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Cassava Mosaic Disease (CMD) is a plant disease that reduces tuber size and 

starch percentage upstream in cassava supply chain, leading to sales decrease of 

cassava crop.  The aim of this study is to develop a mathematical model that represents 

dynamics of CMD caused by the whitefly or planting infected cuttings.  Dynamics of 

the cassava and the whitefly populations can be traced using the proposed model.  There 

are four plant states: tolerant, susceptible, exposed, and infected and two vector states: 

susceptible and infected.  The model is used to analyze the behavior of CMD outbreak 

and the optimal control policy can be determined by the proposed model. 

Severity of CMD spread is assessed by basic reproduction number (𝑅𝑅0), which 

is calculated by using the next-generation method.  The locally-asymptotically-stable 

disease-free equilibrium point is established when 𝑅𝑅0 < 1, using the Routh-Hurwitz 

criteria.  The globally-asymptotically-stable disease-free and the endemic equilibrium 

points are established using Lyapunov-LaSalle’s Theorem.  Results indicate that 

disease-free equilibrium point is globally-asymptotically-stable and 𝑅𝑅0 ≤ 1, implying 

that the disease can be controlled.  However, the disease will persist if the endemic 

equilibrium point is globally-asymptotically-stable and 𝑅𝑅0 > 1. 
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CHAPTER I 

INTRODUCTION 

 

1.1 Background 

Manihot Esculenta is a kind of tuber crops, commonly called cassava or tapioca 

in English and manioc in French.  Cassava has been grown in many areas around the 

world, especially in the tropics.  According to a bank of Thailand annual report (2017), 

global production was approximated 270 million tons with 30% from the African, where 

Nigeria is the world’s largest producer.  Cassava yields in Thailand is about 30 million 

tons per year which account for 9% of global production.  According to Khandare and 

Choomsook (2019), an average the total export value of cassava of Thailand was 

94,845.33 million baths during the period from 2010 to 2018. 

In 2018 to 2019, the cassava production in Thailand decreased sharply due to 

cassava mosaic disease (CMD).  CMD is a plant disease that reduces tuber size and 

starch percentage upstream in the cassava supply chain, reducing sales of the cassava 

crop.  This leads to downstream economic impacts since cassava is a major industrial 

raw material. 

CMD was found in the African continent in 1894 in Tanzania.  It was first 

reported in Uganda in 1920, resulting in great economic loss.  There was no outbreak 

reported of CMD for many years until the outbreak appeared again in Uganda and 

Kenya in the late 1990.
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An CMD outbreak hit Southeast Asia in 2016, mainly in Cambodia and Vietnam 

(Wang et al., 2016).  This disease was spread to Thailand through imported virus-

infected cassava cuttings in 2018 and the outbreak was found in major cassava growing 

areas, such as Nakhon Ratchasima, Sa Kaeo, and Buriram provinces.  The timeline of 

global CMD outbreak is shown in Figure 1.1. 

 

 

 

Figure 1.1 Timeline of global CMD outbreak. Source: Wang et al. (2016), 

Macfadyen et al. (2018) 

 

CMD has caused epidemics in numerous plantations worldwide when proper 

control measures were not taken (Banito et al., 2010).  The financial losses due to CMD 

in the African continent were estimated $1.2 – 2.3 billion in 1997 (Thresh et al., 1997), 

increasing to $1.9 – 2.7 billion in 2009 (Patil and Fauquet, 2009).  Thottappilly et al. 

(2003) identified 23 virus species that cause diseases in cassava: 

• ten species from genus Begomovirus, Geminiviridae family 

• two species from genus Ipomovirus, Potyviridae family 

• three species from genus Potexvirus, Flexiviridae family 

• two species from genus Nepovirus, Comoviridae family 

• one specie from genus Oryzavirus, Reoviridae family 
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• two species from genus Ourmiavirus 

• one specie from genus Nucleorhabdovirus, Rhabdoviridae family 

• one specie from genus Cavemovirus, Caulimoviridae family 

• A further one type that is still in the identification stage. 

 

The genus Begomovirus is the most virulent family due to its strong genetic 

diversity.  It has caused significant damage in Africa and parts of Asia.  Without proper 

study and control, this family could trigger a worldwide pandemic.  CMD is spread in 

two ways: by the introduction of infected cuttings or by the whitefly (Bemisia tabaci).  

After acquiring the virus from an infected plant, the whitefly becomes infective in a 

three-hour period.  The hatching or latent period of the virus in the whitefly vector is 

approximately eight hours and the time for virus transmission to a healthy cassava leaf 

is at least 10 minutes.  If an infected cutting is introduced, the symptoms of CMD will 

appear within three months.  If infection is through the whitefly vector, symptoms will 

appear in 2-3 weeks.  They begin with of distortion and crinkling of leaves, followed 

by the color changing to mosaic.  This resembles polished stone, as shown in Figure 

1.2(a).  Leaves become pale yellow and the whole plant is shorter than a healthy plant, 

as seen in Figure 1.2(b). 
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(a) (b) 

 

Figure 1.2 (a) Cassava leaves symptom caused by CMD and (b) infected 

cassava in a farm 

 

Cassava is propagated by transplanting stems.  CMD may proliferate rapidly if 

the farmer does not check whether the transplanted stem is virus-free.  An infected stem 

is a potential source of inoculum for the whitefly.  The progression of the outbreak 

depends on the replanting rate and the population of whitefly. Whitefly populations can 

increase rapidly when temperatures are between 27 and 32 °C and conditions are dry.  

However, outbreaks are more serious when infected but symptomless stems are 

transplanted.  Whitefly generally does not migrate far from its habitat.  If there are a 

great number of whiteflies in the area but the plantation is virus-free, no infection will 

occur.  The CMD outbreak process is shown in Figure 1.3. 
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Figure 1.3 CMD outbreak flow 

 

1.1.1 Outbreak prevention and control of CMD 

 CMD control involves (1) eliminating infected cassava from the 

plantation area, (2) promoting the use of virus-free cuttings, (3) using tolerant varieties, 

or (4) killing infected whitefly (Thresh et al., 1997, Legg, 1999).  The first approach is 

widely used, but reduces the crop yield.  The government of Uganda promoted the use 

of virus-free cuttings in all plantation areas and enacted laws to punish those who 

released cassava infected with CMD.  This was shown to be highly effective in disease 

control (Jameson, 1964).  However, a shift in enforcement policy by a new government 

led to repeated epidemics of CMD up to the present.  The third approach was developed 

in 1971 by the international institute of tropical agriculture (IITA), which created CMD-

tolerant cassava varieties.  However, tolerant varieties become vulnerable to evolved 

species of virus after approximately 20 years.  At present, there is no reliable approach 

to eliminating the CMD but the best is to limit the outbreak area. 
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1.2 Problem Definition 

CMD epidemics negatively impact the overall global economy.  Thailand, as 

the world’s largest cassava exporter, is exposed to the same risks.  In 2016, 2017, and 

2018, Thailand’s earning from exports of cassava products were $3,294,210, 

$3,048,070, and $3,179,190, respectively. 

 In 2018, the outbreak was spread into Thailand by farmers who imported and 

planted virus-infected cassava stems.  When whiteflies acquired the virus from the 

infected plants, they spread the outbreak to Thailand.  Currently, the only way of 

containing the spread is either to remove the infected cassava plants or use pesticide 

spray to kill the whitefly.  However, this imposed financial losses on the farmers, due 

to lower cassava yields.  The Thai ministry of agriculture and cooperatives decided to 

pay compensation to farmers with no clear policy for controlling and containing plant 

diseases ($40 per 400 m2, with a limit of 12,000 m2 per farmer). This allows the outbreak 

to spread rapidly, causing serious economic losses. 

 However, it is possible to apply methodologies from human epidemiology.  This 

involves: (1) collecting of relevant statistical data, (2) compilating and analyzing of the 

data, and (3) interpretating of the data.  The results are forwarded to planning and 

prevention units, which select measures for countering the spread of disease.  

Comprehensive data collection and analysis are equally essential in detecting and 

preventing the spread of plant diseases.  Appropriate plant prevention measures may 

strengthen the economy and support farmers’ incomes. 
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1.3 Framework of This Study 

Research’s approach combines the fundamental principles of epidemiology, 

systems engineering, and operations research.  The predicted outcome is to develop 

systems for plant endemic control.  This yields the optimal policy, used to control the 

CMD outbreak.  The conceptual framework underpinning this research is illustrated in 

Figure 1.4. 

 

 

 

Figure 1.4 Framework of research 

 

1.4 Systems Engineering 

 Incorporating a concept of systems engineering to epidemiology study allows 

us to envision a bigger picture that may reflect the clearer analysis of cause and effect 

of the CMD outbreak.  The important task in systems engineering is to define and 

connect all relevant sub-systems as well as to provide methods to fulfill objectives of 

the defined system (Kossiakoff et al., 2011). 
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In order to clearly empathize epidemiology system of the CMD, it is essential 

to understand the cassava cultivation process, which can be categorized into 6 activities 

as follows: 

(1) Selection of suitable land for cassava cultivation 

(2) Cassava stem preparation  

(3) Planting cassavas 

(4) Weeding the cassava plantation 

(5) Fertilizing the cassava plantation 

(6) Harvesting cassava tubers 

 

 The main objective of planting cassava is to obtain tubers that meet expectation 

of the consumers.  Incorporating requirements from the demand side as input 

information together with connecting all cassava cultivation process into a system 

express flows of information, products, and finance.  They help us visualize the effect 

of the outbreak as well as find the better ways to contain the spread of disease by 

selecting appropriate control policy.  The system flow of cassava cultivation is 

illustrated in Figure 1.5. 
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Figure 1.5 Structure of cultivation systems shows relationship between 

activities and flows of information, product, and finance 

 

1.5 Epidemiology 

Epidemiology is the study and analysis of the distribution (who, when, and 

where), the frequency and the determinants of disease conditions in any defined 

population, such as people, animals, or plants (Charlton, 1996).  Any outbreak was 

generally started by some factors and any disease has some certain parameters to contain 

the epidemic.  Systematic study among different population groups at different time 

periods is required to unveil these parameters.  Epidemiology is useful for disease 

surveillance, investigation the cause of disease, evaluation methods of treatment, as well 

as creating preventive measures. 

This research incorporates epidemiology to study the process of CMD outbreak 

in order to identify risk factors of the outbreak and determine key factors to control the 
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spread, as well as to conduce to the establishment of appropriate policies to contain 

epidemic of CMD. 

A CMD outbreak can be spread in two ways (Bock and Woods, 1983, Legg, 

1999): 

(1) by whitefly transmission, and 

(2) by planting of infected cuttings. 

 

From the works of Thresh and Otim-Nape (1994), Bock (1994), and Legg and 

Thresh (2000), the authors reported that CMD outbreaks can be controlled in four ways: 

(1) by removing infected cassava from the plantation, 

(2) by promoting the use of virus-free cuttings, 

(3) by using tolerant varieties, or 

(4) by killing infected whitefly in the plantation area. 

 

1.6 Operations Research 

 Operations research (OR) applies mathematical techniques in decision-making 

process of various operations in the organizations.  OR is a quantitative method to 

determine solutions that helps management of any organizations. (Rardin, 1998).  Study 

of this research focuses on severity of the CMD and prediction of outbreak patterns to 

monitor and control the epidemic.  Generally, outbreak patterns are simulated as various 

Markov models such as SIR, SEIR, and SI models (Markov, 1971).  The Markov model 

is typically used to represent any systems with stochastic transition stages.  It is assumed 

that future states depend only on the current state, not on events that occurred before 

current stage.  The prediction of future stages depends on transition probability of 

current stage to stages that follow. 
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 OR tools are used to formulate the structure of the cassava cultivation system 

and important factors of spread and control into a mathematical model.  This research 

studies the dynamics of CMD outbreak caused by two factors: whitefly transmission 

and planting of infected cuttings.  It can be controlled by four factors: spraying 

insecticide, rouging infected plants, selecting uninfected cuttings, and promoting 

tolerant cuttings. 

 

1.7 Gap of This Study 

The main objective of this research is to construct a mathematical model for 

CMD outbreak prediction and prevention.  All relevant parameters were set with 

reference to real world, set by applying the principles of epidemiology, systems 

engineering, and operations research.  Unfortunately, data collection in Thailand has 

been divided among different agencies and cooperation has been poor.  It is therefore 

difficult to use the data to predict and prevent plant disease outbreaks. 

There are quite a number of studies in the literature that focus on mathematical 

model development for the spread of cassava mosaic disease virus in Africa such as 

Holt et al., 1997, Kinene et al., 2015, Bokil et al., 2019, and Magoyo et al., 2019.  The 

planting conditions reviewed in these studies are similar to what is done in Thailand.  

Therefore, all parameter values and ranges are also assumed to be the same as those in 

the reviewed literature. 

To develop a model that represents the dynamics of CMD outbreak.  State 

variables of cassava and whitefly populations are divided based on the dynamics of 

CMD outbreak and the control mechanism.  Holt et al., Kinene et al., and Bokil et al., 

formulated mathematical models for vector-host dynamics using a non-tolerant cassava 
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state.  Magoyo et al.’s model focused on the effect of promoting the use of tolerant 

cuttings in an outbreak area, which was not found in earlier models.  However, latent 

class was not studied in Magoyo et al.’s work. 

1.7.1 Latent cassava 

Latent cassava is an infected cassava but asymptomatic.  In practice, 

symptoms of CMD take 2-3 weeks to appear (Fargette et al. (1994)).  Thus, during this 

time period latent cassava will spread virus.  Jittamai et al. (2021) extended Bokil et 

al.’s model by adding latent state in order to analyze the comparative contribution of 

whitefly transmission and planting of infected cuttings.  They concluded that the 

severity of CMD outbreak is high due to asymptomatic cassava, which cannot be easily 

detected and removed from the plantation area.  However, tolerant cassava was not used 

in Jittamai et al.’s work to control this disease spread. 

Promoting tolerant cuttings may limit the severity of CMD spread due 

to the latent cassava in the plantation area.  Therefore, this study extended Jittmai et 

al.’s work by adding a tolerant state to study the severity of CMD outbreak and to 

determine the most cost-effectiveness policy.  States and descriptions of cassava and 

whitefly populations assumed in this study are listed in Table 1.1. 

 

 

 

 

 

 

 



13 
 

Table 1.1 States and descriptions of cassava and whitefly. 

State Description 

 

Cassava plants that resist CMD (tolerant cassava) 

 

Cassava plants that are susceptible to infection with CMD 

(healthy cassava) 

 

Cassava plants that exposed to CMD (infected but 

asymptomatic) 

 

Cassava plants with CMD symptoms 

 

Susceptible whitefly vector (uninfected whitefly) 

 

Infected whitefly vector 

 

1.8 Objectives of The Research 

The main objective of this research is to develop an epidemic model based on 

CMD outbreak and cultivation system in Nakhon Ratchasima province, Thailand, 

which has the largest cassava growing plantation in Thailand.  The model results can be 
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used as guidelines for reducing the severity of CMD spread and maximizing incomes, 

yields, and profits.  The following objectives will be fulfilled: 

• Analyze all relevant factors contributed to CMD outbreak and assess factors that 

help control the spread. 

• Develop a mathematical model to analyze the dynamics of CMD outbreaks with 

consideration latent and tolerant states. 

• Select of optimal policy that maximizes economic benefit that yields the 

minimum number of cassava plants infected. 

 

1.9 Organization of The Research 

The rest of the research is organized as follows.  Chapter II reviews related 

works of epidemic and optimal control models used to determine optimal policies to 

control the outbreak.  Chapter III shows CMD outbreak model formulation.  Chapter 

IV presents an optimal control policy.  Chapter V provides discussion and 

recommendation of the future works. 



 
 

 
 

CHAPTER II 

MODEL DERIVATION 

 

2.1 Models and Notations 

An epidemic model is used to study the dynamics of CMD outbreak.  It isolates 

infection factors that have a major impact in an outbreak.  The output may be used to 

formulate optimal strategies for the outbreak.  The most important concepts of epidemic 

models can be demonstrated using SIR model. 

The basic model consists of three different compartments: Susceptible (S), 

Infected (I), and Recovered or Removed (R) in a population.  In the model, all these state 

variables are differentiable functions in time 𝑡𝑡 ≥ 0.  The definition of state variables is 

as follows. 

• Susceptible population (in large population is denoted S): Susceptible 

population in the large population that has not been infected but it is at risk 

of becoming infected.  When it has contracted an exposed population or an 

infected population, it will become to exposed population. 

• Infected (in large population is denoted I): Infected population has been 

infected and show symptomatic.  It can infect susceptible population. 

• Recovered or Removed (in large population is denoted R): This population 

has been recovered or removed (or died) from the disease.
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2.1.1 SIR model 

  The first compartmental model was presented in 1927 by Kermack and 

McKendrick (Kermack and McKendrick, 1927), and it has played a major role in 

mathematical epidemiology.  The model includes three state variables S, I, and R.  The 

model, which is a system of ordinary differential equations (ODEs) with three state 

variables (as shown in Figure 2.1). 

Definition 2.1: (Ordinary differential equations; ODEs) Consider a dynamical system 

which satisfies 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑓𝑓(𝑥𝑥, 𝑡𝑡) for all 𝑡𝑡 ≥ 0. (2.1) 

𝑥𝑥(𝑡𝑡0) = 𝑥𝑥0 for all 𝑡𝑡0 ≥ 0. (2.2) 

 

where 𝑥𝑥 ∈ ℝ𝑛𝑛, 𝑓𝑓 is a given nonlinear continuous function in 𝑡𝑡 where 𝑡𝑡 ∈ ℝ+.  Assume 

that 𝑓𝑓(𝑥𝑥, 𝑡𝑡) satisfies the standard conditions for the existence and the uniqueness of 

solutions.  The nonlinear system (2.1) is said to be autonomous if 𝑓𝑓(𝑥𝑥, 𝑡𝑡) does not 

depend explicitly on time, i.e., if the system can be written as 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑓𝑓(𝑥𝑥).  (2.3) 

 

The system is called non-autonomous (Allen, 2007). 
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Figure 2.1 Flow diagram of SIR model 

 

 ODEs of SIR model are 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝜅𝜅𝜅𝜅𝜅𝜅, (2.4) 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜅𝜅𝜅𝜅𝜅𝜅 − ℓ𝜅𝜅, (2.5) 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= ℓ𝜅𝜅, (2.6) 

 

where 𝜅𝜅 is the rate of infection or the contact rate, ℓ is the rate of recovery and 𝑁𝑁 = 𝜅𝜅 +

𝜅𝜅 + 𝑅𝑅, where 𝑁𝑁 is the total population.  In their study, the total population was fixed, 

while 𝜅𝜅  and ℓ  were constants.  The success of the model was the beginning of 

developments in mathematical modelling of cassava mosaic virus diseases. 

2.1.2 SEIR Model 

  As discussed above, an improved version of SIR model will be more 

realistic (Jeger et al., 1998, Kinene et al., 2016, Jittamai et al., 2021).  A system is a 

SEIR model, which includes four state variables 𝜅𝜅, 𝐸𝐸, 𝜅𝜅, and 𝑅𝑅. 



18 
 

• Exposed (in large population is denoted E): Exposed population has been 

infected but not show symptomatic (latent stage).  It can spread a disease to 

susceptible population. 

 

The flow of the SEIR model is shown in Figure 2.2 

 

 

 

Figure 2.2 Flow diagram of SEIR model 

  

 ODEs from Figure 2.2 become 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝜅𝜅𝜅𝜅𝜅𝜅, (2.7) 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜅𝜅𝜅𝜅𝜅𝜅 − 𝛼𝛼𝐸𝐸, (2.8) 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝛼𝛼𝐸𝐸 − ℓ𝜅𝜅, (2.9) 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= ℓ𝜅𝜅, (2.10) 

 

where 𝛼𝛼 is the rate of development to show symptomatic.  Since a latent state is not 

show symptomatic.  It can rapidly spread virus to healthy population and increase the 

severity level of the outbreak.  The SEIR model is used to study the dynamics of disease 

spread with more realistic.  The CMD model of this research is developed based on the 

SEIR model. 
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2.2 Methodology of Mathematical Model Development 

Research contribution helps to investigate a most cost-effectiveness policy for 

disease limitation.  It should help farmers by increasing cassava production and profits.  

A CMD outbreak model can be constructed by following three steps: 

(1) Determine infection and control factors.  These factors contribute to a 

CMD outbreak and estimate the prevention of the outbreak. 

(2) Formulate a mathematical model. A CMD outbreak model is constructed 

by formulating infection factors as parameters.  This yields ODEs of the system, which 

can be used to calculate the rate of changes of the population from any state to the other 

state. 

(3) Analyze the stability of the system.  The realistic of the dynamics of the 

outbreak is proved by analyzing the stability of equilibrium point of the system. 

Definition 2.2: The equilibrium point is a constant solution to ODEs.  The equilibrium 

point is obtained by zeroing the right-hand side of Equation (2.3) (Kinene et al., 2016). 

 

Definition 2.3: A state 𝑥𝑥 is an equilibrium point of the system if 𝑓𝑓(𝑥𝑥) = 0.  Intuitively 

and somewhat crudely speaking.  Suppose that an equilibrium point is stable if all 

solutions which start near 𝑥𝑥 (meaning that the initial conditions are in a neighborhood 

of  𝑥𝑥) remain mean 𝑥𝑥 for all time (Allen, 2007). 

 

Definition 2.4: The equilibrium 𝑥𝑥 is stable if all solutions starting near 𝑥𝑥 tend towards 

𝑥𝑥 as 𝑡𝑡 → ∞ (Allen, 2007). 

 

The CMD outbreak model admits two equilibrium points are the disease-free 

equilibrium point and the endemic equilibrium point. 
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Definition 2.5: The disease-free equilibrium point (DFE) is a steady-state solution 

when there is no disease in a population (Allen, 2007). 

 

Definition 2.6: The endemic equilibrium point (EE) is the steady-state solutions when 

the disease persists in the population (Allen, 2007). 

 

Basic reproduction number (𝑅𝑅0) is one of the most important concerns about 

any infectious disease is its ability to invade a population.  Therefore, 𝑅𝑅0 is used to 

prove the stability of the DFE or the EE of the system.  

Definition 2.7: (Basic reproduction number; 𝑅𝑅0) The value of 𝑅𝑅0  is the number of 

secondary infections caused by one infectious individual during the individual’s 

infectious period.  If 𝑅𝑅0 < 1, the disease cannot invade the population, but if 𝑅𝑅0 > 1, 

the invasion is always possible (Hethcote, 2000). 

 

The decision flow of the mathematical model analyzing as shown in Figure 2.3 
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Figure 2.3 Decision flow of the mathematical model 

 

This thesis presents the stability analysis of the system at the DFE and the EE 

by using the Routh-Hurwitz criterion and Lyapunov theory.  The local stability of the 

DFE is proved by Routh-Hurwitz criterion.  The system is locally-asymptomatically-

stable if 𝑅𝑅0 < 1 and unstable if 𝑅𝑅0 > 1.  The global stability of the DFE and EE are 

proved by Lyapunov’s method.  When 𝑅𝑅0 ≤ 1, the DFE is globally-asymptotically-

stable.  If 𝑅𝑅0 > 1 then the EE is globally-asymptotically-stable. 

 

2.3 Basic Reproduction Number 

Definition 2.8: The Jacobian matrix J is a matrix formed by the first-order partial 

derivatives of scalar functions with respect to a set of independent variables.  If all 

partial derivatives of 𝑓𝑓: 𝛺𝛺 ⊂ ℝ𝑛𝑛 → ℝ𝑚𝑚 exist at 𝑥𝑥 ∈ 𝛺𝛺, then the Jacobian matrix of 𝑓𝑓 at 

𝑥𝑥 is 
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𝐽𝐽𝑑𝑑(𝑓𝑓) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥1

(𝑥𝑥)
𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥2

(𝑥𝑥) ⋯
𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥𝑛𝑛

(𝑥𝑥)

𝜕𝜕𝑓𝑓2
𝜕𝜕𝑥𝑥1

(𝑥𝑥)
𝜕𝜕𝑓𝑓2
𝜕𝜕𝑥𝑥2

(𝑥𝑥) ⋯
𝜕𝜕𝑓𝑓2
𝜕𝜕𝑥𝑥𝑛𝑛

(𝑥𝑥)

⋮ ⋮ ⋱ ⋮
𝜕𝜕𝑓𝑓𝑚𝑚
𝜕𝜕𝑥𝑥1

(𝑥𝑥)
𝜕𝜕𝑓𝑓𝑚𝑚
𝜕𝜕𝑥𝑥2

(𝑥𝑥) ⋯
𝜕𝜕𝑓𝑓𝑚𝑚
𝜕𝜕𝑥𝑥𝑛𝑛

(𝑥𝑥)
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

(Gradshteyn and Ryzhik, 2000). 

 

The Jacobian method used for an epidemic model yields a biologically 

reasonable 𝑅𝑅0.  However, for more complex compartmental models, especially those 

with more infected compartments, the method is hard to apply as it relies on the 

algebraic Routh-Hurwitz conditions for the stability of the system.  𝑅𝑅0 can be derived 

from the spectral radius of the next-generation matrix proposed by Diekmann et al. 

(1990).  It was also determined by using an ODE compartmental model from the next-

generation matrix proposed by van den Driessche and Watmough (2002). 

 Let 𝑥𝑥 = (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥3)𝑇𝑇  be the number of individuals in each compartment, 

where the first 𝑚𝑚 < 𝑛𝑛 compartments contain infected individuals.  Assume that the 

DFE 𝑥𝑥0 exists and is stable in the absence of disease, and that the linearized equations 

for 𝑥𝑥1, … , 𝑥𝑥𝑚𝑚 at the DFE decouple from equations of other equilibrium points.  Consider 

these equations written in the form 𝑑𝑑𝑑𝑑𝑖𝑖
𝑑𝑑𝑑𝑑

= 𝐹𝐹𝑖𝑖(𝑥𝑥) − 𝑉𝑉𝑖𝑖(𝑥𝑥)  for 𝑖𝑖 = 1,2, … ,𝑚𝑚 .  In this 

splitting, 𝐹𝐹𝑖𝑖(𝑥𝑥) is the rate of appearance of new infections in compartment 𝑖𝑖, and 𝑉𝑉𝑖𝑖(𝑥𝑥) 

is the rate of other transitions between compartment 𝑖𝑖 and other infected compartments.  

It is assumed that 𝐹𝐹𝑖𝑖 and 𝑉𝑉𝑖𝑖(𝑥𝑥) ∈ 𝐶𝐶2, and 𝐹𝐹𝑖𝑖 = 0 if 𝑖𝑖 ∈ [𝑚𝑚 + 1,𝑛𝑛]. 

 Now define 𝑭𝑭 = �𝜕𝜕𝐹𝐹𝑖𝑖(𝑑𝑑0)
𝜕𝜕𝑑𝑑𝑗𝑗

�  and 𝑽𝑽 = �𝜕𝜕𝑉𝑉𝑖𝑖(𝑑𝑑0)
𝜕𝜕𝑑𝑑𝑗𝑗

�  for 1 < 𝑖𝑖 , 𝑗𝑗 < 𝑚𝑚 .  From the 

biology meaning, 𝑭𝑭 and 𝑽𝑽 are entrywise non-negative and are non-singular M-matrix 
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(Berman and Plemmons, 1970), so 𝑽𝑽−1 is entrywise non-negative.  Let 𝜓𝜓(0) be the 

number of initially infected individuals.  Then 𝑭𝑭𝑽𝑽−1𝜓𝜓(0) is an entrywise non-negative 

vector giving the expected number of new infections.  Matrix 𝑭𝑭𝑽𝑽−1  has (𝑖𝑖, 𝑗𝑗) entry 

equal to the expected number of secondary infections in compartment 𝑖𝑖 produced by an 

infected individual introduced in compartment 𝑗𝑗.  Thus 𝑭𝑭𝑽𝑽−1 is the next-generation 

matrix and 

𝑅𝑅0 = 𝜌𝜌(𝑭𝑭𝑽𝑽−1), 

 

where 𝜌𝜌 denotes the spectral radius of a matrix 𝑭𝑭𝑽𝑽−1 .  The 𝑅𝑅0  is the dominant (or 

maximum) eigenvalue of 𝑭𝑭𝑽𝑽−1. 

