.11 to 7.13.  

As a result, under drought year conditions, there is no change in the urban and 
built-up area, other field crops, forest land, and unused land after optimization of 
LULC allocation. In the meantime, sugarcane, para rubber, and perennial trees and 
orchard are increased while paddy filed, cassava, waterbody, rangeland, and marsh 
and swamp are decreased. The significance of increasing LULC type in 2029, 2039, and 
2049 is sugarcane, which is increased by about 80.39, 148.09, and 210.28 km2, 
respectively. In contrast, cassava decreases LULC type in the same years, which is 
decreased by 81.65, 132.86, and 200.01 km2, respectively.  
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Under normal year conditions, there is no change in the urban and built-up 
area, forest land, and unused land after optimization of LULC allocation. Meanwhile, 
sugarcane, other field crops, para rubber, and perennial trees and orchard are 
increased while paddy filed, cassava, waterbody, rangeland, and marsh and swamp are 
decreased. So, sugarcane is the most increase LULC area in 2029, 2039, and 2049, 
which is increased by 78.86, 144.82, and 205.21 km2, respectively. On the other hand, 
the significance of decreasing LULC type in the same years are paddy field and 
sugarcane, which are increased by 65.04, 132.86, 200.01 km2, and 81.65, 130.27, and 
159.59 km2, respectively.  

Under wet year conditions, there is no change in the urban and built-up area, 
other field crops, perennial trees and orchards, forest land, and unused land after 
optimization of LULC allocation. At the same time, sugarcane and para rubber are 
increased while paddy field, cassava, waterbody, rangeland, and marsh and swamp are 
decreased. The most increasing LULC type in 2029, 2039, and 2049 is sugarcane, 
increased by 115.29, 213.46, and 292.51 km2, respectively. Conversely, the most 
decreasing LULC type in the same years is paddy field and cassava; they decrease by 
65.04, 132.86, 200.01 km2, and 81.65, 131.27, and 159.59 km2, respectively. 

Comparison of allocated LULC type area by the Goal programming for flood 
mitigation among different rainfall conditions in 2029, 2039, and 2049 are displayed in 
Figures 7.3 to 7.5. As a result, there are different LULC areas among three different 
rainfall conditions in a specific year. For instance, sugarcane areas in 2029, 2039, and 
2049 under wet year conditions are higher than other conditions, while perennial trees 
and orchards under this condition in three years are lower than other conditions. 
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Table 7.11 Optimization of LULC allocation to minimize surface runoff under drought year conditions. 

LULC type 

2019 2029 2039 2049 
Area of 
LULC  
(km2) 

Surface 
runoff 

(million m3) 

Allocated 
LULC  
(km2) 

Surface 
runoff 

(million m3) 

Allocated 
LULC  
(km2) 

Surface 
runoff 

(million m3) 

Allocated 
LULC  
(km2) 

Surface 
runoff 

(million m3) 
Urban and built-up area  65.84 29.84 65.84 29.84 65.84 29.84 65.84 29.84 
Paddy field  2,012.16 942.32 1,947.12 856.54 1,879.30 826.71 1,812.16 797.17 
Sugarcane  306.85 70.96 387.24 148.87 454.94 174.90 517.13 198.81 
Cassava  489.91 242.89 408.26 184.27 359.65 162.33 330.32 149.09 
Other field crops 6.19 1.75 6.19 2.39 6.19 2.39 6.19 2.39 
Para rubber 97.03 19.65 134.43 49.86 152.02 56.39 164.41 60.99 
Perennial trees and orchard 88.95 25.76 125.36 47.40 160.12 60.54 193.13 73.02 
Forest land 481.30 159.21 481.30 136.03 481.30 136.03 481.30 136.03 
Waterbody 53.30 23.81 49.52 24.29 47.01 23.06 42.78 20.99 
Rangeland 71.65 23.23 70.54 29.36 69.91 29.10 66.05 27.49 
Marsh and swamp 27.73 12.69 25.13 13.59 24.66 13.34 21.61 11.69 
Unused land 93.31 25.85 93.31 42.57 93.31 42.57 93.31 42.57 
SUM 3,794.22 1,577.96 3,794.22 1,565.01 3,794.22 1,557.18 3,794.22 1,550.07 
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Table 7.12 Optimization of LULC allocation to minimize surface runoff under normal year conditions. 

LULC type 

2019 2029 2039 2049 
Area of 
LULC  
(km2) 

Surface 
runoff 

(million m3) 

Allocated 
LULC  
(km2) 

Surface 
runoff 

(million m3) 

Allocated 
LULC  
(km2) 

Surface 
runoff 

(million m3) 

Allocated 
LULC  
(km2) 

Surface 
runoff 

(million m3) 
Urban and built-up area  65.84 67.58 65.84 67.58 65.84 67.58 65.84 67.58 
Paddy field  2,012.16 2,038.95 1,947.12 1,973.05 1,879.30 1,904.33 1,812.16 1,836.29 
Sugarcane  306.85 277.30 385.71 348.56 451.67 408.18 512.06 462.76 
Cassava  489.91 489.07 408.26 407.56 359.65 359.03 330.32 329.75 
Other field crops 6.19 5.43 7.72 6.78 9.45 8.30 11.26 9.88 
Para rubber 97.03 80.36 134.43 111.33 152.02 125.89 164.41 136.16 
Perennial trees and orchard 88.95 74.28 125.36 104.68 160.12 133.70 193.13 161.27 
Forest land 481.30 366.03 481.30 366.03 481.30 366.03 481.30 366.03 
Waterbody 53.30 55.23 49.52 51.30 47.01 48.70 42.78 44.33 
Rangeland 71.65 65.95 70.54 64.93 69.91 64.35 66.05 60.80 
Marsh and swamp 27.73 31.56 25.13 28.60 24.66 28.06 21.61 24.59 
Unused land 93.31 95.33 93.31 95.33 93.31 95.33 93.31 95.33 
SUM 3,794.22 3,647.07 3,794.22 3,625.72 3,794.22 3,609.48 3,794.22 3,594.76 
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Table 7.13 Optimization of LULC allocation to minimize surface runoff under wet year conditions. 

LULC type 

2019 2029 2039 2049 
Area of 
LULC  
(km2) 

Surface 
runoff 

(million m3) 

Allocated 
LULC  
(km2) 

Surface 
runoff 

(million m3) 

Allocated 
LULC  
(km2) 

Surface 
runoff 

(million m3) 

Allocated 
LULC  
(km2) 

Surface 
runoff 

(million m3) 
Urban and built-up area  65.84 95.82 65.84 95.82 65.84 95.82 65.84 95.82 
Paddy field  2,012.16 2,889.20 1,947.12 2,795.81 1,879.30 2,698.43 1,812.16 2,602.02 
Sugarcane  306.85 400.38 422.14 552.77 520.31 678.91 599.36 782.05 
Cassava  489.91 688.86 408.26 574.05 358.65 505.70 330.32 464.46 
Other field crops 6.19 8.09 6.19 8.09 9.45 12.36 11.26 14.71 
Para rubber 97.03 126.18 134.43 174.82 152.02 197.69 164.41 213.81 
Perennial trees and orchard 88.95 116.42 88.95 116.42 90.48 119.73 103.83 138.51 
Forest land 481.30 563.35 481.30 563.35 481.30 563.35 481.30 563.35 
Waterbody 53.30 80.24 50.02 74.55 48.01 70.77 43.78 64.41 
Rangeland 71.65 97.12 70.54 95.60 69.91 94.76 66.05 89.52 
Marsh and swamp 27.73 44.10 26.13 39.97 25.66 39.21 22.61 34.37 
Unused land 93.31 131.74 93.31 131.74 93.31 131.74 93.31 131.74 
SUM 3,794.22 5,241.52 3,794.22 5,223.01 3,794.22 5,208.46 3,794.22 5,194.79 
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Figure 7.3 Comparison of LULC type area by CLUE-S model prediction for flood mitigation among three rainfall conditions in 2029. 
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Figure 7.4 Comparison of LULC type area by CLUE-S model prediction for flood mitigation among three rainfall conditions in 2039. 
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Figure 7.5 Comparison of LULC type area by CLUE-S model prediction for flood mitigation among three rainfall conditions in 2049. 
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Besides, the results also indicate that after applying LULC optimization, annual 
surface runoff has decreased in all three different rainfall conditions. Under drought 
year conditions in 2029, 2039, and 2049, annual surface runoff decreases by 12.95, 
20.78, and 27.89 million m3, or about 0.82, 1.32, and 1.77% from total estimated 
surface runoff in 2019, respectively. Likewise, the annual surface runoff estimation 
under normal year conditions in 2029, 2039, and 2049 decreases by 21.34, 37.59, and 
52.31 million m3, or 0.59, 1.03 1.43% of total estimated surface runoff in 2019, 
respectively. Similarly, annual surface runoff estimation under wet year conditions in 
2029, 2039, and 2049 decreases by 18.52, 33.06, and 46.73 million m3, or about 0.35, 
0.63, and 0.89% of the total estimated surface runoff in 2019, respectively.  

From these results, it can be concluded that the optimized LULC allocation 
data in 2049 under three rainfall conditions (drought, normal and wet year) are the 
most suitable for flood mitigation in the future. The surface runoff in 2049 under 
drought, normal and wet years will be reduced by about 27.89, 52.31, and 46.73 million 
m3. Figure 7.6 compares surface runoff reduction in 2029, 2039, 2049 under drought, 
normal, and wet year condition. 

 

 
Figure 7.6 Comparison of surface runoff reduction in 2029, 2039, and 2049 under 
drought, normal, and wet years. 
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Furthermore, the contribution of surface runoff by each LULC type under three 
different rainfall conditions in 2029, 2039, and 2049 are displayed in Figures 7.7 to 7.9. 
As a result, each LULC type’s contribution is dictated by the average runoff coefficient 
under different rainfall conditions. For example, allocated paddy field areas under 
drought, normal and wet in 2029 are the same, with 1,947.12 km2 (See Tables 7.11 to 
7.13 or Figure 7.3). Still, the average surface runoff coefficient of paddy fields under 
drought, normal and wet years are different, with a value of 0.44, 1.01, and 1.44 million 
cubic meters per km2 (See Tables 7.2 to 7.4). 

The deviation of annual surface runoff after minimization from Goal 
programming is presented in Table 7.14. The optimization of LULC allocation in 2029, 
2039, and 2049 under drought, normal, and wet year conditions to minimize surface 
runoff in the Second Part of the Lam Nam Chi watershed is presented in detail in 
Appendices A to C. 

The notable reduction of annual surface runoff in three different rainfall 
conditions is allocating paddy field and cassava to sugarcane, para rubber, and 
perennial trees and orchard after optimization, which changes the hydrological 
properties. Due to paddy field and cassava fields provides higher runoff coefficients 
than sugarcane, rubber, and perennial trees and orchard (See Tables 7.2 to 7.4). 
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Figure 7.7 Contribution of each LULC type on surface runoff under drought, normal, and wet years in 2029. 
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Figure 7.8 Contribution of each LULC type on surface runoff under drought, normal, and wet years in 2039. 
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Figure 7.9 Contribution of each LULC type on surface runoff under drought, normal, and wet years in 2049. 
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Table 7.14 Deviation of annual surface runoff after minimization from Goal 
programming. 

Items 

Surface runoff minimization (million m3) 

Drought years Normal years Wet years 

2029 2039 2049 2029 2039 2049 2029 2039 2049 

Goal of annual surface runoff 
(million m3) 

1,577.96 1,577.96 1,577.96 3,647.07 3,647.07 3,647.07 5,241.52 5,241.52 5,241.52 

Annual surface runoff after 
optimization (million m3) 

1,565.01 1,557.18 1,550.07 3,625.72 3,609.48 3,594.76 5,223.01 5,208.46 5,194.79 

Deviation from goal (million m3) -12.95 -20.78 -27.89 -21.34 -37.59 -52.31 -18.52 -33.06 -46.73 

Deviation from goal (%) -0.82 -1.32 -1.77 -0.59 -1.03 -1.43 -0.35 -0.63 -0.89 

 
Besides, the actual surface runoff between 2001 and 2019 was used to compare 

total surface runoff from optimized LULC allocation for flood mitigation in 2029, 2039, 
and 2049. The comparison of total surface runoff volume between actual LULC data 
and optimized LULC allocation was presented in Table 7.15. As a result, it was found 
that optimized LULC allocation in 2029, 2039, and 2049 for flood mitigation can reduce 
total surface runoff volume between 2001 and 2019. 

In summary, it can be noted that the achievement goal for surface runoff 
reduction depends on constraint setting (by decreasing and increasing LULC areas) 
according to the historical trend of LULC change based on LULC data in 2010 and 2019 
by Markov Chain model and the average runoff coefficient of each LULC type. 
Additionally, Goal programming based on Linear programming can be efficiently 
operated using add-in software under the MS Excel environment, e.g., MS Solver and 
What’s Best of Lindo Systems Inc. On the contrary, the constraint setting should be 
carefully assigned based on the historical LULC development in the study area, e.g., 
the annual decreasing or increasing rate of each LULC type. Nevertheless, this finding 
indicates that if areas of LULC type are optimal allocated, flooding in the study area 
shall be mitigated since surface runoff is reduced. This finding is similar to the previous 
study of Owji, Nikkami, Mahdian, and Mahmoudi (2012), who found that the Simplex 
method’s optimal area of land uses can reduce surface runoff. Likewise, the 
applicability of linear programming in solving optimization problems was proved in 
minimizing runoff, as mentioned by Yeo, Gordon, and Guldmann (2004) and Hargreaves 
and Hobbs (2009).
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Table 7.15 Comparison of total surface runoff volume between actual LULC data and optimized LULC allocation. 

Year 
Current runoff 

volume 
Rainfall 

condition 

Runoff volume of optimized LULC in 2029 
(million m3) 

Runoff volume of optimized LULC in 2039 
(million m3) 

Runoff volume of optimized LULC in 2049 
(million m3) 

Runoff volume Different from current  Runoff volume Different from current  Runoff volume Different from current 
2001 1,429.77 Drought year 1,420.14 -9.63 1,414.18 -15.59 1,408.58 -21.19 
2002 4,483.62 Normal year 4,420.53 -63.10 4,394.04 -89.58 4,369.94 -113.68 
2003 1,719.46 Drought year 1,697.25 -22.21 1,686.64 -32.82 1,676.78 -42.68 
2004 1,602.36 Drought year 1,609.44 7.08 1,604.50 2.14 1,599.83 -2.53 
2005 2,057.88 Normal year 2,050.87 -7.01 2,043.99 -13.89 2,037.62 -20.26 
2006 4,672.73 Normal year 4,663.63 -9.10 4,650.51 -22.22 4,639.17 -33.56 
2007 3,636.14 Wet year 3,639.62 3.48 3,624.07 -12.07 3,609.56 -26.58 
2008 6,366.80 Wet year 6,381.44 14.64 6,375.66 8.86 6,368.58 1.78 
2009 4,629.86 Wet year 4,662.78 32.92 4,659.39 29.53 4,654.35 24.49 
2010 6,249.33 Wet year 6,258.14 8.81 6,251.73 2.40 6,246.08 -3.25 
2011 6,142.43 Wet year 6,069.45 -72.98 6,042.95 -99.48 6,020.62 -121.81 
2012 3,583.03 Normal year 3,568.11 -14.92 3,555.13 -27.90 3,543.67 -39.36 
2013 4,200.48 Wet year 4,178.53 -21.95 4,165.83 -34.65 4,152.55 -47.93 
2014 1,003.60 Drought year 983.90 -19.70 976.26 -27.34 969.50 -34.10 
2015 1,233.80 Drought year 1,221.05 -12.75 1,213.74 -20.06 1,207.39 -26.41 
2016 3,475.16 Normal year 3,438.35 -36.81 3,417.39 -57.77 3,397.81 -77.35 
2017 5,433.33 Wet year 5,389.90 -43.43 5,358.54 -74.79 5,331.12 -102.21 
2018 2,588.57 Drought year 2,575.27 -13.30 2,561.70 -26.87 2,549.32 -39.25 
2019 1,445.54 Drought year 1,432.78 -12.76 1,428.87 -16.67 1,425.52 -20.02 
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7.3 Mapping of LULC allocation for flood mitigation 
Under this section, LULC data in 2019 and the derived optimum local 

parameter of the CLUE-S model from Section 5.2 of Chapter V SIMULATION OF TIME-
SERIES OF LAND USE AND LAND COVER DATA BY CLUE-S MODEL were applied to map 
LULC data in 2029, 2039, and 2049 for drought, normal, and wet years. Simultaneously, 
the conversion matrix for each LULC type possibly change in 2029, 2039, and 2049 are 
set up based on transitional LULC change between 2010 and 2019 as the summary in 
Table 7.16. So, it can be observed that urban and built-up areas in 2019 do not allow 
to change to any LULC types in 2029, 2039, and 2049. 

 
Table 7.16 Conversion matrix of the possible change in 2029, 2039, and 2049. 

 

LULC types 
LULC type possible change in 2029, 2039, and 2049 

UR PA SU CA FC PR PO FO WA RA MA UL 

LU
LC

 in
 2

01
9 

Urban and built-up area (UR) 1 0 0 0 0 0 0 0 0 0 0 0 
Paddy field (PA) 0 1 1 1 0 0 0 0 0 1 1 0 
Sugarcane (SU) 1 0 1 1 0 1 1 0 0 0 0 0 
Cassava (CA) 1 1 1 1 0 1 1 0 0 1 0 1 
Other field crops (FC) 0 0 0 0 1 0 0 0 0 0 0 0 
Para rubber (PR) 0 0 1 1 1 1 0 0 0 0 0 1 
Perennial trees and orchard (PO) 0 0 1 1 0 0 1 0 0 0 0 0 
Forest land (FO) 0 0 0 0 0 1 1 1 0 1 0 1 
Waterbody (WA) 0 0 0 0 0 0 0 0 1 0 1 0 
Rangeland (RA) 0 1 0 1 0 0 1 0 0 1 0 0 
Marsh and swamp (MA) 0 1 1 0 0 0 1 0 0 0 1 0 
Unused land (UL) 1 0 0 0 0 0 0 0 0 0 0 1 

Remark: 0 is not allowed and 1 is allowed. 

