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CHAPTER I 

INTRODUCTION 

 

1.1   Background of the selected topic  

 Green shallot or welsh onion (Allium fistulosum) is a member of the 

Amaryllidaceae family, perennial herb and crop food that is cultivated worldwide, 

specifically at tropical countries such as Korea, China, Japan, and Thailand (Nagaki et 

al., 2012; Liu et al., 2014; Abdelrahman et al., 2017; Abdelrahman et al., 2018). The 

green shallot is rich in proteins, carbohydrates, vitamins, and contains propylene 

sulfide, dietary flavonoids, that have anti-inflammatory effects and bactericidal. The 

green shallot has been used as herbal by preventing colds, activating immunity, anti-

cancer properties, having anti-asthmatic activities (Liu et al., 2014; Wu et al., 2016). 

cancer properties, having anti-asthmatic activities (Liu et al., 2014; Wu et al., 2016). 

 Global onion and shallot production were continually increased from around 

52 million tons in 2003 to around 85 million tons in 2013. They are the second most 

grown plant in the world inferior to tomatoes (Brewster, 2008). In 2016, the planting 

area of green shallot and onion in Thailand was approximately 50,566 hectares, and 

green shallot yield was approximately 68,649 tons (FAO, 2014; Office of Agricultural 

Economics, 2014; the Ministry of Agriculture and Cooperative, 2016). However, it is 

a decreasing trend of green shallot production from 2015-2017, resulting in low 

supply and high cost in the local market as well as a limited amount of green shallot 

for exporting (Thailand Foreign Agricultural Trade Statistics, 2016; Department of 
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International Trade Promotion, 2016). Beyond, green shallot production is affected by 

various factors such as nutrient deficiency, poor soil quality, pests, and diseases, 

leading to the reduction of green shallot quality and yield.  

 Anthracnose-twister disease plays a necessary role in its growth and low 

productivity. At present, it is regarded to be the most destructive disease of green 

shallot. The causal pathogen of green shallot anthracnose is identified as 

Colletotrichum gloeosporioides that could reduce yield up to 80% (Brewster, 2008; 

Yutthasin and Thummabenjapone, 2012; Maneesuwan and Sirithorn, 2013; Sutthisa et 

al., 2014; Diao et al., 2017; Yutthasin et al., 2018). This fungal pathogen can survive 

in the soil and plant debris. In recent years, anthracnose disease is the most problems 

in all planting areas in Thailand. Pathogens can survive for several years until a 

suitable period. It causes substantial crop losses in most of the major producing 

regions in the world and has a wide host range This disease generally occurs in the 

tropical areas of Thailand, Asia, Africa and Latin America (Galván et al., 1997; Sa-

ardluan and Sruamsiri, 2005; Vurro and Gressel, 2006; Srisuttee and Nalumpang, 

2007; Gajbhiye et al., 2009; Santana et al., 2016; Suwannara et al., 2017). The deaths 

of nearly 600 people each year are directly a result of the use of insecticides, 

herbicides, fungicides, and pesticides (Thai-PAN, 2019). Caused the farmers and 

customers concern about over toxic agrochemical residue in agricultural products due 

to rapid urban and industrial evolution and increasing reliance on agrochemicals in the 

past several decades (Vila Nova et al., 2011; Patil, 2013; Sharma and Kulshrestha, 

2015). The chemical pesticide residue contamination of agricultural products has 

become an increasingly severe problem in Thailand and ASEAN countries 

(Kongtragoul and Nalumpang, 2010; Jaipin and Nalumpang, 2014; Phukang and 
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Chaisuk, 2016; Suwannarat et al., 2017). The wide use of pesticides carries concerns 

on the health venture associated with pesticide exposure and gradually affects the 

health of the consumers (Le Thanh et al., 2015). In Thailand, hygienic crops are in 

high demand, especially among the growing number of tourists and health-conscious 

people. Regarding the problems of chemical residue, biological control is a promising 

alternative crop production system (Brewster, 2008; Panichsukpatana et al., 2011; 

Sutthisa et al., 2014). The study on the new intact method of disease control, such as 

cultural practices, biological method, resistant varieties, and induced resistance. 

Nowadays, induced resistance can be helpful for the management of the pathogen in a 

susceptible plant. The plant itself has an immunity system, which can be produced by 

an abiotic or biotic agent against infection by several pathogens (Steiner and 

Schönbeck, 1995; Heil and Bostock, 2002; Edreva, 2004; Walters et al., 2005; El 

Hadrami et al., 2010; El Hadrami et al., 2011; Le Thanh et al., 2015). Subsequently, 

the induced plant can be able to be resistant to the attack of pathogens because of an 

enhanced potentiality to rapidly express defense mechanisms (Prakongkha, 2011; 

Phiwthong, 2014; Saengchan, 2014; Wongchalee, 2015; Le Thanh et al., 2015). Plants 

can be induced to develop enhanced resistance to pathogen infection by treatment with 

a variety of abiotic and biotic inducers. Abiotic inducers include chemicals that act at 

various points in the signaling pathways involved in disease resistance, as well as 

salicylic acid, (jasmonic acid), β-aminobutyric acid (BABA), thiamine (vitamin B1), 

acibenzolar-S-methyl (ASM), and benzothiadiazole (BTH). Biotic inducers include 

Trichoderma spp. (Hoitink et al., 2006; Palmirei et al., 2012), plant-growth-promoting 

rhizobacteria (PGPR) such as Pseudomonas fluorescens (Vleesschauwer et al., 2008; 

Verhagen et al., 2010), Bacillus amyloliquefaciens, B. subtilis (Buensanteai et al., 
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2009; Rudrappa et al., 2010). Plant growth-promoting rhizobacteria (PGPR) belonging 

to B. subtilis are being exploited commercially for plant protection to induce systemic 

resistance against diseases. Plant-treatment with PGPR causes cell wall structural 

modifications and biochemical/physiological changes leading to the synthesis of 

proteins and chemicals involved in plant defense mechanisms. Lipopolysaccharides, 

siderophores, and salicylic acid are the major determinants of PGPR-mediated 

induced systemic resistance (ISR). The performance of PGPR has been successful 

against certain pathogens (Ramamoorthy et al, 2001; Buensanteai et al., 2009; 

Athinuwat, 2012; Saengchan et al., 2015; Nikaji et al., 2015; Wongchalee and 

Buensanteai, 2015). Besides, members of the Bacillus genus are considered as 

efficient microbial factories for large scale production of lipopeptides such as iturin, 

surfacing, and fengycin, inhibiting various fungal pathogens and protecting the crop 

plants. Biosurfactant is widely used in the research experiment and commercial to 

control disease in plants and supplement plant growth in the various plants (Harwood 

1992; Jin et al., 2014; Singh et al., 2014). 

 

1.2  Research objectives of this study 

 To evaluate the efficiency of biosurfactant produced by B. subtilis on growth 

promotion and induced resistance. 
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CHAPTER II 

LITERATURE REVIEW 

 

2. 1  Background of the problem 

Green shallot or welsh onion (Allium fistulosum) is a member of the 

Amaryllidaceae family, that is perennial herb and crop food cultivated worldwide, 

specifically at tropical countries such as Korea, China, Japan, and Thailand (Nagaki et 

al., 2012; Liu et al., 2014; Abdelrahman et al., 2017; Abdelrahman et al., 2018). The 

green shallot is rich in proteins, carbohydrates, vitamins, and contains propylene 

sulfide, dietary flavonoids, that have anti-inflammatory effects and bactericidal. The 

green shallot has been used as herbal by preventing colds, activating immunity, anti-

cancer properties, having anti-asthmatic activities (Liu et al., 2014; Wu et al., 2016). 

Global onion and shallot production were continually increased from around 

52 million tons in 2003 to around 85 million tons in 2013. They are the second most 

grown plant in the world inferior to tomatoes (Brewster, 2008). In 2016, the planting 

area of green shallot and onion in Thailand was approximately 50,566 hectares, and 

green shallot yield was approximately 68,649 tons (FAO, 2014; Office of Agricultural 

Economics, 2014; the Ministry of Agriculture and Cooperative, 2016). However, it is 

a decreasing trend of green shallot production from 2015-2017, resulting in low 

supply and high cost in the local market as well as a limited amount of green shallot 

for exporting (Thailand Foreign Agricultural Trade Statistics, 2016; Department of 

International Trade Promotion, 2016). Beyond, green shallot production is affected by 
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various factors such as nutrient deficiency, poor soil quality, pests, and diseases, 

leading to the reduction of green shallot quality and yield. Anthracnose-twister disease 

plays a necessary role in its growth and low productivity. At present, it is regarded to 

be the most destructive disease of green shallot. The causal pathogen of green shallot 

anthracnose is identified as Colletotrichum gloeosporioides that could reduce yield up 

to 80% (Brewster, 2008; Yutthasin and Thummabenjapone, 2012; Maneesuwan and 

Sirithorn, 2013; RT, 2014; Sutthisa et al., 2014; Diao et al., 2017; Yutthasin et al., 

2018). This fungal pathogen can survive in the soil and plant debris. In recent years, 

anthracnose disease is the most problems in all planting areas in Thailand. Pathogens 

can survive for several years until a suitable period. It causes substantial crop losses in 

most of the major producing regions in the world and has a wide host range causing 

this disease in the tropical areas of Thailand, Asia, Africa and Latin America (Galván 

et al., 1997; Sa-ardluan and Sruamsiri, 2005; Vurro and Gressel, 2006; Srisuttee and 

Nalumpang, 2007; Gajbhiye et al., 2009; Santana et al., 2016; Suwannara et al., 2017). 

Fungicides have been extensively and successfully used to control anthracnose of 

green shallot. This fungal disease can be controlled by Prochloraz (1H-imidazole-1-

carboxamide) at a concentration of 20-30 mL 20L
-1

 of water (U.S. National Library of 

Medicine National Center for Biotechnology Information), but cause environmental 

pollution in the agricultural soil and on plant products. The deaths of nearly 600 

people each year are directly a result of the use of insecticides, herbicides, fungicides, 

and pesticides (Thai-PAN, 2019). Caused the farmers and customers concern about 

over toxic agrochemical residue in agricultural products due to rapid urban and 

industrial evolution and increasing reliance on agrochemicals in the past several 

decades (Vila Nova et al., 2011; Patil, 2013; Sharma and Kulshrestha, 2015).  The 
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chemical pesticide residue contamination of agricultural products has become an 

increasingly severe problem in Thailand and ASEAN countries (Kongtragoul and 

Nalumpang, 2010; Jaipin and Nalumpang, 2014; Phukang and Chaisuk, 2016; 

Suwannarat et al., 2017). The wide use of pesticides raises concerns about the health 

of the consumers gradually (Le Thanh et al., 2015). 

   

2.2  The important disease of green shallot 

  All crops can be infected by a wide range of pathogens. The weather is 

responsible for what extent pathogens may infect any plant. The disease will be 

developed rapidly if the required combination of temperature, humidity or moisture, 

and other climatic parameters are present. The crops can quickly suffer economic 

damage as a result of an infection by a pathogen. The green shallot is commonly 

cultivated in Thailand, and is an essential vegetable for cooking. These increased 

green shallot demand because the rapidly growing population has led to an expansion 

of green shallot cultivation in many countries (Kim et al., 2008; Buensanteai and 

Athinuwat, 2012). However, green shallot production is significantly reduced due to 

attack by diseases as follow. 

2.2.1  Bacterial soft rot      

  Bacterial soft rot is a significant disease of shallot or onion, and causes 

severe problems for growers. The affected scales first appear water-damp and yellow 

color when infected by Pectobacterium carotovorum. While several types of bacteria 

are participatory with decay through secondary infection, but only P. carotovorum 

produces pectolytic enzymes to cause the specific disease known as soft rot. The 

intrude becomes sticky and soft with the inside of the bulb breaking-down. A soft, 
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foul-smelling bulky liquid can be a force from the neck of diseased (Walker et al., 

2009; Conn et al., 2012). At present, there are non-effective chemical control 

measures to combat bacterial soft rot (Wright et al., 2005). 

2.2.2  Smut disease       

  Smut disease caused by Urocystis colchicine in plants generates black 

spots that a few bloated can be seen on the cotyledons. Next, this rip opens, and a 

substantial number of spores are unleashed. Infected plants encounter from retarded 

growth, and in cases of extreme infection. The symptoms occur during the entire 

season and will eventually infect the bulb as well. The lesions on the tubers are 

frequently the point of entry for different secondary pathogens that cause rot. 

Chemical controls are most effective when combined with sound cultural practices, 

for example, mancozeb 150-200 g/100 L of water for the control of smut diseases in 

shallot and onion and the seed treated with captan or thiram at 2.5 g/kg of seed before 

insemination for controls this disease (Mishra et al., 2014; Schwartz et al., 2016). 

 2.2.3  Downy mildew 

  Downy mildew caused by the Peronospora destructor arises worldwide 

when relatively cold moist weather. Downy mildew is the biggest threat and severe 

illness on onion and shallot crops that can produce essential yield damage in the seed 

and bulb production. The veritable yield losses in onions of more than 75% recorded 

(Gilles et al., 2004; Scholten et al., 2007). Seed treatment is the commonly chemical 

control method. Thiophanate methyl was used at 2.5 g/kg seed, and for a foliar 

application, spraying the plant with metalaxyl+mancozeb at 250 g/liter of water. Spray 

at weekly intervals depending on the severity of the disease (Pakistan, 2014). 
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 2.2.4  Purple leaf blotch (PLB) 

  Purple leaf blotch (PLB) is a significant disease of Allium spp. 

worldwide and is more supereminent in warm and damp environments (Aveling, 

1998). The pathogen is ordinarily participatory with the PLB caused by the Alternaria 

porri. Furthermore, leaf blight is an important disease of Stemphylium vesicarium 

(Wallr.) Simmons and PLB is regarded to be a complex disease caused by pathogens 

(Suheri and Price, 2000). The PLB causes considerable yield losses in Allium ssp. 

production. In onions, it reduced foliar output by 62-92% (Utikar and Padule, 1980; 

Suheri and Price, 2001; Suheri and Price, 2000). For disease control, healthy seed 

should be used. Besides, chlorothalonil at 0.2% or mancozeb at 0.25% should be 

sprayed at fortnightly interval initiation after transplanting (Vinod Kumar, 2012). 

 2.2.5  Anthracnose disease 

  Anthracnose also called „twister disease‟ or „seven curls disease‟ is an 

essential cause of yield losses in onion and shallot. The causal agent of the disease is 

C. gloeosporioides (Galván et al., 1997). This airborne disease has an extensively host 

range and occurs in tropical regions of Africa, Asia, and Latin America (RB, 1990). 