 

2.4 Stability Analysis of The System 

 2.4.1 Routh Hurwitz criterion 

   An equilibrium point can be classified by checking at the signs of 

eigenvalues of linearization of the equations.  By evaluating the Jacobian matrix at each 

equilibrium point of the system, resulting eigenvalues and equilibrium point can be 

categorized.  The behavior of the system in the neighborhood of each equilibrium point 

can be qualitatively determined by investigating eigenvectors associated with each 

eigenvalue. 

The equilibrium point is hyperbolic if none of eigenvalues have zero real 

part.  If all eigenvalues have negative real part, the equilibrium is stable.  If at least one 

has a positive real part, the equilibrium is unstable.  If at least one eigenvalue has 

negative real part and at least one has positive real part, the equilibrium is a saddle point. 
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  Important criteria that give necessary and sufficient conditions for all of 

the roots of the characteristic polynomial (with real coefficients) to lie in the left half of 

the complex plane are known as the Routh-Hurwitz criterion.  The name refers to E. J. 

Routh and A. Hurwitz, who contributed to the formulation of these criteria.  In 1875, 

Routh, a British mathematician, developed an algorithm to determine the number of 

roots that lie in the right half of the complex plane (Gantmacher, 1964).  In 1895, 

Hurwitz, a German mathematician, verified the determinant criteria for roots to lie in 

the left half of the complex plane.  If the roots of the characteristic polynomial lie in the 

left half of the complex plane, then any solution to the linear, homogeneous differential 

equation converges to zero.  The Routh-Hurwitz criteria for differential equations are 

analogous to the Jury conditions for difference equations.  The Routh-Hurwitz criteria 

are used in Chapter III to determine local asymptotic stability of an equilibrium for 

nonlinear systems of differential equations. 

Definition 2.9:  Given the polynomial, 

𝑃𝑃(𝜆𝜆) = 𝜆𝜆𝑛𝑛 + 𝑎𝑎1𝜆𝜆𝑛𝑛−1 + ⋯+ 𝑎𝑎𝑛𝑛−1𝜆𝜆 + 𝑎𝑎𝑛𝑛, 

where the coefficients 𝑎𝑎𝑖𝑖 are real constants, 𝑖𝑖 = 1, … ,𝑛𝑛.  Define the n Hurwitz matrices 

using the coefficients 𝑎𝑎𝑖𝑖 of the characteristic polynomial: 

𝐻𝐻1 = 𝑎𝑎1, 𝐻𝐻2 = �𝑎𝑎1 1
𝑎𝑎3 𝑎𝑎2

�, 𝐻𝐻3 = �
𝑎𝑎1 1 0
𝑎𝑎3 𝑎𝑎2 𝑎𝑎1
𝑎𝑎5 𝑎𝑎4 𝑎𝑎3

�, 

 

and 

 

𝐻𝐻𝑛𝑛 =

⎝

⎜
⎛

𝑎𝑎1 1 0 0 … 0
𝑎𝑎3 𝑎𝑎2 𝑎𝑎1 1 … 0
𝑎𝑎5 𝑎𝑎4 𝑎𝑎3 𝑎𝑎2 … 0
⋮
0

⋮
0

⋮
0

⋮
0

…
…

⋮
𝑎𝑎𝑛𝑛⎠

⎟
⎞

, 
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where 𝑎𝑎𝑗𝑗 = 0 if 𝑗𝑗 > 𝑛𝑛.  All of the roots of the polynomial 𝑃𝑃(𝜆𝜆) are negative or have 

negative real part if the determinants of all Hurwitz matrices are positive: 

𝑑𝑑𝑑𝑑𝑡𝑡 𝐻𝐻𝑗𝑗 > 0, 𝑗𝑗 = 1,2, … , 𝑛𝑛. 

 

When 𝑛𝑛 = 2, the Routh-Hurwitz criteria simplify to 𝐻𝐻1 = 𝑎𝑎1 > 0 and  

𝑑𝑑𝑑𝑑𝑡𝑡 𝐻𝐻2 = 𝑑𝑑𝑑𝑑𝑡𝑡 �𝑎𝑎1 1
𝑎𝑎3 𝑎𝑎2

� = 𝑎𝑎1𝑎𝑎2 > 0 or 𝑎𝑎1 > 0 and 𝑎𝑎2 > 0. 

 

For polynomials of degree 𝑛𝑛 = 2, 3, 4 and 5, the Routh-Hurwitz criteria are summarized. 

  

Routh-Hurwitz criteria for 𝑛𝑛 = 2, 3, 4 and 5. 

 𝑛𝑛 = 2: 𝑎𝑎1 > 0 and 𝑎𝑎2 > 0. 

 𝑛𝑛 = 3: 𝑎𝑎1 > 0 and 𝑎𝑎3 > 0, and 𝑎𝑎1𝑎𝑎2 > 𝑎𝑎3. 

𝑛𝑛 = 4: 𝑎𝑎1 > 0, 𝑎𝑎3 > 0, 𝑎𝑎4 > 0, and 𝑎𝑎1𝑎𝑎2𝑎𝑎3 > 𝑎𝑎32 + 𝑎𝑎12𝑎𝑎4. 

 𝑛𝑛 = 5: 𝑎𝑎𝑖𝑖 > 0 for 𝑖𝑖 = 1,2,3,4,5, 𝑎𝑎1𝑎𝑎2𝑎𝑎3 > 𝑎𝑎32 + 𝑎𝑎12𝑎𝑎4 

and (𝑎𝑎1𝑎𝑎4 − 𝑎𝑎5)(𝑎𝑎1𝑎𝑎2𝑎𝑎3 − 𝑎𝑎32 − 𝑎𝑎12𝑎𝑎4) > 𝑎𝑎5(𝑎𝑎1𝑎𝑎2 − 𝑎𝑎3)2 + 𝑎𝑎1𝑎𝑎52 

(Allen, 2007). 

 

2.4.2 Lyapunov Theory 

  Aleksandr Mikhailovich Lyapunov was a Russian mathematician.  He 

developed the stability theory of the dynamical system, known as Lyapunov function, 

which is an important to stability theory of dynamical systems and control theory.  For 

certain classes of ODEs, the existence of Lyapunov functions is a necessary and 

sufficient condition for stability. 
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The autonomous system (Equation (2.1)) is investigated the globally 

asymptotically stable by using the Lyapunov function.  Lyapunov functions are scalar 

functions that used to prove the stability of an equilibrium of ODEs. 

Definition 2.10: Let 𝑈𝑈 be an open subset of ℝ𝑛𝑛 containing the origin.  A real-valued 

𝐶𝐶−1(𝑈𝑈) function 𝑉𝑉, 𝑉𝑉:𝑈𝑈 → ℝ, [𝑥𝑥 ∈ 𝑈𝑈,𝑉𝑉(𝑥𝑥) ∈ ℝ] is said to be positive definite on the 

set 𝑈𝑈 if the following two conditions hold: 

(1) 𝑉𝑉(𝑥𝑥) = 0. 

(2) 𝑉𝑉(𝑥𝑥) > 0 for all 𝑥𝑥 ∈ 𝑈𝑈 with 𝑥𝑥 ≠ 𝑥𝑥. 

 

The function 𝑉𝑉 is said to be negative definite if −𝑉𝑉 is positive definite (Malisoff and 

Mazenc, 2009). 

 

Definition 2.11: A positive definite function 𝑉𝑉 in an open neighborhood of the origin 

is said to be a Lyapunov function for the autonomous differential system,  

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑓𝑓(𝑥𝑥), if  𝑑𝑑𝑉𝑉(𝑑𝑑)
𝑑𝑑𝑑𝑑

≤ 0 for all 𝑥𝑥 ∈ 𝑈𝑈 − 𝑥𝑥. 

 

If  𝑑𝑑𝑉𝑉(𝑑𝑑)
𝑑𝑑𝑑𝑑

< 0  for all 𝑥𝑥 ∈ 𝑈𝑈 − 𝑥𝑥 , the function 𝑉𝑉  is called a strict Lyapunov function 

(Malisoff and Mazenc, 2009). 

 

2.5 Optimal Control Theory 

 Optimal control theory is a powerful mathematical tool that can be used to make 

decisions involving complex biological situations.  For example, what percentage of the 

population should be vaccinated as time evolves in a given epidemic model to minimize 

the number of infected and the cost of implementing the vaccination strategy?  The 

desired outcome, or goal, depends on the particular situation. 
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 The behavior of the underlying dynamical system is described by state variables.  

Assume that there is a way to steer the state by acting upon it with suitable control 

functions.  The control enters the system of ODEs and affects the dynamics of the state 

system.  The goal is to adjust the control in order to maximize (or minimize) a given 

objective functional. 

 In the control of single ODE, denote the control variables as 𝑢𝑢(𝑡𝑡) and the state 

variable as 𝑥𝑥(𝑡𝑡).  Given a control function, 𝑢𝑢(𝑡𝑡), the state, 𝑥𝑥(𝑡𝑡), is defined as a solution 

to an ODE 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑔𝑔�𝑡𝑡, 𝑥𝑥(𝑡𝑡),𝑢𝑢(𝑡𝑡)�,  (2.11) 

 

with a given initial condition 

𝑥𝑥(0) = 𝑥𝑥0.  (2.12) 

 

Note the rate of change of the state is dependent on the control variable 𝑢𝑢(𝑡𝑡).  The goal 

is expressed by the objective functional, 

𝐽𝐽(𝑢𝑢) = ∫ 𝑓𝑓�𝑡𝑡, 𝑥𝑥(𝑡𝑡),𝑢𝑢(𝑡𝑡)�𝑑𝑑𝑡𝑡𝑑𝑑𝑓𝑓
0 . (2.13) 

 

The challenge is seeking to find 𝑢𝑢∗(𝑡𝑡) that achieves the maximum (or minimum) 

of our objective function, i.e., 𝐽𝐽(𝑢𝑢∗) = 𝑚𝑚𝑎𝑎𝑥𝑥𝑢𝑢∈𝒖𝒖 𝐽𝐽 (𝑢𝑢), where 𝒖𝒖 is the set of possible 

control.  Taking 𝒖𝒖 to be a subset of piecewise-continuous functions.  The objective 

functional is subject to Equations (2.11) and (2.12).  Both the state and control variables 

usually affect the goal. 

The control that maximizes or minimizes the objective function is denoted by 

𝑢𝑢∗(𝑡𝑡).  Substituting 𝑢𝑢∗(𝑡𝑡) into the state differential equation (2.11) results in obtaining 

the corresponding optimal state, 𝑥𝑥∗(𝑡𝑡).  Thus �𝑢𝑢∗(𝑡𝑡), 𝑥𝑥∗(𝑡𝑡)� is the optimal pair. 
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If �𝑢𝑢∗(𝑡𝑡), 𝑥𝑥∗(𝑡𝑡)� is an optimal pair, then these conditions hold.  Pontryagin et 

al. (1962) introduced the idea of adjoint functions to append the differential equations 

to the objective function.  These adjoint functions have a similar purpose as Lagrange 

multiplies in multivariate calculus, which append constraints to the function of several 

variables to be maximized or minimized.  Refer to Lenhart and Workman (2007) for an 

introduction into optimal control theory. 

Assuming ℎ and 𝑔𝑔 are both continuously differentiable in their arguments, the 

first order necessary conditions in the simplest form are given by Pontryagin’s 

maximum principle (Pontryagin et al., 1962). 

Definition 2.12: If 𝑢𝑢∗(𝑡𝑡) and 𝑥𝑥∗(𝑡𝑡) are optimal for problems (2.11) to (2.13), then there 

exists a piecewise differentiable adjoint variable 𝜆𝜆(𝑡𝑡) such that 

𝐻𝐻�𝑡𝑡, 𝑥𝑥∗(𝑡𝑡),𝑢𝑢(𝑡𝑡), 𝜆𝜆(𝑡𝑡)� ≤ 𝐻𝐻�𝑡𝑡, 𝑥𝑥∗(𝑡𝑡),𝑢𝑢∗(𝑡𝑡), 𝜆𝜆(𝑡𝑡)�, 

for all 𝑢𝑢 ∈ 𝒖𝒖 at each time t, where the Hamiltonian, H, is 

𝐻𝐻 = ℎ�𝑡𝑡, 𝑥𝑥(𝑡𝑡),𝑢𝑢(𝑡𝑡)� + 𝜆𝜆(𝑡𝑡)𝑔𝑔�𝑡𝑡, 𝑥𝑥(𝑡𝑡),𝑢𝑢(𝑡𝑡)�, 

 

and 

 𝑑𝑑𝑑𝑑(𝑑𝑑)
𝑑𝑑𝑑𝑑

= −𝜕𝜕𝜕𝜕�𝑑𝑑,𝑑𝑑∗(𝑑𝑑),𝑢𝑢∗(𝑑𝑑),𝑑𝑑(𝑑𝑑)�
𝜕𝜕𝑑𝑑

, 

 𝜆𝜆�𝑡𝑡𝑓𝑓� = 0 

(Naidu, 2003). 

 

Note the final time condition on the adjoint variable is called the transversality 

condition.  Pontryagin maximum principle changes the problem of finding the control 

that maximizes the objective function subject to the state ODE and initial condition to 
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the problem of optimizing the Hamiltonian pointwise.  Another way to think of the 

Hamiltonian is 

 𝐻𝐻 = ℎ�𝑡𝑡, 𝑥𝑥(𝑡𝑡),𝑢𝑢(𝑡𝑡)� + 𝜆𝜆(𝑡𝑡)𝑔𝑔�𝑡𝑡, 𝑥𝑥(𝑡𝑡),𝑢𝑢(𝑡𝑡)� 

    = (integrand)+(adjoint) ×(right hand side of ODE). 

 

The necessary conditions can be generated by maximizing  𝐻𝐻 with respect to 

𝑢𝑢(𝑡𝑡) at 𝑢𝑢∗(𝑡𝑡).  From Lenhart and Workman (2007), they can be described as follows: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑢𝑢

= 0 ⇒ ℎ𝑢𝑢 + 𝜆𝜆𝑔𝑔𝑢𝑢 = 0 (Optimality equation), 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑

 ⇒ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −(ℎ𝑑𝑑 + 𝑔𝑔𝑑𝑑) (Adjoint equation), and 

𝜆𝜆�𝑡𝑡𝑓𝑓� = 0  (Transversality condition). 

 

Considering second order conditions.  For each 𝑡𝑡 ∈ �0, 𝑡𝑡𝑓𝑓�, for a maximization 

problem, 

 𝜕𝜕2𝜕𝜕
𝜕𝜕𝑢𝑢2

≤ 0 at 𝑢𝑢∗(𝑡𝑡) 

 

must hold (from concavity), and for a minimization problem 

 𝜕𝜕2𝜕𝜕
𝜕𝜕𝑢𝑢2

≥ 0 at 𝑢𝑢∗(𝑡𝑡) 

 

must hold (from convexity) (Lenhart and Workman, 2007). 

 

 Pontryagin maximum principle can be extended to multiple states and controls 

and consequently corresponding adjoint variables are introduced.  For example, if it had 

𝑛𝑛 state variables, 
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 𝑥𝑥1(𝑡𝑡) = 𝑔𝑔1�𝑡𝑡, 𝑥𝑥1(𝑡𝑡), … , 𝑥𝑥𝑛𝑛(𝑡𝑡),𝑢𝑢(𝑡𝑡)� 

⋮ 

𝑥𝑥𝑛𝑛(𝑡𝑡) = 𝑔𝑔𝑛𝑛�𝑡𝑡, 𝑥𝑥1(𝑡𝑡), … , 𝑥𝑥𝑛𝑛(𝑡𝑡),𝑢𝑢(𝑡𝑡)� 

 

with corresponding initial conditions, then adjoint functions, 𝜆𝜆1(𝑡𝑡), … , 𝜆𝜆𝑛𝑛(𝑡𝑡)  were 

introduced.  Thus, the objective function becomes, 

 𝑚𝑚𝑎𝑎𝑥𝑥
𝑢𝑢

∫ ℎ�𝑡𝑡, 𝑥𝑥1(𝑡𝑡), … , 𝑥𝑥𝑛𝑛(𝑡𝑡),𝑢𝑢(𝑡𝑡)�𝑑𝑑𝑡𝑡𝑑𝑑𝑓𝑓
𝑜𝑜 . 

 

Similarly, the Hamiltonian is 

𝐻𝐻 = ℎ�𝑡𝑡, 𝑥𝑥1(𝑡𝑡), … , 𝑥𝑥𝑛𝑛(𝑡𝑡),𝑢𝑢(𝑡𝑡)� +𝜆𝜆1(𝑡𝑡)𝑔𝑔1�𝑡𝑡, 𝑥𝑥1(𝑡𝑡), … , 𝑥𝑥𝑛𝑛(𝑡𝑡),𝑢𝑢(𝑡𝑡)� 

 +⋯ 

 +𝜆𝜆𝑛𝑛(𝑡𝑡)𝑔𝑔𝑛𝑛�𝑡𝑡, 𝑥𝑥1(𝑡𝑡), … , 𝑥𝑥𝑛𝑛(𝑡𝑡),𝑢𝑢(𝑡𝑡)�. 

 

According the appropriate optimality equations, adjoint equations, and 

transversality conditions are generated.  For example, the 𝑖𝑖 -th adjoint ODE is 

𝜆𝜆𝑖𝑖 = − 𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑𝑖𝑖

.  (2.14) 

 

 In short, for the simplest case it was started with two unknowns, 𝑢𝑢∗(𝑡𝑡) and 

𝑥𝑥∗(𝑡𝑡), and then introduced an adjoint variable, 𝜆𝜆(𝑡𝑡).  Thus, it must to solve for three 

unknowns.  Then the optimality equation was attained from setting 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑢𝑢
�
𝑢𝑢=𝑢𝑢∗

= 0  (2.15) 

 

and solving for 𝑢𝑢∗(𝑡𝑡), which will be characterized in terms of 𝑥𝑥∗(𝑡𝑡) and 𝜆𝜆(𝑡𝑡).  Note that 

many real-world application problems require bounds on the control, like 
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𝑎𝑎 ≤ 𝑢𝑢(𝑡𝑡) ≤ 𝑏𝑏 

 

and that Pontryagin maximum principle still holds. 

 The optimality system is comprised of the state, the adjoint ODEs, and the 

control characterization.  Often solutions of optimality system cannot be solved 

explicitly but can be approximated numerically. 

 

2.6 Cost-Effectiveness Analysis 

 Cost-effectiveness analysis is one of important tools that is vital to examine both 

costs and outcomes of one or more interventions.  It compares an intervention to another 

intervention by estimating how much it costs to gain outcomes, i.e., gained of yields or 

incomes.  There are three types of cost-effectiveness ratios. 

 2.6.1 Average cost-effectiveness ratio (ACER) 

  This deals with a single intervention and evaluates the intervention 

against its baseline option.  It is calculated by dividing the net cost of the intervention 

by the total number of health outcomes prevented by the intervention.  ACER formula 

is given by 

ACER = Total cost of intervention
Outcome gained

. (2.16) 

 

 2.6.2 Marginal cost-effectiveness ratio (MCER) 

  This deals with assessment of the specific changes in cost and effect 

when a program is expended or contracted.  MCER formula is given by 

MCER = Change in costs of intervention
Change in outcome gained

. (2.17) 
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 2.6.3 Incremental cost-effectiveness ratio (ICER) 

  This provides the means of comparing the differences between costs and 

health outcomes of two alternative intervention strategies that compete for the same 

resources and it is generally described as additional cost per additional health outcome.  

ICER formula is given by 

ICER = Cost of intervention - cost of alternative intervention
Outcome of intervention - outcome of alternative intervention 

. (2.18) 

 

2.7 Literature Review 

An epidemic model has become an important tool for breaking down and 

analyzing the spread of infectious diseases.  It helps to develop a better understanding 

and facilitate predictions.  The model is also used to test the plausibility of epidemiology 

explanations.  Another application is forecasting the possible effects of changes system 

dynamics, and to predict structural changes through early warning signals.  Thereby 

making it possible to control an emerging disease outbreak.  In this section, previous 

epidemic models are reviewed. 

2.7.1 Models and Notation 

In this section, the basic definition and notation of CMD outbreak 

mathematical models are established.  The five different compartments of a cassava (or 

host) population of CMD outbreak models are Susceptible tolerant cassava (𝜅𝜅𝑇𝑇 ), 

Susceptible cassava ( 𝜅𝜅𝜕𝜕 ), Exposed cassava (𝐸𝐸𝜕𝜕 ), and Infected ( 𝜅𝜅𝜕𝜕 ).  The two 

compartments of a whitefly (or vector) population of CMD outbreak models are 

Uninfected whitefly (𝜅𝜅𝑉𝑉) and Infected whitefly (𝜅𝜅𝑉𝑉).  State variables are differentiable 

functions in time 𝑡𝑡 ≥ 0.  The definitions of state variables are 
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• Susceptible tolerant cassava (in a cassava population is denoted 𝜅𝜅𝑇𝑇): 

Tolerant cassava in the cassava population that has not been infected.  

Although it is cassava tolerant varieties, it is at risk of becoming 

infected.  When it has contracted the infected whitefly, it will transfer 

to exposed cassava. 

• Susceptible cassava (in a cassava population is denoted 𝜅𝜅𝜕𝜕 ): 

Susceptible cassava in the cassava population that has not been 

infected.  When it has contacted infected whiteflies.  It becomes 

exposed cassava. 

• Exposed cassava (in a cassava population is denoted 𝐸𝐸𝜕𝜕): Exposed 

cassava in the cassava population that has been infected but not show 

symptomatic.  It can spread a disease to the uninfected whitefly.  It 

becomes infected state (show symptomatic) in next period time. 

• Infected cassava (in a cassava population is denoted 𝜅𝜅𝜕𝜕): Infected 

cassava in the cassava population that has been infected and show 

symptomatic.  It can spread a CMD virus to uninfected whitefly. 

• Uninfected whitefly (in a whitefly population is denoted 𝜅𝜅𝑉𝑉 ): 

Uninfected whitefly in the whitefly population.  It becomes to an 

infected whitefly after it received CMD virus from exposed or 

infected cassavas. 

• Infected whitefly (in a whitefly population is denoted 𝜅𝜅𝑉𝑉): Infected 

whitefly in the whitefly population.  It can spread a CMD virus to 

tolerant and susceptible cassavas. 
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Parameter values and ranges that used in this research are defined based 

on the previous works due to the lack of data collection system in Thailand.  Parameters 

are listed in Table 2.1. 

 

Table 2.1 Parameters of CMD outbreak 

Parameter Description Reference 

ℎ harvesting rate of cassavas Holt et al. 
(1997) 

𝛽𝛽 CMD latent rate Wagaba et al. 
(2013) 

𝛾𝛾 rouging rate of symptomatic cassava Kinene et al. 
(2015) 

𝑟𝑟𝜕𝜕 replanting rate of non-tolerant cassava Kinene et al. 
(2015) 

𝑟𝑟𝑇𝑇 replanting rate of tolerant cassava Magoyo et al. 
(2019) 

𝑘𝑘1 maximum plant of non-tolerant cuttings capacity 
(m-2) 

Magoyo et al. 
(2019) 

𝑘𝑘2 maximum plant of tolerant cuttings capacity 
(m-2) 

Magoyo et al. 
(2019) 

𝑎𝑎 Average number of cassava plants visited by 
uninfected whitefly 

Jittamai et al. 
(2021) 

𝛬𝛬 birth rate of whitefly (vector⋅day-1) Jeger et al. 
(2004) 

𝜇𝜇 natural death rate of whitefly (vector⋅day-1) Kinene et al. 
(2015) 

𝐿𝐿 maximum whitefly density (m-2) Bokil et al. 
(2019) 

𝑝𝑝1 probability of susceptible cassava plants receiving 
virus from infected whitefly 

Bokil et al. 
(2019) 

𝑝𝑝2 probability of tolerant cassava plants receiving virus 
from infected whitefly 

Magoyo et al. 
(2019) 

𝑝𝑝3 probability of planting infected cassava cuttings Holt et al. 
(1997) 

𝑝𝑝4 probability of uninfected whitefly receiving virus 
from exposed (latent) or symptomatic 

Bokil et al. 
(2019) 

 

2.7.2 Holt et al.’s model 

Most models of CMD are extended from the work of Holt et al.  SI model 

for an outbreak of African cassava mosaic virus (ACMV) was developed to describe 
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the dynamics of infected cassava and infected whitefly, which is driven by whitefly 

transmission.  Authors derived a strategy in which cassava yields are maximized by 

reducing whitefly population.  However, this approach is not cost-effective, so farmers 

are advised to select uninfected cuttings for planting to prevent a collapse of healthy 

cassava population.  This is an economical strategy that is capable of controlling an 

outbreak. 

  Epidemic model of ACMV was developed in which the dynamics within 

a locality, of susceptible and infected cassava, and of infected and uninfected whitefly 

vectors, were specified.  Infections of ACMV of Holt et al.’s model are driven either by 

contact between infected cassava or uninfected vectors and between infected vectors 

and susceptible cassava. 

  Let 𝜅𝜅𝜕𝜕 and 𝜅𝜅𝜕𝜕 be the abundances (m-2) of healthy and diseased plants, 

respectively, 𝜅𝜅𝑉𝑉  and 𝜅𝜅𝑉𝑉  be the abundances (m-2) of uninfected and infected vectors, 

respectively.  The dynamics of ACMV is illustrated in Figure 2.4. 
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Figure 2.4 State diagram of Holt et al. model. Source: Holt et al., 1997 

 

 ODEs of the model are 

𝑑𝑑𝑑𝑑𝐻𝐻
𝑑𝑑𝑑𝑑

= 𝑟𝑟𝜕𝜕𝜅𝜅𝜕𝜕 �1 − 𝑑𝑑𝐻𝐻+𝑑𝑑𝐻𝐻
𝑘𝑘1

� − 𝑝𝑝1𝜅𝜅𝜕𝜕𝜅𝜅𝑉𝑉 − ℎ𝜅𝜅𝜕𝜕, (2.19) 

𝑑𝑑𝑑𝑑𝐻𝐻
𝑑𝑑𝑑𝑑

= 𝑝𝑝1𝜅𝜅𝜕𝜕𝜅𝜅𝑉𝑉 − ℎ𝜅𝜅𝜕𝜕 − 𝛾𝛾𝜅𝜅𝜕𝜕, (2.20) 

𝑑𝑑𝑑𝑑𝑉𝑉
𝑑𝑑𝑑𝑑

= Λ(𝜅𝜅𝑉𝑉 + 𝜅𝜅𝑉𝑉) �1 − 𝑑𝑑𝑉𝑉+𝑑𝑑𝑉𝑉
𝐿𝐿(𝑑𝑑𝐻𝐻+𝑑𝑑𝐻𝐻)� − 𝑝𝑝4𝜅𝜅𝑉𝑉𝜅𝜅𝜕𝜕 − 𝜇𝜇𝜅𝜅𝑉𝑉, (2.21) 

𝑑𝑑𝑑𝑑𝑉𝑉
𝑑𝑑𝑑𝑑

= 𝑝𝑝4𝜅𝜅𝑉𝑉𝜅𝜅𝜕𝜕 − 𝜇𝜇𝜅𝜅𝑉𝑉. (2.22) 

 

Parameters of cassava population are described as follows.  𝑘𝑘1 is the 

maximum plant density (m-2), 𝑟𝑟𝜕𝜕 is the rate of replanting healthy plants, ℎ is the rate at 

which cassava plants are removed and harvested for their tuberous roots, assumed to 

occur at a constant rate (day-1), 𝛾𝛾 is the loss rate of plants due to the effects of ACMV 

infection but can also represent the rate of removal of diseased plants in rouging 

operations (day-1). 
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Parameters of whitefly population are described as follows.  𝐿𝐿 is the 

maximum abundance of vectors (plant-1), Λ is the vector birth rate, and 𝜇𝜇 is the death 

rate of vectors. 