 
The transition probability matrix of LULC change of three periods (2019-2029, 

2019-2039, and 2019-2049) from the Markov Chain model are displayed in Tables 7.17 
to 7.19. As a result, the elasticity values or land use type resistance can be assigned 
according to the probability values of the transition probability matrix of LULC change 
in a specific period, as suggested by Ongsomwang and Iamchuen (2015). 
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For LULC prediction in 2029, the elasticity value of the urban and built-up area, 
paddy field, sugarcane, cassava, other field crops, para rubber, perennial trees and 
orchard, forest land, waterbody, rangeland, marsh and swamp, and unused land are 
1.00, 0.93, 0.93, 0.65, 0.99, 0.80, 0.99, 0.80, 0.91, 0.89, 0.56 and 0.96, respectively. (See 
Table 7.17) 

Likewise. the elasticity value of the urban and built-up area, paddy field, 
sugarcane, cassava, other field crops, para rubber, perennial trees and orchard, forest 
land, waterbody, rangeland, marsh and swamp, and unused land for LULC prediction 
in 2039 are 1.00, 0.88, 0.87, 0.43, 0.98, 0.64, 0.97, 0.73, 0.84, 0.80, 0.73 and 0.91, 
respectively. (See Table 7.18) 

Similarly, the elasticity value of the urban and built-up area, paddy field, 
sugarcane, cassava, other field crops, para rubber, perennial trees and orchard, forest 
land, waterbody, rangeland, marsh and swamp, and unused land for LULC prediction 
in 2049 are 1.00, 0.83, 0.83, 0.31, 0.97, 0.52, 0.96, 0.70, 0.76, 0.71, 0.76 and 0.87, 
respectively. (See Table 7.19) 

 
Table 7.17 Elasticity of LULC change for LULC prediction between 2019 and 2029. 

LU
LC

 in
 2

01
9 

LULC types 
LULC type possible change in 2029 

UR PA SU CA FC PR PO FO WA RA MA UL 
Urban and built-up area (UR) 1.00 - - - - - - - - - - - 
Paddy field (PA) - 0.93 0.03 0.02 - - 0.01 - - - 0.01 - 
Sugarcane (SU) 0.01 0.01 0.93 0.05 - - 0.01 - - - - - 
Cassava (CA) 0.01 0.06 0.16 0.65 - 0.07 0.01 - - - - 0.04 
Other field crops (FC) - - - - 0.99 - 0.01 - - - - - 
Para rubber (PR) - - - 0.11 0.01 0.80 0.03 - - - - 0.05 
Perennial trees and orchard (PO) - - 0.01 0.01 - - 0.99 - - - - - 
Forest land (FO) - 0.02 - 0.05 - 0.05 0.01 0.80 - - - 0.06 
Waterbody (WA) - 0.04 0.02 0.01 - - - - 0.91 - 0.01 - 
Rangeland (RA) - 0.08 - 0.02 - - 0.01 - - 0.89 - - 
Marsh and swamp (MA) 0.01 0.39 0.03 - - - 0.02 - - - 0.56 - 
Unused land (UL) 0.01 0.03 - - - - - - - - - 0.96 
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Table 7.18 Elasticity of LULC change for LULC prediction between 2019 and 2039. 
LU

LC
 in

 2
01

9 

LULC types 
LULC type possible change in 2039 

UR PA SU CA FC PR PO FO WA RA MA UL 
Urban and built-up area (UR) 1.00 - - - - - - - - - - - 
Paddy field (PA) - 0.88 0.06 0.03 - - 0.02 - - - 0.01 - 
Sugarcane (SU) 0.01 0.02 0.87 0.08 - - 0.01 - - - - - 
Cassava (CA) 0.02 0.10 0.25 0.43 - 0.10 0.02 - - 0.01 - 0.06 
Other field crops (FC) - - - - 0.98 - 0.01 - - - - - 
Para rubber (PR) - 0.01 0.03 0.16 0.02 0.64 0.05 - - - - 0.10 
Perennial trees and orchard (PO) - - 0.01 0.01 - - 0.97 - - - - - 
Forest land (FO) 0.01 0.04 0.01 0.08 - 0.08 0.03 0.73 - - - 0.01 
Waterbody (WA) 0.01 0.07 0.05 0.02 - - - - 0.84 - 0.01 - 
Rangeland (RA) - 0.15 0.01 0.03 - - 0.01 - - 0.80 - - 
Marsh and swamp (MA) 0.01 0.15 0.05 0.01 - - 0.04 - - - 0.73 - 
Unused land (UL) 0.01 0.06 - 0.01 - - - - - - - 0.91 

 
Table 7.19 Elasticity of LULC change for LULC prediction between 2019 and 2049. 

LU
LC

 in
 2

01
9 

LULC types 
LULC type possible change in 2049 

UR PA SU CA FC PR PO FO WA RA MA UL 
Urban and built-up area (UR) 1.00 - - - - - - - - - - - 
Paddy field (PA) - 0.83 0.08 0.04 - - 0.03 - - - 0.01 - 
Sugarcane (SU) 0.02 0.03 0.83 0.09 - 0.01 0.02 - - - - 0.01 
Cassava (CA) 0.03 0.12 0.31 0.31 - 0.11 0.03 - - 0.01 - 0.08 
Other field crops (FC) - - - - 0.97 - 0.02 - - - - - 
Para rubber (PR) 0.01 0.02 0.05 0.18 0.02 0.52 0.07 - - - - 0.13 
Perennial trees and orchard (PO) - 0.01 0.02 0.01 - - 0.96 - - - - - 
Forest land (FO) 0.01 0.01 0.03 0.04 - 0.10 0.04 0.70 - 0.01 - 0.04 
Waterbody (WA) 0.01 0.10 0.07 0.03 - - 0.01 - 0.76 - 0.01 - 
Rangeland (RA) - 0.21 0.02 0.03 - - 0.02 - - 0.71 - - 
Marsh and swamp (MA) 0.01 0.06 0.08 0.03 - - 0.05 - - - 0.77 - 
Unused land (UL) 0.02 0.08 0.01 0.01 - - 0.01 - - - - 0.87 

 
In addition, the area of optimized LULC allocation in drought, normal, and wet 

years from the previous section was applied as the land requirement to predict LULC 
maps for flood mitigation by the CLUE-S model. The annual land requirement of each 
land use type for LULC prediction in drought, normal, and wet years in 2029, 2039, 
and 2049 are presented in Table 7.20. 
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Table 7.20 Annual land requirement of each land use type for LULC prediction in 2029, 2039, and 2049 under drought, normal, and wet 
years. 

LULC type 
Allocated area of drought years (km2) Allocated area of normal years (km2) Allocated area of wet years (km2) 

2029 2039 2049 2029 2039 2049 2029 2039 2049 
Urban and built-up area 65.84 65.84 65.84 65.84 65.84 65.84 65.84 65.84 65.84 
Paddy field 1,947.12 1,879.30 1,812.16 1,947.12 1,879.30 1,812.16 1,947.12 1,879.30 1,812.16 
Sugarcane 387.24 454.94 517.13 385.71 451.67 512.06 422.14 520.31 599.36 
Cassava 408.26 359.65 330.32 408.26 359.65 330.32 408.26 358.65 330.32 
Other field crops 6.19 6.19 6.19 7.72 9.45 11.26 6.19 9.45 11.26 
Para rubber 134.43 152.02 164.41 134.43 152.02 164.41 134.43 152.02 164.41 
Perennial trees and orchard 125.36 160.12 193.13 125.36 160.12 193.13 88.95 90.48 103.83 
Forest land 481.30 481.30 481.30 481.30 481.30 481.30 481.30 481.30 481.30 
Waterbody 49.52 47.01 42.78 49.52 47.01 42.78 50.02 48.01 43.78 
Rangeland 70.54 69.91 66.05 70.54 69.91 66.05 70.54 69.91 66.05 
Marsh and swamp 25.13 24.66 21.61 25.13 24.66 21.61 26.13 25.66 22.61 
Unused land 93.31 93.31 93.31 93.31 93.31 93.31 93.31 93.31 93.31 
SUM 3,794.22 3,794.22 3,794.22 3,794.22 3,794.22 3,794.22 3,794.22 3,794.22 3,794.22 
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The spatial distribution of the LULC allocation maps in 2029, 2039, and 2049 
for drought, normal, and wet years are displayed in Figures 7.10 to 7.12, respectively. 
Meanwhile, the area and percentage of LULC type in 2029, 2039, and 2049 for drought, 
normal, and wet years are summarized in Tables 7.21 and 7.22. 

As a result, there are unchanged areas in the urban and built-up area, other 
field crops, forest land, and unused land under drought year conditions. Meanwhile, 
sugarcane, para rubber, and perennial trees and orchards are increasing LULC types by 
about 6.49, 1.50, and 3.39 km2 per year, respectively. In contrast, paddy field, cassava, 
waterbody, rangeland, and marsh and swamp are decreasing LULC types by about 
6.75, 3.90, 0.34, 0.23, and 0.18 km2 per year, respectively. 

Under normal year conditions, there are unchanged areas in the urban and 
built-up area, forest land, and unused land. In the meantime, sugarcane, para rubber, 
and perennial trees and orchards are increasing LULC types by about 6.32, 1.50, and 
3.39 km2 per year, respectively. On the other hand, paddy field, cassava, other field 
crops, waterbody, rangeland, and marsh and swamp are decreasing LULC types by 
about 6.75, 3.90, 0.18, 0.34, 0.22, and 0.18 km2 per year, respectively. 

Likewise, there are unchanged areas in the urban and built-up area, forest land, 
and unused land under wet year conditions. Meanwhile, sugarcane, para rubber, 
perennial trees and orchards are increasing LULC types by about 8.86, 1.50, and 0.75 
km2 per year, respectively. Conversely, paddy field, cassava, other field crops, 
waterbody, rangeland, and marsh and swamp are decreasing LULC types by about 
6.75, 3.90, 0.25, 0.31, 0.22, and 0.18 km2 per year, respectively. 
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Predicted LULC in 2029 Predicted LULC in 2039 

 

 

Predicted LULC in 2049  

Figure 7.10 Spatial distribution of predicted LULC data in 2029, 2039, and 2049 under 
drought year conditions.  
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Predicted LULC in 2029 Predicted LULC in 2039 

 

 

Predicted LULC in 2049  

Figure 7.11 Spatial distribution of predicted LULC data in 2029, 2039, and 2049 under 
normal year conditions.  
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Predicted LULC in 2029 Predicted LULC in 2039 

 

 

Simulated LULC in 2049  

Figure 7.12 Spatial distribution of predicted LULC data in 2029, 2039, and 2049 under 
wet year conditions. 
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Table 7.21 Area of predicted LULC type in 2029, 2039, and 2049 in drought, normal, and wet years. 

LULC type 
LULC area in drought years in km2 LULC area in normal years in km2 LULC area in wet years in km2 

2029 2039 2049 
Annual 

rate 
2029 2039 2049 

Annual 
rate 

2029 2039 2049 
Annual 

rate 

Urban and built-up area 65.81 65.82 65.88 0.00 65.83 65.89 65.86 0.00 65.87 65.82 65.89 0.00 

Paddy field 1,947.07 1,879.28 1,812.14 -6.75 1,947.13 1,879.32 1,812.13 -6.75 1,947.10 1,879.33 1,812.18 -6.75 

Sugarcane 387.25 454.96 517.12 6.49 385.69 451.65 512.07 6.32 422.16 520.32 599.34 8.86 

Cassava 408.28 359.66 330.33 -3.90 408.29 359.67 330.33 -3.90 408.27 358.67 330.34 -3.90 

Other field crops 6.20 6.20 6.19 0.00 7.73 9.44 11.27 -0.18 6.19 9.45 11.25 -0.25 

Para rubber 134.45 152.02 164.42 1.50 134.44 152.02 164.41 1.50 134.42 152.02 164.41 1.50 

Perennial trees and orchard 125.33 160.10 193.17 3.39 125.35 160.17 193.15 3.39 88.98 90.46 103.88 0.75 

Forest land 481.33 481.32 481.26 0.00 481.31 481.30 481.30 0.00 481.32 481.31 481.30 0.00 

Waterbody 49.53 47.02 42.77 -0.34 49.52 47.01 42.80 -0.34 50.05 48.01 43.78 -0.31 

Rangeland 70.57 69.93 66.07 -0.23 70.49 69.87 66.04 -0.22 70.50 69.91 66.01 -0.22 

Marsh and swamp 25.11 24.62 21.57 -0.18 25.16 24.62 21.58 -0.18 26.09 25.63 22.56 -0.18 

Unused land 93.29 93.29 93.30 0.00 93.28 93.26 93.28 0.00 93.27 93.30 93.28 0.00 

SUM 3,794.22 3,794.22 3,794.22  3,794.22 3,794.22 3,794.22  3,794.22 3,794.22 3,794.22  
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Table 7.22 Percentage of simulated LULC type in 2029, 2039, and 2049 in drought, normal, and wet years. 

LULC type 
LULC area in drought years in percent LULC area in normal years in percent LULC area in wet years in percent 

2029 2039 2049 2029 2039 2049 2029 2039 2049 

Urban and built-up area 1.73 1.73 1.74 1.74 1.74 1.74 1.74 1.73 1.74 

Paddy field 51.32 49.53 47.76 51.32 49.53 47.76 51.32 49.53 47.76 

Sugarcane 10.21 11.99 13.63 10.17 11.90 13.50 11.13 13.71 15.80 

Cassava 10.76 9.48 8.71 10.76 9.48 8.71 10.76 9.45 8.71 

Other field crops 0.16 0.16 0.16 0.20 0.25 0.30 0.16 0.25 0.30 

Para rubber 3.54 4.01 4.33 3.54 4.01 4.33 3.54 4.01 4.33 

Perennial trees and orchard 3.30 4.22 5.09 3.30 4.22 5.09 2.35 2.38 2.74 

Forest land 12.69 12.69 12.68 12.69 12.69 12.69 12.69 12.69 12.69 

Waterbody 1.31 1.24 1.13 1.31 1.24 1.13 1.32 1.27 1.15 

Rangeland 1.86 1.84 1.74 1.86 1.84 1.74 1.86 1.84 1.74 

Marsh and swamp 0.66 0.65 0.57 0.66 0.65 0.57 0.69 0.68 0.59 

Unused land 2.46 2.46 2.46 2.46 2.46 2.46 2.46 2.46 2.46 

SUM 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

 

 



258 

 

The actual LULC data in 2019 and derived suitable LULC data in 2049 for flood 
mitigation using the Goal Programming under three different rainfall conditions 
(drought, normal, and wet years) will be further applied to evaluate economic and 
ecosystem service values using the PV model and simple benefit transfer method of 
ecosystem service value and to detect value change in terms of gain and loss for 
project implementation using the image algebra change detection algorithm.  

 



 

 

 
CHAPTER VIII 

ECONOMIC AND ECOSYSTEM SERVICE VALUES EVALUATION  
AND CHANGE 

 
This chapter presents the sixth objective results focusing on economic and 

ecosystem service evaluation and change in terms of gain and loss for project 
implementation. The significant results in this chapter consist of (1) economic value 
evaluation, (2) assessment of economic value change, (3) ecosystem service value 
evaluation, and (4) assessment of ecosystem service value change are here described 
and discussed in detail. 
 

8.1 Economic value evaluation 
The future economic value of actual LULC data in 2019 and suitable LULC 

allocation data in 2049 for flood mitigation under three different rainfall conditions 
(drought, normal, and wet years) were first estimated based on the present value of 
the selected LULC type using the PV equation (see Equation 3.14 of Chapter III).  
Figure 8.1 presents the spatial distribution of actual LULC data in 2019, which was 
classified using RF classifier, and suitable LULC allocation data in 2049, which were 
optimized LULC allocation for flood mitigation using Goal programming and were 
predicted using the CLUE-S model. Areas of actual LULC in 2019 and suitable LULC 
allocation for flood mitigation in 2049 under drought, normal, and wet years are 
summarized in Table 8.1. 
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(a) (b)  

  
(c) (d) 

Figure 8.1 Spatial distribution map: (a) actual LULC in 2019, (b) suitable LULC allocation 
in 2049 under drought year, (c) suitable LULC allocation in 2049 under normal year, 
and (d) suitable LULC allocation in 2049 under wet year. 
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Table 8.1 Areas of actual LULC in 2019 and suitable LULC allocation for flood 
mitigation in 2019 under drought, normal, and wet years. 

No. LULC type Actual LULC 2019 
Suitable LULC allocation in 2049 
Drought 

year 
Normal 

year 
Wet  
year 

1 Urban and built-up area 65.84 65.84 65.84 65.84 
2 Paddy field 2,012.16 1,812.14 1,812.13 1,812.18 
3 Sugarcane 306.85 517.12 512.07 599.34 
4 Cassava 489.91 330.33 330.33 330.34 
5 Other field crops 6.19 6.19 11.27 11.25 
6 Para rubber 97.03 164.42 164.41 164.41 
7 Perennial trees and orchard 88.95 193.17 193.15 103.88 
8 Forest land 481.30 481.26 481.30 481.30 
9 Water body 53.30 42.77 42.80 43.78 
10 Rangeland 71.65 66.07 66.04 66.01 
11 Marsh and swamp 27.73 21.57 21.58 22.56 
12 Unused land 93.32 93.30 93.28 93.28 

Total 3,794.22 3,794.22 3,794.22 3,794.22 

 
As a result in Table 8.1, the top three dominant LULC types of actual LULC 

data in 2019 are paddy field, cassava, and forest land, while the top three dominant 
LULC types of suitable LULC allocation data in 2049 for flood mitigation under drought, 
normal, and wet years are paddy field, sugarcane, and forest land. 

The future values of LULC types in agricultural and forest land, including paddy 
fields, sugarcane, cassava, other field crops, para rubber, perennial trees and orchard, 
and forest land, were applied to calculate the future economic value in 2049 of actual 
LULC data in 2019 and suitable LULC allocation data in 2049 for flood mitigation under 
three rainfall conditions. The present economic values (revenue) of each selected 
LULC type (Baht per km2), which were derived from the government agency reports, 
are presented in Table 8.2. Meanwhile, the future economic values of these LULC 
types (Baht per km2) are presented in Table 8.3. As a result, the top three highest 
present economic values of future economic value in 2049 are forest land, perennial 
trees and orchards, and para rubber. 
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The future economic value in 2049 of actual LULC data and suitable LULC 
allocation for flood mitigation from drought, normal, and wet years are presented in 
Table 8.4 and shown in Figures 8.2 to 8.5. 
 