The possible dispersing of conidia of C. gloeosporioides can be completed by wind, 

rain, and insects (Ebenebe, 1980). This disease symptoms tapering hollow spots on the 

foliage at the inception of infection trace by the shape of concentric rings of acervuli 

in hollow necrotic spots. Dieback is observed on heavily infected foliage, which leads 

to the fall of plants. Curling of foliage hap in plants (Ebenebe, 1980; Rajasab and 

Chawda, 1994; Sikirou et al., 2011). 
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 2.2.5.1 General information on anthracnose disease 

   Anthracnose symptoms are often distinguished on foliage 

casing of green shallot vegetative. The symptoms appear as jerky brown spots on the 

foliage casing. Grayish conidial masses are produced possibly on the black spots (Kim 

et al., 2008). Anthracnose caused by the fungi C. gloeosporioides and C. acutatum is 

an important disease having the host species such as inclusive of apple or strawberry 

(Trkulja, 2003; Živković et al., 2010). Disease outbreaks can happen quickly, and 

damage can be radical, particularly under long warm, and moist weather conditions. 

Typical plant symptoms enclose sunken, dark, and circular lesions that produce sticky, 

orange conidial masses. Under radical disease pressure, the wound can coalesce and 

the affected plant can drop prematurely, and damage occurs over post-harvest 

infection in storage (Živković et al., 2010). The foliage necrosis dieback leads to 

abatement in the active photosynthetic surface area of the plant, and epidemics at the 

stage before or during tuber formation can result in yield damage more than 85% 

(Abang et al., 2002). 

2.2.5.2 General information of C. gloeosporioides causing anthracnose 

disease  

   The C. gloeosporioides is one major of plant pathogenic 

genera responsible for anthracnose. It is particularly essential. Owing to the radical 

economic damage (Chung et al., 2008). The most accepted taxonomic detail of 

C. gloeosporioides is provided hereupon. 
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 Division: Ascomycota 

  Class: Sordariomycetes 

   Order: Phyllachorales 

    Family: Phyllachoraceae 

     Genus: Colletotrichum 

      Species: gloeosporioides 

  The C. gloeosporioides belongs to the Phyllachoraceae family in 

division Ascomycota. The fungus includes C. gloeosporioides is anamorph defective 

and arises on a wide of host species by producing acervuli under the host tissues 

during an asexual phase of their life cycle. The teleomorph state is known for its 

potentiality to cause radical disease (Gautam, 2014). 

2.2.5.3 Disease cycle of onion anthracnose 

 Relatively cold temperatures assist the infection process. Hence, 

the disease tends to be more severe during wet, cold springs. After infection, the 

C. gloeosporioides fungus colonies foliage tissues and begins to produce spores, and 

fruiting structures are able of increasing foliage tissues. Disease evolution may 

continue throughout the spring into early summer if advisable stay persists. These 

diseases keep being less of a problem during hot and dry summer weather (K-State 

Research and Extension, Dept. of Plant Pathology) (Figure 2.1). 
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Figure 2.1  General life cycle of Colletotrichum species (Silva et al., 2016). 

  

2.3  Control of anthracnose disease 

 Anthracnose disease is a global problem and particularly essential owing to the 

radical economic damage it causes to plants that are grown (Chung et al., 2008). The 

anthracnose disease management is a method that concentrates on the reduction and 

after the development of the pathogen on green shallot. These goals can be 
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accomplished using disease-resistant cultivars, cultural practices, chemicals, 

biological controls, and induced resistance. 

 2.3.1  Cultural practices 

  Cultural practices consist of many methods, and green shallot can be 

vegetative successfully on which productive. The maximum pH range, irrespective of 

soil type, is 6.0-6.8, while alkaline soils are also appropriate. The green shallot does 

not progress in soils under pH 6.0 because of provisionally or manganese toxicity or 

trace element insufficiency or aluminum. Before cultivation, soils should be furrow 

and soil mass and disked adequately to rid debris. In commercial area nursery, 0.9-1.0 

m wide is formed, and 2-6 rows are seeded or planted on the nursery. They may be 

two-line rows with plants staggered to obtain suitable spacing and high population 

intensity (Shanmugasundaram and Kalb, 2001; Kulatunga et al., 2013). 

 2.3.2  Chemical control 

  In Thailand, plant pathologists of the Department of Agriculture have 

been concluded that the cause of the anthracnose disease is C. gloeosporioides 

(Mishra et al., 2012; Wongchalee et al., 2015). Fungicides are generally used in the 

defense of the disease (e.g., Prochloraz, Carbendazim, Benomyl, and Mancozeb). 

These chemicals effectively control and suppress a wide variety of anthracnose 

disease and have been fully used to manage this pathogen (Urkude et al., 2019). 

Moreover, the capability of these chemicals has degenerated over time because of the 

development of fungicide-resistant isolates (Kongtragoul et al., 2011). Prochloraz is a 

fungicide that is popularly used worldwide with non-systemic properties (Kuo, 2001; 

Vinggaard et al., 2005). This fungicide is known as special inhibition of the ergosterol, 

fatty acid, the synthesis of which is necessary to the structural formation of preventing 
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the mycelial growth and fungal cell membranes. Danderson (1986) reported submerging 

avocados for 5 minutes in a solution comprising 500 ppm of the active ingredient, 

Prochloraz, and this was found to reasonable control of anthracnose. In the early 

1990s (Wicks et al., 1994), applied Prochloraz to preventatively manage anthracnose 

disease every seven days, under field conditions in head lettuce, and it was found to be 

more effective than several fungicides. Prochloraz has also proven to be the most 

effective fungicide for lettuce anthracnose (Broadhurst & Wood, 1996). Moreover, 

Carbendazim is also suggested for the management of the anthracnose disease of 

many plants. This fungicide can inhibit microtubule formation during mitosis of cell 

division and binding to the β-subunit of β-tubulin leading to inhibit microtubule 

assembly (Davides 1986; Steffens et al. 1996; Prakash, 2004; Ma and Michailides 

2005; Duamkhanmanee 2008; Kongtragoul, 2011). A field experiment on disease 

control showed the most effective function of carbendazim. Carbendazim gave the 

best result at spraying rates of 10 or 15 g/20 L (Kanlong et al., 1990). In 2016, Patil 

and Nargund evaluated carbendazim 12%+iprodione 63% (Quintal) and concluded 

that they inhibited maximum mycelial growth (95.43%). 

 2.3.3  Biological control 

  The biological method is present an established sub-discipline in the 

Science of Plant Pathology (Elad, 1996; Paulitz and Bélanger, 2001). However, 

absolute control of aforesaid diseases in onion or shallot is yet to be developed. 

Management strategy for the disease consists of the use of recommended resistant 

cultivars, disease-free bulbs, and fungicidal sprays. Still, continuous use of fungicides 

to control the plant diseases results in the maintenance of mischievous chemical 

residues in the environment (Naguleswaran et al., 2014). Bacterial and fungicidal 
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biocontrol agents were studied on anthracnose diseases such as Bacillus spp.,                                   

B. polymyxa, B. amyloliquefaciens, B. pumilus, B. cereus, B. subtilis, and Arthrobacter 

(Munimbazi and Bullerman, 1998; Havenga et al., 1999; Ashwini and Srividya, 2014; 

Rungjindamai, 2016). Biological control of diseases in the plant using microbial 

antagonists and eco-friendly alternatives to replace the use of chemical pesticides and 

using microbial antagonists as part of integrated disease control have demonstrated to 

repress a diversity of pathogens (Palaniyandi et al., 2011). Naguleswaran and 

Pakeerathan (2014) revealed that the effect of the bulb treatment together with foliar 

application of T. viride (biocontrol agents) operate very well for yield (130.7 Mt/ha) 

with the little disease incidence (1.08 %) and yield (79 Mt/ha). The results achieved in 

this study helped to control diseases of red onion and are the best promising 

alternative to sustainable agriculture. According to Freeman et al. (2004), the 

antagonist capacity of T. harzianum strain T-39 from the TRICHODEX (commercial 

biological control product) was effective in controlling gray mold (Botrytis cinerea), 

and anthracnose disease (C. acutatum) in strawberry. Among the biocontrol agents 

evaluated, T. harzianum strain Th-2 was found to be most efficient, giving 

approximately 77.78-100% inhibition on the mycelial growth. So, T. harzianum can 

apply for the control of anthracnose disease in chili (Begum and Nath, 2015). 

Galindez et al. (2017) tested the results of Trichoderma sp. as a potential biocontrol 

agent against C. gloeosporioides isolated from the onion. The results indicated the percent 

inhibition of the Trichoderma sp. among 14 days of maturing, and T. longibrachiatum 

exhibition the highest percent inhibition of 64.68% compared to T. harzianum and      

T. asperellum showing 59.16% and 47.73%, respectively. This was summarized that the 
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presence of Trichoderma sp. could reduce the C. gloeosporioides damage and could 

be used as a biocontrol agent of the pathogen. 

 2.3.4  Induced resistance  

   Plants can emerge induced resistance as a result of infectiousness, upon 

colonization of the roots by the exclusive helpful microorganism (Figure 2.2). The 

induced condition of resistance features by the actuation of potential defense 

mechanisms that indicate a challenge from a plant pathogen. Induced resistance is 

shown not only locally at the predicament of induction but also systemically in plant 

parts that presume separated from the inducer. Normally, induced resistance provides 

a supplement level of prevention against a broad spectrum of attackers from the 

pathogen.  Induced resistance is determined by a system of interconnected signaling 

pathways in that plant hormone having an important regulatory role. 

   Elicitors have been widely estimated to control plant diseases based on 

the induced resistance idea (Choudhary et al., 2007; Buensanteai et al., 2009; 

Buensanteai and Athinuwat, 2012). The Induced Systemic Resistance (ISR) and 

Systemic Acquired Resistance (SAR) are two kinds of induced resistance wherein 

plant defenses are pre-conditioned by an early infection that results in resistance 

against subsequent challenge by a pathogen. One property of SAR is the development 

of the supplement resistance in uninoculated plant organs and tissues. Another 

strategy of SAR is its activity against an extensive and dominant spectrum of 

pathogens (Vallad and Goodman, 2004; Conrath, 2006). The ISR is potentiated by 

plant growth-promoting rhizobacteria (PGPR). The ISR relies on pathways regulated 

by ethylene and jasmonate and is not associated with the expression of PR genes (Heil 
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and Bostock, 2002; Van Loon and Bakker, 2005; Choudhary et al., 2007; Walters et 

al., 2008; Okon Levy et al., 2015). 

 

 

 
Figure 2.2  The schematic instance of biologically induced resistance stimulus by 

insect herbivory (blue arrow), pathogen infection (orange arrow) (Pieterse 

et al., 2014). 
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2.3.4.1 Mechanisms of defense to pathogens 

  Plant defenses include both pre-existing barriers as well as defenses 

induced in the perception of molecules produced from damage as an effect of 

infectiousness (DAMPs; damage-associated molecular patterns) or pathogen- or 

microbe-associated molecular patterns (PAMPs or MAMPs). Perception of these 

molecular patterns and the signaling thus initiated conducts to the deployment of a 

syndrome of induced defenses, which includes the amplification of the initial signals 

to neighboring cells and even to else parts of the ISR or SAR (Figure 2.3) (Garcion et 

al., 2014; Pieterse et al., 2014; Andersen et al., 2018). 

2.3.4.2 Structural defense mechanism 

  The cell wall is considered to be the first obvious barrier to potential 

pathogens. Progress has been made in elucidating its chemical structure and function 

(Burton et al., 2010). The cell wall is also a source of molecules (DAMPs) that signal 

the presence of invading microbes and induce defense reactions (Hückelhoven, 2007; 

Vorwerk et al., 2004; Wolf et al., 2012). Many observations have shown that plants 

respond to attempted infections by the formation of cell-wall deposits or papillae 

targeted at the site of attempted infection. In many cases, this provides an efficient 

barrier against non-host pathogens. True pathogens might outrun the plant or prevent 

the deposition of papillae. Several reviews have addressed this topic in the past 

(Hückelhoven, 2007; McLusky et al., 1999; Nicholson and Hammerschmidt, 1992, 

Thordal-Christensen, 2003; Thordal-Christensen et al., 1997; Zeyen et al., 2002). The 

nature of cell wall appositions papillae contains calloses, a β-1,3-glucan polymer with 

β-1,6-glucan branches. Other components include various phenolics, hydrogen 

peroxide, or proteins (Stone and Clarke, 1992; Bestwick et al., 1997; Rey et al., 1996; 
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Smart et al., 1986; von Röpenack et al., 1998; Zeyen et al., 2002). Calloses is a 

significant component of papillae and is produced after inoculation with pathogens or 

with chemical potentiators of plant resistance (Hückelhoven et al., 1999; Skalamera 

and Heath, 1996; Soylu et al., 2004; Kogel et al., 1994; Ton et al., 2005; Zimmerli et 

al., 2000). During a resistant interaction, papillaes enriched with calloses might offer a 

mechanical barrier to penetration by non-host pathogens. Still, virulent pathogens are 

not affected either because they are faster, or they can prevent its formation (Aist, 

1976). Some reports have further explored the relevance of calloses as a mechanical 

barrier for penetration. In Arabidopsis Atgsl5, a gene encoding glucan synthase 5 

catalyzes callose biosynthesis. This gene highly expressed in constitutively resistant 

Arabidopsis mapk4 (Ostergaard et al., 2002). Constitutive expression of the NahG 

gene encoding a bacterial SA hydroxylase in mapk4 abolishes resistance and 

expression of Atgsl5 (Ostergaard et al., 2002). The content of callose in papillae was 

reduced in double-stranded RNA interference lines targeted at Atgls5. Still, these 

plants only showed marginal loss of resistance to a penetration by non-host powdery 

mildew from barley, however displayed strong resistance against Peronospora 

parasitica, the virulent powdery mildew of Arabidopsis (Jacobs et al., 2003). 
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Figure 2.3  The schematic instance of mechanisms involved and molecular components 

in pathogen-induced systemic acquired resistance (SAR), herbivore-induced 

resistance (HIR), and induced systemic resistance (ISR) stimulus by the 

beneficial microbes (Pieterse et al., 2014). 
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The aromatic polymer lignin‟s are a major component of secondary walls and 

has an essential role in plant growth and evolution as well as in the defense against 

invaders. Lignin makes the wall mechanically rigid and prevents diffusion of water-

soluble compounds (enzymes, toxins) released by pathogens (Ride, 1983). Its complex 

polymeric nature is slowly being deciphered (Boerjan et al., 2003; Humphreys, 2002; 

Zhao and Dixon, 2011; Zubieta et al., 2002). The lignins deposited in response to the 

pathogen invasion. Such defense lignins has been observed in cell-wall appositions 

(Nicholson and Hammerschmidt, 1992; Carver et al., 1992; von Röpenack et al., 

1998) but also in entire walls of the infected cells or only at the infection site 

(Heitefuss, 2001; Moersbacher and Mendgen, 2000; Vance et al., 1980). Besides, 

defense-related lignin might be of a different composition to developmentally related 

lignins. As discussed by Hückelhoven (2007), the evidence for the role of lignins in 

resistance is mostly based on correlative studies (with various inhibitors), and genetic 

evidence using suppression of gene expression is rare, gave the redundancy of the 

enzymes involved in lignin biosynthesis. Despite this difficulty, Bhuiyan et al. (2009) 

recently silenced individually or in combination, several genes involved in monolignol 

synthesis in wheat using RNAi interference. The transcripts of caffeic acid O-

methyltransferase, caffeoyl-CoA O-methyltransferase, ferulic acid hydroxylase, 

phenylalanine ammonia-lyase (PAL), and cinnamyl alcohol dehydrogenase, were 

found to accumulate differentially in the epidermis of susceptible or resistant plants 

after an infection with Blumeria graminisf. sp. tritici (Bgt). The transient silencing of 

these genes in the cell layer led to an increased susceptibility to Bgt and reduced 

resistance to infiltration against the non-host pathogen Blumeria graminis f.sp. hordei. 