Pathogen parameters are described as follows.  𝑝𝑝1  is the rate of 

inoculation of susceptible plants (vector-1⋅day-1) and 𝑝𝑝4 is the rate of virus acquisition 

by uninfected vectors (plant-1⋅day-1). 

2.7.3 Evolution of CMD outbreak model 

The dynamics of CMD is driven by both whitefly transmission and 

planting of infected cuttings.  The works that using a single factor (whitefly 

transmission) as are as the following: 

(1) Zhang et al. (2001) developed SI model in which two viruses, 

ACMV and east African cassava mosaic virus (EACMV), are carried by whitefly into 

the plantation area.  They used a simulation technique to clarify the relationship between 

cassava production and the severity of outbreak from two viruses.  They summarized 

that by this mechanism, a virus that was nonviable alone could invade and persist in a 

chronic epidemic of another virus. 

(2) Jeger et al. (2004) developed SEI model based on Holt et el.’s work 

by adding a latent state.  They improved a better understanding of the severity of ACMV 

outbreak and the use of rouging strategy. Numerical simulation suggested that rouging 

would usually only be needed for propagative viruses at very high population densities. 

(3) Lawrence et al. (2010) adapted SI model of Holt et al.’s model by 

modifying it to incorporate the spatial dynamics of the spread of the disease.  This means 

the whitefly vector can be equally likely to fly in any direction. This movement, the 

characteristic short distance flight patterns of whiteflies, can be represented 
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mathematically by diffusion.  They used numerical simulation to study the effectiveness 

of using tolerant varieties and windbreaks to control the disease spread.  The model 

suggested that the use of windbreaks and ACMD tolerant strains of cassava will have 

the most beneficial impact on cassava yield. 

(4) Hebert (2014) developed SEI model of an outbreak of cassava 

mosaic virus (CMV) to study the effect of whitefly transmission on cassava yield. 

Numerical simulation suggested that with whitefly aggregation, increasing complexity 

of whitefly movement, and using tolerant varieties, there is a reduction in the probability 

that the disease becomes established in the host plant. 

(5) Kinene et al. (2015) developed SEI model including a latent state 

into the model to study the dynamics of cassava brown streak disease (CBSD) 

outbreaks.  The model is used to determine the most cost-effectiveness from killing 

whitefly and rouging infected cassava policies by applying the optimal control theory 

and Pontryagin maximum principle.  The model suggested that rouging method is the 

most cost-effective policy. 

 

The models that took account of whitefly transmission and disease 

cuttings are as the following: 

 (1) Bokil et al. (2019) developed SI model of ACMV outbreaks.  

Infections in the model are driven both by virus cuttings and whitefly transmission.  

They then applied an optimal control theory and Pontryagin maximum principle to 

investigate the effect of rouging and spraying to maximize uninfected plants.  The 

model suggested that a strategy combining rouging and spraying performed better than 

those that apply a single control mechanism. 
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(2) Magoyo et al. (2019) developed SI model of CMV outbreak took 

account of tolerant cassava state.  The objective of Magoyo et al.’s work is to investigate 

the effect of spraying, rouging, selecting non-virus cuttings, and promoting tolerant 

cuttings on disease control. 

As can be observed, a latent stage is missing from works of Bokil et al. 

and Magoyo et al.  Since the symptoms take 2 - 3 weeks to appear (Fargette et al., 1994), 

then during this period the asymptomatic cassava may spread the disease.  Thus, this 

gap should be fulfilled. 

This thesis aspires to fill the gap from works of Kinene et al., Bokil et 

al., and Magoyo et al.  The mathematical model of this research is developed by adding 

the latent stage into Magoyo et al.’s model.  Next, the review presents the mathematical 

model of three works. 

2.7.4 Kinene et al.’s model 

Kinene et al. developed the SEIR model for the dynamics of the disease 

in the cassava plants and SI for the dynamics in whitefly vectors.  The total cassava 

population 𝑁𝑁 is subdivided into the following sub-populations: cassava plants that are 

susceptible to infection with CBSD 𝜅𝜅𝜕𝜕, those exposed to CBSD 𝐸𝐸𝜕𝜕, and cassava plants 

with CBSD symptoms 𝜅𝜅𝜕𝜕.  The total whitefly vector population 𝑁𝑁𝑉𝑉 is sub-divided into 

susceptible whitefly vector population 𝜅𝜅𝑉𝑉 and infectious whitefly vector population 𝜅𝜅𝑉𝑉.  

Namely, 𝑁𝑁𝑉𝑉 = 𝜅𝜅𝑉𝑉 + 𝜅𝜅𝑉𝑉 , the transmission dynamics of CBSD is summarized in the 

compartmental diagram shown in Figure 2.5. 
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Figure 2.5 State diagram of Kinene et al. model.  Source: Kinene et al., 2015 

 

  ODEs of the model are 

𝑑𝑑𝑑𝑑𝐻𝐻
𝑑𝑑𝑑𝑑

= 𝑟𝑟𝜕𝜕 �1 − 𝑁𝑁
𝐾𝐾
� − 𝑎𝑎𝑝𝑝1

𝑑𝑑𝐻𝐻
𝑁𝑁
𝜅𝜅𝑉𝑉 − ℎ𝜅𝜅𝜕𝜕, (2.23) 

𝑑𝑑𝑑𝑑𝐻𝐻
𝑑𝑑𝑑𝑑

= 𝑎𝑎𝑝𝑝1
𝑑𝑑𝐻𝐻
𝑁𝑁
𝜅𝜅𝑉𝑉 − 𝛽𝛽𝐸𝐸𝜕𝜕 − ℎ𝐸𝐸𝜕𝜕, (2.24) 

𝑑𝑑𝑑𝑑𝐻𝐻
𝑑𝑑𝑑𝑑

= 𝛽𝛽𝐸𝐸𝜕𝜕 − 𝛾𝛾𝜅𝜅𝜕𝜕 − ℎ𝜅𝜅𝜕𝜕, (2.25) 

𝑑𝑑𝑑𝑑𝑉𝑉
𝑑𝑑𝑑𝑑

= 𝛬𝛬 − 𝑎𝑎𝑝𝑝4𝜅𝜅𝑉𝑉
𝑑𝑑𝐻𝐻+𝑑𝑑𝐻𝐻
𝑁𝑁

− 𝜇𝜇𝜅𝜅𝑉𝑉, (2.26) 

𝑑𝑑𝑑𝑑𝑉𝑉
𝑑𝑑𝑑𝑑

= 𝑎𝑎𝑝𝑝4𝜅𝜅𝑉𝑉
𝑑𝑑𝐻𝐻+𝑑𝑑𝐻𝐻
𝑁𝑁

− 𝜇𝜇𝜅𝜅𝑉𝑉, (2.27) 

 

It is assumed that healthy cassava plants are planted or replanted at a 

rate 𝑟𝑟𝜕𝜕.  They are either harvested at a rate ℎ or move to the exposed class after acquiring 

CBSD through contact with the infectious whitefly vector at a rate 𝑎𝑎𝑝𝑝1, where 𝑝𝑝1 is the 

probability that a healthy plant will be inoculated by the virus during a single visit by 

an infected whitefly vector, 𝑎𝑎  is the number of plants visited either by an infected 

whitefly or uninfected whitefly per day.  Exposed cassava plants are either harvested at 
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a rate ℎ or move to the infectious class at a rate 𝛽𝛽.  Infected cassava plants are assumed 

to be harvested or removed from the garden and burnt at a rate 𝛾𝛾. 

Susceptible whitefly vectors are recruited at a rate 𝛬𝛬.  They either die 

naturally at a rate 𝜇𝜇 or move to the infectious class after acquiring CBSD from the 

infected cassava plants at a rate 𝑎𝑎𝑝𝑝4, where 𝑝𝑝4 is the probability that a non-infectious 

vector will acquire the virus from an infected cassava plant during a single visit.  The 

infected whitefly vectors also die naturally at a rate 𝜇𝜇.  Kinene et al. assumed that 

farmers plant only healthy varieties of cassava in a garden of carrying capacity 𝑘𝑘1, no 

death of cassava plants before harvesting and the vectors are assumed to remain 

infectious once they acquire the virus. 

  They took account of latent stage into the model, however, the 

transmission by disease cuttings was not establish to study the dynamics of disease 

outbreak. 

2.7.5 Bokil et al.’s model 

  The model was developed to study the dynamics of ACMV.  The 

infection of this system is driven both by planting or replanting by infected cuttings and 

whitefly transmission.  Let 𝜅𝜅𝜕𝜕 and 𝜅𝜅𝜕𝜕 be the healthy and infected plants, respectively.  

The total plant population is denoted as 𝑁𝑁 = 𝜅𝜅𝜕𝜕 + 𝜅𝜅𝜕𝜕.  The vector population is divided 

into uninfected 𝜅𝜅𝑉𝑉  and infected vectors 𝜅𝜅𝑉𝑉  with no latent period.  The total vector 

population is denoted   𝑁𝑁𝑉𝑉 = 𝜅𝜅𝑉𝑉 + 𝜅𝜅𝑉𝑉. 

Growth rates of healthy and infected plants are occurred by logistic 

growth equations, 𝑟𝑟𝜕𝜕𝜅𝜅𝜕𝜕 �1 − 𝑁𝑁
𝑘𝑘1
� and 𝑟𝑟𝜕𝜕𝑝𝑝3𝜅𝜅𝜕𝜕 �1 − 𝑁𝑁

𝑘𝑘1
�, respectively.  The planting rate 

is density-dependent to ensure that plant density does not exceed the carrying capacity 

of the field, 𝑘𝑘1.  The growth rate of the vector population is also density-dependent.  
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The vector population density depends on plant density with maximum vector density 

per plant given by 𝐿𝐿(𝜅𝜅𝜕𝜕 + 𝜅𝜅𝜕𝜕).  Infected and healthy plants are harvested at the same 

per capita rate ℎ.  Additionally, infected plants may be removed from the field at a rate 

𝛾𝛾 (rouging).  Uninfected and infected vectors die at the same per capita rate of 𝜇𝜇, where 

𝜇𝜇 is natural mortality.  The inoculation rate of healthy plants by infective vectors is 

𝑝𝑝1𝜅𝜅𝜕𝜕𝜅𝜅𝑉𝑉 and the acquisition rate of uninfected vectors feeding on infected plants 𝑝𝑝4𝜅𝜅𝑉𝑉𝜅𝜅𝜕𝜕.  

The dynamics of ACMV is illustrated in Figure 2.6. 

 

  

 

Figure 2.6 State diagram of Bokil et al. model.  Source: Bokil et al., 2019 

 

The ODEs of the model are 

𝑑𝑑𝑑𝑑𝐻𝐻
𝑑𝑑𝑑𝑑

= 𝑟𝑟𝜕𝜕𝜅𝜅𝜕𝜕 �1 − 𝑑𝑑𝐻𝐻+𝑑𝑑𝐻𝐻
𝑘𝑘1

� − 𝑝𝑝1𝜅𝜅𝜕𝜕𝜅𝜅𝑉𝑉 − ℎ𝜅𝜅𝜕𝜕, (2.28) 

𝑑𝑑𝑑𝑑𝐻𝐻
𝑑𝑑𝑑𝑑

= 𝑟𝑟𝜕𝜕𝑝𝑝3𝜅𝜅𝜕𝜕 �1 − 𝑁𝑁
𝑘𝑘1
� + 𝑝𝑝1𝜅𝜅𝜕𝜕𝜅𝜅𝑉𝑉 − (ℎ+ 𝛾𝛾)𝜅𝜅, (2.29) 

𝑑𝑑𝑑𝑑𝑉𝑉
𝑑𝑑𝑑𝑑

= Λ(𝜅𝜅𝑉𝑉 + 𝜅𝜅𝑉𝑉) �1 − 𝑑𝑑𝑉𝑉+𝑑𝑑𝑉𝑉
𝐿𝐿(𝑑𝑑𝐻𝐻+𝑑𝑑𝐻𝐻)� − 𝑝𝑝4𝜅𝜅𝑉𝑉𝜅𝜅𝜕𝜕 − 𝜇𝜇𝜅𝜅𝑉𝑉, (2.30) 
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𝑑𝑑𝑑𝑑𝑉𝑉
𝑑𝑑𝑑𝑑

= 𝑝𝑝4𝜅𝜅𝑉𝑉𝜅𝜅𝜕𝜕 − 𝜇𝜇𝜅𝜅𝑉𝑉. (2.31) 

 

However, a tolerant state was missing from this model.  Magoyo et al. 

extended the model by adding tolerant cassava state. 

2.7.6 Magoyo et al.’s model 

  The model was developed for an outbreak of CMV.  The population of 

cassava is divided into three states: tolerant cassava (𝜅𝜅𝑇𝑇) and susceptible cassava (𝜅𝜅𝜕𝜕), 

and infected cassava (𝜅𝜅𝜕𝜕 ). The population of whitefly is divided into two states: 

uninfected whitefly (𝜅𝜅𝑉𝑉) and infected whitefly (𝜅𝜅𝑉𝑉).  The dynamics of CMV is illustrated 

in Figure 2.7. 

 

  

 

Figure 2.7 State diagram of Magoyo et al. model. Source: Magoyo et al., 2019 

 

Tolerant cassava is replanted at rate 𝑟𝑟𝑇𝑇  and susceptible cassava is 

replanted at rate 𝑟𝑟𝜕𝜕.  Infections of cassava from whitefly are given by 𝑝𝑝2𝜅𝜅𝑇𝑇𝜅𝜅𝑉𝑉 (𝜅𝜅𝑇𝑇 to 𝜅𝜅𝜕𝜕) 
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and by 𝑝𝑝1𝜅𝜅𝜕𝜕𝜅𝜅𝑉𝑉 (𝜅𝜅𝜕𝜕 to 𝜅𝜅𝑉𝑉).  Tolerant, susceptible, and infected cassava are harvested at 

rates ℎ.  𝜅𝜅𝜕𝜕 decrease due to the effect of CMV at rate 𝛾𝛾.  𝑘𝑘2 represents the maximum 

plants for tolerant cassava which can be planted.  𝑘𝑘1 represents the maximum plants for 

non-tolerant cassavas (𝜅𝜅𝜕𝜕 and 𝜅𝜅𝜕𝜕) which can be planted. 

Uninfected vector is recruited by birth at a rate Λ and catch infection 

following contact with infected cassava at a rate 𝑝𝑝4.  𝐿𝐿 is the maximum number of 

vectors in a plantation area.  Infected vector is recruited when susceptible vector catch 

infection following contact with 𝜅𝜅𝜕𝜕 at a rate 𝑝𝑝4 and 𝜇𝜇 is a death rate of whitefly. 

 

  ODEs of the model are 

𝑑𝑑𝑑𝑑𝑇𝑇
𝑑𝑑𝑑𝑑

= 𝑟𝑟𝑇𝑇𝜅𝜅𝑇𝑇 �1 − 𝑑𝑑𝑇𝑇
𝑘𝑘2
� − 𝑝𝑝2𝜅𝜅𝑇𝑇𝜅𝜅𝑉𝑉 − ℎ𝜅𝜅𝑇𝑇, (2.32) 

𝑑𝑑𝑑𝑑𝐻𝐻
𝑑𝑑𝑑𝑑

= 𝑟𝑟𝜕𝜕𝜅𝜅𝜕𝜕 �1 − 𝑑𝑑𝐻𝐻
𝑘𝑘1
� − 𝑝𝑝1𝜅𝜅𝜕𝜕𝜅𝜅𝑉𝑉 − ℎ𝜅𝜅𝜕𝜕, (2.33) 

𝑑𝑑𝑑𝑑𝐻𝐻
𝑑𝑑𝑑𝑑

= 𝑝𝑝1𝜅𝜅𝜕𝜕𝜅𝜅𝑉𝑉 + 𝑝𝑝2𝜅𝜅𝑇𝑇𝜅𝜅𝑉𝑉 − ℎ𝜅𝜅𝜕𝜕 − 𝛾𝛾𝜅𝜅𝜕𝜕, (2.34) 

𝑑𝑑𝑑𝑑𝑉𝑉
𝑑𝑑𝑑𝑑

= Λ(𝜅𝜅𝑉𝑉 + 𝜅𝜅𝑉𝑉) �1 − 𝑑𝑑𝑉𝑉+𝑑𝑑𝑉𝑉
𝐿𝐿

� − 𝑝𝑝4𝜅𝜅𝑉𝑉𝜅𝜅𝜕𝜕 − 𝜇𝜇𝜅𝜅𝑉𝑉, (2.35) 

𝑑𝑑𝑑𝑑𝑉𝑉
𝑑𝑑𝑑𝑑

= 𝑝𝑝4𝜅𝜅𝑉𝑉𝜅𝜅𝜕𝜕 − 𝜇𝜇𝜅𝜅𝑉𝑉. (2.36) 

 

2.8 Gap of Literatures 

Mathematical model of this thesis is developed for an outbreak of CMD caused 

by whitefly transmission and disease cuttings, following works of Bokil et al.  The 

model added latent cassava state, which was missing from Magoyo et al. work to 

investigate the comparative contribution of using of four control methods (spraying, 

rouging, selecting non-infected cuttings, and promoting tolerant cuttings). 
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Growth rates of cassava and whitefly populations using the logistic growth 

equations.  Cassava population assumes four states of cassava: tolerant, susceptible, 

exposed, and infected.  Whitefly population assumed two states: uninfected and 

infected.  The difference among the model of this research and other models are listed 

in Table 2.2. 

Parameter values and ranges that used in this research are defined based on the 

previous works due to the lack of data collection system in Thailand.  Table 2.3 lists the 

related works that used the parameters in the same values, while parameter values and 

ranges of this thesis are listed in Chapter III. 

 The model admits two equilibrium points: the DFE and EE points.  Locally and 

globally asymptotically stable of the system are analyzed using basic reproduction 

number (𝑅𝑅0) and calculated using next-generation method.  If 𝑅𝑅0 < 1, the DFE point is 

locally-asymptotically-stable, proved by the Routh-Hurwitz criteria.  If 𝑅𝑅0 ≤ 1, the 

DFE point is globally-asymptotically-stable, while 𝑅𝑅0 > 1, the EE point is globally-

asymptotically-stable, proved by Lyapunov’s method. 

Finally, optimal control theory and cost-effectiveness analysis are applied to 

investigate the cost-effectiveness of control policy.  Optimal control theory may help 

stakeholders, including cassava farmers and government agencies, develop optimal 

policies for control of CMD outbreaks. This should increase yields, income, and profits.



 
 

 
 

Table 2.2 Gap of literatures 

Works 
Infection State variables Growth rate Local 

stability 
Global 

stability Optimal 
control 

Cassava Whitefly 

Whitefly Cuttings 𝜅𝜅𝑇𝑇 𝜅𝜅𝜕𝜕 𝐸𝐸𝜕𝜕 𝜅𝜅𝜕𝜕  𝜅𝜅𝑉𝑉 𝜅𝜅𝑉𝑉 Constant Logistic 
growth Constant Logistic 

growth DFE EE DFE EE 

This research                  
Holt et al. 
(1997)                  
Jeger et al. 
(2004)                  
Lawrence 
and Wallace 
(2011) 

                 

Hebert 
(2014)                  
Kinene et al. 
(2015)                  
Bokil et al. 
(2019)                  
Magoyo et 
al. (2019)                  
Jittamai et al. 
(2021)                  
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Table 2.3 List of parameters used to study from related works 

(in the same values and ranges) 

Related works 
Parameters 

ℎ 𝛽𝛽 𝛾𝛾 𝑟𝑟𝜕𝜕 𝑟𝑟𝑇𝑇 𝑘𝑘1 𝑘𝑘2 𝑎𝑎 𝛬𝛬 𝜇𝜇 𝐿𝐿 𝑝𝑝1 𝑝𝑝2 𝑝𝑝3 𝑝𝑝4 

This research                

Holt et al. (1997)                

Jeger et al. 

(2004) 
               

Lawrence et al. 

(2010) 
               

Hebert (2014)                

Kinene et al. 

(2015) 
               

Bokil et al. 

(2019) 
               

Magoyo et al. 

(2019) 
               

Jittamai et al. 

(2021) 
               

 



CHAPTER III 

CMD OUTBREAK MODEL FORMULATION – WITH 

TOLERANT AND LATENT 

 

3.1 Infection and Control Factors 

The model development can be first done by defining infection and control 

factors from previous literature that are related to CMD outbreaks.  Cassava (Manihot 

esculenta, Crantz) is grown as a staple food crop in many parts of the Africa and the 

Southeast Asia.  The main disease affecting the crop is cassava mosaic disease (CMD), 

caused by cassava mosaic begomoviruses (CMBs) that are transmitted by the whitefly 

(Bemisia tabaci, Gennadius) (Dubern, 1994) and planting with infected cuttings (Bock, 

1994). 

There are four approaches that are commonly used to control CMD, spraying 

pesticide, rouging infected cassavas, planting with non-virus cuttings and tolerant 

varieties. Kinene et al. (2015) and Bokil et al. (2019) applied spraying pesticide and 

rouging infected plant methods to control disease in their models.  Magoyo et al. (2019) 

studied the dynamics of CMD outbreaks by using tolerant varieties. 

Survey from the literature to determine major factors that cause and approach to 

control disease can be summarized in Figure 3.1. 
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Figure 3.1 Survey of causes and approaches to control CMD 

 

Table 3.1 Relationship between infection and control factors of CMD outbreak 

Transmission 

Infection factors Control factors 

Whitefly Infected 
cuttings Spraying Rouging 

Selecting 
uninfected 

cuttings 

Promoting 
tolerant 
cuttings 

Whitefly-
cassava       

Cassava-
whitefly       

 

 

 Table 3.1 lists the relationship between infection and control factors.  Whitefly 

is the major caused of disease transmission.  To reduce severity of CMD spreads from 

the whitefly can be done by insecticide spraying and rouging infected plants from a 

plantation area.  In addition, cassava-whitefly transmission is also caused by planting 
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with infected cuttings.  Severity of cassava-whitefly transmission outbreak can be 

reduced by using at least these four approaches: spraying, rouging, selecting uninfected 

cuttings to plant, and promoting tolerant cuttings.  An optimal policy is established by 

identifying crucial parameters that contribute to severity of CMD spread and determine 

control policy that is cost-effective.  This can be done by sensitivity analysis and 

optimal control theory. 

 

3.2 Mathematical Model Formulation 

 The CMD outbreak model is driven by virus cuttings and by transmission of 

whitefly.  The model tracks the dynamics of the cassava population and the whitefly 

population.  A state diagram of the CMD control system is shown in Figure 3.2. 

 

 

 

Figure 3.2 State diagram of the CMD outbreak system 
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The model tracks the dynamics of the cassava population and the whitefly 

population. 

• Total non-tolerant cassava population at time 𝑡𝑡 , denoted by 𝑁𝑁𝐻𝐻 , where    

𝑁𝑁𝐻𝐻 = 𝑆𝑆𝐻𝐻 + 𝐸𝐸𝐻𝐻 + 𝐼𝐼𝐻𝐻. 

• Tolerant population at time 𝑡𝑡, denoted by 𝑁𝑁𝑇𝑇, where 𝑁𝑁𝑇𝑇 = 𝑆𝑆𝑇𝑇. 

• Total cassava population at time 𝑡𝑡, denoted by 𝑁𝑁, where               

𝑁𝑁 = 𝑁𝑁𝐻𝐻 + 𝑁𝑁𝑇𝑇 = 𝑆𝑆𝑇𝑇 + 𝑆𝑆𝐻𝐻 + 𝐸𝐸𝐻𝐻 + 𝐼𝐼𝐻𝐻. 

• Total population of whitefly at time 𝑡𝑡 , denoted by 𝑁𝑁𝑉𝑉 , where                         

𝑁𝑁𝑉𝑉 = 𝑆𝑆𝑉𝑉 + 𝐼𝐼𝑉𝑉. 

 

The transmission of CMD from an initial state to a next state are governed by 

parameters in Table 3.2.  The dynamics of CMD outbreak is driven by 

• Whitefly transmission. An infection by infected whitefly, given by 𝑝𝑝1𝑆𝑆𝐻𝐻𝐼𝐼𝑉𝑉 

(whitefly-non-tolerant cassava transmission), 𝑝𝑝2𝑆𝑆𝑇𝑇𝐼𝐼𝑉𝑉  (cassava-whitefly 

transmission), and 𝑝𝑝4𝑆𝑆𝑉𝑉(𝐸𝐸𝐻𝐻 + 𝐼𝐼𝐻𝐻) (whitefly-tolerant cassava transmission). 

• Promote infected cuttings. Virus infection by planting of infected cuttings, 

denoted by 𝑟𝑟𝐻𝐻 �1 − 𝑆𝑆𝐻𝐻+𝐸𝐸𝐻𝐻+𝐼𝐼𝐻𝐻
𝑘𝑘1

� 𝑝𝑝3𝐸𝐸𝐻𝐻. 

 

The size of the cassava population in a CMD outbreak is increased by 

replanting into the plantation area.  Let 𝑟𝑟𝐻𝐻 be the replating rate of non-tolerant cassava 

𝑆𝑆𝐻𝐻, 𝐸𝐸𝐻𝐻, and 𝐼𝐼𝐻𝐻.  The non-tolerant cassava growth of this model is governed by logistic 

growth terms 𝑟𝑟𝐻𝐻 �1 − 𝑆𝑆𝐻𝐻+𝐸𝐸𝐻𝐻+𝐼𝐼𝐻𝐻
𝑘𝑘1

� 𝑆𝑆𝐻𝐻  and 𝑟𝑟𝐻𝐻 �1 − 𝑆𝑆𝐻𝐻+𝐸𝐸𝐻𝐻+𝐼𝐼𝐻𝐻
𝑘𝑘1

� 𝑝𝑝3𝐸𝐸𝐻𝐻 , which is inspired 

from the work of Bokil et al.  Let 𝑟𝑟𝑇𝑇 be the replating rate of tolerant cassava 𝑆𝑆𝑇𝑇, the 

growth of this state is increased by 𝑟𝑟𝑇𝑇 �1 − 𝑆𝑆𝑇𝑇
𝑘𝑘2
� 𝑆𝑆𝑇𝑇 , where 𝑘𝑘1 is the maximum non-
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tolerant cassava plants capacity and 𝑘𝑘2 is the maximum tolerant cassava plant.  They 

are removed from the system by constant harvesting ℎ and rouging 𝛾𝛾. 

The change from 𝑆𝑆𝑇𝑇  to 𝐸𝐸𝐻𝐻  and from 𝑆𝑆𝐻𝐻  to 𝐸𝐸𝐻𝐻  reflect the number of plants 

infected after planting.  The change from 𝐸𝐸𝐻𝐻  to 𝐼𝐼𝐻𝐻  reflects the number of infected 

cuttings that begin to show CMD symptoms. 

 The whitefly population is driven by two factors: birth rate 𝛬𝛬 and death rate 𝜇𝜇.  

The number of the whitefly population is increased by 𝛬𝛬 �1 − 𝑆𝑆𝑉𝑉+𝐼𝐼𝑉𝑉
𝐿𝐿

� (𝑆𝑆𝑉𝑉 + 𝐼𝐼𝑉𝑉) .  

Transmission within the population is reflected in a change from 𝑆𝑆𝑉𝑉 state to 𝐼𝐼𝑉𝑉 state, as 

whitefly visit and acquire the virus from infected plants. 

 

Values and ranges of the parameters were set with reference to previous studies 

or estimations of CMD outbreaks.  Parameters in CMD outbreaks represented disease 

spread factors are listed in Table 3.2. 