Table 8.2 Present economic value of the agricultural and forest land in 2019. 
LULC type Price (Baht/ton) Yield (ton/km2) Revenue (Baht/ km2) 
Paddy field1 13,287.75 218.75 2,906,695.31 
Sugarcane2 900.00 4,468.75 4,021,875.00 
Cassava1 1,430.00 2,240.63 3,204,093.75 
Other field crops1 8,092.50 415.63 3,363,445.31 
Para rubber3 43,685.83 131.25 5,733,765.63 
Perennial trees and orchard4 25,600.00 247.24 6,329,440.00 
Forest land5 - - 25,000,000.00 

Source: 1Office of Agricultural Economics: OAE (2019), 2Office of the cane and sugar board: OCSB 
(2019), 3Rubber Authority of Thailand: RAOT (2019), 4Chaiyaphum Provincial Statistical Office (2019), 
and 5Wittawatchutikul and Jirasuktaveekul (2005). 

 
Table 8.3 Future economic value of the agricultural and forest land in 2049. 

LULC type 
Present value 

(Baht/km2) 
Discount 

rate in %* 
Period from 

Present (year) 
Future value in 

2049 (Baht/km2) 
Paddy field 2,906,695.31 6.50 30 19,225,947.12 
Sugarcane 4,021,875.00 6.50 30 26,602,153.91 
Cassava 3,204,093.75 6.50 30 21,193,049.28 
Other field crops 3,363,445.31 6.50 30 22,247,058.87 
Para rubber 5,733,765.63 6.50 30 37,925,225.34 
Perennial trees and orchard 6,329,440.00 6.50 30 41,865,233.77 
Forest land 25,000,000.00 6.50 30 165,359,154.08 
* Discount rate was based on the minimum retail rate of Bank for Agriculture and Agricultural 
Cooperatives (2019). 

 

 



 

 

263 

Table 8.4 Economic value by LULC types of actual LULC 2019 and suitable LULC allocation for flood mitigation in 2049. 

LULC type 
Economic value in 2049 (Baht) 

Actual LULC in 2019 
Suitable LULC allocation for flood mitigation in 2049 

Drought year Normal year Wet year 
Paddy field 38,654,201,193.72 34,629,199,176.42 34,822,304,589.30 34,826,094,023.48 
Sugarcane 8,147,417,736.68 13,678,867,444.77 13,614,032,675.26 15,920,814,509.80 
Cassava 10,347,296,501.34 6,783,214,778.67 6,979,083,059.45 6,968,649,721.29 
Other field crops 137,813,855.56 136,472,357.91 200,363,686.27 200,684,043.91 
Para rubber 3,675,102,243.52 6,145,559,007.00 6,235,430,413.48 6,222,152,792.09 
Perennial trees and orchard 3,717,456,924.53 9,041,534,060.10 8,055,821,317.58 4,404,829,638.18 
Forest land 79,388,714,905.00 78,164,792,590.19 79,303,885,658.96 79,315,047,401.86 
Total in Baht 144,068,003,360.34 148,579,639,415.06 149,210,921,400.29 147,858,272,130.61 
Total in million Baht 144,068.00 148,579.64 149,210.92 147,858.27 
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Figure 8.2 Spatial distribution of economic value in 2049 of actual LULC 2019. 
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Figure 8.3 Spatial distribution of economic value in 2049 of suitable LULC allocation 
for flood mitigation under drought year. 
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Figure 8.4 Spatial distribution of future economic value in 2049 of suitable LULC 
allocation for flood mitigation under normal year. 
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Figure 8.5 Spatial distribution of economic value in 2049 of suitable LULC allocation 
for flood mitigation under wet year. 
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As a result, in Table 8.4, the economic value of actual LULC and suitable LULC 
allocation data for flood mitigation from three rainfall conditions (drought, normal and 
wet years) are relatively different. The suitable LULC allocation data for flood 
mitigation under normal year provides the highest economic value, about 149,211 
million Baht, while actual LULC allocation in 2019 provides the lowest economic value, 
about 144,068 million Baht. The comparison of future economic value among actual 
LULC and suitable LULC allocation data for flood mitigation from three different rainfall 
conditions is displayed in Figure 8.6. Meanwhile, the contribution of the economic 
value by LULC type from actual LULC and suitable LULC allocation data for flood 
mitigation from three different rainfall conditions are compared in Figure 8.7. 
 

 
Figure 8.6 Comparing future economic value among actual LULC and suitable LULC 
allocation data for flood mitigation from three different rainfall conditions. 
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Figure 8.7 Contribution of the future economic value of LULC type of actual LULC and suitable LULC allocation for flood mitigation under 
drought, normal, and wet years. 
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According to data in Figure 8.7, the future economic value of forest land from 
actual LULC and suitable LULC allocation data for flood mitigation under drought, 
normal and wet years contributes the highest values than other LULC types because 
the present economic value, about 25,000,000 Baht per km2 or future economic of 
forest land, about 165,359,154 Baht per km2 is exceptionally high when they are 
compared with other LULC types (See Tables 8.2 or 8.3).  

Furthermore, the top three dominant LULC types of actual LULC in 2019, 
including paddy fields, cassava, and forest land, will provide future economic value in 
2049, about 89% of the total value. Meanwhile, the top three dominant LULC types 
of suitable LULC allocation for flood mitigation under drought, normal, and wet years, 
including paddy fields, sugarcane, and forest land, deliver future economic value in 
2049 about 85%, 86%, and 88% of the total value, respectively. 
 

8.2 Assessment of economic value change 
Future economic value maps of actual LULC data and suitable LULC allocation 

for flood mitigation in 2049 under drought, normal, and wet years were detected future 
economic value change in terms of gain and loss using the image algebra change 
detection algorithm. 

Results of future economic value change between suitable LULC allocation for 
flood mitigation in 2049 from drought, normal, and wet years and actual LULC data in 
2019 with gain (+sign) and loss (-sign) are reported in Tables 8.5 to 8.7. Meanwhile, the 
spatial distribution of economic value change in terms of gain and loss of suitable 
LULC allocation for flood mitigation in 2049 under three different rainfall conditions 
are displayed in Figures 8.8 to 8.10, respectively. 
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Table 8.5 Economic value change between suitable LULC allocation in 2049 under drought year and actual LULC in 2019. 

ECV in Baht 

 LULC type 
Suitable LULC allocation in 2049 of drought year  

PA SU CA FC PR PO FO SUM 

Ac
tu

al
 L

UL
C 

in
 2

01
9 

Paddy field (PA) 0.00 1,507,297,615.23 28,212,966.05 19,033.00 18,108,381.02 602,051,077.63 1,656,229,927.66 3,811,919,000.60 
Sugarcane (SU) -188,270,302.13 0.00 -105,109,180.24 -987,735.56 14,053,063.95 173,000,904.92 789,999,104.73 682,685,855.69 

Cassava (CA) -28,205,884.48 207,959,518.38 0.00 279,839.54 813,499,994.33 1,983,531,243.93 1,249,228,131.25 4,226,292,842.96 

Other field crops (FC) -10,876.00 909,343.85 -110,038.60 0.00 12,191,342.25 423,752.58 104,328,717.41 117,732,241.48 

Para rubber (PR) 0.00 -2,680,171.01 -25,434,580.82 -8,988,292.84 0.00 2,446,745.24 1,167,205,583.50 1,132,549,284.07 

Perennial trees and orchard (PO) -193,525,150.11 -123,836,998.40 -86,029,362.95 -353,127.15 -5,095,612.90 0.00 237,515,856.93 -171,324,394.58 

Forest land (FO) -131,256,846.49 -2,240,870,049.85 -630,193,293.88 -95,312,655.41 -2,467,681,569.68 -305,091,730.12 0.00 -5,870,406,145.43 
 

SUM -541,269,059.20 -651,220,741.80 -818,663,490.44 -105,342,938.40 -1,614,924,401.03 2,456,361,994.17 5,204,507,321.49 3,929,448,684.79 

 

Table 8.6 Economic value change between suitable LULC allocation in 2049 under normal year and actual LULC in 2019. 

ECV in Baht 

 LULC type 
Suitable LULC allocation in 2049 of normal year  

PA SU CA FC PR PO FO SUM 

Ac
tu

al
 L

UL
C 

in
 2

01
9 

Paddy field (PA) 0.00 1,453,478,597.63 28,896,337.34 19,033.00 38,034,331.89 563,562,026.40 1,656,229,927.66 3,740,220,253.92 

Sugarcane (SU) -190,746,494.75 0.00 -108,030,096.74 -1,058,288.10 21,533,084.93 151,873,749.79 789,999,104.73 663,571,059.87 

Cassava (CA) -29,133,569.86 224,389,673.69 0.00 587,188.74 975,323,561.82 1,546,537,801.69 1,252,861,117.09 3,970,565,773.17 

Other field crops (FC) -10,876.00 944,620.12 -110,038.60 0.00 12,050,238.75 406,096.22 104,457,518.29 117,737,558.78 

Para rubber (PR) 0.00 -2,690,361.77 -26,548,943.74 -41,851,297.58 0.00 2,446,745.24 1,206,429,746.77 1,137,785,888.91 

Perennial trees and orchard (PO) -196,662,955.23 -123,246,317.21 -88,764,292.95 -635,628.87 -6,049,488.94 0.00 237,738,145.99 -177,620,537.23 

Forest land (FO) -152,563,068.06 -2,237,123,610.84 -645,503,734.21 -142,196,177.80 -1,666,338,795.59 -286,864,027.49 0.00 -5,130,589,413.99 
 

SUM -569,116,963.90 -684,247,398.40 -840,060,768.91 -185,135,170.60 -625,447,067.15 1,977,962,391.85 5,247,715,560.54 4,321,670,583.44 
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Table 8.7 Economic value change between suitable LULC allocation in 2049 under wet year and actual LULC in 2019. 

ECV in Baht 

 LULC type 
Suitable LULC allocation in 2049 of wet year  

PA SU CA FC PR PO FO SUM 

Ac
tu

al
 L

UL
C 

in
 2

01
9 

Paddy field (PA) 0.00 1,525,952,042.21 27,552,609.85 19,033.00 58,566,139.37 323,418,057.23 1,656,229,927.66 3,591,737,809.33 

Sugarcane (SU) -190,819,519.19 0.00 -105,430,481.05 -1,058,288.10 19,270,735.26 97,943,183.43 789,999,104.73 609,904,735.08 

Cassava (CA) -29,160,125.74 565,985,990.11 0.00 587,188.74 971,754,588.66 245,808,811.26 1,252,861,117.09 3,007,837,570.13 

Other field crops (FC) -10,876.00 948,539.70 -120,473.30 0.00 11,923,245.60 353,127.15 104,457,518.29 117,551,081.45 

Para rubber (PR) 0.00 -2,690,361.77 -31,352,751.49 -41,893,628.63 0.00 2,446,745.24 1,206,888,508.91 1,133,398,512.26 

Perennial trees and orchard (PO) -196,683,330.59 -141,722,275.38 -90,289,900.17 -635,628.87 -6,212,605.29 0.00 237,738,145.99 -197,805,594.31 

Forest land (FO) -152,826,107.83 -2,360,506,335.39 -653,548,202.86 -143,612,987.54 -1,569,081,221.17 -259,189,039.94 0.00 -5,138,763,894.74 
 

SUM -569,499,959.36 -412,032,400.52 -853,189,199.01 -186,594,311.39 -513,779,117.57 410,780,884.36 5,248,174,322.68 3,123,860,219.20 
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Figure 8.8 Gain and loss of future economic value of suitable LULC allocation for flood 
mitigation in 2049 under drought year. 
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Figure 8.9 Gain and loss of future economic value of suitable LULC allocation for flood 
mitigation in 2049 under normal year. 
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Figure 8.10 Gain and loss of future economic value of suitable LULC allocation for 
flood mitigation in 2049 under wet year.  

 
According to change detection in Table 8.5, suitable LULC allocation for flood 

mitigation in 2049 under drought years gains the future economic value of about 3,929 
million Baht. Meanwhile, suitable LULC allocation for flood mitigation in 2049 under 
normal year gains the future economic value of about 4,322 million (Table 8.6). 
Likewise, suitable LULC allocation for flood mitigation in 2049 under wet year gains 
about 3,124 million Baht (Table 8.7). These results showed the consequence of LULC 
allocation for flood mitigation in 2049 using Goal Programming on future economic 
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value because the future economic value depends on areas of LULC type and their 
values. 
 

8.3 Ecosystem service values evaluation 
The ecosystem service value (ESV) of actual LULC data in 2019 and suitable 

LULC allocation data in 2049 for flood mitigation under drought, normal, and wet years 
were first calculated using a simple benefit transfer method (Costanza et al., 1997) 
(See Eq. 3.15 of Chapter III). Figure 8.11 displays the spatial distribution of LULC type 
for ESV evaluation of actual LULC data in 2019 and suitable LULC allocation data for 
flood mitigation in 2049 under drought, normal, and wet years. They include urban 
and built-up area, paddy field, field crop, forest land, water body, rangeland, marsh 
and swamp, and unused land. The area of each LULC type for ESV evaluation of actual 
LULC data and suitable LULC allocation data for flood mitigation under drought, 
normal and wet years is summarized in Table 8.8. In this table, field crops consist of 
sugarcane, cassava, and other field crops, while para rubber, perennial trees and 
orchard are grouped in forest land. The top three dominant LULC types for ESV 
evaluation of actual LULC data in 2019 and suitable LULC allocation data in 2049 for 
flood mitigation under drought, normal, and wet years are paddy field, field crop, and 
forest land. 

In the meantime, the detail of the coefficient value of different LULC types for 
ESV evaluation was presented in Table 3.19. The table shows that the top three highest 
coefficient values of LULC type for ESV evaluation are marsh and swamp, water body, 
and forest land.  
 The result of ESV evaluation of actual LULC data in 2019 and suitable LULC 
allocation data for flood mitigation in 2049 under drought, normal, and wet years are 
reported in Table 8.9. Meanwhile, the spatial distribution of ESV of actual LULC in 2019 
and suitable LULC allocation for flood mitigation in 2049 under drought, normal, wet 
years are displayed in Figures 8.12 to 8.15. 
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Table 8.8 Area of each LULC type for ESV evaluation of actual LULC and suitable LULC 
allocation for flood mitigation under drought, normal and wet years. 

No. ESV-LULC type Actual LULC 2019 
Suitable LULC allocation in 2049 

Drought year normal year wet year 
1 Urban and built-up area 65.84 65.84 65.84 65.84 
2 Paddy field 2,012.16 1,812.16 1,812.16 1,812.16 
3 Field crop 802.95 853.64 853.64 940.94 
4 Forest land 667.28 838.84 838.84 749.54 
5 Water body 53.3 42.78 42.78 43.78 
6 Rangeland 71.65 66.05 66.05 66.05 
7 Marsh and swamp 27.73 21.61 21.61 22.61 
8 Unused land 93.32 93.31 93.31 93.31 

Total 3,794.22 3,794.22 3,794.22 3,794.22 

 

  
(a) (b) 

Figure 8.11 Spatial distribution of LULC type for ecosystem service evaluation:  
(a) actual LULC data in 2019 (b) suitable LULC allocation under drought year condition, 
(c) suitable LULC allocation under normal year condition, and (d) suitable LULC 
allocation under wet year condition. 
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(c) (d) 

Figure 8.11 (Continued). 
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Table 8.9 Ecosystem service value by ESV-LULC types of actual LULC 2019 and suitable LULC allocation for flood mitigation in 2049. 

ESV-LULC type 
Ecosystem service value (Baht) 

Actual LULC in 2019 
Suitable LULC allocation for flood mitigation in 2049 

Drought year condition Normal year condition Wet year condition 
Urban and built-up area (UR) 2,601,477.96 2,619,496.20 2,619,496.20 2,619,496.20 
Paddy field (PA) 6,478,728,717.87 5,804,108,745.04 5,836,474,634.01 5,837,109,771.08 
Field crops (FC) 2,580,196,487.94 2,708,125,854.28 2,739,308,474.19 3,017,196,892.58 
Forest land (FO) 4,050,694,542.52 5,175,683,049.75 5,088,763,867.23 4,556,472,852.29 
Water body (WA) 1,143,065,207.46 1,019,068,354.90 923,227,149.59 951,981,442.29 
Rangeland (RA) 180,645,657.62 176,458,912.81 167,474,335.65 163,551,108.15 
Marsh and swamp (MA) 810,570,999.17 566,999,625.41 642,803,121.89 679,994,212.35 
Unused land (UL) 27,921,866.31 27,938,099.16 27,938,099.16 27,938,099.16 
Total in Baht 15,274,424,956.85 15,481,002,137.55 15,428,609,177.92 15,236,863,874.10 
Total in million Baht 15,274.42 15,481.00 15,428.61 15,236.86 
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Figure 8.12 Spatial distribution of ecosystem service value of actual LULC in 2019.  
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Figure 8.13 Spatial distribution of ecosystem service value of suitable LULC allocation 
for flood mitigation in 2049 under drought year condition. 
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Figure 8.14 Spatial distribution of ecosystem service value of suitable LULC allocation 
for flood mitigation in 2049 under normal year condition.  
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Figure 8.15 Spatial distribution of ecosystem service value of suitable LULC allocation 
for flood mitigation in 2049 under wet year condition. 
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As a result, the ESV of actual LULC in 2019 and suitable LULC allocation for 
flood mitigation in 2049 under drought, normal and wet year conditions are slightly 
different. The suitable LULC allocation for flood mitigation in 2049 under drought year 
condition provides the highest ESV, about 15,481 million Baht, while the suitable LULC 
allocation for flood mitigation in 2049 under wet year condition delivers the lowest 
ESV, about 15,237 million Baht. The comparison of ESV among actual LULC and 
suitable LULC allocation data for flood mitigation from three rainfall conditions is 
displayed in Figure 8.16. The contribution of ESV of each LULC type from actual LULC 
in 2019 and suitable LULC allocation for flood mitigation in 2049 under three rainfall 
conditions are compared in Figure 8.17. 
 