The autofluorescence of the papillae at the site of contact with the pathogen also 
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decreased, if evidence for a part of monolignol production in localized defense to 

pathogens in wheat (Bhuiyan et al., 2009). 

2.3.4.3 Biochemical defense mechanism  

  Plant defense mechanisms against pathogen attacks. Each of these 

mechanisms is controlled by genes. These mechanisms can be separated into two 

groups: one elated to nonspecific response to pathogens and another depending on 

resistance genes; host-pathogen interactions in figure 2.4 (David Guest and John Brown, 

1997). 

 

 

Figure 2.4   Biochemical defense mechanism in plants. 

 

2.3.4.3.1  Rapid active defense   

  Plant responses to infection are complicated of incidence, almost 

host-pathogen interaction is special in the particulars of the timing, localization, and 

activation of each constitutive of the defense responses. As before time stated, 

resistance is gradually certain, and susceptible depends on the sum of many individual 

responses or whether a plant ends up being resistant. 

  2.3.4.3.1.1 The hypersensitive response (HR) was imposed by 

Stakman (1915), and more recently, by Goodman and Novacky (1994) as the sudden 

death of plant cells participatory with disease resistance. It happens in resistant plants 

in response to the pathogens. It is related to biochemical processes that operate these 
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dead cells, and the nearby living cells, an inhospitable environment for the pathogen 

(Kombrink and Somssich, 1995; Heath, 1998; Garcion et al., 2014). However, it now 

seems clear that pathogen-triggered cell death can be dissociated from defense 

mechanisms and, to some extent, from plant resistance (Clough et al., 2000; Coll et 

al., 2010; Yu et al., 1998). That is why the term HR is commonly used in the literature 

for describing the defensive arsenal that is deployed during incompatible interaction, 

and plant host cell suicide is often referred to as hypersensitive cell death (HCD) in 

this context. HCD is a form of programmed cell death (PCD), which implies a genetic 

orchestration of cell suicide. HCD can be induced following plant challenges with 

viruses, bacteria, or fungi.  

 2.3.4.3.1.2 The reactive oxygen species (ROS), several plant 

tissues were reported producing ROS after pathogen infection. ROS are chemically 

reactive species of oxygen formed by the incessant one-electron abatement of 

molecular oxygen (O2) and include the hydrogen peroxide (H2O2), superoxide anion 

(O2
⋅−), hydroperoxyl radical (HO2

⋅) or hydroxyl radical (OH⋅). ROS are also produced 

during plant development and environmental factors (Laloi et al., 2004). After 

pathogen infection or elicitor treatment, the most abundant ROS produced is H2O2, 

and its production is mainly observed in the apoplastic space and coincides with the 

induction of cell death during the HR (Grant and Loake, 2000). Adjustment of ROS 

levels in the plants by lowering ascorbate peroxidase or catalase activity has 

demonstrated the role of H2O2 in limiting pathogen diffuse and involvement in cell death. 

2.3.4.3.1.3 Defense-related enzymes including phenylalanine, 

ammonia-lyase peroxidase, chitinase, and polyphenol oxidase are related to inducing 

resistance in plants. 
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 Peroxidases are an extra class of pathogenesis-related (PR) 

proteins. They appertain to PR protein nine subfamily and expressed in limiting the 

cellular diffusion of disease through the establishment of generation or structural 

barriers of very toxic environments by enormously producing ROS. Peroxidase 

activity of peroxidase gene expression in higher plants is induced by bacteria, fungi, 

viroids, and viruses (Vera et al., 1993; Sasaki et al., 2004; Diaz-Vivancos et al., 2006; 

Lavania et al., 2006). 

Chitinases are an enzyme and one of the critical PR proteins that 

release chitin; it takes part in plant defenses against chitin containing from pathogens 

(Jalil et al., 2015). The β-1,3-glucans and chitins the polymer of N- 

acetylglucosamine, are important cell wall constitutive of many fungi because 

chitinases and β-1,3- glucanase have shown to be efficient in attacking cell walls of 

fungal pathogens, these enzymes have an offer as direct defense enzymes of plants 

(Abeles et al., 1970). 

Phenylalanine ammonia-lyase (PAL) is an important enzyme that 

is responsible for conjugate the primary metabolism of aromatic amino acids with 

secondary metabolic products. PAL catalyzes the non-oxidative deamination of 

phenylalanine into ammonia and trans-cinnamic acid which is the first step in the 

biosynthesis of phenolic compounds. PAL is a dependable treatment for the genetic 

condition phenylketonuria due to the natural potentiality of the enzyme to breakdown 

L-phenylalanine (MacDonald and Dcunha, 2007). 

2.3.4.3.2 Delayed active defense 

  Phytoalexins are low molecular weight antibiotics from the 

plants to respond to the pathogen attack. Their intoxication is non-selective for the 
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chemical togetherness of major phytoalexins for lipids suggests that they were 

generated in cell membranes. The phytoalexins play a role in disease resistance, and 

contribute to different inhibitory levels at the further, and infection restricts. Then, 

over three hundred fifty phytoalexins have been found in more than one hundred plant 

species from thirty families of monocotyledons and dicotyledons. The structure of a 

chemical in phytoalexins is multitudinous, they are small organic compounds 

synthesized from one of three secondary metabolic pathways such as the acetate-

malonate, acetate-mevalonate, or shikimic acid pathways. 

  Pathogenesis-related (PR) proteins are belong to a various 

group of plant proteins that regard the role of an essential part of plant disease 

resistance. They are extensively disposed in plants but produced in higher 

concentrations after the pathogen attack. PR proteins contain in intercellular spaces 

and also in the plant cells intracellularly, especially in the cell walls of different 

tissues (Agrios, 2005). The PR proteins have classified agreeable about function, 

molecular weight, and an amino acid sequence. Nowadays, the PR proteins were 

divided into Seventeen families, including peroxidases, β-1,3-glucanases, thaumatin-

like proteins, oxalate-oxidase-like proteins defensins, chitinases, nonspecific lipid 

transfer proteins, thionins, ribosome-inactivating proteins, and oxalate oxidase (Table 

2.1). The PR proteins are extremely basic either-or extraordinarily acidic, and so are 

highly reactive, and soluble (Legrand et al., 1987; van Loon and van Strien, 1999). 

The signal compounds are responsible for the induction of PR proteins consisting of 

xylanase, ethylene, polypeptide systemin, salicylic acid, and jasmonic acid (Agrios, 

2005). 
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Table 2.1  Accepted families of PR proteins (Prasannath, 2017). 

Family Type member Properties 

PR-1 Tobacco PR-1a Unknown 

PR-2 Tobacco PR-2 ß-1, 3-glucanase 

PR-3 Tobacco P, Q Chitinase type I, II, IV, V, VI, VII 

PR-4 Tobacco „R‟ Chitinase type I, II 

PR-5 Tobacco S Thaumatin-like 

PR-6 Tomato Inhibitor I Proteinase-inhibitor 

PR-7 Tomato P69 Endoproteinase 

PR-8 Cucumber chitinase Chitinase type III 

PR-9 Tobacco “lignin-forming peroxidase” Peroxidase 

PR-10 Parsley “PR1” Ribonuclease-like 

PR-11 Tobacco “class V” chitinase Chitinase, type I 

PR-12 Radish Rs-AFP3 Defensin 

PR-13 Arabidopsis THI2.1 Thionin 

PR-14 Barley LTP4 Lipid - transfer protein 

PR-15 Barley OxOa (germin) Oxalate oxidase 

PR-16 Barley OxOLP Oxalate-oxidase-like 

PR-17 Tobacco PRp27 Unknown 

   

 

 

 

2.4  Elicitors 

The term of elicitor was often used for compounds stimulating to plant defense 

(Thakur and Sohal, 2013). Ultimately, the induction of plant defense responses maybe 

leads to an enhanced resistance. This extensive definition of elicitor consists of both 
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compounds released from plants by the action of the pathogen and substances of 

pathogen origin (Angelova et al., 2006). Different kinds of elicitors have been 

characterized, including lipids, glycopeptides, glycoproteins, and carbohydrate 

polymers (Table 2.2). Ensuing elicitor insight, the activation of signal transduction 

pathways ordinarily leads to the production of some of which possess antimicrobial 

properties, phytoalexin biosynthesis, deposition of calloses, active oxygen species 

(AOS), the accumulation of PR proteins, and synthesis of defense enzymes (Thakur 

and Sohal, 2013). 

2.4.1 Abiotic elicitors 

 Various chemicals were discovered that seem to act at various points in 

these defenses activating networks or parts of the biological activation of resistance. 

The best-studied resistance activator is acibenzolar-S-methyl (BION) resistance in 

many crops against a broad spectrum of disease pathogens, including fungi, bacteria, 

and viruses (Oostendorp et al., 2001). Furthermore, some abiotic inducers from plant 

extracts studied on induced resistance. In 1995, Cohen and Tosi reported that β-

Aminobutyric acid, D, L-β-aminobutyric acid (BABA), or it is 3-(S)-enantiomer can 

activate disease resistance, especially against downy mildews in various crops when 

used at relatively high rates. In 1977, Sticher et al. reported that Probenazole is mainly 

using on rice against rice blast (Pyricularia oryzae) and bacterial blight (Xanthomonas 

oryzae) either as seedling box treatment or a granular treatment of paddy rice and besides, 

it is registered in several other crops mainly against bacterial pathogens. Le Thanh et 

al. (2015) studied the efficacy of resistance inducers against bacterial leaf blight 

(BLB) in rice. Among the inducers applied as seed soak and foliar spray, SA reduced
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Table 2.2  List of various types of plant elicitors (Thakur and Sohal, 2013; Wiesel et al., 2014). 

No. Plant Type of elicitor used Effects References 

1 Brassica napus Methyl jasmonate Accumulation of indolyl glucosinolates in the leaves.  Doughty et al. 1995 

2 Oryza sativa Benzothiadiazole BTH protected wheat systemically against powdery 

mildew infection by affecting multiple steps in the life 

cycle of the pathogen.  

Görlach et al. 1996 

3 Lycopersicon esculentum Salicylic acid Diminished susceptibility to pathogens harm and 

abiotic stress. 

Shirasu et al.. 1997 

4 Brassica oleracea  (var. 

Botrytis) 

Benzothiadiazole BTH induced downy mildew (caused by P. parasitica) 

resistance in both cauliflower seedlings and 30-day old 

plants. 

Godard et al. 1999 

5 Musa acuminata Salicylic acid Delayed ripening of banana fruit. Srivastava and 

Dwivedi. 2000 

6 Lycopersicon esculentum Salicylic acid Induced the synthesis of some stress proteins, such as 

PR proteins, which leads to increased chilling tolerance 

and resistance to pathogens, thereby decreasing the 

incidence of decay. 

Garcia-Magallon et al. 

2002 

 2
8
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Table 2.2  List of various types of plant elicitors (Thakur and Sohal, 2013; Wiesel et al., 2014) (Continue). 

No. Plant Type of elicitor used Effects References 

7 Lilium Benzoic acid Modified the growth, stress tolerance, anatomy, and 

morphology of eatable and ornamental species. 

Ding et al. 2002 

8 Helianthus annuus  Benzothiadiazole Prevented infestation by the parasitic weed Orobanche 

Cumana. Root exudates revealed synthesis of the 

phytoalexin scopoletin, PR-protein chitinase, and 

H2O2. 

Sauerborn et al. 2002 

9 Lycopersicum esculentum Chitosan Produced a higher resistance against Fusarium 

oxysporum and Phytophthora capsici. 

Ortega-Ortíz et al. 

2003 

10 Lycopersicon esculentum Chitosan and salicylic acid Increased level of catalase and peroxidase enzyme 

activity. 

Ortega-Ortiz et al. 

.2007 

11 Soybean, rice, and wheat 𝛽-glucans from Phytophthora and 

Pythium 

Produced phytoalexins in soybean and rice plants. 

Lignification in wheat leaves. 

Montesano et al. 2003 

12 Arabidopsis, tomato  

 

Oligogalacturonides from bacteria 

and fungi 

Synthesis of protein inhibitors and activation of 

defense genes. 

Montesano et al. 2003 

13 Tobacco, tomato Viral coat protein Harpin 

from TMV 

Activation of hypersensitive response. Montesano et al. 2003 

 

 

2
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Table 2.2  List of various types of plant elicitors (Thakur and Sohal, 2013; Wiesel et al., 2014) (Continue). 

No. Plant Type of elicitor used Effects References 

14 Tomato 

 

Avr gene products, for example, 

AVR4 and AVR9  

from Cladosporium fulvum 

Activation of hypersensitive response. Leach and White. 

1996 

15 Arabidopsis  

 

Flagellin, flg 15 from gram 

negative bacteria 

Deposition of callose and activation of defense genes 

in Arabidopsis. 

Gómez-Gómez and 

Boller.2000 

16 Oat Protein or peptide toxin, victorin 

from H. victoriae (rust) 

Programmed cell death in oat.  Tada et al. 2001 

17 Parsley Glycoprotein from 

Phytophthora sojae 

Synthesis of phytoalexin and activation of defense 

genes in parsley. 

Montesano et al. 2003 

18 Soybean  

 

Syringolids from 

Pseudomonas syringae 

Activation of hypersensitive response. Montesano et al. 2003 

19 Tobacco Fatty acid, and amino acid 

conjugates from Lepidopterans 

Synthesis of monoterpenes leading to activation of 

indirect defense in tobacco. 