 

Table 3.2 Parameter values and ranges to analyze the outbreak 

Parameter Value Range Reference 

ℎ 0.003 [0.002,0.004] Holt et al. (1997) 

𝛽𝛽 0.008 [0.008,0.05] Wagaba et al. (2013) 

𝛾𝛾 0.03 [0,0.033] Kinene et al. (2015) 

𝑟𝑟𝐻𝐻 0.05 [0.025,0.1] Kinene et al. (2015) 

𝑟𝑟𝑇𝑇 0.025 [0.025,0.2] Magoyo et al. (2019) 

𝑘𝑘1 0.2 (0, 1] Magoyo et al. (2019) 

𝑘𝑘2 0.5 (0, 1] Magoyo et al. (2019) 

𝛬𝛬 0.2 [0.1,0.3] Jeger et al. (2004) 

𝜇𝜇 0.0142 [0.0142,0.0166] Kinene et al. (2015) 

𝐿𝐿 200 (0, 2500] Bokil et al. (2019) 

𝑝𝑝1 0.008 [0,1.0] Bokil et al. (2019) 
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Table 3.2 Parameter values and ranges to analyze the outbreak (Continued) 

Parameter Value Range Reference 

𝑝𝑝2 0.001 [0,1.0] Magoyo et al. (2019) 

𝑝𝑝3 0.1 [0,1.0] Holt et al. (1997) 

𝑝𝑝4 0.008 [0,1.0] Bokil et al. (2019) 

 

 3.2.1 Ordinary differential equations 

Ordinary differential equations (ODEs) are constructed by parameters 

and values that are given in Table 3.3 

 

𝑑𝑑𝑆𝑆𝑇𝑇
𝑑𝑑𝑑𝑑

= 𝑟𝑟𝑇𝑇 �1 − 𝑆𝑆𝑇𝑇
𝑘𝑘2
� 𝑆𝑆𝑇𝑇 − 𝑝𝑝2𝑆𝑆𝑇𝑇𝐼𝐼𝑉𝑉 − ℎ𝑆𝑆𝑇𝑇, (3.1) 

𝑑𝑑𝑆𝑆𝐻𝐻
𝑑𝑑𝑑𝑑

= 𝑟𝑟𝐻𝐻 �1 − 𝑆𝑆𝐻𝐻+𝐸𝐸𝐻𝐻+𝐼𝐼𝐻𝐻
𝑘𝑘1

� 𝑆𝑆𝐻𝐻 − 𝑝𝑝1𝑆𝑆𝐻𝐻𝐼𝐼𝑉𝑉 − ℎ𝑆𝑆𝐻𝐻, (3.2) 

 𝑑𝑑𝐸𝐸𝐻𝐻
𝑑𝑑𝑑𝑑

= 𝑟𝑟𝐻𝐻 �1 − 𝑆𝑆𝐻𝐻+𝐸𝐸𝐻𝐻+𝐼𝐼𝐻𝐻
𝑘𝑘1

� 𝑝𝑝3𝐸𝐸𝐻𝐻 + 𝑝𝑝1𝑆𝑆𝐻𝐻𝐼𝐼𝑉𝑉 + 𝑝𝑝2𝑆𝑆𝑇𝑇𝐼𝐼𝑉𝑉 − (𝛽𝛽 + ℎ)𝐸𝐸𝐻𝐻, (3.3) 

𝑑𝑑𝐼𝐼𝐻𝐻
𝑑𝑑𝑑𝑑

= 𝛽𝛽𝐸𝐸𝐻𝐻 − (𝛾𝛾 + ℎ)𝐼𝐼𝐻𝐻, (3.4) 

𝑑𝑑𝑆𝑆𝑉𝑉
𝑑𝑑𝑑𝑑

= 𝛬𝛬 �1 − 𝑆𝑆𝑉𝑉+𝐼𝐼𝑉𝑉
𝐿𝐿

� (𝑆𝑆𝑉𝑉 + 𝐼𝐼𝑉𝑉) − 𝑝𝑝4𝑆𝑆𝑉𝑉(𝐸𝐸𝐻𝐻 + 𝐼𝐼𝐻𝐻) − 𝜇𝜇𝑆𝑆𝑉𝑉, (3.5) 

𝑑𝑑𝐼𝐼𝑉𝑉
𝑑𝑑𝑑𝑑

= 𝑝𝑝4𝑆𝑆𝑉𝑉(𝐸𝐸𝐻𝐻 + 𝐼𝐼𝐻𝐻) − 𝜇𝜇𝐼𝐼𝑉𝑉, (3.6) 

 

with the initial conditions 

𝑆𝑆𝑇𝑇(0), 𝑆𝑆𝐻𝐻(0),𝐸𝐸𝐻𝐻(0), 𝐼𝐼𝐻𝐻(0), 𝑆𝑆𝑉𝑉(0), 𝐼𝐼𝑉𝑉(0) > 0. (3.7) 

 

Equations (3.8) and (3.9) give the total cassava population and the total 

whitefly population: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑟𝑟𝐻𝐻 �1 − 𝑆𝑆𝐻𝐻+𝐸𝐸𝐻𝐻+𝐼𝐼𝐻𝐻
𝑘𝑘1

� (𝑆𝑆𝐻𝐻 + 𝑝𝑝3𝐸𝐸𝐻𝐻) + 𝑟𝑟𝑇𝑇 �1 − 𝑆𝑆𝑇𝑇
𝑘𝑘2
� 𝑆𝑆𝑇𝑇 − ℎ𝑁𝑁, (3.8) 
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𝑑𝑑𝑑𝑑𝑉𝑉
𝑑𝑑𝑑𝑑

= 𝛬𝛬 �1 − 𝑆𝑆𝑉𝑉+𝐼𝐼𝑉𝑉
𝐿𝐿

� (𝑆𝑆𝑉𝑉 + 𝐼𝐼𝑉𝑉) − 𝜇𝜇(𝑆𝑆𝑉𝑉 + 𝐼𝐼𝑉𝑉). (3.9) 

 

3.2.2 Basic assumptions of the model 

The following are assumptions for mathematical model. 

• All model parameters are positive. 

• A growth rate of the cassava population is positive, i.e., 𝑟𝑟𝐻𝐻 − ℎ > 0 

and  𝑟𝑟𝑇𝑇 − ℎ > 0, where 𝑟𝑟𝐻𝐻  and 𝑟𝑟𝑇𝑇  are the replanting rate of non-

tolerant and tolerant cassava, respectively, and ℎ is harvesting rate. 

• The increase of cassava population is calculated by the logistic 

growth equations, 𝑟𝑟𝐻𝐻 �1 − 𝑆𝑆𝐻𝐻+𝐸𝐸𝐻𝐻+𝐼𝐼𝐻𝐻
𝑘𝑘1

� 𝑆𝑆𝐻𝐻, 𝑟𝑟𝐻𝐻 �1 − 𝑆𝑆𝐻𝐻+𝐸𝐸𝐻𝐻+𝐼𝐼𝐻𝐻
𝑘𝑘1

� 𝑝𝑝3𝐸𝐸𝐻𝐻, 

and 𝑟𝑟𝑇𝑇 �1 − 𝑆𝑆𝑇𝑇
𝑘𝑘2
� 𝑆𝑆𝑇𝑇. 

• A growth rate of the whitefly population is positive, i.e., 𝛬𝛬 − 𝜇𝜇 >

0, where 𝛬𝛬 is the whitefly birth rate and 𝜇𝜇 is the natural whitefly 

death rate. 

• The increase of whitefly population is calculated by the logistic 

growth equation, 𝛬𝛬 �1 − 𝑆𝑆𝑉𝑉+𝐼𝐼𝑉𝑉
𝐿𝐿

� (𝑆𝑆𝑉𝑉 + 𝐼𝐼𝑉𝑉). 

• The growth rate of the whitefly density is greater than the growth 

rate of the cassava, (𝛬𝛬 − 𝜇𝜇) > (𝑟𝑟𝐻𝐻 − ℎ). 

3.2.3 Basic properties of the model 

To confirm the biological validity of the model, it must prove that 

solutions to ODEs are positive and bounded for all time values.  Furthermore, the 

cassava population and the whitefly population must remain finite since they are 
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bounded by the plantation area.  In this section, the positivity and boundedness of these 

solutions are discussed. 

3.2.3.1  Positivity 

Theorem 3.1: In the model, if the initial conditions satisfy with Equation (3.7) then for 

all   𝑡𝑡 ≥ 0, all solutions of ODEs in Equations (3.1) to (3.6) will remain positive in ℝ+6 . 

 

Proof: Since all of parameters used in the system are positive. Theorem 3.1 can be 

proved by placing lower bounds on each of equations given in the model. 

 

• Positivity of 𝑆𝑆𝑇𝑇(𝑡𝑡) for all 𝑡𝑡 ≥ 0 

From Equation (3.1), 

 𝑑𝑑𝑆𝑆𝑇𝑇
𝑑𝑑𝑑𝑑

= 𝑟𝑟𝑇𝑇 �1 − 𝑆𝑆𝑇𝑇
𝑘𝑘2
� 𝑆𝑆𝑇𝑇 − 𝑝𝑝2𝑆𝑆𝑇𝑇𝐼𝐼𝑉𝑉 − ℎ𝑆𝑆𝑇𝑇 ≥ −𝑝𝑝2𝑆𝑆𝑇𝑇𝐼𝐼𝑉𝑉 − ℎ𝑆𝑆𝑇𝑇. 

 

The integration of the inequality is 

 𝑆𝑆𝑇𝑇(𝑡𝑡) ≥ 𝑆𝑆𝑇𝑇(0)𝑒𝑒−ℎ𝑑𝑑−∫ 𝑝𝑝2𝐼𝐼𝑉𝑉(𝑠𝑠)𝑑𝑑𝑠𝑠𝑡𝑡
0 , for all 𝑡𝑡 ≥ 0. (3.10) 

 

Thus, 𝑆𝑆𝑇𝑇(𝑡𝑡) > 0 for all 𝑡𝑡 ≥ 0. 

• Positivity of 𝑆𝑆𝐻𝐻(𝑡𝑡) for all 𝑡𝑡 ≥ 0 

From Equation (3.2), 

 𝑑𝑑𝑆𝑆𝐻𝐻
𝑑𝑑𝑑𝑑

= 𝑟𝑟𝐻𝐻 �1 − 𝑆𝑆𝐻𝐻+𝐸𝐸𝐻𝐻+𝐼𝐼𝐻𝐻
𝑘𝑘1

� 𝑆𝑆𝐻𝐻 − 𝑝𝑝1𝑆𝑆𝐻𝐻𝐼𝐼𝑉𝑉 − ℎ𝑆𝑆𝐻𝐻 ≥ −𝑝𝑝1𝑆𝑆𝐻𝐻𝐼𝐼𝑉𝑉 − ℎ𝑆𝑆𝐻𝐻. 

 

The integration of the inequality is 

 𝑆𝑆𝐻𝐻(𝑡𝑡) ≥ 𝑆𝑆𝐻𝐻(0)𝑒𝑒−ℎ𝑑𝑑−∫ 𝑝𝑝1𝐼𝐼𝑉𝑉(𝑠𝑠)𝑑𝑑𝑠𝑠𝑡𝑡
0  for all 𝑡𝑡 ≥ 0. (3.11) 

 

This means that 𝑆𝑆𝐻𝐻(𝑡𝑡) > 0 for all 𝑡𝑡 ≥ 0. 
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• Positivity of 𝐸𝐸𝐻𝐻(𝑡𝑡) for all 𝑡𝑡 ≥ 0 

From Equation (3.3), 

𝑑𝑑𝐸𝐸𝐻𝐻
𝑑𝑑𝑡𝑡

= 𝑟𝑟𝐻𝐻 �1 −
𝑆𝑆𝐻𝐻 + 𝐸𝐸𝐻𝐻 + 𝐼𝐼𝐻𝐻

𝑘𝑘1
� 𝑝𝑝3𝐸𝐸𝐻𝐻 + 𝑝𝑝1𝑆𝑆𝐻𝐻𝐼𝐼𝑉𝑉 + 𝑝𝑝2𝑆𝑆𝑇𝑇𝐼𝐼𝑉𝑉 − (𝛽𝛽 + ℎ)𝐸𝐸𝐻𝐻 

≥ −(𝛽𝛽 + ℎ)𝐸𝐸𝐻𝐻. 

 

The integration of the inequality is  

 𝐸𝐸𝐻𝐻(𝑡𝑡) ≥ 𝐸𝐸𝐻𝐻(0)𝑒𝑒−(𝛽𝛽+ℎ)𝑑𝑑 for all 𝑡𝑡 ≥ 0. (3.12) 

 

Hence, 𝐸𝐸𝐻𝐻(𝑡𝑡) > 0 for all 𝑡𝑡 ≥ 0. 

• Positivity of 𝐼𝐼𝐻𝐻(𝑡𝑡) for all 𝑡𝑡 ≥ 0 

From Equation (3.4), 

𝑑𝑑𝐼𝐼𝐻𝐻
𝑑𝑑𝑡𝑡

= 𝛽𝛽𝐸𝐸𝐻𝐻 − ℎ𝐼𝐼𝐻𝐻 ≥ −ℎ𝐼𝐼𝐻𝐻 

 

It then follows that 

 𝐼𝐼𝐻𝐻(𝑡𝑡) ≥ 𝐼𝐼𝐻𝐻(0)𝑒𝑒−ℎ𝑑𝑑 > 0,  for all 𝑡𝑡 ≥ 0. (3.13) 

 

Therefore, 𝐼𝐼𝐻𝐻(𝑡𝑡1) > 0 for all 𝑡𝑡 ≥ 0. 

• Positivity of 𝑆𝑆𝑉𝑉(𝑡𝑡) for all 𝑡𝑡 ≥ 0 

From Equation (3.5), 

𝑑𝑑𝑆𝑆𝑉𝑉
𝑑𝑑𝑡𝑡

= 𝛬𝛬 �1 −
𝑆𝑆𝑉𝑉 + 𝐼𝐼𝑉𝑉

𝐿𝐿
� (𝑆𝑆𝑉𝑉 + 𝐼𝐼𝑉𝑉) − 𝑝𝑝4𝑆𝑆𝑉𝑉(𝐸𝐸𝐻𝐻 + 𝐼𝐼𝐻𝐻) − 𝜇𝜇𝑆𝑆𝑉𝑉 

≥ −𝑝𝑝4𝑆𝑆𝑉𝑉(𝐸𝐸𝐻𝐻 + 𝐼𝐼𝐻𝐻) − 𝜇𝜇𝑆𝑆𝑉𝑉. 

 

A comparison argument shows that 

𝑆𝑆𝑉𝑉(𝑡𝑡) ≥ 𝑆𝑆𝑉𝑉(0)𝑒𝑒−𝜇𝜇𝑑𝑑−∫ 𝑝𝑝4�𝐸𝐸𝐻𝐻(𝑠𝑠)+𝐼𝐼𝐻𝐻(𝑠𝑠)�𝑑𝑑𝑠𝑠𝑡𝑡
0 ,  for all 𝑡𝑡 ≥ 0. (3.14) 
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Hence, 𝑆𝑆𝑉𝑉(𝑡𝑡) > 0 for all 𝑡𝑡 ≥ 0. 

• Positivity of 𝐼𝐼𝑉𝑉(𝑡𝑡) for all 𝑡𝑡 ≥ 0 

From Equation (3.6), 

𝑑𝑑𝐼𝐼𝑉𝑉
𝑑𝑑𝑑𝑑

= 𝑝𝑝4𝑆𝑆𝑉𝑉(𝐸𝐸𝐻𝐻 + 𝐼𝐼𝐻𝐻) − 𝜇𝜇𝐼𝐼𝑉𝑉 ≥ −𝜇𝜇𝐼𝐼𝑉𝑉, 

 

It then follows that 

𝐼𝐼𝑉𝑉(𝑡𝑡) ≥ 𝐼𝐼𝑉𝑉(0)𝑒𝑒−𝜇𝜇𝑑𝑑 > 0, for all 𝑡𝑡 ≥ 0. (3.15) 

 

Therefore, 𝐼𝐼𝑉𝑉(𝑡𝑡) > 0 for all 𝑡𝑡 ≥ 0. 

 

This can be concluded that the solutions of the model are positive in ℝ+6 . □ 

 

3.2.3.2 Boundedness 

The boundedness of the system is showed with the initial 

condition (3.7).  Let 𝛺𝛺 = 𝛺𝛺𝐶𝐶 × 𝛺𝛺𝑉𝑉 ⊂ ℝ+4 × ℝ+2  be any solution of the system with 

positive initial condition, where 

𝛺𝛺𝐶𝐶 = �𝑆𝑆𝑇𝑇(𝑡𝑡),𝑆𝑆𝐻𝐻(𝑡𝑡),𝐸𝐸𝐻𝐻(𝑡𝑡), 𝐼𝐼𝐻𝐻(𝑡𝑡) ∈ ℝ+4 � and 𝛺𝛺𝑉𝑉 = �𝑆𝑆𝑉𝑉(𝑡𝑡), 𝐼𝐼𝑉𝑉(𝑡𝑡) ∈ ℝ+2 �. 

 

Therefore, all the solutions of the system start in 

ℝ+6 = �𝑆𝑆𝑇𝑇 ,𝑆𝑆𝐻𝐻,𝐸𝐸𝐻𝐻 , 𝐼𝐼𝐻𝐻, 𝑆𝑆𝑉𝑉, 𝐼𝐼𝑉𝑉 �
𝑆𝑆𝑇𝑇(0) > 0, 𝑆𝑆𝐻𝐻(0) > 0,𝐸𝐸𝐻𝐻(0) > 0,
𝐼𝐼𝐻𝐻(0) > 0, 𝑆𝑆𝑉𝑉(0) > 0, 𝐼𝐼𝑉𝑉(0) > 0 � for 𝑡𝑡 ≥ 0. 

 

Theorem 3.2: All solutions of the ODEs in Equations (3.1) to (3.6) with positive initial 

conditions (3.7) are ultimately bounded. 
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Proof: From Theorem 3.1, the solutions to these ODEs are positive for all 𝑡𝑡 ≥ 0. 

• Boundedness of 𝑁𝑁(𝑡𝑡) for all 𝑡𝑡 ≥ 0 

Since 𝑁𝑁 = 𝑁𝑁𝐻𝐻 + 𝑁𝑁𝑇𝑇, we have 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑𝐻𝐻
𝑑𝑑𝑑𝑑

+ 𝑑𝑑𝑑𝑑𝑇𝑇
𝑑𝑑𝑑𝑑

. 

 

 First, we consider 𝑁𝑁𝐻𝐻 for all 𝑡𝑡 ≥ 0.  From Equation (3.8), 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑟𝑟𝐻𝐻 �1 − 𝑆𝑆𝐻𝐻+𝐸𝐸𝐻𝐻+𝐼𝐼𝐻𝐻
𝑘𝑘1

� (𝑆𝑆𝐻𝐻 + 𝑝𝑝3𝐸𝐸𝐻𝐻) + 𝑟𝑟𝑇𝑇 �1 − 𝑆𝑆𝑇𝑇
𝑘𝑘2
� 𝑆𝑆𝑇𝑇 − ℎ𝑁𝑁. 

 

As can be observed, the solution is bounded by logistic growth 

𝑑𝑑𝑑𝑑𝐻𝐻
𝑑𝑑𝑑𝑑

≤ 𝑟𝑟𝐻𝐻 �1 − 𝑑𝑑𝐻𝐻
𝑘𝑘2
�𝑁𝑁𝐻𝐻. 

 

The integration of the inequality is 

𝑁𝑁𝐻𝐻(𝑡𝑡) ≤
𝑁𝑁𝐻𝐻(0)𝑘𝑘1

𝑁𝑁𝐻𝐻(0) + �𝑘𝑘1 − 𝑁𝑁𝐻𝐻(0)�𝑒𝑒−𝑟𝑟𝐻𝐻𝑑𝑑
 

 

(assuming 𝑁𝑁𝐻𝐻(0) > 0), which implies that 𝑙𝑙𝑙𝑙𝑙𝑙𝑑𝑑→∞𝑁𝑁𝐻𝐻 (𝑡𝑡) ≤ 𝑘𝑘1. 

 Next, we consider 𝑁𝑁𝑇𝑇 for all 𝑡𝑡 ≥ 0.  From Equation (3.8), the solution is also 

bounded by logistic growth 

𝑑𝑑𝑑𝑑𝑇𝑇
𝑑𝑑𝑑𝑑

≤ 𝑟𝑟𝑇𝑇 �1 − 𝑑𝑑𝑇𝑇
𝑘𝑘2
�𝑁𝑁𝑇𝑇. 

 

The integration of the inequality is 

𝑁𝑁𝑇𝑇(𝑡𝑡) ≤
𝑁𝑁𝑇𝑇(0)𝑘𝑘2

𝑁𝑁𝑇𝑇(0) + �𝑘𝑘2 − 𝑁𝑁𝑇𝑇(0)�𝑒𝑒−𝑟𝑟𝑇𝑇𝑑𝑑
 

 

(assuming 𝑁𝑁𝑇𝑇(0) > 0), which implies that 𝑙𝑙𝑙𝑙𝑙𝑙𝑑𝑑→∞𝑁𝑁𝑇𝑇 (𝑡𝑡) ≤ 𝑘𝑘2. 
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This gives the feasible solution set of the cassava entering the region: 

𝛺𝛺𝐶𝐶 = �𝑆𝑆𝑇𝑇 ,𝑆𝑆𝐻𝐻 ,𝐸𝐸𝐻𝐻 , 𝐼𝐼𝐻𝐻 ∈ ℝ+4 �𝑁𝑁(𝑡𝑡) ≤ 𝑘𝑘1 + 𝑘𝑘2�  for all 𝑡𝑡 ≥ 0. 

 

• Boundedness of 𝑁𝑁𝑉𝑉(𝑡𝑡) for all 𝑡𝑡 ≥ 0 

Let 𝑁𝑁𝑉𝑉 = 𝑆𝑆𝑉𝑉 + 𝐼𝐼𝑉𝑉.  From Equation (3.9), 

𝑑𝑑𝑑𝑑𝑉𝑉
𝑑𝑑𝑑𝑑

= 𝛬𝛬 �1 − 𝑑𝑑𝑉𝑉
𝐿𝐿
�𝑁𝑁𝑉𝑉 − 𝜇𝜇𝑁𝑁𝑉𝑉. 

 

As can be observed, the solution is bounded by logistic growth 

𝑑𝑑𝑑𝑑𝑉𝑉
𝑑𝑑𝑑𝑑

≤ 𝛬𝛬 �1 − 𝑑𝑑𝑉𝑉
𝐿𝐿
�𝑁𝑁𝑉𝑉. 

 

The integration of the inequality is 

𝑁𝑁𝑉𝑉(𝑡𝑡) ≤ 𝑑𝑑𝑉𝑉(0)𝐿𝐿
𝑑𝑑𝑉𝑉(0)+�𝐿𝐿−𝑑𝑑𝑉𝑉(0)�𝑒𝑒−𝛬𝛬𝑡𝑡

, 

 

(assuming 𝑁𝑁𝑉𝑉(0) > 0 ), which implies that 𝑙𝑙𝑙𝑙𝑙𝑙𝑑𝑑→∞𝑁𝑁𝑉𝑉 (𝑡𝑡) ≤ 𝐿𝐿 .  Thus, the feasible 

solution set for the CMD system is given by 

𝛺𝛺𝑉𝑉 = �𝑆𝑆𝑉𝑉, 𝐼𝐼𝑉𝑉 ∈ ℝ+2 �𝑁𝑁𝑉𝑉 ≤ 𝐿𝐿�    for all 𝑡𝑡 ≥ 0. 

 

The solutions of the system in ℝ+6  are confined to the region 𝛺𝛺.  Here 

𝛺𝛺 = �𝑆𝑆𝑇𝑇 , 𝑆𝑆𝐻𝐻 ,𝐸𝐸𝐻𝐻 , 𝐼𝐼𝐻𝐻 , 𝑆𝑆𝑉𝑉 , 𝐼𝐼𝑉𝑉 ∈ ℝ+6 |𝑁𝑁 ≤ 𝑘𝑘1 + 𝑘𝑘2,𝑁𝑁𝑉𝑉 ≤ 𝐿𝐿 � for all 𝑡𝑡 ≥ 0. 

 

Hence, all solutions of the system (3.1) to (3.6) with initial conditions (3.7) 

remain positive invariant in the region 𝛺𝛺 for all 𝑡𝑡 ≥ 0. □ 
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3.3 Stability Analysis of the System 

 In this section, local and global stability of the feasible equilibrium of CMD 

system is established. 

 3.3.1 Disease-free equilibrium point 

  In the absence of CMD in the cassava population, the system in 

Equations (3.1) to (3.6) admits a trivial equilibrium also known as the disease-free 

equilibrium (DFE), denoted by 𝐸𝐸0 = (𝑆𝑆𝑇𝑇∗ , 𝑆𝑆𝐻𝐻∗ ,𝐸𝐸𝐻𝐻∗ , 𝐼𝐼𝐻𝐻∗ ,𝑆𝑆𝑉𝑉∗ , 𝐼𝐼𝑉𝑉∗) and given by 

 𝐸𝐸0 = (𝑆𝑆𝑇𝑇∗ ,𝑆𝑆𝐻𝐻∗ ,𝐸𝐸𝐻𝐻∗ , 𝐼𝐼𝐻𝐻∗ , 𝑆𝑆𝑉𝑉∗ , 𝐼𝐼𝑉𝑉∗) = �(𝑟𝑟𝑇𝑇−ℎ)𝑘𝑘2
𝑟𝑟𝑇𝑇

, (𝑟𝑟𝐻𝐻−ℎ)𝑘𝑘1
𝑟𝑟𝐻𝐻

, 0,0, (𝛬𝛬−𝜇𝜇)𝐿𝐿
𝛬𝛬

, 0� (3.16) 

 

3.3.2 Endemic equilibrium point 

The endemic equilibrium point (EE) of the system is denoted by          

𝐸𝐸1 = �𝑆𝑆𝑇𝑇 , 𝑆𝑆𝐻𝐻,𝐸𝐸𝐻𝐻, 𝐼𝐼𝐻𝐻, 𝑆𝑆𝑉𝑉, 𝐼𝐼𝑉𝑉�.  The EE is determined by setting the right-hand sides of 

Equations (3.1) to (3.6) to zero.  Therefore, 

𝑆𝑆𝑇𝑇 = �𝑟𝑟𝑇𝑇−ℎ−𝑝𝑝2𝐼𝐼𝑉𝑉�𝑘𝑘2
𝑟𝑟𝑇𝑇

, 

 𝑆𝑆𝐻𝐻 = (𝛾𝛾+ℎ)�𝑟𝑟𝐻𝐻−ℎ−𝑝𝑝1𝐼𝐼𝑉𝑉�−𝑟𝑟𝐻𝐻𝐸𝐸𝐻𝐻(𝛽𝛽+𝛾𝛾+ℎ)
𝑟𝑟𝐻𝐻(𝛾𝛾+ℎ) , 

 𝐸𝐸𝐻𝐻 =
(𝛾𝛾+ℎ)𝐼𝐼𝑉𝑉�𝑟𝑟𝑇𝑇𝑝𝑝1𝑘𝑘1�𝑟𝑟𝐻𝐻−ℎ−𝑝𝑝1𝐼𝐼𝑉𝑉�+𝑟𝑟𝐻𝐻𝑝𝑝2𝑘𝑘2�𝑟𝑟𝑇𝑇−ℎ−𝑝𝑝2𝐼𝐼𝑉𝑉��

𝑟𝑟𝑇𝑇𝑟𝑟𝐻𝐻�ℎ2+ℎ�𝛽𝛽+𝛾𝛾+𝑝𝑝1𝐼𝐼𝑉𝑉(1−𝑝𝑝3)−𝑝𝑝3ℎ�+�𝛽𝛽+𝛾𝛾(1−𝑝𝑝3)�𝑝𝑝1𝐼𝐼𝑉𝑉+𝛾𝛾(𝛽𝛽−𝑝𝑝3ℎ)�
, 

 𝐼𝐼𝐻𝐻 = 𝛽𝛽
𝛾𝛾+ℎ

𝐸𝐸𝐻𝐻, 

 𝑆𝑆𝑉𝑉 = 𝜇𝜇(𝛾𝛾+ℎ)𝐼𝐼𝑉𝑉
𝑝𝑝4𝐸𝐸𝐻𝐻(𝛽𝛽+𝛾𝛾+ℎ), 

 𝐼𝐼𝑉𝑉 = (𝛬𝛬−𝜇𝜇)(𝛽𝛽+𝛾𝛾+ℎ)𝑝𝑝4𝐿𝐿𝐸𝐸𝐻𝐻
𝛬𝛬�𝜇𝜇(𝛾𝛾+ℎ)+𝑝𝑝4𝐸𝐸𝐻𝐻(𝛽𝛽+𝛾𝛾+ℎ)�

. 