 
Figure 8.16 The comparison of ESV among actual LULC and suitable LULC allocation 
data for flood mitigation from three different rainfall conditions. 
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Figure 8.17 Contribution of ecosystem service value of LULC type of actual LULC in 2019 and suitable LULC allocation in 2049 for flood 
mitigation under drought, normal, and wet year conditions. 
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As shown in Figure 8.17, paddy fields provide the highest ESV value from actual 
LULC and suitable LULC allocation data for flood mitigation in 2049 under drought, 
normal and wet years because the area of paddy fields in actual LULC data in 2019 is 
about 53%, while paddy fields cover an area of about 48% in suitable LULC allocation 
data for flood mitigation in 2049 under drought, normal and wet years. 

Moreover, the top three dominate LULC type for ESV evaluation, including 
paddy field, field crop, and forest land of actual LULC and suitable LULC allocation 
data for flood mitigation in 2049 under drought, normal, and wet years deliver ESV 
about 86%, 88%, 89%, and 88%, respectively. 
 

8.4 Assessment of ecosystem service value change 
Ecosystem service value maps of actual LULC in 2019 and suitable LULC 

allocation for flood mitigation in 2049 under drought, normal, and wet year were 
detected ESV change in terms of gain and loss using the image algebra change 
detection algorithm. 

Results of ESV change between suitable LULC allocation for flood mitigation in 
2049 from drought, normal, and wet year and actual LULC data in 2019 with gain 
(+sign) and loss (-sign) are informed in Tables 8.10 to 8.12. In the meantime, the spatial 
distribution of ecosystem service value change in terms of gain and loss between 
suitable LULC allocation for flood mitigation in 2049 under drought, normal, and wet 
years and actual LULC in 2019 are displayed in Figures 8.18 to 8.20, respectively. 
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Table 8.10 Ecosystem service value change between actual LULC in 2019 and suitable LULC allocation in 2049 under drought year. 
ESV in Baht 

 LULC type 
Suitable LULC allocation in 2049 of drought year  

UR PA FC FO WA RA MA UL SUM 

Ac
tu

al
 L

UL
C 

in
 2

01
9 

Urban and built-up area (UR) 0.00 33,070,532.05 14,033,134.39 14,056,674.00 4,876,692.35 169,937.61 2,050,228.35 82,438.64 68,339,637.39 

Paddy field (PA) -36,361,830.56 0.00 0.00 111,301,051.04 40,042,777.20 -10,787,659.00 119,186,869.73 -1,864,401.75 221,516,806.65 

Field crops (FC) -14,694,831.48 0.00 0.00 495,143,780.72 16,804,837.64 -3,059,383.86 5,105,666.65 -18,864,905.72 480,435,163.96 

Forest land (FO) -9,595,964.76 -27,031,395.79 -102,472,580.69 0.00 13,129,960.21 -3,091,732.70 646,197.77 -91,863,422.71 -220,278,938.67 

Water body (WA) -4,934,518.74 -46,672,810.80 -15,459,137.75 -20,490,485.85 0.00 -136,315.54 39,863,111.67 -818,745.62 -48,648,902.64 

Rangeland (RA) -158,757.51 8,882,771.47 4,299,980.36 12,485,473.94 187,433.87 0.00 745,517.68 -22,012.69 26,420,407.13 

Marsh and swamp (MA) -1,971,373.41 -184,811,080.57 -6,065,906.71 -249,411,495.71 -911,236.95 -1,635,329.12 0.00 0.00 -444,806,422.47 

Unused land (UL) -70,695.24 1,283,255.37 8,822,380.64 112,928,144.32 628,339.67 8,004.61 0.00 0.00 123,599,429.36 
 

SUM -67,787,971.70 -215,278,728.27 -96,842,129.77 476,013,142.46 74,758,803.99 -18,532,478.00 167,597,591.86 -113,351,049.85 206,577,180.71 

 

Table 8.11 Ecosystem service value change between actual LULC in 2019 and suitable LULC allocation in 2049 under normal year. 
ESV in Baht 

 LULC type 
Suitable LULC allocation in 2049 of normal year  

UR PA FC FO WA RA MA UL SUM 

Ac
tu

al
 L

UL
C 

in
 2

01
9 

Urban and built-up area (UR) 0.00 33,213,756.53 14,245,106.62 13,469,165.95 4,683,937.71 145,341.38 2,181,653.24 82,438.64 68,021,400.07 

Paddy field (PA) -36,361,830.56 0.00 0.00 109,485,394.21 31,328,549.86 -10,297,453.70 119,538,177.07 -1,864,401.75 211,828,435.14 

Field crops (FC) -14,694,831.48 0.00 0.00 460,303,772.89 16,739,193.75 -2,723,781.77 4,871,461.76 -18,864,905.72 445,630,909.43 

Forest land (FO) -9,595,964.76 -27,845,222.11 -110,136,970.35 0.00 13,129,960.21 -2,745,714.95 646,197.77 -91,863,422.71 -228,411,136.89 

Water body (WA) -4,934,518.74 -46,672,810.80 -16,378,152.31 -19,964,734.02 0.00 -136,315.54 70,466,654.06 -818,745.62 -18,438,622.98 

Rangeland (RA) -158,757.51 8,984,583.34 4,272,327.75 20,190,776.69 153,354.98 0.00 769,566.64 -22,012.69 34,189,839.22 

Marsh and swamp (MA) -1,971,373.41 -184,811,080.57 -54,007,648.18 -238,613,739.35 -686,932.47 -1,635,329.12 0.00 0.00 -481,726,103.10 

Unused land (UL) -70,695.24 1,317,440.45 9,308,860.64 111,897,550.09 628,339.67 8,004.61 0.00 0.00 123,089,500.21 
 

SUM -67,787,971.70 -215,813,333.16 -152,696,475.83 456,768,186.46 65,976,403.71 -17,385,249.08 198,473,710.54 -113,351,049.85 154,184,221.08 
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Table 8.12 Ecosystem service value change between actual LULC in 2019 and suitable LULC allocation in 2049 under wet year. 
ESV in Baht 

 LULC type 
Suitable LULC allocation in 2049 of wet year  

UR PA FC FO WA RA MA UL SUM 

Ac
tu

al
 L

UL
C 

in
 2

01
9 

Urban and built-up area (UR) 0.00 33,219,485.51 15,585,687.73 10,912,417.97 4,761,039.57 143,105.36 2,102,798.30 82,438.64 66,806,973.08 

Paddy field (PA) -36,361,830.56 0.00 0.00 82,273,720.44 34,282,525.23 -10,040,410.15 130,264,761.14 -1,864,401.75 198,554,364.35 

Field crops (FC) -14,694,831.48 0.00 0.00 268,925,817.40 16,788,426.67 -2,639,567.01 3,653,596.32 -18,864,905.72 253,168,536.17 

Forest land (FO) -9,595,964.76 -27,852,948.31 -117,373,843.65 0.00 13,129,960.21 -2,623,967.96 854,648.67 -91,863,422.71 -235,325,538.51 

Water body (WA) -4,934,518.74 -46,672,810.80 -19,200,839.89 -17,571,179.63 0.00 -136,315.54 61,417,370.22 -818,745.62 -27,917,040.00 

Rangeland (RA) -158,757.51 8,989,611.09 4,675,804.43 21,783,099.13 153,354.98 0.00 721,468.73 -22,012.69 36,142,568.16 

Marsh and swamp (MA) -1,971,373.41 -184,811,080.57 -214,156,953.59 -48,068,776.36 -757,027.62 -1,635,329.12 0.00 0.00 -451,400,540.66 

Unused land (UL) -70,695.24 1,320,070.07 10,000,451.14 110,523,424.44 628,339.67 8,004.61 0.00 0.00 122,409,594.68 
 

SUM -67,787,971.70 -215,807,673.01 -320,469,693.83 428,778,523.39 68,986,618.71 -16,924,479.81 199,014,643.38 -113,351,049.85 -37,561,082.72 
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Figure 8.18 Gain and loss of ESV of suitable LULC allocation for flood mitigation in 
2049 under drought year. 
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Figure 8.19 Gain and loss of ESV of suitable LULC allocation for flood mitigation in 
2049 under normal year. 
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Figure 8.20 Gain and loss of ESV of suitable LULC allocation for flood mitigation in 
2049 under wet year. 
 

As a result, in Table 8.10, suitable LULC allocation for flood mitigation in 2049 
under drought year gains the ESV of about 207 million Baht. Meanwhile, suitable LULC 
allocation for flood mitigation in 2049 under normal year gains the ESV of about 154 
million (Table 8.11). On the contrary, suitable LULC allocation for flood mitigation in 
2049 under wet year losses the ESV about 38 million Baht (Table 8.12). This finding 
indicates that the ESV of suitable LULC allocation for flood mitigation in 2049 under 
wet year is lower than actual LULC in 2019 (See Table 8.9). Herein, actual LULC in 2019 
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provides the ESV about 15,274 million Baht but suitable LULC allocation for flood 
mitigation in 2049 under wet year deliver the ESV about 15,237 million Baht. Similar to 
the change of future economic value, these results show the consequence of LULC 
allocation for flood mitigation in 2049 using Goal Programming on ESV because the ESV 
depends on areas of LULC type and their coefficient values.  

Besides, it can be observed that forest land, water body, and marsh and swamp 
provide a gain of ESV (+sign) while urban and built-up area, paddy field, field crops, 
rangeland, and unused land give a loss of ESV (-sign) for all three different rainfall 
conditions. These findings indicate that the ecosystem service value was dictated by 
the coefficient value of each LULC type. 

In summary, the suitable LULC allocation for flood mitigation in 2049 under 
normal year provides the highest value for future economic value evaluation, about 
149,210 million Baht. On the contrary, the suitable LULC allocation for flood mitigation 
in 2049 under wet year provides the lowest value, 147,858 million Baht. Meanwhile, 
the assessment of gain and loss of future economic value by comparing with the future 
economic value of LULC in 2019 shows that the suitable LULC allocation for flood 
mitigation in 2049 under the normal year provides the highest gain value. In contrast, 
the suitable LULC allocation for flood mitigation in 2049 under wet year provides the 
lowest gain value for this assessment. 

In the meantime, the suitable LULC allocation for flood mitigation in 2049 
under dry year provides the highest value for ecosystem service evaluation, about 
15,481 million Baht. On the contrary, the suitable LULC allocation for flood mitigation 
in 2049 under wet year provides the lowest value, about 15,237 million Baht. 
Meanwhile, the assessment of gain and loss of the ESV by comparing with the value 
of LULC data in 2019, the suitable LULC allocation for flood mitigation in 2049 under 
drought year gains the ESV about 207 million Baht. In contrast, the suitable LULC 
allocation for flood mitigation in 2049 under wet year losses the ESV about 38 million 
Baht for this assessment. 

In addition, the estimation of surface runoff and its reduction by comparing 
with the value of LULC data in 2019, the suitable LULC allocation for flood mitigation 
in 2049 under wet year delivers the highest surface runoff 5,195 million m3. On the 
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contrary, the suitable LULC allocation for flood mitigation in 2049 under drought year 
provides the lowest value, about 1,550 million m3. Meanwhile, the runoff reduction by 
comparing with the value of LULC data in 2019, the suitable LULC allocation for flood 
mitigation in 2049 under normal year can reduce surface runoff by about 52 million 
m3. In contrast, the suitable LULC allocation for flood mitigation in 2049 under drought 
year can reduce surface runoff by about 28 million m3. (See more detail in CHAPTER 
VII). The future economic value evaluation and change, ecosystem service values 
evaluation and change, and surface runoff by comparing with the baseline information 
of LULC data in 2019 are summarized in Table 8.13.  
 
Table 8.13 Comparison of the future economic value evaluation and change, 
ecosystem service values evaluation and change, and surface runoff by comparing with 
the baseline information of LULC data in 2019. 

Item 
Suitable LULC allocation for flood 

mitigation in 2049 
Drought year Normal year Wet year 

Future economic value (million Baht) 148,579.64 149,210.92 147,858.27 
Gain or Loss by economic value (million Baht) 3,929.45 4,321.67 3,123.86 
Ecosystem service value (million Baht) 15,481.00 15,428.61 15,236.86 
Gain or Loss by ESV (million Baht) 206.58 154.18 -37.56 
Surface runoff (million m3) 1,550.07 3,594.76 5,194.79 
Runoff reduction (million m3) 27.89 52.31 46.73 

 
Consequently, it can be concluded that the most suitable LULC allocation for 

flood mitigation in 2049 in Chaiyaphum district, Chaiyaphum province under the 
Second Part of the Lam Nam Chi watershed based on future economic value and 
ecosystem service value evaluation should be suitable LULC allocation for flood 
mitigation in 2049 under normal year scenario. This information can be used as primary 
data for supporting project implementation. 

The limitation of flood mitigation in the future is LULC allocation which was 
estimated by Goal Programming and mapped by CLUE-S model in the whole study 
area, the Second Part of the Lam Nam Chi watershed. 

 



 

 

 
CHAPTER IX 

CONCLUSION AND RECOMMENDATION 
 

Land use optimization is a practical approach for soil and water conservation 
and management at the watershed level to help decision-makers determine the best 
scenario of various land use alternatives without sacrificing economic and ecosystem 
service values obtained from the available land use. This study aimed to optimize 
LULC allocation for flood mitigation at Mueang Chaiyaphum district, Chaiyaphum 
province, Thailand, by integrating advanced LULC classification method, land use 
change modeling, distributed hydrological model, and Goal programming.  

Six main objectives included (1) to classify LULC data in 2001, 2010, and 2019 
using Random Forests classifier, (2) to predict LULC change in two periods (2002-2009 
and 2011-2018) based on historical LULC in 2001, 2010, and 2019 using CLUE-S model, 
(3) to estimate surface runoff from 2001 to 2019 using SCS-CN method, (4) to optimize 
LULC allocation for flood mitigation based on average runoff coefficient of LULC type 
between 2001 and 2019 under three different rainfall conditions using Goal 
programming, (5) to map an optimizing LULC allocation under three different rainfall 
conditions for flood mitigation of Mueang Chaiyaphum district, Chaiyaphum province 
using CLUE-S model, and (6) to examine economic and ecosystem service evaluation 
and change of suitable LULC allocation under three different rainfall conditions using 
the PV model and simple benefit transfer method in terms of gain and loss, were 
successfully implemented in this study. Thus, the conclusion by research objective 
with brief methodology and significant results were first concluded, and some 
recommendations were then suggested in this chapter. 
 

9.1 Conclusions 
9.1.1 Land use and land cover classification and change detection 

Random Forests (RF) classifier has been proposed in recent years for 
classifying multi-sources of remote sensing and geographic data. This method has been 
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proven to improve classification accuracy considerably. In this study, LULC data in 
2001, 2010, and 2019 were successfully classified based on Landsat 5-TM and Landsat 
8-OLI with supplementary data, including NDVI, MNDWI, NDBI, and DEM, using the RF 
classifier under EnMap BOX software. The classified LULC data consisted of urban and 
built-up area, paddy field, sugarcane, cassava, other field crops, para rubber, perennial 
trees and orchard, forest land, water body, rangeland, marsh and swamp, and unused 
land. By considering the performance of the RF classifier for LULC classification, the 
derived thematic accuracy of LULC maps showed the overall accuracy and Kappa hat 
coefficient of agreement between classified LULC maps and ground reference data in 
2001, 2010, and 2019 were 89.88% and 84.88%, 90.71% and 87.03%, and 91.37% and 
88.26%, respectively. Besides, LULC change detection between 2001 and 2019 
revealed that urban and built-up areas, sugarcane, para rubber, other field crops, and 
unused land significantly increased LULC types, while paddy fields and forest land 
significantly decreased LULC types. Meanwhile, cassava, perennial trees and orchards, 
waterbody, and marsh and swamps are unstable and unpredictable LULC types.  

In conclusion, the RF classifier can be used as an efficient tool to 
classify the LULC from remotely sensed data since it can provide high classification 
accuracy. Furthermore, the post-classification comparison change detection algorithm 
can provide detailed from-to-change class information in two different study periods. 

9.1.2 Prediction of time-series of land use and land cover by CLUE-S 
model  

LULC change models are essential for analyzing LULC change and 
predicting land use requirements and are valuable for guiding proper land use planning 
and management. Predicting LULC change can indicate anthropogenic impact, identify 
land use problems, such as degradation and deforestation, and land use planning. This 
study successfully predicted the time-series LULC data using the CLUE-S model. Eight 
driving forces for LULC change included elevation, slope, annual rainfall, average 
income per capita at the sub-district level, population density at the sub-district level, 
distance to the road network, distance to stream, and distance to the existing urban 
area were applied to analyze for specific LULC type allocation using binomial logistic 
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regression analysis, which provided the AUC values from 0.61857 (poor fit) to 0.98239 
(excellent fit) for specific LULC type allocation.  

LULC prediction between 2002 and 2009 was dictated by the historical 
LULC development between 2001 and 2010. The result indicated that the most 
increasing LULC types were cassava and sugarcane, with an increasing annual change 
rate of 10.71 and 10.24 km2 per year, while the paddy field was the most decreasing 
LULC type with decreasing annual change rate of 30.42 km2 per year. In the meantime, 
LULC prediction between 2011 and 2018 was enforced by the historical LULC 
development between 2010 and 2019. Again, the result revealed that sugarcane was 
the most increasing LULC type, with an increasing annual rate of 17.04 km2 per year, 
while cassava and forest land were the most decreasing LULC types, with decreasing 
annual change rates of 15.49 and 13.71 km2 per year.  

To sum up, it can be concluded that the predicted LULC map in the 
study period by the CLUE-S model can provide realistic results as expected. The 
deviation values between the land use requirement and the predicted area of each 
LULC type varies from -0.0005% to 0.0005% or -0.05 km2 (underestimation) to 0.05 km2 
(overestimation). 