Montesano et al. 2003 

20 Arabidopsis The bacterial toxin, for example, 

coronatine from Pseudomonas 

syringae 

Activation of defense genes in Arabidopsis. Kloek et al. 2001 

 

3
0
 



31 

 

disease severity significantly by about 55.35% compared to that of the non-treated 

control. Thakur and Sohal (2013) reported that salicylic acid (C7H6O3), methyl 

salicylate (C6H4(OH)(CO2CH3)), benzothiadiazole (C6H4N2S), benzoic acid (C7H6O2 or 

C6H5COOH) and chitosan can enhance the production of phenolic compounds 

(containing aromatic rings with attached hydroxyl groups) and activation of various 

defense-related enzymes in plants. Their introduction to agricultural practice could 

minimize the scope of chemical control, thus contributing to the development of 

sustainable agriculture. 

2.4.2 Biotic elicitor 

 The use of biotic elicitors to induce resistance in plants is essential for 

crop production as the number of available effective synthetic fungicides reduced 

rapidly because of pathogen resistance to fungicides. Many beneficial microorganisms 

have studied for controlling plant diseases, such as Bacillus spp., Agrobacterium 

radiobacter, Ampelomyces quisqualis, Aspergillus flavus, Coniothyrium minitans, 

Gliocladium Catenulatum, Pseudomonas spp., Trichoderma harzianum. JM et al. 

(2016) reported that B. subtilis RC 218 could reduce disease severity and the 

associated mycotoxin (deoxynivalenol) accumulation of Fusarium sp., under field 

conditions. In 2017, Lin et al. found that Fusarium crown and root rot (FCRR) caused 

by the fungus Fusarium oxysporum f. sp. radicis-lycopersici is a damaging soil-borne 

disease of tomato. A Bacillus sp. strain HN09 isolated from neem tree rhizosphere soil 

showed on inhibition of the growth, germination, and development of normal 

morphology of the FCRR pathogen. A substantial level of disease control achieved in 

the greenhouse. The effect of T. harzianum was investigated on plant growth and 

inhibitory activity against Pythium ultimum and Phytophthora capsici under 
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laboratory conditions. The results revealed that mycelial growth of both pathogens 

was inhibited by T. harzianum in vitro. Jangir et al. (2018) conducted characterization 

of antagonistic Bacillus sp., isolated from tomato rhizosphere, and its control 

mechanisms against F. oxysporum f. sp. lycopersici. The results showed that Bacillus 

strain B44 had a 36% reduction in disease incidence in tomato plants under 

greenhouse conditions and could operate as an efficient agent for biocontrol of wilt 

disease in tomato plants. 

2.4.3 Bacillus sp. 

Bacillus spp. are globally dispersed bacteria producing numerous 

bioactive compounds with a broad spectrum of activities towards pathogens or 

inducing host systemic resistance (Wei et al., 2016). The Bacillus is a widely 

biocontrol agent, could be used to control many plant pathogens and also increase 

plant growth. Furthermore, to directly affecting plant growth and development 

through produce plant growth regulators, Bacillus can colonize roots and trigger plants 

to produce growth-promoting biomolecules (Saengchan et al., 2015; Wongchalee et 

al., 2015). The plant growth-promoting rhizobacterium (PGPR), B. amyloliquefaciens 

strain KPS46, can enhance growth in several economic crops such as vegetable 

soybean, corn, soybean, cassava, rice, cauliflower, and Chinese kale (Buensanteai et 

al., 2009; Buensanteai et al., 2012; Prathuangwong and Buensanteai, 2007; Saengchan 

et al., 2015). Plant growth enhancement by KPS46 is mediated in part by the induction 

of phytohormones, including auxin (indole-3-acetic acid, IAA), extracellular proteins, 

and lipopeptides (Buensanteai et al., 2009; Saengchan et al., 2015; Wongchalee et al., 

2015). Bacterial synthesis of phytohormones that are similar to endogenous plant 

growth regulators enhances the initial processes of lateral and adventitious root 
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formation and elongation (Buensanteai et al., 2009; Saengchan et al., 2015; 

Wongchalee et al., 2015). In 2015, Wongchalee et al. reported that Bacillus sp. 

SPT41.1.3 was applied for controlling anthracnose on chili seeds by standard blotter 

plate mix with B. megaterium SBK5.7 and Bacillus sp. SPT41.1.3. These Bacillus can 

reduce the severity of anthracnose on seeds by approximately 41.90%, which were 

significant as compared with control. Melnick et al. (2008) revealed B. cereus isolates 

BT8 and BP24 was primarily epiphytic, with endophytic populations typically 

representing 5-15% of total foliar bacteria. In 2015, Meng et al. reported that dry 

flowable of B. subtilis strain T429 formulations at 50 and 75 g/667 m
2
 concentrations 

were as effective as a commercial fungicide to reduce rice blast, control efficiency up 

to 77.6% and 78.5%, respectively. Besides, disease control efficiency observed 

between the formulations (12 months of storage at room temperature) and the 

chemical pesticide tricyclazole (79.5%) was non-significant differences, confirming 

formulation‟s long shelf life and high viability. In 2016, Shternshis et al. studied the 

efficacy of the formulations based on B. subtilis and P.  fluorescens to control the 

Didymella applanata, the causal agent of red raspberry (Rubus idaeus L.) spur blight. 

The results revealed that antagonistic activity towards D. applanata depended on the 

red raspberry cultivar and weather conditions.  Efficacy of B. subtilis was higher than 

P. fluorescens in bio-control of the raspberry spur blight. 

2.4.4 Biosurfactants from beneficial B. subtilis for disease control  

Biosurfactants are secondary metabolites with surface-active properties 

and have wide applications in agriculture, therapeutic products, and industrial. The 

microbial surfactants are a structurally diverse group of surface-active molecules 

produced by a wide variety of microorganisms, including bacteria and fungi. These 
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are amphiphilic molecules with both hydrophilic and hydrophobic moieties that confer 

the ability to accumulate between fluid phases, thus reducing surface tension at the 

surface and interface respectively (Mukherjee et al., 2006; Romero et al., 2007; 

Ongena Jacques, 2008; Kumar et al., 2017). Members of the Bacillus genus are 

considered as efficient microbial factories for large scale production of lipopeptides 

such as iturin, surfacing, and fengycin, inhibiting various fungal pathogens and protecting 

the crop plants (Singh et al., 2014; Jin et al., 2014). The B. subtilis and B. licheniformis 

are two important bacteria that were used to produce many kinds of metabolites 

(vitamins, amino acids, and antibiotics) and industrial enzymes (Harwood 1992). 

Members of the Bacillus group (B. subtilis, B. amyloliquefaciens, B. mojavensis, 

B. pumilus, B. vallismortis) are fully sited in the soil, where they help to recycle 

carbon and nitrogen via the production and secretion of macromolecular hydrolases 

such as proteases, amylases, and cellulases. B. subtilis has been known to produce a 

range of secondary metabolites including terpenes, polyketides (PKs) and 

siderophores, as well as ribosomally and non-ribosomally synthesized peptides. The 

identification of secondary metabolites and antimicrobial peptides (AMPs) were 

primarily based on their extraction from the culture medium, often because of their 

inhibitory effect on other bacteria and fungi. B. subtilis is widely distributing in the 

soil, where it helped to recycle nutrients via the production and secretion of 

macromolecular hydrolases such as amylases, proteases, cellulases and phosphatases. 

The conditions including pH, osmolarity, radiation, and competition from cohabiting 

microbes adversely affected to Bacillus spp. In brief, the B. subtilis group developed a range 

of strategies at increasing their competitiveness and survival (Hecker and Volker., 2004; 

Voigt et al., 2014). Secondary metabolites synthesized by the B. subtilis such as peptides 
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synthesized by non-ribosomal peptide synthetases (NRPS) and PKs, synthesized by 

polyketide synthases (PKS). 

  These peptides have a variety of forms and functions. Iron-chelating 

siderophores, cytotoxic cyclic lipopeptides, biosurfactants and clinically relevant 

peptide antibiotics were synthesized by NRPS of Bacillus species. Besides, several 

Bacillus strains can produce three families of cyclic lipopeptides being of particular 

importance, namely surfactins, iturins, and plipastatins or fengycins (Ongena and 

Jacques 2008). Amino and hydroxy acids are the basic building blocks for NRP, 

linked by amide or ester bonds, respectively. Each NRPS complex has a loading 

module, a variable number of elongation modules, and a termination module. PKs are 

a structurally diverse family of secondary metabolites exhibiting a wide range of 

biological activities. The PKs discovered so far number into the thousands. They are 

broadly classified into three structural classes according to the characteristics of the products 

of the gene clusters responsible for their synthesis in Table 2.3 (Hutchinson 1999). 

  These surfactants can also play different roles in the development and 

survival of Bacillus strains in their natural habitat, including the genetic makeup of the 

producer organisms (Das et al. 2008). Studies on molecular genetics and biochemistry 

of the synthesis of several biosurfactants have revealed the operons, the enzymes, and 

the metabolic pathways required for their extracellular production. Characteristics of the 

main PSK and NPRS were characterized by a member of the B. subtilis group. 

  Surfactin, although the synthesis and role of surfactin have been best 

studied in B. subtilis, related species also synthesize very similar NRPs. Surfactin is 

one of the most potent known biosurfactants; at a concentration of 20 μM, 

surfactindecreases the surface tension of water from 72 to 27 mN/m. Surfactin structured 
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Table 2.3  The list of the secondary metabolites‟ clusters (non-ribosomal peptides 

and polyketides) identified in complete genomes. 

Species and type Compound Prevalence 

Bacillus subtilis (n = 68)   

Non-ribosomal peptides Surfactin  99% 

 Plipastatin/Fengycin  97% 

 Bacillibactin 99% 

 Bacilysin  93% 

 Locillomycin 2% 

 Xenocoumacin  2% 

Polyketides Bacillaene  77% 

 Macrolactin  6% 

 Difficidin  6% 

 Kalimantacin/Batumin  2% 

B. amyloliquefaciens (n = 21)   

Non-ribosomal peptides Surfactin  100% 

 Plipastatin/ Fengycin  95% 

 Bacillibactin  100% 

 Bacilysin  100% 

Polyketides Bacillaene  100% 

 Macrolactin  71% 

 Difficidin  67% 
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by four isomers (surfactin A–D) that exhibit a wide variety of physiological activities. 

The chemical structure of surfactin includes a peptide loop of seven amino acids (L-

leucine, L-asparagine/L-aspartate, L-leucine, L-valine, L-glutamate, and two D-

leucines), attached to a hydrophobic fatty acid chain, the length of which is isoform 

dependent.  

 The iturin group is a large family of cyclic heptapeptides with a C14-C17 

aliphatic β-amino fatty acid. They have chiral peptide sequences of L- and D- amino 

acids (LDDLLDL) and are cyclized by the formation of an amide bond between the N-

terminal β-amino fatty acid and the C-terminus of the peptide. The group includes iturin 

(variants A, C, D, and E), bacillomyxin (D, F, L, and Lc) and mycosubtilin, as well as 

other variants with names that reflect their bacterial source. The β-amino fatty acid 

linked to the amino acid sequence Asn-Tyr-Asn is a common characteristic of the iturin 

group (Duitmann et al., 1999; Moyne, Cleveland, and Tuzun 2004). Iturins are 

synthesized by a ∼38 kbp NRPS operon comprising four genes (Figure 5; Duitmann et 

al., 1999). 

  Many of these secondary metabolites are of value as antifungal and 

antibacterial compounds, and, as a result, certain B. subtilis group strains have been 

developed as probiotics and for the production of AMPs and other metabolites for use 

in humans‟ animals and agriculture (Cutting 2010). 
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Figure 2.5  Iturin group gene cluster. (A) Representative 4-gene iturin operon showing 

the gene names and amino acid sequences for bacillomyxin, iturin, and 

mycosubtilin, color-coded to identify the activities of the various 

domains. (B) Structure of iturin (modified from Duitmann et al. 1999).
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CHAPTER III 

MATERIALS AND METHODS 

 

3.1 Preparation of C. gloeosporioides causing anthracnose disease   

 3.1.1 Isolation of fungal pathogens 

 Collected infected parts of green shallot were cut into small pieces with 

a size of 5-10 mm and the tissues were washed with a 10% sodium hypochlorite 

(NaOCl) solution for 1 minute and sterile distilled water (dH2O) using flame-sterilized 

forceps. After that, they were transferred to Petri dishes containing water agar (WA), 

incubated room temperature. The growth of the fungal pathogens was occasionally 

observed for 3 days. The mycelium parts were carried to potato dextrose agar (PDA) 

and incubated 7 days for the absolute growth of fungi (Sompong et al., 2012; 

Sangpueak et al., 2017; Thilagam et al., 2017; Thumanu et al., 2017). 

 3.1.2 Pathogenicity test 

 The healthy green shallot leaves were sterilized with a 10% NaOCl 

solution for 1 minute. Then NaOCl was removed by washing with sterile dH2O. The 

spore suspensions of each fungal isolates were prepared with approximately 1x10
6 

conidia mL
-1

 concentrations and inoculated onto green shallot leaves (Hyun et al., 

2001; Sompong et al., 2012). In the negative control treatment, sterile dH2O was 

inoculated to compare with others. After that, the green shallot leaves were kept in a 

box with humidity by adding sterile dH2O and observed the symptom development for 

7 days. The pathogens were re-isolated from the green shallot plants and re-checked 
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its morphological characteristics by Koch's postulates. Disease reaction on the leaves 

was evaluated on the 0-5 scale scoring at 7 days after inoculation (Table 3.1). The 

experiments were performed in a completely randomized design (CRD) with four 

replications (Schwartz, 2013; Alberto RT, 2014). 

 

Table 3.1  The level of disease incidence of anthracnose disease on green shallot 

(Bhangale and Joi, 1985). 

Scale Reaction  % Leaf area covered 

0 Immune Non-disease 

1 Resistant Up to 10% 

2 Moderately resistant 11-20% 

3 Moderately susceptible 21-40% 

4 Susceptible 41-60% 

5 Highly susceptible >60% 

 

Disease reduction (%) was calculated by using the formula given by Wongchalee (2015). 