 



61 
 

3.3.3 Reproduction number 

  𝑅𝑅0 is one of the most useful threshold parameters in epidemiology.  It is 

defined as the expected number of secondary cases produced by a single infection in a 

completely susceptible population.  It is used as an indicator of the stability of 𝐸𝐸0 and 

𝐸𝐸1, where 𝐸𝐸1 is the symbol of the EE.  The DFE 𝐸𝐸0 is asymptotically stable if   𝑅𝑅0 <

1 , as the disease cannot invade the population and unstable if 𝑅𝑅0 > 1 .  𝐸𝐸1  is 

asymptotically stable if  𝑅𝑅0 > 1.  𝑅𝑅0 is calculated by using the next-generation method, 

which is similar to the works of Tumwiine et al. (2008) and Bhunu and Garira (2009). 

  The appearance of new infections is represented by vector 𝐹𝐹 and the 

transfer of existing infections by vector 𝑉𝑉.  Let 𝑥𝑥𝑗𝑗 be an infection state for 𝑗𝑗 = 1,2,3, 

i.e., 𝑥𝑥1 = 𝐸𝐸𝐻𝐻 , 𝑥𝑥2 = 𝐼𝐼𝐻𝐻 , 𝑥𝑥3 = 𝐼𝐼𝑉𝑉 .  𝐹𝐹 describes new infection arising in state 𝑥𝑥𝑗𝑗  and 𝑉𝑉 

represents the transfer of existing infection to state 𝑥𝑥𝑗𝑗. 

  The Jacobian matrices generated by differentiating 𝐹𝐹  and 𝑉𝑉  with 

respect to the relevant subset of variables are calculated at 𝐸𝐸0.  This yields the matrices 

𝑭𝑭 and 𝑽𝑽.  The (𝑗𝑗,𝑘𝑘) entry of the matrix 𝑭𝑭 is the rate at which infected individuals in 

compartment 𝑘𝑘  produce new infections in compartment 𝑗𝑗 .  The (𝑗𝑗, 𝑘𝑘) entry of the 

matrix 𝑽𝑽 represents the transfer of existing infection.  𝑅𝑅0 is computed from the spectral 

radius of 𝑭𝑭𝑽𝑽−1 at DFE.  𝑭𝑭𝑽𝑽−1 is called the next generation matrix and is set as follows: 

𝑅𝑅0 = 𝜌𝜌(𝐹𝐹𝑉𝑉−1), 

 

where 𝜌𝜌(𝑀𝑀) denotes the spectral radius of a matrix 𝑀𝑀.  The spectral radius of 𝑭𝑭𝑽𝑽−1 is 

equal to the dominant (or maximum) eigenvalue of 𝑭𝑭𝑽𝑽−1. 

  In this model, the vectors 𝐹𝐹and 𝑉𝑉 can be derived from Equations (3.1) 

to (3.6): 
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𝐹𝐹 = �
𝑝𝑝1𝑆𝑆𝐻𝐻𝐼𝐼𝑉𝑉 + 𝑝𝑝2𝑆𝑆𝑇𝑇𝐼𝐼𝑉𝑉 + 𝑟𝑟𝐻𝐻 �1 − 𝑆𝑆𝐻𝐻+𝐸𝐸𝐻𝐻+𝐼𝐼𝐻𝐻

𝑘𝑘1
� 𝑝𝑝3𝐸𝐸𝐻𝐻

0
𝑝𝑝4𝑆𝑆𝑉𝑉(𝐸𝐸𝐻𝐻 + 𝐼𝐼𝐻𝐻)

�  and 𝑉𝑉 = �
(𝛽𝛽 + ℎ)𝐸𝐸𝐻𝐻

(𝛾𝛾 + ℎ)𝐼𝐼𝐻𝐻 − 𝛽𝛽𝐸𝐸𝐻𝐻
𝜇𝜇𝐼𝐼𝑉𝑉

�. 

 

  The Jacobians of 𝐹𝐹 and 𝑉𝑉  with respect to the infectious classes are 

defined by 𝑭𝑭 = �𝜕𝜕𝐹𝐹𝑗𝑗
(𝐸𝐸0)

𝜕𝜕𝑥𝑥𝑘𝑘
� and 𝑽𝑽 = �𝜕𝜕𝑉𝑉𝑗𝑗

(𝐸𝐸0)

𝜕𝜕𝑥𝑥𝑘𝑘
�, 

𝑭𝑭 = �
𝑟𝑟𝐻𝐻 �1 − 𝑆𝑆𝐻𝐻

∗

𝑘𝑘1
� 𝑝𝑝3 0 𝑝𝑝1𝑆𝑆𝐻𝐻∗ + 𝑝𝑝2𝑆𝑆𝑇𝑇∗

0 0 0
𝑝𝑝4𝑆𝑆𝑉𝑉∗ 𝑝𝑝4𝑆𝑆𝑉𝑉∗ 0

� and 𝑽𝑽 = �
𝛽𝛽 + ℎ 0 0
−𝛽𝛽 (𝛾𝛾 + ℎ) 0
0 0 𝜇𝜇

�, 

 

respectively. 

 

Therefore, the next generation matrix 𝑭𝑭𝑽𝑽−1 is  

𝑭𝑭𝑽𝑽−1(𝐸𝐸0) =

⎣
⎢
⎢
⎡

𝑝𝑝3ℎ
𝛽𝛽+ℎ

0 𝑝𝑝1𝑘𝑘1(𝑟𝑟𝐻𝐻−ℎ)
𝑟𝑟𝐻𝐻𝜇𝜇

+ 𝑝𝑝2𝑘𝑘2(𝑟𝑟𝑇𝑇−ℎ)
𝑟𝑟𝑇𝑇𝜇𝜇

0 0 0
𝑝𝑝4𝐿𝐿(𝛬𝛬−𝜇𝜇)(𝛽𝛽+𝛾𝛾+ℎ)

𝛬𝛬(𝛽𝛽+ℎ)(𝛾𝛾+ℎ)
𝑝𝑝4𝐿𝐿(𝛬𝛬−𝜇𝜇)
𝛬𝛬(𝛾𝛾+ℎ) 0 ⎦

⎥
⎥
⎤
 (3.17) 

 

Hence, 𝑅𝑅0 is the dominant eigenvalue of Matrix (3.17). 

𝑅𝑅0 = max � 𝑝𝑝3ℎ
2(𝛽𝛽+ℎ) ± �� 𝑝𝑝3ℎ

2(𝛽𝛽+ℎ)�
2

+ 𝑝𝑝4𝐿𝐿(𝛬𝛬−𝜇𝜇)(𝛽𝛽+𝛾𝛾+ℎ)
𝛬𝛬𝜇𝜇(𝛽𝛽+ℎ)(𝛾𝛾+ℎ) �𝑝𝑝1𝑘𝑘1(𝑟𝑟𝐻𝐻−ℎ)

𝑟𝑟𝐻𝐻
+ 𝑝𝑝2𝑘𝑘2(𝑟𝑟𝑇𝑇−ℎ)

𝑟𝑟𝑇𝑇
�� 

       = 𝑝𝑝3ℎ
2(𝛽𝛽+ℎ) + �� 𝑝𝑝3ℎ

2(𝛽𝛽+ℎ)�
2

+ 𝑝𝑝4𝐿𝐿(𝛬𝛬−𝜇𝜇)(𝛽𝛽+𝛾𝛾+ℎ)
𝛬𝛬𝜇𝜇(𝛽𝛽+ℎ)(𝛾𝛾+ℎ) �𝑝𝑝1𝑘𝑘1(𝑟𝑟𝐻𝐻−ℎ)

𝑟𝑟𝐻𝐻
+ 𝑝𝑝2𝑘𝑘2(𝑟𝑟𝑇𝑇−ℎ)

𝑟𝑟𝑇𝑇
� (3.18) 

 

3.3.4 Local stability analysis of disease-free equilibrium point 

Theorem 3.3: The DFE point, 𝐸𝐸0, of Equations (3.1) to (3.6) is locally-asymptotically-

stable in 𝛺𝛺  if 𝑅𝑅0 < 1 and unstable if 𝑅𝑅0 > 1. 
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Proof: The local stability is determined based on the eigenvalue 𝜆𝜆 of the Jacobian.  The 

𝐸𝐸0 is locally-asymptotically-stable if the real parts of 𝜆𝜆 are all negative.  The Jacobian 

matrix at 𝐸𝐸0 is given by 

𝐽𝐽(𝐸𝐸0) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡−(𝑟𝑟𝑇𝑇 − ℎ) 0 0 0 0 −𝑝𝑝2𝑘𝑘2(𝑟𝑟𝑇𝑇−ℎ)

𝑟𝑟𝑇𝑇

0 −(𝑟𝑟𝐻𝐻 − ℎ) −(𝑟𝑟𝐻𝐻 − ℎ) −(𝑟𝑟𝐻𝐻 − ℎ) 0 −𝑝𝑝1𝑘𝑘1(𝑟𝑟𝐻𝐻−ℎ)
𝑟𝑟𝐻𝐻

0 0 𝑝𝑝3ℎ− (𝛽𝛽 + ℎ) 0 0 𝑝𝑝1𝑘𝑘1(𝑟𝑟𝐻𝐻−ℎ)
𝑟𝑟𝐻𝐻

+ 𝑝𝑝2𝑘𝑘2(𝑟𝑟𝑇𝑇−ℎ)
𝑟𝑟𝑇𝑇

0 0 𝛽𝛽 −(𝛾𝛾 + ℎ) 0 0
0 0 −𝑝𝑝4𝐿𝐿(𝛬𝛬−𝜇𝜇)

𝛬𝛬
− 𝑝𝑝4𝐿𝐿(𝛬𝛬−𝜇𝜇)

𝛬𝛬
−(𝛬𝛬 − 𝜇𝜇) 𝛬𝛬 − 2𝜇𝜇

0 0 𝑝𝑝4𝐿𝐿(𝛬𝛬−𝜇𝜇)
𝛬𝛬

𝑝𝑝4𝐿𝐿(𝛬𝛬−𝜇𝜇)
𝛬𝛬

0 −𝜇𝜇 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (3.19) 

 

The characteristic equation of (3.19) is 

�𝜆𝜆 + (𝑟𝑟𝑇𝑇 − ℎ)��𝜆𝜆 + (𝑟𝑟𝐻𝐻 − ℎ)��𝜆𝜆 + (𝛬𝛬 − 𝜇𝜇)�(𝜆𝜆3 + 𝑎𝑎1𝜆𝜆2 + 𝑎𝑎2𝜆𝜆 + 𝑎𝑎3) = 0, (3.20) 

where 

𝑎𝑎1 = 𝛽𝛽 + 𝛾𝛾 + 𝜇𝜇 + ℎ(2 − 𝑝𝑝3),  

𝑎𝑎2 = (𝛽𝛽 + ℎ − 𝑝𝑝3ℎ)(𝛾𝛾 + ℎ+ 𝜇𝜇) + (𝛾𝛾 + ℎ)𝜇𝜇 − 𝑝𝑝4𝐿𝐿(𝛬𝛬−𝜇𝜇)
𝛬𝛬

�𝑝𝑝1𝑘𝑘1(𝑟𝑟𝐻𝐻−ℎ)
𝑟𝑟𝐻𝐻

+ 𝑝𝑝2𝑘𝑘2(𝑟𝑟𝑇𝑇−ℎ)
𝑟𝑟𝑇𝑇

�, (3.21) 

𝑎𝑎3 = 𝜇𝜇(𝛾𝛾 + ℎ)(𝛽𝛽 + ℎ− 𝑝𝑝3ℎ) − 𝑝𝑝4𝐿𝐿(𝛬𝛬−𝜇𝜇)(𝛽𝛽+𝛾𝛾+ℎ)
𝛬𝛬

�𝑝𝑝1𝑘𝑘1(𝑟𝑟𝐻𝐻−ℎ)
𝑟𝑟𝐻𝐻

+ 𝑝𝑝2𝑘𝑘2(𝑟𝑟𝑇𝑇−ℎ)
𝑟𝑟𝑇𝑇

�.  

 

The eigenvalues are calculated under the model assumptions 𝑟𝑟𝑇𝑇 > ℎ, 𝑟𝑟𝐻𝐻 > ℎ 

and 𝛬𝛬 > 𝜇𝜇.  It is clear that the first three eigenvalues of this system are negative: 

−(𝑟𝑟𝑇𝑇 − ℎ), −(𝑟𝑟𝐻𝐻 − ℎ) and −(𝛬𝛬 − 𝜇𝜇). 

The polynomial from (3.21) is considered 

𝜆𝜆3 + 𝑎𝑎1𝜆𝜆2 + 𝑎𝑎2𝜆𝜆 + 𝑎𝑎3 = 0. 

 

As 0 ≤ 𝑝𝑝3 ≤ 1, yields 

𝑎𝑎1 = 𝛽𝛽 + 𝛾𝛾 + 𝜇𝜇 + ℎ(2 − 𝑝𝑝3) > 0. 
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If 𝑅𝑅0 = 𝑝𝑝3ℎ
2(𝛽𝛽+ℎ) + �� 𝑝𝑝3ℎ

2(𝛽𝛽+ℎ)�
2

+ 𝑝𝑝4𝐿𝐿(𝛬𝛬−𝜇𝜇)(𝛽𝛽+𝛾𝛾+ℎ)
𝛬𝛬𝜇𝜇(𝛽𝛽+ℎ)(𝛾𝛾+ℎ) �𝑝𝑝1𝑘𝑘1(𝑟𝑟𝐻𝐻−ℎ)

𝑟𝑟𝐻𝐻
+ 𝑝𝑝2𝑘𝑘2(𝑟𝑟𝑇𝑇−ℎ)

𝑟𝑟𝑇𝑇
� < 1,  

 

It can be rewritten as 

              𝑅𝑅0 < 𝑝𝑝3ℎ
2(𝛽𝛽+ℎ) + ��2(𝛽𝛽+ℎ)−𝑝𝑝3ℎ

2(𝛽𝛽+ℎ) �
2
 

𝑝𝑝4𝐿𝐿(𝛬𝛬 − 𝜇𝜇)(𝛽𝛽 + 𝛾𝛾 + ℎ)
𝛬𝛬𝜇𝜇(𝛽𝛽 + ℎ)(𝛾𝛾 + ℎ) �

𝑝𝑝1𝑘𝑘1(𝑟𝑟𝐻𝐻 − ℎ)
𝑟𝑟𝐻𝐻

+
𝑝𝑝2𝑘𝑘2(𝑟𝑟𝑇𝑇 − ℎ)

𝑟𝑟𝑇𝑇
� <

𝛽𝛽 + ℎ− 𝑝𝑝3ℎ
𝛽𝛽 + ℎ

. 

 

Therefore,  

𝑎𝑎3 = 𝜇𝜇(𝛾𝛾 + ℎ)(𝛽𝛽 + ℎ − 𝑝𝑝3ℎ) − 𝑝𝑝4𝐿𝐿(𝛬𝛬−𝜇𝜇)(𝛽𝛽+𝛾𝛾+ℎ)
𝛬𝛬

�𝑝𝑝1𝑘𝑘1(𝑟𝑟𝐻𝐻−ℎ)
𝑟𝑟𝐻𝐻

+ 𝑝𝑝2𝑘𝑘2(𝑟𝑟𝑇𝑇−ℎ)
𝑟𝑟𝑇𝑇

� > 0. 

 

Finally, 𝑎𝑎1𝑎𝑎2 − 𝑎𝑎3 > 0 is considered 

𝑎𝑎1𝑎𝑎2 − 𝑎𝑎3 = �𝛽𝛽 + 𝛾𝛾 + 𝜇𝜇 + ℎ(2 − 𝑝𝑝3)� �(𝛽𝛽 + ℎ− 𝑝𝑝3ℎ)(𝛾𝛾 + ℎ+ 𝜇𝜇) + (𝛾𝛾 + ℎ)𝜇𝜇

−
𝑝𝑝4𝐿𝐿(𝛬𝛬 − 𝜇𝜇)

𝛬𝛬 �
𝑝𝑝1𝑘𝑘1(𝑟𝑟𝐻𝐻 − ℎ)

𝑟𝑟𝐻𝐻
+
𝑝𝑝2𝑘𝑘2(𝑟𝑟𝑇𝑇 − ℎ)

𝑟𝑟𝑇𝑇
�� − 𝜇𝜇(𝛾𝛾 + ℎ)(𝛽𝛽 + ℎ − 𝑝𝑝3ℎ)

+
𝑝𝑝4𝐿𝐿(𝛬𝛬 − 𝜇𝜇)(𝛽𝛽 + 𝛾𝛾 + ℎ)

𝛬𝛬 �
𝑝𝑝1𝑘𝑘1(𝑟𝑟𝐻𝐻 − ℎ)

𝑟𝑟𝐻𝐻
+
𝑝𝑝2𝑘𝑘2(𝑟𝑟𝑇𝑇 − ℎ)

𝑟𝑟𝑇𝑇
�. 

 

It can be rewritten as 

𝑎𝑎1𝑎𝑎2 − 𝑎𝑎3 = (𝛾𝛾 + ℎ+ 𝜇𝜇)(𝛾𝛾 + ℎ)𝜇𝜇 +
𝑝𝑝4𝐿𝐿(𝛬𝛬 − 𝜇𝜇)(𝛽𝛽 + 𝛾𝛾 + ℎ)

𝛬𝛬
�
𝑝𝑝1𝑘𝑘1(𝑟𝑟𝐻𝐻 − ℎ)

𝑟𝑟𝐻𝐻
+
𝑝𝑝2𝑘𝑘2(𝑟𝑟𝑇𝑇 − ℎ)

𝑟𝑟𝑇𝑇
� 

+�𝛽𝛽 + 𝛾𝛾 + 𝜇𝜇 + ℎ(2− 𝑝𝑝3)��(𝛽𝛽 + ℎ− 𝑝𝑝3ℎ)(𝛾𝛾 + ℎ+ 𝜇𝜇) −
𝑝𝑝4𝐿𝐿(𝛬𝛬 − 𝜇𝜇)

𝛬𝛬 �
𝑝𝑝1𝑘𝑘1(𝑟𝑟𝐻𝐻 − ℎ)

𝑟𝑟𝐻𝐻
+
𝑝𝑝2𝑘𝑘2(𝑟𝑟𝑇𝑇 − ℎ)

𝑟𝑟𝑇𝑇
�� 

    = 𝐺𝐺1 + 𝐺𝐺2 + 𝑎𝑎3, 
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where 

𝐺𝐺1 =
𝛽𝛽 + 𝛾𝛾 + ℎ

𝛽𝛽 + 𝛾𝛾 + 𝜇𝜇 + ℎ(2 − 𝑝𝑝3)�(𝛾𝛾 + ℎ + 𝜇𝜇)(𝛾𝛾 + ℎ)𝜇𝜇 +
𝑝𝑝4𝐿𝐿(𝛬𝛬 − 𝜇𝜇)(𝛽𝛽 + 𝛾𝛾 + ℎ)

𝛬𝛬
�
𝑝𝑝1𝑘𝑘1(𝑟𝑟𝐻𝐻 − ℎ)

𝑟𝑟𝐻𝐻
+
𝑝𝑝2𝑘𝑘2(𝑟𝑟𝑇𝑇 − ℎ)

𝑟𝑟𝑇𝑇
�� 

𝐺𝐺2 = �(𝛾𝛾 + ℎ)(𝛽𝛽 + 𝛾𝛾 + ℎ) + 𝜇𝜇𝛽𝛽�(𝛽𝛽 + ℎ− 𝑝𝑝3ℎ). 

 

It is clear 𝐺𝐺1 > 0, 𝐺𝐺2 > 0, and 𝑎𝑎3 > 0 since 𝑅𝑅0 < 1, 𝑟𝑟𝑇𝑇 > ℎ, 𝑟𝑟𝐻𝐻 > ℎ, 𝛬𝛬 > 𝜇𝜇, and  

0 ≤ 𝑝𝑝3 ≤ 1. 

 

This means that 𝑎𝑎1𝑎𝑎2 − 𝑎𝑎3 > 0.  Using the Routh-Hurwitz criteria for the polynomial 

of degree three (𝑎𝑎1 > 0, 𝑎𝑎3 > 0, and 𝑎𝑎1𝑎𝑎2 − 𝑎𝑎3 > 0), the remaining 𝜆𝜆 of the disease-

free equilibrium system have negative real parts. 

Therefore, 𝐸𝐸0 will be locally-asymptotically-stable if 𝑅𝑅0 < 1.  When 𝑅𝑅0 > 1, 

𝐸𝐸0 is unstable and the disease will persist. □ 

 

3.3.5 Global stability analysis of disease-free equilibrium point 

The global stability of DFE is discussed using the Lyapunov’s method 

and Lasalle theorem to obtain the control condition under which disease can be 

eradicated. 

 

Theorem 3.4: If 𝑅𝑅0 ≤ 1 then 𝐸𝐸0is globally-asymptotically-stable, by assuming that: 

𝜇𝜇 = 𝑝𝑝1𝑆𝑆𝐻𝐻∗ + 𝑝𝑝2𝑆𝑆𝑇𝑇∗    (3.22) 

 

Proof: Let 𝑉𝑉 be the Lyapunov function, where 

𝑉𝑉: {(𝑆𝑆𝑇𝑇, 𝑆𝑆𝐻𝐻,𝐸𝐸𝐻𝐻, 𝐼𝐼𝐻𝐻 , 𝑆𝑆𝑉𝑉, 𝐼𝐼𝑉𝑉) ∈ 𝛺𝛺: 𝑆𝑆𝑇𝑇 , 𝑆𝑆𝐻𝐻, 𝑆𝑆𝑉𝑉 > 0} → ℝ6+. 

 

The Lyapunov function 𝑉𝑉 for Equations (3.1) to (3.6) is defined as 
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𝑉𝑉(𝑆𝑆𝑇𝑇 , 𝑆𝑆𝐻𝐻,𝐸𝐸𝐻𝐻, 𝐼𝐼𝐻𝐻 , 𝑆𝑆𝑉𝑉, 𝐼𝐼𝑉𝑉) = �𝑆𝑆𝑇𝑇 − 𝑆𝑆𝑇𝑇∗ − 𝑆𝑆𝑇𝑇∗ 𝑙𝑙𝑙𝑙
𝑆𝑆𝑇𝑇
𝑆𝑆𝑇𝑇∗
� + �𝑆𝑆𝐻𝐻 − 𝑆𝑆𝐻𝐻∗ − 𝑆𝑆𝐻𝐻∗ 𝑙𝑙𝑙𝑙

𝑆𝑆𝐻𝐻
𝑆𝑆𝐻𝐻∗
� + 𝐸𝐸𝐻𝐻 + 𝐼𝐼𝐻𝐻 

+ �𝑆𝑆𝑉𝑉 − 𝑆𝑆𝑉𝑉∗ − 𝑆𝑆𝑉𝑉∗ 𝑙𝑙𝑙𝑙
𝑆𝑆𝑉𝑉
𝑆𝑆𝑉𝑉∗
� + 𝐼𝐼𝑉𝑉 . 

 

When 𝑉𝑉 is 𝐶𝐶1, a proper positive definite function, and 𝐸𝐸0 is the global minimum of 𝑉𝑉 

on 𝛺𝛺, yields 

𝑉𝑉(𝑆𝑆𝑇𝑇∗ ,𝑆𝑆𝐻𝐻∗ ,𝐸𝐸𝐻𝐻∗ , 𝐼𝐼𝐻𝐻∗ , 𝑆𝑆𝑉𝑉∗ , 𝐼𝐼𝑉𝑉∗) = 0. 