9.1.3 Time-series surface runoff estimation using SCS-CN method  
This study successfully implemented time-series surface runoff 

estimation using the SCS-CN method under a GIS raster-based environment. The 
process worked on spatial variation of land use, hydrologic soil group, and rainfall data. 
In practice, a suitable AMC condition was first examined and validated for time-series 
surface runoff estimation between 2001 and 2010. Then a suitable AMC condition is 
further chosen to estimate time-series surface runoff between 2011 and 2019.  

For surface runoff estimation between 2001 and 2010 with three AMC 
conditions, the accumulated surface runoff volume ranged from 1,178.41 million m3 
to 6,558.70 million m3. In the meantime, the observed runoff data from the 
hydrological station gauge at E.21, E.23, and E6C of the RID were used to measure 
model performance using NSE, R2, and PBIAS for model validation. The derived NSE 
and R2 values were more than 0.65, and the PBIAS value was less than ± 10. Thus, 
surface runoff estimation using the SCS-CN method in the current study can be 
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accepted. Besides, NSE, R2, and PBIAS of all AMCs were compared to identify the 
suitable AMC for surface runoff estimation between 2011 and 2019. As a result, AMC-
II can provide all average statistics measurements better than other AMCs. 
Consequently, the AMC-II condition was chosen as the suitable AMC for time-series 
surface runoff between 2011 and 2019. 

For surface runoff estimation between 2011 and 2019 based on the 
suitable AMC (AMC-II), the accumulated surface runoff volume ranged from 1,003.60 
million m3 to 6,142.43 million m3. Furthermore, the validation result of surface runoff 
estimation with observed data from the hydrological station of RID at E.21, E.23, and 
E6C could provide a very good fit for surface estimation with NSE ranging from 0.87 to 
0.91 and a very high correlation between the observed and estimated surface runoff 
with R2 varied from 0.90 to 0.94. Meanwhile, the PBIAS values ranged between -5.71% 
for overestimation bias and 3.66% for underestimation bias.  

As the result of the case study at the Second Part of the Lam Nam Chi 
watershed, it can be concluded that distributed surface runoff modeling using the SCS-
CN method is applicable to estimate surface runoff effectively. 

9.1.4 Optimization and mapping of land use and land cover allocation 
for flood mitigation  

Optimized LULC allocation for flood mitigation at Mueang Chaiyaphum 
district, Chaiyaphum province, was successfully implemented using Goal programming 
based on the average surface runoff coefficient from LULC in three different rainfall 
conditions (drought, normal, and wet years). Herein, “What’s Best!” as an extension 
program under Microsoft Excel software was used to allocate an area of LULC with the 
simplex method. The average annual surface runoff volume of each LULC type under 
three different rainfall conditions was separately calculated and applied as a surface 
runoff coefficient. At the same time, the constraints for optimizing LULC allocation for 
flood mitigation were assigned based on the historical LULC development between 
2010 and 2019 using the Markov Chain model. 

As a result, surface runoff has decreased in all three different rainfall 
conditions. Under a drought year, annual surface runoff in 2029, 2039, and 2049 
decreases by 12.95, 20.78, and 27.89 million m3 from the total estimated surface runoff 
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in 2019, respectively. Similarly, under a normal year, the annual surface runoff 
estimation in the same years decreases by 21.34, 37.59, and 52.31 million m3 of total 
estimated surface runoff in 2019. Likewise, annual surface runoff estimation under a 
wet year in the same years decreases by 18.52, 33.06, and 46.73 million m3 of the total 
estimated surface runoff in 2019. Additionally, suitable LULC allocation for flood 
mitigation under three different rainfall conditions was in 2049. 

These results indicate that Goal programming can be efficiently 
operated using add-in software under the MS Excel environment to minimize surface 
runoff in the watershed area. 

Furthermore, the derived optimum local parameters of the CLUE-S 
model were applied to map optimizing LULC allocation data in 2029, 2039, and 2049 
of three different rainfall conditions using the CLUE-S model. As a result, it revealed 
that urban and built-up areas, other field crops, forest land, and unused land are 
unchanged. Meanwhile, sugarcane, para rubber, and perennial trees and orchards 
increase LULC types by about 7.22, 1.50, and 2.51 km2 per year, respectively. In 
contrast, paddy field, cassava, waterbody, rangeland, and marsh and swamp are 
decreasing LULC types by about 6.75, 3.90, 0.33, 0.22, and 0.18 km2 per year, 
respectively for all three different rainfall conditions.  

9.1.5 Economic and ecosystem service values evaluation and change  
The economic and ecosystem service values of actual LULC data in 

2019 and suitable LULC allocation data in 2049 for flood mitigation under three 
different rainfall conditions were first estimated using the PV model and a simple 
benefit method. Then they were applied to detect its value change in terms of gain 
and loss using the image algebra change detection algorithm. 

As a result, the suitable LULC allocation for flood mitigation in 2049 
under normal year could provide the highest value for future economic value, about 
149,210 million Baht, and the highest economic value gain compared with actual LULC 
in 2019. In the meantime, the suitable LULC allocation for flood mitigation in 2049 
under dry year could provide the highest ecosystem service value, about 15,481 
million Baht, and the highest ecosystem service value gain, about 207 million Baht. 
However, the suitable LULC allocation for flood mitigation in 2049 under a normal year 
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could reduce the highest surface runoff by about 52 million m3 compared with the 
actual value of LULC data in 2019. Consequently, it can be concluded that the most 
suitable LULC allocation for flood mitigation in 2049 in Chaiyaphum district, 
Chaiyaphum province under the Second Part of the Lam Nam Chi watershed based on 
future economic value and ecosystem service value evaluation and reduction of 
surface runoff should be suitable LULC allocation for flood mitigation in 2049 under 
normal year scenario.  

In conclusion, the derived results of this study can be used as primary 
information for flood mitigation project implementation. Additionally, the presented 
conceptual framework and research workflows can be used as a guideline for 
government agencies to investigate in more detail flood mitigation at Mueang 
Chaiyaphum district, Chaiyaphum province. 

 

9.2 Recommendations 
Many objectives were here investigated includes LULC assessment and its 

change, prediction of time-series of LULC, surface runoff estimation, optimization of 
LULC allocation for flood mitigation and mapping, evaluation of economic and 
ecosystem service values in Mueang Chaiyaphum district, Chaiyaphum province, 
Thailand. The possible expected recommendations and implications could be made 
for further studies as follows: 

(1) The classified LULC data are fundamental input data for time-series LULC 
prediction under the CLUE-S model and time-series surface runoff estimation using the 
SCS-CN method, the accessible data from very high spatial resolution imageries, such 
as Sentinel-2, should be applied to classify multi-level of LULC types using the RF 
classifier. 

(2) According to the driving force on LULC change, more significant factors at a 
local scale (social factor and culture) should be considered since the driving factor 
plays an essential role for land allocation under the CLUE-S model based on binary 
logistic regression analysis. 

(3) The study results show that Goal programming based on Linear programming 
provides better total surface runoff in the optimized LULC allocation for flood 

 



300 

 

mitigation. However, this study deals only with a single objective function. For future 
studies, multi-objective functions are recommended to maximize more meaning value, 
for example, economic value and ecosystem service value. 

 



 
 
 
 
 
 
 
 
 
 
 
 

REFERENCES 

 



 
REFERENCES 

 
Ahmad, I., Ahmad, I., & Verma, M. K. (2015). Application of Curve Number Method for 

Estimation of Runoff Potential in GIS Environment. Paper presented at The 2nd 
International Conference on Geological and Civil Engineering, 10-11 January 
2015.  

Al-Zahrani, M., Musa, A., & Chowdhury, S. (2016). Multi-objective optimization model 
for water resource management: a case study for Riyadh, Saudi Arabia. 
Environment, Development and Sustainability, 18, 777-798.  

Anderson, J. R., Hardy, E. E., Roach, J. T., & Witmer, R. E. (1976). A land use and land 
cover classification system for use with remote sensor data. 

Arowolo, A. O., & Deng, X. (2018). Land use/land cover change and statistical modelling 
of cultivated land change drivers in Nigeria. Regional Environmental Change, 
18(1), 247-259.  

Banba, M. (2016). Influences of Regional Development on Land Use of Nagara Basin 
and Flood Risk Control. Paper presented at The 3rd European Conference on 
Flood Risk Management.  

Bazaraa, M. S., Jarvis, J. J., & Sherali, H. D. (2009). Linear Programming and Network 
Flows (4th ed.). New Jersey: John Wiley & Sons, Inc. 

Beckers, J., Smerdon, B., Redding, T., Anderson, A., Pike, R., & Werner, A. (2009). 
Hydrologic Models for Forest Management Applications: Part 1: Model 
Selection. Streamline Watershed Management Bulletin, 13(1), 35-44.  

Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5-32. 
Breiman, L., Friedman, J., Olshen, R. A., & Stone, C. J. (1984). Classification and 

regression trees: The Wadsworth statistics/probability. United Kingdom: 
Chapman & Hall. 

Calow, P., & Petts, G. E. (1994). The Rivers Handbook: Hydrological and Ecological 
Principles, Volume 2. Oxford, United Kingdom: Wiley-Blackwell. 

 



303 

Canqiang, Z., Wenhua, L., Biao, Z., & Moucheng, L. (2012). Water Yield of Xitiaoxi River 
Basin Based on InVEST Modeling. Journal of Resources and Ecology, 3(1), 50-
54. 

Chow, V. T., Maidment, D. R., & Mays, L. W. (1988). Applied hydrology. New York: 
McGraw-Hill. 

Congalton, R. G., & Green, K. (2019). Assessing the Accuracy of Remotely Sensed Data: 
Principles and Practices (2nd ed.). Boca Raton, Florida: CRC Press. 

Costanza, R., d'Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., 
Naeem, S., O'Neill, R. V., Paruelo, J., Raskin, R. G., Sutton, P., & van den Belt, M. 
(1997). The value of the world's ecosystem services and natural capital. Nature, 
387(6630), 253-260.  

Danumah, J. H. (2016). Assessing Urban Flood Risks under Changing Climate and Land 
Use in Abidjan District, South Cote d’Ivoire. (Ph.D. Thesis). Department of Civil 
Engineering, Kwame Nkrumah University of Science and Technology,  

de Koning, G. H. J., Verburg, P. H., Veldkamp, A., & Fresco, L. O. (1999). Multi-scale 
modelling of land use change dynamics in Ecuador. Agricultural Systems, 61(2), 
77-93.  

Department of Disaster Prevention and Mitigation. (2019). Report of damage from a 
flooding situation: Department of Disaster Prevention and Mitigation, Ministry 
of Interior. 

Du, J., Fang, J., Xu, W., & Shi, P. (2013). Analysis of dry/wet conditions using the 
standardized precipitation index and its potential usefulness for drought/flood 
monitoring in Hunan Province, China. Stochastic Environmental Research and 
Risk Assessment, 27(2), 377-387. 

Eisavi, V., Homayouni, S., Yazdi, A. M., & Alimohammadi, A. (2015). Land cover mapping 
based on random forest classification of multitemporal spectral and thermal 
images. Environmental Monitoring and Assessment, 187(5), 291.  

Evelyn, O. B. (2009). Utilizing geographic information system (GIS) to determine 
optimum forest cover for minimizing runoff in a degraded watershed in Jamaica. 
International Forestry Review 11(3), 375-393.  

 



304 

Fitzpatrick-Lins, K. (1981). Comparison of Sampling Procedures and Data Analysis for a 
Land-use and Land-cover Map. Photogrammetric Engineering and Remote 
Sensing, 47(3), 343-351.  

Gao, C., Zhou, P., Jia, P., Liu, Z., Wei, L., & Tian, H. (2016). Spatial driving forces of 
dominant land use/land cover transformations in the Dongjiang River 
watershed, Southern China. Environmental Monitoring and Assessment, 188(2), 
84. 

Gartzia, M., Alados, C. L., Pe´rez-Cabello, F., & Bueno, C. G. (2013). Improving the 
Accuracy of Vegetation Classifications in Mountainous Areas: A Case Study in 
the Spanish Central Pyrenees. Mountain Research and Development, 33(1), 63-
74.  

Geo-Informatics and Space Technology Development Agency. (2019). Thailand Flood 
Monitoring System. Retrieved from http://flood.gistda.or.th/. 

Gislason, P. O., Benediktsson, J. A., & Sveinsson, J. R. (2006). Random Forests for land 
cover classification. Pattern Recognition Letters, 27(4), 294-300. 

Gonfa, Z. B., & Kumar, D. (2015). Optimal Land Use Planning in Mojo Watershed with 
Multi-Objective Linear Programming. American International Journal of 
Research in Humanities, Arts and Social Sciences, 13(1), 10-17.  

Grunwald, S., & Norton, L. D. (2000). Calibration and validation of a non-point source 
pollution model. Agricultural Water Management, 45(1), 17-39. 

Han, H., Yang, C., & Song, J. (2015). Scenario Simulation and the Prediction of Land Use 
and Land Cover Change in Beijing, China. Sustainability, 7(4), 4260-4279. 

Hargreaves, J. J., & Hobbs, B. F. (2009). Optimal Selection of Priority Development Areas 
Considering Tradeoffs Between Hydrology and Development Configuration. 
Environmental Modeling & Assessment, 14(3), 289-302.  

Harris, J. R., & Grunsky, E. C. (2015). Predictive lithological mapping of Canada's North 
using Random Forest classification applied to geophysical and geochemical 
data. Computers & Geosciences, 80, 9-25. 

Hawkins Richard, H., Hjelmfelt Allen, T., & Zevenbergen Adrian, W. (1985). Runoff 
Probability, Storm Depth, and Curve Numbers. Journal of Irrigation and 
Drainage Engineering, 111(4), 330-340. 

 



305 

Huang, T.-W., Kuo, H.-F., & Tsou, K.-W. (2013). A Multi-objective spatial optimization 
method for land use allocation in high flood risk areas. International Journal 
of Bioscience, Biochemistry and Bioinformatics, 3(3), 201-205.  

Jensen, J. R. (2005). Introductory Digital Image Processing: A Remote Sensing 
Perspective (3rd ed.). New Jersey: Prentice-Hall. 

Jhonnerie, R., Siregar, V. P., Nababan, B., Prasetyo, L. B., & Wouthuyzen, S. (2015). 
Random Forest Classification for Mangrove Land Cover Mapping Using Landsat 
5 TM and Alos Palsar Imageries. Procedia Environmental Sciences, 24, 215-221. 

Jones, D., & Tamiz, M. (2010). Practical goal programming. Berlin: Springer. 
Jothityangkoon, C., Maskong, H., Sangthong, P., & Kosa, P. (2015). Development 

processes of a master plan for flood protection and mitigation in a community 
area: A case study of Roi Et province. KKU Engineering Journal, 42(4), 287-291.  

Karavitis, C. A., Alexandris, S., Tsesmelis, D. E., & Athanasopoulos, G. (2011). Application 
of the Standardized Precipitation Index (SPI) in Greece. Water, 3(3). 

Kasei, R. A., Ampadu, B., & Sapanbil, G. S. (2013). Relationship between Rainfall-Runoff 
on the White Volta River at Pwalugu of the Volta Basin in Ghana. Journal of 
Environment and Earth Science, 3(11), 92-99.  

Kok, K., & Winograd, M. (2002). Modelling land-use change for Central America, with 
special reference to the impact of hurricane Mitch. Ecological Modelling, 149(1), 
53-69.  

Kucsicsa, G., Popovici, E.-A., Bălteanu, D., Grigorescu, I., Dumitraşcu, M., & Mitrică, B. 
(2019). Future land use/cover changes in Romania: regional simulations based 
on CLUE-S model and CORINE land cover database. Landscape and Ecological 
Engineering, 15(1), 75-90. 

Kulkarni, A., & Lowe, B. (2016). Random Forest Algorithm for Land Cover Classification. 
International Journal on Recent and Innovation Trends in Computing and 
Communication, 4(3), 58-63.  

Kuntiyawichai, K. (2012). Interactions between Land Use and Flood Management in 
the Chi River Basin. (Ph.D. Thesis). UNESCO-IHE Institute for Water Education, 
Wageningen University. 

 



306 

Lal, M., Mishra, S. K., Pandey, A., Pandey, R. P., Meena, P. K., Chaudhary, A., Jha, R. K., 
Shreevastava, A. K., & Kumar, Y. (2017). Evaluation of the Soil Conservation 
Service curve number methodology using data from agricultural plots. 
Hydrogeology Journal, 25(1), 151-167. 

Li, F., Chen, J., Liu, Y., Xu, P., Sun, H., Engel, A. B., & Wang, S. (2019). Assessment of the 
Impacts of Land Use/Cover Change and Rainfall Change on Surface Runoff in 
China. Sustainability, 11(13). 

Li, X., Wang, Y., Li, J., & Lei, B. (2016). Physical and Socioeconomic Driving Forces of 
Land-Use and Land-Cover Changes: A Case Study of Wuhan City, China. Discrete 
Dynamics in Nature and Society, 2016, 1-11.  

Liang, X., Liu, X., Chen, G., Leng, J., Wen, Y., & Chen, G. (2020). Coupling fuzzy clustering 
and cellular automata based on local maxima of development potential to 
model urban emergence and expansion in economic development zones. 
International Journal of Geographical Information Science, 34(10), 1930-1952.  

Liu, M., Wang, Y., Li, D., & Xia, B. (2013). Dyna-CLUE Model Improvement Based on 
Exponential Smoothing Method and Land Use Dynamic Simulation. Paper 
presented at the Geo-Informatics in Resource Management and Sustainable 
Ecosystem, Berlin, Heidelberg.  

Liu, W., & Liu, L. (2019). Analysis of Dry/Wet Variations in the Poyang Lake Basin Using 
Standardized Precipitation Evapotranspiration Index Based on Two Potential 
Evapotranspiration Algorithms. Water, 11(7), 1380.  

Liu, Y., Gong, W., Hu, X., & Gong, J. (2018). Forest Type Identification with Random 
Forest Using Sentinel-1A, Sentinel-2A, Multi-Temporal Landsat-8 and DEM Data. 
Remote Sensing, 10(6), 946.  

Liu, Y., Zhou, Y., Ju, W., Wang, S., Wu, X., He, M., & Zhu, G. (2014). Impacts of droughts 
on carbon sequestration by China's terrestrial ecosystems from 2000 to 2011. 
Biogeosciences, 11(10), 2583-2599.  