 

Disease reduction rate = ((Negative control - Treatment)/Negative control)100 
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3.2 Efficacy of biosurfactants from B. subtilis for inhibition of 

mycelial growth of C. gloeosporioides   

 3.2.1 Screening of B. subtilis as a biological control agent against 

C. gloeosporioides 

 The experiment was carried out in CRD of B. subtilis colony of the 14 

isolates (CaSUT007, CaSUT007-1, CaSUT008, CaSUT008-2, CaSUT111, D604, 

D604-1, D501, D501-1, SUNB1, SUNB2, 37-4, 37-5 and 37-6) were from the stock 

culture of PPB Laboratory, Suranaree University of Technology. The cock borer with a 

5 mm diameter was used to cut C. gloeosporioides pure culture of the pathogen was 

placed at the distance of about 2 cm of a petri dish containing PDA. The B. subtilis 14 

isolates were inoculated at the opposing corners. In another set, sterile dH2O was used 

as a negative control. All Petri-dishes were incubated at room temperature. The 

inhibition zone of two cultures was measured at 7 days after incubation, and the 

percentage inhibition in radial growth (PIRG) was estimated by calculating the 

following formula 

 

PIRG (%) = ((Ra-Rb)/Ra)100 

 

Ra = The radial growth of C. gloeosporioides in the control plate 

Rb = The radial growth of C. gloeosporioides treated with biosurfactants 

  The most effective 5 strain for inhibition of mycelium fungi would be 

selected for the next experiments (Sariah, 1994; Sivakumar and Wijesundera, 2004). 

3.2.2 Extraction of biosurfactant produced by B. subtilis  

 This experiment was performed in the factorial in CRD with the B. subtilis 

colony of the 5 isolates (CaSUT007, CaSUT007-1, CaSUT008-2, D604, and SUNB2). 
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The B. subtilis was cultured in the nutrient broth (NB) after that incubated at 37°C for 

48 h in a shaker 150 rpm. After 2 days of incubation, the surfactant was separated by 

using a centrifuge 12,000 rpm for 20 minutes, then added 2% potassium sorbate in the 

supernatant store into the refrigerator (Rajan and Krishnan, 2014). 

3.2.3 Screening of potential biosurfactants from B. subtilis to control 

C. gloeosporioides in vitro 

 This experiment was performed in the factorial in CRD with 7 

treatments using 4 replications. Plant pathogenic fungus, C. gloeosporioides isolate 

PSKR-SUT10, was grown on PDA media. The cock borer with a 5 mm diameter was 

used to cut the fungal mycelium colony and placed on the PDA at the center of the 

Petri dish. The biosurfactants produced by 5 strains of B. subtilis were inoculated at 

the 4 wells with a concentration of 50, 100, 150, and 200 µl, respectively. In another 

set, sterile dH2O and 2% potassium sorbate were used as negative control and positive 

control. All Petri-dishes were incubated at room temperature. The inhibition zone of 

two cultures was measured at 7 days after incubation, and the percentage inhibition in 

radial growth (PIRG) was estimated by calculating the following formula (Sariah, 

1994, Gamagae et al., 2004; Narendra et al. 2016). 

 

PIRG (%) = ((Ra-Rb)/Ra)100 

 

Ra = The radial growth of C. gloeosporioides in the control plate 

Rb = The radial growth of C. gloeosporioides treated with biosurfactants 

  The most effective strain for inhibition of mycelium fungi would be 

selected for the next experiments. 
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3.2.4 Evaluation of potential concentration of biosurfactants from B. subtilis 

strain D604 to control C. gloeosporioides in vitro 

  This experiment was performed in the CRD with 7 treatments using 4 

replications. Plant pathogenic fungus, C. gloeosporioides isolate PSKR-SUT10, was 

grown on PDA medium. The cock borer with a 5 mm diameter was used to cut the 

fungal mycelium colony, which was placed on the PDA medium mixed with the 

biosurfactants produced by B. subtilis strain D604 concentrations 10, 20, 25, 30, 40, 

and 50% at th e center of the Petri dish. In another set, sterile dH2O was used as a 

negative control, and 2% potassium sorbate and Prochloraz was used as a positive 

control. All Petri-dishes were incubated at room temperature. The inhibition zone was 

measured at 3, 5, and 7 days after incubate, and the percentage inhibition in radial 

growth (PIRG) was estimated by calculating follow a formula (Sariah, 1994; Gamagae 

et al., 2004; Narendra et al. 2016). 

 

PIRG (%) = ((Ra-Rb)/Ra)100 

 

Ra = The radial growth of C. gloeosporioides in the control plate 

Rb = The radial growth of C. gloeosporioides interacting with biosurfactants 

  The most effective concentration to inhibition of mycelium fungi would 

be selected from for the next experiments. 

3.2.5 Evaluation on the efficacy of biosurfactants from B. subtilis for induced 

resistance against anthracnose disease in green shallot under the 

greenhouse conditions 

  This experiment was performed in CRD with 5 treatments using 4 

replications. The green shallot was planted in the pot, and foliar spray with 25% 
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biosurfactant produced from B. subtilis strain D604. Distilled water was served as a 

negative control and Prochloraz fungicide at the concentration of 20 mL/20 L of water 

was served as a positive control (Table 3.2). Each treatment was applied every 7 days 

sprayed 4 times, and green shallot plants were inoculated by C. gloeosporioides 

isolate PSKR-SUT10 spore suspension approximately 1x10
6
 conidia mL

-1
 in the 

suspension. The green shallot plants were incubated with humidity in the greenhouse 

and observed for symptoms of the disease 7 days after the inoculation of C. gloeosporioides 

isolate PSKR-SUT10. Disease severity was estimated based on the percentage disease 

intensity and scored using different levels of a 0-5 scoring scale (Table 3.1). 

 

Table 3.2 List of treatments on assessing the biosurfactants from B. subtilis. 

Treatment 

Foliar spray  

7,14, 21 and 28 DAT
1/

 

Inoculation  

35 DAT
1/

 

1 Biosurfactant from B. subtilis strain D604 

C. gloeosporioides 

inoculation 

2 B. subtilis strain D604 10
8 
CFU mL

-1
 

3 B. subtilis commercial 200 g/ 20 L of water 

4 Prochloraz (positive control) 20 mL 20 L
-1

 of water 

5 Water (negative control) 

1/
DAT: Days after transplanting 
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3.3  Plant growth promotion induced by biosurfactant from B. subtilis  

3.3.1 Plant growth condition 

  Plant growth condition was evaluated at 35 days after planting. 

Parameters included plant height, fresh weight, and dry weight. 

3.3.2  Chlorophyll content 

  The green shallot leaf at a size 4 mm radius, keep in a 1.5 mL tube, add 

1 mL of dimethylformamide (DMF), using 5 replicates. The green shallot leaf must be 

submerged in the DMF solution and incubated at 4°C overnight. The sample solution 

150 μl was mixed with 300 μl of DMF in a new microcentrifuge tube, and read the 

absorbance at 647 nm for chlorophyll a (Ca), and 664.5 nm for chlorophyll b (Cb) by 

using a spectrophotometer (Harris and Baulcombe, 2015). 

 

Ca content (μg mL
-1

) = (A664.512) -( A6472.79) 

Cb content (μg mL
-1

) = (A64720.78) -( A664.54.88) 

Total chlorophyll content (μg mL
-1

) = Ca + Cb 

Sample area (mm
2
) = 3πr

2
 

Total chlorophyll content (μg/mm
2
) = (Ca + Cb)/Sample area 

 

3.3.3 Indole-3-acetic acid (IAA) analysis in green shallot  

  The green shallot young leaves with approximately 0.1 g were ground 

with 1 mL homogenization buffer (0.1 M KCl, 3% (w/v) PVPP, 1 mM PMSF, 1% 

Triton X-100, 0.1 M Tris-HCl buffer, 1 µg mL
-1

 1% (v/v) leupeptin, pH 7). The 

homogenate extract from green shallot 0.5 mL was mixed with 2 mL Salkowski’s 

reagent incubated at room temperature for 20 minutes, and the absorbance at 535 nm 

wavelength was read by a spectrophotometer. The results were compared to referent 
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standard 0-50 µg mL
-1

 to obtain the veritable amount of IAA in the sample (Gordon 

and Weber, 1951; Sarker and Rashid, 2013). 

  

3.4 Characterization of green shallot defense mechanisms after 

treated by biosurfactants from B. subtilis induced resistance 

against anthracnose disease 

3.4.1 Salicylic acid analysis 

 The modification method followed by Raskin et al. (1990) was used to 

observe salicylic contents. The green shallot tissue samples 0.5 g were ground with 

liquid nitrogen and added 90% methanol and centrifuged at 12,000 rpm. They were 

incubated with 4°C for 5 minutes. The supernatant of 100 µl was mixed with 100 µl of 

0.02 M ammonium iron (III) sulfate and was incubated at room temperature for 5 

minutes, and then read the absorbance at 530 nm wavelength by using a 

spectrophotometer. The results were compared to the referent standard to obtain the 

veritable amount of SA in the sample. The level of SA in the green shallot sample was 

displayed in µg g
-1 

fresh weight (Prakongkha et al., 2013; Jimkuntod, 2018). 

 3.4.2 Phenolic compounds analysis 

  The green shallot leaves 0 .5 g ground with liquid nitrogen and adds 1 mL 

of 90% methanol, after that centrifuged 12,000 rpm, 5 minutes at 4°C. The supernatant 

of 20 µl was mixed with 2 N Folin-Ciocalteu reagent 100 µl and 7%Sodium bicarbonate 

80 μl  .The sample was incubated at 30
o
C for 30 minutes  .A spectropho- tometer has 

used the measure at 765 nm for analysis  .Catechol was used as the standard (Kaisoon et 

al., 2011; He et al., 2015).  
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3.5 Assay of defense enzymes 

3.5.1 Chitinase activity assay 

  The green shallot leaf 1 g was ground with liquid nitrogen and added 

homogenized 5 mL (polyvinyl pyrrolidone, 0.1 M sodium phosphate buffer at pH 6.5). 

The homogenate extraction was centrifuged at conditions including 10,000 rpm and 

4
0
C for 10 minutes. The homogenate extraction was assayed of Chitinase activity 

analysis. The reaction mixture included a 0.1 mL colloidal chitin, 0.4 mL of enzyme 

solution, and 10 μL of 0.1 M sodium acetate buffer (pH 4.0). After that, the mixture 

was incubated at 37
0
C for 2 hours, then absorbed at 585 nm. One unit of chitinase 

activity was expressed as one mole of GlcNAc per minute under the assay (Boller and 

Mauch, 1988; Saravanakumar et al., 2009; Le and Yang, 2018). 

3.3.2 Phenylalanine ammonia-lyase (PAL) activity assay 

   The green shallot leaf 1 g was ground with liquid nitrogen after that 

added homogenized 5 mL (0.1 M sodium borate buffer, pH 8.8 containing PVP), and 

then centrifuged at 10,000 rpm, for 15 minutes at 4
0
C. The reaction mixture 0.2 mL 

homogenate extract, 0.1 mL of 12 mM L-phenyl alanine, and 3 mL of 0.1 M sodium 

borate with buffer pH 8.8, and then incubated at 40
0
C for 30 minutes and stopped 

reaction by adding 0.2 mL of 3 N HCL. The homogenates were assay of PAL activity 

with a spectrophotometer at 290 nm by examining the rate of exchanging of 

L-phenylalanine to trans-cinnamic acid. The result was compared to the referent 

standard to obtain the veritable amount of PAL in the sample. The activity of PAL was 

expressed as μmol mg
-1

protein (Dickerson et al., 1984; Nair and Umamaheswaran, 

2016). 
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3.6 Data analysis 

 The experiments were analyzed using an examination of variance (ANOVA) to 

evaluate the differences, and variation among treatments was determined according to 

Duncan’s Multiple Range Test (DMRT) at P = 0.05 by SPSS version 20. 
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CHAPTER IV 

RESULTS 

 

4.1  Preparation of C. gloeosporioides causing anthracnose disease  

4.1.1 Isolation of pathogen from anthracnose lesions of green shallot  

   The fungus was isolated and characterized from the green shallot 

anthracnose disease sample that was collected from the fields at Muang districts, Nakhon 

Ratchasima province, Thailand. The fungal mycelium appeared in the PDA medium 

within three days after incubation. Six different C. gloeosporioides strains were isolated 

from green shallot samples. The color of C. gloeosporioides varied from white to grey. 

The growth pattern was either circular, with the mycelia showing a uniform growth 

pattern or radial in a ring-like pattern. Subsequently, one representative most virulence 

isolate was selected for further study (Figure 4.1). 

 

Table 4.1  List of isolates of C. gloeosporioides obtained from green shallot anthracnose 

disease. 

No. Fungal isolate Infected tissue 

1 PCNK01  leaf 

2 PCNK02 leaf 

3 PCNK03 leaf 

4 PSKR-SUT02 leaf 

5 PSKR-SUT10 leaf 

6 PSKR-SUT11 leaf 
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Figure 4.1  Colonies of C. gloeosporioides isolated from diseased shallot plants, 

cultured on PDA medium for 14 days. (A) isolate PCNK01, (B) isolate 

PCNK02, (C) isolate PCNK03, (D) isolate PSKR-SUT02, (E) isolate 

PSKR-SUT10, (F) isolate PSKR-SUT11. 

 

4.1.2 Pathogenicity test 

 Five days after inoculation, the inoculated green shallot leaves began to 

show lesions (Figure 4.2). The 6 isolates tested on the green shallot, all isolate was 

pathogenic, but each isolate showed varying degrees of virulence (Table 4.2). The result 

found that C. gloeosporioides isolate PSKR-SUT10 showed high severity scores of 4.66 

(most virulent). Additionally, C. gloeosporioides isolate PSKR-SUT11 showed severity 

scores of 4 (highly virulent). Moreover, C. gloeosporioides isolate PCNK01 and 

PCNK02 showed severity scores of 3 (moderately virulent); only two isolates were 

assessed slightly virulent with a score of 2 is PCNK03 and PSKR-SUT02 (least virulent)  

respectively, significantly when compared with the control. 
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Figure 4.2  Symptoms developed on detached leaves of green shallot at 5 days after 

inoculation with spore suspension at 1×10
6
 conidia mL

-1
 (A) uninoculated 

control, (B) isolate PCNK01, (C) isolate PCNK02, (D) isolate PCNK03, (E) 

isolate PSKR-SUT02, (F) isolate PSKR-SUT10, (G) isolate PSKR-SUT11. 
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Table 4.2  Severity scores of representative C. gloeosporioides 6 isolates obtained from 

green shallots samples with anthracnose disease. 

Isolates Severity scores
 1/

 Virulence level 

PCNK01 3.00
c2/

 Moderately virulent 

PCNK02 3.00
c
 Moderately virulent 

PCNK03 2.00
d
 Least virulent 

PSKR-SUT02 2.33
d
 Least virulent 

PSKR-SUT10 4.66
a
 Most virulent 

PSKR-SUT11 4.00
b
 Highly virulent 

Water (control) 0.00
e
 Non-pathogenic 

F-Test **  

CV (%) 11.35  

1/
 Severity scores: 0 = no symptoms, 1 = <1%, 2 = 1-10%, 3 = 11-25%, 4 = 26-50% and 

5 = >50%., 
2/ 

Mean in the column followed by the same letter are not significantly 

different according to the DUNCAN test (α= 0.05). 