 

The time derivative of 𝑉𝑉 computed along solutions of Equations (3.1) to (3.6) is 

𝑑𝑑𝑉𝑉
𝑑𝑑𝑑𝑑

= �1 − 𝑆𝑆𝑇𝑇
∗

𝑆𝑆𝑇𝑇
� 𝑑𝑑𝑆𝑆𝑇𝑇

𝑑𝑑𝑑𝑑
+ �1 − 𝑆𝑆𝐻𝐻

∗

𝑆𝑆𝐻𝐻
� 𝑑𝑑𝑆𝑆𝐻𝐻

𝑑𝑑𝑑𝑑
+ 𝑑𝑑𝐸𝐸𝐻𝐻

𝑑𝑑𝑑𝑑
+ 𝑑𝑑𝐼𝐼𝐻𝐻

𝑑𝑑𝑑𝑑
+ �1 − 𝑆𝑆𝑉𝑉

∗

𝑆𝑆𝑉𝑉
� 𝑑𝑑𝑆𝑆𝑉𝑉

𝑑𝑑𝑑𝑑
+ 𝑑𝑑𝐼𝐼𝑉𝑉

𝑑𝑑𝑑𝑑
 (3.23) 

 

Substituting the ODEs (3.1) to (3.6) into Equation (3.23) yields 

𝑑𝑑𝑉𝑉
𝑑𝑑𝑡𝑡 = �1 −

𝑆𝑆𝑇𝑇∗

𝑆𝑆𝑇𝑇
� �𝑟𝑟𝑇𝑇 �1 −

𝑆𝑆𝑇𝑇
𝑘𝑘2
�𝑆𝑆𝑇𝑇 − 𝑝𝑝2𝑆𝑆𝑇𝑇𝐼𝐼𝑉𝑉 − ℎ𝑆𝑆𝑇𝑇� + �1 −

𝑆𝑆𝐻𝐻∗

𝑆𝑆𝐻𝐻
� �𝑟𝑟𝐻𝐻 �1 −

𝑆𝑆𝐻𝐻 + 𝐸𝐸𝐻𝐻 + 𝐼𝐼𝐻𝐻
𝑘𝑘1

� 𝑆𝑆𝐻𝐻 − 𝑝𝑝1𝑆𝑆𝐻𝐻𝐼𝐼𝑉𝑉 − ℎ𝑆𝑆𝐻𝐻� 

+ �𝑟𝑟𝐻𝐻 �1 −
𝑆𝑆𝐻𝐻 + 𝐸𝐸𝐻𝐻 + 𝐼𝐼𝐻𝐻

𝑘𝑘1
� 𝑝𝑝3𝐸𝐸𝐻𝐻 + 𝑝𝑝1𝑆𝑆𝐻𝐻𝐼𝐼𝑉𝑉 + 𝑝𝑝2𝑆𝑆𝑇𝑇𝐼𝐼𝑉𝑉 − (𝛽𝛽 + ℎ)𝐸𝐸𝐻𝐻� + (𝛽𝛽𝐸𝐸𝐻𝐻 − (𝛾𝛾 + ℎ)𝐼𝐼𝐻𝐻) 

 + �1 − 𝑆𝑆𝑉𝑉
∗

𝑆𝑆𝑉𝑉
� �𝛬𝛬 �1 − 𝑆𝑆𝑉𝑉+𝐼𝐼𝑉𝑉

𝐿𝐿
� (𝑆𝑆𝑉𝑉 + 𝐼𝐼𝑉𝑉) − 𝑝𝑝4𝑆𝑆𝑉𝑉(𝐸𝐸𝐻𝐻 + 𝐼𝐼𝐻𝐻) − 𝜇𝜇𝑆𝑆𝑉𝑉� + (𝑝𝑝4𝑆𝑆𝑉𝑉(𝐸𝐸𝐻𝐻 + 𝐼𝐼𝐻𝐻) − 𝜇𝜇𝐼𝐼𝑉𝑉), 

 

this simplifies to 

𝑑𝑑𝑉𝑉
𝑑𝑑𝑑𝑑

= �𝑟𝑟𝑇𝑇 �1 − 𝑆𝑆𝑇𝑇
∗

𝑘𝑘2
� 𝑆𝑆𝑇𝑇 − ℎ𝑆𝑆𝑇𝑇� �1 − 𝑆𝑆𝑇𝑇

∗

𝑆𝑆𝑇𝑇
� + �𝑟𝑟𝐻𝐻 �1 − 𝑆𝑆𝐻𝐻

∗

𝑘𝑘1
� 𝑆𝑆𝐻𝐻 − ℎ𝑆𝑆𝐻𝐻� �1 − 𝑆𝑆𝐻𝐻

∗

𝑆𝑆𝐻𝐻
�  

          +𝑟𝑟𝐻𝐻 �1 − 𝑆𝑆𝐻𝐻
∗

𝑘𝑘1
� 𝑝𝑝3𝐸𝐸𝐻𝐻 − ℎ𝐸𝐸𝐻𝐻 − (𝛾𝛾 + ℎ)𝐼𝐼𝐻𝐻 + 𝛬𝛬 �1 − 𝑆𝑆𝑉𝑉

∗

𝐿𝐿
� 𝑆𝑆𝑉𝑉∗ �1 − 𝑆𝑆𝑉𝑉

∗

𝑆𝑆𝑉𝑉
� + 𝜇𝜇𝑆𝑆𝑉𝑉∗ �1 − 𝑆𝑆𝑉𝑉

𝑆𝑆𝑉𝑉
∗ �   

        +𝑝𝑝4𝑆𝑆𝑉𝑉∗(𝐸𝐸𝐻𝐻 + 𝐼𝐼𝐻𝐻) − (𝑝𝑝1𝑆𝑆𝐻𝐻∗ + 𝑝𝑝2𝑆𝑆𝑇𝑇∗ − 𝜇𝜇)𝐼𝐼𝑉𝑉,  (3.24) 
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Since 𝐸𝐸𝐻𝐻 + 𝐼𝐼𝐻𝐻 = 𝑁𝑁𝐻𝐻 − 𝑆𝑆𝐻𝐻, 𝑁𝑁𝐻𝐻 = 𝑆𝑆𝐻𝐻∗ = (𝑟𝑟𝐻𝐻−ℎ)𝑘𝑘1
𝑟𝑟𝐻𝐻

, 𝑆𝑆𝑇𝑇∗ = (𝑟𝑟𝑇𝑇−ℎ)𝑘𝑘2
𝑟𝑟𝑇𝑇

, 𝑁𝑁𝑉𝑉 = 𝑆𝑆𝑉𝑉∗ = (𝛬𝛬−𝜇𝜇)𝐿𝐿
𝛬𝛬

 and 

the conditions (3.22) where 𝑁𝑁𝐻𝐻 = 𝑆𝑆𝐻𝐻 + 𝐸𝐸𝐻𝐻 + 𝐼𝐼𝐻𝐻  is the non-tolerant cassava 

population, Equation (3.24) can be rewritten as 

𝑑𝑑𝑉𝑉
𝑑𝑑𝑑𝑑

= ℎ𝑝𝑝3𝐸𝐸𝐻𝐻 − ℎ𝐸𝐸𝐻𝐻 − (𝛾𝛾 + ℎ)𝐼𝐼𝐻𝐻 + 𝜇𝜇𝑆𝑆𝑉𝑉∗ �2 − 𝑆𝑆𝑉𝑉
∗

𝑆𝑆𝑉𝑉
− 𝑆𝑆𝑉𝑉

𝑆𝑆𝑉𝑉
∗ � + 𝐺𝐺3(𝑆𝑆𝐻𝐻∗ − 𝑆𝑆𝐻𝐻), (3.25) 

 

where 𝐺𝐺3 = 𝑝𝑝4𝑆𝑆𝑉𝑉∗ .  Therefore, Equation (3.25) becomes 

𝑑𝑑𝑉𝑉
𝑑𝑑𝑑𝑑

= −𝜇𝜇 (𝑆𝑆𝑉𝑉−𝑆𝑆𝑉𝑉
∗ )2

𝑆𝑆𝑉𝑉
+ ℎ𝐸𝐸𝐻𝐻(𝑝𝑝3 − 1) − (𝛾𝛾 + ℎ)𝐼𝐼𝐻𝐻 + 𝐺𝐺3(𝑆𝑆𝐻𝐻∗ − 𝑆𝑆𝐻𝐻) ≤ 0. (3.26) 

 

All terms in Equation (3.26) are always non-positive since lim𝑑𝑑→∞ 𝑆𝑆𝐻𝐻 (𝑡𝑡) ≥ 𝑆𝑆𝐻𝐻∗  

(Equation 3.11) and 0 ≤ 𝑝𝑝3 ≤ 1 (Table 2.4).  Note that 𝑑𝑑𝑉𝑉
𝑑𝑑𝑑𝑑

= 0 if and only if 𝑆𝑆𝑇𝑇 = 𝑆𝑆𝑇𝑇∗ , 

𝑆𝑆𝐻𝐻 = 𝑆𝑆𝐻𝐻∗ , 𝐸𝐸𝐻𝐻 = 𝐸𝐸𝐻𝐻∗ , 𝐼𝐼𝐻𝐻 = 𝐼𝐼𝐻𝐻∗ , and 𝑆𝑆𝑉𝑉 = 𝑆𝑆𝑉𝑉∗ . 

Therefore, the largest invariant compact invariant set in 

�(𝑆𝑆𝑇𝑇 , 𝑆𝑆𝐻𝐻,𝐸𝐸𝐻𝐻, 𝐼𝐼𝐻𝐻 , 𝑆𝑆𝑉𝑉, 𝐼𝐼𝑉𝑉) ∈ 𝛺𝛺: 𝑑𝑑𝑉𝑉
𝑑𝑑𝑑𝑑

= 0� is the singleton, i.e., 𝐸𝐸0 = (𝑆𝑆𝑇𝑇∗ , 𝑆𝑆𝐻𝐻∗ ,𝐸𝐸𝐻𝐻∗ , 𝐼𝐼𝐻𝐻∗ , 𝑆𝑆𝑉𝑉∗ , 𝐼𝐼𝑉𝑉∗).  

Thus, 𝑑𝑑𝑉𝑉
𝑑𝑑𝑑𝑑
≤ 0.  By LaSalle’s theorem, any solution approaches to 𝐸𝐸0 as 𝑡𝑡 → ∞.  This 

implies that 𝐸𝐸0 is globally-asymptotically-stable in 𝛺𝛺. □ 

 

3.3.6 Global stability analysis of endemic equilibrium point 

Theorem 3.5: If 𝑅𝑅0 > 1  then 𝐸𝐸1 is globally-asymptotically-stable. 

 

Proof: Theorem 3.5 can be proved by the Lyapunov functions of Cai and Li (2010) 

and Chen and Junyuan (2016).  Let 𝑊𝑊 be the Lyapunov function, where 

𝑊𝑊: {(𝑆𝑆𝑇𝑇 ,𝑆𝑆𝐻𝐻,𝐸𝐸𝐻𝐻, 𝐼𝐼𝐻𝐻, 𝑆𝑆𝑉𝑉, 𝐼𝐼𝑉𝑉) ∈ 𝛺𝛺: 𝑆𝑆𝑇𝑇 , 𝑆𝑆𝐻𝐻,𝐸𝐸𝐻𝐻, 𝐼𝐼𝐻𝐻 , 𝑆𝑆𝑉𝑉, 𝐼𝐼𝑉𝑉 > 0} → ℝ6+. 
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and  

𝑓𝑓: (0,∞) ∍ 𝜔𝜔 → 𝜔𝜔 − 1 − 𝑙𝑙𝑙𝑙𝜔𝜔. 

 

As can be observed, 𝑓𝑓(𝜔𝜔) ≥ 0 and 𝑓𝑓(𝜔𝜔) = 0 if and only if 𝜔𝜔 = 1. 

 

The Lyapunov function 𝑊𝑊 for Equations (3.1) to (3.6) is defined as 

𝑊𝑊(𝑆𝑆𝑇𝑇 ,𝑆𝑆𝐻𝐻,𝐸𝐸𝐻𝐻 , 𝐼𝐼𝐻𝐻, 𝑆𝑆𝑉𝑉, 𝐼𝐼𝑉𝑉) = 𝑐𝑐1𝑊𝑊1(𝑆𝑆𝑇𝑇) + 𝑐𝑐2𝑊𝑊2(𝑆𝑆𝐻𝐻) + 𝑐𝑐3𝑊𝑊3(𝐸𝐸𝐻𝐻)  

                                           +𝑐𝑐4𝑊𝑊4(𝐼𝐼𝐻𝐻) + 𝑐𝑐5𝑊𝑊5(𝑆𝑆𝑉𝑉) + 𝑐𝑐6𝑊𝑊6(𝐼𝐼𝑉𝑉), (3.27) 

 

where 

𝑊𝑊1(𝑆𝑆𝑇𝑇) = 𝑓𝑓 �𝑆𝑆𝑇𝑇
𝑆𝑆𝑇𝑇
�, 𝑊𝑊2(𝑆𝑆𝐻𝐻) = 𝑓𝑓 �𝑆𝑆𝐻𝐻

𝑆𝑆𝐻𝐻
�, 𝑊𝑊3(𝐸𝐸𝐻𝐻) = 𝑓𝑓 �𝐸𝐸𝐻𝐻

𝐸𝐸𝐻𝐻
�,  

𝑊𝑊4(𝐼𝐼𝐻𝐻) = 𝑓𝑓 �𝐼𝐼𝐻𝐻
𝐼𝐼𝐻𝐻
�, 𝑊𝑊5(𝑆𝑆𝑉𝑉) = 𝑓𝑓 �𝑆𝑆𝑉𝑉

𝑆𝑆𝑉𝑉
�, 𝑊𝑊6(𝐼𝐼𝑉𝑉) = 𝑓𝑓 �𝐼𝐼𝑉𝑉

𝐼𝐼𝑉𝑉
�, 

𝑐𝑐1 = 1
𝑝𝑝2𝐼𝐼𝑉𝑉

, 𝑐𝑐2 = 1
𝑝𝑝1𝐼𝐼𝑉𝑉

, 𝑐𝑐3 = 𝐸𝐸𝐻𝐻
�𝑝𝑝1𝑆𝑆𝐻𝐻+𝑝𝑝2𝑆𝑆𝑇𝑇�𝐼𝐼𝑉𝑉

,  

𝑐𝑐4 = 𝐼𝐼𝐻𝐻
𝛽𝛽𝐸𝐸𝐻𝐻

, 𝑐𝑐5 = 1
𝑝𝑝4�𝐸𝐸𝐻𝐻+𝐼𝐼𝐻𝐻�

, 𝑐𝑐6 = 𝐼𝐼𝑉𝑉
𝑝𝑝4𝑆𝑆𝑉𝑉�𝐸𝐸𝐻𝐻+𝐼𝐼𝐻𝐻�

. 

 

When 𝑊𝑊 is 𝐶𝐶1, a proper positive definite function, and 𝐸𝐸1 is the global minimum of 

𝑊𝑊on 𝛺𝛺, we obtain 

𝑊𝑊(𝑆𝑆𝑇𝑇∗ ,𝑆𝑆𝐻𝐻∗ ,𝐸𝐸𝐻𝐻∗ , 𝐼𝐼𝐻𝐻∗ , 𝑆𝑆𝑉𝑉∗ , 𝐼𝐼𝑉𝑉∗) = 0. 

 

For simplicity of notations, we denote 

𝑥𝑥 = 𝑆𝑆𝑇𝑇
𝑆𝑆𝑇𝑇

, 𝑦𝑦 = 𝑆𝑆𝐻𝐻
𝑆𝑆𝐻𝐻

, 𝑧𝑧 = 𝐸𝐸𝐻𝐻
𝐸𝐸𝐻𝐻

, 𝑞𝑞 = 𝐼𝐼𝐻𝐻
𝐼𝐼𝐻𝐻

, 𝑟𝑟 = 𝑆𝑆𝑉𝑉
𝑆𝑆𝑉𝑉

, 𝑢𝑢 = 𝐼𝐼𝑉𝑉
𝐼𝐼𝑉𝑉

, 𝑤𝑤 = 𝑝𝑝1𝑆𝑆𝐻𝐻+𝑝𝑝2𝑆𝑆𝑇𝑇
𝑝𝑝1𝑆𝑆𝐻𝐻+𝑝𝑝2𝑆𝑆𝑇𝑇

, 𝑣𝑣 = 𝐸𝐸𝐻𝐻+𝐼𝐼𝐻𝐻
𝐸𝐸𝐻𝐻+𝐼𝐼𝐻𝐻

. 

 

For clarity, we first calculate the derivatives of 𝑊𝑊1, 𝑊𝑊2, 𝑊𝑊3, 𝑊𝑊4, 𝑊𝑊5, and 𝑊𝑊6 one by 

one (Equations (3.28) to (3.33)). 
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We first consider the derivative of 𝑊𝑊1 

𝑑𝑑𝑊𝑊1
𝑑𝑑𝑑𝑑

= 1
𝑆𝑆𝑇𝑇
�1 − 𝑆𝑆𝑇𝑇

𝑆𝑆𝑇𝑇
� �𝑟𝑟𝑇𝑇 �1 − 𝑑𝑑𝑇𝑇

𝑘𝑘2
� 𝑆𝑆𝑇𝑇 − 𝑝𝑝2𝑆𝑆𝑇𝑇𝐼𝐼𝑉𝑉 − ℎ𝑆𝑆𝑇𝑇�. 

 

Since 𝑟𝑟𝑇𝑇 �1 − 𝑑𝑑𝑇𝑇
𝑘𝑘2
� = 𝑝𝑝2𝐼𝐼𝑉𝑉 + ℎ and 𝑐𝑐1 = 1

𝑝𝑝2𝐼𝐼𝑉𝑉
, we have 

 𝑑𝑑𝑊𝑊1
𝑑𝑑𝑑𝑑

= 1
𝑆𝑆𝑇𝑇
�1 − 𝑆𝑆𝑇𝑇

𝑆𝑆𝑇𝑇
� �𝑝𝑝2𝑆𝑆𝑇𝑇𝐼𝐼𝑉𝑉 + ℎ𝑆𝑆𝑇𝑇 − 𝑝𝑝2𝑆𝑆𝑇𝑇𝐼𝐼𝑉𝑉 − ℎ𝑆𝑆𝑇𝑇� 

                   = 1
𝑐𝑐1
�𝑆𝑆𝑇𝑇
𝑆𝑆𝑇𝑇
− 1� �1 − 𝐼𝐼𝑉𝑉

𝐼𝐼𝑉𝑉
� 

= 1
𝑐𝑐1

(𝑥𝑥 − 1 − 𝑥𝑥𝑢𝑢 + 𝑢𝑢). (3.28) 

 

Next, we consider the derivative of 𝑊𝑊2 

𝑑𝑑𝑊𝑊2
𝑑𝑑𝑑𝑑

= 1
𝑆𝑆𝐻𝐻
�1 − 𝑆𝑆𝐻𝐻

𝑆𝑆𝐻𝐻
� �𝑟𝑟𝐻𝐻 �1 − 𝑁𝑁𝐻𝐻

𝑘𝑘1
� 𝑆𝑆𝐻𝐻 − 𝑝𝑝1𝑆𝑆𝐻𝐻𝐼𝐼𝑉𝑉 − ℎ𝑆𝑆𝐻𝐻�. 

 

Since 𝑟𝑟𝐻𝐻 �1 − 𝑑𝑑𝐻𝐻
𝑘𝑘1
� = 𝑝𝑝1𝐼𝐼𝑉𝑉� + ℎ and 𝑐𝑐2 = 1

𝑝𝑝1𝐼𝐼𝑉𝑉
, we have 

 𝑑𝑑𝑊𝑊2
𝑑𝑑𝑑𝑑

= 1
𝑆𝑆𝐻𝐻
�1 − 𝑆𝑆𝐻𝐻

𝑆𝑆𝐻𝐻
� �𝑝𝑝1𝑆𝑆𝐻𝐻𝐼𝐼𝑉𝑉 + ℎ𝑆𝑆𝐻𝐻 − 𝑝𝑝1𝑆𝑆𝐻𝐻𝐼𝐼𝑉𝑉 − ℎ𝑆𝑆𝐻𝐻� 

       = 1
𝑐𝑐2
�𝑆𝑆𝐻𝐻
𝑆𝑆𝐻𝐻
− 1� �1 − 𝐼𝐼𝑉𝑉

𝐼𝐼𝑉𝑉
� 

= 1
𝑐𝑐2

(𝑦𝑦 − 1 − 𝑦𝑦𝑢𝑢 + 𝑢𝑢). (3.29) 

 

We next consider the derivative of 𝑊𝑊3 

𝑑𝑑𝑊𝑊3
𝑑𝑑𝑑𝑑

= 1
𝐸𝐸𝐻𝐻
�1 − 𝐸𝐸𝐻𝐻

𝐸𝐸𝐻𝐻
� �𝑟𝑟𝐻𝐻 �1 − 𝑑𝑑𝐻𝐻

𝑘𝑘1
� 𝑝𝑝3𝐸𝐸𝐻𝐻 + 𝑝𝑝1𝑆𝑆𝐻𝐻𝐼𝐼𝑉𝑉 + 𝑝𝑝2𝑆𝑆𝑇𝑇𝐼𝐼𝑉𝑉 − (𝛽𝛽 + ℎ)𝐸𝐸𝐻𝐻�. 

 

Since (𝛽𝛽 + ℎ)𝐸𝐸𝐻𝐻 = 𝑟𝑟𝐻𝐻 �1 − 𝑑𝑑𝐻𝐻
𝑘𝑘1
� 𝑝𝑝3𝐸𝐸𝐻𝐻 + 𝑝𝑝1𝑆𝑆𝐻𝐻𝐼𝐼𝑉𝑉 + 𝑝𝑝2𝑆𝑆𝑇𝑇𝐼𝐼𝑉𝑉 and 𝑐𝑐3 = 𝐸𝐸𝐻𝐻

�𝑝𝑝1𝑆𝑆𝐻𝐻+𝑝𝑝2𝑆𝑆𝑇𝑇�𝐼𝐼𝑉𝑉
, we have 
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 𝑑𝑑𝑊𝑊3
𝑑𝑑𝑑𝑑

= 1
𝐸𝐸𝐻𝐻
�1 − 𝐸𝐸𝐻𝐻

𝐸𝐸𝐻𝐻
� �𝑟𝑟𝐻𝐻 �1 − 𝑁𝑁𝐻𝐻

𝑘𝑘1
� 𝑝𝑝3𝐸𝐸𝐻𝐻 + 𝑝𝑝1𝑆𝑆𝐻𝐻𝐼𝐼𝑉𝑉 + 𝑝𝑝2𝑆𝑆𝑇𝑇𝐼𝐼𝑉𝑉 

                       −𝐸𝐸𝐻𝐻
𝐸𝐸𝐻𝐻
�𝑟𝑟𝐻𝐻 �1 − 𝑁𝑁𝐻𝐻

𝑘𝑘1
� 𝑝𝑝3𝐸𝐸𝐻𝐻 + 𝑝𝑝1𝑆𝑆𝐻𝐻𝐼𝐼𝑉𝑉 + 𝑝𝑝2𝑆𝑆𝑇𝑇𝐼𝐼𝑉𝑉�� 

          = 1
𝑐𝑐3
�1 − 𝐸𝐸𝐻𝐻

𝐸𝐸𝐻𝐻
� �(𝑝𝑝2𝑆𝑆𝑇𝑇+𝑝𝑝1𝑆𝑆𝐻𝐻)

�𝑝𝑝2𝑆𝑆𝑇𝑇+𝑝𝑝1𝑆𝑆𝐻𝐻�
𝐼𝐼𝑉𝑉
𝐼𝐼𝑉𝑉
− 𝐸𝐸𝐻𝐻

𝐸𝐸𝐻𝐻
� 

 = 1
𝑐𝑐3
�𝑤𝑤𝑢𝑢 − 𝑤𝑤𝑤𝑤

𝑧𝑧
− 𝑧𝑧 + 1�. (3.30) 

 

We now consider 𝑑𝑑𝑊𝑊4
𝑑𝑑𝑑𝑑

, since (𝛾𝛾 + ℎ)𝐼𝐼𝐻𝐻 = 𝛽𝛽𝐸𝐸𝐻𝐻 and 𝑐𝑐4 = 𝐼𝐼𝐻𝐻
𝛽𝛽𝐸𝐸𝐻𝐻

, we get 

𝑑𝑑𝑊𝑊4
𝑑𝑑𝑑𝑑

= 1
𝐼𝐼𝐻𝐻
�1 − 𝐼𝐼𝐻𝐻

𝐼𝐼𝐻𝐻
� (𝛽𝛽𝐸𝐸𝐻𝐻 − (𝛾𝛾 + ℎ)𝐼𝐼𝐻𝐻). 

        = 1
𝐼𝐼𝐻𝐻
�1 − 𝐼𝐼𝐻𝐻

𝐼𝐼𝐻𝐻
� �𝛽𝛽𝐸𝐸𝐻𝐻 −

𝐼𝐼𝐻𝐻
𝐼𝐼𝐻𝐻
𝛽𝛽𝐸𝐸𝐻𝐻� 

                   = 1
𝑐𝑐4
�1 − 𝐼𝐼𝐻𝐻

𝐼𝐼𝐻𝐻
� �𝐸𝐸𝐻𝐻

𝐸𝐸𝐻𝐻
− 𝐼𝐼𝐻𝐻

𝐼𝐼𝐻𝐻
� 

= 1
𝑐𝑐4
�𝑧𝑧 − 𝑧𝑧

𝑞𝑞
− 𝑞𝑞 + 1�. (3.31) 

 

We then consider 𝑑𝑑𝑊𝑊5
𝑑𝑑𝑑𝑑

, since 𝜇𝜇𝑆𝑆𝑉𝑉 = 𝛬𝛬 �1 − 𝑑𝑑𝑉𝑉
𝐿𝐿
�𝑁𝑁𝑉𝑉 − 𝑝𝑝4𝑆𝑆𝑉𝑉�𝐸𝐸𝐻𝐻 + 𝐼𝐼𝐻𝐻�  and            

𝑐𝑐5 = 1
𝑝𝑝4�𝐸𝐸𝐻𝐻+𝐼𝐼𝐻𝐻�

, we obtain 

𝑑𝑑𝑊𝑊5
𝑑𝑑𝑑𝑑

= 1
𝑆𝑆𝑉𝑉
�1 − 𝑆𝑆𝑉𝑉

𝑆𝑆𝑉𝑉
� �𝛬𝛬 �1 − 𝑁𝑁𝑉𝑉

𝐿𝐿
�𝑁𝑁𝑉𝑉 − 𝑝𝑝4𝑆𝑆𝑉𝑉(𝐸𝐸𝐻𝐻 + 𝐼𝐼𝐻𝐻) − 𝜇𝜇𝑆𝑆𝑉𝑉�. 

        = 1
𝑆𝑆𝑉𝑉
�1 − 𝑆𝑆𝑉𝑉

𝑆𝑆𝑉𝑉
� �𝛬𝛬 �1 − 𝑁𝑁𝑉𝑉

𝐿𝐿
�𝑁𝑁𝑉𝑉 − 𝑝𝑝4𝑆𝑆𝑉𝑉(𝐸𝐸𝐻𝐻 + 𝐼𝐼𝐻𝐻) 

                      −𝑆𝑆𝑉𝑉
𝑆𝑆𝑉𝑉
�𝛬𝛬 �1 − 𝑁𝑁𝑉𝑉

𝐿𝐿
�𝑁𝑁𝑉𝑉 − 𝑝𝑝4𝑆𝑆𝑉𝑉�𝐸𝐸𝐻𝐻 + 𝐼𝐼𝐻𝐻��� 

                   = 1
𝑆𝑆𝑉𝑉
�1 − 𝑆𝑆𝑉𝑉

𝑆𝑆𝑉𝑉
�𝛬𝛬 �1 − 𝑁𝑁𝑉𝑉

𝐿𝐿
�𝑁𝑁𝑉𝑉 �1 − 𝑆𝑆𝑉𝑉

𝑆𝑆𝑉𝑉
�+ 1

𝑐𝑐5
�𝑆𝑆𝑉𝑉
𝑆𝑆𝑉𝑉
− 1� �1 − 𝐸𝐸𝐻𝐻+𝐼𝐼𝐻𝐻

𝐸𝐸𝐻𝐻+𝐼𝐼𝐻𝐻
� 

 = −𝛬𝛬 �1 − 𝑁𝑁𝑉𝑉
𝐿𝐿
�𝑁𝑁𝑉𝑉

�𝑆𝑆𝑉𝑉+𝑆𝑆𝑉𝑉�
2

𝑆𝑆𝑉𝑉𝑆𝑆𝑉𝑉
2 + 1

𝑐𝑐5
(𝑟𝑟 − 1 − 𝑟𝑟𝑣𝑣 + 𝑣𝑣). (3.32) 
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Next, we consider the derivative of 𝑊𝑊6 

𝑑𝑑𝑊𝑊6
𝑑𝑑𝑑𝑑

= 1
𝐼𝐼𝑉𝑉
�1 − 𝐼𝐼𝑉𝑉

𝐼𝐼𝑉𝑉
� (𝑝𝑝4𝑆𝑆𝑉𝑉(𝐸𝐸𝐻𝐻 + 𝐼𝐼𝐻𝐻) − 𝜇𝜇𝐼𝐼𝑉𝑉). 