Malczewski, J. (1999). GIS and multicriteria decision analysis. New York: John Wiley & 
Sons. 

Malczewski, J., & Rinner, C. (2015). Multicriteria Decision Analysis in Geographic 
Information Science. New York: Springer. 

 



307 

Mamat, A., Halik, Ü., & Rouzi, A. (2018). Variations of Ecosystem Service Value in 
Response to Land-Use Change in the Kashgar Region, Northwest China. 
Sustainability, 10(1), 200.  

Mbow, C., Diop, A., Diaw, A. T., & Niang, C. I. (2008). Urban sprawl development and 
flooding at Yeumbeul suburb (Dakar-Senegal). African Journal of Environmental 
Science and Technology, 2(4), 75-88.  

McDill, M. E. (1999). Forest Resource Management. State College, PA: Pennsylvania 
State University. 

McKee, T. B., Doesken, N. J., & Kleist, J. (1993). The relationship of drought frequency 
and duration to time scales. Paper presented at the Eighth Conference on 
Applied Climatology, 17-22 January 1993.  

Me, W., Abell, J. M., & Hamilton, D. P. (2015). Effects of hydrologic conditions on SWAT 
model performance and parameter sensitivity for a small, mixed land use 
catchment in New Zealand. Hydrology and Earth System Sciences, 19(10), 
4127-4147. 

Midekisa, A., Holl, F., Savory, D. J., Andrade-Pacheco, R., Gething, P. W., Bennett, A., & 
Sturrock, H. J. W. (2017). Mapping land cover change over continental Africa 
using Landsat and Google Earth Engine cloud computing. PLOS ONE, 12(9), 
e0184926. 

Millennium Ecosystem Assessment. (2005). Ecosystems and Human Well-being: 
Synthesis. Washington, D.C.: Island Press. 

Mishra, A. K., Singh, V. P., & Desai, V. R. (2009). Drought characterization: a probabilistic 
approach. Stochastic Environmental Research and Risk Assessment, 23(1), 41-
55. 

Mishra, S. K., Jain, M. K., Suresh Babu, P., Venugopal, K., & Kaliappan, S. (2008). 
Comparison of AMC-dependent CN-conversion Formulae. Water Resources 
Management, 22(10), 1409-1420. 

Mishra, S. K., & Singh, V. P. (2003). Soil Conservation Service Curve Number (SCS-CN) 
methodology. Dordrecht, The Netherlands.: Kluwer Academic Publishers. 

Mohammady, M., Moradi, H. R., Zeinivand, H., Temme, A. J. A. M., Yazdani, M. R., & 
Pourghasemi, H. R. (2018). Modeling and assessing the effects of land use 

 



308 

changes on runoff generation with the CLUE-s and WetSpa models. Theoretical 
and Applied Climatology, 133(1), 459-471. 

Mohammed, H., Yohannes, F., & Zeleke, G. (2004). Validation of agricultural non-point 
source (AGNPS) pollution model in Kori watershed, South Wollo, Ethiopia. 
International Journal of Applied Earth Observation and Geoinformation, 6(2), 
97-109. 

Na, X., Zhang, S., Li, X., Yu, H., & Liu, C. (2010). Improved Land Cover Mapping using 
Random Forests Combined with Landsat Thematic Mapper Imagery and 
Ancillary Geographic Data. Photogrammetric Engineering & Remote Sensing, 
76(7), 833-840.  

National Resources Conservation Service. (2004). National Engineering Handbook, title 
210–VI–NEH. Part 630, Chapter 10 Estimation of Direct Runoff from Storm 
Rainfall. Washington, D.C.: United States Department of Agriculture. 

National Resources Conservation Service. (2009). National Engineering Handbook, title 
210–VI–NEH. Part 630, Chapter 7 Hydrologic Soil Groups. Washington, D.C.: 
United States Department of Agriculture. 

Neitsch, S. L., Arnold, J. G., Kiniry, J. R., Williams, J. R., & King, K. W. (2002). Soil and 
water assessment tool (SWAT): theoretical documentation, version 2000: Texas 
Water Resources Institute, College Station, TX, TWRI Report TR-191. 

Nikkami, D., Elektorowicz, M., & Mehuys, G. R. (2002). Optimizing the Management of 
Soil Erosion. Water Quality Research Journal of Canada, 37(3), 577-586.  

Ongsomwang, S., & Boonchoo, K. (2016). Integration of geospatial models for the 
allocation of deforestation hotspots and forest protection units. Suranaree 
Journal of Science and Technology, 23(3), 283-307.  

Ongsomwang, S., & Iamchuen, N. (2015a). Integration of geospatial models for optimum 
land use allocation in three different scenarios. Suranaree Journal of Science 
and Technology 22(4), 377-396.  

Ongsomwang, S., & Iamchuen, N. (2015b). Integration of geospatial models for optimum 
land use allocation in three different scenarios. Suranaree Journal of Science 
and Technology, 22(4), 377-396.  

 



309 

Ongsomwang, S., Pattanakiat, S., & Srisuwan, A. (2019). Impact of Land Use and Land 
Cover Change on Ecosystem Service Values: A Case Study of Khon Kaen City, 
Thailand. Environment and Natural Resources Journal, 17(4), 43-58.  

Ongsomwang, S., & Pimjai, M. (2014). Land use and land cover prediction and its impact 
on surface runoff. Suranaree Journal of Science and Technology, 22(2), 205-
223.  

Owji, M. R., Nikkami, D., Mahdian, M. H., & Mahmoudi, S. (2012). Minimizing Surface 
Runoff by Optimizing Land Use Management. World Applied Sciences Journal, 
20(1), 170-176.  

Palchowdhuri, Y., & Roy, P. S. (2018). Driver based statistical model for simulating land 
use/land cover change in Indus river basin, India. Remote Sensing of Land, 2(1), 
15-30.  

Pareeth, S., Karimi, P., Shafiei, M., & De Fraiture, C. (2019). Mapping Agricultural Landuse 
Patterns from Time Series of Landsat 8 Using Random Forest Based Hierarchical 
Approach. Remote Sensing, 11(5), 601-616.  

Phetprayoon, T. (2010). Potential Assessment of Nonpoint Source Pollution on Surface 
Water Quality in Upper Lam Phra Phloeng Watershed using Geospatial Models. 
(Ph. D. Thesis). Suranaree University of Technology,  

Phetprayoon, T., Sarapirome, S., Navanugraha, C., & Wonprasaid, S. (2012). Runoff and 
sediment yield estimation using distributed geospatial models for agricultural 
watershed in Thailand. Suranaree Journal of Science and Technology, 19(3), 
295-308.  

Phompila, C., Lewis, M., Ostendorf, B., & Clarke, K. (2017). Forest Cover Changes in Lao 
Tropical Forests: Physical and Socio-Economic Factors are the Most Important 
Drivers. Land, 6(2), 23.  

Polikar, R. (2006). Ensemble based systems in decision making. IEEE Circuits and 
Systems Magazine, 6(3), 21-45.  

Pontius, R. G., & Schneider, L. C. (2001). Land-cover change model validation by an 
ROC method for the Ipswich watershed, Massachusetts, USA. Agriculture, 
Ecosystems & Environment, 85(1), 239-248.  

 



310 

Rahmat, S. N., Jayasuriya, N., & Bhuiyan, M. (2015). Assessing droughts using 
meteorological drought indices in Victoria, Australia. Hydrology Research, 46(3), 
463-476. 

Rawat, K. S., & Singh, S. K. (2017). Estimation of Surface Runoff from Semi-arid Ungauged 
Agricultural Watershed Using SCS-CN Method and Earth Observation Data Sets. 
Water Conservation Science and Engineering, 1(4), 233-247. 

Riedel, C. (2003). Optimizing land use planning for mountainous regions using LP and 
GIS towards sustainability. Indian Journal of Soil Conservation, 34(1), 121-124.  

Rizeei, H. M., Pradhan, B., & Saharkhiz, M. A. (2018). Surface runoff prediction regarding 
LULC and climate dynamics using coupled LTM, optimized ARIMA, and GIS-
based SCS-CN models in tropical region. Arabian Journal of Geosciences, 11(3), 
53. 

Rodriguez-Galiano, V. F., Ghimire, B., Rogan, J., Chica-Olmo, M., & Rigol-Sanchez, J. P. 
(2012). An assessment of the effectiveness of a random forest classifier for land-
cover classification. ISPRS Journal of Photogrammetry and Remote Sensing, 67, 
93-104. 

Rossiter, D. G. (1994). Lecture Notes: “Land Evaluation,” Part 4: Economic Land 
Evaluation: College of Agriculture & Life Sciences, Department of Soil, Crop, & 
Atmospheric Sciences: Cornell University. 

Rouse, J., Haas, R. H., Schell, J. A., & Deering, D. (1973). Monitoring vegetation systems 
in the great plains with ERTS. Paper presented at the Third Earth Resources 
Technology Satellite-1 Symposium- Volume I: Technical Presentations. NASA 
SP-351.  

Sadeghi, S. H. R., Jalili, K., & Nikkami, D. (2009). Land use optimization in watershed 
scale. Land Use Policy, 26, 186-193.  

Sayari, N., Bannayan, M., Alizadeh, A., & Farid, A. (2013). Using drought indices to assess 
climate change impacts on drought conditions in the northeast of Iran (case 
study: Kashafrood basin). Meteorological Applications, 20(1), 115-127. 

Seiler, R. A., Hayes, M., & Bressan, L. (2002). Using the standardized precipitation index 
for flood risk monitoring. International Journal of Climatology, 22(11), 1365-
1376.  

 



311 

Shrestha, P. P., & Shrestha, K. J. (2017). Factors associated with crash severities in built-
up areas along rural highways of Nevada: A case study of 11 towns. Journal of 
Traffic and Transportation Engineering (English Edition), 4(1), 96-102. 

Sobhani, G. (1975). A review of selected small watershed design methods for possible 
adoption to Iranian conditions. (M.S. Thesis). Utah State University, Logan, UT,  

Sokouti, R., & Nikkami, D. (2017). Optimizing land use pattern to reduce soil erosion. 
Eurasian Journal of Soil Science, 6(1), 75-83.  

Srichaichana, J., Trisurat, Y., & Ongsomwang, S. (2019). Land Use and Land Cover 
Scenarios for Optimum Water Yield and Sediment Retention Ecosystem 
Services in Klong U-Tapao Watershed, Songkhla, Thailand. Sustainability, 11(10), 
2895-2916. 

Sriwongsitanon, N. (2010). Flood Forecasting System Development for the Upper Ping 
River Basin. Kasetsart Journal (Natural Science), 44, 717-731.  

Sunandar, A. D., Suhendang, E., Hendrayanto, Jaya, I. N. S., & Marimin. (2014). Land Use 
Optimization in Asahan Watershed with Linear Programming and SWAT Model. 
International Journal of Sciences: Basic and Applied Research, 18(1), 63-78.  

Tajbakhsh, S. M., Memarian, H., & Kheyrkhah, A. (2018). A GIS-based integrative approach 
for land use optimization in a semi-arid watershed. Global Journal of 
Environmental Science and Management, 4(1), 31-46.  

Tan, C., Yang, J., & Li, M. (2015). Temporal-Spatial Variation of Drought Indicated by SPI 
and SPEI in Ningxia Hui Autonomous Region, China. Atmosphere, 6(10), 1399-
1421. 

Tatsumi, K., Yamashiki, Y., Canales Torres, M. A., & Taipe, C. L. R. (2015). Crop 
classification of upland fields using Random forest of time-series Landsat 7 
ETM+ data. Computers and Electronics in Agriculture, 115, 171-179.  

TEEB. (2010). The Economics of Ecosystems and Biodiversity Ecological and Economic 
Foundations. Edited by Pushpam Kumar. London and Washington: Earthscan 
Publications. 

Tingsanchali, T., & Karim, F. (2010). Flood-hazard assessment and risk-based zoning of 
a tropical flood plain: case study of the Yom River, Thailand. Hydrological 
Sciences Journal, 55(2), 145-161. doi:10.1080/02626660903545987 

 



312 

Trisurat, Y., Alkemade, R., & Verburg, P. H. (2010). Projecting Land-Use Change and Its 
Consequences for Biodiversity in Northern Thailand. Environmental 
Management, 45(3), 626-639. 

United States Department of Agriculture. (1986). Urban Hydrology for Small 
Watersheds, title 210-VI-TR-55. (2nd ed.). Washington, D.C.: Conservation 
Engineering Division, National Resources Conservation Service, United States 
Department of Agriculture. 

van Asselen, S., & Verburg, P. H. (2013). Land cover change or land-use intensification: 
simulating land system change with a global-scale land change model. Global 
Change Biology, 19(12), 3648-3667. 

Veldkamp, A., & Fresco, L. O. (1996). CLUE-CR: An integrated multi-scale model to 
simulate land use change scenarios in Costa Rica. Ecological Modelling, 91(1), 
231-248.  

Verburg, P. H. (2010). The CLUE model Hands-on exercises: Amsterdam: Institute for 
Environmental Studies, University Amsterdam. 

Verburg, P. H., Chen, Y., & Veldkamp, T. (2000). Spatial explorations of land use change 
and grain production in China. Agriculture, Ecosystems & Environment, 82(1), 
333-354. 

Verburg, P. H., Koning, G. H. J. d., Koning, G. H. J. d., Veldkamp, A., & Bouma, J. (1999). 
A spatial explicit allocation procedure for modelling the pattern of land use 
change based upon actual land use. Ecological Modelling, 116, 45-61.  

Verburg, P. H., & Lesschen, J.-P. (2014). Practical: Explorative modeling of future land 
use for the Randstad region of the Netherlands: Wageningen University, 
Netherlands. 

Verburg, P. H., Soepboer, W., Veldkamp, A., Limpiada, R., Espaldon, V., & Mastura, S. S. 
A. (2002). Modeling the Spatial Dynamics of Regional Land Use: The CLUE-S 
Model. Environmental Management, 30(3), 391-405. doi:10.1007/s00267-002-
2630-x 

Verburg, P. H., Veldkamp, T., & Bouma, J. (1999). Land use change under conditions of 
high population pressure: the case of Java. Global Environmental Change, 9(4), 
303-312. 

 



313 

Vilar del Hoyo, L., Martín Isabel, M. P., & Martínez Vega, F. J. (2011). Logistic regression 
models for human-caused wildfire risk estimation: analysing the effect of the 
spatial accuracy in fire occurrence data. European Journal of Forest Research, 
130(6), 983-996.  

Weng, Q. (2010). Remote Sensing and GIS Integration Theories, Methods, and 
Applications. New York: McGraw-Hill. 

Xu, H. (2008). A new index for delineating built‐up land features in satellite imagery. 
International Journal of Remote Sensing, 29(14), 4269-4276.  

Xu, L., Li, Z., Song, H., & Yin, H. (2013). Land-Use Planning for Urban Sprawl Based on 
the CLUE-S Model: A Case Study of Guangzhou, China. Entropy, 15, 3490-3506.  

Xu, X., Du, Z., & Zhang, H. (2016). Integrating the system dynamic and cellular automata 
models to predict land use and land cover change. International Journal of 
Applied Earth Observation and Geoinformation, 52, 568-579.  

Yeo, I.-Y., Gordon, S. I., & Guldmann, J.-M. (2004). Optimizing Patterns of Land Use to 
Reduce Peak Runoff Flow and Nonpoint Source Pollution with an Integrated 
Hydrological and Land Use Model. Earth Interactions, 8, 1-20.  

Yu, D., Xie, P., Dong, X., Hu, B., Ji, L., Li, Y., Peng, T., Ma, H., Wang, K., & Xu, S. (2018). 
Improvement of the SWAT model for event-based flood simulation on a sub-
daily timescale. Hydrology and Earth System Sciences, 22, 5001-5019.  

Zare, M., Nazari Samani, A. A., Mohammady, M., Salmani, H., & Bazrafshan, J. (2017). 
Investigating effects of land use change scenarios on soil erosion using CLUE-s 
and RUSLE models. International Journal of Environmental Science and 
Technology, 14(9), 1905-1918. doi:10.1007/s13762-017-1288-0 

Zha, Y., Gao, J., & Ni, S. (2003). Use of normalized difference built-up index in 
automatically mapping urban areas from TM imagery. International Journal of 
Remote Sensing, 24(3), 583-594.  

Zhang, A., & Jia, G. (2013). Monitoring meteorological drought in semiarid regions using 
multi-sensor microwave remote sensing data. Remote Sensing of Environment, 
134, 12-23. 

 



314 

Zhang, Q., Xu, C.-Y., & Zhang, Z. (2009). Observed changes of drought/wetness episodes 
in the Pearl River basin, China, using the standardized precipitation index and 
aridity index. Theoretical and Applied Climatology, 98(1), 89-99.  

Zheng, H. W., Shen, G. Q., Wang, H., & Hong, J. (2015). Simulating land use change in 
urban renewal areas: A case study in Hong Kong. Habitat International, 46, 23-
34.  

Zhou, R., Zhang, H., Ye, X. Y., Wang, X. J., & Su, H. L. (2016). The Delimitation of Urban 
Growth Boundaries Using the CLUE-S Land-Use Change Model: Study on 
Xinzhuang Town, Changshu City, China. Sustainability, 8(11). 