 

4.2  Efficacy of B. subtilis as a biological control agent against 

C. gloeosporioides  

 The B. subtilis 14 strains including CaSUT007, CaSUT007-1, CaSUT008, 

CaSUT008-2, CaSUT111, D604, D604-1, D501, D501-1, SUNB1, SUNB2, 37-4, 37-5 

and 38-4 were assessed for their abilities to control pathogenic fungi on green shallot. 

Their antifungal activities were evaluated in vitro by dual culture with the fungal pathogen, 

C. gloeosporioides. The screening was conducted using B. subtilis 5 strains including 
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D604, CaSUT008-2, SUNB2, CaSUT007-1 and CaSUT007 with strong antagonistic 

activity to C. gloeosporioides was observed. The highest percentage of inhibition of 

C. gloeosporioides was 49.55, 46.00, 45.66, 44.50, and 43.78% respectively, 

Subsequently, the B. subtilis strains CaSUT008, D501, D604-1, D501-1, SUNB1, 38-4, 

37-5, 37-4, and CaSUT111 had the percentage of inhibition at 41.72, 40.61, 39.33, 38.61, 

36.33, 34.83, 33.11, 31.77, and 27.77% respectively, significantly when compared with the 

control (Figure 4.3 and 4.4). 

 

4.3  Efficacy of biosurfactants from B. subtilis for inhibition of mycelial 

growth of C. gloeosporioides  

 The biosurfactants from 5 B. subtilis strains including CaSUT 007, CaSUT 007-1, 

CaSUT 008-2, SUNB2, and D604 were assessed for their abilities to control pathogenic fungi 

on green shallot. Their antifungal activities were evaluated in vitro by dual culture with the 

fungal pathogen, C. gloeosporioides. The screening was conducted using biosurfactants from 

B. subtilis 5 strains and one strain namely strains D604 with strong antagonistic activity to 

C. gloeosporioides was observed. The highest percentage of inhibition of C. gloeosporioides 

was around 73.48% at the volume of 200 µl. Moreover, the biosurfactant B. subtilis strain 

D604 at the volume 150 µl inhibited mycelial growth at 70.81%. Subsequently, the 

biosurfactant B. subtilis strains CaSUT007, CaSUT007-1, CaSUT008-2, SUNB2, and 2% 

potassium sorbate at volume 200 µl had the percentage of inhibition around 62.74, 63.93, 

62.15, 61.04, and 44.44 respectively, significantly lower than the control. This result indicated 

that biosurfactants B. subtilis strain D604 at volume 150 to 200 µl had at approximately 70.81-

73.48% of effective inhibition on mycelial growth (Figure 4.5 and 4.6). 
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Figure 4.3  Percentage of inhibition of B. subtilis 14 strains against C. gloeosporioides at 7 days by PDA medium. 

 

 

5
4

 



55 
 

 

 

Figure 4.4  A dual culture test of the antagonistic B. subtilis activity. (A) CaSUT007 (B) CaSUT007-1 (C) CaSUT008 (D) CaSUT008-2 

(E) CaSUT111 (F) D604 (G) D604-1 (H) D501 (I) D501-1 (J) SUNB1 (K) SUNB2 (L) 37-4 (M) 37-5 (N) 38-4 and (G) 

control. 
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Figure 4.5  Percentage of inhibition of biosurfactants produce 5 strains (D604, CaSUT 007, CaSUT 007-1, CaSUT 008-2, and SUNB2) 

of B. subtilis against C. gloeosporioides at 7 days by PDA medium at the concentration 50, 100, 150, and 200 µl.  
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Figure 4.6  A dual culture test by agar well method of the biosurfactant antagonistic activity. (A) biosurfactant strain D604 (B) 

biosurfactant strain CaSUT007 (C) biosurfactant strain CaSUT007-1 (D) biosurfactant strain CaSUT008-2 (E) biosurfactant 

strain SUNB2 (F) 2% potassium sorbate and (G) control. 
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4.4   Efficacy of concentrations of biosurfactants from B. subtilis 

strain D604 in controlling C. gloeosporioides in vitro 

 The biosurfactants from B. subtilis strain D604 was assessed for their abilities to 

control pathogenic fungi on green shallot. Their antifungal activities were assayed in vitro 

by culturing the fungal pathogen in the PDA mixed with the biosurfactants at the 

concentrations of 10, 20, 25, 30, 40, and 50%. In another set, sterile dH2O is negative 

control and Prochloraz, and 2% potassium sorbate is a positive control. The colony 

diameter was measured at 3, 5, and 7 days, and the percentage inhibition in radial growth 

(PIRG) was estimated (Sariah, 1994, Gamagae et al., 2004; Narendra et al. 2016). The 

result revealed that all treatments were significantly different when compared with the 

control. At 3 to 7 days, PDA medium mixed with biosurfactant at the concentration of 25, 

30, 40 50%, and Prochloraz fungicide had the highest percentage inhibition at 100%. 

While the biosurfactants at the concentrations of 10, 20%, and 2% potassium sorbate had 

percentage inhibition at 47.03, 77.08, and 37.64%, respectively while comparing with the 

control (Figure 4.7-4.10). 

 

4.5   Efficacy of biosurfactants from B. subtilis for induced resistance 

against anthracnose disease under the greenhouse conditions 

 The green shallot at 28 days old was treated with biosurfactants from              

B. subtilis strain D604 every 7 days. After that, inoculation was conducted with         

C. gloeosporioides isolate PSKR-SUT10 at concentrations of 1010
6 

conidia mL
-1

. 

Disease severity was estimated at 7 days after inoculation. The result shows that 

biosurfactant from B. subtilis strain D604 could reduce anthracnose disease severity at 
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Figure 4.7 Efficacy of biosurfactant produced by B. subtilis strain D604 against C. gloeosporioides at 3, 5, and 7 days on PDA 

medium at the concentrations of 10, 20, 25, 30, 40, and 50%. 
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Figure 4.8 Efficacy of biosurfactant produced by B. subtilis strain D604 against C. gloeosporioides at 3 days by PDA medium at the 

concentrations of 10% (A), 20% (B), 25% (C), 30% (D), 40% (E), 50% (F), 2% Potassium sorbate (G), Prochloraz fungicide 

(H), and control (I). 
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Figure 4.9 Efficacy of biosurfactant produced by B. subtilis strain D604 against C. gloeosporioides at 5 days by PDA medium at the 

concentrations of 10% (A), 20% (B), 25% (C), 30% (D), 40% (E), 50% (F), 2% Potassium sorbate (G), Prochloraz (H), 

and control (I). 
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Figure 4.10 Efficacy of biosurfactant produced by B. subtilis strain D604 against C. gloeosporioides at 7 days by PDA medium at the 

concentrations of 10% (A), 20% (B), 25% (C), 30% (D), 40% (E), 50% (F), 2% Potassium sorbate (G), Prochloraz (H), 

and control (I). 

6
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58.80% on the leaves of green shallot, indicating that the induction of systemic resistance 

may occur. Besides, the results showed that treatment with the chemical fungicide 

(Prochloraz) reduced the severity of anthracnose disease in green shallot by 64.70%. Both 

Prochloraz and biosurfactant from B. subtilis strain D604 resulted in disease reduction 

when compared with the control. Other than, green shallot affected by leaves treatment of 

the cell suspension of B. subtilis strain D604 and B. subtilis commercial had disease 

severity of 52.90 and 41.20% on the leaves of green shallot, respectively. Each treatment 

was significantly different compared with the control (Table 4.3). 

 

Table 4.3  Effect of biosurfactants produced by B. subtilis strain D604 on disease 

reduction of anthracnose disease in green shallot in greenhouse condition. 

Treatment 
Disease reduction 

(%) 
Reaction 

Biosurfactant from B. subtilis strain D604 58.80 Resistant 

B. subtilis strain D604 52.90 Moderately resistant 

B. subtilis commercial 41.20 Moderately susceptible 

Prochloraz (positive control) 64.70 Resistant 

dH2O (negative control) 0.00 Susceptible 

 

 

4.6 Efficacy of biosurfactant produced by B. subtilis strain D604 for 

growth promoting 

 4.6.1  Plant growth parameter 

  Morphological changes of green shallot were observed at 35 days after 

inoculation. Each treatment affected plant growth and development and significantly 

increased the plant height, the weight of the shoot, and the dry weight of shoot green 

shallot plants. Biosurfactant from B. subtilis strain D604 potentially increased plant 



64 

 

height with 30.34 cm, the weight of shoot with 119.96 g, and the dry weight of shoot 

with 32.69 g, respectively. Furthermore, the inoculated green shallot plants with         

B. subtilis strain D604, B. subtilis commercial and Prochloraz had increased plant 

height at 31.91, 28.67, and 25.80 cm, the weight of shoot at 94.97, 89.77, and 76.53 g, 

and the dry weight of shoot at 27.01, 18.04 and 16.04 g, respectively, compare with 

control plants which had plant height with 26.10 cm, the weight of shoot with 84.53 g, 

and the dry weight of shoot with 18.90 g (Table 4.4). This finding suggests that using 

biosurfactant and different B. subtilis, especially biosurfactant could be to promote 

green shallot growth under greenhouse condition. 

 

Table 4.4  Effect of the biosurfactants from B. subtilis on plant growth-promoting in 

green shallot under greenhouse condition. 

Treatment 

Plant growth of green shallot 

Plant height 

(cm/plant) 

Fresh weight 

(g/plant) 

Dry weight 

(g/plant) 

Biosurfactants from B. subtilis strain D604 30.34ab
1/ 

119.96a 32.69a 

B. subtilis strain D604 31.91a 94.97b 27.01b 

B. subtilis commercial 28.67b 89.77bc 18.04cd 

Prochloraz (positive control) 25.80c 76.53c 16.04d 

dH2O (negative control) 26.10c 84.53bc 18.90c 

F-test ** ** ** 

CV (%) 0.28 0.50 0.40 

1/
Mean in the column followed by the same letter is not significantly different 

according to the DUNCAN test (α = 0.05). 
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 4.6.2.  Analysis of chlorophyll content, Indole-3-acetic acid (IAA) in green 

shallot 

  The chlorophyll content in green shallot leaf was significantly different 

among all treatment. The highest contents of chlorophyll a, b, and total chlorophyll 

after treated green shallot leaf with biosurfactant from B. subtilis strain D604 were 

high at 19.78, 6.07, and 25.86 μg mL
-1

 respectively, while the leaf treated with          

B. subtilis strain D604 had the contents of chlorophyll a, b, and total chlorophyll at 

17.22, 5.26, and 22.49 μg mL
-1

 respectively, The treatment with B. subtilis 

commercial gave the contents of chlorophyll a, b, and total chlorophyll at 13.41, 5.19, 

and 18.61 μg mL
-1

. While the lowest values of 11.29, 3.46, and 14.75 μg mL
-1

 were 

obtained from Prochloraz compare with the control (Table 4.5). 

 

Table 4.5  Chlorophyll and Indole-3-acetic acid content in green shallot. 

Treatment 

Chlorophyll  

(μg mL
-1

)
 

IAA 

(μg g
-1

 fresh weight) 

Chla Chlb Total Chl IAA 

Biosurfactants from B. subtilis 

strain D604 
19.78a

1/ 
6.07a 25.86a 14.76a 

B. subtilis strain D604 17.22b 5.26ab 22.49b 14.41a 

B. subtilis commercial 13.41c 5.19b 18.61c 8.78b 

Prochloraz (positive control) 11.29d 3.46c 14.75d 6.98b 

dH2O (negative control) 10.62d 2.25d 12.87e 6.20b 

F-test ** * ** ** 

CV (%) 3.64 10.37 0.478 22.18 

1/
Mean in the column followed by the same letter is not significantly different 

according to the DUNCAN test (α = 0.05). 
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  The indole-3-acetic acid content in green shallot leaf after treated with 

biosurfactants from B. subtilis strain D604 and B. subtilis showed the highest amount 

of 14.76 and 14.41 μg g
-1

 fresh weight respectively, followed by B. subtilis 

commercial (8.78 μg g
-1

 fresh weight). However, the IAA value of the green shallot 

after treated with Prochloraz (6.39 μg g
-1

 fresh weight) and dH2O (6.20 μg g
-1

 fresh 

weight) were not significantly different (Table 4.5).  

 

4.7   Green shallot defense mechanisms after induction of biosurfactants 

from B. subtilis against anthracnose disease 

 4.7.1  The accumulation of salicylic acid content 

  Salicylic acid (SA) accumulation in green shallot leaves after treatment 

inoculation of C. gloeosporioides at 0, 24, and 48 hours (HAI) was analyzed in a 

spectrophotometer at 530 nm wavelength (Raskin et al., 1990). At 0 h after challenge 

inoculation. The B. subtilis commercial reaching the maximum contents of 7.42 µg g
-1

 

/fresh weight. Secondly, the biosurfactants from B. subtilis strain D604, distilled water 

(dH2O), and B. subtilis strain D604 were followed by 5.02, 4.05, and 3.67 µg g
-1

 fresh 

weight respectively, and treatment of Prochloraz was lower at 3.14 µg g
-1

 fresh 

weight. Moreover, the levels of the SA-associated significantly increased at 24 h after 

challenge inoculation among all treatment, The B. subtilis strain D604 helped plants 

accumulated the highest SA of 116.83 µg g
-1

 fresh weight. Secondly, B. subtilis 

commercial’ SA of 90.67 µg g
-1

 fresh weight was significant treatment compared to 

the Prochloraz and distilled water (dH2O) at 87.04 and 85.31 µg g
-1

 fresh weight, 

respectively. These results indicated that green shallot within 0-24 hours after 

inoculation as a hypersensitive response (HR) through the SA signaling pathway 
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while SA was the signal transduction molecule. However, at 48 h after challenge 

inoculation, each treatment showed a liable decrease of the levels of SA (Table 4.6). 

 

Table 4.6  Accumulation of salicylic acid in leaves of green shallot with the foliar 

application and after inoculation with C. gloeosporioides. 

Treatment
1/ 

Salicylic acid  

(µg g
-1 

fresh weight) 

0 HAI
2/ 

24 HAI 48 HAI 

Biosurfactants from B. subtilis strain D604 3.67c
3/ 

103.58b 81.01bc 

B. subtilis strain D604 5.02b 116.83a 66.83d 

B. subtilis commercial 7.42a 90.67c 86.54a 

Prochloraz (positive control) 3.41c 87.04c 85.02ab 

dH2O (negative control) 4.05bc 85.31c 79.53c 

F-test ** ** ** 

CV (%) 14.01 4.44 3.13 

1/ Salicylic acid were evaluated at after 7 days foliar treatments, Prochloraz fungicide 

or distilled water (control) and at 0, 24 and 48 hours after challenging with                 

C. gloeosporioides.; 
2/

HAI: hours after inoculated; 
3/

each value represents a mean of 

three replicate plants with two leaves per plant. Mean in the column followed by the 

same letter are not significantly different according to the DUNCAN test (α= 0.05). 