 

Since 𝜇𝜇𝐼𝐼𝑉𝑉 = 𝑝𝑝4𝑆𝑆𝑉𝑉�𝐸𝐸𝐻𝐻 + 𝐼𝐼𝐻𝐻� and 𝑐𝑐6 = 𝐼𝐼𝑉𝑉
𝑝𝑝4𝑆𝑆𝑉𝑉�𝐸𝐸𝐻𝐻+𝐼𝐼𝐻𝐻�

, we have 

 𝑑𝑑𝑊𝑊6
𝑑𝑑𝑑𝑑

= 1
𝐼𝐼𝑉𝑉
�1 − 𝐼𝐼𝑉𝑉

𝐼𝐼𝑉𝑉
� �𝑝𝑝4𝑆𝑆𝑉𝑉(𝐸𝐸𝐻𝐻 + 𝐼𝐼𝐻𝐻) − 𝐼𝐼𝑉𝑉

𝐼𝐼𝑉𝑉
𝑝𝑝4𝑆𝑆𝑉𝑉�𝐸𝐸𝐻𝐻 + 𝐼𝐼𝐻𝐻�� 

                   = 1
𝑐𝑐6
�1 − 𝐼𝐼𝑉𝑉

𝐼𝐼𝑉𝑉
� �𝑆𝑆𝑉𝑉(𝐸𝐸𝐻𝐻+𝐼𝐼𝐻𝐻)

𝑆𝑆𝑉𝑉�𝐸𝐸𝐻𝐻+𝐼𝐼𝐻𝐻�
− 𝐼𝐼𝑉𝑉

𝐼𝐼𝑉𝑉
� 

= 1
𝑐𝑐6
�𝑟𝑟𝑣𝑣 − 𝑟𝑟𝑟𝑟

𝑤𝑤
− 𝑢𝑢 + 1�. (3.33) 

 

Lyapunov-Lasalle’s Theorem indicates that the  𝐸𝐸1 is globally-asymptotically-

stable in 𝛺𝛺  when 𝑑𝑑𝑊𝑊
𝑑𝑑𝑑𝑑

≤ 0.  The time derivative of 𝑊𝑊  computed along solutions of 

Equations (3.1) to (3.6) is 

𝑑𝑑𝑊𝑊
𝑑𝑑𝑑𝑑

= 𝑐𝑐1
𝑑𝑑𝑊𝑊1
𝑑𝑑𝑑𝑑

+ 𝑐𝑐2
𝑑𝑑𝑊𝑊2
𝑑𝑑𝑑𝑑

+ 𝑐𝑐3
𝑑𝑑𝑊𝑊3
𝑑𝑑𝑑𝑑

+ 𝑐𝑐4
𝑑𝑑𝑊𝑊4
𝑑𝑑𝑑𝑑

+ 𝑐𝑐5
𝑑𝑑𝑊𝑊5
𝑑𝑑𝑑𝑑

+ 𝑐𝑐6
𝑑𝑑𝑊𝑊6
𝑑𝑑𝑑𝑑

 (3.34) 

 

Finally, Equation (3.34) is substituted by Equations (3.28) to (3.33).  Therefore, 

the derivative of 𝑊𝑊 becomes 

𝑑𝑑𝑊𝑊
𝑑𝑑𝑡𝑡

= −
�𝑆𝑆𝑉𝑉 + 𝑆𝑆𝑉𝑉�

2

𝑆𝑆𝑉𝑉𝑆𝑆𝑉𝑉
2 𝛬𝛬 �1 −

𝑁𝑁𝑉𝑉

𝐿𝐿
�

𝑁𝑁𝑉𝑉

𝑝𝑝4�𝐸𝐸𝐻𝐻 + 𝐼𝐼𝐻𝐻�
 

                       + �𝑟𝑟 + 𝑢𝑢 + 𝑣𝑣 + 𝑤𝑤𝑢𝑢 + 𝑥𝑥 + 𝑦𝑦 − 𝑞𝑞 − 𝑥𝑥𝑢𝑢 − 𝑦𝑦𝑢𝑢 − 𝑧𝑧
𝑞𝑞
− 𝑟𝑟𝑟𝑟

𝑤𝑤
− 𝑤𝑤𝑤𝑤

𝑧𝑧
� 

 ≤ 0. (3.35) 
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The equality of Equation (3.35) satisfies if and only if 𝑆𝑆𝑇𝑇 = 𝑆𝑆𝑇𝑇, 𝑆𝑆𝐻𝐻 = 𝑆𝑆𝐻𝐻, 𝐸𝐸𝐻𝐻 = 𝐸𝐸𝐻𝐻, 

𝐼𝐼𝐻𝐻 = 𝐼𝐼𝐻𝐻, 𝑆𝑆𝑉𝑉 = 𝑆𝑆𝑉𝑉, and 𝐼𝐼𝑉𝑉 = 𝐼𝐼𝑉𝑉.  By Lyapunov-Lasalle’s Theorem, any solution tends 

to 𝐸𝐸1 as 𝑡𝑡 → ∞.  This implies that 𝐸𝐸1 is globally-asymptotically-stable in 𝛺𝛺. □ 

 

3.4 Summary  

So far, the DFE point is globally-asymptotically-stable and that the disease can 

be controlled as long as the threshold 𝑅𝑅0 ≤ 1  and the EE point is globally-

asymptotically-stable when 𝑅𝑅0 > 1  and the disease will persist.  From an 

epidemiological view, the goal of policy is to control CMD outbreaks by maintaining 

𝑅𝑅0 ≤ 1  and maximizing the uninfected population.  However, an agricultural 

viewpoint would instead focus on maximizing the economic returns.  Therefore, it 

needs to identify the strategy that is the most cost-effectiveness. 

In Chapter IV, optimal control policy is established.  Sensitivity analysis is used 

to identify the parameters that is the most significant to maintain the stability of the 

CMD system. 



CHAPTER IV 

OPTIMAL CONTROL POLICY 

 

4.1 CMD Outbreak Model - With Control Methods 

This chapter aims to determine the optimal policy that maximizes economic 

benefit by including control variables to CMD outbreak model.  Currently, there are 

four strategies to control the spread of disease (Thresh and Otim-Nape, 1994; Rabbi et 

al., 2014) as listed in Table 4.1. 

 

Table 4.1 Control strategies and related variables 

Control strategy Variable or term 

Spraying pesticide to damage whiteflies 𝑢𝑢1 

Rouging infected cassava plants 𝑢𝑢2 

Selecting non-infected cuttings to plant 𝑢𝑢3 

Promoting tolerant cuttings 𝑟𝑟𝑇𝑇 �1 −
𝑆𝑆𝑇𝑇
𝑘𝑘2
� 𝑆𝑆𝑇𝑇 

 

 4.1.1 CMD control model 

Figure 4.1 shows a state diagram of CMD control model
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Figure 4.1 State diagram of CMD outbreak model – with four control 

methods 

 

State diagram with control methods become Equations (4.1) to (4.6): 

𝑑𝑑𝑆𝑆𝑇𝑇
𝑑𝑑𝑑𝑑

= 𝑟𝑟𝑇𝑇 �1 − 𝑆𝑆𝑇𝑇
𝑘𝑘2
� 𝑆𝑆𝑇𝑇 − 𝑝𝑝2𝑆𝑆𝑇𝑇𝐼𝐼𝑉𝑉 − ℎ𝑆𝑆𝑇𝑇, (4.1) 

𝑑𝑑𝑆𝑆𝐻𝐻
𝑑𝑑𝑑𝑑

= 𝑟𝑟𝐻𝐻 �1 − 𝑆𝑆𝐻𝐻+𝐸𝐸𝐻𝐻+𝐼𝐼𝐻𝐻
𝑘𝑘1

� 𝑆𝑆𝐻𝐻 − 𝑝𝑝1𝑆𝑆𝐻𝐻𝐼𝐼𝑉𝑉 − ℎ𝑆𝑆𝐻𝐻, (4.2) 

𝑑𝑑𝐸𝐸𝐻𝐻
𝑑𝑑𝑑𝑑

= 𝑟𝑟𝐻𝐻 �1 −
𝑆𝑆𝐻𝐻 + 𝐸𝐸𝐻𝐻 + 𝐼𝐼𝐻𝐻

𝑘𝑘1
� 𝑝𝑝3(1− 𝑢𝑢3)𝐸𝐸𝐻𝐻 + 𝑝𝑝1𝑆𝑆𝐻𝐻𝐼𝐼𝑉𝑉 + 𝑝𝑝2𝑆𝑆𝑇𝑇𝐼𝐼𝑉𝑉 

−(𝛽𝛽 + ℎ)𝐸𝐸𝐻𝐻, (4.3) 

𝑑𝑑𝐼𝐼𝐻𝐻
𝑑𝑑𝑑𝑑

= 𝛽𝛽𝐸𝐸𝐻𝐻 − (𝛾𝛾𝑢𝑢2 + ℎ)𝐼𝐼𝐻𝐻, (4.4) 

𝑑𝑑𝑆𝑆𝑉𝑉
𝑑𝑑𝑑𝑑

= 𝛬𝛬 �1 − 𝑆𝑆𝑉𝑉+𝐼𝐼𝑉𝑉
𝐿𝐿

� (𝑆𝑆𝑉𝑉 + 𝐼𝐼𝑉𝑉) − 𝑝𝑝4𝑆𝑆𝑉𝑉(𝐸𝐸𝐻𝐻 + 𝐼𝐼𝐻𝐻) − (𝜀𝜀𝑢𝑢1 + 𝜇𝜇)𝑆𝑆𝑉𝑉, (4.5) 

𝑑𝑑𝐼𝐼𝑉𝑉
𝑑𝑑𝑑𝑑

= 𝑝𝑝4𝑆𝑆𝑉𝑉(𝐸𝐸𝐻𝐻 + 𝐼𝐼𝐻𝐻) − (𝜀𝜀𝑢𝑢1 + 𝜇𝜇)𝐼𝐼𝑉𝑉. (4.6) 
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In this model, CMD spread can be controlled by reducing the following 

four infection terms: 

(1) 𝑝𝑝1𝑆𝑆𝐻𝐻𝐼𝐼𝑉𝑉  represents infection number of non-tolerant cassavas by 

whitefly. 

(2) 𝑝𝑝2𝑆𝑆𝑇𝑇𝐼𝐼𝑉𝑉 represents infection number of tolerant cassavas by whitefly. 

(3)  𝑟𝑟𝐻𝐻 �1 − 𝑆𝑆𝐻𝐻+𝐸𝐸𝐻𝐻+𝐼𝐼𝐻𝐻
𝑘𝑘1

� 𝑝𝑝3𝐸𝐸𝐻𝐻  represents infection number by 

replanting of infected cuttings. 

(4)   𝑝𝑝4𝑆𝑆𝑉𝑉(𝐸𝐸𝐻𝐻 + 𝐼𝐼𝐻𝐻) represents infection number of the whitefly after 

acquiring CMD from infected cassavas. 

 

As can be observed, these infection terms can be controlled and 

increased yields by decreasing the number of 𝐸𝐸𝐻𝐻, 𝐼𝐼𝐻𝐻, 𝑆𝑆𝑉𝑉, and 𝐼𝐼𝑉𝑉.  Thus, control factors 

𝑢𝑢1, 𝑢𝑢2, 𝑢𝑢3 and 𝑟𝑟𝑇𝑇 �1 − 𝑆𝑆𝑇𝑇
𝑘𝑘2
� 𝑆𝑆𝑇𝑇 play important role in controlling disease spreads. 

Spraying of insecticide is represented in term of 𝜀𝜀𝑢𝑢1 , where 𝜀𝜀  is an 

efficiency rate of pesticide spray and 𝑢𝑢1 ∈ [0,1] is a control variable of spraying.  The 

goal of this method is to decrease the whitefly population (𝑆𝑆𝑉𝑉 and 𝐼𝐼𝑉𝑉) in terms 𝑝𝑝1𝑆𝑆𝐻𝐻𝐼𝐼𝑉𝑉, 

𝑝𝑝2𝑆𝑆𝑇𝑇𝐼𝐼𝑉𝑉, and 𝑝𝑝4𝑆𝑆𝑉𝑉(𝐸𝐸𝐻𝐻 + 𝐼𝐼𝐻𝐻), leading to the decrease of exposed cassava (𝐸𝐸𝐻𝐻). 

Uprooting of infected cuttings is represented in term of 𝛾𝛾𝑢𝑢2, where 𝛾𝛾 is 

an efficiency rate of rouging and 𝑢𝑢2 ∈ [0,1] is a control variable of rouging.  The 

infected cassava (𝐼𝐼𝐻𝐻) will be reduced by directly removing infected plants out of a 

plantation area, leading to the decrease of cassava-whitefly transmission as shown in 

the term of 𝑝𝑝4𝑆𝑆𝑉𝑉(𝐸𝐸𝐻𝐻 + 𝐼𝐼𝐻𝐻). 
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Selecting non-infected cuttings is represented in term of 𝑝𝑝3(1 − 𝑢𝑢3), 

where 𝑢𝑢3 ∈ [0,1] is a control variable of selecting non-infected cuttings.  This method 

reduces the number of 𝐸𝐸𝐻𝐻 in terms of 𝑟𝑟𝐻𝐻 �1 − 𝑆𝑆𝐻𝐻+𝐸𝐸𝐻𝐻+𝐼𝐼𝐻𝐻
𝑘𝑘1

� 𝑝𝑝3𝐸𝐸𝐻𝐻 and 𝑝𝑝4𝑆𝑆𝑉𝑉(𝐸𝐸𝐻𝐻 + 𝐼𝐼𝐻𝐻). 

Planting with tolerant cuttings is represented in term of 𝑟𝑟𝑇𝑇 �1 − 𝑆𝑆𝑇𝑇
𝑘𝑘2
� 𝑆𝑆𝑇𝑇.  

This method reduces cassava-whitefly transmission (term 𝑝𝑝4𝑆𝑆𝑉𝑉(𝐸𝐸𝐻𝐻 + 𝐼𝐼𝐻𝐻)) by using the 

same technique as the herd immunity effect (𝑝𝑝2 < 𝑝𝑝1). 

 

4.2 Sensitivity Analysis 

Sensitivity analysis plays an important role to study variation of the CMD 

spread severity caused by CMD outbreak parameters as descried in Table 3.2.  Result 

of sensitivity analysis leads to the source of CMD spread, where the parameter with the 

highest value of 𝑅𝑅0 is the cause of the outbreak.  Hence, prevention strategies could be 

designed to cope the spread of the outbreak.  The sensitivity analysis is the normalized 

forward sensitivity index of 𝑅𝑅0 as defined in Equation (4.7). 

Definition 4.1:  The normalized forward sensitivity index of 𝑅𝑅0, which is differentiable 

with respect to a given parameter, is defined by 

Sensitivity index (S.I.) = 𝜕𝜕𝑅𝑅0
𝜕𝜕(parameter)

× parameter
𝑅𝑅0

 (4.7) 

 

(Wang et al. 2019). 

 

Results of S.I. can be done by substituting parameter values appear in Table 3.2 

into Equation (4.7).  Table 4.2 lists the S.I. of 𝑅𝑅0. 
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Table 4.2 Sensitivity indices of 𝑅𝑅0 

Parameter Sensitivity index 

ℎ -0.1770 

𝛽𝛽 -0.2670 

𝛾𝛾 -0.0890 

𝑟𝑟𝐻𝐻 +0.0304 

𝑟𝑟𝑇𝑇 +0.0030 

𝑘𝑘1 +0.4767 

𝑘𝑘2 +0.0223 

𝛬𝛬 +0.0381 

𝜇𝜇 -0.5371 

𝐿𝐿 +0.4990 

𝑝𝑝1 +0.4767 

𝑝𝑝2 +0.0223 

𝑝𝑝3 +0.0020 

𝑝𝑝4 +0.4990 

 

 Table 4.2 shows sensitivity indices of 𝑅𝑅0, where the natural whitefly death rate, 

𝜇𝜇, has the highest sensitive value (S.I. = -0.5371).  One simple approach that contributes 

to an increase of whitefly death rate is spraying pesticide.  This strategy is effective in 

controlling the whitefly but it has high costs of pesticide and operation.  According to 

Kinene et al. (2016), massive spraying gives farmers more yields but it is not cost-

effective.  Bokil et al. (2019) suggested that combined strategy of rouging and spraying 

performs better than applying a single method.  Therefore, the aim of this study is to 

determine which combination of these four controlling methods, as described in Table 

4.1, is the most cost-effectiveness.  Eight policies are proposed in this study for optimal 

control are listed in Table 4.3. 
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Table 4.3 Policies and related control variable for optimal control 

Policies Description 
Control variables 

𝑆𝑆𝑇𝑇(𝑑𝑑) 𝑢𝑢1 𝑢𝑢2 𝑢𝑢3 

A-1 Tolerant cuttings and spraying insecticide     

A-2 Tolerant, spraying and rouging infected plants     

A-3 Tolerant, spraying and selecting non-virus cuttings     

A-4 Tolerant, spraying, rouging, and selecting     

B-1 Spraying     

B-2 Spraying and rouging     

B-3 Spraying and selecting     

B-4 Spraying, rouging, and selecting     

 

4.3 Optimal Control Theory 

 The mathematical formulation for optimal control is constructed to minimize 

the operation costs of each control method. 

 4.3.1 Objective function 

  The objective function is given by 

𝐽𝐽(𝑢𝑢1,𝑢𝑢2,𝑢𝑢3) = ∫ (𝐴𝐴0𝐼𝐼𝐻𝐻 + 𝐴𝐴1𝑢𝑢12 + 𝐴𝐴2𝑢𝑢22 + 𝐴𝐴3𝑢𝑢32)𝑑𝑑𝑑𝑑𝑑𝑑𝑓𝑓
0 , (4.8) 

 

where 𝑑𝑑𝑓𝑓 is a final time, subjected to Equations (4.1) to (4.6).  𝐴𝐴0 represents the weight 

constant of the infected cassava 𝐼𝐼𝐻𝐻.  The quantities of 𝐴𝐴1, 𝐴𝐴2, and 𝐴𝐴3 represent the cost 

per unit of each control variable 𝑢𝑢1, 𝑢𝑢2, and 𝑢𝑢3, respectively.  The costs of control 

methods are described below. 

(1) 𝐴𝐴1𝑢𝑢12 represents control cost by spraying pesticide to the whitefly. 

(2) 𝐴𝐴2𝑢𝑢22 represents control cost by uprooting infected plants. 

(3) 𝐴𝐴3𝑢𝑢32 represents control cost by selecting non-virus cuttings. 
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4.3.2 The existence of optimal control 

  The Lagrangian for the optimal control of Equations (4.1) to (4.6) is 

𝐿𝐿(𝐼𝐼𝐻𝐻,𝑢𝑢1, 𝑢𝑢2,𝑢𝑢3) = (𝐴𝐴0𝐼𝐼𝐻𝐻 + 𝐴𝐴1𝑢𝑢12 + 𝐴𝐴2𝑢𝑢22 + 𝐴𝐴3𝑢𝑢32), (4.9) 

 

Theorem 4.1: There exists an optimal control 𝑢𝑢1∗, 𝑢𝑢2∗ , and 𝑢𝑢3∗  so that 

𝐽𝐽(𝑢𝑢1∗,𝑢𝑢2∗ ,𝑢𝑢3∗) = minimize{𝐽𝐽(𝑢𝑢1,𝑢𝑢2,𝑢𝑢3), (𝑢𝑢1,𝑢𝑢2,𝑢𝑢3) ∈ 𝒖𝒖}. (4.10) 

 

Proof: Theorem 4.1 can be proved by checking the following conditions: 

(1) The corresponding set of controls and the state variables are nonempty. 

(2)  The control set 𝒖𝒖 is convex and closed. 

(3) The right-hand side of state system is bounded by the linear function in 

state and control variables. 

(4) The integrand of the objective function is convex on 𝒖𝒖. 

(5) There exist nonnegative constants 𝜙𝜙1  and 𝜙𝜙2  and 𝜃𝜃 > 1  satisfying the 

following expression: 

 𝐿𝐿(𝑥𝑥, 𝑢𝑢1,𝑢𝑢2,𝑢𝑢3) ≥ 𝜙𝜙2 + 𝜙𝜙1(|𝑢𝑢1|2 + |𝑢𝑢2|2 + |𝑢𝑢3|2)
𝜃𝜃
2, 

  

 where 𝒙𝒙 is any state variables of the CMD model. 

 

 Checking the following conditions: 

 According to theorem of Lukes (1982), the existence of system in Equations 

(4.1) to (4.6) are defined by bounded coefficients, which are nonempty.  Thus, the 

control set is convex and closed. 

Note that the state system is linear in 𝑢𝑢1, 𝑢𝑢2, and 𝑢𝑢3.  Therefore, the right-hand 

side of the system is bounded by the linear function. 
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Since the solutions to the system of Equations (4.1) to (4.6) are bounded, the 

control function is convex in 𝒖𝒖. 

Let 𝜙𝜙2 = min (𝐼𝐼𝐻𝐻) and 𝜙𝜙1 = min(𝐴𝐴1,𝐴𝐴2,𝐴𝐴3) and 𝜃𝜃 = 2, then the Lagrangian 𝐿𝐿 

can be rewritten as 

 𝐿𝐿(𝑥𝑥, 𝑢𝑢1,𝑢𝑢2,𝑢𝑢3) = 𝐴𝐴0𝐼𝐼𝐻𝐻 + 𝐴𝐴1𝑢𝑢12 + 𝐴𝐴2𝑢𝑢22 + 𝐴𝐴3𝑢𝑢32 

                                 ≥ 𝐴𝐴0𝜙𝜙2 + 𝜙𝜙1(|𝑢𝑢1|2 + |𝑢𝑢2|2 + |𝑢𝑢3|2)
𝜃𝜃
2 

                                 = 𝜙𝜙2 + 𝜙𝜙1(|𝑢𝑢1|2 + |𝑢𝑢2|2 + |𝑢𝑢3|2)
𝜃𝜃
2. 

 

All conditions are satisfied and consequently there exists an optimal control for the 

system of Equations (4.1) to (4.6). □ 

 

 4.3.3 Characterization of the optimal control 

  The optimal control of CMD outbreaks can be derived through the use 

of Pontryagin maximum principle (Pontryagin et al., 1962). 

Theorem 4.2: There exist the adjoint variables 𝜆𝜆𝑖𝑖, 𝑖𝑖 = 1, 2, 3, 4, 5, 6, under the control 

of CMD outbreaks that satisfy the following: 

𝑑𝑑𝜆𝜆1
𝑑𝑑𝑑𝑑

= − 𝜕𝜕𝐻𝐻
𝜕𝜕𝑆𝑆𝑇𝑇

= −𝜆𝜆1 �𝑟𝑟𝑇𝑇 �1 − 2𝑆𝑆𝑇𝑇
𝑘𝑘2
� − (𝑝𝑝2𝐼𝐼𝑉𝑉 + ℎ)� − 𝜆𝜆3𝑝𝑝2𝐼𝐼𝑉𝑉 (4.11) 

𝑑𝑑𝜆𝜆2
𝑑𝑑𝑑𝑑

= −
𝜕𝜕𝜕𝜕
𝜕𝜕𝑆𝑆𝐻𝐻

= −𝜆𝜆2 �𝑟𝑟𝐻𝐻 �1−
2𝑆𝑆𝐻𝐻 + 𝐸𝐸𝐻𝐻 + 𝐼𝐼𝐻𝐻

𝑘𝑘1
� − (𝑝𝑝1𝐼𝐼𝑉𝑉 + ℎ)� 

                         +𝜆𝜆3 �
𝑟𝑟𝐻𝐻𝑝𝑝3(1−𝑢𝑢3)𝐸𝐸𝐻𝐻

𝑘𝑘1
− 𝑝𝑝2𝐼𝐼𝑉𝑉� (4.12) 

𝑑𝑑𝜆𝜆3
𝑑𝑑𝑑𝑑

= −
𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸𝐻𝐻

= 𝜆𝜆2
𝑟𝑟𝐻𝐻𝑆𝑆𝐻𝐻
𝑘𝑘1

− 𝜆𝜆3 �𝑟𝑟𝐻𝐻 �1−
𝑆𝑆𝐻𝐻 + 2𝐸𝐸𝐻𝐻 + 𝐼𝐼𝐻𝐻

𝑘𝑘1
� 𝑝𝑝3(1 − 𝑢𝑢3)− (𝛽𝛽 + ℎ)� 

                          −𝜆𝜆4𝛽𝛽 + (𝜆𝜆5 − 𝜆𝜆6)𝑝𝑝4𝑆𝑆𝑉𝑉 (4.13) 

𝑑𝑑𝜆𝜆4
𝑑𝑑𝑑𝑑

= − 𝜕𝜕𝐻𝐻
𝜕𝜕𝐼𝐼𝐻𝐻

= −𝐴𝐴0 + 𝜆𝜆2
𝑟𝑟𝐻𝐻𝑆𝑆𝐻𝐻
𝑘𝑘1

+ 𝜆𝜆3
𝑟𝑟𝐻𝐻𝑝𝑝3(1−𝑢𝑢3)𝐸𝐸𝐻𝐻

𝑘𝑘1
+ 𝜆𝜆4(𝛾𝛾𝑢𝑢2 + ℎ) + (𝜆𝜆5 − 𝜆𝜆6)𝑝𝑝4𝑆𝑆𝑉𝑉 (4.14) 



81 
 

𝑑𝑑𝜆𝜆5
𝑑𝑑𝑑𝑑

= − 𝜕𝜕𝐻𝐻
𝜕𝜕𝑆𝑆𝐻𝐻

= −𝜆𝜆5 �𝛬𝛬 �1 − 2(𝑆𝑆𝑉𝑉+𝐼𝐼𝑉𝑉)
𝐿𝐿

� − (𝑝𝑝4(𝐸𝐸𝐻𝐻 + 𝐼𝐼𝐻𝐻) + 𝜀𝜀𝑢𝑢1 + 𝜇𝜇)� − 𝜆𝜆6𝑝𝑝4(𝐸𝐸𝐻𝐻 + 𝐼𝐼𝐻𝐻) (4.15) 

𝑑𝑑𝜆𝜆6
𝑑𝑑𝑑𝑑

= − 𝜕𝜕𝐻𝐻
𝜕𝜕𝐼𝐼𝑉𝑉

= (𝜆𝜆2 − 𝜆𝜆3)𝑝𝑝1𝑆𝑆𝐻𝐻 + (𝜆𝜆1 − 𝜆𝜆3)𝑝𝑝2𝑆𝑆𝑇𝑇 − 𝜆𝜆5𝛬𝛬 �1 − 2(𝑆𝑆𝑉𝑉+𝐼𝐼𝑉𝑉)
𝐿𝐿

� + 𝜆𝜆6(𝜀𝜀𝑢𝑢1 + 𝜇𝜇) (4.16) 

 

with the transversality conditions 

𝜆𝜆𝑖𝑖�𝑑𝑑𝑓𝑓� = 0, 𝑖𝑖 = 1, 2, 3, 4, 5, 6. (4.17) 

 

Furthermore, the optimal control variables 𝑢𝑢1∗, 𝑢𝑢2∗ , and 𝑢𝑢3∗  are given by 

𝑢𝑢1∗ = maximize �0,minimize �1, 𝜀𝜀(𝜆𝜆5𝑆𝑆𝑉𝑉+𝜆𝜆6𝐼𝐼𝑉𝑉)
2𝐴𝐴1

�� (4.18) 

𝑢𝑢2∗ = maximize �0,minimize �1, 𝜆𝜆4𝛾𝛾𝐼𝐼𝐻𝐻
2𝐴𝐴2

�� (4.19) 

𝑢𝑢3∗ = maximize �0,minimize �1, 𝜆𝜆3
2𝐴𝐴3

𝑟𝑟𝐻𝐻 �1 − 𝑆𝑆𝐻𝐻+𝐸𝐸𝐻𝐻+𝐼𝐼𝐻𝐻
𝑘𝑘1

� 𝑝𝑝3𝐸𝐸𝐻𝐻�� (4.20) 

 

Proof: The Hamiltonian for the optimal control of CMD outbreaks is defined as 

follows: 

𝜕𝜕 = 𝐿𝐿(𝑥𝑥,𝑢𝑢1,𝑢𝑢2,𝑢𝑢3) 

                    +𝜆𝜆1 �𝑟𝑟𝑇𝑇 �1 − 𝑆𝑆𝑇𝑇
𝑘𝑘2
� 𝑆𝑆𝑇𝑇 − 𝑝𝑝2𝑆𝑆𝑇𝑇𝐼𝐼𝑉𝑉 − ℎ𝑆𝑆𝑇𝑇� 

                    +𝜆𝜆2 �𝑟𝑟𝐻𝐻 �1 − 𝑆𝑆𝐻𝐻+𝐸𝐸𝐻𝐻+𝐼𝐼𝐻𝐻
𝑘𝑘1

� 𝑆𝑆𝐻𝐻 − 𝑝𝑝1𝑆𝑆𝐻𝐻𝐼𝐼𝑉𝑉 − ℎ𝑆𝑆𝐻𝐻� 

                    +𝜆𝜆3 �𝑟𝑟𝐻𝐻 �1 − 𝑆𝑆𝐻𝐻+𝐸𝐸𝐻𝐻+𝐼𝐼𝐻𝐻
𝑘𝑘1

� 𝑝𝑝3(1 − 𝑢𝑢3)𝐸𝐸𝐻𝐻 + 𝑝𝑝1𝑆𝑆𝐻𝐻𝐼𝐼𝑉𝑉 + 𝑝𝑝2𝑆𝑆𝑇𝑇𝐼𝐼𝑉𝑉 − (𝛽𝛽 + ℎ)𝐸𝐸𝐻𝐻� 

                    +𝜆𝜆4(𝛽𝛽𝐸𝐸𝐻𝐻 − (𝛾𝛾𝑢𝑢2 + ℎ)𝐼𝐼𝐻𝐻) 

                    +𝜆𝜆5 �𝛬𝛬 �1 − 𝑆𝑆𝑉𝑉+𝐼𝐼𝑉𝑉
𝐿𝐿

� (𝑆𝑆𝑉𝑉 + 𝐼𝐼𝑉𝑉)− 𝑝𝑝4𝑆𝑆𝑉𝑉(𝐸𝐸𝐻𝐻 + 𝐼𝐼𝐻𝐻) − (𝜀𝜀𝑢𝑢1 + 𝜇𝜇)𝑆𝑆𝑉𝑉� 

                    +𝜆𝜆6(𝑝𝑝2𝑆𝑆𝑉𝑉(𝐸𝐸𝐻𝐻 + 𝐼𝐼𝐻𝐻) − (𝜀𝜀𝑢𝑢1 + 𝜇𝜇)𝐼𝐼𝑉𝑉) 

 

The adjoint system is obtained as follows: 
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𝑑𝑑𝜆𝜆1
𝑑𝑑𝑑𝑑

= −𝜆𝜆1 �𝑟𝑟𝑇𝑇 �1−
2𝑆𝑆𝑇𝑇
𝑘𝑘2

� − (𝑝𝑝2𝐼𝐼𝑉𝑉 + ℎ)� − 𝜆𝜆3𝑝𝑝2𝐼𝐼𝑉𝑉 

𝑑𝑑𝜆𝜆2
𝑑𝑑𝑑𝑑

= −𝜆𝜆2 �𝑟𝑟𝐻𝐻 �1−
2𝑆𝑆𝐻𝐻 + 𝐸𝐸𝐻𝐻 + 𝐼𝐼𝐻𝐻

𝑘𝑘1
� − (𝑝𝑝1𝐼𝐼𝑉𝑉 + ℎ)�+ 𝜆𝜆3 �

𝑟𝑟𝐻𝐻𝑝𝑝3(1− 𝑢𝑢3)𝐸𝐸𝐻𝐻
𝑘𝑘1

− 𝑝𝑝1𝐼𝐼𝑉𝑉� 

𝑑𝑑𝜆𝜆3
𝑑𝑑𝑑𝑑

= 𝜆𝜆2
𝑟𝑟𝐻𝐻𝑆𝑆𝐻𝐻
𝑘𝑘1

− 𝜆𝜆3 �𝑟𝑟𝐻𝐻 �1 −
𝑆𝑆𝐻𝐻 + 2𝐸𝐸𝐻𝐻 + 𝐼𝐼𝐻𝐻

𝑘𝑘1
�𝑝𝑝3(1 − 𝑢𝑢3)− (𝛽𝛽 + ℎ)� − 𝜆𝜆4𝛽𝛽 

+(𝜆𝜆5 − 𝜆𝜆6)𝑝𝑝4𝑆𝑆𝑉𝑉 

𝑑𝑑𝜆𝜆4
𝑑𝑑𝑑𝑑

= −𝐴𝐴0 + 𝜆𝜆2
𝑟𝑟𝐻𝐻𝑆𝑆𝐻𝐻
𝑘𝑘1

+ 𝜆𝜆3
𝑟𝑟𝐻𝐻𝑝𝑝3(1− 𝑢𝑢3)𝐸𝐸𝐻𝐻

𝑘𝑘1
+ 𝜆𝜆4(𝛾𝛾𝑢𝑢2 + ℎ) + (𝜆𝜆5 − 𝜆𝜆6)𝑝𝑝4𝑆𝑆𝑉𝑉 

𝑑𝑑𝜆𝜆5
𝑑𝑑𝑑𝑑

= −𝜆𝜆5 �𝛬𝛬 �1 −
2(𝑆𝑆𝑉𝑉 + 𝐼𝐼𝑉𝑉)

𝐿𝐿 � − (𝑝𝑝4(𝐸𝐸𝐻𝐻 + 𝐼𝐼𝐻𝐻) + 𝜀𝜀𝑢𝑢1 + 𝜇𝜇)� − 𝜆𝜆6𝑝𝑝4(𝐸𝐸𝐻𝐻 + 𝐼𝐼𝐻𝐻) 

𝑑𝑑𝜆𝜆6
𝑑𝑑𝑑𝑑

= (𝜆𝜆2 − 𝜆𝜆3)𝑝𝑝1𝑆𝑆𝐻𝐻 + (𝜆𝜆1 − 𝜆𝜆3)𝑝𝑝2𝑆𝑆𝑇𝑇 − 𝜆𝜆5𝛬𝛬 �1 − 2(𝑆𝑆𝑉𝑉+𝐼𝐼𝑉𝑉)
𝐿𝐿

� + 𝜆𝜆6(𝜀𝜀𝑢𝑢1 + 𝜇𝜇), 

 

with transversality conditions (4.17). 