 

 



 
 
 
 
 
 
 
 
 
 
 

APPENDICES 
 

 



 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX A 
DETAILS OF THE OPTIMIZED LULC ALLOCATION BY GOAL 

PROGRAMMING UNDER DROUGHT YEAR CONDITIONS 
 

 



 

 

317 

Table A1 Details of the optimized LULC allocation in 2029 under drought year conditions using Goal programming. 
LULC type X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 

Objective function Minimized surface runoff (million m3) 
Allocated area 65.84 1947.12 387.24 408.26 6.19 134.43 125.36 481.30 49.52 70.54 25.13 93.31 

Runoff coefficient 0.45 0.44 0.38 0.45 0.39 0.37 0.38 0.28 0.49 0.42 0.54 0.46 Best cell 1,565.01 
Constraints X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 Total Operator Right hand side (Bi) 
Constraint 1 1 0 0 0 0 0 0 0 0 0 0 0 65.84 =>= 65.84 
Constraint 2 1 0 0 0 0 0 0 0 0 0 0 0 65.84 <= 77.38 
Constraint 3 0 1 0 0 0 0 0 0 0 0 0 0 1,947.12 <= 2,012.16 
Constraint 4 0 1 0 0 0 0 0 0 0 0 0 0 1,947.12 =>= 1,947.12 
Constraint 5 0 0 1 0 0 0 0 0 0 0 0 0 387.24 >= 306.85 
Constraint 6 0 0 1 0 0 0 0 0 0 0 0 0 387.24 <= 424.95 
Constraint 7 0 0 0 1 0 0 0 0 0 0 0 0 408.26 <= 489.91 
Constraint 8 0 0 0 1 0 0 0 0 0 0 0 0 408.26 =>= 408.26 
Constraint 9 0 0 0 0 1 0 0 0 0 0 0 0 6.19 =>= 6.19 
Constraint 10 0 0 0 0 1 0 0 0 0 0 0 0 6.19 <= 7.72 
Constraint 11 0 0 0 0 0 1 0 0 0 0 0 0 134.43 >= 97.03 
Constraint 12 0 0 0 0 0 1 0 0 0 0 0 0 134.43 =<= 134.43 
Constraint 13 0 0 0 0 0 0 1 0 0 0 0 0 125.36 >= 88.95 
Constraint 14 0 0 0 0 0 0 1 0 0 0 0 0 125.36 =<= 125.36 
Constraint 15 0 0 0 0 0 0 0 1 0 0 0 0 481.30 =<= 481.30 
Constraint 16 0 0 0 0 0 0 0 1 0 0 0 0 481.30 >= 382.63 
Constraint 17 0 0 0 0 0 0 0 0 1 0 0 0 49.52 <= 53.30 
Constraint 18 0 0 0 0 0 0 0 0 1 0 0 0 49.52 =>= 49.52 
Constraint 19 0 0 0 0 0 0 0 0 0 1 0 0 70.54 <= 71.65 
Constraint 20 0 0 0 0 0 0 0 0 0 1 0 0 70.54 =>= 70.54 
Constraint 21 0 0 0 0 0 0 0 0 0 0 1 0 25.13 <= 27.73 
Constraint 22 0 0 0 0 0 0 0 0 0 0 1 0 25.13 =>= 25.13 
Constraint 23 0 0 0 0 0 0 0 0 0 0 0 1 93.31 =>= 93.31 
Constraint 24 0 0 0 0 0 0 0 0 0 0 0 1 93.31 <= 141.20 
Constraint 25 1 1 1 1 1 1 1 1 1 1 1 1 3,794.22 = 3,794.22 

Runoff (million m3) 29.84 856.54 148.87 184.27 2.39 49.86 47.40 136.03 24.29 29.36 13.59 42.57 

Goal programming: minimized surface runoff 
d1- d1+ Best cell Operator Goal 

12.95 0 1,565.01 = 1,577.96 
Note: X1 is urban and built-up area, X2 is paddy field, X3 is sugarcane, X4 is cassava, X5 is other field crops, X6 is para rubber, X7 is perennial trees and orchards, X8 is forest land, X9 is waterbody, X10 is rangeland, X11 is marsh and swamp, and X12 is unused land. 
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Table A2 Details of the optimized LULC allocation in 2039 under drought year conditions using Goal programming. 
LULC type X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 

Objective function Minimized surface runoff (million m3) 
Allocated area 65.84 1,879.30 454.94 359.65 6.19 152.02 160.12 481.30 47.01 69.91 24.66 93.31 

Runoff coefficient 0.45 0.44 0.38 0.45 0.39 0.37 0.38 0.28 0.49 0.42 0.54 0.46 Best cell 1,557.18 
Constraints X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 Total Operator Right hand side (Bi) 
Constraint 1 1 0 0 0 0 0 0 0 0 0 0 0 65.84 =>= 65.84 
Constraint 2 1 0 0 0 0 0 0 0 0 0 0 0 65.84 <= 88.31 
Constraint 3 0 1 0 0 0 0 0 0 0 0 0 0 1,879.30 <= 2,012.16 
Constraint 4 0 1 0 0 0 0 0 0 0 0 0 0 1,879.30 =>= 1,879.30 
Constraint 5 0 0 1 0 0 0 0 0 0 0 0 0 454.94 >= 306.85 
Constraint 6 0 0 1 0 0 0 0 0 0 0 0 0 454.94 <= 520.31 
Constraint 7 0 0 0 1 0 0 0 0 0 0 0 0 359.65 <= 489.91 
Constraint 8 0 0 0 1 0 0 0 0 0 0 0 0 359.65 =>= 359.65 
Constraint 9 0 0 0 0 1 0 0 0 0 0 0 0 6.19 =>= 6.19 
Constraint 10 0 0 0 0 1 0 0 0 0 0 0 0 6.19 <= 9.45 
Constraint 11 0 0 0 0 0 1 0 0 0 0 0 0 152.02 >= 97.03 
Constraint 12 0 0 0 0 0 1 0 0 0 0 0 0 152.02 =<= 152.02 
Constraint 13 0 0 0 0 0 0 1 0 0 0 0 0 160.12 >= 88.95 
Constraint 14 0 0 0 0 0 0 1 0 0 0 0 0 160.12 =<= 160.12 
Constraint 15 0 0 0 0 0 0 0 1 0 0 0 0 481.30 =<= 481.30 
Constraint 16 0 0 0 0 0 0 0 1 0 0 0 0 481.30 >= 304.44 
Constraint 17 0 0 0 0 0 0 0 0 1 0 0 0 47.01 <= 53.30 
Constraint 18 0 0 0 0 0 0 0 0 1 0 0 0 47.01 =>= 47.01 
Constraint 19 0 0 0 0 0 0 0 0 0 1 0 0 69.91 <= 71.65 
Constraint 20 0 0 0 0 0 0 0 0 0 1 0 0 69.91 =>= 69.91 
Constraint 21 0 0 0 0 0 0 0 0 0 0 1 0 24.66 <= 27.73 
Constraint 22 0 0 0 0 0 0 0 0 0 0 1 0 24.66 =>= 24.66 
Constraint 23 0 0 0 0 0 0 0 0 0 0 0 1 93.31 =>= 93.31 
Constraint 24 0 0 0 0 0 0 0 0 0 0 0 1 93.31 <= 180.07 
Constraint 25 1 1 1 1 1 1 1 1 1 1 1 1 3,794.22 = 3,794.22 

Runoff (million m3) 29.84 826.71 174.90 162.33 2.39 56.39 60.54 136.03 23.06 29.10 13.34 42.57 

Goal programming: minimized surface runoff 
d1- d1+ Best cell Operator Goal 

20.78 0 1,557.18 = 1,577.96 
Note: X1 is urban and built-up area, X2 is paddy field, X3 is sugarcane, X4 is cassava, X5 is other field crops, X6 is para rubber, X7 is perennial trees and orchards, X8 is forest land, X9 is waterbody, X10 is rangeland, X11 is marsh and swamp, and X12 is unused land. 
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Table A3 Details of the optimized LULC allocation in 2049 under drought year conditions using Goal programming. 
LULC type X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 

Objective function Minimized surface runoff (million m3) 
Allocated area 65.84 1,812.16 517.13 330.32 6.19 164.41 193.13 481.30 42.78 66.05 21.61 93.31 

Runoff coefficient 0.45 0.44 0.38 0.45 0.39 0.37 0.38 0.28 0.49 0.42 0.54 0.46 Best cell 1,550.07 
Constraints X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 Total Operator Right hand side (Bi) 
Constraint 1 1 0 0 0 0 0 0 0 0 0 0 0 65.84 =>= 65.84 
Constraint 2 1 0 0 0 0 0 0 0 0 0 0 0 65.84 <= 99.03 
Constraint 3 0 1 0 0 0 0 0 0 0 0 0 0 1,812.16 <= 2,012.16 
Constraint 4 0 1 0 0 0 0 0 0 0 0 0 0 1,812.16 =>= 1,812.16 
Constraint 5 0 0 1 0 0 0 0 0 0 0 0 0 517.13 >= 306.85 
Constraint 6 0 0 1 0 0 0 0 0 0 0 0 0 517.13 <= 599.36 
Constraint 7 0 0 0 1 0 0 0 0 0 0 0 0 330.32 <= 489.91 
Constraint 8 0 0 0 1 0 0 0 0 0 0 0 0 330.32 =>= 330.32 
Constraint 9 0 0 0 0 1 0 0 0 0 0 0 0 6.19 =>= 6.19 
Constraint 10 0 0 0 0 1 0 0 0 0 0 0 0 6.19 <= 11.26 
Constraint 11 0 0 0 0 0 1 0 0 0 0 0 0 164.41 >= 97.03 
Constraint 12 0 0 0 0 0 1 0 0 0 0 0 0 164.41 =<= 164.41 
Constraint 13 0 0 0 0 0 0 1 0 0 0 0 0 193.13 >= 88.95 
Constraint 14 0 0 0 0 0 0 1 0 0 0 0 0 193.13 =<= 193.13 
Constraint 15 0 0 0 0 0 0 0 1 0 0 0 0 481.30 =<= 481.30 
Constraint 16 0 0 0 0 0 0 0 1 0 0 0 0 481.30 >= 242.23 
Constraint 17 0 0 0 0 0 0 0 0 1 0 0 0 42.78 <= 53.30 
Constraint 18 0 0 0 0 0 0 0 0 1 0 0 0 42.78 =>= 42.78 
Constraint 19 0 0 0 0 0 0 0 0 0 1 0 0 66.05 <= 71.65 
Constraint 20 0 0 0 0 0 0 0 0 0 1 0 0 66.05 =>= 66.05 
Constraint 21 0 0 0 0 0 0 0 0 0 0 1 0 21.61 <= 27.73 
Constraint 22 0 0 0 0 0 0 0 0 0 0 1 0 21.61 =>= 21.61 
Constraint 23 0 0 0 0 0 0 0 0 0 0 0 1 93.31 =>= 93.31 
Constraint 24 0 0 0 0 0 0 0 0 0 0 0 1 93.31 <= 211.89 
Constraint 25 1 1 1 1 1 1 1 1 1 1 1 1 3,794.22 = 3,794.22 

Runoff (million m3) 29.84 797.17 198.81 149.09 2.39 60.99 73.02 136.03 20.99 27.49 11.69 42.57 

Goal programming: minimized surface runoff 
d1- d1+ Best cell Operator Goal 

27.89 0 1,550.07 = 1,577.96 

Note: X1 is urban and built-up area, X2 is paddy field, X3 is sugarcane, X4 is cassava, X5 is other field crops, X6 is para rubber, X7 is perennial trees and orchards, X8 is forest land, X9 is waterbody, X10 is rangeland, X11 is marsh and swamp, and X12 is unused land. 
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Table B1 Details of the optimized LULC allocation in 2029 under normal year conditions using Goal programming. 
LULC type X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 

Objective function Minimized surface runoff (million m3) 
Allocated area 65.84 1,947.12 385.71 408.26 7.72 134.43 125.36 481.30 49.52 70.54 25.13 93.31 

Runoff coefficient 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 Best cell 3,625.72 
Constraints X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 Total Operator Right hand side (Bi) 
Constraint 1 1 0 0 0 0 0 0 0 0 0 0 0 65.84 =>= 65.84 
Constraint 2 1 0 0 0 0 0 0 0 0 0 0 0 65.84 <= 77.38 
Constraint 3 0 1 0 0 0 0 0 0 0 0 0 0 1,947.12 <= 2,012.16 
Constraint 4 0 1 0 0 0 0 0 0 0 0 0 0 1,947.12 =>= 1,947.12 
Constraint 5 0 0 1 0 0 0 0 0 0 0 0 0 385.71 >= 306.85 
Constraint 6 0 0 1 0 0 0 0 0 0 0 0 0 385.71 <= 424.95 
Constraint 7 0 0 0 1 0 0 0 0 0 0 0 0 408.26 <= 489.91 
Constraint 8 0 0 0 1 0 0 0 0 0 0 0 0 408.26 =>= 408.26 
Constraint 9 0 0 0 0 1 0 0 0 0 0 0 0 7.72 >= 6.19 
Constraint 10 0 0 0 0 1 0 0 0 0 0 0 0 7.72 =<= 7.72 
Constraint 11 0 0 0 0 0 1 0 0 0 0 0 0 134.43 >= 97.03 
Constraint 12 0 0 0 0 0 1 0 0 0 0 0 0 134.43 =<= 134.43 
Constraint 13 0 0 0 0 0 0 1 0 0 0 0 0 125.36 >= 88.95 
Constraint 14 0 0 0 0 0 0 1 0 0 0 0 0 125.36 =<= 125.36 
Constraint 15 0 0 0 0 0 0 0 1 0 0 0 0 481.30 =<= 481.30 
Constraint 16 0 0 0 0 0 0 0 1 0 0 0 0 481.30 >= 382.63 
Constraint 17 0 0 0 0 0 0 0 0 1 0 0 0 49.52 <= 53.30 
Constraint 18 0 0 0 0 0 0 0 0 1 0 0 0 49.52 =>= 49.52 
Constraint 19 0 0 0 0 0 0 0 0 0 1 0 0 70.54 <= 71.65 
Constraint 20 0 0 0 0 0 0 0 0 0 1 0 0 70.54 =>= 70.54 
Constraint 21 0 0 0 0 0 0 0 0 0 0 1 0 25.13 <= 27.73 
Constraint 22 0 0 0 0 0 0 0 0 0 0 1 0 25.13 =>= 25.13 
Constraint 23 0 0 0 0 0 0 0 0 0 0 0 1 93.31 =>= 93.31 
Constraint 24 0 0 0 0 0 0 0 0 0 0 0 1 93.31 <= 141.20 
Constraint 25 1 1 1 1 1 1 1 1 1 1 1 1 3,794.22 = 3,794.22 

Runoff (million m3) 67.58 1,973.05 348.56 407.56 6.78 111.33 104.68 366.03 51.30 64.93 28.60 95.33 

Goal programming: minimized surface runoff 
d1- d1+ Best cell Operator Goal 

21.34 0 3,625.72 = 3,647.07 

Note: X1 is urban and built-up area, X2 is paddy field, X3 is sugarcane, X4 is cassava, X5 is other field crops, X6 is para rubber, X7 is perennial trees and orchards, X8 is forest land, X9 is waterbody, X10 is rangeland, X11 is marsh and swamp, and X12 is unused land. 
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Maximum coefficient value:        3.6524257537736e+009 on <RHS> 

Maximum coefficient in formula:   GoalProgramming!G39  

   

MODEL TYPE: Linear (Linear Program)  

SOLUTION STATUS:         GLOBALLY OPTIMAL    

OBJECTIVE VALUE:         3,625,723,294.9744  

BEST OBJECTIVE BOUND:    . . .  

INFEASIBILITY:           0.0  

DIRECTION:               Minimize  

SOLVER TYPE:             . . .  

ITERATIONS:              1.0  

STEPS:                   . . .  

ACTIVE:                  . . .  

SOLUTION TIME:           0 Hours 0 Minutes 2 Seconds  

End of Report   
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Table B2 Details of the optimized LULC allocation in 2039 under normal year conditions using Goal programming. 
LULC type X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 

Objective function Minimized surface runoff (million m3) 
Allocated area 65.84 1,879.30 451.67 359.65 9.45 152.02 160.12 481.30 47.01 69.91 24.66 93.31 

Runoff coefficient 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 Best cell 3,609.48 
Constraints X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 Total Operator Right hand side (Bi) 
Constraint 1 1 0 0 0 0 0 0 0 0 0 0 0 65.84 =>= 65.84 
Constraint 2 1 0 0 0 0 0 0 0 0 0 0 0 65.84 <= 88.31 
Constraint 3 0 1 0 0 0 0 0 0 0 0 0 0 1,879.30 <= 2,012.16 
Constraint 4 0 1 0 0 0 0 0 0 0 0 0 0 1,879.30 =>= 1,879.30 
Constraint 5 0 0 1 0 0 0 0 0 0 0 0 0 451.67 >= 306.85 
Constraint 6 0 0 1 0 0 0 0 0 0 0 0 0 451.67 <= 520.31 
Constraint 7 0 0 0 1 0 0 0 0 0 0 0 0 359.65 <= 489.91 
Constraint 8 0 0 0 1 0 0 0 0 0 0 0 0 359.65 =>= 359.65 
Constraint 9 0 0 0 0 1 0 0 0 0 0 0 0 9.45 >= 6.19 
Constraint 10 0 0 0 0 1 0 0 0 0 0 0 0 9.45 =<= 9.45 
Constraint 11 0 0 0 0 0 1 0 0 0 0 0 0 152.02 >= 97.03 
Constraint 12 0 0 0 0 0 1 0 0 0 0 0 0 152.02 =<= 152.02 
Constraint 13 0 0 0 0 0 0 1 0 0 0 0 0 160.12 >= 88.95 
Constraint 14 0 0 0 0 0 0 1 0 0 0 0 0 160.12 =<= 160.12 
Constraint 15 0 0 0 0 0 0 0 1 0 0 0 0 481.30 =<= 481.30 
Constraint 16 0 0 0 0 0 0 0 1 0 0 0 0 481.30 >= 304.44 
Constraint 17 0 0 0 0 0 0 0 0 1 0 0 0 47.01 <= 53.30 
Constraint 18 0 0 0 0 0 0 0 0 1 0 0 0 47.01 =>= 47.01 
Constraint 19 0 0 0 0 0 0 0 0 0 1 0 0 69.91 <= 71.65 
Constraint 20 0 0 0 0 0 0 0 0 0 1 0 0 69.91 =>= 69.91 
Constraint 21 0 0 0 0 0 0 0 0 0 0 1 0 24.66 <= 27.73 
Constraint 22 0 0 0 0 0 0 0 0 0 0 1 0 24.66 =>= 24.66 
Constraint 23 0 0 0 0 0 0 0 0 0 0 0 1 93.31 =>= 93.31 
Constraint 24 0 0 0 0 0 0 0 0 0 0 0 1 93.31 <= 180.07 
Constraint 25 1 1 1 1 1 1 1 1 1 1 1 1 3,794.22 = 3,794.22 

Runoff (million m3) 67.58 1,904.33 408.18 359.03 8.30 125.89 133.70 366.03 48.70 64.35 28.06 95.33 

Goal programming: minimized surface runoff 
d1- d1+ Best cell Operator Goal 

37.59 0 3,609.48 = 3,647.07 
Note: X1 is urban and built-up area, X2 is paddy field, X3 is sugarcane, X4 is cassava, X5 is other field crops, X6 is para rubber, X7 is perennial trees and orchards, X8 is forest land, X9 is waterbody, X10 is rangeland, X11 is marsh and swamp, and X12 is unused land. 
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MODEL INFORMATION:   

CLASSIFICATION DATA            Current   Capacity Limits  

--------------------------------------------------------  

Total Cells                     442  

Numerics                        416  

Adjustables                      14            300  

Continuous                       14  

Free                              0  

Integers/Binaries               0/0             30  

Constants                       375  

Formulas                         27  

Strings                           0  

Constraints                      26            150  

Nonlinears                        0             30  

Coefficients                    130  

   

Minimum coefficient value:        1 on GoalProgramming!O4 

Minimum coefficient in formula:   GoalProgramming!O4  

Maximum coefficient value:        3.6524257537736e+009 on <RHS> 

Maximum coefficient in formula:   GoalProgramming!G39  

   

MODEL TYPE: Linear (Linear Program)  

SOLUTION STATUS:         GLOBALLY OPTIMAL    

OBJECTIVE VALUE:         3,609,477,587.1418  

BEST OBJECTIVE BOUND:    . . .  