 

 4.7.2  Total phenolic compound 

  Phenolic compound (PC) accumulation in each treatment after inoculation 

with Colletotrichum sp. at 0, 24, and 48 hours (HAI) was analyzed using a 

spectrophotometer at 765 nm wavelength. The results showed that the levels of the PC 

at 0 h after challenge inoculation among all treatment significantly different. The 

leaves treated with B. subtilis strain D604, biosurfactants from B. subtilis strain D604, 

and fungicides (Prochloraz) showed the maximum content of 255.29, 243.24, and 
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241.87 µg g
-1
 fresh weight, respectively. On the next positions, the contents observed 

from the treatment of the B.  subtilis commercial were followed by 231.50 µg g
-1
 fresh 

weight significantly when compared with the control. Besides, the number of PC 

varied widely in green shallot. Among treatment of Prochloraz, B. subtilis commercial,    

B. subtilis strain D604, and dH2O, low levels were found in green shallot (316.87, 

296.87, 281.50 and 250.51 µg g
-1
 fresh weight, respectively). The green shallot leave 

treated by the biosurfactants from B. subtilis strain D604 contained relatively high 

amounts of PC at 352.71 µg g
-1
 fresh weight at 24 h. Overall, these results suggested 

that green shallot may have some effect on modulating the endogenous phenolic 

compounds for induce resistance after treatment (Table 4.7). 

 

Table 4.7  Effect of phenolic compound (PC) in leaves of green shallot with the foliar 

application and after inoculation with C. gloeosporioides. 

Treatment
1/ 

Phenolic compound  

(µg g
-1

 fresh weight) 

0 HAI
2/ 

24 HAI 48 HAI 

Biosurfactants from B. subtilis strain D604 243.24a
3/ 

352.71a 269.68a 

B. subtilis strain D604 255.28a 281.50cd 260.96a 

B. subtilis commercial 231.50b 296.87bc 235.74b 

Prochloraz (positive control) 241.87a 316.87b 266.42a 

dH2O (negative control) 232.33b 250.51d 246.04c 

F-test * ** ** 

CV (%) 3.03 6.06 5.01 

1/ Phenolic compounds were evaluated at after 7 days foliar treatments, Prochloraz 

fungicide or distilled water (control) and at 0, 24 and 48 hours after challenging with 

C. gloeosporioides.; 
2/

HAI: hours after inoculated; 
3/

each value represents a mean of 

three replicate plants with two leaves per plant. Mean in the column followed by the 

same letter are not significantly different according to the DUNCAN test (α= 0.05). 
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4.8  Assay of defense enzymes 

 4.8.1  Chitinase analysis 

  The results showed that chitinase activities in the green shallot leaf 

after treated with biosurfactants from B. subtilis strain D604 had the highest chitinase 

activity at 1.65 µmol mg
-1

protein at 0 h. It was while the leave treated by B. subtilis 

strain D604, B. subtilis commercial, Prochloraz (positive control), and dH2O (negative 

control) showed the contents of 1.53, 1.47, 1.47, and 1.44 µmol mg
-1

protein, 

respectively, and significantly different at the statistical analysis. Subsequently, at 24 

h after challenge inoculation with C. gloeosporioides, the green shallot leaves treated 

with biosurfactant from B. subtilis strain D604 showed the highest chitinase activity of 

4.11 µmol mg
-1

protein. Next, Prochloraz (positive control), B. subtilis strain D604, 

and B. subtilis commercial were 3.19, 2.52, and 2.46 µmol mg
-1

protein respectively, 

significantly different at the statistical when compared with the dH2O (negative 

control). After challenge inoculation at 48 h, each treatment had a liable decrease in 

the levels of the chitinase (Table 4.8). These results pointed out the different role of 

chitinase in green shallot had signaling pathways helping the plants effectively 

respond to the pathogen infection. 

 4.8.2  Phenylalanine ammonia-lyase (PAL) analysis 

  Analysis of PAL activity showed a wide variation in the level of PAL 

activity in different green shallot leaves. At 0 h after challenge inoculation, the highest 

levels were 1.79 µmol mg
-1

protein after treated with biosurfactant from B. subtilis 

strain D604. While Prochloraz, and B. subtilis commercial showed 14.40, 1.40, and 

1.31 µmol trans-cinnamic acid min
-1

 mg
-1

protein, respectively, differently significant 

in statistics when compared with the control. The same pattern of change in PAL 
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activity was observed at 24 h after challenge inoculation. The green shallot treated 

with biosurfactant from B. subtilis strain D604 appeared the highest PAL activity of 

15.39 µmol trans-cinnamic acid min
-1

 mg
-1

protein, followed by the B. subtilis strain 

D604, B. subtilis commercial, and Prochloraz showing 9.93, 7.36, and 6.35 µmol mg
-

1
protein respectively. Then after challenge inoculation at 48 h. The results showed that 

the PAL activity each treatment had a liable decrease in the levels of the PAL (Table 

4.9).  

 

Table 4.8  Effect of biosurfactant on the accumulation of chitinase in green shallot. 

Treatment 

Chitinase 

(µmol mg
-1

 protein) 

0 HAI
1/
 24 HAI 48 HAI 

Biosurfactant from B. subtilis strain D604 1.65a
2/ 

4.11a 2.97a 

B. subtilis strain D604 1.53b 2.52c 2.19c 

B. subtilis commercial 1.47bc 2.46c 1.16e 

Prochloraz (positive control) 1.47bc 3.19b 2.52b 

dH2O (negative control) 1.44c 1.88d 1.50d 

F-test ** ** ** 

CV (%) 2.95 3.52 2.38 

1/
HAI: hours after inoculated; 

2/
each value represents a mean of three replicate plants 

with two leaves per plant. Mean in the column followed by the same letter are not 

significantly different according to the DUNCAN test (α= 0.05). 
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Table 4.9 Effect of biosurfactant on the accumulation of Phenylalanine ammonia-

lyase in green shallot. 

Treatment 

Phenylalanine ammonia-lyase 

(µmol mg
-1
protein) 

0 HAI
1/

 24 HAI 48 HAI 

Biosurfactant from B. subtilis strain D604 1.79a
2/ 

15.39a 4.80c 

B. subtilis strain D604 1.40b 9.93b 3.97d 

B. subtilis commercial 1.31b 7.36c 5.77b 

Prochloraz (positive control) 1.40b 6.35d 8.43b 

dH2O (negative control) 1.07c 5.55e 4.34d 

F-test ** ** ** 

CV (%) 3.91 3.75 4.59 

1/
HAI: hours after inoculated; 

2/
each value represents a mean of three replicate plants 

with two leaves per plant. Mean in the column followed by the same letter are not 

significantly different according to the DUNCAN test (α= 0.05). 
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CHAPTER V 

DISCUSSION AND CONCLUSION  

 

 This experiment studied to evaluate the efficiency of biosurfactants produced 

by B. subtilis on growth promotion and induced resistance in green shallot under 

laboratory and greenhouse conditions. 

 

5.1  Isolation of pathogen by tissue transplanting technique had 

efficacy to isolate anthracnose pathogen in green shallot  

 The pathogen used in this study was provided under the name C. gloeosporioides 

which causes anthracnose disease on green shallot (Liu et al., 2014 and Abdelrahman 

et al., 2018). The pathogen isolates used in this study were in green shallot tissues, 

grown on WA medium at room temperature, and subcultured to PDA medium 

(Connell et at., 2004). The important principles for isolating the pathogens such as 

young green shallot leaves that look like fresh wounds were over the outside of the 

bulb or leaves with dark green or black colored spots, about 2-3 mm in diameter, and 

show ring (Ciba plant protection vegetables, 1911; Compendium of onion and garlic 

disease, 1995). When selected the sample rapid to isolation in laminar flow after sub-

cultured to PDA medium at 7 old days, the fungi can well grow up. It corresponds to 

the morphology and conidia of the C. gloeosporioides. The growth pattern was either 

circular, with the mycelia showing a uniform growth pattern and radial in a ring-like 

pattern. Subsequently, one representative isolate was selected for further study. 
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5.2  Pathogenicity and virulence test by detaching leave assay  

 Tested 6 isolates of C. gloeosporioides at the concentration 1


10
6
 CFU mL

-1
 in 

green shallot leaves found that all isolates were aggressive, but each isolate showed 

varying degrees of virulence. Among these isolates, PSKR-SUT 10 had the most 

virulent. The symptoms and sign of this disease the outside of the leave with small 

white sunken spots and eventually the disease will form a concentric ring pattern 

covered with mycelium and orange spore mass of C. gloeosporioides. This result 

indicated that artificial inoculation of green shallot with C. gloeosporioides to occur 

anthracnose disease had to adjust 3 factors such as pathogen, host plant, and 

environment to suitable as a disease incidence. Plant diseases their occurrence and 

severity result from the impact of 3 factors because the severity of anthacnose disease 

depends on the plant susceptible, a virulent pathogen, and conducive is the existing 

environmental conditions in supporting disease and pathogen spread. Besides, 

invasion of anthracnose disease the C. gloeosporioides which is a hemibiotrophic 

ascomycete. the genus Colletotrichum contains proteases and carbohydrate-active 

enzymes of any fungus. They also produce secondary metabolites, which are 

commonly phytotoxic, in both their biotrophic and necrotrophic phases by playing a 

role in a biotrophic phase where it secures a relationship with the host plant and 

switching to a necrotrophic phase to obtain nutrients and colonize the tissue to kill 

cells and progress through the plant causing necrotic lesions and plant death, resulting 

in a 50-80% yield loss in green shallot. 

 Moreover, pathogenicity and virulence test by detaching leave assay in green 

shallot can be used as a rapid screening technique to pathogenicity test and virulence 

test in a short time with minimal cost. Similarly, Sharma et al. (2005) reported that the 
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assay of the detached leaf can be used as a rapid screening technique to evaluate 

germplasm, segregating breeding materials, and mapping populations for resistance to 

H. armigera in a short time. Also, Browne and Cooke (2003) used a detached leaf 

assay for pre-screening resistance to Fusarium head blight in wheat. 

 

5.3  Efficacy of B. subtilis as a biological control agent against 

C. gloeosporioides  

Screening of B. subtilis as a biological control agent against C. gloeosporioides 

14 isolates (CaSUT007, CaSUT007-1, CaSUT008, CaSUT008-2, CaSUT111, D604, 

D604-1, D501, D501-1, SUNB1, SUNB2, 37-4, 37-5 and 37-6) by dual culture 

method under laboratory to study direct mode of action of B. subtilis to control 

anthracnose disease. Found that B. subtilis 5 strains including D604, CaSUT008-2, 

SUNB2, CaSUT007-1, and CaSUT007 with strong antagonistic activity to C. gloeosporioides 

isolate PSKR-SUT 10 was observed. The highest percentage of inhibition of C. gloeosporioides 

was 49.55, 46.00, 45.66, 44.50, and 43.78% respectively. This study corresponds to 

Wongchalee (2015) tested Bacillus for antagonistic activities against Colletotrichum 

sp. by using the dual culture technique. Found that Bacillus strains D604, D502, and 

CaSUT007 showed high activity against Colletotrichum sp. Similar to Awang et al., 

2015 Bacillus strain CBF, YCA0098, and YCA5593, were tested against C. gloeosporioides 

the result showed that all Bacillus sp. significantly reduce the mycelia growth and 

spore germination of the C. gloeosporioides. In 2014 Ashwini and Srividya found that 

B. subtilis showed high antagonistic activity against C. gloeosporioides, and Srividya 

et al., 2012 report that B. subtilis produced appreciable levels of enzymes such as 
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chitinase, glucanase, and cellulase and showed broad-spectrum antagonism against 

fungal phytopathogens. 

 

5.4  The efficiency biosurfactant produced by antagonistic B. subtilis 

strain D604 to inhibit the mycelium growth of C. gloeosporioides  

 The efficiency of biosurfactant by B. subtilis was carried out by the method of 

agar well method. The results found that the biosurfactant B. subtilis strain D604 at 

200 µl had efficacy to inhibit the growth of anthracnose disease caused C. gloeosporioides 

higher 73.48% and the biosurfactant at 150 µl had inhibition percentage of efficacy to 

pathogen at 70.81%. Moreover, the biosurfactant from B. subtilis strain D604 showed 

the highest inhibition percentage of mycelium growth.  The efficiency of 

concentration biosurfactant from B. subtilis strain D604 to control anthracnose 

disease. The result found that biosurfactants at the concentration of 25% could control 

anthracnose disease in green shallot. The results are in line with Pyoung et al. (2009). 

These authors reported that three biosurfactant lipopeptides produced by B. subtilis 

CMB32 such as iturin A, fengycin, and surfactin A. Strain CMB32 had the strongest 

antagonistic effect to inhibit C. gloeosporioides, and also had antifungal activity 

against other fungal plant pathogens, including F. solani KCTC 6328, B. cinereal 

KACC 40573, F. oxysporum KACC 40037, R. solani KACC 40151, and P. capsici 

KACC 40157. In 2012, Andersson reported secondary metabolites from the bacterial 

biocontrol agent P. brassicacearum MA250 can inhibit the growth of the fungal 

pathogen Microdochium nivale at concentrations down to 180 μM, which indicates 

that they may contribute to the biocontrol effect of P. brassicacearum MA250 on      

M. nivale. Sarwar et al (2018) extracted lipopeptides from bacteria to assess their 
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antifungal activities. The results showed that B. amyloliquefaciens FZB42, Bacillus 

sp. NH 217 and B. subtilis NH-100 exhibited excellent biosurfactant and displayed 

good antifungal activity against plant disease pathogens, such as Fusarium 

moniliforme, F. oxysporum, and F. solani. Paramanandham et al. (2017) reported a 

secondary metabolite produced by some microorganisms, that acts as a general 

inhibitor to avoid competition and predation between pathogen and biocontrol agent. 