 The optimal condition characterization given by (4.18) to (4.20) is determined 

by solving the following partial differential equations: 

𝜕𝜕𝐻𝐻
𝜕𝜕𝑢𝑢1

= 2𝐴𝐴1𝑢𝑢1 − 𝜀𝜀(𝜆𝜆5𝑆𝑆𝑉𝑉 + 𝜆𝜆6𝐼𝐼𝑉𝑉) = 0 for 𝑢𝑢1∗, 

𝜕𝜕𝐻𝐻
𝜕𝜕𝑢𝑢2

= 2𝐴𝐴2𝑢𝑢2 − 𝜆𝜆4𝛾𝛾𝐼𝐼𝐻𝐻 for 𝑢𝑢2∗ , 

𝜕𝜕𝐻𝐻
𝜕𝜕𝑢𝑢3

= 2𝐴𝐴3𝑢𝑢3 − 𝜆𝜆3𝑟𝑟𝐻𝐻 �1 − 𝑆𝑆𝐻𝐻+𝐸𝐸𝐻𝐻+𝐼𝐼𝐻𝐻
𝑘𝑘1

� 𝑝𝑝3𝐸𝐸𝐻𝐻 for 𝑢𝑢3∗ . 

 

By standard control arguments involving bounds on the control, then 

𝑢𝑢𝑚𝑚∗ = �
0
𝑢𝑢𝑚𝑚∗
1

if 
if 
if 

𝑢𝑢𝑚𝑚∗ ≤ 0,
𝑢𝑢𝑚𝑚∗ < 1,
𝑢𝑢𝑚𝑚∗ ≥ 1,

 

 

for 𝑚𝑚 = 1, 2, 3 and where 
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𝑢𝑢1∗ = 𝜀𝜀(𝜆𝜆5𝑆𝑆𝑉𝑉+𝜆𝜆6𝐼𝐼𝑉𝑉)
2𝐴𝐴1

, 

𝑢𝑢2∗ = 𝜆𝜆4𝛾𝛾𝐼𝐼𝐻𝐻
2𝐴𝐴2

, 

𝑢𝑢3∗ = 𝜆𝜆3
2𝐴𝐴3

𝑟𝑟𝐻𝐻 �1 − 𝑆𝑆𝐻𝐻+𝐸𝐸𝐻𝐻+𝐼𝐼𝐻𝐻
𝑘𝑘1

� 𝑝𝑝3𝐸𝐸𝐻𝐻. 

 

This completes the proof. □ 

 

4.4 Numerical Simulation 

 The optimal policy is determined using data obtained from Holt et al. (1997), 

Jeger et al. (2004), Wagaba et al. (2013), Kinene et al. (2015), Bokil et al. (2019), and 

Magoyo et al. (2019).  The solutions in this system are calculated using MATLAB. 

4.4.1 Data settings 

The units of all parameters are per day.  The parameters used for all 

simulations are described below. 

 

Weight constant : 𝐴𝐴0 = 1.000, 

Costs : 𝐴𝐴1 = $0.003, 𝐴𝐴2 = $0.001, and 𝐴𝐴3 = $0.001, 

Efficiency parameters : 𝛾𝛾 = 0.03 and 𝜀𝜀 = 0.2, 

Range of time : 𝑑𝑑 ∈ [0,300], 

Initial conditions 

(With tolerant cuttings) 

 

: 𝑆𝑆𝑇𝑇(0) = 0.20, 𝑆𝑆𝐻𝐻(0) = 0.20, 𝐸𝐸𝐻𝐻(0) = 0.10, 

   𝐼𝐼𝐻𝐻(0) = 0,  𝑆𝑆𝑉𝑉(0) = 100, and 𝐼𝐼𝑉𝑉(0) = 50, 
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Initial conditions 

(Without tolerant cuttings) 

 

: 𝑆𝑆𝑇𝑇(0) = 0, 𝑆𝑆𝐻𝐻(0) = 0.20, 𝐸𝐸𝐻𝐻(0) = 0.10,  

  𝐼𝐼𝐻𝐻(0) = 0,  𝑆𝑆𝑉𝑉(0) = 100, and 𝐼𝐼𝑉𝑉(0) = 50, 

 

and the rest of all parameters used in this study is shown in Table 3.2. 

 

4.4.2 Algorithm of optimal control 

 The number of cassava population and the control costs are determined 

using the fourth-order Runge-Kutta method as defined in Definition 4.2. 

Definition 4.2: Let 𝑥𝑥 be states of ODEs and �𝑑𝑑0, 𝑑𝑑𝑓𝑓� be any time interval in 𝑇𝑇.  Optimal 

control values are determined using the following iterations. 

(1) Setting all variables.  Let 𝑥𝑥
→

= 𝑥𝑥(𝑑𝑑) be state variables at different 

time 𝑑𝑑, 𝑢𝑢𝑚𝑚
→

= 𝑢𝑢𝑚𝑚(𝑑𝑑) be control parameters for 𝑑𝑑 ∈ [𝑑𝑑𝑛𝑛, 𝑑𝑑𝑛𝑛+1], and 𝜆𝜆
→

= 𝜆𝜆(𝑑𝑑) be adjoint 

parameters for 𝑑𝑑 ∈ [𝑑𝑑𝑛𝑛+1, 𝑑𝑑𝑛𝑛], where 𝑛𝑛 = 0, 1, …, 𝑇𝑇-1 and 𝑚𝑚 = 1, 2, 3. 

(2) Calculating state variables.  Use initial conditions 𝑥𝑥 = 𝑥𝑥(𝑑𝑑0) 

and values of 𝑢𝑢𝑚𝑚
→

 to solve 𝑥𝑥
→

 forward in time �𝑑𝑑0, 𝑑𝑑𝑓𝑓�. 

(3) Calculating adjoint variables.  Use the adjoint condition 𝜆𝜆𝑇𝑇+1 =

𝜆𝜆�𝑑𝑑𝑓𝑓� = 0 and values of 𝒙𝒙
→

 and 𝑢𝑢𝑚𝑚
→

 to solve 𝜆𝜆
→

 backward in time �𝑑𝑑𝑓𝑓 , 𝑑𝑑0�. 

(4) Calculating control variables.  Update values of 𝑢𝑢𝑚𝑚
→

 by using 

new values of 𝑥𝑥
→

 and 𝜆𝜆
→

 into the characterization Equations (4.18) to (4.20). 

(5) Checking convergence of control variables.  If 𝑢𝑢𝑚𝑚
→
∈ [0,1], the 

optimal control variables are converged, otherwise repeat to the whole iteration. 
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4.4.3 The cost-effectiveness analysis 

According to Okosun et al. (2011) and Okosun et al. (2013), the most 

cost-effective policy is calculated using the average cost-effectiveness ratio (ACER).  

ACER is a ratio of total control cost to the increase number of healthy cassava tubers 

and is a measurement of economic value of an intervention as shown in Equation 

(4.21). 

ACER = The total cost produced by the intervention
The increase number of healthy cassava per population

. (4.21) 

 

4.5 Results 

 This section determines which policy is the most cost-effective one.  This can 

be done by calculating the number of cassava tubers and the total control costs 

according to Equations (4.1) to (4.6) in order to compute ACER values of eight policies. 

 4.5.1 Policy A: Promoting of tolerant cassava cuttings 

In this scenario, tolerant (𝑆𝑆𝑇𝑇) and susceptible (𝑆𝑆𝐻𝐻) cuttings are initially 

planted at 40% of the maximum plantation capacity.  Initial conditions were       

𝑆𝑆𝑇𝑇(0) =  0.20, 𝑆𝑆𝐻𝐻(0) =  0.20, 𝐸𝐸𝐻𝐻(0) =  0.10, 𝐼𝐼𝐻𝐻(0) =  0, 𝑆𝑆𝑉𝑉(0) =  100, and         

𝐼𝐼𝑉𝑉(0) = 50. 
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Figure 4.2  Cassava population with promoting of tolerant cassava cuttings 

 

 Figure 4.2 shows the number of cassava population when using only promoting 

tolerant cuttings method.  Namely, no control method is applied in this policy (𝑢𝑢1, 𝑢𝑢2, 

and 𝑢𝑢3 = 0).  Exposed and infected cassava plants outnumbered healthy cassava plants 

(tolerant and susceptible) at day 3.  This is due to the fact that the infected cassavas 

were still in the plantation and the infected whitefly were not killed.  At the end of 

numerical simulation, the number of healthy cassavas remaining at the harvest time is 

approximately 5% of the initial planting assuming that a daily harvest rate, ℎ, equals to 

0.003. 
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  (1) Policy A-1: spraying and promoting tolerant cuttings 

  In this scenario, spraying and promoting tolerant cuttings were applied.  

Therefore, control variable for spraying method, 𝑢𝑢1 ∈ [0,1] and the rest of control 

variables were not applied (𝑢𝑢2 and 𝑢𝑢3 = 0). 

 

 
 

Figure 4.3 Cassava population with promoting of tolerant cassava cuttings and 

spraying insecticide (Policy A-1) 
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Figure 4.4 Control profile for Policy A-1 𝑢𝑢1 ∈ [0,1],𝑢𝑢2,𝑢𝑢3 = 0 

 

  Figure 4.3 shows dynamics of cassava population using tolerant cuttings 

and spraying methods.  Infected cassavas (exposed and infected) outnumbered healthy 

plants on day 3.  This is because infected cassavas were not removed from the 

plantation.  There were only 14.50% healthy tubers remaining in the plantation at the 

harvest time, on day 300.  Figure 4.4 shows that 𝑢𝑢1 remains at the upper bound for 285 

consecutive days and then decreases to the lower bound on the harvest day.  This means 

that spraying was done continuously for the whole planting period to prevent the 

spread.  Therefore, this method was the least cost-effective one. 
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  (2) Policy A-2: spraying, rouging, and promoting tolerant cuttings 

In this scenario, spraying, rouging and promoting tolerant cuttings were 

applied.  Therefore, control variables for spraying method, 𝑢𝑢1 ∈ [0,1] and for rouging 

method, 𝑢𝑢2 ∈ [0,1].  Selecting non-infected cuttings method was not applied in this 

policy hence, 𝑢𝑢3 = 0. 

 

  
 

Figure 4.5 Cassava population with promoting of tolerant cassava cuttings, 

spraying insecticide, and rouging infected cassavas (Policy A-2) 
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Figure 4.6 Control profile for Policy A-2 𝑢𝑢1, 𝑢𝑢2 ∈ [0,1],𝑢𝑢3 = 0 

 

  Figure 4.5 shows numerical results of dynamics of cassava population 

when Policy A-2 was applied.  Removing infected cassavas by rouging method 

together with spraying method helped increasing healthy cassava yields to 17.49%.  

Figure 4.6 shows control variables 𝑢𝑢1 and 𝑢𝑢2 of Policy A-2.  𝑢𝑢1 remains at the upper 

bound for 287 consecutive days and then reduces to lower bound on the harvest day.  

𝑢𝑢2 raises to the upper bound on the day 2 and remains at the upper bound for 296 

consecutive days and then decreases to the lower bound on the harvest day. 
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(3) Policy A-3: spraying, selecting, and promoting tolerant cuttings 

In this scenario, spraying, selecting and promoting tolerant cuttings 

were applied.  Therefore, control variables for spraying method, 𝑢𝑢1 ∈ [0,1] and for 

selecting method, 𝑢𝑢3 ∈ [0,1].  Rouging method was not applied in this policy hence, 

𝑢𝑢2 = 0. 

 

 
 

Figure 4.7 Cassava population with promoting of tolerant cassava cuttings, 

spraying insecticide, and selecting non-infected cuttings (Policy A-3) 
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Figure 4.8 Control profile for Policy A-3 𝑢𝑢1,𝑢𝑢3 ∈ [0,1],𝑢𝑢2 = 0 

  

  Figure 4.7 shows dynamics of cassava population when Policy A-3 was 

applied.  There were only 14.68% healthy cassava tubers remaining in the plantation 

on day 300 because infected cassavas were not removed from the plantation.  Figure 

4.8 shows control variables 𝑢𝑢1  and 𝑢𝑢3 .  𝑢𝑢1  remains at the upper bound for 284 

consecutive days and then reduces to the lower bound on the harvest day.  𝑢𝑢3 remains 

at the upper bound for 237 consecutive days and then decreases to the lower bound on 

day 300. 
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(4) Policy A-4: spraying, rouging, selecting, and promoting tolerant 

cuttings 

In this scenario, all control methods were applied.  Therefore, control 

variables for spraying, rouging, and selecting methods, 𝑢𝑢1, 𝑢𝑢2, and 𝑢𝑢3 ∈ [0,1]. 

 

 
 

Figure 4.9 Cassava population with promoting of tolerant cassava cuttings, 

 spraying insecticide, rouging infected cassavas, and  

 selecting non-infected cuttings (Policy A-4) 
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Figure 4.10 Control profile for Policy A-4 𝑢𝑢1, 𝑢𝑢2,𝑢𝑢3 ∈ [0,1] 

 

  Figure 4.9 shows dynamics of cassava population when all methods 

were applied.  Controlling the number of infected cassavas by rouging and selecting 

methods together with spraying helped increasing healthy cassava yields to 18.77%.  

Spraying pesticide while removing infected cassavas by rouging method was proved to 

be an effective approach to improve yields.  However, this policy is still not cost-

effective one.  Figure 4.10 shows control variables 𝑢𝑢1, 𝑢𝑢2, and 𝑢𝑢3 of Policy A-4.  𝑢𝑢1 

remains at the upper bound for 283 consecutive days and then decreases to the lower 

bound on the harvest day.  𝑢𝑢2 remains at the upper bound from day 2 to 298 and then 
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decreases to lower bound on day 300.  𝑢𝑢3  remains at the upper bound for 244 

consecutive days and then decreases to the lower bound on the harvest day.  

 

 4.5.2 Policy B: Without tolerant cassava cuttings 

In this scenario, susceptible (𝑆𝑆𝐻𝐻) cuttings were initially planted at 20% 

of the maximum plantation capacity and tolerant ( 𝑆𝑆𝑇𝑇 ) cuttings were not used.  

Therefore, initial conditions were 𝑆𝑆𝑇𝑇(0) = 0, 𝑆𝑆𝐻𝐻(0) = 0.20, 𝐸𝐸𝐻𝐻(0) = 0.10, 𝐼𝐼𝐻𝐻(0) = 

0, 𝑆𝑆𝑉𝑉(0) = 100, and 𝐼𝐼𝑉𝑉(0) = 50. 

 

 
 

Figure 4.11 Cassava population with no control strategy 

 



96 
 

  Figure 4.11 shows dynamics of cassava population (𝑆𝑆𝐻𝐻 , 𝐸𝐸𝐻𝐻 , and 𝐼𝐼𝐻𝐻) 

when promoting tolerant cuttings method was not applied (𝑆𝑆𝑇𝑇 = 0).  By the time of 

harvest on day 300, 16.99% of infected cassava tubers remained in the plantation.  The 

number of healthy cassavas remaining at the harvest day was approximately 0.13%. 

  (1) Policy B-1: spraying 

  In this scenario, spraying method was applied.  Therefore, control 

variable for spraying method, 𝑢𝑢1 ∈ [0,1] and the rest of control variables were not 

applied, 𝑢𝑢2 and 𝑢𝑢3 = 0. 

 

 
 

Figure 4.12 Cassava population with spraying insecticide method (Policy B-1) 
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Figure 4.13 Control profile for Policy B-1 𝑢𝑢1 ∈ [0,1],𝑢𝑢2,𝑢𝑢3 = 0 

 

  Figures 4.12 and 4.13 show dynamics of cassava population and control 

variable 𝑢𝑢1 when Policy B-1 was applied.  At the harvest day, 1.97% of healthy cassava 

tubers remained in the plantation.  𝑢𝑢1 remains at the upper bound for 284 consecutive 

days and then reduces to the lower bound at the lower bound. 
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  (2) Policy B-2: spraying, rouging 

In this scenario, spraying and rouging methods were applied.  Therefore, 

control variables for spraying method, 𝑢𝑢1 ∈ [0,1] and for rouging method, 𝑢𝑢2 ∈ [0,1].  

Selecting non-infected method was not applied thus 𝑢𝑢3 = 0. 

 

 
 

Figure 4.14 Cassava population with spraying insecticide and rouging infected 

cassavas (Policy B-2) 
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Figure 4.15 Control profile for Policy B-2 𝑢𝑢1,𝑢𝑢2 ∈ [0,1],𝑢𝑢3 = 0 

 

  Figure 4.14 shows dynamics of cassava population when Policy B-2 

was applied.  Removing infected cassavas by rouging method together with spraying 

method helped increasing healthy cassava tubers to 6.92% on the harvest day.  Figure 

4.15 shows control variables, 𝑢𝑢1 and 𝑢𝑢2 of Policy B-1.  𝑢𝑢1 remains at the upper bound 

for 285 consecutive days and then reduces to the lower bound on the harvest day.  𝑢𝑢2 

remains at the upper bound from day 2 to 298 and then decreases to the lower bound 

on the harvest day. 
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  (3) Policy B-3: spraying, selecting 

In this scenario, spraying and selecting methods were applied.  Thus, 

control variables for spraying method, 𝑢𝑢1 ∈ [0,1] and for selecting method, 𝑢𝑢3 ∈ [0,1].  

Rouging method was not applied thus 𝑢𝑢2 = 0. 

 

 
 

Figure 4.16 Cassava population with spraying insecticide, and selecting non-

infected cuttings methods (Policy B-3) 
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Figure 4.17 Control profile for Policy B-3 𝑢𝑢1,𝑢𝑢3 ∈ [0,1],𝑢𝑢2 = 0 

 

  Figure 4.16 shows dynamics of cassava population when Policy B-3 

was applied, 2.70% of healthy cassava tubers and 21.55% of infected cassava tubers 

remained in the plantation area on the harvest day.  Figure 4.17 shows control variables 

when Policy B-3 was applied.  𝑢𝑢1 remains at the upper bound for 285 consecutive days 

and then reduces to the lower bound on the harvest day.  𝑢𝑢3 remains at the upper bound 

for 235 consecutive days and then decreases to the lower bound on the harvest day. 
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  (4) Policy B-4: spraying, rouging, and selecting 

In this scenario, spraying, rouging, and selecting methods were applied.  

Therefore, control variables for spraying method, 𝑢𝑢1 ∈ [0,1] , rouging method,            

𝑢𝑢2 ∈ [0,1], and selecting method, 𝑢𝑢3 ∈ [0,1]. 

 

 
 

Figure 4.18 Cassava population with spraying insecticide, rouging infected 

cassavas, and selecting non-infected cuttings methods (Policy B-4) 
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Figure 4.19 Control profile for Policy B-4 𝑢𝑢1,𝑢𝑢2,𝑢𝑢3 ∈ [0,1] 

 

 Figure 4.18 shows dynamics of cassava population when Policy B-4 was 

applied.  By the time of harvest on day 300, 8.39% of healthy cassava yields remained 

in the plantation.  Figure 4.19 shows dynamics of control variables 𝑢𝑢1, 𝑢𝑢2, and 𝑢𝑢3.  𝑢𝑢1 

remains at the upper bound for 285 consecutive days and then decreases to the lower 

bound on the harvest day.  𝑢𝑢2 remains at the upper bound from day 2 to 298 and then 

decreases to the lower bound on the harvest day.  𝑢𝑢3 remains at the upper bound for 

233 consecutive days and then decreases to the lower bound on the harvest day. 
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4.5.3 Cost-effectiveness analysis 

   ACER values of eight policies are listed in Table 4.4. 

 

Table 4.4 ACER of control policies 

Policies Total costs Healthy cassava ratios ACER values Ranking 

A-2 $1.156 0.703 1.643 1 

A-4 $1.410 0.746 1.888 2 

B-2 $1.157 0.600 1.929 3 

B-4 $1.402 0.633 2.216 4 

A-1 $0.859 0.384 2.235 5 

A-3 $1.108 0.412 2.686 6 

B-3 $1.106 0.288 3.836 7 

B-1 $0.858 0.211 4.064 8 

 

   Table 4.4 ranks all eight policies according to ACER values.  It 

can be seen from the above table that Policy A-2 is the most cost-effective policy.  

Controlling the increase of infected cassavas by tolerant cuttings and rouging methods 

together with spraying pesticide helped reducing the number of infected plants and the 

number of whitefly simultaneously.  Policy B-1 is the least cost-effective one.  Spraying 

pesticide without removing infected plants was proved to be both the most expensive 

and the least effective method. 
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4.6 Discussion 

Sensitivity analysis results show that 𝑅𝑅0 was the most sensitive to the existence 

of whitefly.  Spraying pesticide is the most effective method.  The more spraying 

applied in the plantation, the more effective it is to reduce the number of whitefly.  

However, it leads to high costs of labor and pesticide as shown by ACER value of 

Policy B-1 equals to 4.064 in Table 4.4, which is the highest value and not cost-

effective. 

The existence of infected cassavas was another factor to spread CMD virus.  

Thus, the combined method of rouging and spraying, Policy B-2 performs better than 

using a single control, Policy B-1.  ACER value of Policy B-2 equals 1.929, which is 

much lower than that of Policy B-1. 

Using three methods simultaneously shows improvement in increased yields.  

Policy A-2, which combines spraying, rouging, and tolerant cuttings, gives the lowest 

ACER value of 1.643, which is more cost-effectiveness than Policy B-2. 

However, when applying four methods altogether in Policy A-4, its yield is only 

5.75% higher than that of Policy A-2, however, the increased control cost of Policy A-

4 is 18% higher than that of Policy A-2.  Hence, the use of spraying, rouging, and 

tolerant cuttings is sufficient to control CMD outbreak with optimal cost-effectiveness 

goal. 



CHAPTER V 

CONCLUSION AND RECOMMENDATIONS 

 

5.1 Conclusion 

 This research developed CMD outbreak model caused by whitefly transmission 

and infected cuttings.  The severity of CMD outbreak is increased when infected 

cassavas are not uprooted out of the plantation.  Infected cassavas can be categorized 

in two forms, symptomatic and asymptomatic.  Asymptomatic or latent cassavas are 

infected but it takes a couple weeks to show the symptom.  Without a clear 

understanding of this state, it could lead to serious outbreak that is difficult to control.  

There is no study of latent state in the literature.  The proposed model is extended from 

models of Bokil et al. and Magoyo et al. by adding a latent state to study the relationship 

between latent cassavas and the severity of CMD spread.  The model is used to indicate 

factors that affect CMD outbreak the most by using sensitivity analysis.  Testing model 

with sensitivity analysis suggests that the existence of whitefly is the most crucial factor 

that affects the severity of CMD outbreak. 

Currently, disease spread can be controlled by four methods: spraying pesticide, 

rouging infected cassavas, selecting non-infected cuttings to plant, and promoting 

tolerant cuttings.  Spraying pesticide is the most effective method to reduce the number 

of whitefly but this approach requires high labor costs.  Using all four methods 

simultaneously are proved to be the most effective way to control the outbreak giving 

higher yields of healthy cassavas than applying only three control approaches but this 

policy requires high investment costs.  The optimal control policy in terms of maximum
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number of healthy cassava yields and minimum costs is Policy A-2 that applies 

spraying, rouging, and tolerant cuttings 

 

5.2 Recommendation for Future Works 

This study used principles of epidemiology, systems engineering, and systems 

engineering to develop a model that represented dynamics of CMD.  The model was 

developed based on CMD outbreak and cultivation system in Nakhon Ratchasima 

province, Thailand, which has the largest cassava growing plantation in Thailand.  The 

model was used to determine the optimal policy to control this disease spread, which 

should increase cassava production and profits. 

Since CMD was detected in Thailand in 2018, which was the emerging 

infectious disease.  There are no data collection for CMD outbreak in Thailand.   

Therefore, parameters values and ranges are assumed from the previous work to 

construct the model. In order to represent the real outbreak scenario in Thailand, it is 

recommended to collect the data of CMD outbreak and cassava cultivation.  This could 

lead to optimal policy determination that fits to solve outbreak in the real case. 
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