INFEASIBILITY:           0.0  

DIRECTION:               Minimize  

SOLVER TYPE:             . . .  

ITERATIONS:              1.0  

STEPS:                   . . .  

ACTIVE:                  . . .  

SOLUTION TIME:           0 Hours 0 Minutes 2 Seconds  

End of Report   
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Table B3 Details of the optimized LULC allocation in 2049 under normal year conditions using Goal programming. 
LULC type X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 

Objective function Minimized surface runoff (million m3) 
Allocated area 65.84 1,812.16 512.06 330.32 11.26 164.41 193.13 481.30 42.78 66.05 21.61 93.31 

Runoff coefficient 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 Best cell 3,594.76 
Constraints X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 Total Operator Right hand side (Bi) 
Constraint 1 1 0 0 0 0 0 0 0 0 0 0 0 65.84 =>= 65.84 
Constraint 2 1 0 0 0 0 0 0 0 0 0 0 0 65.84 <= 99.03 
Constraint 3 0 1 0 0 0 0 0 0 0 0 0 0 1,812.16 <= 2,012.16 
Constraint 4 0 1 0 0 0 0 0 0 0 0 0 0 1,812.16 =>= 1,812.16 
Constraint 5 0 0 1 0 0 0 0 0 0 0 0 0 512.06 >= 306.85 
Constraint 6 0 0 1 0 0 0 0 0 0 0 0 0 512.06 <= 599.36 
Constraint 7 0 0 0 1 0 0 0 0 0 0 0 0 330.32 <= 489.91 
Constraint 8 0 0 0 1 0 0 0 0 0 0 0 0 330.32 =>= 330.32 
Constraint 9 0 0 0 0 1 0 0 0 0 0 0 0 11.26 >= 6.19 
Constraint 10 0 0 0 0 1 0 0 0 0 0 0 0 11.26 =<= 11.26 
Constraint 11 0 0 0 0 0 1 0 0 0 0 0 0 164.41 >= 97.03 
Constraint 12 0 0 0 0 0 1 0 0 0 0 0 0 164.41 =<= 164.41 
Constraint 13 0 0 0 0 0 0 1 0 0 0 0 0 193.13 >= 88.95 
Constraint 14 0 0 0 0 0 0 1 0 0 0 0 0 193.13 =<= 193.13 
Constraint 15 0 0 0 0 0 0 0 1 0 0 0 0 481.30 =<= 481.30 
Constraint 16 0 0 0 0 0 0 0 1 0 0 0 0 481.30 >= 242.23 
Constraint 17 0 0 0 0 0 0 0 0 1 0 0 0 42.78 <= 53.30 
Constraint 18 0 0 0 0 0 0 0 0 1 0 0 0 42.78 =>= 42.78 
Constraint 19 0 0 0 0 0 0 0 0 0 1 0 0 66.05 <= 71.65 
Constraint 20 0 0 0 0 0 0 0 0 0 1 0 0 66.05 =>= 66.05 
Constraint 21 0 0 0 0 0 0 0 0 0 0 1 0 21.61 <= 27.73 
Constraint 22 0 0 0 0 0 0 0 0 0 0 1 0 21.61 =>= 21.61 
Constraint 23 0 0 0 0 0 0 0 0 0 0 0 1 93.31 =>= 93.31 
Constraint 24 0 0 0 0 0 0 0 0 0 0 0 1 93.31 <= 211.89 
Constraint 25 1 1 1 1 1 1 1 1 1 1 1 1 3,794.22 = 3,794.22 

Runoff (million m3) 67.58 1,836.29 462.76 329.75 9.88 136.16 161.27 366.03 44.33 60.80 24.59 95.33 

Goal programming: minimized surface runoff 
d1- d1+ Best cell Operator Goal 

52.31 0 3,594.76 = 3,647.07 

Note: X1 is urban and built-up area, X2 is paddy field, X3 is sugarcane, X4 is cassava, X5 is other field crops, X6 is para rubber, X7 is perennial trees and orchards, X8 is forest land, X9 is waterbody, X10 is rangeland, X11 is marsh and swamp, and X12 is unused land. 
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Formulas                         27  
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Constraints                      26            150  
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Coefficients                    130  

   

Minimum coefficient value:        1 on GoalProgramming!O4 

Minimum coefficient in formula:   GoalProgramming!O4  

Maximum coefficient value:        3.6524257537736e+009 on <RHS> 

Maximum coefficient in formula:   GoalProgramming!G39  

  

MODEL TYPE: Linear (Linear Program)  

SOLUTION STATUS:         GLOBALLY OPTIMAL    

OBJECTIVE VALUE:         3,594,757,921.784  

BEST OBJECTIVE BOUND:    . . .  

INFEASIBILITY:           0.0  

DIRECTION:               Minimize  

SOLVER TYPE:             . . .  

ITERATIONS:              1.0  
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ACTIVE:                  . . .  

SOLUTION TIME:           0 Hours 0 Minutes 2 Seconds  
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APPENDIX C 
DETAILS OF THE OPTIMIZED LULC ALLOCATION BY GOAL 

PROGRAMMING UNDER WET YEAR CONDITIONS 
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Table C1 Details of the optimized LULC allocation in 2029 under wet year conditions using Goal programming. 
LULC type X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 

Objective function Minimized surface runoff (million m3) 
Allocated area 65.84 1,947.12 423.64 408.26 6.19 134.43 88.95 481.30 49.52 70.54 25.13 93.31 

Runoff coefficient 0.45 0.44 0.38 0.45 0.39 0.37 0.38 0.28 0.49 0.42 0.54 0.46 Best cell 5,223.01 
Constraints X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 Total Operator Right hand side (Bi) 
Constraint 1 1 0 0 0 0 0 0 0 0 0 0 0 65.84 =>= 65.84 
Constraint 2 1 0 0 0 0 0 0 0 0 0 0 0 65.84 <= 77.38 
Constraint 3 0 1 0 0 0 0 0 0 0 0 0 0 1,947.12 <= 2,012.16 
Constraint 4 0 1 0 0 0 0 0 0 0 0 0 0 1,947.12 =>= 1,947.12 
Constraint 5 0 0 1 0 0 0 0 0 0 0 0 0 423.64 >= 306.85 
Constraint 6 0 0 1 0 0 0 0 0 0 0 0 0 423.64 <= 424.95 
Constraint 7 0 0 0 1 0 0 0 0 0 0 0 0 408.26 <= 489.91 
Constraint 8 0 0 0 1 0 0 0 0 0 0 0 0 408.26 =>= 408.26 
Constraint 9 0 0 0 0 1 0 0 0 0 0 0 0 6.19 =>= 6.19 
Constraint 10 0 0 0 0 1 0 0 0 0 0 0 0 6.19 <= 7.72 
Constraint 11 0 0 0 0 0 1 0 0 0 0 0 0 134.43 >= 97.03 
Constraint 12 0 0 0 0 0 1 0 0 0 0 0 0 134.43 =<= 134.43 
Constraint 13 0 0 0 0 0 0 1 0 0 0 0 0 88.95 =>= 88.95 
Constraint 14 0 0 0 0 0 0 1 0 0 0 0 0 88.95 <= 125.36 
Constraint 15 0 0 0 0 0 0 0 1 0 0 0 0 481.30 =<= 481.30 
Constraint 16 0 0 0 0 0 0 0 1 0 0 0 0 481.30 >= 382.63 
Constraint 17 0 0 0 0 0 0 0 0 1 0 0 0 49.52 <= 53.30 
Constraint 18 0 0 0 0 0 0 0 0 1 0 0 0 49.52 =>= 49.52 
Constraint 19 0 0 0 0 0 0 0 0 0 1 0 0 70.54 <= 71.65 
Constraint 20 0 0 0 0 0 0 0 0 0 1 0 0 70.54 =>= 70.54 
Constraint 21 0 0 0 0 0 0 0 0 0 0 1 0 25.13 <= 27.73 
Constraint 22 0 0 0 0 0 0 0 0 0 0 1 0 25.13 =>= 25.13 
Constraint 23 0 0 0 0 0 0 0 0 0 0 0 1 93.31 =>= 93.31 
Constraint 24 0 0 0 0 0 0 0 0 0 0 0 1 93.31 <= 141.20 
Constraint 25 1 1 1 1 1 1 1 1 1 1 1 1 3,794.22 = 3,794.22 

Runoff (million m3) 95.82 2,795.81 552.77 574.05 8.09 174.82 116.42 563.35 74.55 95.60 39.97 131.74 

Goal programming: minimized surface runoff 
d1- d1+ Best cell Operator Goal 

18.52 0 5,223.01 = 5,241.52 

Note: X1 is urban and built-up area, X2 is paddy field, X3 is sugarcane, X4 is cassava, X5 is other field crops, X6 is para rubber, X7 is perennial trees and orchards, X8 is forest land, X9 is waterbody, X10 is rangeland, X11 is marsh and swamp, and X12 is unused land. 
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Maximum coefficient value:        5.2540864516891e+009 on <RHS> 
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MODEL TYPE: Linear (Linear Program)  

SOLUTION STATUS:         GLOBALLY OPTIMAL    
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Table C2 Details of the optimized LULC allocation in 2039 under wet year conditions using Goal programming. 
LULC type X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 

Objective function Minimized surface runoff (million m3) 
Allocated area 65.84 1,879.30 520.31 359.65 9.45 152.02 91.48 481.30 47.01 69.91 24.66 93.31 

Runoff coefficient 0.45 0.44 0.38 0.45 0.39 0.37 0.38 0.28 0.49 0.42 0.54 0.46 Best cell 5,208.46 
Constraints X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 Total Operator Right hand side (Bi) 
Constraint 1 1 0 0 0 0 0 0 0 0 0 0 0 65.84 =>= 65.84 
Constraint 2 1 0 0 0 0 0 0 0 0 0 0 0 65.84 <= 88.31 
Constraint 3 0 1 0 0 0 0 0 0 0 0 0 0 1,879.30 <= 2,012.16 
Constraint 4 0 1 0 0 0 0 0 0 0 0 0 0 1,879.30 =>= 1,879.30 
Constraint 5 0 0 1 0 0 0 0 0 0 0 0 0 520.31 >= 306.85 
Constraint 6 0 0 1 0 0 0 0 0 0 0 0 0 520.31 =<= 520.31 
Constraint 7 0 0 0 1 0 0 0 0 0 0 0 0 359.65 <= 489.91 
Constraint 8 0 0 0 1 0 0 0 0 0 0 0 0 359.65 =>= 359.65 
Constraint 9 0 0 0 0 1 0 0 0 0 0 0 0 9.45 >= 6.19 
Constraint 10 0 0 0 0 1 0 0 0 0 0 0 0 9.45 =<= 9.45 
Constraint 11 0 0 0 0 0 1 0 0 0 0 0 0 152.02 >= 97.03 
Constraint 12 0 0 0 0 0 1 0 0 0 0 0 0 152.02 =<= 152.02 
Constraint 13 0 0 0 0 0 0 1 0 0 0 0 0 91.48 >= 88.95 
Constraint 14 0 0 0 0 0 0 1 0 0 0 0 0 91.48 <= 160.12 
Constraint 15 0 0 0 0 0 0 0 1 0 0 0 0 481.30 =<= 481.30 
Constraint 16 0 0 0 0 0 0 0 1 0 0 0 0 481.30 >= 304.44 
Constraint 17 0 0 0 0 0 0 0 0 1 0 0 0 47.01 <= 53.30 
Constraint 18 0 0 0 0 0 0 0 0 1 0 0 0 47.01 =>= 47.01 
Constraint 19 0 0 0 0 0 0 0 0 0 1 0 0 69.91 <= 71.65 
Constraint 20 0 0 0 0 0 0 0 0 0 1 0 0 69.91 =>= 69.91 
Constraint 21 0 0 0 0 0 0 0 0 0 0 1 0 24.66 <= 27.73 
Constraint 22 0 0 0 0 0 0 0 0 0 0 1 0 24.66 =>= 24.66 
Constraint 23 0 0 0 0 0 0 0 0 0 0 0 1 93.31 =>= 93.31 
Constraint 24 0 0 0 0 0 0 0 0 0 0 0 1 93.31 <= 180.07 
Constraint 25 1 1 1 1 1 1 1 1 1 1 1 1 3,794.22 = 3,794.22 

Runoff (million m3) 95.82 2,698.43 678.91 505.70 12.36 197.69 119.73 563.35 70.77 94.76 39.21 131.74 

Goal programming: minimized surface runoff 
d1- d1+ Best cell Operator Goal 

33.06 0 5,208.46 = 5,241.52 

Note: X1 is urban and built-up area, X2 is paddy field, X3 is sugarcane, X4 is cassava, X5 is other field crops, X6 is para rubber, X7 is perennial trees and orchards, X8 is forest land, X9 is waterbody, X10 is rangeland, X11 is marsh and swamp, and X12 is unused land. 
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Maximum coefficient in formula:   GoalProgramming!G39  

   

MODEL TYPE: Linear (Linear Program)  
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SOLUTION TIME:           0 Hours 0 Minutes 2 Seconds  
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Table C3 Details of the optimized LULC allocation in 2049 under wet year conditions using Goal programming. 
LULC type X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 

Objective function Minimized surface runoff (million m3) 
Allocated area 65.84 1812.16 599.36 330.32 11.26 164.41 105.83 481.30 42.78 66.05 21.61 93.31 

Runoff coefficient 0.45 0.44 0.38 0.45 0.39 0.37 0.38 0.28 0.49 0.42 0.54 0.46 Best cell 5,194.79 
Constraints X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 Total Operator Right hand side (Bi) 
Constraint 1 1 0 0 0 0 0 0 0 0 0 0 0 65.84 =>= 65.84 
Constraint 2 1 0 0 0 0 0 0 0 0 0 0 0 65.84 <= 99.03 
Constraint 3 0 1 0 0 0 0 0 0 0 0 0 0 1,812.16 <= 2,012.16 
Constraint 4 0 1 0 0 0 0 0 0 0 0 0 0 1,812.16 =>= 1,812.16 
Constraint 5 0 0 1 0 0 0 0 0 0 0 0 0 599.36 >= 306.85 
Constraint 6 0 0 1 0 0 0 0 0 0 0 0 0 599.36 =<= 599.36 
Constraint 7 0 0 0 1 0 0 0 0 0 0 0 0 330.32 <= 489.91 
Constraint 8 0 0 0 1 0 0 0 0 0 0 0 0 330.32 =>= 330.32 
Constraint 9 0 0 0 0 1 0 0 0 0 0 0 0 11.26 >= 6.19 
Constraint 10 0 0 0 0 1 0 0 0 0 0 0 0 11.26 =<= 11.26 
Constraint 11 0 0 0 0 0 1 0 0 0 0 0 0 164.41 >= 97.03 
Constraint 12 0 0 0 0 0 1 0 0 0 0 0 0 164.41 =<= 164.41 
Constraint 13 0 0 0 0 0 0 1 0 0 0 0 0 105.83 >= 88.95 
Constraint 14 0 0 0 0 0 0 1 0 0 0 0 0 105.83 <= 193.13 
Constraint 15 0 0 0 0 0 0 0 1 0 0 0 0 481.30 =<= 481.30 
Constraint 16 0 0 0 0 0 0 0 1 0 0 0 0 481.30 >= 242.23 
Constraint 17 0 0 0 0 0 0 0 0 1 0 0 0 42.78 <= 53.30 
Constraint 18 0 0 0 0 0 0 0 0 1 0 0 0 42.78 =>= 42.78 
Constraint 19 0 0 0 0 0 0 0 0 0 1 0 0 66.05 <= 71.65 
Constraint 20 0 0 0 0 0 0 0 0 0 1 0 0 66.05 =>= 66.05 
Constraint 21 0 0 0 0 0 0 0 0 0 0 1 0 21.61 <= 27.73 
Constraint 22 0 0 0 0 0 0 0 0 0 0 1 0 21.61 =>= 21.61 
Constraint 23 0 0 0 0 0 0 0 0 0 0 0 1 93.31 =>= 93.31 
Constraint 24 0 0 0 0 0 0 0 0 0 0 0 1 93.31 <= 211.89 
Constraint 25 1 1 1 1 1 1 1 1 1 1 1 1 3,794.22 = 3,794.22 

Runoff (million m3) 95.82 2,602.02 782.05 464.46 14.71 213.81 138.51 563.35 64.41 89.52 34.37 131.74 

Goal programming: minimized surface runoff 
d1- d1+ Best cell Operator Goal 

46.73 0 5,194.79 = 5,241.52 

Note: X1 is urban and built-up area, X2 is paddy field, X3 is sugarcane, X4 is cassava, X5 is other field crops, X6 is para rubber, X7 is perennial trees and orchards, X8 is forest land, X9 is waterbody, X10 is rangeland, X11 is marsh and swamp, and X12 is unused land. 
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