It was considered to be toxic to the pathogen and increased the death rate of the 

pathogen in the rhizosphere environment. In 2015, Mnif et al. evaluated B. subtilis 

SPB1 lipopeptides antifungal agent against F. solani infestation. The results showed 

that the treatment of F. solani by SPB1 lipopeptides generated excessive lyses of the 

mycelium and destroyed the related spores together with a total inhibition of spore 

production. The preventive treatment appeared as the most promising as after 20 days 

of fungal inoculation, rot invasion was reduced by almost 78 %, in comparison to that 

of non-treated one. When treating infected tomato plants, disease symptoms were 

reduced by almost 100% when applying the curative method. The results of this study 

were very promising as it enabled the use of the crude lipopeptide preparation of B. subtilis 

SPB1 as a potent natural fungicide that could effectively control the infection of         

F. solani in tomato and potato tubers at a concentration similar to the commercial 

fungicide (hymexazol). Ongena et al. (2007) studied surfactin and fengycin lipopeptides 

of B. subtilis as elicitors of induced systemic resistance in plants. The results found 

that surfactin and fengycin lipopeptides of B. subtilis, a novel class of compounds, can 

be perceived by plant cells as signals to activate defense mechanisms. Moreover, 

experiments conducted on bean and tomato plants showed that overexpression of both 

surfactin and fengycin biosynthetic genes in the producer B. subtilis strain 168 was 
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associated with a significant increase in the potential of the derivatives to induce 

resistance. The lipopeptides are considered as virulence factors and display a strong 

phytotoxic activity centered on an ability to form pores in plant plasma membranes, 

thereby inducing cell death (Dalla Serra et al., 1999). In 2008, Ongena and Jacques 

reported the biocontrol of plant diseases using the three families of Bacillus 

lipopeptides including surfactins, iturins, and fengycins for the antagonistic activity 

for a wide range of potential pathogens of bacteria and fungi. The lipopeptides can 

also influence the ecological fitness of the producing strain in terms of root 

colonization and also have a key role in the beneficial interaction of Bacillus sp. with 

plants by stimulating host defense mechanisms.  

 

5.5  The efficacy of biosurfactant produced by antagonistic B. subtilis 

strain D604 to plant growth promotion  

 The biosurfactant produced by B. subtilis strain D604 tested in this study 

exhibited the potential to increase plant height with 30.34 cm, the weight of shoot with 

119.96 g, and the dry weight of shoot with 32.69 g respectively, and increase contents 

of chlorophyll a, b, and total chlorophyll was high at 19.78, 6.07, and 25.86 μg mL
-1

. 

Moreover, the indole-3-acetic acid content in green shallot leaf increase after treated 

with biosurfactants from B. subtilis strain D604 highest amount of 14.76 μg g
-1

 fresh. 

These biosurfactants are important parameters for a beneficial association with the 

plant roots and can improve the growth of the plant. Further, these biosurfactants can 

increase the bioavailability of hydrophobic molecules which may serve as nutrients. 

 Biosurfactants provide wettability to soil and support the proper distribution of 

chemical fertilizers in the soil thus assisting plant growth promotion. The results are 
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corresponding to Dusane et al. (2010). These authors reported that the biosurfactant 

produced by Pseudomonas spp. regulated the process of quorum sensing (cell to cell 

communication). In 2005, Haas and Défago reported the lipopeptide biosurfactants 

produced by Pseudomonas sp. and Bacillus sp. had been implied in biocontrol due to 

their potential positive effect on competitive interactions with organisms and 

supported plant growth. Akinrinlola et al. (2018) reported B. megaterium and B. safensis 

increased the growth of soybean and wheat. Magdalena et al. (2016) reported that 

bacteria exhibit features of plant growth-promoting bacteria (PGPB) and can increase 

the biomass of plants via several mechanisms that include: the production of 

phytohormones (such as indoleacetic acid, IAA), siderophores, and biosurfactants to 

promote plant growth. Xiafang et al., (2008) reported that A biosurfactant-producing 

Bacillus sp. can promote the plant growth, produce indole acetic acid (IAA), and 

siderophores. Reviewing the functions of biosurfactant indicates the essential role of 

these green compounds for sustainable agriculture. 

 

5.6 The efficacy of biosurfactant produced by antagonistic B. subtilis 

strain D604 to reduce anthracnose disease and induce resistance 

in green shallot 

 The efficacy of biosurfactant from B. subtilis strain D604 was used to 

investigate anthracnose disease control in green shallot under greenhouse conditions.  

The results demonstrated that biosurfactant from B. subtilis strain D604 when applied 

as a foliar treatment every 7 days and after inoculated with the fungal for 7 days, the 

results showed that anthracnose disease severity at 58.80%, equivalent to Prochloraz 

fungicide at 64.70% significantly different with negative control (dH2O). This result 
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indicated that biosurfactant from B. subtilis strain D604 can induce resistance in green 

shallot. Corresponding to Touré et al, (2004) found that lipopeptides produced by                       

B. subtilis GA1 were very effective at reducing disease incidence during 5 days 

following B. cinerea inoculation and an 80% protection level were maintained over 

the next 10 days. and a disease reduction of about 40% was conserved after 21 days of 

incubation on apple. In the same year, Touré et al, report that the cell-free filtrate, 

extracted lipopeptides, and crude of B. atrophaeus CAB-1 display a high inhibitory 

activity against various B. cinereal. Next In 2015 Mnif et al.  evaluated the efficiency 

of a lipopeptide biosurfactant derived from B. subtilis SPB1 at concentrations 0.1, 1, 

and 3 mg/ml against the hyphal growth of F. solani. The result demonstrates that total 

inhibition of hyphal growth and spore production when treating F. solani with 3 

mg/ml of lipopeptides biosurfactant.  

 

5.7 Mechanisms of induced resistance against anthracnose in green 

shallot  

 The efficacy of biosurfactant from B. subtilis strain D604 to study mechanisms 

of induced resistance against anthracnose disease in green shallot under greenhouse 

condition. This experiment was performed in CRD with 5 treatments using 4 

replications. The green shallot foliar spray 4 times with 25% biosurfactant produced 

from B. subtilis strain D604. Distilled water was served as a negative control and 

Prochloraz fungicide was served as a positive control. After that study defense 

mechanisms were observed by the detection of biochemical change such as salicylic 

acid and phenolic compound were investigated at 0, 24, and 48 hours after inoculation 

(HAI). The results found that the total of PC significantly increased at 24 HAI to levels 
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of 352.71, 316.87, 296.87, and 281.50 µg g
-1

 fresh weight from foliar treated with 

biosurfactant B. subtilis strain D604, B. subtilis strain D604, commercial B. subtilis, and 

Prochloraz, respectively. Likewise, the accumulation of SA significantly increased at 24 

HAI to levels of 103.58, 116.83, 90.67, and 87.04 µg g
-1

 fresh weight. respectively. 

Then study the defense enzymes including phenylalanine ammonia-lyase (PAL), and 

PR-protein: chitinase (Chi). The result found that PAL activity also significantly 

increased at 24 HAI with levels of 15.39, 9.93, 7.36, and 5.55 µmol mg
-1

protein, 

respectively. On the other hand, Chi activity significantly increased at 24 HAI with 

levels of 4.11, 3.19, 2.52, and 2.46 µmol mg
-1

protein from foliar treated with 

biosurfactant strain D604, Prochloraz, B. subtilis strain D604, and commercial B. subtilis.  

 These results demonstrated that when pathogen infection. One of the earliest 

responses is the oxidative burst, in with levels of reactive oxygen species.  It acts as a 

local signal for the hypersensitive response that contributes to program cell death occurs 

at sites of pathogen-infected. Plants have established a complex defense system 

consisting of various barricade layers including induced defense controlled by a 

multifarious and dynamic network of signaling pathways. SA and JA have a regulatory 

role in plant immunity and plant defense responses. This contributes active defense 

response and causes the direct active SAR including defense protein such as 

phenylalanine ammonium-lyase (PAL), polyphenol oxidase (PPO), peroxidase (POD), 

lipoxygenase (LOX) and producing antimicrobial compounds in plants, e.g., phenolics, 

flavonoids, phytoalexins, and pathogenesis-related (PR) proteins such as chitinase, and 

β-1,3-glucanase. This activation has a role in not only transcriptional reprogramming 

and induction of early defense-related genes but also in limiting pathogen infection 

and priming plants against future attacks (Figure 5.1). Corresponding to He and Wolyn 
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(2005) report SA is essential for the stimulation of defense mechanisms and induction 

of SAR to C. gloeosporioides in green shallot. SA has long been recognized to play an 

important role in the situation of SAR against disease because SA levels increased in 

plant tissues ensuing pathogen infection and exogenous application of SA can enhance 

the resistance to a broad range of pathogens. Also, SA has an important role in the 

signaling pathway leading to ISR (Induced systemic resistance) after infection, 

endogenous levels of SA increase locally and systemically, and SA levels increase in 

the phloem before ISR occurs (Hell et al., 2002). Kim and Hwang (2014), the authors 

reported that PAL had a crucial role in plant responses to stress. PAL (CaPAL1) gene, 

which was induced in pepper. CaPAL1 in pepper conferred increased resistance to 

disease increased ROS burst and cell death, and induction of PR1 expression and SA 

accumulation. CaPAL1 acts as a positive regulator of SA-dependent defense signaling 

to combat microbial pathogens via its enzymatic activity in the phenylpropanoid 

pathway. Also, the phenolic compound differs in the plant, in which a direct inhibited 

effect of pathogens by phenolics was detected (Benhamou and Be´langer., 1998). The 

phenolics compounds were interceded by the deposition of phenolics and callose in 

the wall. Simultaneously, Chi activity increased at 24 after the fungal challenged 

inoculation with the fungal. Corresponds to a study of Gupta et al. (2012), the 

induction of PR proteins in Eruca sativa in response to fungal pathogen A. brassicicola 

found that the induction of pathogen resulted in a much-marked increase in the 

activities of β-1,3-glucanase and chitinase in resistant cultivar as compared to 

susceptible. In 2004, Santos et al. reported plants-produced enzymes such as β-1,3-

glucanase and chitinase can break down the cell wall components of pathogens. These 

enzymes are important determinants of the resistance of plants to fungal diseases. The 
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green shallot treated biosurfactant likely conducts to drastic changes in both the 

rigidity and the vulnerability of cells, also the differential expression of chitinases in 

green shallot was considered a convenient indicator of successful signaling. The green 

shallot is a rewarding target of SAR and ISR research because it is an important crop, 

which is prone to several devastating fungal diseases and requires the frequent 

application of fungicides. The conclusions from the inoculation studies are in tally 

with the relevant literature (Busam et al., 1997) and support the thought of SAR and 

ISR response for green shallot defense mechanism.  

 

 

 
Figure 5.1 A schematic representation of the plant defense mechanism against the 

pathogen (Corwin and Kliebenstein, 2017; Tang et al., 2017). 

 

 Bacillus biosurfactant can induce systemic resistance against anthracnose 

disease of green shallot by increase the resistance intermedia compound as endogens 

salicylic acid, phenolic compound, Chitinase, and Phenylalanine ammonia-lyase. 
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These results indicated that the biosurfactant B. subtilis strain D604 has direct and 

indirect effects that could act as an antimicrobial agent and activate several plant 

defense mechanisms during host-pathogen interaction (Figure 5.2). 

 

 

  

Figure 5.2 Efficacy of biosurfactant to induce systemic resistance against anthracnose 

disease on green shallot. (A) In the non-primed cell and (B) In the 

priming stimulus cell. 

 

5.8  Biosurfactants in agriculture 

 The biosurfactant produced by B. subtilis strain D604 tested in this study had 

efficacy to plant growth promotion, reduced anthracnose disease, and induced resistance in 

green shallot. These biosurfactants have a double effect that could act as an antimicrobial 

agent and activate several plant defense mechanisms during host-pathogen interaction. 

When applied as a foliar treatment every 7 days at the concentration of 25% can control 

anthracnose disease likely Prochloraz fungicide under greenhouse conditions. The 
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biosurfactant produced by B. subtilis strain D604 can be an alternative method to growth-

promoting and control green shallot disease. The biosurfactant as biocontrol agents are 

lipopeptide and demonstrate antagonist effect on plant phytopathogens that have acquired 

resistance to commercial pesticides, thus initiating their use as biocontrol agents. 

Biosurfactant can likewise excite the immunity of the plant which is considered as an 

alternative approach to decrease the disease caused by phytopathogens. In the current years, 

surfactants have several applications in agriculture and agrochemical industries. However, 

there is a rare use of biosurfactants which are more environmentally friendly. The exact role 

of surfactant in facilitating other systems as biocontrol agents is yet not much understood 

and warrants investigations. These studies will help in replacing the harsh chemical there is 

a need to work on the production cost of green surfactants to achieve net economic gain 

from the application of biosurfactant in agriculture. This approach may lead to the 

biosynthesis of highly target-specific surfactants that indication for its potent role in 

sustainable agriculture. In the future, the research should be practical strategies and methods 

that will be adopted to develop the biosurfactant production process economically and 

friendly attractive: these include the use of cheapest raw materials, waste solid state, 

optimized and efficient bioprocesses and overproducing natural mutant Bacillus strains for 

obtaining maximum biosurfactant productivity. The application of these approaches in 

biosurfactant production processes, particularly those using hyper-producing natural mutant 

strains in the optimally controlled environment of a bioreactor, might lead towards the 

successful commercial production of these valuable biomolecules in near future.  
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I. MEDIUMS 

 1.1  Water Agar (WA) 

  Agar    15g 

  Water    1L 

 1.2  Potato Dextrose Agar (PDA) 

  Potato    200g 

  Dextrose   20g 

  Agar    15g 

  Water    1,000ml  

 1.3  Nutrient broth (NB) medium 

  Beef extract    3g 

  Peptone    5g 

  Water     1,000ml 

II. CHEMICALS 

 2.1  0.02 M Ferric ammonium sulfate 

  Ferric ammonium sulfate  4.82g 

  Water     500ml 

 2.2  10% Folin-ciocalteu reagent 

  Folin-ciocalteu reagent  10ml  

 Water     100ml 

 2.3  7% Sodium carbonate (Na2CO3) 

  Sodium carbonate   7g 

  Water     100ml 
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 2.4  2% Potassium sorbate 

  Potassium sorbate  2g 

  Water     100ml 

 2.5  1 M KCl 

  KCl     74.56 g 

  Water     1,000ml 

 2.6  1 M phenylmethylsulfonyl fluoride (PMSF) 

  PMSF     174.20g 

  Isopropanol    1,000ml 

 2.7  1% Triton-x 100 

  Triton-x 100    1ml 

  Water     99ml 

 2.8  Salkowski’s reagent 

  Prepare stock solution of 0.5 M FeCl3 (1.35 g in 10 ml water) 

  Use 1 ml of this stock to mix with 49 ml of 35% HClO4 

 2.9  1 M Tris-HCl buffer, pH 7 

  Tris base    121.1g 

  deionization water   1,000ml 

 adjust pH to 7 
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Attached figure 1  Standard curve of salicylic acid (SA) at the absorbance 530 nm. 

 

 

 

Attached figure 2  Standard curve of gallic acid at the absorbance 765 nm. 
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Attached figure 3 Standard curve of N-acetyl glucosamine at the absorbance 585 nm. 

 

 

 

Attached figure 4 Standard curve of trans-cinnamic acid at the absorbance 290 nm. 
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